INNOVATIVE DESIGN. CLASSIC RESULTS.

FINAL DRAINAGE REPORT

HANNAH RIDGE AT FEATHERGRASS FILINGS 5, 6 \& 7

October 2018

Prepared for:
ELITE PROPERTIES OF AMERICA, INC.
6385 CORPORATE DRIVE COLORADO SPRINGS, CO 80919

Prepared by:
CLASSIC CONSULTING ENGINEERS \&
SURVEYORS

619 CASCADE AVENUE, SUITE 200
COLORADO SPRINGS CO 80903
(719) 785-0790

SF-18-038
SF-18-039
SF-18-040
Job no. 1116.05

ClassicConsulting.net

FINAL DRAINAGE REPORT FOR HANNAH RIDGE
 AT FEATHERGRASS FILINGS NO. 5, 6 \& 7

DRAINAGE REPORT STATEMENT

DESIGN ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage report and said report is in conformity with the applicable master plan and drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Marc A. Whorton, Colorado P.E. \#37155

Date

OWNERS/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: Feathergrass Investments LLC

Date

Title:
Address:
6385 Corporate Dr., Suite 200
Colorado Springs, CO 80919

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code, as amended.

[^0]Conditions:

Date

FINAL DRAINAGE REPORT FOR HANNAH RIDGE
 AT FEATHERGRASS FILINGS NO. 5, 6 \& 7

TABLE OF CONTENTS:

PURPOSE	Page	4
GENERAL DESCRIPTION	Page	4
EXISTING DRAINAGE CONDITIONS	Page	5
DEVELOPED DRAINAGE CONDITIONS	Page	5
HYDROLOGIC CALCULATIONS	Page	8
FLOODPLAIN STATEMENT	Page	10
EROSION CONTROL PLAN	Page	10
DRAINAGE AND BRIDGE FEES	Page	10
SUMMARY	Page	13
REFERENCES	Page	14

APPENDICES

VICINITY MAP
SOILS MAP (S.C.S. SURVEY)
F.E.M.A. MAP

HYDROLOGIC / HYDRAULIC CALCULATIONS
SWQ / DETENTION CALCULATIONS
DRAINAGE MAPS

FINAL DRAINAGE REPORT FOR HANNAH RIDGE AT FEATHERGRASS FILINGS NO. 5, $6 \& 7$

PURPOSE

This document is the Final Drainage Report for Hannah Ridge at Feathergrass Filings No. 5, 6 \& 7. The purpose of this report is to identify onsite and offsite drainage patterns, storm sewer, inlet locations, and areas tributary to the site, and to safely route developed storm water runoff to adequate detention and water quality facilities while releasing storm water at or below historic rates and in accordance with all applicable master drainage plans. This report will discuss the proposed storm system to be built with Filing 5, 6 and 7 and discuss the final construction details, and more specifically, the final design details of the proposed subregional public detention/water quality facility located at the southerly end of Filing 6 that will handle the treatment for Filings 5, 6 and 7. Final design information for the Filing No. 5, 6 and 7 detention/water quality facility included in this report.

GENERAL DESCRIPTION

The Hannah Ridge at Feathergrass development is a 121.2 acre residential and commercial district within the south half of Section 32, Township 13 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian in El Paso County, Colorado. The site is located on the west side of Akers Drive just north of Constitution Avenue. The existing abandoned Chicago Rock Island and Pacific Railroad sits directly north and west of the site, with Akers Drive bordering the east side and Constitution adjoining the south side of the site. The entire proposed development includes a total of 345 single-family residences and will be developed in seven filings. The Filing No. 5, 6 and 7 are the only remaining areas that are currently undeveloped within the community and was previously re-platted under Hannah Ridge at Feathergrass Filing No. 1. Filing No. 5 includes 55 residential lots on approximately 12.92 acres. Filing No. 6 will include 33 lots on approximately 7.94 acres, and Filing No. 7 is 81 lots on approximately 15.40 acres.

The average soil condition of the entire site and tributary area to the proposed ponds reflects Hydrologic Group "A" (Blakeland, loamy sand) as determined by the "Soil Survey of El Paso County Area," prepared by the National Cooperative Soil Survey (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The site is located within the Sand Creek Drainage Basin. More specifically, it is situated in the north half of the overall Hannah Ridge at Feathergrass residential portion of the development. These last three residential filings makeup nearly all of the Basin A4, as shown on the existing drainage map provided by MVE, Inc. (See Appendix) The abandoned railroad bed along the north edge of the development serves as the northerly basin boundary and Winslow Park Dr. to the south as the southerly basin boundary. The recent construction of Filing 3 improvements included a 6'x10' CBC under Winslow Park Dr. out-falling into a 90" RCP storm. Adjacent to the 6'x10' CBC, a stormwater quality facility (Sand Filter Basin) was also constructed within Tract E, Hannah Ridge at Feathergrass Filing 1. The on-site pre-development drainage patterns sheet flow towards the natural channel through the middle of the property and ultimately into the 6'x10' CBC. This facility was constructed to allow the significant off-site flows from the north, passing under the railroad bed $\left(\mathrm{Q}_{10}=360 \mathrm{cfs}\right.$ and $\mathrm{Q}_{100}=640 \mathrm{cfs}$ per Sand Creek DBPS) historically, traversing the site within an unimproved natural channel within a drainage easement. These off-site flows will continue to flow through the site as planned with the Hannah Ridge at Feathergrass Filing 3 construction drawings, designed by MVE, Inc., approved October 2017. This concept will be finalized in the Filing 5 construction drawings.

DEVELOPED DRAINAGE CONDITIONS

Given some recent changes in City/County Drainage Criteria, the calculations for these last phases of development now reflect current criteria for stormwater quality requirements. Proposed Pond 1 will be designed as a full spectrum facility to accommodate the developed flows from Filings 5, 6 and 7. This will include the design of concrete forebays, concrete trickle channels, concrete micropool and an outlet structure designed to release flows based on full spectrum criteria. The attached developed conditions drainage map contains many design points related to proposed at-grade and sump conditions. All public Type R inlets have been designed at these various locations to accept both the 5 -yr. and 100 -yr. developed flows. All proposed storm facilities within the public Right-of-way will be public with ownership and maintenance by El Paso County. All proposed storm facilities within easements or tracts and the proposed Pond 1 will be owned and maintained by the Hannah Ridge HOA.

Design Point $1\left(\mathrm{Q}_{5}=7 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=15 \mathrm{cfs}\right)$ and Design Point $2\left(\mathrm{Q}_{5}=0.7 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=1.4 \mathrm{cfs}\right)$ collect developed flows from Basins OS-2, A and F. At this sump condition, a 10 ' and a 5' Type R sump inlets,

respectively, will be installed to completely collect both the 5 -year and 100 -year developed flows. These flows will have a maximum ponding depth of 1.0^{\prime} and then be conveyed via a 24 " RCP storm sewer in a southerly direction towards Pond 1. The total flow within the pipe at this location is given by Pipe Run 2 $\left(Q_{5}=7 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=16 \mathrm{cfs}\right)$. The emergency overflow route at this location is in the southerly direction directly into a drainage tract that will route the flows towards Pond 1.

Design Point $3\left(\mathrm{Q}_{5}=9 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=21 \mathrm{cfs}\right)$ and Design Point $4\left(\mathrm{Q}_{5}=2 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=4 \mathrm{cfs}\right)$ collect developed flows from Basins OS-3, D and E. At this sump condition, a 10' and a 5' Type R sump inlets, respectively, will be installed to completely collect both the 5 -year and 100 -year developed flows. These flows will have a maximum ponding depth of 1.0^{\prime} and then be conveyed via a $30^{\prime \prime}$ RCP storm sewer towards Pond 1. The total flow within the pipe at this location is given by Pipe Run $4\left(Q_{5}=11 \mathrm{cfs}\right.$ and $\mathbf{Q}_{100}=24$ cfs). The emergency overflow route at this location is via a natural swale between two lots within a drainage easement and then directly into the natural channel. Pipe Run $5\left(\mathrm{Q}_{5}=17 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=38 \mathrm{cfs}\right)$ represents the combined pipe flows from Design Points 1-4. This 36" RCP storm sewer will route these developed flows to a rip-rap chute and then directly into Pond 1. This pond inflow is designated later in this report as the easterly pond inflow.

Design Point $5\left(\mathrm{Q}_{5}=9 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=25 \mathrm{cfs}\right)$ collects developed flows from Basins OS-4 and J. At this sump condition, a 15 ' Type R sump inlet will be installed to collect a portion of both the 5 -year and 100 year developed flows. These flows being collected have a maximum ponding depth up to the crown of the street. The collected flows at this location equal $\left(\mathrm{Q}_{5}=8 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=8 \mathrm{cfs}\right)$ with flow-by of $\left(\mathrm{Q}_{5}=1 \mathrm{cfs}\right.$ and $\mathrm{Q}_{100}=17 \mathrm{cfs}$) that will overtop the crown and travel into basins K and L . Given the location of the inlet with respect to this " T " intersection, it is assumed that approximately 75% of the flow-by will enter Basin K and 25% of the flow-by will enter Basin L. The downstream design points account for this flow-by assumption.

Design Point $6\left(\mathrm{Q}_{5}=6 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=24 \mathrm{cfs}\right)$ and Design Point $7\left(\mathrm{Q}_{5}=4 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=12 \mathrm{cfs}\right)$ collect developed flows from Basins K, L and the flow-by described above from DP-5. At this sump condition, a 10 ' and a 5' Type R sump inlets, respectively, will be installed to completely collect both the 5 -year and 100year developed flows. These flows will have a maximum ponding depth up to the crown in Electronic Drive and be conveyed via a 36 " RCP storm sewer in a southerly direction towards Design Point 8. The

total flow within the pipe at this location is given by Pipe Run 9 ($\mathrm{Q}_{5}=17 \mathrm{cfs}$ and $\mathrm{Q}_{100}=44 \mathrm{cfs}$). The emergency overflow route at this location is in the southerly direction over the crown of Electronic Drive towards Design Point 8.

