PRELIMINARY DRAINAGE REPORT AND MDDP ADDENDUM

 FOR HOMESTEAD NORTH AT STERLING RANCH PRELIMINARY PLANPrepared For:
SR Land, LLC
20 Boulder Crescent, Suite 200
Colorado Springs, CO 80903
(719) 491-3024

January, 2021
Project No. 25188.00

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive, Suite 235
Colorado Springs, CO 80919
719-593-2593
PCD Filing No.:
SP-20-008

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

By:

Title:
Address:

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E.
Date
County Engineer/ ECM Administrator

Conditions:

Table of Contents

Table of Contents 3
Purpose 1
General Site Description 1
General Location 1
D escription of Property 1
Floodplain statement 2
Existing Drainage Conditions 2
Major Basin Descriptions 2
Existing Sub-basin Drainage 4
Interim Drainage Conditions 5
Proposed Drainage Conditions 6
Proposed Sub-basin Drainage 6
Drainage Design Criteria 13
Development Criteria Reference 13
Hydrologic Criteria 13
Hydraulic Criteria 14
Drainage Facility Design 15
Four Step Process to Minimize Adverse Impacts of Urbanization 15
W ater Q uality 16
Erosion Control Plan 16
O peration \& M aintenance 16
Drainage and Bridge Fees 17
Summary 17
References 18

APPENDIX
Appendix A - Vicinity Map, Soil Descriptions, FEMA Floodplain Map
Appendix B - Hydrologic Calculations
Appendix C - Hydraulic Calculations
Appendix D - Drainage Maps
Appendix E - Reference-Material

Purpose

This document is the Preliminary Drainage Report and MDDP Addendum for Homestead North at Sterling Ranch. The purpose of this report is to identify on-site and off-site drainage patterns, storm sewer, culvert and inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities. It is important to note that Homestead North at Sterling Ranch is intended to be constructed in two phases with both phases being evaluated in this report. Assumptions have been made with regards to Phase 2 in order to size and evaluate the site drainage infrastructure. This report will be confirmed or amended in the event that the phase 2 lot configuration has significant changes.

General Site Description

General Location

Homestead North at Sterling Ranch and the undeveloped land to the north(hereby referred to as the "site") is a proposed development with a total area of approximately 88 acres.

The site is located in the northeast quarter of Section 33 and the southeast quarter of section 28, Township 12 South, Range 65 West of the Sixth Principal Meridian in the County of El Paso, State of Colorado. The site is located immediately east of Vollmer Road. The site is bounded by Briargate Parkway to the south, an unplatted vacant residential parcel to the north, and Sand Creek borders the site to east. The parcels are planned to be platted after approval of the Preliminary Plan. Refer to the vicinity map in Appendix A for additional information.

Description of Property

The site is currently being designed to accommodate approximately 228 single-family residential lots and development is to be completed in two phases (totaling approximately 88 acres). The site is comprised of variable sloping grasslands that generally slope(s) downward to the east at 3 to 7% towards the Sand Creek tributary basin.

Soil characteristics are comprised of Type B hydrologic Soil groups. Refer to the soil survey map in Appendix A for additional information.

The Soils and Geology study on the site showed a potentially unstable region directly adjacent to the western bank of Sand Creek on the northeast corner of the site. At the time of final design, specifications from a Geotechnical Engineer will be implemented to ensure that the developed site is safe.

The Sand Creek is within the eastern portion of the site. Currently, JR Engineering is performing studies and plans to address Sand Creek stabilization.

There are no known irrigation facilities located on the project site.

FLOODPLAIN STATEMENT

Based on the FEMA Firm Maps Number 08041C0533G and 08041C0535G revised December 7, 2018, the vast majority of the development is located within Zone X, or areas area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500year) flood. The eastern property boundary will be platted to the center of Sand creek placing a portion of the site within Zone AE. The area of disturbance for site grading is located outside of the delineated floodway within Zone X. The FEMA map containing the site has been presented in Appendix A.

Existing Drainage Conditions

MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" (DBPS) completed by Kiowa Engineering Corporation in January 1993, revised March 1996. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into major sub-basins. The site is within the respective sub-basin is shown in Appendix E.

The Sand Creek DBPS assumed the Homestead North at Sterling Ranch property to have a "large lot residential" use for the majority of the site. However, the proposed Sterling Ranch master plan is a mix of; school, multi-family, single-family, and commercial land uses, resulting in higher runoff. The site generally drains from north to south consisting of rolling hills. Currently, the site is used as pasture land for cattle. Sand Creek is located in the east portion of the site running north to south. This reach of drainage conveyance is not currently improved. There are a few stock ponds within the creek channel used for cattle watering. Currently, JR engineering is performing studies and plans to address Sand Creek stabilization adjacent to the site.

The proposed drainage on the site closely follows the approved "Master Development Drainage Plan for Sterling Ranch", (MMDP) prepared by M\&S Civil Consultants, Inc., dated October 24, 2018. The MMDP "Developed Hydrologic Conditions Map" as shown within Appendix E, shows the estimated detention for the site. The site is tributary to basins SC3-18, SC3-17, and a portion of basin SC-322. Full-spectrum detention in the MMDP was previously analyzed and corresponds to ponds FSD18 and FSD17 for the site. Pond FSD17 is associated with ponds A and B within this report. Pond FSD18 is associated with ponds B and C within this report. Runoff as shown in the proposed $\mathrm{M} \& \mathrm{~S}$ conduit RT-10A will be detained within pond C, whereas the 2018 MDDP specified that this runoff outfall directly into Sand Creek. This represents a more conservative approach to attenuate and treat water
quality for the offsite runoff going into Sand Creek. The total estimated/projected detention and estimated outflows from the MDDP are shown in Table 1 on the following page.

Table 1.

