FINAL DRAINAGE REPORT

Lot 3A Northcrest Center Filing No 1A

2510 CANADA DRIVE COLORADO SPRINGS, COLORADO 80922

Prepared for:
LEISURE CONSTRUCTION 3443 TAMPA ROAD, SUITE B PALM HARBOR, FL 34684 (727) 242-5121

Prepared by:

Kiowa Project No. 23049

March 30, 2024

TABLE OF CONTENTS

Table of Contents 2
Statements and Approvals 3
I. Purpose 4
II. General Location and Description 4
A. Location 4
B. Description of Property - Existing Conditions 5
C. Existing Soils 5
D. Existing Drainage 5
E. Description of Property - Proposed Conditions 6
III. Drainage Basins and Subbasins 6
A. Existing Basins and Sub-Basins 6
B. Developed Drainage Basins and Sub-Basins 6
IV. Drainage Design Criteria 8
A. Regulations 9
B. Development Criteria Reference and Constraints 9
C. Hydrological Criteria 9
D. Four-Step Process 9
V. Drainage Infrastructure Costs and Fees 10
A. Drainage and Bridge Fees 10
B. Storm Drain System Quantities and Cosats Estimate 11
VI. Conclusions 11
VII. References 12
VIII. References Error! Bookmark not defined.
Appendix Table of Contents 13
List of Figures and Tables (Refer to the Appendix Table of Contents)

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Kiowa Engineering Corporation, 1604 South 21st Street, Colorado Springs, Colorado 80904

Andrew W. McCord (PE \#25057)
Date
For and on Behalf of Kiowa Engineering Corporation

DEVELOPER'S STATEMENT:

I, the Owner/Developer, have read and will comply with all of the requirements specified in this drainage report and plan.

K\&S Development, LLC
Name of Developer

Authorized Signature
Date

Printed Name: Sean L. Edwards
Title: Managing Member

Address: 3442 Tampa Rd..., Suite B, Palm Harbor, FL 34684

El Paso County:
Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 \& 2, El Paso County Engineering Criteria Manual, and Land Development Code, as amended.

I. PURPOSE

This report is a Final Drainage Report for Lot 3A Northcrest Center Filing No 1A, at 2510 \& 2522 Canada Drive Colorado Springs, Colorado 80922, for the development of a multi-unit commercial storage center, Northcrest Center.

The purpose of this report is to identify on-site and off-site drainage patterns, assess stormwater conditions per delineated basin and sub-basins, demonstrate adequate design standards for storm water flow and release into the existing storm water system or right-of-way, and provide a narrative for any other drainage considerations related to the development of this parcel.

II. GENERAL LOCATION AND DESCRIPTION

A. LOCATION

This proposed development of 70 commercial storage units is located at the address of Northcrest Center in the City of Colorado Springs, Colorado in El Paso County within the Lot 3A Northcrest Center Filing No 1A Subdivision. The parcel schedule number is 53323-09-008 and the legal descriptions is Lot 3A Northcrest Center Filing No 1A. It is comprised of an earlier Vacation \& Replat of Tract B Northcrest Fil No 2 Phase 1, Lot 5 Northcrest Center, A Vacation \& Replat Of Tract B Northcrest Fil No 2 Phase 1, and Lot 4 Northcrest Center, and A Vacation \& Replat Of Tract B Northcrest Fil No 2 Phase 1. The parcel is located to the north of Constitution Avenue, west of Canada Drive, east of Peterson Road, and south of Bismark Road.

The surrounding parcels are as follows:
2508 Weyburn Way, Schedule No. 5332308031 , Zoning RS-6000 CAD-0, Plat No. 10281, Lot 15 Constitution Hills Fil No 8

2507 Weyburn Way, Schedule No. 5332308032, Zoning RS-6000 CAD-0, Plat No. 10281, Lot 14 Constitution Hills Fil No 8

2630 Tibburn Way, Schedule No. 5332308040 , Zoning RS-6000 CAD-0, Plat No. 10281, Lot 6 Constitution Hills Fil No 8

2610 Tibburn Way, Schedule No. 5332308041 , Zoning RS-6000 CAD-0, Plat No. 10281, Lot 5 Constitution Hills Fil No 8

2605 Tibburn Way, Schedule No. 5332308042 , Zoning RS-6000 CAD-0, Plat No. 10281, Lot 4 Constitution Hills Fil No 8

2535 Canada Drive, Schedule No. 5332310002 , Zoning RS-6000 CAD-0, Plat No. 8956, Lot 1 Living Waters Sub

2525 Canada Drive, Schedule No. 5332310003 , Zoning PUD CAD-O, Plat No. 8956, Lot 2 Living Waters Sub

2455 Canada Drive, Schedule No. 5405207050 , Zoning RM-30 CAD-O, Plat No. 7588, Lot 2 Northcrest Fil No 4

6855 Constitution Avenue, Schedule No. 5405218002 , Zoning CC CAD-O, Plat No. 9808, Lot 1 Eight Line Sub

6805 Bismark Road, Schedule No. 5332309007 , Zoning CC CAD-O, Plat No. 7776, Lots 1 \& 2 Northcrest Center, A Vacation \& Replat of Tract B Northcrest Fil No 2 Phase 1

2624 Tibburn Way, Schedule No. 5332308043 , Zoning RS-6000 CAD-O, Plat No. 10281, Lot 3 Constitution Hills Fil No 8

B. DESCRIPTION OF PROPERTY - EXISTING CONDITIONS

Lot 3A Northcrest Center Filing No 1A Subdivision is approximately 141,390 square feet (3.246 acres) and is located on the north side of Constitution Avenue, east side of Peterson Road, West of Canada Drive, and south of Bismark Road. The parcels fall within the SW $1 / 4$ of Section 32, Township 13 South, Range 65 West of the $6^{\text {th }}$ P.M. of Colorado Springs, El Paso County, Colorado.

The property currently consists of undeveloped natural vegetation. There is existing curb and gutter along Bismark Drive, Canada Drive, and Constitution Avenue.
The existing percent imperviousness is approximately 1.5 percent.
The existing topography consists of grades between 2 and 25 percent. Drainage patterns sheet flow across the parcel southeasterly to the corner of Canada Drive and Constitution Avenue.

C. EXISTING SOILS

The soils indicative to the site are classified as Truckton sandy loam by the USDA Soil Conservation Service and are listed as NRCS (National Resources Conservation Service) Hydrologic Soil Group A. A USDA Soil Map is provided in the Appendix.
A subsurface soils investigation was conducted for the site within a letter entitled Geotechnical Report by RMG - Rocky Mountain Group dated February 23, 2021 (Ref. Appendix B). The investigation "revealed similar substance subsurface soil conditions across the site, being primarily silty sand extending from the ground surface to the extent of the test borings. Neither expansive clay soil nor bedrock was encountered in the borings."
"Test Borings for structures and storage yards were advanced with a power-driven, continuousflight auger drill rig to depths of 15 and 20 -feet below the existing ground surface. Pavement Borings were advanced to 5 and 10 -foot depths."
The study found that, "groundwater was not encountered in the test borings during field exploration."

These soils are classified within Hydrologic Soil Group A. Erosion Potential is moderate to low depending on the granularity of the subsurface soil matrix and must be actively contained during construction activities.

D. EXISTING DRAINAGE

The existing topography consists of grades between 2 and 25 percent within the entire parcel that ultimately flows southeast. The existing imperviousness of the lot is approximately 1.5 percent. The existing vegetation consists of native grasses and has been identified via site visits and aerial photography as well as survey data and pictures.

The existing drainage pattern from storm runoff is generally characterized as overland flow to the southeast of the parcel across pervious landscaped yard. The runoff from this parcel and the surrounding neighborhood flows via curb and gutter in the public right of way of Bismark Road, Constitution Avenue, and Canada Drive. The runoff flows south on Canada Drive into the existing Public 15' CDOT Type R Curb Inlet located at the northwest corner of the intersection of Canada Drive and Constitution Avenue. This Public Storm Inlet is a branch of the Public 24" RCP Storm Main that flows west to east along the north side of Constitution Avenue and ultimately outfalls into the East Fork of Sand Creek Creek approximately one mile to the east.

