FINAL DRAINAGE REPORT

Lot 3A Northcrest Center Filing No 1A (My Garage @ Northcrest Center)

2510 CANADA DRIVE COLORADO SPRINGS, COLORADO 80922

PCD File #PPR2412

Prepared for: LEISURE CONSTRUCTION 3442 Tampa Road, Suite B Palm Harbor, FL 34684 (727) 242-5121

1604 South 21st Street Colorado Springs, Colorado 80904 Ph: (719)630-7342

Kiowa Project No. 23049

June 14, 2024

TABLE OF CONTENTS

Table	of Contents2
Staten	nents and Approvals
I.	Purpose 4
II.	General Location and Description4
	A. Location 4
	B. Description of Property – Existing Conditions
	C. Existing Soils
	D. Existing Drainage
	E. Description of Property – Proposed Conditions
III.	Drainage Basins and Subbasins
	A. Existing Basins and Sub-Basins
IV.	Developed Drainage Basins and Sub-Basins7
	A. On-Site Basins – developed condition7
	B. Off-Site Basins - developed condition
۷.	Drainage Design Criteria
	A. Regulations
	B. Development Criteria Reference and Constraints
	C. Hydrological Criteria
	D. Four-Step Process
VI.	Drainage Infrastructure Costs and Fees
	A. Drainage and Bridge Fees 12
	B. Storm Drain System Quantities and Cost Estimate
VII.	Conclusions 13
VIII.	References
Apper	ndix Table of Contents

List of Figures and Tables (Refer to the Appendix Table of Contents)

STATEMENTS AND APPROVALS

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation 300 South 21st Street, Colorado Springs, Colorado 80904

DEVELOPER'S STATEMENT:

I, the Owner/Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

K&S Development, LLC		
Name of Developer		
SZEdwards.	MM	6-18-24
Authorized Signature		Date
Printed Name: <u>Sean L. Edwards</u>		
Title: Managing Member		

Address: <u>3442 Tampa Rd,., Suite B, Palm Harbor, FL 34684</u>

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 & 2, El Paso County Engineering Criteria Manual, and Land Development Code, as amended.

Joshua Palmer, P.E. El Paso County Engineer/ECM Administrator Date

I. PURPOSE

This report is a Final Drainage Report for Lot 3A Northcrest Center Filing No 1A, at 2510 & 2522 Canada Drive Colorado Springs, Colorado 80922, for the development of a multi-unit commercial storage center, *My Garage @ Northcrest Center*.

The purpose of this report is to identify on-site and off-site drainage patterns, assess stormwater conditions per delineated basin and sub-basins, demonstrate adequate design standards for storm water flow and release into the existing storm water system or right-of-way, and provide a narrative for any other drainage considerations related to the development of this parcel.

II. GENERAL LOCATION AND DESCRIPTION

A. LOCATION

This proposed development of 70 commercial storage units is located at the address of Northcrest Center in the City of Colorado Springs, Colorado in El Paso County within the Lot 3A Northcrest Center Filing No 1A Subdivision. The parcel schedule number is 53323-09-008 and the legal descriptions is Lot 3A Northcrest Center Filing No 1A. It is comprised of an earlier Vacation & Replat of Tract B Northcrest Fil No 2 Phase 1, Lot 5 Northcrest Center, A Vacation & Replat Of Tract B Northcrest Fil No 2 Phase 1, and Lot 4 Northcrest Center, and A Vacation & Replat Of Tract B Northcrest Fil No 2 Phase 1. The parcel is located to the north of Constitution Avenue, west of Canada Drive, east of Peterson Road, and south of Bismark Road.

The surrounding parcels are as follows:

2508 Weyburn Way, Schedule No. 5332308031, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 15 Constitution Hills Fil No 8

2507 Weyburn Way, Schedule No. 5332308032, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 14 Constitution Hills Fil No 8

2630 Tibburn Way, Schedule No. 5332308040, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 6 Constitution Hills Fil No 8

2610 Tibburn Way, Schedule No. 5332308041, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 5 Constitution Hills Fil No 8

2605 Tibburn Way, Schedule No. 5332308042, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 4 Constitution Hills Fil No 8

2535 Canada Drive, Schedule No. 5332310002, Zoning RS-6000 CAD-O, Plat No. 8956, Lot 1 Living Waters Sub

2525 Canada Drive, Schedule No. 5332310003, Zoning PUD CAD-O, Plat No. 8956, Lot 2 Living Waters Sub

2455 Canada Drive, Schedule No. 5405207050, Zoning RM-30 CAD-0, Plat No. 7588, Lot 2 Northcrest Fil No4

6855 Constitution Avenue, Schedule No. 5405218002, Zoning CC CAD-O, Plat No. 9808, Lot 1 Eight Line Sub

6805 Bismark Road, Schedule No. 5332309007, Zoning CC CAD-O, Plat No. 7776, Lots 1 & 2 Northcrest Center, A Vacation & Replat of Tract B Northcrest Fil No 2 Phase 1

2624 Tibburn Way, Schedule No. 5332308043, Zoning RS-6000 CAD-O, Plat No. 10281, Lot 3 Constitution Hills Fil No 8

B. DESCRIPTION OF PROPERTY – EXISTING CONDITIONS

Lot 3A Northcrest Center Filing No 1A Subdivision is approximately 141,390 square feet (3.246 acres) and is located on the north side of Constitution Avenue, east side of Peterson Road, West of Canada Drive, and south of Bismark Road. The parcels fall within the SW 1/4 of Section 32, Township 13 South, Range 65 West of the 6th P.M. of Colorado Springs, El Paso County, Colorado.

The property currently consists of undeveloped natural vegetation. There is existing curb and gutter along Bismark Drive, Canada Drive, and Constitution Avenue.

The existing percent imperviousness is approximately 1.5 percent.

The existing topography consists of grades between 2 and 25 percent. Drainage patterns sheet flow across the parcel southeasterly to the corner of Canada Drive and Constitution Avenue.

C. EXISTING SOILS

The soils indicative to the site are classified as Truckton sandy loam by the USDA Soil Conservation Service and are listed as NRCS (National Resources Conservation Service) Hydrologic Soil Group A. A USDA Soil Map is provided in the Appendix.

A subsurface soils investigation was conducted for the site within a letter entitled *Geotechnical Report* by RMG – Rocky Mountain Group dated February 23, 2021 (Ref. Appendix B). The investigation "revealed similar substance subsurface soil conditions across the site, being primarily silty sand extending from the ground surface to the extent of the test borings. Neither expansive clay soil nor bedrock was encountered in the borings."

"Test Borings for structures and storage yards were advanced with a power-driven, continuousflight auger drill rig to depths of 15 and 20-feet below the existing ground surface. Pavement Borings were advanced to 5 and 10-foot depths."

The study found that, "groundwater was not encountered in the test borings during field exploration."

These soils are classified within Hydrologic Soil Group A. Erosion Potential is moderate to low depending on the granularity of the subsurface soil matrix and must be actively contained during construction activities.

D. EXISTING DRAINAGE

The existing topography consists of grades between 2 and 25 percent within the entire parcel that ultimately flows southeast. The existing imperviousness of the lot is approximately 1.5 percent. The existing vegetation consists of native grasses and has been identified via site visits and aerial photography as well as survey data and pictures.

The existing drainage pattern from storm runoff is generally characterized as overland flow to the southeast of the parcel across pervious landscaped yard. The runoff from this parcel and the surrounding neighborhood flows via curb and gutter in the public right of way of Bismark Road, Constitution Avenue, and Canada Drive. The runoff flows south on Canada Drive into the existing Public 15' CDOT Type R Curb Inlet located at the northwest corner of the intersection of Canada Drive and Constitution Avenue. This Public Storm Inlet is a branch of the Public 24" RCP Storm Main that flows west to east along the north side of Constitution Avenue and ultimately outfalls into the East Fork of Sand Creek Creek approximately one mile to the east.

Lot 3A Northcrest Center Filing No 1A does not lie within a designated floodplain according to information published in the Federal Emergency Management Agency Floodplain Map No. 08041C0752G, dated December 7, 2018. The FEMA Floodplain map is provided in Appendix A showing it lies within Zone X, a minimal flood hazard area.

There are no known non-stormwater discharges that contribute to the storm water systems on site and downstream, both private and public.

The Site was previously platted (Ref. ECP EDARP File V222 "NORTHCREST CENTER NO. 1A A VACATION AND REPLAT OF LOTS 3,4 AND 5, "NORTHCREST CENTER", BEING A PORTION OF THE SOUTHWEST QUARTER OF SECTION 32, TOWNSHIP 13 SOUTH, RANGE 65 WEST OF THE 6^{TH} P.M., COUNTY OF EL PASO, STATE OF COLORADO") and approved for drainage (Ref: EPC PPR2136 as LOTS 3, 4, AND 5 NORTHCREST CENTER FILING NO 2 PHASE 1 SUBDIVISION") on February 21, 2023. The plat and drainage report have both been reviewed and considered in preparation of this report.

E. DESCRIPTION OF PROPERTY – PROPOSED CONDITIONS

The proposed development consists of 70 commercial units containing approximately 63,240 square feet along with concrete and asphalt pavement for drive accesses, sidewalks, and curb and gutter. Other on-site features include approximately 25,420 square feet of landscaping, 600 linear feet of retaining wall, and 5,000 square feet for a full spectrum detention pond.

There is no existing access point to the property. Two new curb cuts are proposed along Canada Drive. Easement vacations and replatting will be required to accommodate the planned development.

The Site has been redeveloped for similar use, but with a higher density of storage units and with a more compacted detention storage area that will incorporate full a concrete perimeter wall and a three stage outlet structure instead of a two-stage structure with an overtopping area inlet. The revised design will have a concrete access ramp and a smaller wetted perimeter. Perimeter swales will actively harvest and direct runoff from roof areas, and direct flows to the revised EDB (Pond A). The revised design will employ less storm piping and fewer inlets. The outfall location from the EDB remains the same, which is the rear side of an existing inlet at Canada Drive.

The westerly edge of the revised project will rely on a substantial retaining wall to create a flatter site that will allow for more ADA accessibility.

Planned Access Points to the site are unchanged at Canada Drive, but no site access is planned for the west margin of the property with the planned redevelopment as it was with the previous plan.

III. DRAINAGE BASINS AND SUBBASINS

A. EXISTING BASINS AND SUB-BASINS

The parcel is delineated into sub-basins according to the existing and proposed grading for existing and developed conditions.

Basin H-1 is the entirety of the parcel representing existing conditions and consists of one on-site sub-basin. There are some off-site flows that enter the property along its westerly margin which will be discussed in Sub-Basin O-1.

Sub-basin H-1 (3.25 ac.; $Q_{10} = 1.7$ cfs, $Q_{100} = 10.4$ cfs) is the entirety of Lot 3a which contains natural vegetation that flows to the right of ways of Bismark Road, Canada Drive, and Constitution Ave. Those right of ways have curb and gutter directly adjacent to the lot that flow to a Public 15' CDOT Type R Curb Inlet located in Canada Drive. This public stormwater system is connected to a Public

30" CMP Storm Main that runs west to east along the south side of the lot within Constitution Avenue. The Public 15' & 5' CDOT Type R Curb Inlets located at the northwest and northeast corners, respectively, of the intersection of Canada Drive and Constitutions Avenue are branches that connect to the public stormwater main within Canada Drive. The public stormwater system ultimately flows north within Canada Drive to the East Fork of Sand Creek. Design Point 1 is the existing conditions design point representing the on-site area. The emergency flow route of this public storm inlet is due east along the north side of Constitution Avenue.

Basin 0-1 contains 0.23 acres lying adjacent to and west of the site. Flows from this sub-basin enter the westerly edge of the site in a sheet flow manner from paved areas, and travel overland across the unimproved site ($Q_5=0.8cfs/Q_{100}=1.6cfs$).

Basin 0-2 contains 0.07 acres consisting of a narrow strip of unimproved land lying between the site's north property line, and the public curb and gutter section of Bismark Road $(Q_5=0.0cfs/Q_{100}=0.2cfs)$. Runoff descends to the public curb and gutter section in a sheet flow manner.

Basin 0-3 contains 0.06 acres consisting of a narrow strip of unimproved land lying between the site's east property line, and the public curb and gutter section of Canada Drive $(Q_5=0.0cfs/Q_{100}=0.2cfs)$. Runoff descends to the public curb and gutter section in a sheet flow manner.

Basin 0-4 contains 0.07 acres consisting of a narrow strip of unimproved land lying between the site's south property line, and the public curb and gutter section of Constitution Avenue $(Q_5=0.0cfs/Q_{100}=0.2cfs)$. Runoff descends to the public curb and gutter section in a sheet flow manner.

IV. DEVELOPED DRAINAGE BASINS AND SUB-BASINS

A. ON-SITE BASINS – DEVELOPED CONDITION

Basin D-1 contains 0.55 acres of roof and lawn area ($Q_5=1.4cfs/Q_{100}=3.0cfs$). Flows either sheet flow or accumulate in downspouts and are directed to a new private grassed swale (GS 'North') for water quality treatment ahead of being released to a new private Type 'C' area inlet at Design Point 1. There are no offsite flows entering this sub-basin. Concentrated and treated runoff is collected within new private inlet and storm pipe and directed to the new private EDB.

Basin D-2 contains 0.40 acres of roof and drive aisle ($Q_5=3.2cfs/Q_{100}=5.9cfs$). Flows either sheet flow or accumulate in downspouts and are directed to a 4' valley pan ahead of being released to a new private Type 'C' area inlet at Design Point 2. There are no offsite flows entering this sub-basin. Concentrated runoff is collected within new storm pipe and directed to the new private EDB.

Basin D-3 contains 0.08 acres of driveway and parking area ($Q_5=0.3cfs/Q_{100}=0.6cfs$). Flows initially sheet flow across paved surfaces and are discharged through slotted curb at the low side of the basin nearest to Canada Drive. New landscape area is planned to receive surface runoff via two-inch curb slots located every ten feet. The slotted curb incorporates a hard ledge six inches below the invert of the curb assembly for water quality treatment ahead of being released to public roadway at Design Point 3. There are no offsite flows entering this sub-basin. Concentrated and treated runoff is collected within existing public gutter at Canada Drive and conveyed south to the existing public 15' Type R curb inlet in Canada Drive.

Basin D-4 contains 0.98 acres of roof and drive aisle area in the center of the site $(Q_5=4.0cfs/Q_{100}=7.3cfs)$. Runoff flows sheet flow and accumulate in downspouts and are directed to

a new four-foot valley pan located in the center of the drive aisle and ahead of being released to a new private Type 'C' area inlet at Design Point 4. There are some offsite flows from Basin O-1 which overtop the retaining wall lying along the westerly edge of the site, and which combine with on-site flows close to the upstream end of the new private four-foot valley pan. Combined and concentrated runoff is collected within new private inlet and storm pipe and directed to the new private EDB at Forebay Two.