FSD17							
STORM EVENT(YR)	2	5	10	25	50	100	
PEAKINFLOW (CFS)	41.8	59.6	85.2	119.0	149.1	180.6	
AแOWABLEREFASE(CFS)	0.7	11.1	22.5	52	67.2	86.3	
MODELFDRELEASE(CFS)	0.7	8.4	22.4	52	67.2	86.1	
STOREDVOLUME(AC-FT)	2.6	2.6	2.8	3.4	4.0	4.7	

FSD18							
STORM EVENT(YR)	2	5	10	25	50	100	
PEAKINFLOW (CFS)	49.3	67.1	91.0	121.2	147.3	174	
AШOWABLEREFASE(CFS)	0.6	9.2	18.4	42.2	54.6	69.9	
MODELEDRELEASE(CFS)	0.6	6.3	18.4	42.2	54.6	69.6	
STOREDVOLUME(AC-FT)	3.2	3.2	3.4	4.0	4.7	5.3	

The MMDP plans for additional detention to the north of the site, as shown in Appendix E. No future offsite detention is necessary for the site.

In summary, the site will have three detention ponds A, B, and C . Ponds A and B associated with pond FSD17 of the M\&S MDDP and Ponds B and C associated with pond FSD18. The release rates of these ponds will be below 90% of the historic drainage in continuity with the approved M\&S MDDP. The report deviates with MDDP and detains and treats water quality from the existing offsite runoff from basin SC3-19 of the M\&S MDDP via proposed storm pipe along Vollmer road and Briargate parkway that goes into pond C and outfalls within Sand Creek. The MDDP showed the runoff going into Sand Creek undetained. The total net detention being stored onsite in the 100 year event is 14.68 Acre-ft, as shown in Tables 2.1-2.3 of this report. The total runoff released from the detention ponds is 232.3 cfs in the 100 year event for the three ponds, as shown in Tables 2.1-2.3 of this report. The drainage for Vollmer and the corresponding offsite tributary area is detained treated for water quality within pond C .

Existing Sub-BaSin Drainage

The existing/ predeveloped site consists of 3 onsite basins (H1, H2 , and H3) and one offsite basin (2). This historic basins outfall to Sand Creek at 2 outfalls as shown in the Historic Drainage Map in Appendix D. A sub-division to the north of the site is being developed called "Retreat at Timberidge". Runoff from this sub-division will be detained and will not impact storm-water runoff on the Sterling Ranch Homestead site.

Basin E-1 (Q5 = $1.1 \mathrm{cfs}, \mathrm{Q} 100=5.2 \mathrm{cfs})$ is 4.5 acres of undeveloped land adjacent to the northwest portion of Vollmer Road. Runoff from this basin drains to a 24 " CMP pipe and outfalls on the eastern side of Vollmer Road and outfalls into Sand Creek.

Basin E-2 (Q5 = 28.1 cfs , Q100 = 192.9 cfs) is 180.3 acres of undeveloped land adjacent to the northwest portion of Vollmer Road. Runoff from this basin drains to a 24 " CMP pipe and outfalls on the eastern side of Vollmer Road and outfalls into Sand Creek.

Basin E-3 (Q5 = 2.2 cfs, Q100 = 13.7 cfs) is 12.39 acres of undeveloped land adjacent to the western portion of Vollmer Road. Runoff from this basin drains offsite into a road side swale adjacent to Vollmer Road.

Basin E-4 (Q5 = $9.9 \mathrm{cfs}, \mathrm{Q} 100=72.3 \mathrm{cfs}$) is 70.9 acres of undeveloped land to the south of Retreat at Timber Ridge and on the eastern side of sand creek. Runoff from this basin drains to design point 40.

Basin E-5 (Q5 = 3.4 cfs, Q100 $=24.9 \mathrm{cfs}$) is 18.8 acres of undeveloped land adjacent to the eastern portion of Sand Creek. Runoff from this basin sheet flow to the south and ultimately drains to Sand Creek in confluence with flow from basin E-4 at design point 50 .

Basin E-6.1 $(\mathrm{Q} 5=17.7 \mathrm{cfs}, \mathrm{Q} 100=130.0 \mathrm{cfs})$ is 124.9 acres of undeveloped land that drains to the south directly into sand creek at design point 6.1o.

Basin E-6.2 (Q5 = 7.5, Q100 = 55.4 cfs) is 49.61 acres of undeveloped land that drains to a low point directly adjacent to basin E-6.1 at design point 6.20. Runoff from this basin then drains to Sand Creek directly south of design point 6.1 o in confluence with runoff from E-6.1.

Basin H1 (Q5 $=8.9 \mathrm{cfs}, \mathrm{Q} 100=61.0 \mathrm{cfs})$ is 45.2 acres of undeveloped land covered in native prairie grass at DP 1h.

Basin H2 (Q5 = 3.5 cfs , Q100 $=26.0 \mathrm{cfs}$) is 16.1 acres of undeveloped land covered in native prairie grass. This basin drains directly into Sand Creek. The basin is to the south east of Vollmer road. This basin drains directly into Sand Creek at DP 2h.

Basin H3 (Q5 $=5.9 \mathrm{cfs}, \mathrm{Q} 100=40.8 \mathrm{cfs})$ is 28.4 acres of undeveloped land covered in native prairie grass. This basin drains directly into Sand Creek at DP 3h. The basin is to the south east of Vollmer road and North of Briargate Parkway.

Interim Drainage Conditions

An Interim Condition Drainage map has been provided for the early grading area of Homestead, and a map is provided in Appendix D. The early grading area consists of the southern portion of Homestead as well as Briargate Parkway and Sterling Ranch Road. This area was split into 2 basins corresponding to the two proposed sediment basins and the areas tributary to them.

Basin C-1 $($ Q5 $=3.6$ cfs, Q100 $=26.8 \mathrm{cfs})$ is 2% impervious and 22.3 Acres. This basin includes early grading from Sterling Ranch Homestead North. Runoff from this basin will drain into a temporary sediment basin at pond C at design point 1 .

Basin C-2 (Q5 = 0.6 cfs, Q100 $=4.3 \mathrm{cfs}$) is 2% impervious and is 2.67 Acres. This basin is part of a temporary channel that diverts off site runoff in continuity with the Historic condition; directly to Sand Creek.

Basin OS (Q5 = $13.3 \mathrm{cfs}, \mathrm{Q} 100=97.2 \mathrm{cfs}$) is an offsite basin that is 124.2 Acres and 2% impervious. This basin is directly tributary to sediment basin number 2 .