Design Point $8\left(\mathrm{Q}_{5}=3 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=7 \mathrm{cfs}\right)$ collects developed flows from Basin M . At this sump condition, a 10 ' Type R sump inlet will be installed to completely collect both the 5 -year and 100 -year developed flows. These flows will have a maximum ponding depth of 1.0^{\prime} and be conveyed via a 36 " RCP storm sewer in a southerly direction towards Pond 1. The total flow within the pipe at this location is given by Pipe Run $10\left(\mathrm{Q}_{5}=20 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=49 \mathrm{cfs}\right)$. The emergency overflow route at this location is in the southerly direction directly into a drainage tract that will route the flows towards the Grand Prix cul-de-sac.

Design Point $9\left(\mathrm{Q}_{5}=9 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=19 \mathrm{cfs}\right)$ and Design Point $10\left(\mathrm{Q}_{5}=2 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=5 \mathrm{cfs}\right)$ collect developed flows from Basins OS-5, N and O. At this sump condition, a 10' and a 5' Type R sump inlets, respectively, will be installed to completely collect both the 5 -year and 100-year developed flows. These flows will have a maximum ponding depth of 1.0 ' and then be conveyed via a 36 " RCP storm sewer in an easterly direction towards Pond 1. The total flow within the pipe at this location is given by Pipe Run 12 $\left(Q_{5}=10 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=\mathbf{2 3} \mathbf{c f s}\right)$. The emergency overflow route at this location is in the southerly direction directly into a drainage tract that will route the flows towards the natural channel. Pipe Run $13\left(\mathrm{Q}_{5}=30\right.$ cfs and $\mathbf{Q}_{100}=71 \mathrm{cfs}$) represents the combined pipe flows from Pipe Runs 10 and 12. This 42 " RCP storm sewer will route these developed flows directly into Pond 1. This pond inflow is designated later in this report as the westerly pond inflow.

Basin OS-1 $\left(\mathrm{Q}_{5}=0.6 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=1.3 \mathrm{cfs}\right)$ develops flows from the existing Akers Dr. roadway, north of the highpoint, that will continue to drain in a northerly direction as curb and gutter flow. Basin $\mathbf{C}\left(\mathrm{Q}_{5}=0.5\right.$ cfs and $\mathrm{Q}_{100}=1 \mathrm{cfs}$) develops flows from the existing Akers Dr. parkway landscape area adjacent to the roadway that will sheet flow into the road and continue to travel in a southerly direction. Basin $\mathbf{G}\left(\mathrm{Q}_{5}=\right.$ 0.7 cfs and $\mathrm{Q}_{100}=1.4 \mathrm{cfs}$) develops flows from a small portion of the proposed lots and roadway that cannot be collected on-site. These minor flow will continue to drain in a northerly direction directly into Winslow Park Dr. Basin $\mathbf{B}\left(\mathrm{Q}_{5}=2\right.$ cffs and $\left.\mathrm{Q}_{100}=4 \mathrm{cfs}\right)$, Basin $H\left(\mathrm{Q}_{5}=1 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=2 \mathrm{cfs}\right)$ and Basin $\mathbf{P}\left(\mathrm{Q}_{5}=2 \mathrm{cfs}\right.$ and $\mathrm{Q}_{100}=4 \mathrm{cfs} /$ develop flows from the rear yards of the proposed lots that cannot be reasonably collected by Pond 1. These areas are mainly landscaped backyards with any impervious areas
There needs to be less than one acre of development area that does not receive WQCV. With this 0.80 acre piece and other areas such a Basin G, this development (Filings 5,6 \&7) does not meet this criteria. Please route this area so it receives WQCV or provide its own WQCV Facility. Or adjust the overall plan accordingly.
routed through these landscaped areas (sod) prior to exiting the basins. Basin $\mathbf{Q}\left(\mathrm{Q}_{5}=2 \mathrm{cfs}\right.$ and $\mathrm{Q}_{100}=6$ cfs) develops flows from rear yards of the proposed lots adjacent to Pond 1 and the facility itself. These flows are all tributary to Pond 1.

The total inflow into Pond 1 equals $\mathbf{Q}_{5}=44 \mathrm{cfs}$ and $\mathbf{Q}_{100}=103 \mathrm{cfs}$ per the UD-Detention spreadsheet. (See Appendix) This facility will be constructed with the proposed Filing 5 development and the downstream flows will remain consistent with the previous filings. This facility will have two separate inflow points (westerly and easterly). The westerly inflow ($\mathrm{Q}_{5}=30 \mathrm{cfs}$ and $\mathrm{Q}_{100}=71 \mathrm{cfs}$) will be from a 42 " RCP into a concrete forebay with a required size of 566 CF based on 3% of the WQCV from this inflow. The forebay is designed with 18 " high walls, 6 " notch and a 24 " wide concrete trickle channel routing the flows towards the pond outlet. The easterly inflow $\left(\mathrm{Q}_{5}=17 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=38 \mathrm{cfs}\right)$ will outlet from a 36 " RCP, down a rip-rap chute into a concrete forebay with a required size of 305 CF based on 3% of the WQCV from this inflow. The forebay is designed with 12 " high walls, 5 " notch and an 28 " wide concrete trickle channel routing the flows towards the pond outlet. These two forebays trickle channels will combine into a 30 " wide concrete trickle channel conveying the flows to the outlet structure. The outlet structure consists of a 6'x4' concrete box with an integral 190 SF micropool allowing for 6" initial surcharge depth. The micropool total depth of 3.0^{\prime} provides the required 0.3% of the WQCV. The outlet box height required to meet the EURV design volume equals 5.75'. (See UD-BMP Spreadsheets in Appendix) The orifice plate on the front of the outlet box consists of a series of 5 holes, 13.8" apart. (See UD-Detention Spreadsheets in Appendix) This facility will be owned and maintained by the Hannah Ridge HOA.

Pond 1 has the following design parameters as a full-spectrum facility:

0.74 Ac.-ft. WQCV required

2.44 Ac.-ft. EURV required

2.6 Ac.-ft. EURV design with 4:1 max. slopes

4.4 Ac.-ft. 100-yr. storage

Total In-flow:
 Pond Design Release:

$$
\begin{array}{ll}
\mathrm{Q}_{5}=44 \mathrm{cfs}, & \mathrm{Q}_{100}=103 \mathrm{cfs} \\
\mathrm{Q}_{5}=0.8 \mathrm{cfs}, & \mathrm{Q}_{100}=38 \mathrm{cfs} \\
\mathrm{Q}_{5}=0.8 \mathrm{cfs}, & \mathrm{Q}_{100}=46 \mathrm{cfs}
\end{array}
$$

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. Individual on-site developed basin design used for inlet sizing and storm system routing was calculated using the Rational Method. Full-Spectrum detention pond modeling developed using UDDetention spreadsheet ver. 3.07, Urban Drainage and Flood Control District.

The City of Colorado Springs/El Paso County DCM requires the Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls. The Four Step Process pertains to management of smaller, frequently occurring storm events, as opposed to larger storms for which drainage and flood control infrastructure are sized. Implementation of these four steps helps to achieve storm water permit requirements.

This site adheres to this Four Step Process as follows:

1. Employ Runoff Reduction Practices: Proposed impervious areas (roof tops, patios) will sheet flow across landscaped yards and through open space areas to slow runoff and increase time of concentration prior to being conveyed to the proposed public streets. This will minimize directly connected impervious areas within the project site.
2. Stabilize Drainageways: After developed flows utilize the runoff reduction practices through the front yards, these flows will travel via curb and gutter within the public streets and eventually public storm systems. These collected flows are then routed directly to the full-spectrum detention facility on-site (Pond 1). Where developed flows are not able to be routed to public streets (rear yards), sheet flows will travel towards the natural drainage channel within the open space corridor. This corridor will be protected with rip-rap and erosion control matting as required to reduce velocities to erosive levels.
Non-Erosive

3. Provide Water Quality Capture Volume (WQCV): Runoff from this development will be treated through capture and slow release of the WQCV in the proposed full-spectrum permanent Extended Detention Basin (Pond 1) designed per current El Paso County drainage criteria.
4. Consider need for Industrial and Commercial BMPs: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative has been submitted along with the grading and erosion control plan. Details such as site specific source control construction BMP's as well as permanent BMP's were detailed in this plan and narrative to protect receiving waters. BMP's will be constructed and maintained as the development has been graded and erosion control methods employed.

FLOODPLAIN STATEMENT

No portion of this site is located within a FEMA floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Numbers 08041C0752F, with effective dates of March 17, 1997 (See Appendix).

EROSION CONTROL PLAN

The Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate be submitted with the Final Drainage Report. We respectfully request that the Erosion Control Plan and cost estimate be submitted in conjunction with the Overlot Grading Plan and construction assurances posted prior to obtaining a grading permit.

DRAINAGE \& BRIDGE FEES

This site lies within the Sand Creek Drainage Basin. The fees are calculated using the following impervious acreage method approved by El Paso County. All three Filings are re-plats of previously platted tracts within Filing 1. However, these tracts were designated as future development and no fees were paid at time of original platting. Thus, the percent imperviousness for each Filing is calculated below based on the following acreages:

There needs to be a section that discusses the upstream abandoned Chicago and Rock Island Pacific railroad embankment and the concrete box. Please clearly state in this report:
A. What the hazard is. (the amount of ponding, box and/or embankment failure, etc.)
B. The importance that the box culvert and embankment are periodically observed and maintained and who is responsible for this work.

Filing 5: $\quad 12.92 \mathrm{ac}$.
Filing 6: $\quad 7.94 \mathrm{ac}$.
Filing 7: $\quad 15.40 \mathrm{ac}$. However, 1.69 ac . is a re-plat of Tract A, Filing 6 with fees paid at that time Filing 7 net acreage for drainage $/$ bridge fees $=13.71 \mathrm{ac}$.

The total development area for each Filing is broken into different residential uses:
PUD zone (5000-6000 SF lots - 60\% Impervious)
PUD zone (6000 SF avg. lots - 53\% Impervious)
PUD zone Open space/drainage tracts (Greenbelts - 2\% Impervious).