Basin D-5 contains 0.15 acres of roof and lawn area ($Q_5=1.3$ cfs/ $Q_{100}=2.7$ cfs). Flows either sheet flow or accumulate in downspouts and are directed to a new private grassed swale (GS 'South') for water quality treatment ahead of being released to a new private Type 'C' area inlet at Design Point 5. There are no offsite flows entering this sub-basin. Concentrated and treated runoff is collected within pipe and directed to the new private EDB at Forebay One.

Basin D-6 contains 0.12 acres of ramp, channel and grassed area ($Q_5=1.4cfs/Q_{100}=3.0cfs$). Flows either sheet flow or are released under controlled conditions from one of two new private forebays (One and at Two) at Design Point 6. There are no offsite flows entering this sub-basin. Concentrated runoff is directed via trickle channels to a new private outlet structure ahead of release to public storm systems. Calculations for the three-stage release structure are provided in Appendix B.

Basin D-7 contains 0.15 acres of drive aisle, sidewalk, entrances and lawn areas which are generally below the pond's elevation, and are constrained by topography such that they cannot be directed to the EDB (Q_5 =0.2cfs/ Q_{100} =0.6cfs). Flows sheet flow to lawn areas and public roadway. Some water quality treatment benefit is achieved within the receiving pervious lawn area ahead of being released to a existing roadway curb and gutter. There are no offsite flows entering this sub-basin. Concentrated and partially treated runoff is collected within existing curb and gutter and are received at the existing public 15' Type 'R'; curb inlet located along the west side of Canada Drive.

Basin D-8 contains 0.15 acres of roof and lawn area at DP 1 ($Q_5=1.4cfs/Q_{100}=3.0cfs$). Flows either sheet flow or accumulate in downspouts and are directed to a new private grassed swale (GS 'North') for water quality treatment ahead of being released to a new private Type 'C' area inlet at Design Point 1. There are no offsite flows entering this sub-basin. Concentrated and treated runoff is collected within pipe and directed to the new EDB.

B. OFF-SITE BASINS - DEVELOPED CONDITION

Basin O-1 contains 0.23 acres lying adjacent to and west of the site. Flows from this sub-basin enter the westerly edge of the site in a sheet flow manner from paved areas, and travel overland across the unimproved site ($Q_5=0.8cfs/Q_{100}=1.6cfs$). Under developed conditions, the easterly edge of the existing alleyway discharges runoff to Basin D-4. Flows combine with on-site flows and are received at the aforementioned four-foot valley pan ahead of being directed to the EDB for storage and treatment.

Basin O-2 contains 0.07 acres consisting of a narrow strip of unimproved land lying between the site's north property line, and the public curb and gutter section of Bismark Road $(Q_5=0.0cfs/Q_{100}=0.2cfs)$. Runoff descends to the public curb and gutter section in a sheet flow manner. Under developed conditions, new five-foot public attached sidewalk is added to the roadway (Bismark Road).

Basin 0-3 contains 0.06 acres consisting of a narrow strip of unimproved land lying between the site's east property line, and the public curb and gutter section of Canada Drive $(Q_5=0.0cfs/Q_{100}=0.2cfs)$. Runoff descends to the public curb and gutter section in a sheet flow manner. Under developed conditions, new five-foot public attached sidewalk is added to the roadway (Canada Drive).

Basin 0-4 contains 0.06 acres consisting of a narrow strip of unimproved land lying between the site's east property line, and the public curb and gutter section of Canada Drive $(Q_5=0.0cfs/Q_{100}=0.2cfs)$. Runoff descends to the public curb and gutter section in a sheet flow manner. Under developed conditions, new five-foot public attached sidewalk is added to the roadway (Constitution Avenue).

There is also an existing Water Quality Capture Volume BMP/control measure constructed for the neighboring lot (Northcrest Center Fil No 2 Lots 1 & 2). This feature will not see additional runoff due to the proposed development and was not evaluated for its current conditions.

A Full Spectrum Extended Detention Basin (EDB) is proposed for the site to provide water quality and detention prior to attenuated storm water release to the public storm system. The vertical concrete walls on all four sides of the Extended Detention Basin are due to site constraints including an existing electric vault and existing easement where the pond is being constructed. The Full Spectrum Extended Detention Basin includes a 10' wide concrete maintenance access ramp that slopes to the pond's bottom.

V. DRAINAGE DESIGN CRITERIA

A. **REGULATIONS**

The hydrological and hydraulic calculations and design of the site conform to the City of Colorado Springs Drainage Criteria Manuals I and II (latest revision, May 2014) as well as the Mile High Flood District Drainage Criteria manuals revised August 2018.

PCMs must be provided to achieve Water Quality Treatment. Extended Detention of Runoff must be provided for this development as it is over 1 acre in size.

B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS

The parcel falls within the Sand Creek major drainage basin (East Fork Sand Creek) designated by the City of Colorado Springs Water Resources Engineering Department with the ultimate receiving waters of Arkansas River.

Relevant criteria for the calculations shown further include equations and design criteria for the rational method, volumes and runoff of various storm events.

Under developed conditions, the drainage on this parcel will have no effect on downstream infrastructure or facilities, streets, utilities, transit, or further development of adjacent lots.

C. HYDROLOGICAL CRITERIA

The rational method was used to calculate the peak runoff of the delineated sub-basins using the manuals referenced prior with the C, I, and P1 values from the Design Criteria Manual Volume I, Chapter 6 as well as the Colorado Springs designated IDF curve values. Specific calculations and tables are provided further with inputs including design rainfall, sub-basin acreage and percent imperviousness, runoff coefficients, one-hour rainfall depths, rainfall intensities, time of concentration, and peak discharge of various storm events.

The default rainfall intensities and volumes use runoff coefficients based on soil types. Weighted runoff coefficients were calculated for each basin and sub-basin due to the mix of impervious surfaces, shown in the Appendix B exhibits.

PBMPs in the form of Grassed Swales, and an EDB are planned to achieve Water Quality Treatment and in order to match Historic Release Rates for the developed site. Calculations for each PBMP are provided in Appendix C.

D. FOUR-STEP PROCESS

The selection of appropriate control measures is based on the characteristics of the site and potential pollutants. The Four-Step Process provides a method of going through the selection process. The following applies the four-step process to the Development Plan for My Garage @ Northcrest Center.

Step 1: Employ Runoff Reduction Practices

The Development Plan including the Landscape Plan utilizes landscaping areas for plantings and grass or mulch wherever possible without obstructing utilities or drainageways. Given the proposed land use, the majority of the site consists of roof or paved surface. Where possible, roof runoff is directed to perimeter grassed swales (PBMP GS North and GS South) ahead of entering private storm systems. All other areas are marginal edges which cannot be captured by grading.

Step 2: Provide Water Quality Capture Volume

The Development Plan and Final Drainage Report indicate the use of a PBMP storm water detention Pond A (PBMP Pond A) as a control measure for capturing storm water runoff and properly treating the storm water prior to release either via percolation into the soil or attenuated to the public storm system. The PBMP Pond A is to be installed and the configuration is sized for capture of the WQCV as well as the EURV and full-spectrum detention, and 100-year detention. In addition to PBMP Pond A, additional Water Quality Treatment is planned the perimeter of the property where roof flows find their way to grassed swale PBMPs GS North and GS South which allow sediments and pollutants to settle out of the concentrated runoff prior to entering pipe systems, and being conveyed to the PBMP Pond A. The site provides two locations for additional water quality treatment via threehundred-foot grassed swales at PBMP GS North and PBMP GS South. Treatment benefit is predicted for these swales and a detention reduction percentage is achieved for the overall as summarized in the table below.

Water Quality Treatment Summary Table										
Bains ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to Pond A (ac)	Disturbed Area Treated via Runoff Reduction (ac)	Disturbed Area Excluded from WQ per ECM App I.7.1.C.1 (ac)	Disturbed Area Excluded from WQ per ECM App I.7.1.B.# (ac)				
01	0.23	0.03	0.23	0.03		n/a				
02	0.07	0.07	-		0.07	n/a				
03	0.06	0.06	-		0.06	n/a				
04	0.07	0.07	-		0.07	n/a				
D1	0.56	0.56	0.56			n/a				
D2	0.75	0.75	0.75			n/a				
D3	0.08	0.08	0.08			n/a				
D4	0.98	0.98	0.98			n/a				
D5	0.46	0.46	0.46			n/a				
D6	0.12	0.12	0.12			n/a				
D7	0.15	0.15	0.15	0.07	0.08	n/a				
D8	0.16	0.16	-	0.16		n/a				
Total	3.69	3.49	3.33	0.26	0.28	0.00				
		Total Proposed Disturbed Area (ac)	Total Proposed Treated Area (ac)		Total Proposed Disturbed Area Excluded from WQ (ac)					
		3.49	3.	.59	0.	28				

Step 3: Stabilize Drainageways

The drainage within the site is stabilized by way of pavement with features such as valley pans, area inlets, curb and gutter, and sloped pavement to direct storm water to the private storm system. There are no unpaved or unstabilized drainageways on this site.

Step 4: Implement Site Specific and Other Source Control BMPs

In addition to Full Spectrum Extended Detention, two 300-foot grassed swales are proposed at the north and south margins of the site to provide some opportunities for infiltration and sediment removal. Concentrated and partially treated flows within these grassed swales are subsequently captured within separate area inlets at the bottom of the swales and directed to the extended detention basin (EDB) within private collection systems. Slotted Curb with a dropped ledge is planned along the easterly margin where topographic constraints prevent capture within the on-site private storm collection system. A small portion of the site in the extreme southeast corner lies below the pond and is allowed to sheet flow across landscaped surface to maximize opportunities for infiltration.

VI. DRAINAGE INFRASTRUCTURE COSTS AND FEES

A. DRAINAGE AND BRIDGE FEES

The development falls within the Sand Creek drainage basin (FOFO4000) which has a drainage basin fee of \$20,387 per impervious acre and a bridge fee of \$8,339 per impervious acre according to the 2021 El Paso County Drainage Basin Fees document. The development has a total impervious acreage of 2.33 acres (3.25 acres * 71.7% imperviousness).

Drainage Basin Fee: \$20,387/impervious acre * 2.33 impervious acres = \$47,507 Bridge Fee: \$8,339/impervious acre * 2.33 impervious acres = \$19,429.87

Since the site is already platted, drainage fees are assumed to have already been paid. Since this development is increasing imperviousness, the County shall review their records and make a decision on fee requirements.

The property has been platted. There are no outstanding fees to be paid associated with platting.

B. STORM DRAIN SYSTEM QUANTITIES AND COST ESTIMATE

te I - Northcrest Genter - Private Storm improve	illenits			
Description	Quan.	Unit	Cost	Total
Slotted Curb w/ Dropped Ledge	110	LF	\$55	\$6,050
Type 'C' Area Inlet (3'x3')	4	EA	\$9,800	\$39,200
4-ft Dia Manhole (conc)	2	EA	\$8,322	\$16,644
12" HDPE Dbl Smooth Pipe	50	LF	\$41	\$2,050
18" HDPE Dbl Smooth Pipe	152	LF	\$56	\$8,512
19"x30" HERCP Pipe	31	LF	\$112	\$3,472
			Sub-Total	\$75,928
Inlet/Outlet Structure	1	EA	\$15,000	\$15,000
Forebay One	1	EA	\$5,800	\$5,800
Forebay Two	1	EA	\$9,100	\$9,100
Concrete Access Ramp	14	CY	\$714	\$9,996
Spillway	54	LF	\$125	\$6,750
Soil Rap	3.7	CY	\$535	\$1,980
Trickle Pan	125	LF	\$96	\$12,000
Safety Railing	192	LF	\$55	\$10,560
Detention Basin Retaining Wall	44	CY	\$714	\$31,416
			Sub-Total	\$102,602
				\$178,530

Table 1 - Northcrest Center - Private Storm Improvements

VII. CONCLUSIONS

The criteria used to design the storm water runoff volumes are formulas and figures within the City of Colorado Springs Drainage Manuals as well as the Mile High Flood District Drainage Criteria manual. Grading practices for optimal drainage shall comply with the geotechnical investigative report and City standards. The development of Lots 3a is within compliance and standards and meets the requirements for the Northcrest Center. The difference between Basin H-1 and Basins D-1 through D-8 results in an overall increase of the 100-year storm Water volume of 4.3 cfs overall due to increased impervious surfaces.

3.09 acres (71.7% imperviousness) of on-site flows, and 0.23 acres of off-site flows drain to the Full Spectrum Detention Basin, with a total runoff of 15.4 cfs (100-yr storm) being captured.

The proposed grading and drainage is within substantial conformance for the master drainage plan for the Subdivision and Drainage Basin. There is no impact on major drainageway planning studies within the larger drainage basin. This development will not adversely affect downstream development.

VIII. REFERENCES

El Paso County & Colorado Springs Drainage Manual Volumes I & II (May 2014)

El Paso County Engineering Criteria Manual, El Paso County, Colorado, (Rev. 12/16/2013)

<u>Colorado Urban Drainage and Flood Control District Drainage Criteria Manual, Volume I</u> (August 2018)

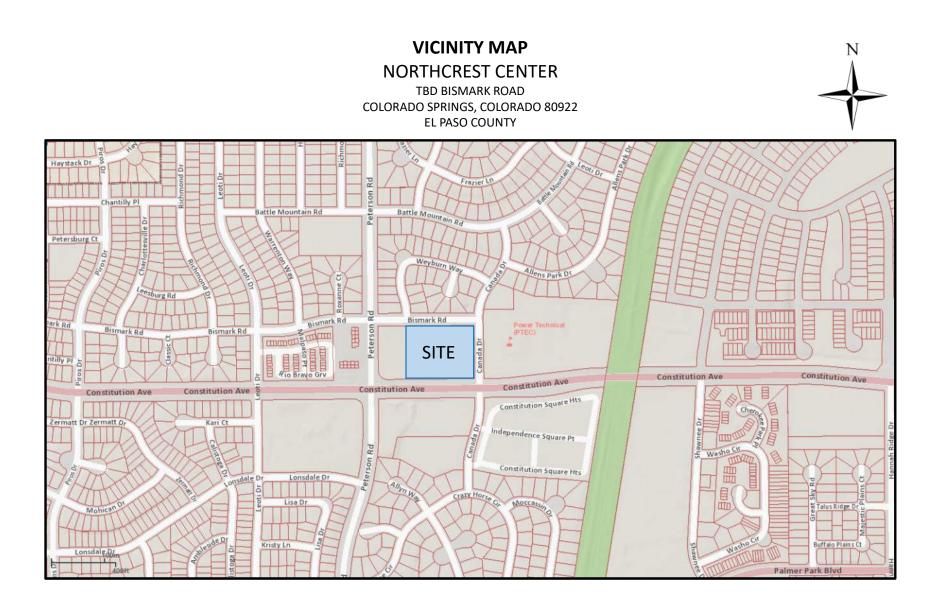
<u>Colorado Urban Drainage and Flood Control District Drainage Criteria Manual, Volume III</u> (April 2018)

<u>Urban Storm Drainage Criteria Manual, Volume III</u> (November, 2015)

<u>West Fork Jimmy Camp Creek Drainage Basin Planning Study</u>, prepared by Kiowa Engineering Corporation, dated October 17, 2003.