O-S1 $(\mathrm{Q} 5=1.1 \mathrm{cfs}, \mathrm{Q} 100=7.3 \mathrm{cfs})$ is an offsite basin that is 3.6% impervious and 5.51 Acres. This basin diverts offsite runoff away from the lots to the Sand Creek drainage way.

O-S2 $($ Q5 $=28.1 \mathrm{cfs}, ~ \mathrm{Q} 100=192.9 \mathrm{cfs})$ is an offsite basin that is 2.8% impervious and 180.3 Acres. This basin drains to an existing 24" CMP pipe/ sheet drains over Vollmer Road in the existing condition and outfalls into the temporary swale that diverts the runoff around the site and into the sand creek tributary.

O-S3 $(\mathrm{Q} 5=0.9 \mathrm{cfs}, \mathrm{Q} 100=3.2 \mathrm{cfs})$ is an offsite basin that is 18.1% impervious and is 1.16 Acres. This basin drains into the temporary swale that diverts runoff away from the site.

O-S4 ($\mathrm{Q} 5=12.4 \mathrm{cfs}, \mathrm{Q} 100=91.3 \mathrm{cfs}$) is an offsite basin that is 2% impervious, the area is 67.77 Acres. This basin drains to a temporary $42 "$ RCP pipe under the earth work for future Briargate Road and then this runoff ultimately goes to temporary sediment basin number 2.

O-S5 (Q5 = $1.2 \mathrm{cfs}, \mathrm{Q} 100=8.9 \mathrm{cfs})$ is an offsite basin that is 2% impervious; the basin has an area of 6.18 acres. The runoff drains to a temporary 24 " RCP that goes under the earthwork for future Briargate Road and then the runoff goes to temporary sediment basin number 2.

O-S6 $(\mathrm{Q} 5=7.1 \mathrm{cfs}, \mathrm{Q} 100=52.1 \mathrm{cfs})$ is an offsite basin that is 2% impervious; the basin has an area of 35.25 acres. The runoff drains to a temporary drainage ditch that goes to a 24 " RCP in confluence with runoff from basin O-S7 and is piped under the earthwork for future Briargate Road and then the runoff goes to temporary sediment basin number 2 .

OS-7 (Q5 $=3.5 \mathrm{cfs}, \mathrm{Q} 100=25.5 \mathrm{cfs})$ is an offsite basin that is 2% impervious; the basin has an area of 17.36 acres. The runoff drains to a temporary drainage ditch that goes to a 24 " RCP in confluence with runoff from basin O-S6 and is piped under the earthwork for future Briargate Road and then the runoff goes to temporary sediment basin number 2 .

Basin D (Q5 $=2.3 \mathrm{cfs}, \mathrm{Q} 100=16.8 \mathrm{cfs}) \quad$ is 2% impervious and 17.29 Acres. This basin includes Briargate Parkway and Sterling Ranch Road. Runoff from this basin will drain into a temporary sediment basin at pond D. The stormwater requirements for Briargate parkway and Sterling Ranch Road are included with the drainage report for the interim condition, the roads and will be detailed and designed in the Final Drainage Report when it is time to plat the ROW.

Proposed Drainage Conditions

Proposed Sub-basin Drainage

The proposed site was broken up and delineated into three major basins: Basin A (upper-portion), Basin B (mid -portion), and Basin C (lower-portion) of the site. It should be noted that Basin A will be constructed as part of phase 2 of this development and Basins B and C will be constructed as part of Phase 1. Basin A is tributary to Pond A, Basin B is Tributary to Pond B and Basin C is tributary to Pond C. The proposed basin (and sub-basin) delineation is shown on the drainage basin map within Appendix D and is described as follows.

Basin A1 3.67 acres and 52\% percent impervious is comprised of single-family residential lots, a residential road Jesse Evans Drive, and a Cul de Sac. Runoff ($\mathrm{Q}_{5}=6.9 \mathrm{cfs}, \mathrm{Q}_{100}=14.7 \mathrm{cfs}$) from this basin A1 drains to design point 1A to a 15 'type R on-grade inlet. Runoff is then by-passed in the 100 year event to DP 3A.

Basin A2 3.27 acres and 56% percent impervious is comprised of single-family residential lots, a residential road Jesse Evans Drive, and a Cul de Sac. Runoff ($\mathrm{Q}_{5}=6.4 \mathrm{cfs}, \mathrm{Q}_{100}=13.3 \mathrm{cfs}$) from this basin drains to design point 2A to a 15 ' type R on-grade inlet. Runoff is then by-passed in the 100 year event to DP 4A.

Basin A3 4.79 acres and 50\% percent impervious is comprised of single-family residential lots, a residential road David Rudabaugh Drive, and a Cul de Sac. Runoff ($\mathrm{Q}_{5}=8.5 \mathrm{cfs}, \mathrm{Q}_{100}=18.4 \mathrm{cfs}$) from
this basin drains to design point 3A a 15 'type R on-grade inlet in confluence with upstream by-pass flow from basin A1.

Basin A4 3.95 acres and 54% percent impervious is comprised of single-family residential lots, a residential road David Rudabaugh Drive, and a Cul de Sac. Runoff ($\mathrm{Q}_{5}=7.4 \mathrm{cfs}, \mathrm{Q}_{100}=15.6 \mathrm{cfs}$) from this basin drains to design point 4A a 15' type R on-grade inlet in confluence with upstream by-pass runoff from basin A2.

Basin A5 5.43 acres and 50% percent impervious is comprised of single-family residential lots, a residential road William Downing Drive, and an urban knuckle. Runoff ($\mathrm{Q}_{5}=10.5 \mathrm{cfs}, \mathrm{Q}_{100}=22.6$ cfs)from this basin drains to design point 5 A in confluence with upstream by-pass runoff from basin A3 and A1.

Basin A6 3.94 acres and 53\% percent impervious is comprised of single-family residential lots, a residential road William Downing Drive, and a cul de sac. Runoff ($\mathrm{Q}_{5}=7.7 \mathrm{cfs}, \mathrm{Q}_{100}=16.2 \mathrm{cfs}$) from this basin drains to design point 6A at an on grade inlet in confluence with upstream by-pass runoff from basin A4 and A2.