The following calculations are based on the 2018 drainage/bridge fees for the Sand Creek Basin:

FILING 5:

6000 SF avg. lots
(Per El Paso County Percent Impervious Chart for 6000 SF lots: 53\%)
11.93 Ac. x $53 \%=6.32$ Impervious Ac.

Open Space Tracts

(Per El Paso County Percent Impervious Chart for greenbelts: 2\%)
0.99 Ac. x $2 \%=0.02$ Impervious Ac.

Total Impervious Acreage:
 6.34 Imp. Ac.

FILING 5 FEE TOTALS:

Bridge Fees

$\$ 5,210.00 \times 6.34$ Impervious Ac. $=\$ 33,031.40$

Drainage Fees
$\$ 17,751.00 \times 6.34$ Impervious Ac. $=\$ 112,541.34$

FILING 6:

5000-6000 SF avg. lots
(Per El Paso County Percent Impervious Chart for 5000-6000 SF lots: 60\%)
6.25 Ac. x $60 \%=$ 3.75 Impervious Ac.

Open Space Tracts

(Per El Paso County Percent Impervious Chart for greenbelts: 2\%)
1.69 Ac. $\times 2 \%=0.03$ Impervious Ac.

Total Impervious Acreage:
3.78 Imp. Ac.

FILING 6 FEE TOTALS:

Bridge Fees
$\$ 5,210.00 \times 3.78$ Impervious Ac. $=\$ 19,693.80$

Drainage Fees

$\$ 17,751.00 \times 3.78$ Impervious Ac. $=\$ 67,098.78$

FILING 7:

5000-6000 SF avg. lots
(Per El Paso County Percent Impervious Chart for 5000-6000 SF lots: 60\%) 13.71 Ac. $\times 60 \%=8.23$ Impervious Ac.

Total Impervious Acreage: 8.23 Imp. Ac.

FILING 7 FEE TOTALS:

Bridge Fees

$\$ 5,210.00 \times 8.23$ Impervious Ac. $=\$ 42,878.30$

Drainage Fees

$\$ 17,751.00 \times 8.23$ Impervious Ac. $=\$ 146,090.73$

SUMMARY

This proposed development remains consistent with the previously approved MDDP and Final Drainage Reports for Hannah Ridge at Feathergrass Filings 2, 3 and 4. The existing storm facilities continue to adequately handle both the 5 -yr. and 100 -yr. developed flows. All proposed detention facilities meet current criteria and provide full spectrum design. The proposed development will not adversely impact surrounding developments.

PREPARED BY:

Classic Consulting

Marc A. Whorton, P.E.
Project Manager

REFERENCES

1. City of Colorado Springs/County of El Paso Drainage Criteria Manual dated October 1991.
2. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corp, dated March 1996.
3. "Master Development Drainage Plan for Hannah Ridge", prepared by MVE, Inc. November 2007
4. "Final Drainage Report for Hannah Ridge at Feathergrass", by MVE, Inc. December 2013.
5. Drainage Criteria Manual (Volume 3) latest revision April 2008, Urban Drainage and Flood Criteria District.

APPENDIX

VICINITY MAP

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(0) Blowout

B Borrow Pit
䟿 Clay Spot
\triangle Closed Depression
Gravel Pit
\therefore Gravelly Spot
(5) Landfill
A. Lava Flow

Marsh or swamp
, Mine or Quarry
(C) Miscellaneous Water

- Perennial Water
- Rock Outcrop
\uparrow Saline Spot
\therefore Sandy Spot
E Severely Eroded Spot
- Sinkhole

3. Slide or Slip

Ø6 Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.
Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 16, Sep 10, 2018
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Apr 15, 2011—Jun 17, 2014

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	119.8	Percent of AOI
97	Truckton sandy loam, 3 to 9 percent slopes	15.7	88.4%
Totals for Area of Interest	$\mathbf{1 3 5 . 4}$	11.6%	

El Paso County Area, Colorado

8-Blakeland loamy sand, 1 to 9 percent slopes

Map Unit Setting
National map unit symbol: 369v
Elevation: 4,600 to 5,800 feet
Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 48 degrees F
Frost-free period: 125 to 145 days
Farmland classification: Not prime farmland
\section*{Map Unit Composition}
Blakeland and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.
\section*{Description of Blakeland}
\section*{Setting}
Landform: Hills, flats
Landform position (three-dimensional): Side slope, talf
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock
\section*{Typical profile}
A - 0 to 11 inches: loamy sand
AC - 11 to 27 inches: loamy sand
C - 27 to 60 inches: sand
\section*{Properties and qualities}
Slope: 1 to 9 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to $19.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum in profile: 5 percent
Available water storage in profile: Low (about 4.5 inches)
\section*{Interpretive groups}
Land capability classification (irrigated): 3e
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: A
Ecological site: Sandy Foothill (R049BY210CO)
Hydric soil rating: No

Minor Components

Other soils

Percent of map unit:
Hydric soil rating: No

Pleasant

Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 16, Sep 10, 2018

F.E.M.A. MAP

HYDROLOGIC / HYDRAULIC CALCULATIONS

JOB NAME: JOB NUMBER: DATE: CALCULATED BY:	HANNAHR 1116.05 10/01/18 K. CERJAN	\square	$\overline{E A T H}$	ASS	$\overline{\mathrm{NGNO}} .$	$6 \& 7$															
							NAL	AINAG	REPOR	BA	RUNO	COE	CIEN	MM							
				IMPER	AREA	REETS					NDSCA	NDEV	ED AR				GHTED			EIGHTE	
BASIN	AREA (AC)	AREA (AC)	C(2)	C(5)	C(10)	C(25)	C(50)	C(100)	AREA (AC)	C(2)	C(5)	C(10)	C(25)	$\mathrm{C}(50)$	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100)
OS-1	0.23	0.16	0.89	0.90	0.92	0.94	0.95	0.96	0.07	0.02	0.08	0.15	0.25	0.30	0.35	0.63	0.65	0.77	0.14	0.15	0.18
OS-2	0.35	0.25	0.89	0.90	0.92	0.94	0.95	0.96	0.10	0.02	0.08	0.15	0.25	0.30	0.35	0.64	0.67	0.79	0.22	0.23	0.28
OS-3	0.27	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.27	0.02	0.08	0.15	0.25	0.30	0.35	0.02	0.08	0.35	0.01	0.02	0.09
OS-4	3.40	0.00	0.89	0.90	0.92	0.94	0.95	0.96	3.40	0.02	0.08	0.15	0.25	0.30	0.35	0.02	0.08	0.35	0.07	0.27	1.19
OS-5	0.36	0.33	0.89	0.90	0.92	0.94	0.95	0.96	0.03	0.02	0.08	0.15	0.25	0.30	0.35	0.82	0.83	0.91	0.29	0.30	0.33
A	3.90	0.00	0.89	0.90	0.92	0.94	0.95	0.96	3.90	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	1.52	1.68	2.22
B	0.80	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.80	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	0.31	0.34	0.46
C	0.21	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.21	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	0.08	0.09	0.12
D	5.60	0.00	0.89	0.90	0.92	0.94	0.95	0.96	5.60	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	2.18	2.41	3.19
E	0.96	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.96	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	0.37	0.41	0.55
F	0.26	0.08	0.89	0.90	0.92	0.94	0.95	0.96	0.18	0.39	0.43	0.47	0.52	0.55	0.57	0.54	0.57	0.69	0.14	0.15	0.18
G	0.25	0.10	0.89	0.90	0.92	0.94	0.95	0.96	0.15	0.39	0.43	0.47	0.52	0.55	0.57	0.59	0.62	0.73	0.15	0.15	0.18
H	0.40	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.40	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	0.16	0.17	0.23
1	Not Used																				
J	5.30	0.00	0.89	0.90	0.92	0.94	0.95	0.96	5.30	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	2.07	2.28	3.02
K	3.60	0.00	0.89	0.90	0.92	0.94	0.95	0.96	3.60	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	1.40	1.55	2.05
L	2.30	0.00	0.89	0.90	0.92	0.94	0.95	0.96	2.30	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	0.90	0.99	1.31
M	1.70	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.70	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	0.66	0.73	0.97
N	5.10	0.00	0.89	0.90	0.92	0.94	0.95	0.96	5.10	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	1.99	2.19	2.91
0	1.20	0.00	0.89	0.90	0.92	0.94	0.95	0.96	1.20	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	0.47	0.52	0.68
P	0.77	0.00	0.89	0.90	0.92	0.94	0.95	0.96	0.77	0.39	0.43	0.47	0.52	0.55	0.57	0.39	0.43	0.57	0.30	0.33	0.44
Q	3.20	0.90	0.39	0.43	0.47	0.52	0.55	0.57	2.30	0.02	0.08	0.15	0.25	0.30	0.35	0.12	0.18	0.41	0.40	0.57	1.32