[^0] for this site under V222 and PPR2136, Provide name and date

Lot 3A Northcrest Center Filing No 1A does not lie within a designated floodplain according to information published in the Federal Emergency Management Agency Floodplain Map No. 08041C0752G, dated December 7, 2018. The FEMA Floodplain map is provided in Appendix A showing it lies within Zone X , a minimal flood hazard area.

There are no known non-stormwater discharges that contribute to the storm water systems on site and downstream, both private and public.

E. DESCRIPTION OF PROPERTY - PROPOSED CONDITIONS

The proposed development consists of 70 commercial units containing approximately 63,240 square feet along with concrete and asphalt pavement for drive accesses, sidewalks, and curb and gutter. Other on-site features include approximately 25,420 square feet of landscaping, 600 linear feet of retaining wall, and 5,000 square feet for a full spectrum detention pond.
There is no existing access point to the property. Two new curb cuts are proposed along Canada Drive.

III. DRAINAGE BASINS AND SUBBASINS

A. EXISTING BASINS AND SUB-BASINS

The parcel is delineated into sub-basins according to the existing and proposed grading for existing and developed conditions.

Basin $\mathrm{H}-1$ is the entirety of the parcel representing existing conditions and consists of one on-site sub-basin. There are some off-site flows that enter the property along its westerly margin which will be discussed in Sub-Basin 0-1.

Sub-basin H-1 (3.25 ac.; $\left.\mathrm{Q}_{10}=1.7 \mathrm{cfs}, \mathrm{Q}_{100}=10.4 \mathrm{cfs}\right)$ is the entirety of Lot 3awhich contains natural vegetation that flows to the right of ways of Bismark Road, Canada Drive, and Constitution Ave. Those right of ways have curb and gutter directly adjacent to the lot that flow to a Public 15' CDOT Type R Curb Inlet located in Canada Drive. This public stormwater system is connected to a Public 30" CMP Storm Main that runs west to east along the south side of the lot within Constitution Avenue. The Public 15’ \& 5' CDOT Type R Curb Inlets located at the northwest and northeast corners, respectively, of the intersection of Canada Drive and Constitutions Avenue are branches that connect to the public stormwater main within Canada Drive. The public stormwater system ultimately flows north within Canada Drive to the East Fork of Sand Creek. Design Point 1 is the existing conditions design point representing the on-site area. The emergency flow route of this public storm inlet is due east along the north side of Constitution Avenue.

Basin 0-1 contains 0.23 acres lying adjacent to and west of the site. Flows from this sub-basin enter the westerly edge of the site in a sheet flow manner from paved areas, and travel overland across the unimproved site ($Q_{5}=0.8 \mathrm{cfs} / \mathrm{Q}_{100}=1.6 \mathrm{cfs}$).
Basin 0-2 contains 0.07 acres consisting of a narrow strip of unimproved land lying between the site's north property line, and the public curb and gutter section of Bismark Road $\left(Q_{5}=0.0 \mathrm{cfs} / \mathrm{Q}_{100}=0.2 \mathrm{cfs}\right)$. Runoff descends to the public curb and gutter section in a sheet flow manner.

Basin 0-3 contains 0.06 acres consisting of a narrow strip of unimproved land lying between the site's east property line, and the public curb and gutter section of Canada Drive $\left(Q_{5}=0.0 \mathrm{cfs} / \mathrm{Q}_{100}=0.2 \mathrm{cfs}\right)$. Runoff descends to the public curb and gutter section in a sheet flow manner.

Basin 0-4 contains 0.07 acres consisting of a narrow strip of unimproved land lying between the site's south property line, and the public curb and gutter section of Constitution Avenue $\left.\mathrm{C}_{5}=0.0 \mathrm{cfs} / \mathrm{Q}_{100}=0.2 \mathrm{cfs}\right)$. Runoff descends to the public curb and gutter section in a sheet flow manner.

IV. DEVELOPED DRAINAGE BASINS AND SUB-BASINS

A. ON-SITE BASINS - DEVELOPED CONDITION

Basin D-1 contains 0.55 acres of roof and lawn area ($\mathrm{Q}_{5}=1.4 \mathrm{cfs} / \mathrm{Q}_{100}=3.0 \mathrm{cfs}$). Flows either sheet flow or accumulate in downspouts and are directed to a new private grassed swale (GS 'North') for water quality treatment ahead of being released to a new private Type ' C ' area inlet at Design Point 1 . There are no offsite flows entering this sub-basin. Concentrated and treated runoff is collected within new private inlet and storm pipe and directed to the new private EDB.
Basin D-2 contains 0.40 acres of roof and drive aisle ($Q_{5}=3.2 \mathrm{cfs} / \mathrm{Q}_{100}=5.9 \mathrm{cfs}$). Flows either sheet flow or accumulate in downspouts and are directed to a 4' valley pan ahead of being released to a new private Type ' C ' area inlet at Design Point 2. There are no offsite flows entering this sub-basin. Concentrated runoff is collected within new storm pipe and directed to the new private EDB.

Basin D-3 contains 0.08 acres of driveway and parking area ($Q_{5}=0.3 \mathrm{cfs} / \mathrm{Q}_{100}=0.6 \mathrm{cfs}$). Flows initially sheet flow across paved surfaces and are discharged through slotted curb at the low side of the basin nearest to Canada Drive. New landscape area is planned to receive surface runoff via two-inch curb slots located every ten feet. The slotted curb incorporates a hard ledge six inches below the invert of the curb assembly for water quality treatment ahead of being released to public roadway at Design Point 3. There are no offsite flows entering this sub-basin. Concentrated and treated runoff is collected within existing public gutter at Canada Drive and conveyed south to the existing public 15' Type R curb inlet in Canada Drive.

Basin D-4 contains 0.98 acres of roof and drive aisle area in the center of the site $\mathrm{Q}_{5}=4.0 \mathrm{cfs} / \mathrm{Q}_{100}=7.3 \mathrm{cfs}$). Runoff flows sheet flow and accumulate in downspouts and are directed to a new four-foot valley pan located in the center of the drive aisle and ahead of being released to a new private Type ' C ' area inlet at Design Point 4. There are some offsite flows from Basin 0-1 which overtop the retaining wall lying along the westerly edge of the site, and which combine with on-site flows close to the upstream end of the new private four-foot valley pan. Combined and concentrated runoff is collected within new private inlet and storm pipe and directed to the new private EDB at Forebay Two.
Basin D-5 contains 0.15 acres of roof and lawn area ($\mathrm{Q}_{5}=1.3 \mathrm{cfs} / \mathrm{Q}_{100}=2.7 \mathrm{cfs}$). Flows either sheet flow or accumulate in downspouts and are directed to a new private grassed swale (GS 'South') for water quality treatment ahead of being released to a new private Type ' C ' area inlet at Design Point 5 . There are no offsite flows entering this sub-basin. Concentrated and treated runoff is collected within pipe and directed to the new private EDB at Forebay One.

Basin D-6 contains 0.12 acres of ramp, channel and grassed area ($\mathrm{Q}_{5}=1.4 \mathrm{cfs} / \mathrm{Q}_{100}=3.0 \mathrm{cfs}$). Flows either sheet flow or are released under controlled conditions from one of two new private forebays (One and at Two) at Design Point 6. There are no offsite flows entering this sub-basin. Concentrated runoff is directed via trickle channels to a new private outlet structure ahead of release to public storm systems. Calculations for the three-stage release structure are provided in Appendix B.
Basin D-7 contains 0.15 acres of drive aisle, sidewalk, entrances and lawn areas which are generally below the pond's elevation, and are constrained by topography such that they cannot be directed to
the EDB ($\mathrm{Q}_{5}=0.2 \mathrm{cfs} / \mathrm{Q}_{100}=0.6 \mathrm{cfs}$). Flows sheet flow to lawn areas and public roadway. Some water quality treatment benefit is achieved within the receiving pervious lawn area ahead of being released to a existing roadway curb and gutter. There are no offsite flows entering this sub-basin. Concentrated and partially treated runoff is collected within existing curb and gutter and are received at the existing public 15 ' Type ' R '; curb inlet located along the west side of Canada Drive.

Basin D-8 contains 0.15 acres of roof and lawn area at DP 1 ($\mathrm{Q}_{5}=1.4 \mathrm{cfs} / \mathrm{Q}_{100}=3.0 \mathrm{cfs}$). Flows either sheet flow or accumulate in downspouts and are directed to a new private grassed swale (GS 'North') for water quality treatment ahead of being released to a new private Type 'C' area inlet at Design Point 1. There are no offsite flows entering this sub-basin. Concentrated and treated runoff is collected within pipe and directed to the new EDB.