Basin A7 1.97 acres and 15% percent impervious is comprised of open grass area, and a portion of a residential road Aspen Valley Road. The runoff ($\mathrm{Q}_{5}=1.3 \mathrm{cfs}, \mathrm{Q}_{100}=4.8 \mathrm{cfs}$)from this basin drains to design point 7A a 20' type R sump inlet. The runoff from the sump inlet collects tributary runoff basins A7, A5, A3, and A1.

Basin A8 0.46 acres and 52% percent impervious is comprised of a portion of a residential road Aspen Valley Road. The runoff $\left(\mathrm{Q}_{5}=1.2 \mathrm{cfs}, \mathrm{Q}_{100}=2.6 \mathrm{cfs}\right)$ from this basin drains to design point 8 A a 15' type R sump inlet. From here on runoff is piped for basin A1-A8 to detention pond A and detained for the water-quality event and up to the 100 -year event. In the event the inlet clogs in the 100 year event, runoff will overflow across the curb and gutter and spill directly into pond A.

Basin A9 2.78 acres and 16% percent impervious is comprised of pond A, grass and walk-out lots facing the detention area. Runoff ($\mathrm{Q}_{5}=2.1 \mathrm{cfs}, \mathrm{Q}_{100}=7.4 \mathrm{cfs}$) generated in Basin A 9 sheet flows into Pond A where it is treated for water-quality and is detained up until the 100 year-event. The UD Detention sheet for pond A is shown in Appendix C of this report.

Pond A has a total tributary area of 30.26 Acres, the net percent impervious area of pond A is 46.5%. Pond A has been conceptually graded in to fit the design volume, as shown in Appendix C of this report. This pond will be built in phase 2 of Homestead North at Sterling Ranch. Pond A will outfall directly into the Sand Creek basin. The WQCV, 5 year and 100 year volumes, releases rates and stages for pond A are shown in Table 2.1 below. These results correspond to the Routed Hydrograph results, as shown in Appendix C of this report.

	TABLE 2.1 Pond A		
	Stage -ft	Volume (Acres)	Release Rate (cfs)
WQCV	2.81	0.498	0.2
$\mathbf{5}$ Year	4.99	1.516	7.8
$\mathbf{1 0 0}$ Year	6.55	2.405	33.0

Basin B1.1 3.36 acres 45\% percent impervious is comprised of single-family residential lots, a local roads Billy Claiborne Drive, Perry Owens Drive and an urban knuckle. The runoff ($\mathrm{Q}_{5}=5.5 \mathrm{cfs}$, $\mathrm{Q}_{100}=12.5 \mathrm{cfs}$) from basin B 1.1 drains to design point 1.1B.

Basin B1.2 1.81 acres and 54\% percent impervious is comprised of single-family residential lots, a local roads Claiborne Drive, Perry Owens Drive and an urban knuckle. The runoff $\left(\mathrm{Q}_{5}=3.5 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=7.4 \mathrm{cfs}$) from basin B 1.2 drains to design point 1.2B.

Basin B1.3 0.47 acres and 47\% percent impervious is comprised of single-family residential lots and a local roads Aspen Valley Road and Perry Owens Drive. The runoff ($\mathrm{Q}_{5}=1.0 \mathrm{cfs}, \mathrm{Q}_{100}=2.2 \mathrm{cfs}$) from basin B1.3 drains to design point 1.3B.

Basin B2 0.82 acres and 58\% percent impervious is comprised of the northern portion of a local residential road Sam Bass Drive adjacent to the intersecting at Vollmer road. Runoff ($\mathrm{Q}_{5}=2.3 \mathrm{cfs}$, $\mathrm{Q}_{100}=4.9 \mathrm{cfs}$) from basin B 2 drains to design point 2B and confluences with runoff from basins B1.1, B1.2 and B1.3.

Basin B3 0.24 acres and 79% percent impervious is comprised of the southern portion of a local residential road Sam Bass Drive adjacent to the intersection of Vollmer road. Runoff ($\mathrm{Q}_{5}=0.9 \mathrm{cfs}$, $\mathrm{Q}_{100}=1.7 \mathrm{cfs}$)from basin B 3 drains to design point 3B.

Basin B4 4.21 acres and 39\% percent impervious is comprised of single-family residential lots, a local residential road Wheatland Drive and a Cul de Sac . Runoff ($\mathrm{Q}_{5}=7.1 \mathrm{cfs}, \mathrm{Q}_{100}=16.8 \mathrm{cfs}$) from this basin drains to design point 4B.

Basin B5 1.75 acres and 58\% percent impervious is comprised of single-family residential lots, a residential road Wheatland Drive, and a Cul de Sac. Runoff ($\mathrm{Q}_{5}=4.3 \mathrm{cfs}, \mathrm{Q}_{100}=8.9 \mathrm{cfs}$)from basin B5 drains to design point 5B.

Basin B6 3.66 acres and 57\% percent impervious is comprised of single-family residential lots and a local residential roads Sam Bass Drive, Aspen Valley Road, Perry Owens Drive and Wheatland Drive. Runoff ($\mathrm{Q}_{5}=9.5 \mathrm{cfs}, \mathrm{Q}_{100}=19.9 \mathrm{cfs}$) from basin 6B drains to design point 6B. In total, the flow at design point 6 B collects flow from basins $\mathrm{B} 1, \mathrm{~B} 2, \mathrm{~B} 3, \mathrm{~B} 4$, and B 6 .

Basin B7 1.28 acres and 60% percent impervious is comprised of single-family lots, local roads and a Cul de Sac Robert Allison Circle. Runoff ($\mathrm{Q}_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=6.4 \mathrm{cfs}$) from basin B 7 drains to design point 7B in confluence with runoff from B 5 .

Basin B8 2.30 acres and 55\% percent impervious is comprised of single-family lots, local road and a Cul de Sac. Runoff ($\mathrm{Q}_{5}=5.1 \mathrm{cfs}, \mathrm{Q}_{100}=10.7 \mathrm{cfs}$) from basin B 8 drains to design point B 8 in confluence with runoff from basins B8, B7 and B5.