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

	WEIGHTED						OVERLAND				STREET / CHANNEL FLOW				Tc	INTENSITY						TOTAL FLOWS		
BASIN	CA(2)	$\mathrm{CA}(5)$	CA(10)	CA(25)	CA(50)	CA(100)	C(5)	Length (ft)	Height (ft)	$\begin{gathered} \mathrm{Tc} \\ (\mathrm{~min}) \\ \hline \end{gathered}$	Length (ft)	Slope (\%)	Velocity (fps)	Tc (\min)	TOTAL (min)	$\begin{gathered} 1(2) \\ (\mathrm{in} / \mathrm{hr}) \\ \hline \end{gathered}$	$\begin{gathered} 1(5) \\ (\mathrm{in} / \mathrm{hr}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{I}(10) \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mathrm{l}(25) \\ (\mathrm{in} / \mathrm{hr}) \end{gathered}$	$\begin{gathered} \mid(50) \\ (i n / h r) \end{gathered}$	$\begin{aligned} & \mathrm{I}(100) \\ & (\mathrm{in} / \mathrm{hr}) \end{aligned}$	$\begin{aligned} & \text { Q(2) } \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { Q(5) } \\ & \text { (cfs) } \\ & \hline \end{aligned}$	$\begin{gathered} Q(100) \\ (c f s) \\ \hline \end{gathered}$
OS-1	0.14	0.15	0.16	0.17	0.17	0.18	0.08	25	0.5	7.3	230	1.0\%	2.0	1.9	9.2	3.39	4.25	4.96	5.66	6.37	7.13	0.5	0.6	1.3
OS-2	0.22	0.23	0.25	0.26	0.27	0.28	0.08	25	0.5	7.3	320	1.0\%	2.0	2.7	10.0	3.30	4.13	4.82	5.51	6.20	6.93	0.7	1	2
OS-3	0.01	0.02	0.04	0.07	0.08	0.09	0.08	100	10	8.6					8.6	3.47	4.35	5.08	5.80	6.53	7.31	0.02	0.1	0.7
OS-4	0.07	0.27	0.51	0.85	1.02	1.19	0.08	180	10	14.0					14.0	2.89	3.62	4.22	4.83	5.43	6.08	0.2	1	7
OS-5	0.29	0.30	0.31	0.32	0.32	0.33	0.08	10	0.2	4.6	470	2.8\%	3.3	2.3	7.0	3.72	4.67	5.45	6.23	7.01	7.84	1.1	1	3
A	1.52	1.68	1.83	2.03	2.15	2.22	0.43	100	2	9.6	750	1.5\%	2.4	5.1	14.7	2.83	3.55	4.14	4.73	5.32	5.96	4	6	13
B	0.31	0.34	0.38	0.42	0.44	0.46	0.43	75	16	3.8					5.0	4.12	5.17	6.03	6.89	7.75	8.68	1	2	4
C	0.08	0.09	0.10	0.11	0.12	0.12	0.43	20	0.4	4.3					5.0	4.12	5.17	6.03	6.89	7.75	8.68	0.3	0.5	1
D	2.18	2.41	2.63	2.91	3.08	3.19	0.43	100	2	9.6	575	4.0\%	4.0	2.4	12.0	3.08	3.85	4.50	5.14	5.78	6.47	7	9	21
E	0.37	0.41	0.45	0.50	0.53	0.55	0.43	50	1	6.8	375	2.7\%	3.3	1.9	8.7	3.46	4.34	5.06	5.78	6.51	7.28	1	2	4
F	0.14	0.15	0.16	0.17	0.18	0.18	0.43	50	1	6.8					6.8	3.75	4.71	5.49	6.28	7.06	7.90	0.5	0.7	1.4
G	0.15	0.15	0.16	0.17	0.18	0.18	0.43	50	1	6.8	60	1.5\%	2.4	0.4	7.2	3.68	4.62	5.39	6.16	6.93	7.76	0.5	0.7	1.4
H	0.16	0.17	0.19	0.21	0.22	0.23	0.43	30	0.6	5.3					5.3	4.06	5.09	5.94	6.79	7.64	8.55	1	1	2
1	Not Used																							
J	2.07	2.28	2.49	2.76	2.92	3.02	0.43	100	2	9.6	850	1.5\%	2.4	5.8	15.4	2.78	3.48	4.06	4.64	5.22	5.84	6	8	18
K	1.40	1.55	1.69	1.87	1.98	2.05	0.43	100	2	9.6	425	1.5\%	2.4	2.9	12.5	3.03	3.79	4.42	5.06	5.69	6.37	4	6	13
L	0.90	0.99	1.08	1.20	1.27	1.31	0.43	100	2	9.6	510	2.5\%	3.2	2.7	12.3	3.05	3.82	4.45	5.09	5.73	6.41	3	4	8
M	0.66	0.73	0.80	0.88	0.94	0.97	0.43	50	1	6.8	475	1.5\%	2.4	3.2	10.0	3.29	4.12	4.81	5.50	6.19	6.92	2	3	7
N	1.99	2.19	2.40	2.65	2.81	2.91	0.43	100	2	9.6	975	2.0\%	2.8	5.7	15.4	2.78	3.48	4.07	4.65	5.23	5.85	6	8	17
0	0.47	0.52	0.56	0.62	0.66	0.68	0.43	50	1	6.8	575	2.0\%	2.8	3.4	10.2	3.27	4.10	4.78	5.47	6.15	6.88	1.5	2	5
P	0.30	0.33	0.36	0.40	0.42	0.44	0.43	50	6	3.8					5.0	4.12	5.17	6.03	6.89	7.75	8.68	1.2	2	4
Q	0.40	0.57	0.77	1.04	1.19	1.32	0.08	260	5	23.9					23.9	2.26	2.82	3.29	3.76	4.23	4.73	1	2	6

OOB NAME:	HANNAH RIDGEAT FEATHERGRASS FILING NO. 5, 6 \& 7
JOB NUMBER:	1116.05
DATE:	10/01/18
CALCULATED BY:	K. CERJAN

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

Design Point(s)	Contributing Basins	Equivalent CA(5)	$\begin{array}{\|l\|} \hline \text { Equivalent } \\ \text { CA(100) } \\ \hline \end{array}$	$\begin{array}{\|c} \text { Maximum } \\ \text { Tc } \\ \hline \end{array}$	Intensity		Flow		Inlet Size
					I(5)	I(100)	Q(5)	Q(100)	
1	A, OS-2	1.91	2.50	14.7	3.55	5.96	7	15	10' Type R Sump
2	F	0.15	0.18	6.8	4.71	7.90	0.7	1.4	5' Type R Sump
3	D, OS-3	2.43	3.29	12.0	3.85	6.47	9	21	15' Type R Sump
4	E	0.41	0.55	8.7	4.34	7.28	2	4	5' Type R Sump
5	OS-4, J	2.55	4.21	15.4	3.48	5.84	9	25	15' Type R Sump
6	K, DP-5 Flowby (75\%)	1.76	4.20	15.8	3.44	5.78	6	24	10' Type R Sump
7	L, DP-5 Flowby (25\%)	1.06	2.03	15.8	3.44	5.78	4	12	5' Type R Sump
8	M	0.73	0.97	10.0	4.12	6.92	3	7	10' Type R Sump
9	N, OS-5	2.49	3.23	15.4	3.48	5.85	9	19	10' Type R Sump
10	0	0.52	0.68	10.2	4.10	6.88	2	5	5' Type R Sump
$\begin{gathered} \hline \text { E'LY INFLOW TO } \\ \text { POND } \\ \hline \end{gathered}$	DP1 - DP4	4.90	6.51	15.5	3.47	5.82	17	38	
$\begin{gathered} \text { W'LY INFLOW TO } \\ \text { POND } \\ \hline \end{gathered}$	DP-5-DP-10	8.83	12.46	16.2	3.40	5.72	30	71	
$\begin{array}{\|c\|} \hline \text { TOTAL INFLOW TO } \\ \text { POND } \\ \hline \end{array}$	$\begin{aligned} & \text { OS-2, OS-3, OS-4, OS-5, A, D, } \\ & \mathrm{E}, \mathrm{~F}, \mathrm{~J}, \mathrm{~K}, \mathrm{~L}, \mathrm{M}, \mathrm{~N}, \mathrm{O}, \mathrm{Q} \end{aligned}$	See UD-Detention Spreadsheet					44	103	

JOB NAME:	HANNAH RIDGE AT FEATHERGRASS FILING NO. 5, 6 \& 7
JOB NUMBER:	1116.05
DATE:	10/01/18
CALCULATED BY:	K. CERJAN

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY

	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	Intensity		Flow		Pipe Size*	Velocity (ft/sec.)
Pipe Run					I(5)	I(100)	Q(5)	Q(100)		
1	DP-1	1.91	2.50	14.7	3.55	5.96	7	15	24" RCP	7.7
2	DP-2, PR-1	2.06	2.68	14.8	3.54	5.94	7	16	24" RCP	11.5
3	DP-3	2.43	3.29	12.0	3.85	6.47	9	21	30" RCP	8.4
4	DP-4, PR-3	2.84	3.83	12.6	3.78	6.35	11	24	30" RCP	16.3
5	PR-2, PR-4	4.90	6.51	15.5	3.47	5.82	17	38	36" RCP	9.7
6	DP-5 Collected	2.27	1.35	15.4	3.48	5.84	8	8	18" RCP	10.4
7	DP-6, Flow-by from DP-5 (75\%)	1.76	4.20	15.8	3.44	5.78	6	24	30 RCP	16.8
8	DP-7, Flow-by from DP-5 (25\%)	1.06	2.03	15.8	3.44	5.78	4	12	24" RCP	9.5
9	RP-6, PR-7, PR-8	5.09	7.57	15.9	3.43	5.76	17	44	36" RCP	10.1
10	DP-8, PR-9	5.82	8.54	16.1	3.41	5.73	20	49	36" RCP	10.3
11	DP-10	0.52	0.68	10.3	4.09	6.86	2	5	18" RCP	4.5
12	DP-9, PR-11	3.01	3.92	15.5	3.47	5.83	10	23	36" RCP	6.6
13	PR-10, PR-12	8.83	12.46	16.2	3.40	5.72	30	71	42 " RCP	9.5