<u>City of Colorado Springs and El Paso County Flood Insurance Study</u>, prepared by the Federal Emergency Management Agency, dated March 1997.

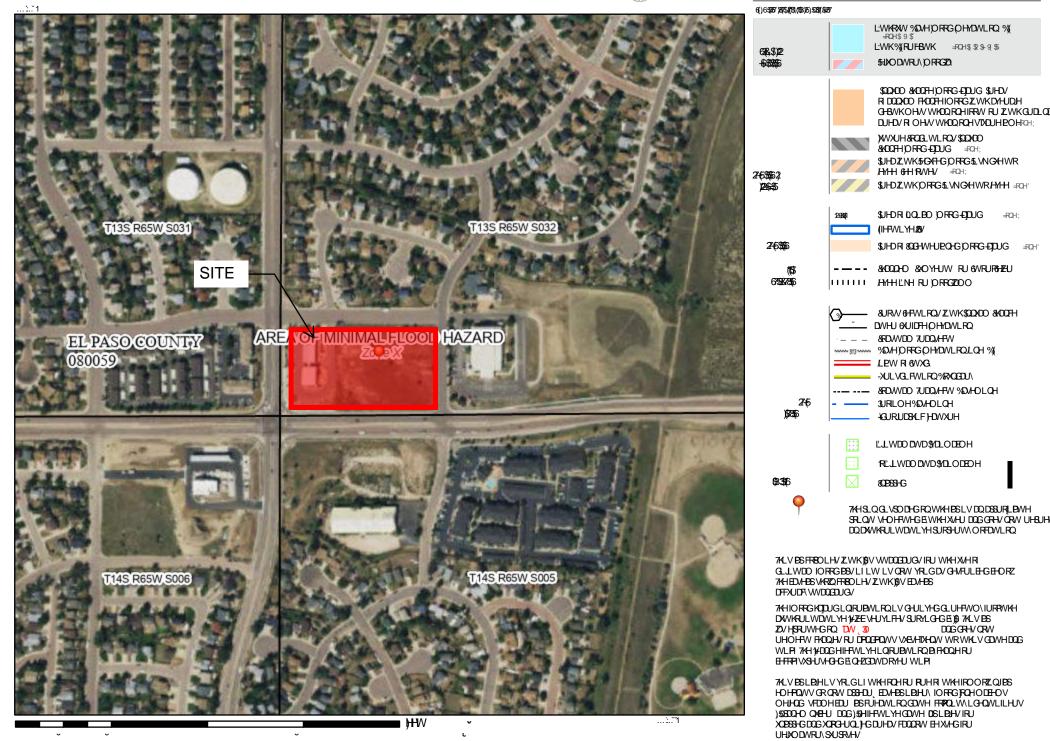
<u>Soil Survey of El Paso County Area, Colorado</u>, prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981. FEMA Flood Online Map Service Center

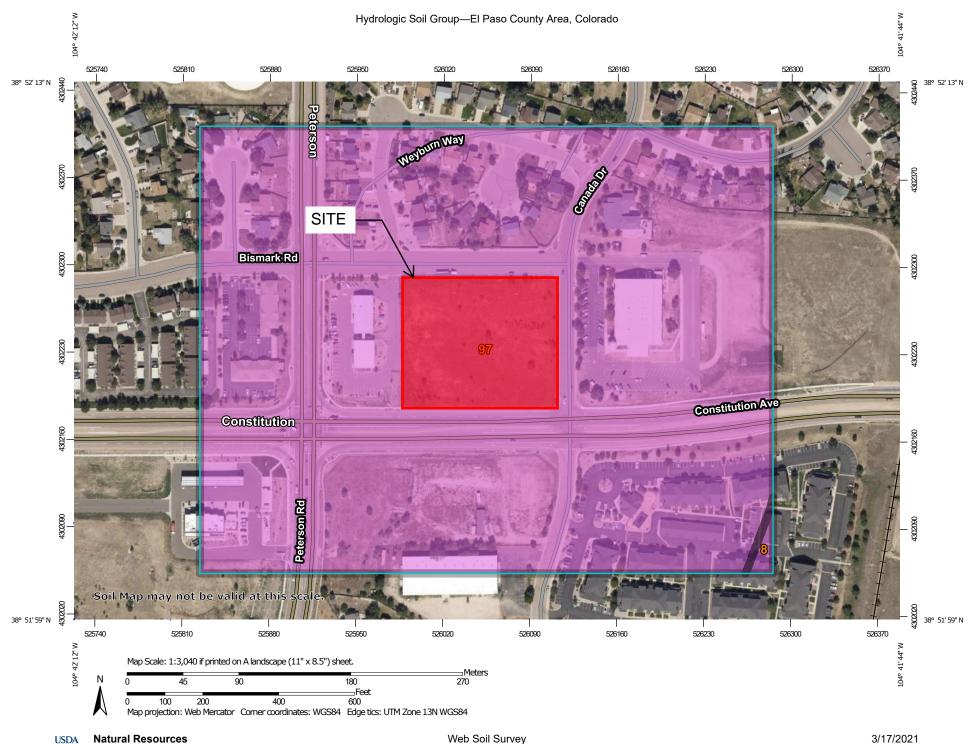

United States Department of Agriculture National Resources Conservation Service

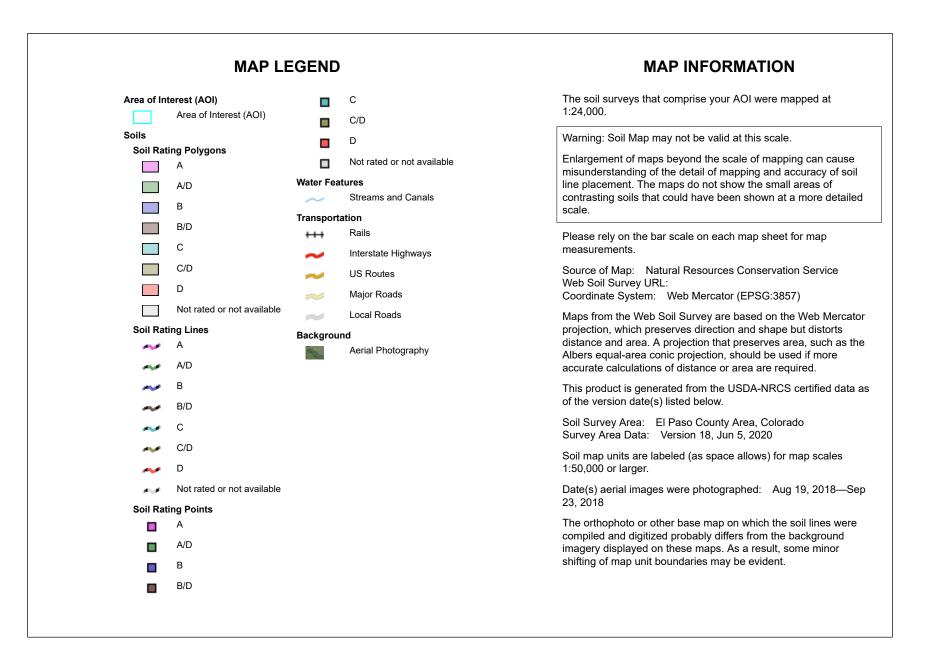
<u>Subsurface Soil Investigation</u> prepared by RMG-Rocky Mountain Group Engineers dated February 23, 2021

APPENDIX TABLE OF CONTENTS

APPENDIX A


Figure 1: Vicinity Map Figure 2: Soils Map FEMA Flood Insurance Rate Map


DWLRODO ORRGEDUGDHU)51WWH


HHOG

%DAHES; 866 DWL RODO DS; 2UWKRL EXHU\ DWD UH UHAKHG 2FWREHU

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	0.2	0.4%
97	Truckton sandy loam, 3 to 9 percent slopes	A	40.9	99.6%
Totals for Area of Intere	est	41.1	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

USDA

Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX B

Hydrologic Calculations

Existing Condition – Runoff Co-eff, Time of Concentration and Runoff Calcs Developed Condition – Runoff Co-eff, Time of Concentration and Runoff Calcs Full Spectrum Detention Basin/Extended Detention Basin Detention Volume and Emergency Spillway Outlet Structure Calculations Trickle Channel Capacity and Outlet Structure Sizing Forebay Sizing Calculations MHFD Inlet Summaries & Calculations

Runoff Coeficient and Percent Impervious Calculation Existing Condition

EXISTING RUNOFF COEFFICIENT SUMMARY

				PV	Ar	ea 1 Land	Use	LA	Area 2	Land Use		GR	Area	3 Land U	Jse	RO	Area 4 Lai	nd Use	DR	Area S	5 Land U	lse					
Basin / DP	Basin or D		Type	nperv	Jse Area	Area	p Land % Imp	nperv	Jse Area	Area	p Land % Imp	nperv	Jse Area	Area	p Land % Imp	nperv	Jse Area	Area p Land	% Imp nperv	Jse Area	Area	p Land % Imp	in % perv	Basi	n Runof	f Coeffi	cient
	(DP contributi	ing basins)	Soil	% Ir	Land L	%	Com Use	М М	Land U	%	Com Use	% Ir	Land l	%	Com Use	% Ir	Land L	%.	use % Ir	Land L	~ %	Com Use '	Bas	C2	C5	C10	C100
	Tributary to Sand Creek																										
0-1	10,178 sf	0.23ac	Α	100%	0.16ac	70%	70%	2%	0.04ac	16%	0%	80%	0.03ac	14%	11%	90%		0% 0%	100%		0%	0%	81.6%	0.71	0.73	0.76	0.83
0-2	3,111 sf	0.07ac	Α	100%		0%	0%	2%	0.07ac	100%	2%	80%		0%	0%	90%		0% 0%	100%		0%	0%	2.0%	0.03	0.09	0.17	0.36
0-3	2,437 sf	0.06ac	Α	100%		0%	0%	2%	0.06ac	100%	2%	80%		0%	0%	90%		0% 0%	100%		0%	0%	2.0%	0.03	0.09	0.17	0.36
0-4	3,119 sf	0.07ac	Α	100%		0%	0%	2%	0.07ac	100%	2%	80%		0%	0%	90%		0% 0%	100%		0%	0%	2.0%	0.03	0.09	0.17	0.36
	18,845 sf	0.43ac																									
H-1	141,390 sf	3.25ac	A	100%	0.05ac	2%	2%	2%	3.20ac	98%	2%	80%	0.00ac	0%	0%	90%		0% 0%	100%	0.00ac	0%	0%	3.6%	0.04	0.10	0.18	0.37
Summary	141,390 sf	3.25ac	A	100 %	0.05ac	2%	2%	2 %	3.20ac	98%	2%	80 %	0.00ac	0%	0%	90 %	0.00ac	0% 0%	100 %	6 0.00ac	0%	0%	3.6%	0.04	0.10	0.18	0.37

Basin Runoff Coefficient is a weighted average

Runoff Coefficients and Percents Impervious (DCM Table 6-6)													
Hydrologic Soil Type:		Runoff Coef Calc Method: Weighted											
Land Use	Abb	%	C2	C5	C10	C25	C50	C100	Weigt				
Business: Downtown	BD	95%	0.79	0.81	0.83	0.85	0.87	0.88	%tr				
Business: Suburban	BS	70%	0.45	0.49	0.53	0.58	0.60	0.62					
Drives and Walks	DR	100%	0.89	0.90	0.92	0.94	0.95	0.96	A				
Streets - Gravel (Packed)	GR	80%	0.57	0.59	0.63	0.66	0.68	0.70	E				
Historic Flow Analysis	HI	2%	0.03	0.09	0.17	0.26	0.31	0.36	C				
Lawns (match Historic Flow)	LA	2%	0.03	0.09	0.17	0.26	0.31	0.36	Ð				
Off-site flow-Undeveloped	OF	45%	0.26	0.32	0.38	0.44	0.48	0.59					
Park	PA	7%	0.05	0.12	0.20	0.30	0.34	0.39					
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.95	0.96					
Roofs	RO	90%	0.71	0.73	0.75	0.78	0.80	0.81					

Equation: Cc=(C1A1+C2A2+C3A3+_..C1+A1) / At (City of Colorado Springs DCM Equation 6-6) Where: Cc = composite runoff coefficient for total area Ci = runoff coefficient for subarea (surface type or land use) Ai = area of surface type corresponding to Ci At = total area of all sub areas i = number of surface types in the drainage area

Existing Time of Concentration Calculation Existing Condition

EXISTING TIME OF CONCENTRATION SUMMARY

	Sub-Basin Data								1	Time of Cor	ncentrati	on Estima	nte					
	Contributing			Up	Down	Initial/	'Overland '	Гіте (t _i)				T	Travel	Time	e (t _t)		Comp.	Final t _c
Basin / Design Point	Basin / Design Point Contributing Area C ₅		C ₅	Elev	Elev	Length	Slope	t _i	Elev	Elev	Length	Slope	Land Type	Cv	Velocity	t _t	t _c	L L
						Cheye	nne Creek	to Fountair	n Creek Trib	outary								
0-1	Off-Site:	0.23ac	0.73	6534.00	6528.70	100lf	5.3%	3.9 min.	6528.70	6520.50	182lf	4.5%	SP	7	1.5 ft/sec	2.0 min.	6.0 min.	6.0 min.
0-2	Off-Site:	0.07ac	0.09	6530.00	6529.00	9lf	11.1%	2.5 min.	6529.00	6528.90	1lf	10.0%	SP	7	2.2 ft/sec	0.0 min.	5.0 min.	5.0 min.
0-3	Off-Site:	0.06ac	0.09	6511.00	6510.00	9lf	11.1%	2.5 min.	6510.00	6509.90	1lf	10.0%	SP	7	2.2 ft/sec	0.0 min.	5.0 min.	5.0 min.
0-4	Off-Site:	0.07ac	0.09	6515.00	6514.00	9lf	11.1%	2.5 min.	6514.00	6513.90	1lf	10.0%	SP	7	2.2 ft/sec	0.0 min.	5.0 min.	5.0 min.
H-1	On-Site:	3.25ac	0.10	6532.00	6528.00	100lf	4.0%	11.5 min.	6528.00	6508.00	457lf	4.4%	SP	7	1.5 ft/sec	5.2 min.	16.7 min.	16.7 min.
Summary		3.32ac																

Equations:

 t_i (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}

(DCM Equation 6-8) Where:

C₅ = Runoff coefficient for 5-year

L = Length of overland flow (ft)

S = Average basin slope (ft/ft)

 t_c (1st DP) = (18-15i) + L_t / (60 (24i+12)S^{0.5}) Where:

 t_c (1st DP) = First DP Time of Concentration in urban catchments

L_t = Length of Flow Path

i = imperviousness (expressed as a decimal)

 $t_t = L_t / 60 KS^{0.5}$ Where:

t_t = Channelized flow time (travel time)(min.)