Basin B9 3.69 acres and 65% percent impervious is comprised of single-family lots, and an urban knuckle, and local roads Willey Picket Drive and Wheatland Drive. Runoff ($\mathrm{Q}_{5}=6.9 \mathrm{cfs}, \mathrm{Q}_{100}=14.8$ cfs) from Basin B 9 drains to design point 9 B in a 15 ' type R sump inlet. In total the runoff from the sump inlet collects runoff from basins B1, B2, B3, B4, B6 and B9.

Basin B10 0.22 acres and 80% percent impervious is comprised of the southeastern side of the local road Wheatland Drive. The runoff from this basin drains to design point $\mathrm{B} 10\left(\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=1.6\right.$ cfs) a 10' type R sump inlet. The total runoff at design point B10 collected at this site is from basins B5, B7, B8, and B10. The runoff will then ultimately go directly into the pond. In the event the inlet clogs in the 100 year event, runoff will over flow across the curb and gutter and spill directly into pond B.

Basin B11 1.65 acres and 15% percent impervious is comprised of pond B. Runoff $\left(\mathrm{Q}_{5}=0.9 \mathrm{cfs}\right.$, $\mathrm{Q}_{100}=3.7 \mathrm{cfs}$) generated in Basin B11 sheet flows into Pond B where it is treated for water-quality and is detained up until the 100 year-event. The UD Detention sheet for pond B is shown in Appendix C of this report.

Basin B12 is 2.40 Acres this basin is 40\% percent impervious and is comprised of single family walk out lots facing Sand Creek. The runoff $\left(\mathrm{Q}_{5}=1.5 \mathrm{cfs}, \mathrm{Q}_{100}=4.1 \mathrm{cfs}\right)$ from these lots is collected into area inlets. The runoff is then piped directly into pond B .

Pond B has a tributary area 27.86 acres and is 50.0 \% impervious. Pond B has been conceptually graded in to fit the design volume, as shown in Appendix C of this report. This pond will be built in phase 1 of Homestead North at Sterling Ranch. The pond B emergency overflow spillway will drain directly into Sand Creek. The WQCV, 5 year and 100 year volumes, releases rates and stages for pond B are shown in Table 2.2 below. These results correspond to the Routed Hydrograph results, as shown in Appendix C of this report.

	TABLE 2.2 Pond B			
	Stage -ft	Volume (Acres)	Release Rate (cfs)	
WQCV	3.13	0.483	0.2	
$\mathbf{5}$ Year	4.34	1.701	3.4	
$\mathbf{1 0 0}$ Year	5.09	3.019	25.4	

Basin C1 2.82 acres and 69% percent impervious is comprised of single-family lots, and the northwestern side of the local residential roads Texas Jack Drive and Harvey Logan Drive. Runoff $\left(\mathrm{Q}_{5}=5.4 \mathrm{cfs}, \mathrm{Q}_{100}=11.4 \mathrm{cfs}\right)$ from basin C 1 drains to design point 1C at Wheatland Drive.

Basin C2.1 0.20 acres and 91% percent impervious is comprised of single-family lots, and the north western side of the residential road Texas Jack Drive. Runoff ($\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=1.6 \mathrm{cfs}$) from basin C 2.1 drains to design point 2.1 C a 5 ' on grade type R inlet.

Basin C2.2 4.69 acres and 73% percent impervious is comprised of local roads, single-family lots, and the north western side of the residential road Wheatland Drive. Runoff $\left(\mathrm{Q}_{5}=9.9 \mathrm{cfs}, \mathrm{Q}_{100}=20.3\right.$ cfs) from basin C 2.2 drains to design point 2.2 C in confluence with bypass runoff from basin C 2.3 . The runoff ultimately drains to design point 4C a 20' type R sump inlet. The total runoff from basins $\mathrm{C} 1, \mathrm{C} 2.1, \mathrm{C} 2.2, \mathrm{C} 2.3$ and C 4.1 is collected within the sump inlet.

Basin C2.3 0.83 acres and 67% percent impervious is comprised of local roads Tom Ketchum Drive Jack Helm Drive and Harvey Logan Drive, single-family lots, and the north western side of the residential road Wheatland Drive. Runoff ($\mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=3.9 \mathrm{cfs}$) from basin C 2.3 drains to design point 2.3 C in confluence with runoff from basin C 1 at an on grade 15 ' Type R inlet.

Basin C3.1 0.35 acres and 73\% percent impervious is comprised of single-family lots, and the southeastern side of the residential road Wheatland Drive. Runoff ($\mathrm{Q}_{5}=1.2 \mathrm{cfs}, \mathrm{Q}_{100}=2.4 \mathrm{cfs}$) from basin C3.1 drains to design point 3.1C.

Basin C3.2 1.46 acres and 71% percent impervious is comprised of local roads, single-family lots, and the southeastern side of the residential road Wheatland Drive and Tom Ketchum Drive. Runoff $\left(\mathrm{Q}_{5}=3.6 \mathrm{cfs}, \mathrm{Q}_{100}=7.4 \mathrm{cfs}\right)$ from basin C 3.2 drains to design point 3.2C.

Basin C4.1 6.35 acres and 65% percent impervious is comprised of single-family lots, and the northwestern side of the local residential road Texas Jack Drive, a right in lane and Nat Love Drive. Runoff ($\mathrm{Q}_{5}=12.1 \mathrm{cfs}, \mathrm{Q}_{100}=25.9 \mathrm{cfs}$) from basin C 4.1 drains to design point 4 C a 20 ' type R sump inlet. The total runoff from basins $\mathrm{C} 1, \mathrm{C} 2.1, \mathrm{C} 2.2, \mathrm{C} 2.3$ and C 4.1 is collected within the sump inlet.

Basin C4.2 3.44 acres and 59\% percent impervious is comprised of a local road Texas Jack Drive and single-family lots. Runoff ($\mathrm{Q}_{5}=5.9 \mathrm{cfs}, \mathrm{Q}_{100}=13.3 \mathrm{cfs}$) from basin C 4.2 drains to design point 4.2C a 15' type R on grade inlet.

Basin C5 0.16 acres and 81% percent impervious is comprised of the northwestern side of a residential road Wheatland Drive. Runoff ($\mathrm{Q}_{5}=0.6 \mathrm{cfs}, \mathrm{Q}_{100}=1.0 \mathrm{cfs}$) from basin C 5 drains to design point 5C, a 5' type R sump inlet. Basin C5 collects runoff from basin C3.2 and C5. The runoff from basin C ultimately outfalls into pond C. In the event the inlet clogs at Basin C5 the runoff will overflow to pond C. An overflow path has been graded to ensure that the overflow path will go into pond C.