B. OFF-SITE BASINS - DEVELOPED CONDITION

Basin 0-1 contains 0.23 acres lying adjacent to and west of the site. Flows from this sub-basin enter the westerly edge of the site in a sheet flow manner from paved areas, and travel overland across the unimproved site ($\left.Q_{5}=0.8 \mathrm{cfs} / \mathrm{Q}_{100}=1.6 \mathrm{cfs}\right)$. Under developed conditions, the easterly edge of the existing alleyway discharges runoff to Basin D-4. Flows combine with on-site flows and are received at the aforementioned four-foot valley pan ahead of being directed to the EDB for storage and treatment.

Basin 0-2 contains 0.07 acres consisting of a narrow strip of unimproved land lying between the site's north property line, and the public curb and gutter section of Bismark Road $\left(\mathrm{Q}_{5}=0.0 \mathrm{cfs} / \mathrm{Q}_{100}=0.2 \mathrm{cfs}\right)$. Runoff descends to the public curb and gutter section in a sheet flow manner. Under developed conditions, new five-foot public attached sidewalk is added to the roadway (Bismark Road).
Basin 0-3 contains 0.06 acres consisting of a narrow strip of unimproved land lying between the site's east property line, and the public curb and gutter section of Canada Drive ($\mathrm{Q}_{5}=0.0 \mathrm{cfs} / \mathrm{Q}_{100}=0.2 \mathrm{cfs}$). Runoff descends to the public curb and gutter section in a sheet flow manner. Under developed conditions, new five-foot public attached sidewalk is added to the roadway (Canada Drive).

Basin 0-4 contains 0.06 acres consisting of a narrow strip of unimproved land lying between the site's east property line, and the public curb and gutter section of Canada Drive
 manner. Under developed conditions, new five-foot public attached sidewalk is added to the roadway (Constitution Avenue).
There is also an existing Water Quality Capture Volume BMP/control measure constructed for the neighboring lot (Northcrest Center Fil No 2 Lots $1 \& 2$). This feature will not see additional runoff due to the proposed development and was not evaluated for its current conditions.

A Full Spectrum Extended Detention Basin is proposed for the site to provide water quality and detention prior to attenuated storm water release to the public storm system. The vertical concrete walls on all four sides of the Extended Detention Basin are due to site constraints including an existing electric vault and existing easement where the pond is being constructed. The Full Spectrum Extended Detention Basin includes a 10' wide concrete maintenance access ramp that slopes to the pond's bottom.

V. DRAINAGE DESIGN CRITERIA

Be sure to state the type of PCM (ie: EDB, Sand Filter, Rain Garden, etc).

A. REGULATIONS

The hydrological and hydraulic calculations and design of the site conform to the City of Colorado Springs Drainage Criteria Manuals I and II (latest revision, May 2014) as well as the Mile High Flood District Drainage Criteria manuals revised August 2018.

B. DEVELOPMENT CRITERIA REFERENCE AND CONSTRAINTS

The parcel falls within the Sand Creek major drainage basin (East Fork Sand Creek) designated by the City of Colorado Springs Water Resources Engineering Department with the ultimate receiving waters of Arkansas River. The drainage on this parcel will have no effect on downstream infrastructure or facilities, streets, utilities, transit, or further development of adjacent lots. Relevant criteria for the calculations shown further include equations and design criteria for the rational method, volumes and runoff of carious storm events.

C. HYDROLOGICAL CRITERIA

The rational method was used to calculate the peak runoff of the delineated sub-basins using the manuals referenced prior with the C, I, and P1 values from the Design Criteria Manual Volume I, Chapter 6 as well as the Colorado Springs designated IDF curve values. Specific calculations and tables are provided further with inputs including design rainfall, sub-basin acreage and percent imperviousness, runoff coefficients, one-hour rainfall depths, rainfall intensities, time of concentration, and peak discharge of various storm events. The default rainfall intensities and volumes use runoff coefficients based on soil types. Weighted runoff coefficients were calculated for each basin and sub-basin due to the mix of impervious surfaces, shown in the Appendix exhibits.

D. FOUR-STEP PROCESS

The selection of appropriate control measures is based on the characteristics of the site and potential pollutants. The Four-Step Process provides a method of going through the selection process. The following applies the four-step process to the Development Plan for the Northcrest Center.

Step 1: Employ Runoff Reduction Practices

The Development Plan including the Landscape Plan utilizes landscaping areas for plantings and grass or mulch wherever possible without obstructing utilities or drainageways. Given the proposed land use, the majority of the site consists of roof or paved surface. Where possible, roof runoff is directed to perimeter grassed swales ahead of entering private storm systems. All other areas are directly connected to the extended detention basin for treatment. With this strategy, a 14% reduction in water quality capture volume is achieved. Calculations for reduction are included in Appendix C.

Step 2: Provide Water Quality Capture Volume
The Development Plan and Final Drainage Report indicate the use of a storm water detention pond as a control measure for capturing storm water runoff and properly treating the storm water prior to release either via percolation into the soil or attenuated to the public storm system. The
detention pond is to be installed and the configuration is sized for capture of the WQCV as well as the EURV and full-spectrum detention, and 100-year detention.

Step 3: Stabilize Drainageways

The drainage within the site is stabilized by way of pavement with features such as valley pans, area inlets, curb and gutter, and sloped pavement to direct storm water to the private storm system. There are no unpaved or unstabilized drainageways on this site.

Step 4: Implement Site Specific and Other Source Control BMPs
In addition to Full Spectrum Extended Detention, two 300 -foot grassed swales are proposed at the north and south margins of the site to provide some opportunities for infiltration and sediment removal. Concentrated and partially treated flows within these grassed swales are subsequently captured within separate area inlets at the bottom of the swales and directed to the extended detention basin (EDB) within private collection systems. Slotted Curb with a dropped ledge is planned along the easterly margin where topographic constraints prevent capture within the onsite private storm collection system. A small portion of the site in the extreme southeast corner lies below the pond and is allowed to sheet flow across landscaped surface to maximize opportunities for infiltration.

VI. DRAINAGE INFRASTRUCTURE COSTS AND FEES

A. DRAINAGE AND BRIDGE FEES

The development falls within the Sand Creek drainage basin (FOFO4000) which has adrainage basin fee of $\$ 20,387$ per impervious acre and a bridge fee of $\$ 8,339$ per impervious acre according to the 2021 El Paso County Drainage Basin Fees document. The development has a total impervious acreage of 2.33acres (3.25acres * 71.7\% imperviousness).

Drainage Basin Fee: $\$ 20,387 /$ impervious acre * 2.33 impervious acres $=\$ 47,507$ Bridge
Fee: \$8,339/impervious acre * 2.33 impervious acres $=\$ 19,429.87$

Since the site is already platted, drainage fees are assumed to have already been paid. Since this development is increasing imperviousness, the County shall review their records and make a

B. STORM DRAIN SYSTEM QUANTITIES AND COST ESTIMATE

Table 1 - Northcrest Center - Private Storm Improvements

VII. CONCLUSIONS

The criteria used to design the storm water runoff volumes are formulas and figures within the City of Colorado Springs Drainage Manuals as well as the Mile High Flood District Drainage Criteria manual. Grading practices for optimal drainage shall comply with the geotechnical investigative report and City standards. The development of Lots 3 a is within compliance and standards and meets the requirements for the Northcrest Center. The difference between Basin H-1 and Basins D-1 through D-8 results in an overall increase of the 100-year storm Water volume of 4.3 cfs overall due to increased impervious surfaces.
3.09 acres (71.7% imperviousness) of on-site flows, and 0.23 acres of off-site flows drain to the Full Spectrum Detention Basin, with a total runoff of 15.4 cfs (100-yr storm) being captured.
The proposed grading and drainage is within substantial conformance for the master drainage plan for the Subdivision and Drainage Basin. There is no impact on major drainageway planning studies within the larger drainage basin. This development will not adversely affect downstream development.