Lt = Waterway length (ft)

K = Conveyance Factor (see DCM Table 6-7)

S = Watercourse slope (ft/ft)

City of Colorado Springs DCM Table 6-7

Type of Land Surface	Land Type	К
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area/Swales	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

Runoff Calculation Developed Condition

Basin / Design	Contributing Basins	Drainage			Time of	Rainfall	Intensity			Basin / DP
Point	Contributing Dusins	Area	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Q_5	Q ₁₀₀	
Off-Site										
0-1	0-1	0.23 ac	0.73	0.83	6.0 min.	4.9 in/hr	8.2 in/hr	0.8 cfs	1.6 cfs	
0-2	0-2	0.07 ac	0.09	0.36	5.0 min.	5.2 in/hr	8.7 in/hr	0.0 cfs	0.2 cfs	
0-3	0-3	0.06 ac	0.09	0.36	5.0 min.	5.2 in/hr	8.7 in/hr	0.0 cfs	0.2 cfs	
0-4	0-4	0.07 ac	0.09	0.36	5.0 min.	5.2 in/hr	8.7 in/hr	0.0 cfs	0.2 cfs	
		0.43 ac						0.9 cfs	2.2 cfs	
On-Site										
H-1	0-4	3.25 ac	0.10	0.37	5.0 min.	5.2 in/hr	8.7 in/hr	1.7 cfs	10.4 cfs	H-1
							SUM:	1.7 cfs	10.4 cfs	

Design Point Sum	mary	Weighted Lagged			Rainfall In	itensity	Q5	Q100	
DP-1	0-1 & H-1	3.48 ac	0.14	0.35	6.0 min.	4.9 in/hr 8.2 in/hr		2.5 cfs	9.9 cfs
							Summ:	2.7 cfs	12.6 cfs

Equations (taken from Fig 6-5, City of Colorado Springs DCM): i_2 =-1.19 ln(T_c) + 6.035

Q = CiA

 $i_5 = -1.50 \ln(T_c) + 7.583$ i_{10} =-1.75 ln(T_c) + 8.847 i_{25} =-2.00 ln(T_c) + 10.111 Q = Peak Runoff Rate (cubic feet/second)

C = Runoff coef representing a ratio of peak runoff rate to ave rainfall

intensity for a duration equal to the runoff time of concentration.

P1	Inches
WQCV	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in

Runoff Coeficient and Percent Impervious Calculation Developed Condition

DEVELOPED RUNOFF COEFFICIENT SUMMARY

				PV	Ar	ea 1 Land I	Use	LA	Area 2	Land Use		GR	Area	3 Land	Use	RO	Area 4	Land Us	е	DR	Area 5	Land Use						
Basin / DP	Basin / DP Basin or DP Area		Type	nperv	Jse Area	Area	p Land % Imp	nperv	Jse Area	Area p Land		nperv	Jse Area	Area p Land % Imp		nperv	Use Area	Area	p Land % Imp	nperv	Use Area	Area p Land	% Imp	sin % perv	Basi	n Runof	f Coeffi	cient
	(DP contributi	ng basins)	Soil	M Ir	Land (%	Comp I Use %	% Ir	Land l	%	Com Use	% Ir	Land l	%	Comp Use %	и %	Land l	%	Comp Use %	% Ir	Land l	% A Comp	Use	Basin Impe	C2	C5	C10	C100
										All Distur	rbed Ar	eas																
	Non-Tributary to I	Detention Bas	in (Exempt	- Not captu	rable by g	ade - prim	arily New F	Public Sidew	valk)																			
0-2	3,111 sf	0.07ac	Α	100%	0.04ac	62%	62%	2%	0.03ac	38%	1%	80%	0.00ac	0%	0%	90%	0.00ac	0%	0%	100%	0.00ac	0% 0	%	62.5%	0.56	0.59	0.63	0.73
0-3	2,437 sf	0.06ac	Α	100%	0.01ac	23%	23%	2%	0.03ac	51%	1%	80%	0.00ac	0%	0%	90%	0.00ac	0%	0%	100%	0.01ac	26% 26	5%	50.3%	0.45	0.49	0.54	0.66
0-4	3,119 sf	0.07ac	Α	100%	0.05ac	73%	73%	2%	0.02ac	27%	1%	80%	0.00ac	0%	0%	90%	0.00ac	0%	0%	100%	0.00ac	0% 0	%	74.0%	0.66	0.69	0.72	0.80
	Tributary to Deten	ition Basin (Fi	ull Spectrur	n EDB Trea	itment)																							
0-1	10,178 sf	0.23ac	Α	100%	0.16ac	71%	71%	2%	0.04ac	15%	0%	80%	0.03ac	14%	11%	90%	0.00ac	0%	0%	100%	0.00ac	0% 0	%	82.3%	0.71	0.73	0.77	0.83
D-1	24,289 sf	0.56ac	A	100%	0.00ac	0%	0%	2%	0.17ac	30%	1%	80%	0.00ac	0%	0%	90%	0.38ac	68%	61%	100%	0.01ac	2% 2	%	64.2%	0.51	0.54	0.58	0.68
D-2	32,548 sf	0.75ac	A	100%	0.39ac	52%	52%	2%	0.02ac	3%	0%	80%	0.00ac	0%	0%	90%	0.34ac	45%	41%	100%	0.02ac	3% 3	%	95.8%	0.81	0.83	0.85	0.90
D-3	3,384 sf	0.08ac	A	100%	0.07ac	85%	85%	2%	0.01ac	15%	0%	80%	0.00ac	0%	0%	90%	0.00ac	0%	0%	100%	0.00ac	0% 0	%	85.5%	0.76	0.78	0.81	0.87
D-4	42,621 sf	0.98ac	Α	100%	0.54ac	55%	55%	2%	0.05ac	5%	0%	80%	0.00ac	0%	0%	90%	0.38ac	38%	35%	100%	0.00ac	0% 0	%	89.9%	0.77	0.78	0.80	0.86
D-5	19,996 sf	0.46ac	A	100%	0.00ac	0%	0%	2%	0.12ac	26%	1%	80%	0.00ac	0%	0%	90%	0.34ac	73%	66%	100%	0.00ac	1% 1	%	67.0%	0.53	0.56	0.60	0.69
D-6	5,129 sf	0.12ac	A	100%	0.02ac	17%	17%	2%	0.10ac	83%	2%	80%	0.00ac	0%	0%	90%	0.00ac	0%	0%	100%	0.00ac	3% 3		21.0%	0.20	0.25	0.32	0.49
D-7	6,421 sf	0.15ac	A	100%	0.07ac	50%	50%	2%	0.05ac	35%	1%	80%	0.00ac	0%	0%	90%	0.00ac	0%	0%	100%	0.00ac	2% 2		52.4%	0.47	0.50	0.53	0.62
D-8	7,000 sf	0.16ac	Α	100%	0.00ac	0%	0%	2%	0.15ac	92%	2%	80%	0.00ac	0%	0%	90%	0.00ac	0%	0%	100%	0.01ac	8% 8	%	9.7%	0.10	0.15	0.23	0.41
On-Site Summary	122,840 sf	3.25ac	A	100 %	0.99ac	31%	31%	2 %	0.36ac	11%	0%	80 %	0.00ac	0%	0%	90 %	1.43ac	44%	###	100%	0.04ac	1% 1	%	71.7%	0.60	0.62	0.64	0.70
Tributary to	Detention Basin:	3.17ac																										

Tributary to Detention Basin: 3.1
Pasin Punoff Coefficient is a weighted average

Basin Runoff Coefficient is a weighted average														
Runoff Coefficients and Percents Impervi	ous (DCM Table	6-6)												
Hydrologic Soil Type:		Runoff Coef Calc Method: Weighted												
Land Use	Abb	%	C2	C5	C10	C25	C50	C100	Weighted					
Business: Downtown	BD	95%	0.79	0.81	0.83	0.85	0.87	0.88	%Imp					
Business: Suburban	BS	70%	0.45	0.49	0.53	0.58	0.60	0.62						
Drives and Walks	DR	100%	0.89	0.90	0.92	0.94	0.95	0.96	A					
Streets - Gravel (Packed)	GR	80%	0.57	0.59	0.63	0.66	0.68	0.70	В					
Historic Flow Analysis	HI	2%	0.03	0.09	0.17	0.26	0.31	0.36	С					
Lawns (match Historic Flow)	LA	2%	0.03	0.09	0.17	0.26	0.31	0.36	D					
Off-site flow-Undeveloped	OF	45%	0.26	0.32	0.38	0.44	0.48	0.96						
Park	PA	7%	0.05	0.12	0.20	0.30	0.34	0.39						
Streets - Paved	PV	100%	0.89	0.90	0.92	0.94	0.95	0.96						
Roofs	RO	90%	0.71	0.73	0.75	0.78	0.80	0.81						

Equation:

Cc=(C1A1+C2A2+C3A3+...Ci+Ai) / At (City of Colorado Springs DCM Equation 6-6) Where:

Cc = composite runoff coefficient for total area

Ci = runoff coefficient for subarea (surface type or land use)

Ai = area of surface type corresponding to Ci At = total area of all sub areas

i = number of surface types in the drainage area

Time of Concentration Calculation Developed Condition

EXISTING TIME OF CONCENTRATION SUMMARY

Su	b-Basin Data									Time of Concentration Estimate										
	Contributing					Up	Down	Initial/	Overland '	Гіте (t _i)			Travel Time (t _t)				e (t _t)	Comp		Final t _c
Basin / Design Point	Basins	Area	C ₅	Elev	Elev	Length	Slope	t _i	Elev	Elev	Length	Slope	Land Type	Cv	Velocity	t _t	t _c			
Non-Tributary to Detention																				
0-2	Off-Site:	0.07ac	0.59	6530.50	6530.00	10lf	5.0%	1.7 min.	6530.00	6511.00	390lf	4.9%	PV	20	4.4 ft/sec	1.5 min.	5.0 min.	5.0 min.		
0-3	Off-Site:	0.06ac	0.49	6510.50	6510.00	10lf	5.0%	2.1 min.	6510.00	6507.50	290lf	0.9%	PV	20	1.9 ft/sec	2.6 min.	5.0 min.	10.0 min.		
0-4	Off-Site:	0.07ac	0.69	6517.00	6516.50	10lf	5.0%	1.4 min.	6516.50	6508.00	390lf	2.2%	PV	20	3.0 ft/sec	2.2 min.	5.0 min.	5.0 min.		
Tributary to Detention																				
0-1	Off-Site:	0.23ac	0.73	6534.00	6528.70	100lf	5.3%	3.9 min.	6528.70	6520.50	182lf	4.5%	SP	7	1.5 ft/sec	2.0 min.	5.9 min.	5.9 min.		
D-1	On-Site:	0.56ac	0.54	6531.75	6525.25	100lf	6.5%	5.5 min.	6525.25	6512.50	302lf	4.2%	GW	15	3.1 ft/sec	1.6 min.	7.1 min.	7.1 min.		
D-2	On-Site:	0.75ac	0.83	6531.75	6527.50	65lf	6.5%	2.1 min.	6527.50	6512.25	365lf	4.2%	PV	20	4.1 ft/sec	1.5 min.	5.0 min.	5.0 min.		
D-3	On-Site:	0.08ac	0.78	6513.75	6512.75	36lf	2.8%	2.5 min.	6512.75	6509.25	20lf	17.5%	SP	7	2.9 ft/sec	0.1 min.	5.0 min.	5.0 min.		
D-4	On-Site:	0.98ac	0.78	6528.00	6522.00	34lf	17.6%	1.3 min.	6522.00	6512.50	430lf	2.2%	PV	20	3.0 ft/sec	2.4 min.	5.0 min.	5.0 min.		
D-5	On-Site:	0.46ac	0.56	6522.00	6520.00	24lf	8.3%	2.4 min.	6520.00	6513.75	350lf	1.8%	GW	15	2.0 ft/sec	2.9 min.	5.3 min.	5.3 min.		
D-6	On-Site:	0.12ac	0.25	6513.75	6509.00	42lf	11.3%	4.5 min.	6509.00	6507.50	102lf	1.5%	GW	15	1.8 ft/sec	0.9 min.	5.4 min.	5.4 min.		
D-7	On-Site:	0.15ac	0.50	6512.75	6509.50	64lf	5.1%	5.1 min.	6509.50	6507.75	165lf	1.1%	PV	20	2.1 ft/sec	1.3 min.	6.5 min.	6.5 min.		
D-8	On-Site:	0.16ac	0.15	6513.50	6509.75	30lf	12.5%	4.1 min.	6509.75	6508.25	40lf	3.8%	SP	7	1.4 ft/sec	0.5 min.	5.0 min.	5.0 min.		
Summary		3.25ac									Dev TC									

Equations:

 t_i (Overland) = 0.395(1.1-C₅)L^{0.5} S^{-0.333}

(DCM Equation 6-8) Where:

 C_5 = Runoff coefficient for 5-year L = Length of overland flow (ft)

S = Average basin slope (ft/ft)

 $t_c (1st DP) = (18-15i) + L_t / (60 (24i+12)S^{0.5})$ Where:

 t_c (1st DP) = First DP Time of Concentration in urban catchments

 L_t = Length of Flow Path

i = imperviousness (expressed as a decimal)

$$\begin{split} t_t &= L_t \ / \ 60KS^{0.5} \ Where: \\ t_t &= Channelized \ flow \ time \ (travel \ time)(min.) \\ L_t &= Waterway \ length \ (ft) \\ K &= Conveyance \ Factor \ (see \ DCM \ Table \ 6-7) \\ S &= Watercourse \ slope \ (ft/ft) \end{split}$$

City of Colorado Springs DCM Table 6-7

`

Type of Land Surface	Land Type	К
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area/Swales	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