Basin C6 2.48 acres and 21% percent impervious is comprised of pond C and some single-family residential area. Runoff ($\mathrm{Q}_{5}=2.5 \mathrm{cfs}, \mathrm{Q}_{100}=8.8 \mathrm{cfs}$) generated in Basin B 11 sheet flows into Pond C where it is treated for water-quality and is detained up until the 100 year-event. The MHFD Detention sheet for pond C is shown in Appendix C of this report.

Pond C has a tributary area of 224.42 acres and is 10.3% impervious. Pond C has been conceptually graded in to fit the design volume, as shown in Appendix C of this report. This pond will be built in phase 1 of Homestead North at Sterling Ranch. The Pond C overflow emergency spillway will overflow into Sand Creek. The WQCV, 5 year and 100 year volumes, releases rates and stages for pond C are shown in Table 2.3 below. These results correspond to the Routed Hydrograph results, as shown in Appendix C of this report.

	TABLE 2.3 Pond C			
	Stage -ft	Volume (Acres)	Release Rate (cfs)	
WQCV	3.32	1.288	0.7	
$\mathbf{5}$ Year	6.22	4.310	20.6	
$\mathbf{1 0 0}$ Year	9.94	9.263	173.9	

The following basins are tributary to the adjacent portion of Vollmer Road being designed by JR Engineering. Runoff will be detained within pond C and the runoff will then be released into Sand Creek adjacent to the crossing of Briargate road and Sand Creek.

Basin D1 has a tributary area of 1.83 acres and is 39% impervious. Basin D1 consists of the northwest portion of Vollmer road (Rural Cross Section). Runoff from basin D1 ($\mathrm{Q}_{5}=241 \mathrm{cfs}$, $\mathrm{Q}_{100}=6.0 \mathrm{cfs}$) drains to an adjacent roadside swale and drains into a type C inlet at design point 1D. From here on the runoff is piped with upstream runoff from basin OS1 into the Vollmer storm sewer system.

Basin D2 has a tributary area of 1.77 acres and is 43% impervious. Basin D2 consists of the northeast portion of Vollmer road (Rural Cross Section). Runoff from basin D2 ($\mathrm{Q}_{5}=2.5 \mathrm{cfs}, \mathrm{Q}_{100}=6.1$ cfs) drains to an adjacent roadside swale and drains into a type C inlet at design point 2D. From here on the runoff is piped with upstream runoff from basin OS1and basin D1 into the Vollmer storm sewer system.

Basin D3 has a tributary area of 0.18 acres and is 68% impervious. Basin $\mathrm{D} 3\left(\mathrm{Q}_{5}=0.6 \mathrm{cfs}, \mathrm{Q}_{100}=1.2\right.$ cfs) consists of the northeast portion of Vollmer road. Runoff on from this basin drains to an on grade 5 ' type R inlet at DP 3D.

Basin D4 has a tributary area of 0.19 acres and is 57% impervious. Basin D4 ($\mathrm{Q}_{5}=0.5 \mathrm{cfs}, \mathrm{Q}_{100}=1.1$ cfs) consists of the northwest portion of Vollmer road. Runoff on from this basin drains to an on grade 5' type R inlet at D P4D. 0.3 cfs is by-passed down to DP 6D. Runoff is piped from basin(s) D3 and D4 to the Vollmer storm within the street's R.O.W.

Basin D5 has a tributary area of 0.91 Acres and is 77\% impervious. Basin D5 ($\mathrm{Q}_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=6.1$ cfs) consists of the northeast portion of Vollmer road. Runoff from this basin drains to an on grade type R 10^{\prime} inlet at the intersection of Vollmer and a right in right out at DP 5D, 0.7 cfs is by-passed downstream to design point D7 in the 100 year event.

Basin D6 has a tributary area of 0.83 Acres and is 69% impervious. Basin $\mathrm{D} 6\left(\mathrm{Q}_{5}=2.5 \mathrm{cfs}, \mathrm{Q}_{100}=5.2\right.$ cfs) consists of the northwestern portion of Vollmer road and the runoff drains into a 10' on grade type R inlet at DP 6D. 0.4 cfs is by-passed to the downstream design point D8 in the 100 yr event.

Basin D7 has a tributary area of 0.75 Acres and is 79\% impervious. Basin D7 ($\mathrm{Q}_{5}=2.8 \mathrm{cfs}, \mathrm{Q}_{100}=5.4$ cfs) consists of the northeast portion of Vollmer road. Runoff from this basin drains to an on grade type R 10 ' inlet at the intersection of Vollmer and Briargate at DP 7D. All of the runoff received by this inlet is captured within the 100 year event.

Basin D8 has a tributary area of 0.72 Acres and is 69% impervious. Basin D8 $\left(\mathrm{Q}_{5}=2.4 \mathrm{cfs}, \mathrm{Q}_{100}=4.8\right.$ cfs) consists of the northwestern portion of Vollmer road and the runoff drains into a 20 ' on grade type R inlet at DP 8D. 0.7 cfs is by-passed downstream and will drain into a roadside swale in continuity will the current condition.

Basin OS1 has a tributary area of 2.85 Acres and is 2% impervious. The runoff from basin OS1 $\left(\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=6.0 \mathrm{cfs}\right)$ drains into a depression adjacent to on the northwest portion of Vollmer road. The runoff from basin OS1 is captured in a type D inlet at DP o1, from there on runoff is piped within Vollmer road and outfalls into sand Creek.

Basin OS2 has a tributary area of 179.61 Acres and is 2% impervious. The runoff from the basin $\left(\mathrm{Q}_{5}=27.1 \mathrm{cfs}, \mathrm{Q}_{100}=190.9 \mathrm{cfs}\right)$ drains into a local depression at DP 2 o near the northwest portion of Vollmer road to a $6^{\prime} \mathrm{MH}$ w/ an overflow grate. The runoff from the basin is piped within Vollmer Road and outfalls directly into Sand Creek.