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peakrequired }}=$	7.0	15.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peakrequired }}=$	0.7	1.4	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	9.7	39.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peakrequired }}=$	9.0	21.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Openin		MINOR		
Type of Inlet CDOT Type R Curb Opening *	Type =	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peakrequired }}=$	2.0	4.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Opening	MINOR MAJOR			
Type of Inlet CDOT Type R Curb Op	Type $=$ CDOT Type R Curb Opening			
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches inches Override Depths
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.6	5.6	
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A	N/A	feet feet
Width of a Unit Grate	$\mathrm{W}_{\text {o }}=$	N/A	N/A	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	feet
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	15.00	15.00	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth Depth for Curb Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
	$\mathrm{d}_{\text {Curb }}=$	0.30	0.30	
	$\mathrm{RF}_{\text {Combination }}=$	0.53	0.53	
	$R F_{\text {curb }}=$	0.76	0.76	
	$R F_{\text {Grate }}=$	N/A	N/A	
Total Inlet Interception Capacity (assumes clogged condition) WARNING: Inlet Capacity less than Q Peak for Minor and Major Storms		MINOR	MAJOR	
	$\mathrm{Q}_{\mathrm{a}}=$	8.0	8.0	cfs
	$Q_{\text {Peak Required }}=$	9.0	25.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	inches
Type of Inlet CDOT Type R Curb Opening *		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peak required }}=$	6.0	24.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input)	MINOR MAJOR			
Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above)	Type $=$	CDOT Type R Curb Opening		
	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ } / \sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {Curb }}=$	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {PEAK REQUIRED }}=$	4.0	12.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	inches
Type of Inlet CDOT Type R Curb Opening *		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	6.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.33	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	0.57	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.93	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	8.3	8.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peak required }}=$	3.0	7.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Design Information (Input) \quad CDOT Type R Curb Opening	Type $=$	MINOR	MAJOR	inches
Type of Inlet CDOT Type R Curb Opening *		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	$\sqrt{ }$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$C_{w}(G)=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	8.3	25.5	cfs
WARNING: Inlet Capacity less than Q Peak for Minor Storm	$Q_{\text {Peak required }}=$	9.0	19.0	cfs

Version 4.05 Released March 2017

INLET IN A SUMP OR SAG LOCATION
Version 4.05 Released March 2017

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

Rock Chute Design Data

(Version 4.01-04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Hannah Ridge at Feathergrass Fil. 5-7
Designer: Marc Whorton
Date: $10 / 3 / 2018$