Runoff Calculation Developed Condition

Basin / Design	Contributing Decine	Drainage				Time of	Rainfall	Rainfall Intensity					Basin / DP
Point	Contributing Basins	Area	C ₂	C ₅	C ₁₀₀	Concentration	i ₅	i ₁₀₀	Qwqcv	\mathbf{Q}_2	Q_5	Q ₁₀₀	
	Northcrest Center												
Non-Tributary Offs	ite Flow												
0-2	0-2	0.07 ac	0.56	0.59	0.73	5.0 min.	5.2 in/hr	8.7 in/hr	0.1 cfs	0.2 cfs	0.2 cfs	0.5 cfs	0-2
0-3	0-3	0.06 ac	0.45	0.49	0.66	10.0 min.	4.1 in/hr	6.9 in/hr	0.0 cfs	0.1 cfs	0.1 cfs	0.3 cfs	0-3
0-4	0-4	0.07 ac	0.66	0.69	0.80	5.0 min.	5.2 in/hr	8.7 in/hr	0.1 cfs	0.2 cfs	0.3 cfs	0.5 cfs	0-4
Tributary Flows (O	ffsite and On-Site)												
Offsite Flow	0-1	0.23 ac	0.71	0.73	0.83	5.9 min.	4.9 in/hr	8.3 in/hr	0.3 cfs	0.7 cfs	0.8 cfs	1.6 cfs	0-1
DP-1	D-1	0.56 ac	0.51	0.54	0.68	7.1 min.	4.6 in/hr	7.8 in/hr	0.5 cfs	1.1 cfs	1.4 cfs	3.0 cfs	DP-1
DP-2	D-2	0.75 ac	0.81	0.83	0.90	5.0 min.	5.2 in/hr	8.7 in/hr	1.2 cfs	2.5 cfs	3.2 cfs	5.9 cfs	DP-2
DP-3	D-3	0.08 ac	0.76	0.78	0.87	5.0 min.	5.2 in/hr	8.7 in/hr	0.1 cfs	0.2 cfs	0.3 cfs	0.6 cfs	DP-3
DP-4	D-4	0.98 ac	0.77	0.78	0.86	5.0 min.	5.2 in/hr	8.7 in/hr	1.5 cfs	3.1 cfs	4.0 cfs	7.3 cfs	DP-4
DP-5	D-5	0.46 ac	0.53	0.56	0.69	5.3 min.	5.1 in/hr	8.5 in/hr	0.5 cfs	1.0 cfs	1.3 cfs	2.7 cfs	DP-5
DP-6	D-6	0.12 ac	0.20	0.25	0.49	5.4 min.	5.0 in/hr	8.5 in/hr	0.0 cfs	0.1 cfs	0.1 cfs	0.5 cfs	DP-5
DP-7	D-7	0.15 ac	0.47	0.25	0.49	6.5 min.	4.8 in/hr	8.0 in/hr	0.1 cfs	0.3 cfs	0.2 cfs	0.6 cfs	DP-7
DP-8	D-8	0.16 ac	0.10	0.50	0.62	5.0 min.	5.2 in/hr	8.7 in/hr	0.0 cfs	0.1 cfs	0.4 cfs	0.9 cfs	DP-8
	Tributary Summary:	3.09 ac	0.60	0.62	0.70	13.0 min.	Deten	tion Basin:	4.2 cfs	8.4 cfs	10.9 cfs	20.9 cfs	Detained Only
			_										
Design Point Sum	mary		1	Woid	nhtad	hanne I	Rainfall I	ntoncity	OWOCV	02	05	0100	

Design Point Sum	mary		Weig	ghted	Lagged	Rainfall In	ntensity	QWQCV	Q2	Q5	Q100
DP-1	D-1	0.56 ac	0.54	0.68	7.1 min.	4.6 in/hr	7.8 in/hr			1.4 cfs	3.0 cfs
DP-2	D-2 & D-3	1.30 ac	0.71	0.81	7.1 min.	4.6 in/hr	7.8 in/hr			4.3 cfs	8.2 cfs
DP-3	D-1 thru D-3	0.08 ac	0.78	0.87	7.1 min.	4.6 in/hr	7.8 in/hr			0.3 cfs	0.5 cfs
DP-4	0-1, D1 thru D-4	2.52 ac	0.74	0.83	13.0 min.	3.7 in/hr	6.3 in/hr			6.9 cfs	13.1 cfs
DP-5	D-5	0.46 ac	0.56	0.69	5.3 min.	5.1 in/hr	8.5 in/hr			1.3 cfs	2.7 cfs
DP-6	0-1, D1 thru D-6	3.09 ac	0.69	0.80	13.0 min.	3.7 in/hr	6.3 in/hr			8.0 cfs	15.4 cfs
DP-7	D-7	0.15 ac	0.25	0.49	6.5 min.	4.8 in/hr	8.0 in/hr			0.2 cfs	0.6 cfs
DP-8	D-8	0.16 ac	0.50	0.62	5.0 min.	5.2 in/hr	8.7 in/hr			0.4 cfs	0.9 cfs
ALL	ALL	3.40 ac	0.62	0.70	13.0 min.		Dist	urbed Area	a Summary:	8.6 cfs	16.9 cfs

Equations (taken from Fig 6-5, City of Colorado Springs DCM):

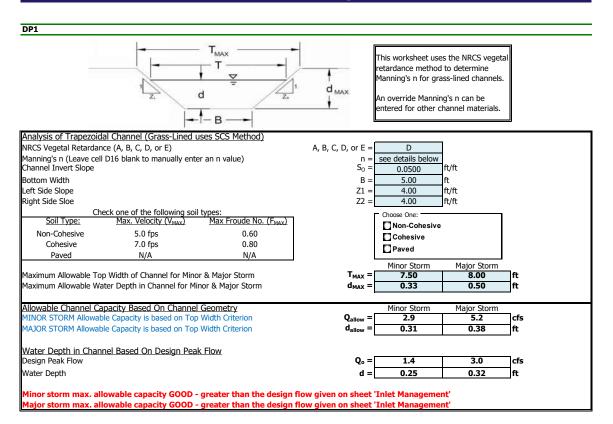
Q = CiA

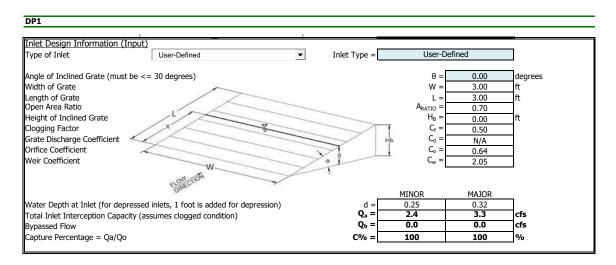
Q = Peak Runoff Rate (cubic feet/second)

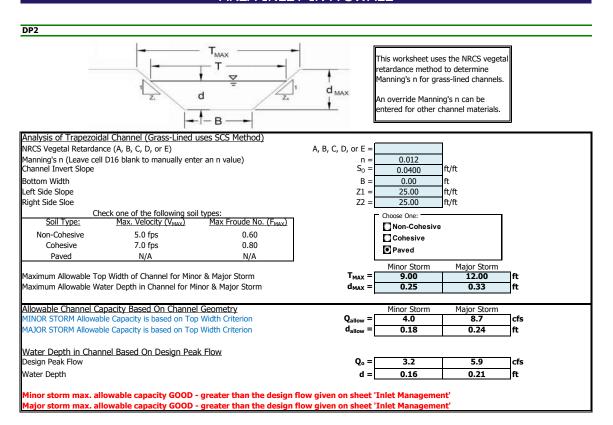
C = Runoff coef representing a ratio of peak runoff rate to ave rainfall

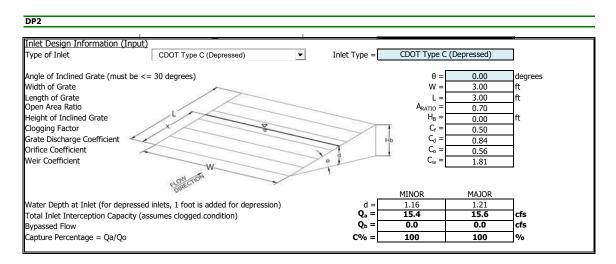
intensity for a duration equal to the runoff time of concentration.

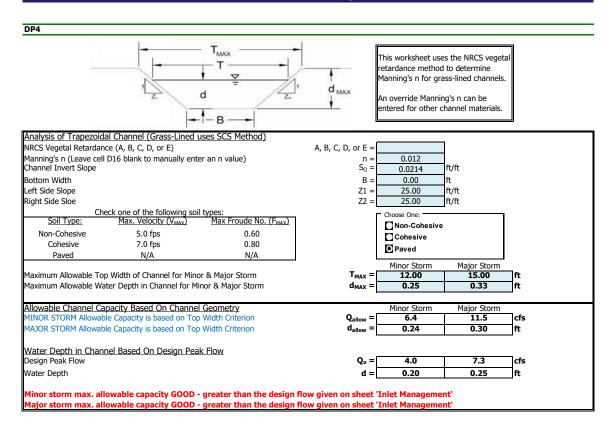
$$\begin{split} i_{10} &= 1.75 \, \ln(T_c) + 8.847 \\ i_{25} &= 2.00 \, \ln(T_c) + 10.111 \\ i_{50} &= 2.25 \, \ln(T_c) + 11.375 \\ i_{100} &= -2.52 \, \ln(T_c) + 12.735 \end{split}$$


 i_2 =-1.19 ln(T_c) + 6.035

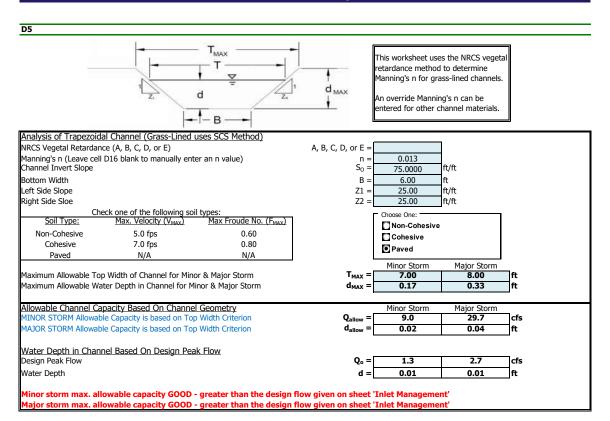

 $i_5 = -1.50 \ln(T_c) + 7.583$

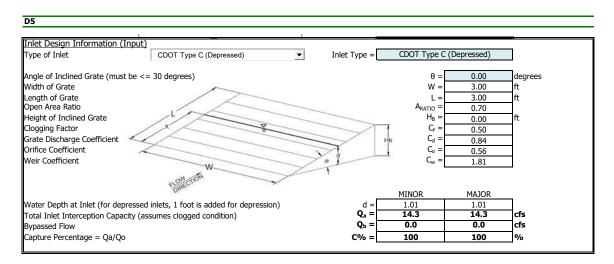

i = average rainfall intensity in inches per hour


A = Drainage area in acres


P1	Inches
WQCV	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in
25 yr	2.00 in
50 yr	2.25 in
100 yr	2.52 in







MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

orksheet Protected

INLET NAME	DP1	DP2	DP4	<u>D5</u>
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	AREA	AREA	AREA	AREA
Hydraulic Condition	Swale	Swale	Swale	Swale
Inlet Type	User-Defined	CDOT Type C (Depressed)	CDOT Type C (Depressed)	CDOT Type C (Depressed)

USER-DEFINED INPUT

Minor Q _{Known} (cfs)	1.4	3.2	4.0	1.3
Major Q _{Known} (cfs)	3.0	5.9	7.3	2.7
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstre	eam (left) to downstream (right) in order	for bypass flows to be linked.	
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0
Watershed Characteristics				
Subcatchment Area (acres)	0.56	0.75	0.98	0.46
Percent Impervious	64.2	95.8	89.9	67
NRCS Soil Type	А	А	А	А
Watershed Profile Overland Slope (ft/ft)	0.050	0.021	0.021	0.015
Overland Length (ft)	300	300	300	300
Channel Slope (ft/ft)	0.050	0.021	0.021	0.015
Channel Length (ft)	300	300	300	300
Minor Storm Rainfall Input				
Design Storm Return Period, T _r (years)				
One-Hour Precipitation, P_1 (inches)				
Major Storm Rainfall Input				
Design Storm Return Period, T _r (years)				
One-Hour Precipitation, P_1 (inches)				

CALCULATED OUTPUT

Mines Tatal Davies Back Flows O (afe)	••	22	4.0	
Minor Total Design Peak Flow, Q (cfs) Major Total Design Peak Flow, Q (cfs)	1.4	3.2	4.0	1.3
	3.0	5.9	7.3	2.7
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0	0.0

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Project: My Garage @ Northcrest Center Basin ID: EDB - NW Corner Constitution Blvd & Canada Drive

	ZONE 3 ZONE 2 ZONE 1	\sim
VOLUME CURV WOCY		\square
	ZONE 1 AND 2	-too VEAR ORIFICE
PERMANENT	Example Zone Configura	tion (Retention Pond)

Watershed Information

itersned information		
Selected BMP Type =	EDB	
Watershed Area =	3.17	acres
Watershed Length =	400	ft
Watershed Length to Centroid =	175	ft
Watershed Slope =	0.050	ft/ft
Watershed Imperviousness =	71.70%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	Optional Use	r Override		
Water Quality Capture Volume (WQCV) =	0.075	acre-feet		acre-feet
Excess Urban Runoff Volume (EURV) =	0.290	acre-feet		acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.188	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.245	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.291	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	0.347	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	0.403	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	0.469	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 3.48 in.) =	0.696	acre-feet	3.48	inches
Approximate 2-yr Detention Volume =	0.189	acre-feet		
Approximate 5-yr Detention Volume =	0.247	acre-feet		
Approximate 10-yr Detention Volume =	0.296	acre-feet		
Approximate 25-yr Detention Volume =	0.354	acre-feet		
Approximate 50-yr Detention Volume =	0.389	acre-feet		
Approximate 100-yr Detention Volume =	0.423	acre-feet		
		-		

Define Zones and Basin Geometry

beine zones and basin debined j		
Zone 1 Volume (WQCV) =	0.075	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.215	acre-feet
Zone 3 (100yr + 1 / 2 WQCV - Zones 1 & 2) =	0.170	acre-feet
Total Detention Basin Volume =	0.460	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (Htotal) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²