VIII. REFERENCES

Colorado Springs Drainage Manual Volumes I \& II (May 2014)
Colorado Urban Drainage and Flood Control District Drainage Criteria Manual, Volume I (August 2018)

Colorado Urban Drainage and Flood Control District Drainage Criteria Manual, Volume III (April 2018)
Urban Storm Drainage Criteria Manual, Volume III (November, 2015)

West Fork Jimmy Camp Creek Drainage Basin Planning Study, prepared by Kiowa Engineering Corporation, dated October 17, 2003.

City of Colorado Springs and El Paso County Flood Insurance Study, prepared by the Federal Emergency Management Agency, dated March 1997.

Soil Survey of El Paso County Area, Colorado, prepared by United States Department of Agriculture Soil Conservation Service, dated June 1981.

FEMA Flood Online Map Service Center
United States Department of Agriculture National Resources Conservation Service

Subsurface Soil Investigation prepared by RMG-Rocky Mountain Group Engineers dated February 23, 2021

[^1]
APPENDIX TABLE OF CONTENTS

APPENDIX A

Figure 1: Vicinity Map
Figure 2: Soils Map
FEMA Flood Insurance Rate Map

National Flood Hazard Layer FIRMette

Legend

SEE PIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

	Without Base Flood Elevation (BFE) Zone A, V, A99 With BFE or Depth Zone AE, AO, AH, VE, AR
SPECIAL FLOOD	
HAZARD AREAS	Regulatory Floodway
O.2\% Annual Chance Flood Hazard, Areas of 1\% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X	

B- 20.2 Cross Sections with 1\% Annual Chance 17.5 Water Surface Elevation Coastal Transect mu $\mathrm{m}_{13} \mathrm{~mm}$ Base Flood Elevation Line (BFE) Limit of Study —_ Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline
\qquad Hydrographic Feature

MAP PANELS

: Digital Data Available No Digital Data Available Unmapped

 an authoritative property location.This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The baseman shown complies with FEMA's baseman accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on $3 / 17 / 2021$ at $3: 21$ PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time

This map image is void if the one or more of the following map elements do not appear: baseman imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

MAP LEGEND

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 18, Jun 5, 2020
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018-Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	0.2	0.4%
97	Truckton sandy loam, 3 to 9 percent slopes	A	40.9	99.6%
Totals for Area of Interest		$\mathbf{4 1 . 1}$	$\mathbf{1 0 0 . 0 \%}$	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

APPENDIX B
 Hydrologic Calculations

Existing Condition - Runoff Co-eff, Time of Concentration and Runoff Calcs
Developed Condition - Runoff Co-eff, Time of Concentration and Runoff Calcs
Full Spectrum Detention Basin/Extended Detention Basin
Detention Volume and Emergency Spillway
Outlet Structure Calculations
Trickle Channel Capacity and Outlet Structure Sizing
Forebay Sizing Calculations
MHFD Inlet Summaries \& Calculations

EXISTING RUNOFF COEFFICIENT SUMMARY

EXISTING TIME OF CONCENTRATION SUMMARY

Sub-Basin Data				Up Elev	Down Elev	Time of Concentration Estimate												Final t_{c}
Basin / Design Point	Contributing Basins	Area	C_{5}			Initial/Overland Time (t_{i})					Travel Time (t_{t})						Comp. t_{c}	
						Length	Slope	t_{i}	Elev	Elev	Length	Slope	$\begin{aligned} & \text { Land } \\ & \text { Type } \end{aligned}$	Cv	Velocity	$t_{\text {t }}$		
Cheyenne Creek to Fountain Creek Tributary																		
0-1	Off-Site:	0.23ac	0.73	6534.00	6528.70	100 lf	5.3\%	3.9 min .	6528.70	6520.50	182lf	4.5\%	SP	7	$1.5 \mathrm{ft} / \mathrm{sec}$	2.0 min .	6.0 min .	6.0 min .
0-2	Off-Site:	0.07ac	0.09	6530.00	6529.00	91 f	11.1\%	2.5 min .	6529.00	6528.90	11 f	10.0\%	SP	7	$2.2 \mathrm{ft} / \mathrm{sec}$	0.0 min .	5.0 min .	5.0 min .
0-3	Off-Site:	0.06ac	0.09	6511.00	6510.00	91 f	11.1\%	2.5 min .	6510.00	6509.90	11 f	10.0\%	SP	7	$2.2 \mathrm{ft} / \mathrm{sec}$	0.0 min .	5.0 min .	5.0 min .
0-4	Off-Site:	0.07ac	0.09	6515.00	6514.00	91 f	11.1\%	2.5 min .	6514.00	6513.90	11 f	10.0\%	SP	7	$2.2 \mathrm{ft} / \mathrm{sec}$	0.0 min .	5.0 min .	5.0 min .
H-1	On-Site:	3.25ac	0.10	6532.00	6528.00	100lf	4.0\%	11.5 min .	6528.00	6508.00	457lf	4.4\%	SP	7	$1.5 \mathrm{ft} / \mathrm{sec}$	5.2 min .	16.7 min.	16.7 min.
Summary		3.32ac																

Equations:
$\mathrm{t}_{\mathrm{i}}($ Overland $)=0.395\left(1.1-\mathrm{C}_{5}\right) \mathrm{L}^{0.5} \mathrm{~S}^{-0.333}$
(DCM Equation 6-8) Where
$\mathrm{C}_{5}=$ Runoff coefficient for 5 -year
$\mathrm{L}=$ Length of overland flow (ft)
$\mathrm{S}=$ Average basin slope ($\mathrm{ft} / \mathrm{ft}$)
$\mathrm{t}_{\mathrm{c}}(1 \mathrm{st} \mathrm{DP})=(18-15 \mathrm{i})+\mathrm{L}_{\mathrm{t}} /\left(60(24 \mathrm{i}+12) \mathrm{S}^{0.5}\right)$ Where
$\mathrm{t}_{\mathrm{c}}(1 \mathrm{st}$ DP) $=$ First DP Time of Concentration in urban catchments
$L_{t}=$ Length of Flow Path
$i=$ imperviousness (expressed as a decimal)
$\mathrm{t}_{\mathrm{t}}=\mathrm{L}_{\mathrm{t}} / 60 \mathrm{KS}^{0.5}$ Where
$\mathrm{t}_{\mathrm{t}}=$ Channelized flow time (travel time) $(\mathrm{min}$.
$\mathrm{L}_{\mathrm{h}}=$ Waterway length (ft)
$\mathrm{K}=$ Conveyance Factor (see DCM Table 6-7)
$\mathrm{S}=$ Watercourse slope $(\mathrm{ft} / \mathrm{ft})$

City of Colorado Springs DCM Table 6-7

Type of Land Surface	Land Type	K
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area/Swales	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

Runoff Calculation

Developed Condition

Basin / Design Point	Contributing Basins	Drainage Area	C_{5}	C_{100}	Time of Concentration	Rainfall Intensity $\begin{array}{ll} \mathbf{i}_{5} & \mathbf{i}_{100} \\ \hline \end{array}$	Q_{5}	Q_{100}	Basin / DP
Off-Site									
0-1	0-1	0.23 ac	0.73	0.83	6.0 min .	$4.9 \mathrm{in} / \mathrm{hr} \quad 8.2 \mathrm{in} / \mathrm{hr}$	0.8 cfs	1.6 cfs	
0-2	0-2	0.07 ac	0.09	0.36	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr} \quad 8.7 \mathrm{in} / \mathrm{hr}$	0.0 cfs	0.2 cfs	
0-3	0-3	0.06 ac	0.09	0.36	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr} \quad 8.7 \mathrm{in} / \mathrm{hr}$	0.0 cfs	0.2 cfs	
0-4	0-4	0.07 ac	0.09	0.36	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr} \quad 8.7 \mathrm{in} / \mathrm{hr}$	0.0 cfs	0.2 cfs	
0.43 ac							$0.9 \mathrm{cfs} \quad 2.2 \mathrm{cfs}$		
On-Site									
H-1	0-4	3.25 ac	0.10	0.37	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr} \quad 8.7 \mathrm{in} / \mathrm{hr}$	1.7 cfs	10.4 cfs	H-1
						SUM:	1.7 cfs	10.4 cfs	