County: EL Paso
Checked by:
Date:
\qquad
\qquad

Input Channel Geometry

\rightarrow Inlet Channel	> Chute	Outlet Channel
$\mathrm{Bw}=6.0 \mathrm{ft}$.	$\mathrm{Bw}=8.0 \mathrm{ft}$.	$\mathrm{Bw}=8.0 \mathrm{ft}$.
Side slopes $=4.0$ (m:1)	Factor of safety $=1.20 \quad\left(\mathrm{~F}_{\mathrm{s}}\right)$	Side slopes $=4.0(\mathrm{~m}: 1)$
n -value $=0.035$	Side slopes $=4.0$ (m:1) \rightarrow 2.0:1 max.	n -value $=0.013$
```Bed slope = 0.0100 ft./ft. Freeboard = 1.0 ft.```	Bed slope (3:1) $=0.330 \mathrm{ft} . / \mathrm{ft} . \rightarrow 2.5: 1$ max .   Outlet apron depth, $\mathrm{d}=1.5 \mathrm{ft}$.	$\begin{aligned} & \text { Bed slope }=0.0100 \mathrm{ft} . / \mathrm{ft} . \\ & \text { Base flow }=17.0 \mathrm{cfs} \end{aligned}$

Design Storm Data (Table 2, NHCP, NRCS Grade Stabilization Structure No. 410)


Profile and Cross Section (Output)


## Profile Along Centerline of Chute



Typical Cross Section

$\mathrm{q}_{\mathrm{t}}=$	3.87 cfs/ft.	Equivalent unit discharge
$\mathrm{F}_{\mathrm{S}}=$	1.20	Factor of safety (multiplier)
$\mathrm{z}_{1}=$	0.43 ft .	Normal depth in chute
n -value $=$	0.054	Manning's roughness coefficient
$\mathrm{D}_{50}\left(\mathrm{~F}_{\mathrm{s}}\right)=$	9.7 in. $(66 \mathrm{lbs}$	- 50\% round / 50\% angular)
2( $\mathrm{D}_{50}$ ) $\left(\mathrm{F}_{\mathrm{s}}\right)$	19.4 in.	Rock chute thickness
$\mathrm{Tw}+\mathrm{d}=$	2.18 ft .	Tailwater above outlet apron
$\mathrm{z}_{2}=$	1.24 ft .	Hydraulic jump height
*** The outlet	will	function adequately

## High Flow Storm Information

## Rock Chute Design - Plan Sheet

(Version 4.0-07/10/00, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Hannah Ridge at Feathergrass Fil. 5-7
Designer: Marc Whorton
Date: 10/3/2018

County: EL Paso
Checked by: $\qquad$
Date: $\qquad$

Design Values	Rock Gradation Envelope	
Angular $\mathrm{D}_{50}$ dia. $=9.7 \mathrm{in}$.	\% Passing	Diameter, in. (weight, lbs.)
Rock $_{\text {chute }}$ thickness $=19.4 \mathrm{in}$.	$\mathrm{D}_{100}$	15-19 (224-532)
Inlet apron length $=8 \mathrm{ft}$.	$\mathrm{D}_{85}$	13-17 (146-388)
Outlet apron length $=12 \mathrm{ft}$.	$\mathrm{D}_{50}$	10-15 (67-224)
Radius $=27 \mathrm{ft}$.	$\mathrm{D}_{10}$	8-13 (34-146)
Will bedding be used? Yes	Depth (in.)	


Quantities ${ }^{\text {a }}$   Angular Rock $=87 \mathrm{yd}^{3}$
Bedding (6in.) $=37 \quad y^{3}$
Excavation $=700 \mathrm{yd}^{3}$
Earthfill $=500 \mathrm{yd}^{3}$
Seeding $=1.0$ acres

Notes: a Rock, bedding, and geotextile quantities are determined from the $x$-section below (neglect radius).
${ }^{b}$ Geotextile shall be overlapped (18-in. min.) and anchored (18-in. min. along sides and 24-in. min. on the ends).


Rock Chute Cost Estimate		
Unit	Unit Cost	Cost
Rock	$\$ 36.00 / \mathrm{yd}^{3}$	$\$ 3,132.00$
Geotextile	$\$ 2.00 / \mathrm{yd}^{2}$	$\$ 410.00$
Bedding	$\$ 8.00 \mathrm{lyd}^{3}$	$\$ 296.00$
Excavation	$\$ 3.00 / \mathrm{yd}^{3}$	$\$ 2,100.00$
Earthfill	$\$ 1.00 / \mathrm{yd}^{3}$	$\$ 500.00$
Seeding	$\$ 500.00 /$ lac.	$\$ 500.00$
		Total


Stakeout Notes	
Sta.	Elev. (Pnt)
0+00	6475 ft. (1)
0+3.7	6475 ft. (2)
0+8	6474.6 ft. (3)
0+12.1	6473.6 ft. (4)
0+40	6464.5 ft. (5)
0+52	6464.5 ft ( 6 )
0+55.8	6466 ft. (7)

Radius $=27 \mathrm{ft}$.

$$
8 \text { oz. Min. }
$$

$$
\text { elev. }=6464.5 \mathrm{ft} .
$$

Outlet Channel Slope $=0.01 \mathrm{ft} . / \mathrm{ft}$.

Profile Along Centerline of Rock Chute


Inlet Channel Cross Section


Outlet Channel Cross Section


Rock Chute Cross Section

* Use $\mathrm{H}_{\mathrm{p}}$ throughout chute but not less than $\mathrm{Z}_{2}$.
Profile, Cross Sections, and Quantities



## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.01000	$\mathrm{ft} / \mathrm{ft}$
Diameter		2.00	ft
Discharge		15.00	$\mathrm{ft}^{3 / \mathrm{s}}$
Results			
Normal Depth		1.19	ft
Flow Area		1.95	$\mathrm{ft}^{2}$
Wetted Perimeter		3.52	ft
Hydraulic Radius		0.55	ft
Top Width		1.96	ft
Critical Depth		1.40	ft
Percent Full		59.5	\%
Critical Slope		0.00632	ftft
Velocity		7.70	$\mathrm{ft} / \mathrm{s}$
Velocity Head		0.92	ft
Specific Energy		2.11	ft
Froude Number		1.36	
Maximum Discharge		24.33	$\mathrm{ft}^{3} / \mathrm{s}$
Discharge Full		22.62	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Full		0.00440	$\mathrm{ft} / \mathrm{ft}$
Flow Type	SuperCritical		

## GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	0.00	$\%$
Average End Depth Over Rise	59.50	$\%$
Normal Depth Over Rise	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.02800	$\mathrm{ft} / \mathrm{ft}$
Diameter		2.00	ft
Discharge		16.00	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		0.91	ft
Flow Area		1.39	$\mathrm{ft}^{2}$
Wetted Perimeter		2.96	$f$
Hydraulic Radius		0.47	ft
Top Width		1.99	ft
Critical Depth		1.44	$f t$
Percent Full		45.4	\%
Critical Slope		0.00661	$\mathrm{ft} / \mathrm{ft}$
Velocity		11.54	$\mathrm{ft} / \mathrm{s}$
Velocity Head		2.07	ft
Specific Energy		2.98	$f t$
Froude Number		2.44	
Maximum Discharge		40.72	$\mathrm{ft}^{3} / \mathrm{S}$
Discharge Full		37.85	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Full		0.00500	$\mathrm{ft} / \mathrm{ft}$

Flow Type SuperCritical

## GVF Input Data

Downstream Depth $\quad 0.00 \mathrm{ft}$

Length
Number Of Steps

## GVF Output Data

Upstream Depth 0.00 ft
Profile Description

Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	$\%$
Normal Depth Over Rise	45.38	$\%$
Downstream Velocity	Infinity	$\mathrm{fU} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.01000	$\mathrm{ft} / \mathrm{ft}$
Diameter		2.50	ft
Discharge		21.00	$\mathrm{ft}^{3 / \mathrm{s}}$
Results			
Normal Depth		1.27	ft
Flow Area		2.50	$\mathrm{ft}^{2}$
Wetted Perimeter		3.96	ft
Hydraulic Radius		0.63	ft
Top Width		2.50	ft
Critical Depth		1.56	ft
Percent Full		50.7	\%
Critical Slope		0.00519	$\mathrm{f} / \mathrm{ft}$
Velocity		8.41	$\mathrm{ft} / \mathrm{s}$
Velocity Head		1.10	ft
Specific Energy		2.37	ft
Froude Number		1.48	
Maximum Discharge		44.12	$\mathrm{ft}^{3} / \mathrm{s}$
Discharge Full		41.01	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Full		0.00262	$\mathrm{ft} / \mathrm{ft}$
Flow Type	SuperCritical		

## GVF Input Data

Downstream Depth
Length
Number Of Steps

## GVF Output Data

Profile Description
Profile Headloss $\quad 0.00 \mathrm{ft}$

Average End Depth Over Rise $0.00 \%$
Normal Depth Over Rise
Downstream Velocity
0.00 ft
0.00 ft

0
50.70 \%

Infinity ft/s

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For			
Normal Depth			
Input Data			
Roughness Coefficient	0.013		
Channel Slope	0.05500	$\mathrm{ft} / \mathrm{ft}$	
Diameter	2.50	ft	
Discharge	24.00	$\mathrm{ft}^{3 / \mathrm{s}}$	
Results			
		0.85	ft
Normal Depth	1.47	ft	
Flow Area	3.11	ft	
Wetted Perimeter	0.47	ft	
Hydraulic Radius	2.37	ft	
Top Width	1.67	ft	
Critical Depth	34.0	$\%$	
Percent Full	0.00556	$\mathrm{ft} / \mathrm{ft}$	
Critical Slope	16.28	$\mathrm{ft} / \mathrm{s}$	
Velocity	4.12	ft	
Velocity Head	4.97	ft	
Specific Energy	3.64		
Froude Number	103.47	$\mathrm{ft} 3 / \mathrm{s}$	
Maximum Discharge	96.19	$\mathrm{ft} 3 / \mathrm{s}$	
Discharge Full	0.00342	$\mathrm{ft} / \mathrm{ft}$	
Slope Full			
Flow Type			

## GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	0.00	$\%$
Average End Depth Over Rise	34.04	$\%$
Normal Depth Over Rise	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.01000	$\mathrm{ft} / \mathrm{ft}$
Diameter		3.00	$f t$
Discharge		38.00	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		1.62	$f$
Flow Area		3.90	$\mathrm{ft}^{2}$
Wetted Perimeter		4.96	ft
Hydraulic Radius		0.79	ft
Top Width		2.99	ft
Critical Depth		2.01	ft
Percent Full		54.1	\%
Critical Slope		0.00524	$\mathrm{ft} / \mathrm{ft}$
Velocity		9.74	$\mathrm{ft} / \mathrm{s}$
Velocity Head		1.48	$f t$
Specific Energy		3.10	ft
Froude Number		1.50	
Maximum Discharge		71.74	$\mathrm{ft}^{3} / \mathrm{s}$
Discharge Full		66.69	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Fuil		0.00325	$\mathrm{ft} / \mathrm{ft}$
Flow Type	SuperCritical		

## GVF Input Data

Downstream Depth	0.00 ft	
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	0.00	$\%$
Average End Depth Over Rise	54.07	$\%$
Normal Depth Over Rise	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.03400	$\mathrm{ft} / \mathrm{ft}$
Diameter		1.50	ft
Discharge		8.00	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		0.67	ft
Flow Area		0.77	$\mathrm{ft}^{2}$
Wetted Perimeter		2.20	ft
Hydraulic Radius		0.35	$f t$
Top Width		1.49	ft
Critical Depth		1.10	ft
Percent Full		44.8	\%
Critical Slope		0.00742	$\mathrm{ft} / \mathrm{ft}$
Velocity		10.44	$\mathrm{ft} / \mathrm{s}$
Velocity Head		1.69	ft
Specific Energy		2.36	ft
Froude Number		2.57	
Maximum Discharge		20.83	$\mathrm{ft}^{3} / \mathrm{s}$
Discharge Full		19.37	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Full		0.00580	$\mathrm{ft} / \mathrm{ft}$
Flow Type	SuperCritical		

## GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	0.00	$\%$
Average End Depth Over Rise	44.79	$\%$
Normal Depth Over Rise	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.06000	$\mathrm{ft} / \mathrm{ft}$
Diameter		2.50	ft
Discharge		24.00	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		0.83	ft
Flow Area		1.43	$\mathrm{ft}^{2}$
Wetted Perimeter		3.07	ft
Hydraulic Radius		0.46	ft
Top Width		2.36	ft
Critical Depth		1.67	ft
Percent Full		33.3	\%
Critical Slope		0.00555	$\mathrm{ft} / \mathrm{ft}$
Velocity		16.80	$\mathrm{ft} / \mathrm{s}$
Velocity Head		4.38	ft
Specific Energy		5.22	ft
Froude Number		3.80	
Maximum Discharge		108.07	$\mathrm{ft}^{3 / \mathrm{s}}$
Discharge Full		100.47	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Full		0.00342	$\mathrm{ft} / \mathrm{ft}$
Flow Type	SuperCritical		

## GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	0.00	$\%$
Average End Depth Over Rise	33.27	$\%$
Normal Depth Over Rise	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.02000	$\mathrm{ft} / \mathrm{ft}$
Diameter		2.00	ft
Discharge		12.00	$\mathrm{ff}^{3} / \mathrm{s}$
Results			
Normal Depth		0.85	$f t$
Flow Area		1.27	$\mathrm{ft}^{2}$