Initial Surcharge Area (A_{ISV}) = user Surcharge Volume Length (L_{ISV}) = Surcharge Volume Width (W_{ISV}) = user user Depth of Basin Floor $(H_{FLOOR}) =$ user Length of Basin Floor (LFLOOR) = user Width of Basin Floor (W_{FLOOR}) = user Area of Basin Floor $(A_{FLOOR}) =$ user Volume of Basin Floor $(V_{FLOOR}) =$ user Depth of Main Basin (H_{MAIN}) = user Length of Main Basin (L_{MAIN}) = Width of Main Basin (W_{MAIN}) = user user Area of Main Basin (A_{MAIN}) = user Volume of Main Basin (V_{MAIN}) = user Calculated Total Basin Volume (V_{total}) = user

acre-feet

~										
	Depth Increment =	0.25	ft							
	Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
	Top of Micropool		0.00				100	0.002	(11)	(ac-it)
	elev 6507.75		0.25				150	0.003	31	0.001
	6508		0.50				1,000	0.003	175	0.001
	0500		0.75			_	2,200	0.025	575	0.013
			1.00	-		-	2,200	0.063	1,194	0.013
			1.00	-		-	3,106	0.003	1,194	0.027
	6509	-	1.50	-		-	3,500	0.071	2,752	0.063
	0505		1.75				3,850	0.088	3,671	0.084
			2.00	-		_	4,300	0.000	4,690	0.108
			2.00	-		-	4,300	0.103	5,787	0.108
	6510		2.23	-		-	4,560	0.105	6,916	0.159
	0510		2.30				4,610	0.105	8,062	0.135
			3.00	-			4,644	0.100	9,219	0.212
			3.25	-			4,694	0.109	10,386	0.238
er Overrides	6511		3.50	-		-	4,730	0.108	11,564	0.258
acre-feet	0311		3.75	-			4,762	0.109	12,751	0.293
acre-feet			4.00	-			4,795	0.110	13,945	0.320
inches			4.25	-			4,829	0.111	15,148	0.348
inches	6512		4.50				4,863	0.112	16,360	0.376
inches	0312		4.75				4,897	0.112	17,580	0.404
inches	Inv. Spillway		5.00				4,932	0.112	18,808	0.432
inches	,		5.25	-			4,967	0.114	20,046	0.460
inches	6513		5.50				5,002	0.114	21,292	0.489
inches			5.75	-			5,052	0.115	22,548	0.518
L	F.B. 6513.50		6.00				5,100	0.110	23,817	0.547
	t.o.w. 6513.75		6.25	-			5,150	0.118	25,098	0.576
				-					.,	
				-						
									1	
				-					1	
				-						
				-						
				-						
				-						
				-						
				-						
				-						
				-						
				-						
				-						
				-						
				-						
		-		-		-				
		-		-						
				-		-		-		
				1 1		-				
				-		-				
				-		-				
				1		-				
		1 1		1 1						
		1 1		1 1						
				-						
				-						
				-		-				
				-						
				1 1						
				-						
				1 1						
				-						
								-		
				-						
				-						
				1 1						
		-				-				
									I	I

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022) Project: My Garage @ Northcrest Center														
Project: My Garage @ Northcrest Center Basin ID: EDB - NW Corner Constitution Blvd & Canada Drive														
ZONE 3 Entimated Entimated														
ZONE 2 ZONE 1	\sim			Stage (ft)	Volume (ac-ft)	Outlet Type								
VOLUME EURY WOCY			Zone 1 (WQCV)	2 . ,	. ,	Orifice Plate	1							
T T T														
ZONE 1 AND 2	00-YEAR		Zone 2 (EURV)	3.73	0.215	Circular Orifice								
PERMANENT ORIFICES POOL Example Zone (Configuration (Bo		3 (100+1/2WQCV)	5.25	0.170	Weir&Pipe (Restrict)								
	Pool Example Zone Configuration (Retention Pond) Total (all zones) 0.460													
Iser Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Calculated Parameters for Underdrain														
Underdrain Orifice Invert Depth =			the filtration media	surface)		Irain Orifice Area =	N/A	ft ²						
Underdrain Orifice Diameter = N/A inches Underdrain Orifice Centroid = N/A feet														
		147 · 71 · 11												
User Input: Orifice Plate with one or more orifice =	· ·					A	Calculated Parame	ft ²						
			n bottom at Stage =		-	ce Area per Row =	N/A N/A	feet						
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =		inches	n bottom at Stage =	- 01()		ptical Half-Width = ical Slot Centroid =	N/A N/A	feet						
Orifice Plate: Orifice Area per Row =		sq. inches				illiptical Slot Area =	N/A	ft ²						
Office Place. Office Area per Row -	N/A	sq. menes					N/A	lic						
User Input: Stage and Total Area of Each Orific	e Row (numbered	from lowest to high	hest)											
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1					
Stage of Orifice Centroid (ft)	0.00	0.60	1.20	1.80	2.40		(1					
Orifice Area (sq. inches)		0.38	0.67	0.67	0.83				1					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1					
Stage of Orifice Centroid (ft)									1					
Orifice Area (sq. inches)														
									-					
User Input: Vertical Orifice (Circular or Rectang	<u>jular)</u>		_				Calculated Parame	eters for Vertical Or	ifice					
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected						
Invert of Vertical Orifice =	3.10	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	0.03	N/A	ft²					
Depth at top of Zone using Vertical Orifice =	3.73	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	0.10	N/A	feet					
Vertical Orifice Diameter =	2.45	N/A	inches											
User Input: Overflow Weir (Dropbox with Flat o	· · ·		ectangular/Trapezoi	dal Weir and No O	<u>utlet Pipe)</u>			eters for Overflow V	<u>Neir</u>					
	Zone 3 Weir	Not Selected	_				Zone 3 Weir	Not Selected						
Overflow Weir Front Edge Height, Ho =	3.73	N/A		bottom at Stage = 0	ft) Height of Grate		5.40	N/A	feet					
Overflow Weir Front Edge Length =	9.00	N/A	feet			/eir Slope Length =	5.27	N/A	feet					
Overflow Weir Grate Slope =	3.00	N/A	H:V		ate Open Area / 10	•	143.40	N/A	~2					
Horiz. Length of Weir Sides =	5.00	N/A	feet		erflow Grate Open		37.52	N/A	ft ²					
Overflow Grate Type =		N/A	0/	0	vertiow Grate Ope	n Area w/ Debris =	18.76	N/A	ft ²					
Debris Clogging % =	50%	N/A	%											
Liser Innut: Outlet Ding w/ Flow Destriction Dist		Doctrictor Disto or	Doctor oulor Orifico	`	6.	louisted Devenenter		Class Destriction D	lata					
User Input: Outlet Pipe w/ Flow Restriction Plate	Zone 3 Restrictor			2	<u>Ld</u>			Flow Restriction P						
Depth to Invert of Outlet Pipe =	0.33	Not Selected N/A	ft (distance below b	acin bottom at Ctago	- 0 (t)	utlet Orifice Area =	Zone 3 Restrictor 0.26	Not Selected N/A	ft ²					
Outlet Pipe Diameter =	18.00	N/A N/A	inches	asin bottom at Stage	,	t Orifice Centroid =	0.28	N/A N/A	feet					
Restrictor Plate Height Above Pipe Invert =		IN/A	inches	Half-Cont		tor Plate on Pipe =		N/A	radians					
Restrictor Hate Height Above Hipe Invert =	5.70	1	incrica			tor rate on ripe -	0.54	N/A	radians					
User Input: Emergency Spillway (Rectangular or	r Trapezoidal)						Calculated Parame	eters for Spillway						
Spillway Invert Stage=	· · · ·	ft (relative to basi	n bottom at Stage =	= 0 ft)	Spillwav D	esign Flow Depth=	0.17	feet						
Spillway Crest Length =		feet		-7		op of Freeboard =	6.00	feet						
Spillway End Slopes =		H:V			-	op of Freeboard =	0.12	acres						
Freeboard above Max Water Surface =		feet				Top of Freeboard =	0.55	acre-ft						
		-						-						
Doutod Hudrograph Deculto	T h a	wide the state to the C	IIID hundres (han in the X Chair	hadaa aanaa da da da da	Calumna Hilling	4.51					
Routed Hydrograph Results Design Storm Return Period =	The user can over WQCV	<i>Tide the default CU</i> EURV	IHP hydrographs an 2 Year	d runoff volumes b 5 Year	<i>y entering new val</i> 10 Year	25 Year	<i>ydrographs table (0</i> 50 Year	Columns W through 100 Year	<i>AF).</i> 500 Year					
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.48					
CUHP Runoff Volume (acre-ft) =	0.075	0.290	0.188	0.245	0.291	0.347	0.403	0.469	0.696					
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.188	0.245	0.291	0.347	0.403	0.469	0.696					
CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	0.0	0.1	0.1	1.0	1.8	3.0	6.7					
	N/A N/A	N/A N/A	0.01	0.02	0.03	0.30	0.58	0.94	2.10					
Predevelopment Unit Peak Flow, q (cfs/acre) =		N/A	4.4	5.8	6.9	8.5	10.1	11.4	17.2					
Peak Inflow Q (cfs) =	N/A					0.6	1.2	2.6	8.1					
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	0.0	0.3	0.1	0.1	0.2									
$\begin{array}{l} \mbox{Peak Inflow Q (cfs) =} \\ \mbox{Peak Outflow Q (cfs) =} \\ \mbox{Ratio Peak Outflow to Predevelopment Q =} \end{array}$	0.0 N/A	0.3 N/A	N/A	1.7	2.2	0.6	0.7	0.9	1.2 Spillway					
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	0.0 N/A Plate	0.3 N/A Overflow Weir 1	N/A Plate	1.7	2.2 Vertical Orifice 1		0.7		Spillway					
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	0.0 N/A Plate N/A N/A	0.3 N/A Overflow Weir 1 N/A N/A	N/A Plate N/A N/A	1.7 Vertical Orifice 1 N/A N/A	2.2 Vertical Orifice 1 N/A N/A	0.6 Overflow Weir 1 0.0 N/A	0.7 Overflow Weir 1 0.0 N/A	0.9 Outlet Plate 1 0.1 N/A	Spillway 0.1 N/A					
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	0.0 N/A Plate N/A N/A 40	0.3 N/A Overflow Weir 1 N/A N/A 59	N/A Plate N/A N/A 55	1.7 Vertical Orifice 1 N/A N/A 59	2.2 Vertical Orifice 1 N/A N/A 60	0.6 Overflow Weir 1 0.0 N/A 60	0.7 Overflow Weir 1 0.0 N/A 59	0.9 Outlet Plate 1 0.1 N/A 57	Spillway 0.1 N/A 53					
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	0.0 N/A Plate N/A N/A 40 42	0.3 N/A Overflow Weir 1 N/A N/A 59 66	N/A Plate N/A N/A 55 61	1.7 Vertical Orifice 1 N/A N/A 59 66	2.2 Vertical Orifice 1 N/A N/A 60 67	0.6 Overflow Weir 1 0.0 N/A 60 68	0.7 Overflow Weir 1 0.0 N/A 59 67	0.9 Outlet Plate 1 0.1 N/A 57 66	Spillway 0.1 N/A 53 64					
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	0.0 N/A Plate N/A 40 42 1.65	0.3 N/A Overflow Weir 1 N/A 59 66 3.73	N/A Plate N/A N/A 55 61 2.66	1.7 Vertical Orifice 1 N/A N/A 59 66 3.16	2.2 Vertical Orifice 1 N/A N/A 60 67 3.52	0.6 Overflow Weir 1 0.0 N/A 60 68 3.84	0.7 Overflow Weir 1 0.0 N/A 59 67 3.95	0.9 Outlet Plate 1 0.1 N/A 57 66 4.12	Spillway 0.1 N/A 53 64 4.94					
Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	0.0 N/A Plate N/A N/A 40 42	0.3 N/A Overflow Weir 1 N/A N/A 59 66	N/A Plate N/A N/A 55 61	1.7 Vertical Orifice 1 N/A N/A 59 66	2.2 Vertical Orifice 1 N/A N/A 60 67	0.6 Overflow Weir 1 0.0 N/A 60 68	0.7 Overflow Weir 1 0.0 N/A 59 67	0.9 Outlet Plate 1 0.1 N/A 57 66	Spillway 0.1 N/A 53 64					

Presedementation / Forebay Sizing

		100 Yr	Detention	Total Req'd Forebay Vol	Tributary		Required Forebay	_	orebay De	sign	Discharge Design Flow	Calc'd Open Width	Design
Design Point	Forebay	Flow	WQCV	3.0% WQCV	Area	Trib Area	Volume	Area	Depth	Volume	1.0% 100yr	(1" min)	Width
DP5	One	2.7cfs	517cf	16cf	0.46ac	14.8%	2cf	32sf	1.00-ft	32 cf	0.03 cfs	2.5-inch	2.5-inch
DP6	Two	13.1cfs	2,968cf	89cf	2.63ac	85.2%	76cf	135sf	1.00-ft	135 cf	0.13 cfs	3.0-inch	3.0-inch
	Totals	15.8	3,485cf	105cf	3.09ac	14.8%			-			-	

Opening Width Equation for Rectangular Opening

 $L = Q / (CH^{1.5}) \times 12 + 0.2 \times H \times 12$ (UD-BMP Spreadsheet -- EDB tab)

_		Forebay	Design Point
C =	2.5	One	DP5
C =	3.0	Two	DP6

Forebay Overflow Calculation

Design Point	Forebay	Water Surf Elev	Crest Elev	Crest Length	Flow Depth	Calc'd Flow
DP5	One	6,511.00	6,510.0	2.0 ft	1.00 ft	6.0 cfs
DP6	Two	6,509.00	6,508.0	10.0 ft	1.00 ft	30.0 cfs

Weir Equation:

 $Q = CLH^{1.5}$

C = Weir coefficient (dimensionless), C = 3.0 (most cases)

L = Length of weir at Crest, in ft. Not including sideslopes.