Design Point Summary			Weighted		$\frac{\text { Lagged }}{6.0 \mathrm{~min} .}$	Rainfall Intensity		$\begin{gathered} \hline \mathbf{Q 5} \\ \hline 2.5 \mathrm{cfs} \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{Q 1 0 0} \\ & \hline 9.9 \mathrm{cfs} \end{aligned}$
		3.48 ac	0.14	0.35		$4.9 \mathrm{in} / \mathrm{hr}$	$8.2 \mathrm{in} / \mathrm{hr}$		
							Summ:	2.7 cfs	12.6 cfs

[^2]| P1 | Inches |
| :---: | :--- |
| WQCV | 0.60 in |
| 2 yr | 1.19 in |
| 5 yr | 1.50 in |
| 10 yr | 1.75 in |

DEVELOPED RUNOFF COEFFICIENT SUMMARY

EXISTING TIME OF CONCENTRATION SUMMARY

Sub-Basin Data				Up Elev	Down Elev	Time of Concentration Estimate												Final $\mathrm{t}_{\text {c }}$
	Contributing Basins	Area	C_{5}			Initial/Overland Time (t_{i})			Elev	Elev	Travel Time (t_{t})						Comp. t_{c}	
Basin / Design Point						Length	Slope	t_{i}			Length	Slope	$\begin{aligned} & \text { Land } \\ & \text { Type } \end{aligned}$	Cv	Velocity	$t_{\text {t }}$		
Non-Tributary to Detention																		
0-2	Off-Site:	0.07ac	0.59	6530.50	6530.00	10lf	5.0\%	1.7 min .	6530.00	6511.00	3901f	4.9\%	PV	20	$4.4 \mathrm{ft} / \mathrm{sec}$	1.5 min .	5.0 min .	5.0 min .
0-3	Off-Site:	0.06ac	0.49	6510.50	6510.00	10 lf	5.0\%	2.1 min.	6510.00	6507.50	2901f	0.9\%	PV	20	$1.9 \mathrm{ft} / \mathrm{sec}$	2.6 min.	5.0 min .	10.0 min .
0-4	Off-Site:	0.07ac	0.69	6517.00	6516.50	101f	5.0\%	1.4 min.	6516.50	6508.00	3901f	2.2\%	PV	20	$3.0 \mathrm{ft} / \mathrm{sec}$	2.2 min .	5.0 min .	5.0 min .
Tributary to Detention																		
0-1	Off-Site:	0.23ac	0.73	6534.00	6528.70	100lf	5.3\%	3.9 min .	6528.70	6520.50	182If	4.5\%	SP	7	$1.5 \mathrm{ft} / \mathrm{sec}$	2.0 min.	5.9 min .	5.9 min .
D-1	On-Site:	0.56ac	0.54	6531.75	6525.25	100 lf	6.5\%	5.5 min .	6525.25	6512.50	302If	4.2\%	GW	15	$3.1 \mathrm{ft} / \mathrm{sec}$	1.6 min.	7.1 min .	7.1 min.
D-2	On-Site:	0.75ac	0.83	6531.75	6527.50	65lf	6.5\%	2.1 min.	6527.50	6512.25	365lf	4.2\%	PV	20	$4.1 \mathrm{ft} / \mathrm{sec}$	1.5 min .	5.0 min .	5.0 min .
D-3	On-Site:	0.08ac	0.78	6513.75	6512.75	361f	2.8\%	2.5 min .	6512.75	6509.25	20 ff	17.5\%	SP	7	$2.9 \mathrm{ft} / \mathrm{sec}$	0.1 min.	5.0 min .	5.0 min .
D-4	On-Site:	0.98ac	0.78	6528.00	6522.00	341 f	17.6\%	1.3 min .	6522.00	6512.50	4301f	2.2\%	PV	20	$3.0 \mathrm{ft} / \mathrm{sec}$	2.4 min.	5.0 min .	5.0 min .
D-5	On-Site:	0.46ac	0.56	6522.00	6520.00	241 f	8.3\%	2.4 min.	6520.00	6513.75	350lf	1.8\%	GW	15	$2.0 \mathrm{ft} / \mathrm{sec}$	2.9 min .	5.3 min .	5.3 min .
D-6	On-Site:	0.12ac	0.25	6513.75	6509.00	421 f	11.3\%	4.5 min .	6509.00	6507.50	102If	1.5\%	GW	15	$1.8 \mathrm{ft} / \mathrm{sec}$	0.9 min .	5.4 min .	5.4 min .
D-7	On-Site:	0.15ac	0.50	6512.75	6509.50	641f	5.1\%	5.1 min .	6509.50	6507.75	1651 f	1.1\%	PV	20	$2.1 \mathrm{ft} / \mathrm{sec}$	1.3 min .	6.5 min .	6.5 min.
D-8	On-Site:	0.16 ac	0.15	6513.50	6509.75	301f	12.5\%	4.1 min .	6509.75	6508.25	40lf	3.8\%	SP	7	$1.4 \mathrm{ft} / \mathrm{sec}$	0.5 min .	5.0 min .	5.0 min.
Summary		3.25ac									Dev TC							

Equations:
t_{i} (Overland) $=0.395\left(1.1-\mathrm{C}_{5}\right) \mathrm{L}^{0.5} \mathrm{~S}^{-0.33}$
(DCM Equation 6-8) Where:
$\mathrm{C}_{5}=$ Runoff coefficient for 5 -year
$\mathrm{L}=$ Length of overland flow (ft)
$\mathrm{S}=$ Average basin slope ($\mathrm{ft} / \mathrm{ft}$)
$\left.\mathrm{t}_{\mathrm{c}}(1 \mathrm{st} \mathrm{DP})=(18-15 i)+\mathrm{L}_{\mathrm{t}} /(60(24 \mathrm{i}+12))^{0.5}\right)$ Where
$\mathrm{t}_{\mathrm{c}}(1 \mathrm{st}$ DP) $=$ First DP Time of Concentration in urban catchments
$L_{t}=$ Length of Flow Path
$\mathrm{i}=$ imperviousness (expressed as a decimal)
$\mathrm{t}_{\mathrm{t}}=\mathrm{L}_{\mathrm{t}} / 60 \mathrm{KS}{ }^{0.5}$ Where
$\mathrm{t}_{\mathrm{t}}=$ Channelized flow time (travel time)(min.)
$\mathrm{L}_{\mathrm{t}}=$ Waterway length (ft)
K = Conveyance Factor (see DCM Table 6-7)
$\mathrm{S}=$ Watercourse slope ($\mathrm{ft} / \mathrm{ft}$)
City of Colorado Springs DCM Table 6-7

Type of Land Surface	Land Type	K
Grassed Waterway	GW	15
Heavy Meadow	HM	2.5
Nearly Bare Ground	NBG	10
Paved Area/Swales	PV	20
Riprap (Not Buried)	RR	6.5
Short Pasture/Lawns	SP	7
Tillage/Fields	TF	5