Wetted Perimeter		2.84	ft
Hydraulic Radius		0.45	ft
Top Width		1.98	ft
Critical Depth		1.24	$f$
Percent Full		42.4	\%
Critical Slope		0.00558	$\mathrm{ft} / \mathrm{ft}$
Velocity		9.46	$\mathrm{ft} / \mathrm{s}$
Velocity Head		1.39	ft
Specific Energy		2.24	$f$
Froude Number		2.08	
Maximum Discharge		34.41	$\mathrm{ff}^{3} / \mathrm{s}$
Discharge Full		31.99	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Full		0.00281	$\mathrm{ft} / \mathrm{ft}$
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	0.00	$\%$
Average End Depth Over Rise	42.43	$\%$
Normal Depth Over Rise	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.03400	ft/t
Diameter		2.50	ft
Discharge		24.00	$\mathrm{ft}^{3 / \mathrm{s}}$
Results			
Normal Depth		0.97	ft
Flow Area		1.75	$\mathrm{ft}^{2}$
Wetted Perimeter		3.36	ft
Hydraulic Radius		0.52	ft
Top Width		2.44	ft
Critical Depth		1.67	ft
Percent Full		38.7	\%
Critical Slope		0.00556	ft/ft
Velocity		13.68	$\mathrm{ft} / \mathrm{s}$
Velocity Head		2.91	$f t$
Specific Energy		3.87	ft
Froude Number		2.84	
Maximum Discharge		81.35	$\mathrm{ft}^{3} / \mathrm{s}$
Discharge Full		75.63	$\mathrm{ft}^{3 / \mathrm{s}}$
Slope Full		0.00342	$\mathrm{ft} / \mathrm{ft}$
Flow Type	SuperCritical		

## GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	0.00	$\%$
Average End Depth Over Rise	38.71	$\%$
Normal Depth Over Rise	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.01000	$\mathrm{ft} / \mathrm{ft}$
Diameter		3.00	ft
Discharge		44.00	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		1.78	ft
Flow Area		4.37	$\mathrm{ft}^{2}$
Wetted Perimeter		5.27	ft
Hydraulic Radius		0.83	$f \mathrm{f}$
Top Width		2.95	ft
Critical Depth		2.16	ft
Percent Full		59.3	\%
Critical Slope		0.00577	$\mathrm{ft} / \mathrm{ft}$
Velocity		10.08	$\mathrm{ft} / \mathrm{s}$
Velocity Head		1.58	ft
Specific Energy		3.36	ft
Froude Number		1.46	
Maximum Discharge		71.74	$\mathrm{ft}^{3} / \mathrm{s}$
Discharge Full		66.69	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Full		0.00435	$\mathrm{ft} / \mathrm{ft}$

Flow Type SuperCritical

## GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	$\%$
Normal Depth Over Rise	59.30	$\%$
Downstream Velocity	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula   Normal Depth	
Solve For		
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.01000	$\mathrm{ft} / \mathrm{ft}$
Diameter	3.00	ft
Discharge	49.00	$\mathrm{ft} 3 / \mathrm{s}$

## Results

Normal Depth	1.91	ft
Flow Area	4.75	$\mathrm{ft}^{2}$
Wetted Perimeter	5.55	ft
Hydraulic Radius	0.86	ft
Top Width	2.89	ft
Critical Depth	2.28	ft
Percent Full	63.7	$\%$
Critical Slope	0.00630	$\mathrm{ft} / \mathrm{tt}$
Velocity	10.31	$\mathrm{ft} / \mathrm{s}$
Velocity Head	1.65	ft
Specific Energy	3.56	ft
Froude Number	1.42	
Maximum Discharge	71.74	$\mathrm{ft} / \mathrm{s}$
Discharge Full	66.69	$\mathrm{ft} / \mathrm{s}$
Slope Full		0.00540
$\mathrm{ft} / \mathrm{ft}$		
Flow Type		

## GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	0.00	$\%$
Average End Depth Over Rise	63.70	$\%$
Normal Depth Over Rise	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula
Solve For	Normal Depth
Input Data	


Roughness Coefficient	0.013	
Channel Slope	0.00500	$\mathrm{ft} / \mathrm{ft}$
Diameter	1.50	ft
Discharge	5.00	$\mathrm{ft}^{3} / \mathrm{s}$

## Results

Normal Depth	0.90	ft
Flow Area	1.11	$\mathrm{ft}^{2}$
Wetted Perimeter	2.66	ft
Hydraulic Radius	0.42	ft
Top Width	1.47	ft
Critical Depth	0.86	ft
Percent Full	60.1	$\%$
Critical Slope	0.00578	$\mathrm{ft} / \mathrm{ft}$
Velocity	4.51	$\mathrm{ft} / \mathrm{s}$
Velocity Head	0.32	ft
Specific Energy	1.22	ft
Froude Number	0.91	
Maximum Discharge	7.99	$\mathrm{ft} / \mathrm{s}$
Discharge Full	7.43	$\mathrm{ft} / \mathrm{s}$
Slope Full		0.00227
ft/ft		

## GVF Input Data

Downstream Depth
Length
Number Of Steps

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	$\%$
Normal Depth Over Rise	60.08	$\%$
Downstream Velocity	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method	Manning Formula   Normal Depth	
Solve For		
Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.00500	$\mathrm{ft} / \mathrm{ft}$
Diameter	3.00	ft
Discharge	23.00	$\mathrm{ft} / \mathrm{s}$

## Results

Normal Depth	1.48	ft
Flow Area	3.47	$\mathrm{ft}^{2}$
Wetted Perimeter	4.67	ft
Hydraulic Radius	0.74	ft
Top Width	3.00	ft
Critical Depth	1.54	ft
Percent Full	49.3	$\%$
Critical Slope	0.00431	$\mathrm{ft} / \mathrm{ft}$
Velocity	6.63	$\mathrm{ft} / \mathrm{s}$
Velocity Head	0.68	ft
Specific Energy	2.16	ft
Froude Number	1.09	
Maximum Discharge	50.73	$\mathrm{ft} 3 / \mathrm{s}$
Discharge Full	47.16	$\mathrm{ft} 3 / \mathrm{s}$
Slope Full	0.00119	$\mathrm{ft} / \mathrm{ft}$
Flow Type		

GVF Input Data

Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	$\%$
Normal Depth Over Rise	49.27	$\%$
Downstream Velocity	Infinity	$\mathrm{ft} / \mathrm{s}$

## Worksheet for Circular Pipe - 1

## Project Description

Friction Method   Solve For	Manning Formula		
	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00650	$\mathrm{ft} / \mathrm{ft}$
Diameter		3.50	ft
Discharge		71.00	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		2.54	ft
Flow Area		7.47	$\mathrm{ft}^{2}$
Wetted Perimeter		7.13	$f$
Hydraulic Radius		1.05	ft
Top Width		3.13	$f t$
Critical Depth		2.64	$f$
Percent Full		72.5	\%
Critical Slope		0.00591	$\mathrm{ft/f}$
Velocity		9.50	$\mathrm{ft} / \mathrm{s}$
Velocity Head		1.40	ft
Specific Energy		3.94	ft
Froude Number		1.08	
Maximum Discharge		87.25	$\mathrm{ff}^{3} / \mathrm{s}$
Discharge Full		81.11	$\mathrm{ft}^{3} / \mathrm{s}$
Slope Full		0.00498	$\mathrm{ft} / \mathrm{ft}$
Flow Type	SuperCritical		
GVF Input Data			
Downstream Depth		0.00	ft
Length		0.00	ft
Number Of Steps		0	

## GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Average End Depth Over Rise	0.00	$\%$
Normal Depth Over Rise	72.49	$\%$
Downstream Velocity	Infinity	$\mathrm{ft} / \mathrm{s}$



## Westerly Storm Outfall

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Elemen   t   Name	Sewer   Lengt h (ft)	Downstrea m Invert (ft)	$\begin{gathered} \text { Slop } \\ \text { e } \\ (\%) \end{gathered}$	Upstrea   m Invert (ft)	$\begin{gathered} \text { Manning } \\ \mathrm{s} \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \text { Ben } \\ \text { d } \\ \text { Loss } \end{gathered}$	Latera 1 Loss	Cross Section	Rise   (ft   or   in)	Spa   n   (ft   or   in)
	87.66	6464.04	0.6	6464.57	0.013	0.05	1.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 42.0 \\ & 0 \text { in } \end{aligned}$	$\begin{aligned} & 42.0 \\ & 0 \text { in } \end{aligned}$
MH 8 SWR 8 - 1	73.59	6465.60	1.2	6466.48	0.013	1.06	0.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 36.0 \\ & 0 \text { in } \end{aligned}$	$\begin{gathered} 36.0 \\ 0 \text { in } \end{gathered}$
MH 9 SWR 9 - 1	42.21	6467.48	1.5	6468.11	0.013	1.06	0.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 18.0 \\ & 0 \text { in } \end{aligned}$	$\begin{aligned} & 18.0 \\ & 0 \text { in } \end{aligned}$
MH 2 SWR 2 - 1	172.08	6465.10	1.0	6466.82	0.013	0.20	1.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 36.0 \\ & 0 \text { in } \end{aligned}$	$\begin{gathered} 36.0 \\ 0 \text { in } \end{gathered}$
MH 3 SWR 3 - 1	71.52	6467.11	1.0	6467.83	0.013	0.05	1.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 36.0 \\ & 0 \text { in } \end{aligned}$	$\begin{gathered} 36.0 \\ 0 \text { in } \end{gathered}$
MH 7 SWR 7 - 1	5.00	6468.33	6.0	6468.63	0.013	1.32	0.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{gathered} 30.0 \\ 0 \text { in } \end{gathered}$	$\begin{gathered} 30.0 \\ 0 \text { in } \end{gathered}$
MH 4 SWR 4 - 1	190.00	6468.89	3.4	6475.35	0.013	0.05	1.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 18.0 \\ & 0 \text { in } \end{aligned}$	$\begin{aligned} & 18.0 \\ & 0 \text { in } \end{aligned}$
MH 5 SWR 5 - 1	25.08	6475.35	1.0	6475.60	0.013	0.05	1.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 18.0 \\ & 0 \text { in } \end{aligned}$	$\begin{aligned} & 18.0 \\ & 0 \text { in } \end{aligned}$
MH 6 SWR 6 - 1	28.62	6468.83	2.0	6469.40	0.013	0.83	0.00	$\begin{gathered} \text { CIRCULA } \\ \mathrm{R} \end{gathered}$	$\begin{aligned} & 24.0 \\ & 0 \text { in } \end{aligned}$	$\begin{gathered} 24.0 \\ 0 \mathrm{i} \end{gathered}$

## Grade Line Summary:

Tailwater Elevation (ft): 6468.85

	Invert Elev.		Downstrea m Manhole Losses		HGL		EGL		
Eleme nt Name	Downstre am (ft)	$\begin{gathered} \text { Upstrea } \\ \mathbf{m} \\ \text { (ft) } \end{gathered}$	Ben d Los s (ft)	Later   al Loss (ft)	Downstrea   m   (ft)	Upstrea m (ft)	$\begin{gathered} \text { Downstrea } \\ \text { m } \\ \text { (ft) } \end{gathered}$	Frictio n Loss (ft)	$\begin{gathered} \text { Upstrea } \\ \text { m } \\ \text { (ft) } \end{gathered}$
MH 1 SWR 1 - 1	6464.04	6464.57	0.00	0.00	6468.85	6469.28	6469.70	0.43	6470.13
MH 8 SWR 8 - 1	6465.60	6466.48	0.17	0.00	6470.14	6470.23	6470.30	0.09	6470.39
MH 9 SWR 9 - 1	6467.48	6468.11	0.13	0.00	6470.40	6470.49	6470.52	0.10	6470.62
MH 2 SWR 2 - 1	6465.10	6466.82	0.15	0.10	6469.63	6470.56	6470.38	0.92	6471.30
MH 3 SWR 3 - 1	6467.11	6467.83	0.03	0.14	6470.88	6471.18	6471.48	0.31	6471.79
MH 7 SWR 7 - 1	6468.33	6468.63	0.49	0.00	6471.91	6471.92	6472.28	0.02	6472.29
MH 4 SWR 4 - 1	6468.89	6475.35	0.02	0.28	6471.77	6476.45	6472.09	4.88	6476.97
MH 5 SWR 5 - 1	6475.35	6475.60	0.02	0.00	6476.46	6476.70	6476.99	0.22	6477.22
MH 6 SWR 6 - 1	6468.83	6469.40	0.19	0.00	6471.75	6471.83	6471.97	0.08	6472.05



## Easterly Storm Outfall

Sewer Input Summary:

		Elevation			Loss Coefficients			Given Dimensions		
Elemen t Name	Sewer   Lengt   h   (ft)	Downstrea   m Invert   (ft)	$\begin{gathered} \text { Slop } \\ \text { e } \\ (\%) \end{gathered}$	Upstrea m Invert (ft)	$\begin{gathered} \text { Manning } \\ \mathrm{s} \\ \mathrm{n} \end{gathered}$	$\begin{gathered} \text { Ben } \\ \text { d } \\ \text { Loss } \end{gathered}$	Latera 1 Loss	Cross Section	Rise   (ft   or   in)	$\begin{array}{\|c} \hline \text { Spa } \\ \text { n } \\ \text { (ft } \\ \text { or } \\ \text { in) } \end{array}$