Trickle Channel Calculation

D . D	Location	100yr Flow	Req'd Flow	Bottom Width	Flow Depth	Side Slope	Slope	Manning 'n'	Top Width	Flow Area	Wetted Perimeter	Hydraulic Radius	Flow Velocity	Capacity
Design Point			1.0% 100yr											
DP5	One	2.7cfs	0.03	1.0 ft	0.50 ft	0.0:1	0.7%	0.013	1.0 ft	0.50 sf	2.0 ft	0.25 ft	3.8 ft/sec	1.9 cfs
DP6	Two	13.1cfs	0.13	1.0 ft	0.50 ft	0.0:1	0.7%	0.013	1.0 ft	0.50 sf	2.0 ft	0.25 ft	3.8 ft/sec	1.9 cfs

Equations:

d = depth

Perimeter (P) = $b+2d^{*}(1+z^{2})^{0.5}$ Area (A) = $b(d)+zd^2$ b = width

z = side slope

Hydraulic Radius = A/P

Velocity = $(1.49/n)R_n^{2/3}S^{1/2}$

S = Slope of the channel

С

3.0

Flow = $(1.49/n)AR_n^{2/3} S^{1/2}$

n = Manning's number

R_n = Hydraulic Radius (Reynold's Number)

Emergency Spillway Calculation:

Detention Area	100-yr Flow	120% 100yr Flow	Water Surf Elev	Crest Elev	Crest Length	Z	С	Flow Depth (H)	Calc'd Flow	Check
EDB	15.4 cfs	19 cfs	6,512.50	6,513.75	50.00 ft	3:1	3.0	0.25 ft	19.0	ОК

Broad Crested Weir Equation (USDCM Eqn 12-20 and 12-21): Q = $CLH^{1.5} + 2x((2/5)CZH^{5/2})$

 $Q = CLH^{-1} + 2x((2/5)CLH^{-1})$ C = Weir coefficient, C = 3.0 (most cases) H = Head above weir crest, in ft

Z = Side slope (horizontal:vertical)

L = Length of weir at Crest, in ft. Not including sideslopes.

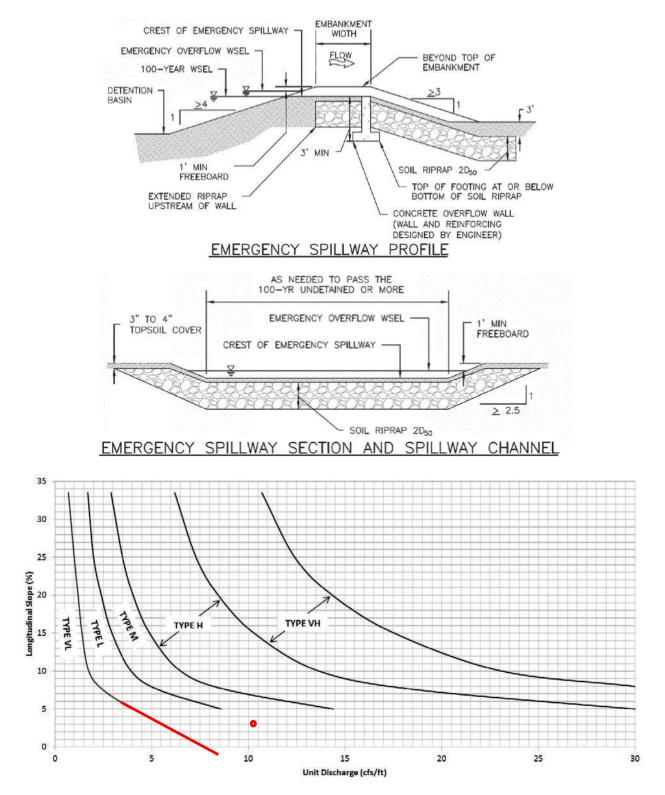


Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

Forebay 2 ~ 15.4 CFS (Type L) ~ Slope = 3-5%

Presedementation / Forebay Sizing

		100 Yr	Detention	Total Req'd Forebay Vol	Tributary	% Total	Required Forebay		orebay De	sign	Discharge Design Flow	Calc'd Open Width	Design
Design Point	Forebay	Flow	WQCV	3.0% WQCV	Area	Trib Area	Volume	Area	Depth	Volume	1.0% 100yr	(1" min)	Width
DP5	One	2.7cfs	791cf	24cf	0.69ac	22.7%	5cf	18sf	1.00-ft	18 cf	0.03 cfs	2.5-inch	2.5-inch
DP6	Two	13.1cfs	2,694cf	81cf	2.36ac	77.3%	62cf	135sf	1.00-ft	135 cf	0.13 cfs	3.0-inch	3.0-inch
	Totals	15.8	3,485cf	105cf	3.05ac	22.7%							

Opening Width Equation for Rectangular Opening

L = Q / (CH^{1.5}) x 12 + 0.2xHx12 (UD-BMP Spreadsheet -- EDB tab)

_		Forebay	Design Point
C =	2.5	One	DP5
C =	3.0	Two	DP6

Forebay Overflow Calculation

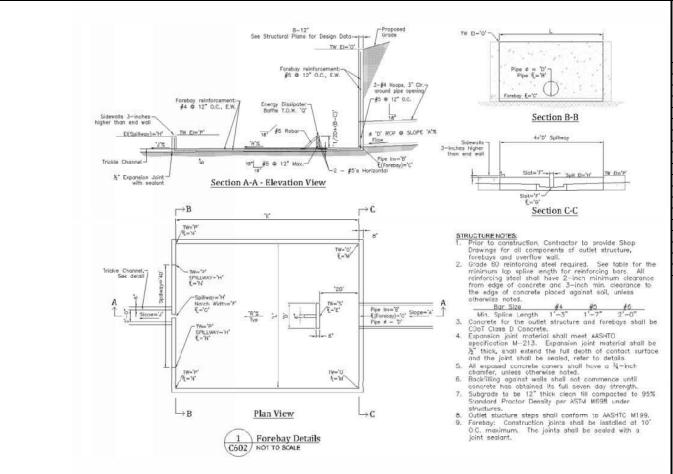
	Design Point	Forebay	Water Surf Elev	Crest Elev	Crest Length	Flow Depth	Calc'd Flow
	DP5	One	6,511.00	6,510.0	2.0 ft	1.00 ft	6.0 cfs
Γ	DP6	Two	6,509.00	6,508.0	10.0 ft	1.00 ft	30.0 cfs
		Weir Equat	ion:				
		$Q = CLH^{1.5}$				C =	3.0

C = Weir coefficient (dimensionless), C = 3.0 (most cases)

L = Length of weir at Crest, in ft. Not including sideslopes.

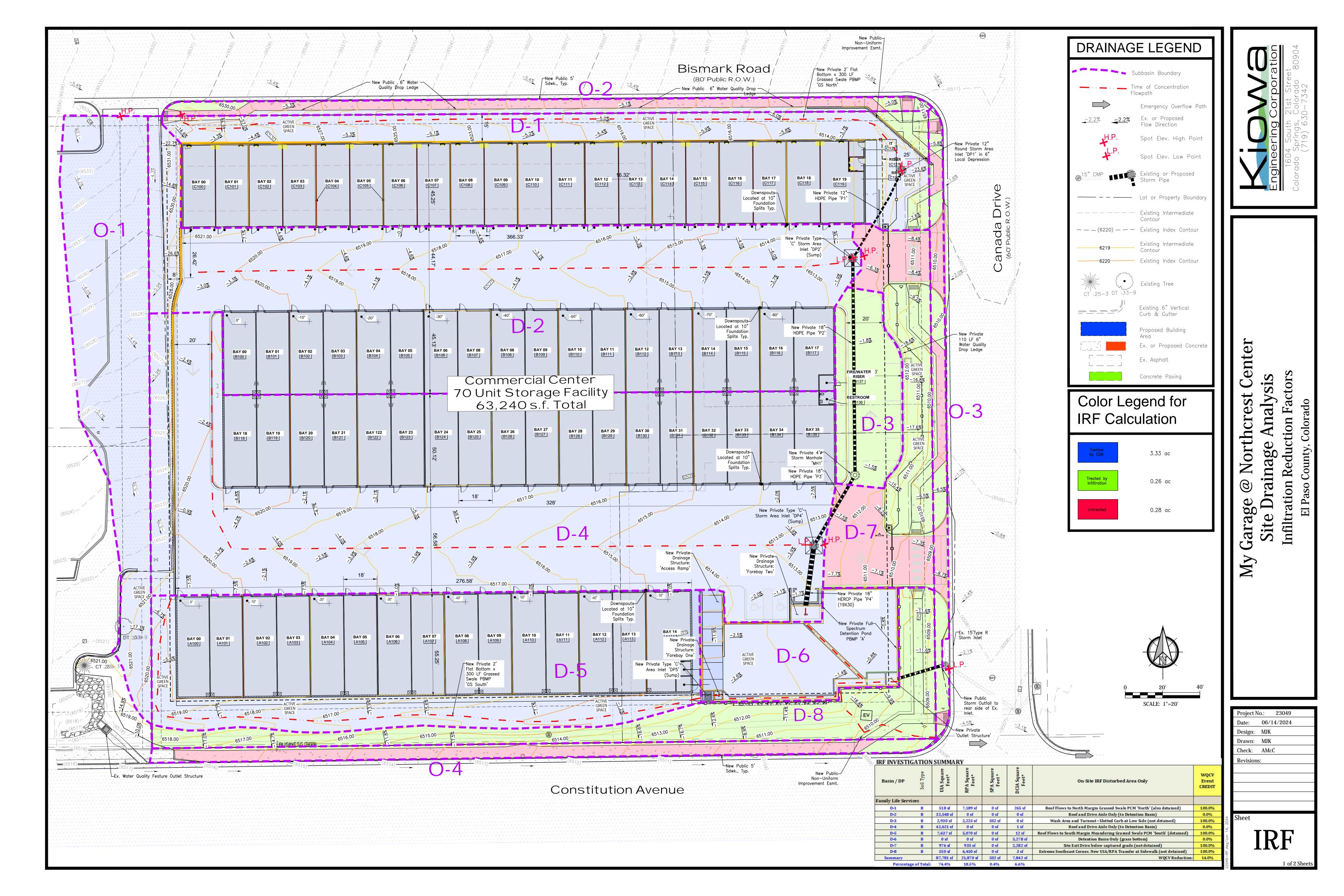
Trickle Channel Calculation

	Location	100yr Flow	Req'd Flow	Bottom Width	Flow Depth	Side Slope	Slope	Manning	Top Width	Flow Area	Wetted Perimeter	Hydraulic Radius	Flow Velocity	Capacity
Design Point		1.10 M	1.0% 100yr		Deptii				wittili		rennietei	Raulus	Velocity	
DP5	One	2.7cfs	0.03	1.0 ft	0.50 ft	0.0:1	0.7%	0.013	1.0 ft	0.50 sf	2.0 ft	0.25 ft	3.8 ft/sec	1.9 cfs
DP6	Two	13.1cfs	0.13	1.0 ft	0.50 ft	0.0:1	0.7%	0.013	1.0 ft	0.50 sf	2.0 ft	0.25 ft	3.8 ft/sec	1.9 cfs


Equations Area (A) = $b(d)+zd^2$ b = width d = depth

Perimeter (P) = $b+2d^{*}(1+z^{2})^{0.5}$ z = side slope Hydraulic Radius = A/P

Velocity = $(1.49/n)R_n^{2/3}S^{1/2}$ S = Slope of the channel n = Manning's number


Flow = $(1.49/n)AR_n^{2/3} S^{1/2}$

R_n = Hydraulic Radius (Reynold's Number)

	Presedimentation	Inf	low
Variable	Forebay	One (D5)	Two (D6)
Α	Pipe Slope%	2.00	0.60
В	Pipe Inv In	6510.00	6508.40
С	Forebay Inv In	6509.50	6508.07
D	Pipe Size (ft)	0.67	2.00
E	Baffle Face Inv	6509.49	6508.03
F	Slot Width	2.50	3.00
G	Forebay Inv Out	6509.46	6508.00
Н	Spillway Inv	6510.21	6508.75
Ι	Spillway Top	6510.46	6509.00
J	Trickle Pan Slope	2.00	0.55
K	Forebay Length	4.00	8.50
L	Forebay Width	4.50	8.50
М	Toe of Wall	6509.50	6508.07
Ν	Toe of Wall	6509.46	6508.00
0	Top of Wall	6513.75	6513.83
Р	Top of Wall	6510.46	6509.00
Q	Baffle Wall Top	6513.50	6513.58
R	Forebay Slope %	1.00	0.60

APPENDIX C Water Quality Calculations and Exhibit

Cheyenne Mountain Zoo Campus Analysis IRF Reduction Summary Existing Condition

IRF INVESTIGATION SUMMARY

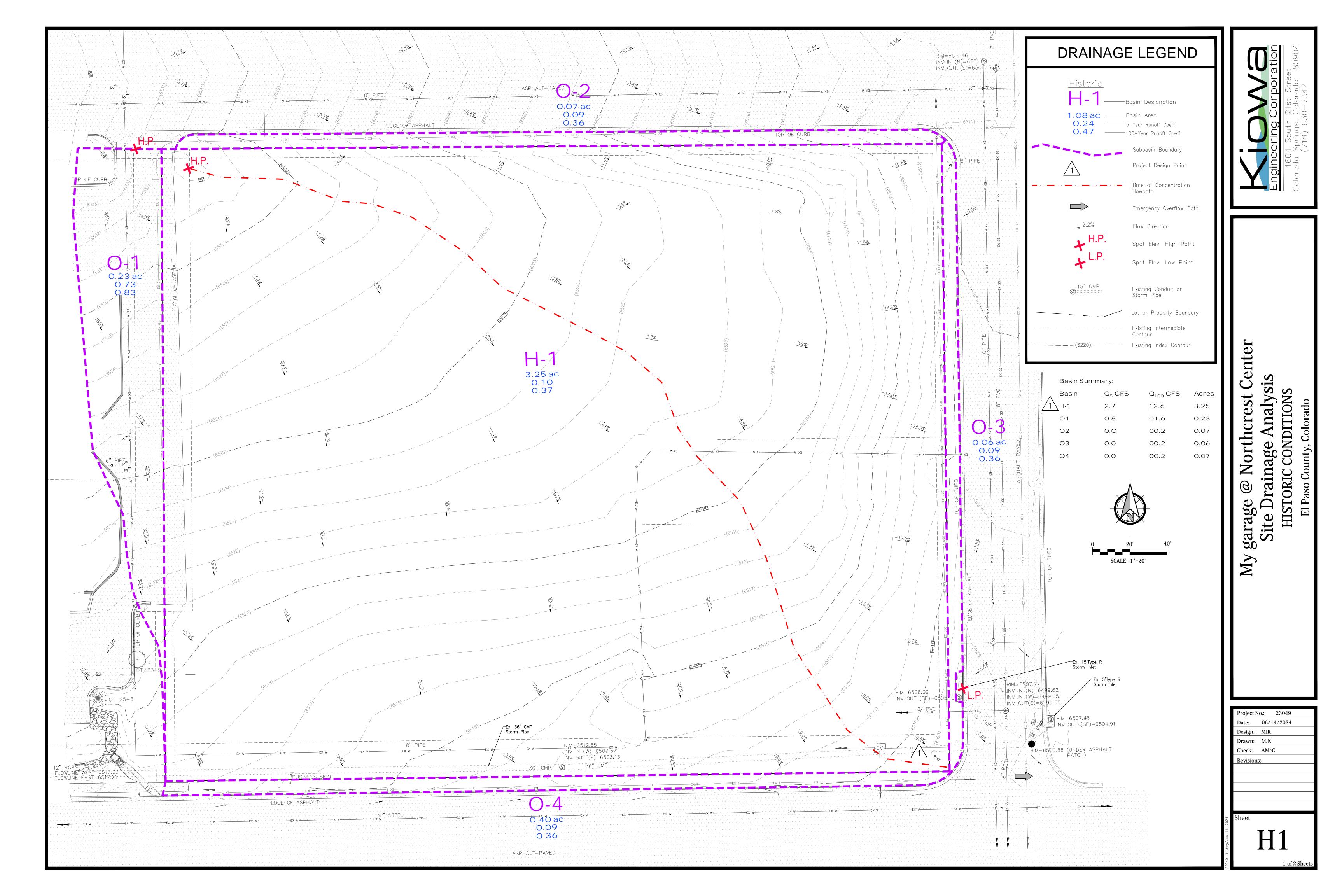
		DONINI					
Basin / DP	Soil Type	UlA Square Feet*	RPA Square Feet*	SPA Square Feet *	DCIA Square Feet*	On-Site IRF Disturbed Area Only	WQCV Event CREDIT
Family Life Servi	ces						
D-1	В	518 sf	7,189 sf	0 sf	265 sf	Roof Flows to North Margin Grassed Swale PCM 'North' (also detained)	100.0%
D-2	В	32,548 sf	0 sf	0 sf	0 sf	Roof and Drive Aisle Only (to Detention Basin)	0.0%
D-3	В	2,930 sf	2,225 sf	502 sf	0 sf	Wash Area and Turnout - Slotted Curb at Low Side (not detained)	100.0%
D-4	В	42,621 sf	0 sf	0 sf	1 sf	Roof and Drive Aisle Only (to Detention Basin)	0.0%
D-5	В	7,637 sf	5,070 sf	0 sf	12 sf	Roof Flows to South Margin Meandering Grassed Swale PCM 'South' (detained)	100.0%
D-6	В	0 sf	0 sf	0 sf	5,278 sf	Detention Basin Only (grass bottom)	0.0%
D-7	В	976 sf	935 sf	0 sf	2,282 sf	Site Exit Drive below captured grade (not detained)	100.0%
D-8	В	550 sf	6,450 sf	0 sf	3 sf	Extreme Southeast Corner. New UIA/RPA Transfer at Sidewalk (not detained)	100.0%
Summary		87,781 sf	21,870 sf	502 sf	7,842 sf	WQCV Reduction:	14.0%
Percenta	ge of Total	74 4%	18 5%	0.4%	6.6%		-