Runoff Calculation

Developed Condition

Basin / Design Point	Contributing Basins	Drainage Area	C_{2}	C_{5}	C_{100}	Time of Concentration	Rainfall Intensityi_{5} i_{100}		Runoff $\mathbf{Q}_{\text {wocv }}$	\mathbf{Q}_{2}	Q_{5}	Q_{100}	Basin / DP
Northcrest Center													
Non-Tributary Offsite Flow													
0-2	0-2	0.07 ac	0.56	0.59	0.73	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr}$	$8.7 \mathrm{in} / \mathrm{hr}$	0.1 cfs	0.2 cfs	0.2 cfs	0.5 cfs	0-2
0-3	0-3	0.06 ac	0.45	0.49	0.66	10.0 min.	$4.1 \mathrm{in} / \mathrm{hr}$	$6.9 \mathrm{in} / \mathrm{hr}$	0.0 cfs	0.1 cfs	0.1 cfs	0.3 cfs	0-3
0-4	0-4	0.07 ac	0.66	0.69	0.80	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr}$	$8.7 \mathrm{in} / \mathrm{hr}$	0.1 cfs	0.2 cfs	0.3 cfs	0.5 cfs	0-4
Tributary Flows (Offsite and On-Site)													
Offsite Flow	0-1	0.23 ac	0.71	0.73	0.83	5.9 min .	$4.9 \mathrm{in} / \mathrm{hr}$	$8.3 \mathrm{in} / \mathrm{hr}$	0.3 cfs	0.7 cfs	0.8 cfs	1.6 cfs	0-1
DP-1	D-1	0.56 ac	0.51	0.54	0.68	7.1 min .	$4.6 \mathrm{in} / \mathrm{hr}$	$7.8 \mathrm{in} / \mathrm{hr}$	0.5 cfs	1.1 cfs	1.4 cfs	3.0 cfs	DP-1
DP-2	D-2	0.75 ac	0.81	0.83	0.90	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr}$	$8.7 \mathrm{in} / \mathrm{hr}$	1.2 cfs	2.5 cfs	3.2 cfs	5.9 cfs	DP-2
DP-3	D-3	0.08 ac	0.76	0.78	0.87	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr}$	$8.7 \mathrm{in} / \mathrm{hr}$	0.1 cfs	0.2 cfs	0.3 cfs	0.6 cfs	DP-3
DP-4	D-4	0.98 ac	0.77	0.78	0.86	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr}$	$8.7 \mathrm{in} / \mathrm{hr}$	1.5 cfs	3.1 cfs	4.0 cfs	7.3 cfs	DP-4
DP-5	D-5	0.46 ac	0.53	0.56	0.69	5.3 min .	$5.1 \mathrm{in} / \mathrm{hr}$	$8.5 \mathrm{in} / \mathrm{hr}$	0.5 cfs	1.0 cfs	1.3 cfs	2.7 cfs	DP-5
DP-6	D-6	0.12 ac	0.20	0.25	0.49	5.4 min .	$5.0 \mathrm{in} / \mathrm{hr}$	$8.5 \mathrm{in} / \mathrm{hr}$	0.0 cfs	0.1 cfs	0.1 cfs	0.5 cfs	DP-5
DP-7	D-7	0.15 ac	0.47	0.25	0.49	6.5 min .	$4.8 \mathrm{in} / \mathrm{hr}$	$8.0 \mathrm{in} / \mathrm{hr}$	0.1 cfs	0.3 cfs	0.2 cfs	0.6 cfs	DP-7
DP-8	D-8	0.16 ac	0.10	0.50	0.62	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr}$	$8.7 \mathrm{in} / \mathrm{hr}$	0.0 cfs	0.1 cfs	0.4 cfs	0.9 cfs	DP-8
Tributary Summary:		3.09 ac	0.60	0.62	0.70	13.0 min.	Detention Basin:		4.2 cfs	8.4 cfs	10.9 cfs	20.9 cfs	Detained Only

Design Point Summary			Weighted		Lagged	Rainfall Intensity		QWQCV	Q2	Q5	Q100
DP-1	D-1	0.56 ac	0.54	0.68	7.1 min.	$4.6 \mathrm{in} / \mathrm{hr}$	$7.8 \mathrm{in} / \mathrm{hr}$			1.4 cfs	3.0 cfs
DP-2	D-2 \& D-3	1.30 ac	0.71	0.81	7.1 min .	$4.6 \mathrm{in} / \mathrm{hr}$	$7.8 \mathrm{in} / \mathrm{hr}$			4.3 cfs	8.2 cfs
DP-3	D-1 thru D-3	0.08 ac	0.78	0.87	7.1 min .	$4.6 \mathrm{in} / \mathrm{hr}$	$7.8 \mathrm{in} / \mathrm{hr}$			0.3 cfs	0.5 cfs
DP-4	0-1, D1 thru D-4	2.52 ac	0.74	0.83	13.0 min .	$3.7 \mathrm{in} / \mathrm{hr}$	$6.3 \mathrm{in} / \mathrm{hr}$			6.9 cfs	13.1 cfs
DP-5	D-5	0.46 ac	0.56	0.69	5.3 min .	$5.1 \mathrm{in} / \mathrm{hr}$	$8.5 \mathrm{in} / \mathrm{hr}$			1.3 cfs	2.7 cfs
DP-6	0-1, D1 thru D-6	3.09 ac	0.69	0.80	13.0 min.	$3.7 \mathrm{in} / \mathrm{hr}$	$6.3 \mathrm{in} / \mathrm{hr}$			8.0 cfs	15.4 cfs
DP-7	D-7	0.15 ac	0.25	0.49	6.5 min .	$4.8 \mathrm{in} / \mathrm{hr}$	$8.0 \mathrm{in} / \mathrm{hr}$			0.2 cfs	0.6 cfs
DP-8	D-8	0.16 ac	0.50	0.62	5.0 min .	$5.2 \mathrm{in} / \mathrm{hr}$	$8.7 \mathrm{in} / \mathrm{hr}$			0.4 cfs	0.9 cfs
ALL	ALL	3.40 ac	0.62	0.70	13.0 min.		Dist	rrbed Are	mmary:	8.6 cfs	16.9 cfs

Equations (taken from Fig 6-5, City of Colorado Springs DCM):	
$\mathrm{i}_{2}=-1.19 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+6.035$	$\mathrm{Q}=\mathrm{CiA}$
$\mathrm{i}_{5}=-1.50 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+7.583$	Q = Peak Runoff Rate (cubic feet/second)
$\mathrm{i}_{10}=-1.75 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+8.847$	$\mathrm{C}=$ Runoff coef representing a ratio of peak runoff rate to ave rainfall
$\mathrm{i}_{25}=-2.00 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+10.111$	intensity for a duration equal to the runoff time of concentration.
$\mathrm{i}_{50}=-2.25 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+11.375$	$i=$ average rainfall intensity in inches per hour
$\mathrm{i}_{100}=-2.52 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+12.735$	$\mathrm{A}=$ Drainage area in acres

P1	Inches
$W Q C V$	0.60 in
2 yr	1.19 in
5 yr	1.50 in
10 yr	1.75 in
25 yr	2.00 in
50 yr	2.25 in
100 yr	2.52 in

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

DP1

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's n (Leave cell D16 blank to manually enter an n value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Sloe

Check one of the following soil types:			
Soil Type:	Max. Velocity $\left(V_{\text {MAX }}\right)$	Max Froude No. $\left(F_{\text {MAX }}\right)$	
Non-Cohesive	5.0 fps	0.60	
Cohesive	7.0 fps	0.80	
Paved	N/A	N/A	

A, B, C, D, or $E=D$

aximum Allowable Top Width of Channel for Minor \& Major Storm
Maximum Allowable Water Depth in Channel for Minor \& Major Storm
Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion

Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

DP1

Inlet Design Information (Input)				
Type of Inlet User-Defined	Inlet Type $=$	User-Defined		
Angle of Inclined Grate (must be <= 30 degrees)		$\theta=$	0.00	degrees
Width of Grate		W =	3.00	ft
Length of Grate		$\mathrm{L}=$	3.00	ft
Open Area Ratio		$\mathrm{A}_{\text {RAtio }}=$	0.70	
Height of Inclined Grate		$\mathrm{H}_{\mathrm{B}}=$	0.00	ft
Clogging Factor		$\mathrm{C}_{\mathrm{f}}=$	0.50	
Grate Discharge Coefficient		$\mathrm{C}_{\mathrm{d}}=$	N/A	
		$\mathrm{C}_{0}=$	0.64	
		$\mathrm{C}_{\mathrm{w}}=$	2.05	
		MINOR	MAJOR	
Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)	d $=$	0.25	0.32	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	2.4	3.3	cfs
Bypassed Flow	$\mathbf{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage = Qa/Qo	C\% =	100	100	\%

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

DP2

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)		
NRCS Vegetal Retardance (A, B, C, D, or E)		
Manning's n (Leave cell D16 blank to manually enter an n value) Channel Invert Slope		
Bottom Width Left Side Slope Right Side Sloe		
Check one of the following soil types:		
Soil Type:	Max. Velocity ($\mathrm{V}_{\mathrm{max}}$)	Max Froude No
Non-Cohesive	5.0 fps	0.60
Cohesive	7.0 fps	0.80
Paved	N/A	N/A

A, B, C, D, or E

\quad
$\mathbf{T}_{\text {MAX }}$
$=$
$\mathbf{d}_{\text {MAX }}$
$=$
$\mathbf{9 . 0 0}$
$\mathbf{0 . 2 5}$

aximum Allowable Top Width of Channel for Minor \& Major Storm
Maximum Allowable Water Depth in Channel for Minor \& Major Storm
Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion

Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.03 (August 2023)
AREA INLET IN A SWALE