Basin OS3 has a tributary area of 11.99 Acres is 2.0% impervious. The runoff from this basin ($\mathrm{Q}_{5}=1.7 \mathrm{cfs}, \mathrm{Q}_{100}=12.6 \mathrm{cfs}$) sheet flows onto Vollmer road and is captured within a 20' type R inlet that is on grade and corresponds to design point 8 D .

Drainage Design Criteria

Development Criteria Reference

Storm drainage analysis and design criteria for this project were taken from the "City of Colorado Springs/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual" (CSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Table 3-1-hr Point Rainfall Data

Storm	Rainfall (in.)
5-year	1.50
100-year	2.52

Hydraulic Criteria

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site, and the UDFCD MHFD-Detention v4.03 spreadsheet was utilized for evaluating the proposed detention and water quality pond(s). Sump and on-grade inlets were sized using UDFCD UD-Inlet v2.07. Manning's equation was used to size storm pipes in the proposed condition at pipe junctions, as shown in Appendix C. "StormCAD will be used to model the proposed storm sewer system and to analyze the proposed HGL calculations for Construction Drawings, and will be included in the Final Drainage Report.

Include discussion on proposed/interim swales.
The Sand Creek improvements adjacent to the Sterling Ranch Homestead North are being designed in a separate report, The Final Design Report for Sand Creek Restoration by JR Engineering, October 2021. The general concept of the channel design is to design a low maintenance, high performance channel with a meandering bankfull channel. The design will cut in a new bankfull section offset to the east from the existing thalweg, grade up to the existing thalweg so that it can remain hydraulically connected to the new thalweg, and then extend a 1% flood terrace to the east between 80 and 120 ft . depending on shear stresses and velocities. The purpose of trying to keep the existing channel hydraulically connected to the new thalweg is to maintain as many existing wetlands as possible and satisfy the ACOE. The previous design in the Kiowa DBPS made no attempt to preserve wetlands in order to satisfy the County's design criteria, and was rejected by the ACOE. While the County's criteria are certainly a determining factor, we consider the need to satisfy the ACOE the highest priority, because without their approval JR won't be granted a 404 permit. The County review of the previous design by the Kiowa DBPS states that the maximum stable longitudinal slope of the channel is 0.17%. Using this longitudinal slope will require the use of at least 10 and possibly 15 GSB drop structures. This channel slope will also ensure the destruction of more wetlands by taking the existing ones offline due to large changes in elevation. JR Engineering's intent to prove that a steeper slope can remain stable long term, thus allowing us to preserve more wetlands and appease the ACOE, a work map for The Final Design Report for Sand Creek Restoration by JR Engineering has been provided for information in Appendix E.

Drainage Facility Design

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1 - Reducing Runoff Volumes: The Homestead North at Sterling Ranch development project consists single -family homes with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 - Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be due at time of platting. These funds will be used for the channel stabilization being designed by JR Engineering adjacent to the site and on future projects within the basin to stabilize drainageways. The Soils and Geology study on the site showed a potentially unstable region directly adjacent to the western bank of Sand Creek on the northeast corner of the site. At the time of final design, specifications from a Geotechnical Engineer will be implemented to ensure that the developed site is safe. Homestead North lots will discharge into Full Spectrum Detention Ponds, and outflows will be less than or equal to historic flows. Existing flows from the northwest of Vollmer road and runoff from the Vollmer Road improvements will be piped under Vollmer Road and then along the north side of Briargate Parkway and will be detained and treated for water quality directly on-site. The subdivision improvement agreement (SIA) for Sterling Ranch Filing 1 states that "bank stabilization of the Sand Creek channel shall be required prior to any replats of other final plats adjacent to the channel. The design and installation of said improvements shall be accomplished and guaranteed through the normal subdivision review and collateralization process." Additionally, "Other drainage improvements in Tract D and future tracts containing the Sand Creek Channel, such as drop structures, check structures and similar stabilization or protection improvements, will be designed and constructed by the District with the final construction drawings to be approved by the County no later than the final platting of the $700^{\text {th }}$ single family lot within the boundaries of the approved Sterling Ranch Sketch Plan and the completion of all said improvements no later than the $800^{\text {th }}$ single family lot with the boundaries of the approved Sterling Ranch Sketch Plan."

Step 3 - Treat the WQCV: Water Quality treatment for this site is provided in three proposed full spectrum water quality detention ponds: Pond A, B, and Pond C. The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A
trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the ponds will be reduced to less than historic rates.

Step 4 - Consider Need for Industrial and Commercial BMPs: There are no commercial or industrial components to this development; therefore no BMPs of this nature are required. BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. The site is a residential subdivision (ie: not a high-risk site per Figure I-1 in ECM Appendix I), therefore specialized BMPs do not need to be considered. Site specific temporary source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc. The permanent erosion control BMPs include asphalt drives and parking, storm inlets and storm pipe, three full spectrum water quality and detention ponds, and permanent vegetation.

Water Quality

The site is split into three major basins A, B, and C. Each major basin is serviced by an extended full spectrum water quality / detention pond. For this preliminary drainage report the design points, pipes and inlets are discussed in the Proposed Drainage Conditions section of this report. The corresponding design points, pipes and basin are shown within the Proposed Drainage Map within Appendix D. All the ponds have been designed per Section 13.3.2.1 of Resolution 15-042 of the El Paso County Drainage Criteria Manual. For additional information on pond storage and outlet characteristics see the MHFD sheets within Appendix C.

Erosion Control Plan

We respectfully request that the Erosion Control Plan and Cost Estimate be submitted in conjunction with the grading and erosion control plan and construction assurances posted prior to obtaining a grading permit.

Operation \& Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The property owner shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Access is provided from onsite facilities and easements for proposed infrastructure located offsite. We respectfully request that the Operation \& Maintenance Manual be submitted in conjunction with the construction documents, prior to obtaining a grading permit.

Drainage and Bridge Fees

The site lies within the Sand Creek Drainage Basin. Anticipated drainage and bridge fees will be provided at time of final drainage report and will be due at time of platting (depending on date of plat submittal):

Summary

Do you want to state that construction of the adjacent channel and bridge is anticipated to offset fees?