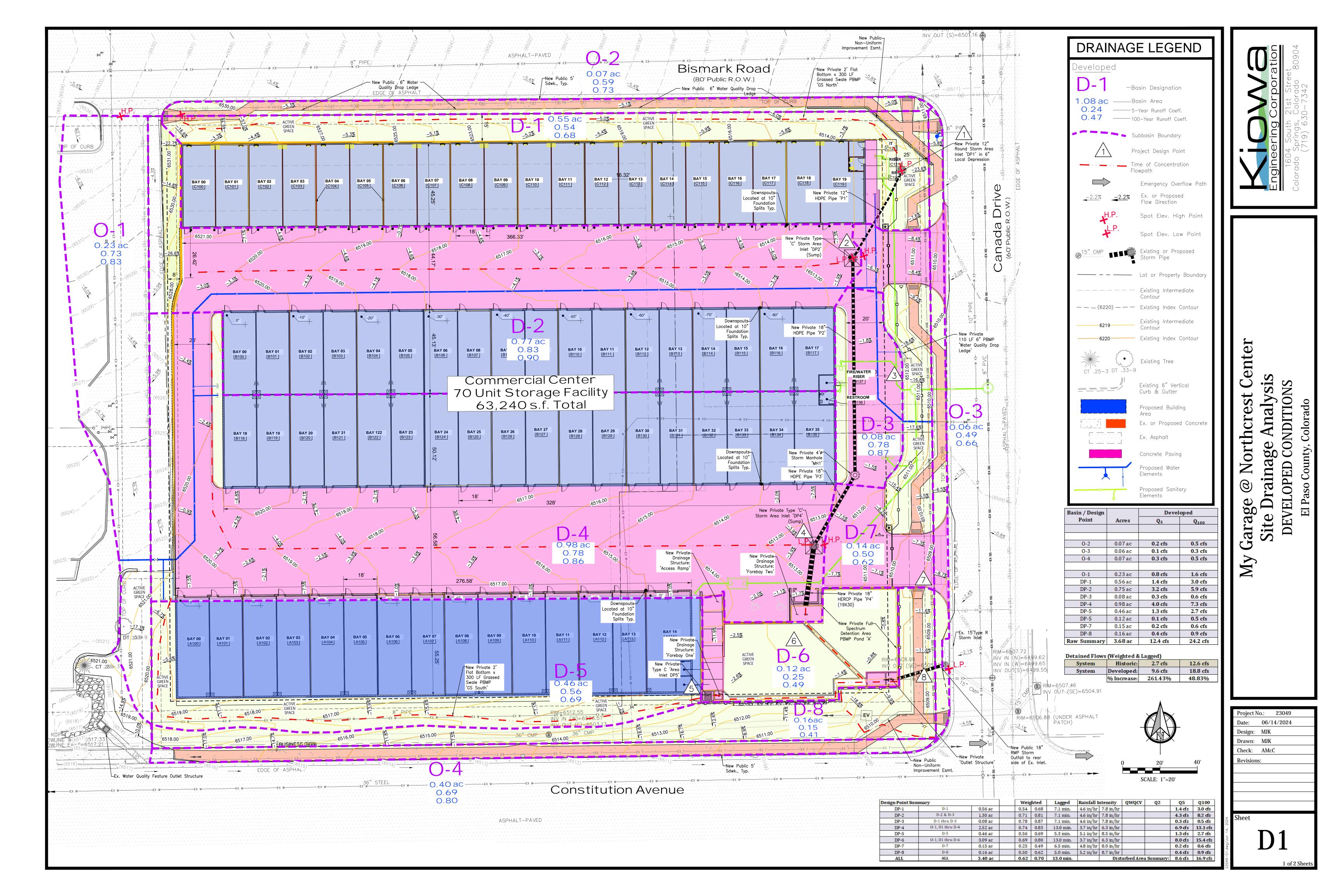
Percentage of Total: 74.4% 18.5% 0.4% 6.6%

* UIA acres - are equated with rooftops, concreted: drives, walks and asphaltic pavements
 * RPA acres - are equated with vegetative hillsides which receive flows initially part of UIA

* DCIA acres - flows which are low in the sub-basin, and which do not enter or reenter an RPA.

* SPA acres - are equated with raw undeveloped portions of the overall property. N/A


	Design Procedure Form: Gras UD-BMP (Version 3.07, Marc		Sheet 1 of 1
Designer:	UD-вмР (Version 3.07, Marc	11 2010)	Sheet 1 Of 1
Company:	Kiowa Engineering		
Date:	March 28, 2024		
Project:	Northcrest Center		
Location:	Bismark Road & Canada Dr		
1. Design Dise	charge for 2-Year Return Period	Q ₂ = <u>1.10</u> cfs	
2. Hydraulic R	Residence Time		
A) : Length	n of Grass Swale	L _s = <u>300.0</u> ft	
B) Calcula	ted Residence Time (based on design velocity below)	T _{HR} = <u>6.5</u> minutes	
3. Longitudina	al Slope (vertical distance per unit horizontal)		
A) Availab	le Slope (based on site constraints)	S _{avail} = 0.050 ft / ft	
B) Design	Slope	S _D = 0.050 ft / ft	
4. Swale Geo	metry		
A) Channe	el Side Slopes (Z = 4 min., horiz. distance per unit vertical)	Z = 4.00 ft / ft	
B) Bottom	Width of Swale (enter 0 for triangular section)	W _B = 5.00 ft	
5. Vegetation		Choose One	
A) Type of	Planting (seed vs. sod, affects vegetal retardance factor)	O Grass From Seed	od
6. Design Vel	ocity (1 ft / s maximum)	V ₂ = 0.77 ft / s	
7. Design Flow	w Depth (1 foot maximum)	$D_2 = 0.24$ ft	
A) Flow Ar	rea	A ₂ = <u>1.4</u> sq ft	
B) Top Wie	dth of Swale	W _T = 6.9 ft	
C) Froude	Number (0.50 maximum)	F = 0.30	
D) Hydraul	lic Radius	R _H = 0.20	
E) Velocity	/-Hydraulic Radius Product for Vegetal Retardance	VR = 0.16	
F) Manning	g's n (based on SCS vegetal retardance curve D for sodded grass)	n = 0.151	
G) Cumula	ative Height of Grade Control Structures Required	H _D = 0.00 ft	
8. Underdrain (Is an und	l lerdrain necessary?)	Choose One O YES INO	
9. Soil Prepar (Describe s	ration soil amendment)		
10. Irrigation		Choose One Temporary O Perman	ent
Notes:	North Margin of site		


	Design Procedure Form: Grass UD-BMP (Version 3.07, March		Sheet 1 of 1
Designer:	M Kahnke	. 2010)	Sheet I OI I
Company:	Kiowa Engineering		
Date:	March 28, 2024		
Project:	Northcrest Center		
Location:	Constitution Avenue & Canada Dr		
1. Design Dis	scharge for 2-Year Return Period	Q ₂ = 1.00 cfs	
2. Hydraulic I	Residence Time		
A) : Lengt	h of Grass Swale	L _s = <u>300.0</u> ft	
B) Calcula	ated Residence Time (based on design velocity below)	T _{HR} = 7.7 minutes	
3. Longitudin	al Slope (vertical distance per unit horizontal)		
A) Availat	ole Slope (based on site constraints)	S _{avail} = 0.020 ft / ft	
B) Design	Slope	S _D = 0.020 ft / ft	
4. Swale Geo	ometry		
A) Chann	el Side Slopes (Z = 4 min., horiz. distance per unit vertical)	Z = 4.00 ft / ft	
B) Bottom	Width of Swale (enter 0 for triangular section)	W _B = 2.00 ft	
5. Vegetatior	1	Choose One	
А) Туре о	f Planting (seed vs. sod, affects vegetal retardance factor)	O Grass From Seed Grass From Seed	Sod
6. Design Ve	locity (1 ft / s maximum)	V ₂ = 0.65 ft / s	
7. Design Flo	ow Depth (1 foot maximum)	$D_2 = 0.42$ ft	
A) Flow A	rea	A ₂ = <u>1.5</u> sq ft	
B) Top W	idth of Swale	W _T = 5.4 ft	
C) Froude	Number (0.50 maximum)	F = 0.21	
D) Hydrau	ulic Radius	R _H = 0.28	
E) Velocit	y-Hydraulic Radius Product for Vegetal Retardance	VR = 0.18	
F) Mannir	ng's n (based on SCS vegetal retardance curve D for sodded grass)	n = 0.139	
G) Cumul	ative Height of Grade Control Structures Required	H _D =ft	
8. Underdraii (Is an und	n derdrain necessary?)	Choose One O YES ONO	
9. Soil Prepa (Describe	ration soil amendment)		
10. Irrigation		Choose One Temporary O Permai	nent
Notes:	South Margin of site		

			Desig	n Procedu	ire Form: I	Runoff Red	uction					
				UD-BMP (V	ersion 3.07, Ma	rch 2018)						Sheet 1 of 1
Designer:	AWMc											
Company:	Kiowa Engine	ering Corpora	ation								_	
Date:	June 14, 2024	4									-	
Project:	Northcrest St	orage Center									-	
-		ity, CO (Full Si	te)								-	
Locaton	2.1. 400 004	,, ee (. a e.	,								-	
SITE INFORMATION (Use	WQCV F	Rainfall Depth	0.60	inches inches (for V	Vatersheds O	utside of the D	enver Regior	n, Figure 3-1 i	n USDCM Vo	. 3)		
					-							
Area Type			UIA:RPA				UIA:RPA	UIA:RPA				
Area ID			D-3				D-7	D-8				
Downstream Design Point ID			D-3				D-7	D-8				
Downstream BMP Type			None				None	None				
DCIA (ft ²)												
UIA (ft ²)			2,930				976	550				
RPA (ft ²)			2,225				935	6,392				
SPA (ft ²)							-					
HSG A (%)			100%				100%	100%				
HSG B (%)	0%		0%		0%		0%	0%				
HSG C/D (%)	0%		0%		0%		0%	0%				
Average Slope of RPA (ft/ft)			0.100				0.100	0.100				
UIA:RPA Interface Width (ft)			32.00				20.00	25.00			1	
			02.00				20.00	20.00				
CALCULATED RUNOFF I Area ID	RESULTS		D-3				D-7	D-8				
UIA:RPA Area (ft ²)			5,155				1,911	6,942				
L / W Ratio			5.03				4.78	11.11				
UIA / Area			0.5684				0.5107	0.0792				
Runoff (in)			0.00				0.00	0.00				
Runoff (ft ³)			0				0	0				
Runoff Reduction (ft ³)			122				41	23				
CALCULATED WQCV RE	SULIS		5.0		r	1	D 7	D 0			r – – –	
Area ID			D-3				D-7	D-8				
WQCV (ft ³)			122				41	23				
WQCV Reduction (ft ³)			122				41	23				
WQCV Reduction (%)			100%				100%	100%				
Untreated WQCV (ft ³)			0				0	0				
CALCULATED DESIGN P			oute from al	l columno u	ith the come	Downotroom	Decign Dei	at ID)				
	D-3	D-7	D-8	I COIUIIIIS W	itti tile saille	Downstream	Design Poli	1(10)				
Downstream Design Point ID												
DCIA (ft ²)	0	0	0		-							
UIA (ft ²)	2,930	976	550									
RPA (ft ²)	2,225	935	6,392									
SPA (ft ²)	0	0	0					ļ			ļ	
Total Area (ft ²)	5,155	1,911	6,942									
Total Impervious Area (ft ²)	2,930	976	550									
WQCV (ft ³)	122	41	23									
WQCV Reduction (ft ³)	122	41	23									
WQCV Reduction (%)	100%	100%	100%									
Untreated WQCV (ft ³)	0	0	0									
CALCULATED SITE RES Total Area (ft ²) Total Impervious Area (ft ²) WQCV (ft ³) WQCV Reduction (ft ³)	14,008 4,456 186 186	results from	all columns	in workshee	et)							
WQCV Reduction (%) Untreated WQCV (ft ³)	100% 0]										

APPENDIX D Existing and Proposed Drainage Plans Sheet 1 – Historic Conditions H-1

Sheet 2 - Developed Conditions D-1