DP2

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

DP4

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)		
NRCS Vegetal Retardance (A, B, C, D, or E)		
Manning's n (Leave cell D16 blank to manually enter an n value) Channel Invert Slope		
Bottom Width Left Side Slope Right Side Sloe		
Check one of the following soil types:		
Soil Type:	Max. Velocity ($\mathrm{V}_{\mathrm{max}}$)	Max Froude No
Non-Cohesive	5.0 fps	0.60
Cohesive	7.0 fps	0.80
Paved	N/A	N/A

A, B, C, D, or E

	Minor Storm	Major Storm
$\mathrm{T}_{\text {MAX }}=$	12.00	15.00
$\mathbf{d}_{\text {MAX }}=$	0.25	0.33

aximum Allowable Top Width of Channel for Minor \& Major Storm
Maximum Allowable Water Depth in Channel for Minor \& Major Storm
Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion

Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.03 (August 2023)
AREA INLET IN A SWALE

DP4

MHFD-Inlet, Version 5.03 (August 2023)

AREA INLET IN A SWALE

D5

Analysis of Trapezoidal Channel (Grass-Lined uses SCS Method)		
NRCS Vegetal Retardance (A, B, C, D, or E)		
Manning's n (Leave cell D16 blank to manually enter an n value) Channel Invert Slope		
Bottom Width Left Side Slope Right Side Sloe		
Check one of the following soil types:		
Soil Type:	Max. Velocity ($\mathrm{V}_{\mathrm{max}}$)	Max Froude No
Non-Cohesive	5.0 fps	0.60
Cohesive	7.0 fps	0.80
Paved	N/A	N/A

A, B, C, D, or E

aximum Allowable Top Width of Channel for Minor \& Major Storm
Maximum Allowable Water Depth in Channel for Minor \& Major Storm

Allowable Channel Capacity Based On Channel Geometry
MINOR STORM Allowable Capacity is based on Top Width Criterion
MAJOR STORM Allowable Capacity is based on Top Width Criterion

Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth

Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.03 (August 2023)
AREA INLET IN A SWALE

D5

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

INLET NAME	DP1	DP2	DP4	(URBAN
Site Type (Urban or Rural)	URBAN	URBAN		
Inlet Application (Street or Area)	AREA	AREA	AREA	
Hydraulic Condition	Swale	Swale	URBAN	
Inlet Type	User-Defined	CDOT Type C (Depressed)	CDOT Type C (Depressed)	

CALCULATED OUTPUT

Minor Total Design Peak Flow, Q (cfs)	1.4	3.2	4.0	1.3
Major Total Design Peak Flow, Q (cfs)	3.0	5.9	7.3	2.7
Minor Flow Bypassed Downstream, Q_{b} (cfs)	0.0	0.0	0.0	0.0
Major Flow Bypassed Downstream, Q_{b} (cfs)	0.0	0.0	0.0	0.0

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)									
Project: Northcrest Storage Center									
Basin ID: EDB - Full Spectrum Canada Drive									
			Estimated	Estimated					
			Stage (ft)	Volume (ac-ft)	Outlet Type				
	Zone 1 (WQCV)		1.62	0.073	Orifice Plate				
		Zone 2 (EURV)	3.66	0.210	Rectangular Orifice				
		Example Zone Configuration (Retention Pond)			4.83	0.130	Weir\&Pipe (Restrict)		
					otal (all zones)	0.412			
User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)				Calculated Parameters for Underd					
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches		Underdrain Orifice Area = Underdrain Orifice Centroid =		N/A	ft^{2}		
	N/A			N/A	feet				
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)						Calculated Parameters for Plate			
Centroid of Lowest Orifice = Depth at top of Zone using Orifice Plate $=$ Orifice Plate: Orifice Vertical Spacing $=$ Orifice Plate: Orifice Area per Row =	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft})$ WQ Orifice Area per Row $\mathrm{ft}($ relative to basin bottom at Stage $=0 \mathrm{ft})$ Elliptical Half-Width $=$ inches Elliptical Slot Centroid sq. inches Elliptical Slot Area$=$				N/A	ft^{2}		
	3.66					N/A	feet		
	N/A					N/A	feet		
	N/A					N/A	ft^{2}		

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.60	1.20	1.80	2.40			
Orifice Area (sq. inches)	0.38	0.38	0.67	0.67	0.83			

| | Row 9 (optional) | Row 10 (optional) | Row 11 (optional) | Row 12 (optional) | Row 13 (optional) | Row 14 (optional) | Row 15 (optional) | Row 16 (optional) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| | | | | | | | | |

User Input: Vertical Orifice (Circular or Rectanqular) Calculated Parameters for Vertical Orifice

	Zone 2 Rectangula	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$	3.00	N/A	
	3.66	N/A	
Vertical Orifice Height =	2.00	N/A	inches
Vertical Orifice Width =	2.00		inches

	Calculated Parameters for Vertical Orifice		
	Zone 2 Rectangula	Not Selected	
Vertical Orifice Area $=$	0.03	N/A	t^{2}
Vertical Orifice Centroid =	0.08	N/A	

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)				Calculated Parameters for Overflow Weir		
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
	3.66	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft})$ Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ feet Overflow Weir Slope Length $=$	5.33	N/A	feet
	4.00	N/A		5.27	N/A	feet
Overflow Weir Grate Slope =	3.00	N/A	$\mathrm{H}: \mathrm{V}$ Vrate Open Area / 100-yr Orifice Area $=$	32.34	N/A	
Horiz. Length of Weir Sides =	5.00	N/A	eet Overflow Grate Open Area w/o Debris =	16.68	N/A	ft^{2}
Overflow Grate Type =	Close Mesh Grate	N/A	Overflow Grate Open Area w/ Debris =	8.34	N/A	t^{2}
Debris Clogging \% =	50\%	N/A	\%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectanqular Orifice)

$\begin{aligned} \text { Depth to Invert of Outlet Pipe } & = \\ \text { Outlet Pipe Diameter } & = \\ \text { Restrictor Plate Height Above Pipe Invert } & =\end{aligned}$	Zone 3 Restrictor	Not Selected	
	0.67	N/A	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$)
	18.00	N/A	inches
	6.00		inches Half-Central Angle

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate	
Outlet Orifice Area	$=$ Zone 3 Restrictor
0.52	Not Selected
年	

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.17	feet
Stage at Top of Freeboard =	6.00	feet
Basin Area at Top of Freeboard =	0.11	acres
Basin Volume at Top of Freeboard =	0.49	acre-ft

Presedementation / Forebay Sizing

Design Point	Forebay	$\begin{gathered} 100 \mathrm{Yr} \\ \text { Flow } \end{gathered}$	$\begin{gathered} \text { Detention } \\ \text { WQCV } \\ \hline \end{gathered}$	Total Req'd Forebay Vol	Tributary Area	\% Total Trib Area	Required Forebay Volume	Forebay Design			Discharge Design Flow	Calc'd Open Width (1" min)	Design Width
				3.0\% WQCV				Area	Depth	Volume	$1.0 \% 100 \mathrm{yr}$		
DP5	One	2.7 cfs	517 cf	16cf	0.46 ac	14.8\%	2cf	32sf	$1.00-\mathrm{ft}$	32 cf	0.03 cfs	2.5 -inch	2.5-inch
DP6	Two	13.1cfs	2,968cf	89cf	2.63ac	85.2\%	76cf	135sf	$1.00-\mathrm{ft}$	135 cf	0.13 cfs	3.0-inch	3.0-inch
	Totals	15.8	3,485cf	105cf	3.09ac	14.8\%							
Opening Width Equation for Rectangular Opening										Forebay	Design Point		
$\mathrm{L}=\mathrm{Q} /\left(\mathrm{CH}^{1.5}\right) \times 12+0.2 \mathrm{xHx} 12$ (UD-BMP Spreadsheet -- EDB tab)								$\mathrm{C}=$	2.5	One	DP5		
								$\mathrm{C}=$	3.0	Two	DP6		

Forebay Overflow Calculation

Design Point	Forebay	Water Surf Elev	Crest Elev	Crest Length	Flow Depth	Calc'd Flow
DP5	One	$6,511.00$	$6,510.0$	2.0 ft	1.00 ft	6.0 cfs
DP6	Two	$6,509.00$	$6,508.0$	10.0 ft	1.00 ft	30.0 cfs

Weir Equation:
$\mathrm{Q}=\mathrm{CLH}^{1.5}$
$C=3.0$
C = Weir coefficient (dimensionless), $\mathrm{C}=3.0$ (most cases)
$\mathrm{L}=$ Length of weir at Crest, in ft . Not including sideslopes.