$\begin{array}{\|c\|} \hline \text { MH 1 } \\ \text { SWR } 1 \\ -1 \end{array}$	56.15	6475.00	1.0	6475.56	0.013	0.05	1.00	$\begin{aligned} & \text { CIRCULA } \\ & \text { R } \end{aligned}$	$\begin{gathered} 36.0 \\ 0 \text { in } \end{gathered}$	$\begin{aligned} & 36.0 \\ & 0 \text { in } \end{aligned}$
MH 2 SWR 2 - 1	116.19	6476.00	1.9	6478.21	0.013	0.83	0.29	$\begin{aligned} & \text { CIRCULA } \\ & \text { R } \end{aligned}$	$\begin{gathered} 30.0 \\ 0 \text { in } \end{gathered}$	$\begin{aligned} & 30.0 \\ & 0 \text { in } \end{aligned}$
	121.85	6478.52	5.5	6485.22	0.013	1.32	1.00	$\begin{gathered} \text { CIRCULA } \\ \text { R } \end{gathered}$	$\begin{aligned} & 30.0 \\ & 0 \text { in } \end{aligned}$	$\begin{aligned} & 30.0 \\ & 0 \text { in } \end{aligned}$
	35.33	6485.53	1.0	6485.88	0.013	0.05	1.00	$\begin{gathered} \text { CIRCULA } \\ \text { R } \end{gathered}$	$\begin{aligned} & 30.0 \\ & 0 \text { in } \end{aligned}$	$\begin{aligned} & 30.0 \\ & 0 \text { in } \end{aligned}$
MH 5 SWR 5 - 1	161.78	6476.62	5.5	6485.52	0.013	1.32	0.25	$\begin{gathered} \text { CIRCULA } \\ \text { R } \end{gathered}$	$\begin{gathered} 24.0 \\ 0 \text { in } \end{gathered}$	$\begin{gathered} 24.0 \\ 0 \text { in } \end{gathered}$
MH 6 SWR 6 - 1	168.18	6485.75	2.8	6490.46	0.013	0.05	1.00	$\begin{aligned} & \text { CIRCULA } \\ & \text { R } \end{aligned}$	$\begin{gathered} 24.0 \\ 0 \text { in } \end{gathered}$	$\begin{gathered} 24.0 \\ 0 \text { in } \end{gathered}$
MH 7 SWR 7 -1	35.33	6490.76	1.0	6491.11	0.013	0.05	1.00	$\begin{aligned} & \text { CIRCULA } \\ & \text { R } \end{aligned}$	$\begin{gathered} 24.0 \\ 0 \text { in } \end{gathered}$	$\begin{gathered} 24.0 \\ 0 \text { in } \end{gathered}$

## Grade Line Summary:

Tailwater Elevation (ft): 6476.62

	Invert Elev.		Downstrea m Manhole Losses		HGL		EGL		
Eleme nt Name	Downstre am (ft)	$\begin{gathered} \text { Upstrea } \\ \mathbf{m} \\ \text { (ft) } \end{gathered}$	Ben d Los s (ft)	Later al Loss (ft)	$\begin{gathered} \text { Downstrea } \\ m \\ \text { (ft) } \end{gathered}$	Upstrea m (ft)	Downstrea m   (ft)	Frictio   n   Loss   (ft)	$\begin{gathered} \text { Upstrea } \\ \mathbf{m} \\ \text { (ft) } \end{gathered}$
MH 1 SWR 1 - 1	6475.00	6475.56	0.00	0.00	6476.62	6477.57	6478.10	0.36	6478.45
MH 2 SWR 2 - 1	6476.00	6478.21	0.31	0.34	6478.73	6479.88	6479.10	1.51	6480.62
MH 3 SWR 3 - 1	6478.52	6485.22	0.49	0.00	6480.37	6486.89	6483.50	4.13	6487.63
MH 4 SWR 4 - 1	6485.53	6485.88	0.01	0.09	6486.99	6487.44	6487.89	0.21	6488.10
MH 5 SWR 5 - 1	6476.62	6485.52	0.53	0.35	6478.45	6486.96	6480.78	6.86	6487.64
MH 6 SWR 6 - 1	6485.75	6490.46	0.02	0.00	6486.98	6491.90	6488.73	3.84	6492.58
MH 7 SWR 7 - 1	6490.76	6491.11	0.02	0.05	6491.97	6492.51	6492.87	0.27	6493.14

## SWQ / DETENTION CALCULATIONS



Designer:	
Company:	Marc A. Whorton, P.E.
Date:	Classic Consulting
October 3, 2018   Project:	HANNAH RIDGE AT FEATHERGRASS FILINGS 5-7
Location:	EL PASO COUNTY






Designer:	
Company:	Marc A. Whorton, P.E.
Date: Classic Consulting   Project: October 2, 2018   Location: HANNAH RIDGE AT FEATHERGRASS FILINGS 5-7	




Designer:	Marc A. Whorton, P.E.
Company:	Classic Consulting
Date:   Project:	October 3, 2018
Location:	EaNNAH RIDGE AT FEATHERGRASS FILINGS 5-7




$$
\begin{array}{|c|c|}
\hline \text { DETENTION BASIN STAGE-STORAGE TABLE BUILDER } \\
\hline \text { UD-Detention, Version 3.07 (February 2017) }
\end{array}
$$



## Detention Basin Outlet Structure Design



User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.20	2.40	3.60	4.80			
Orifice Area (sq. inches)	2.43	2.43	2.05	4.45	4.45			


	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								


User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ )
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ )
Vertical Orifice Diameter $=$	N/A	N/A	inches





## Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename
Storm Inflow Hydrographs
UD-Detention, Version 3.07 (February 2017)

	SOURCE	WORKBOOK	WORKBOOK	workbook	WORKBOOK	WORKBOOK	WоRKBOOK	WORKBOOK	workbook	workbook
Time Interval	time	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.03 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph Constant	0:10:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:15:05	0.54	1.69	1.40	1.86	2.39	3.06	3.51	4.08	6.06
0.993	0:20:07	1.45	4.63	3.83	5.10	6.59	8.54	9.88	11.61	17.96
	0:25:09	3.72	11.90	9.83	13.10	16.92	21.92	25.38	29.81	46.16
	0:30:11	10.21	32.66	26.99	35.96	46.41	60.09	69.54	81.63	126.09
	0:35:13	12.15	39.60	32.60	43.69	56.78	74.42	86.91	103.28	166.89
	0:40:14	11.60	37.95	31.22	41.89	54.53	71.73	84.02	100.24	164.42
	0:45:16	10.56	34.54	28.42	38.12	49.62	65.38	76.69	91.64	151.12
	0:50:18	9.44	31.04	25.52	34.28	44.68	58.91	69.12	82.62	136.40
	0:55:20	8.15	27.04	22.19	29.88	39.04	51.57	60.58	72.51	120.17
	1:00:22	7.10	23.53	19.28	26.02	34.05	45.05	52.95	63.42	105.25
	1:05:23	6.43	21.31	17.48	23.55	30.77	40.63	47.70	57.05	94.24
	1:10:25	5.32	17.79	14.57	19.67	25.75	34.09	40.10	48.08	80.07
	1:15:27	4.35	14.69	12.02	16.26	21.32	28.27	33.28	39.93	66.64
	1:20:29	3.36	11.55	9.42	12.80	16.85	22.44	26.48	31.86	53.58
	1:25:31	2.50	8.84	7.18	9.81	12.98	17.36	20.53	24.76	41.87
	1:30:32	1.81	6.53	5.28	7.27	9.66	12.99	15.41	18.63	31.74
	1:35:34	1.40	4.94	4.01	5.49	7.27	9.72	11.50	13.87	23.44
	1:40:36	1.15	4.01	3.26	4.44	5.86	7.81	9.21	11.08	18.57
	1:45:38	0.98	3.38	2.75	3.75	4.93	6.57	7.74	9.30	15.54
	1:50:40	0.86	2.95	2.41	3.27	4.30	5.71	6.72	8.07	13.44
	1:55:41	0.77	2.64	2.16	2.93	3.85	5.10	6.01	7.20	11.96
	2:00:43	0.71	2.42	1.98	2.68	3.52	4.67	5.49	6.58	10.91
	2:05:45	0.52	1.79	1.46	1.99	2.62	3.49	4.13	4.97	8.41
	2:10:47	0.38	1.30	1.06	1.44	1.90	2.53	2.98	3.59	6.06
	2:15:49	0.28	0.96	0.78	1.07	1.40	1.87	2.21	2.66	4.50
	2:20:50	0.21	0.71	0.58	0.79	1.04	1.39	1.64	1.98	3.34
	2:25:52	0.15	0.52	0.42	0.58	0.76	1.02	1.21	1.46	2.47
	2:30:54	0.10	0.37	0.30	0.41	0.55	0.73	0.87	1.05	1.79
	2:35:56	0.07	0.27	0.22	0.30	0.40	0.53	0.63	0.76	1.29
	2:40:58	0.05	0.19	0.15	0.21	0.28	0.37	0.44	0.54	0.92
	2:45:59	0.03	0.12	0.09	0.13	0.18	0.24	0.29	0.35	0.61
	2:51:01	0.01	0.06	0.05	0.07	0.10	0.14	0.17	0.21	0.37
	2:56:03	0.00	0.03	0.02	0.03	0.04	0.06	0.08	0.10	0.18
	3:01:05	0.00	0.01	0.00	0.01	0.01	0.02	0.02	0.03	0.06
	3:06:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:11:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:16:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:21:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:26:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:31:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:36:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:41:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:46:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:51:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:25	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:01:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:06:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:11:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:16:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:21:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:26:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:31:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:36:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:41:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:46:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:51:44	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:56:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:01:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:06:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:11:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:16:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:21:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:26:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:31:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:37:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:42:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:47:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:52:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:57:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:02:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

## DRAINAGE MAPS





## Markup Summary



Subject: text box	SF-18-038
Page Label: 1	SF-18-039
Author: Steve Kuehster	SF-18-040
Date: $11 / 19 / 2018$ 3:24:09 PM	
Color: $\square$	



Subject: arrow \& box
Page Label: 7
Author: Steve Kuehster
There needs to be less than one acre of development area that does not receive WQCV.
Date: 11/19/2018 3:25:36 PM With this 0.80 acre piece and other areas such a

Color: Basin G, this development (Filings 5,6 \& 7) does not meet this criteria. Please route this area so it receives WQCV or provide its own WQCV Facility. Or adjust the overall plan accordingly.


Subject: text box $\quad$ Non-Erosive
Page Label: 9
Author: Steve Kuehster
Date: 11/19/2018 3:26:18 PM
Color:


Subject: text box
Page Label: 10
Author: Steve Kuehster
Date: 11/19/2018 3:26:59 PM
Color:

There needs to be a section that discusses the upstream abandoned Chicago and Rock Island Pacific railroad embankment and the concrete box.
Please clearly state in this report:
A. What the hazard is. (the amount of ponding, box and/or embankment failure, etc.)
B. The importance that the box culvert and embankment are periodically observed and maintained and who is responsible for this work.


Subject: arrow \& box

## Page Label: 91

Author: Steve Kuehster
Date: 11/19/2018 3:28:24 PM
Color:

There needs to be less than one acre of development area that does not receive WQCV. With this 0.80 acre piece and other areas such a Basin G, this development (Filings 5,6 \& 7) does not meet this criteria. Please route this area so it receives WQCV or provide its own WQCV Facility.


[^0]:    Jennifer Irvine, P.E.
    County Engineer / ECM Administrator