Trickle Channel Calculation

Design Point	Location	100 yr Flow	Req'd Flow	Bottom Width	Flow Depth	Side Slope	Slope	Manning ' n '	Top Width	Flow Area	Wetted Perimeter	Hydraulic Radius	Flow Velocity	Capacity
DP5	One	2.7cfs	0.03	1.0 ft	0.50 ft	0.0:1	0.7\%	0.013	1.0 ft	0.50 sf	2.0 ft	0.25 ft	$3.8 \mathrm{ft} / \mathrm{sec}$	1.9 cfs
DP6	Two	13.1cfs	0.13	1.0 ft	0.50 ft	0.0:1	0.7\%	0.013	1.0 ft	0.50 sf	2.0 ft	0.25 ft	$3.8 \mathrm{ft} / \mathrm{sec}$	1.9 cfs

Equations:
$\begin{array}{ll}\text { Area }(A)=b(d)+\mathrm{zd}^{2} & \text { Perimeter }(P)=b+2 d^{*}\left(1+z^{2}\right)^{0.5} \\ b=\text { width } & z=\text { side slope } \\ d=\text { depth } & \text { Hydraulic Radius }=A / P\end{array}$

Velocity $=(1.49 / n) R_{n}{ }^{2 / 3} S^{1 / 2}$
$\mathrm{S}=$ Slope of the channel
$\mathrm{n}=$ Manning's number
$\mathrm{R}_{\mathrm{n}}=$ Hydraulic Radius (Reynold's Number)

EMERGENCY SPILLWAY SECTION AND SPILLWAY CHANNEL

Figure 12-21. Embankment protection details and rock sizing chart (adapted from Arapahoe County)

$$
\text { Forebay } 2 \text { ~ 15.4 CFS (Type L) ~ Slope = 3-5\% }
$$

APPENDIX C

Water Quality Calculations and Exhibit

Incorrect property

Designer:	AWMc
Company: Kiowa Engineering Corporation Date: March 28, 2024 Project: Northcrest Storage Center Location: El Paso County, CO (Full Site) .	

CALCULATED WQCV RESULTS

Area ID	D-1	D-2	D-3	D-4	D-5	D-2 SPA	D-7	D-8				
WQCV (ft^{3})	22	1356	122	1776	318	0	41	23				
WQCV Reduction (ft^{3})	22	0	122	0	318	0	41	23				
WQCV Reduction (\%)	100\%	0\%	100\%	0\%	100\%	0\%	100\%	100\%				
Untreated WQCV (ft^{3})	0	1356	0	1776	0	0	0	0				

CALCULATED DESIGN POINT RESULTS (sums results from all columns with the same Downstream Design Point ID)

Downstream Design Point ID	D-6	D-3	D-7	D-8								
DCIA (ft^{2})	75,170	0	0	0								
UIA (ft ${ }^{2}$)	8,155	2,930	976	550								
RPA (ft^{2})	11,688	2,225	935	6,392								
SPA (ft^{2})	5,278	0	0	0								
Total Area (ft^{2})	100,291	5,155	1,911	6,942								
Total Impervious Area (ft^{2})	83,325	2,930	976	550								
WQCV (ft^{3})	3,472	122	41	23								
WQCV Reduction (ft^{3})	340	122	41	23								
WQCV Reduction (\%)	10\%	100\%	100\%	100\%								
Untreated WQCV (ft^{3})	3,132	0	0	0								

60% minimum is required. However, if enough of the site receives WQ treatment from the pond, then these RR calcs are not necessary. See my comments on the Drainage Map on the last page of this FDR related to documenting WQ treatment and/or exclusions for all sub-basins.

If it's decided that you do need RR, 60\% must be achived and a map must be provided that shows the RPAs, UIAs, and SPAs.

Design Procedure Form: Grass Swale (GS)			
UD-BMP (Version 3.07, March 2018)			Sheet 1 of 1
Designer: Company: Date: Project: Location:	M Kahnke		
	Kiowa Engineering		
	March 28, 2024		
	Northcrest Center		
	Bismark Road \& Canada Dr		
1. Design D	charge for 2-Year Return Period	$\mathrm{Q}_{2}=1.10 \mathrm{cfs}$	
2. Hydraulic A) : Leng B) Calcu	esidence Time of Grass Swale ed Residence Time (based on design velocity below)	$\begin{aligned} \mathrm{L}_{\mathrm{S}} & =300.0 \mathrm{ft} \\ \mathrm{~T}_{\mathrm{HR}} & =6.5 \text { minutes } \end{aligned}$	
3. Longitudi A) Availa B) Desig	Slope (vertical distance per unit horizontal) e Slope (based on site constraints) Slope	$\begin{aligned} \mathrm{S}_{\text {avail }} & =0.050 \mathrm{ft} / \mathrm{ft} \\ \mathrm{~S}_{\mathrm{D}} & =0.050 \mathrm{ft} / \mathrm{ft} \end{aligned}$	
4. Swale G A) Chan B) Botto	Side Slopes ($Z=4 \mathrm{~min}$., horiz. distance per unit vertical) Width of Swale (enter 0 for triangular section)	$\begin{aligned} \mathrm{Z} & =4.00 \mathrm{ft} / \mathrm{ft} \\ \mathrm{~W}_{\mathrm{B}} & =5.00 \mathrm{ft} \end{aligned}$	
5. Vegetatio A) Type	Planting (seed vs. sod, affects vegetal retardance factor)	$\left[\begin{array}{l}\text { Choose One } \\ \text { O Grass From Seed } \quad \text { O Grass From Sod }\end{array}\right.$	
6. Design Velocity (1 ft / s maximum)		$\mathrm{V}_{2}=0.77 \mathrm{ft} / \mathrm{s}$	
7. Design F A) Flow B) Top C) Froud D) Hydra E) Veloc F) Mann G) Cumu	wepth (1 foot maximum) dth of Swale Number (0.50 maximum) ic Radius -Hydraulic Radius Product for Vegetal Retardance 's n (based on SCS vegetal retardance curve D for sodded grass) tive Height of Grade Control Structures Required	$\begin{aligned} & \mathrm{D}_{2}=0.24 \mathrm{ft} \\ & \mathrm{~A}_{2}=1.4 \mathrm{sq} \mathrm{ft} \\ & \mathrm{~W}_{\mathrm{T}}=\frac{2.9}{} \mathrm{ft} \\ & \mathrm{~F}=0.30 \\ & \mathrm{R}_{\mathrm{H}}=0.20 \\ & \mathrm{VR}=0.16 \\ & \mathrm{n}=0.151 \\ & \mathrm{H}_{\mathrm{D}}=0.00 \\ & \mathrm{ft} \end{aligned}$	
8. Underdrain (Is an underdrain necessary?)		$\left[\begin{array}{c} \text { Choose One } \\ \text { O YES } \end{array}\right.$	
9. Soil Preparation (Describe soil amendment)		-	
10. Irrigation		$\left[\begin{array}{cc}\text { Choose One } \\ \text { O Temporary } & \text { O Permanent }\end{array}\right.$	
Notes:	North Margin of site		

APPENDIX D

Existing and Proposed Drainage Plans

Sheet 1 - Historic Conditions H-1
Sheet 2 - Developed Conditions D-1

[^0]: Discuss previous Drainage report

[^1]: ENGINEERING CRITERIA MANUAL COUNTY OF EL PASO, COLORADO

[^2]: Equations (taken from Fig 6-5, City of Colorado Springs DCM):

 $$
 \begin{aligned}
 & \mathrm{i}_{2}=-1.19 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+6.035 \\
 & \mathrm{i}_{5}=-1.50 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+7.583 \\
 & \mathrm{i}_{10}=-1.75 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+8.847 \\
 & \mathrm{i}_{25}=-2.00 \ln \left(\mathrm{~T}_{\mathrm{c}}\right)+10.111
 \end{aligned}
 $$

 ## Q = CiA

 Q Peak Runoff Rate (cubic feet/second)
 $C=$ Runoff coef representing a ratio of peak runoff rate to ave rainfall intensity for a duration equal to the runoff time of concentration.