The proposed Homestead North at Sterling Ranch drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development's ponds are designed to release less than 90% of the predeveloped runoff study associated with the subject site. The proposed development will not adversely affect the offsite drainageways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements.

References

1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I \& II".
2. El Paso County ECM, 2019
3. El Paso County DCM Vol. 1 Update, 2015
4. Urban Storm Drainage Criteria Manual (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
5. Upper Sand Creek Detention Evaluation Study, Wilson and Company'
6. Final Drainage Report For Retreat at Timberridge Filing No. 1, Classic Consulting Engineers \& Surveyors
7. Sand Creek Drainage Basin Planning Study, Stantec, January 2021
8. Sand Creek Channel Design Report JR Engineering, October 2021- Draft

Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map

MAP LEGEND

Area of Interest (AOI)	\square	C
\square Area of Interest (AOI)	\square	C/D
Soils \square		
Soil Rating Polygons \square		
$\square \mathrm{A}$	\square	Not rated or not available
A/D	Water Fe	ures
	\sim	Streams and Canals
B		
	Transpo	tion
B/D	H+	Rails
C	-	Interstate Highways
C/D	-	US Routes
D	\approx	Major Roads
Not rated or not available	\cdots	Local Roads
Soil Rating Lines	Backgro	
\cdots A		Aerial Photography
\cdots A/D		
\cdots		
\cdots B/D		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \quad \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
$\square \mathrm{B} / \mathrm{D}$		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required
This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
Soil Survey Area: El Paso County Area, Colorado
Survey Area Data: Version 17, Sep 13, 2019
Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 8, 2018-May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI	
71	Pring coarse sandy loam, 3 to 8 percent slopes	B	90.2	100.0%	
Totals for Area of Interest		$\mathbf{9 0 . 2}$	$\mathbf{1 0 0 . 0 \%}$		

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

Appendix B Hydrologic Calculations

COM POSITE \% IM PERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

Existing Conditions Homestead Fil. 3 El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By: \qquad
Date: $1 / 4 / 22$

Basin ID	Total Area (ac)	Streets/ Paved (100\% Impervious)				Residential (45\%-65\% Impervious)				Lawns (2\% Impervious)				Basins Total Weighted C Values		Basins Total Weighted \% Imp.
		C_{5}	C_{100}	Area (ac)	$\begin{gathered} \text { Weighted } \\ \text { \% Imp. } \\ \hline \end{gathered}$	C_{5}	C_{100}	Area (ac)	Weighted \% Imp.	C_{5}	C_{100}	Area (ac)	$\begin{gathered} \text { Weighted } \\ \text { \% Imp. } \\ \hline \end{gathered}$			
E-1	4.50	0.90	0.96	0.31	6.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	4.19	1.9\%	0.14	0.39	8.7\%
E-2	180.30	0.90	0.96	1.46	0.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	178.84	2.0\%	0.09	0.35	2.8\%
E-3	12.39	0.90	0.96	0.31	2.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	12.08	2.0\%	0.10	0.37	4.4\%
E-4	70.90	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	70.90	2.0\%	0.08	0.35	2.0\%
E-5	18.80	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	18.80	2.0\%	0.08	0.35	2.0\%
E6.1	124.90	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	124.90	2.0\%	0.08	0.35	2.0\%
E6.2	49.61	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	49.61	2.0\%	0.08	0.35	2.0\%
H1	45.20	0.90	0.96	0.38	0.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	44.82	2.0\%	0.09	0.36	2.8\%
H2	16.10	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	16.10	2.0\%	0.08	0.35	2.0\%
H3	28.40	0.90	0.96	0.22	0.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	28.18	2.0\%	0.09	0.35	2.7\%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Existing Conditions Homestead Fil. 3 Location: El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date: $1 / 4 / 22$

SUB-BASIN						INITIAL/ OVERLAND			TRAVELTIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right)$			$\left(\mathrm{T}_{\mathrm{t}}\right.$)					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \text { ID } \end{gathered}$	D.A. (ac)	Hydrologic Soils Group	Impervious (\%)	C_{5}	C_{100}	L (ft)	$\begin{aligned} & \hline \mathbf{S}_{\mathbf{o}} \\ & \text { (\%) } \\ & \hline \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \end{gathered}$	L_{t} (ft)	$\begin{aligned} & S_{t} \\ & (\%) \end{aligned}$	K	VEL. (ft/s)	$\begin{gathered} t_{t} \\ (\min) \end{gathered}$	$\begin{gathered} \hline \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\min) \\ \hline \end{gathered}$	TOTAL LENGTH (ft)	$\begin{gathered} \hline \text { Urbanized } \mathbf{t}_{\mathbf{c}} \\ (\min) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \end{gathered}$
E-1	4.50	B	9\%	0.14	0.39	600	1.0\%	42.6	3006	4.1\%	7.0	3.2	15.7	58.3	3606.0	48.7	48.7
E-2	180.30	B	3\%	0.09	0.35	300	1.0\%	31.7	3007	1.7\%	7.0	3.2	15.7	47.4	3307.0	66.1	47.4
E-3	12.39	B	4\%	0.10	0.37	300	1.0\%	31.3	3008	1.8\%	7.0	3.2	15.7	46.9	3308.0	64.3	46.9
E-4	70.90	B	2\%	0.08	0.35	500	1.0\%	41.2	2300	3.1\%	7.0	4.2	9.1	50.3	2800.0	49.0	49.0
E-5	18.80	B	2\%	0.08	0.35	300	1.0\%	31.9	930	1.5\%	7.0	5.2	3.0	34.9	1230.0	39.3	34.9
E6.1	124.90	B	2\%	0.08	0.35	500	1.0\%	41.2	2584	1.9\%	7.0	6.2	6.9	48.1	3084.0	59.4	48.1
E6.2	49.61	B	2\%	0.08	0.35	370	1.0\%	35.4	3783	2.5\%	7.0	7.2	8.8	44.2	4153.2	68.6	44.2
H1	45.20	B	3\%	0.09	0.36	150	2.0\%	17.8	1074	2.3\%	7.0	1.1	16.9	34.7	1224.0	38.1	34.7
H2	16.10	B	2\%	0.08	0.35	150	2.0\%	17.9	425	2.0\%	7.0	1.0	7.2	25.1	575.0	31.1	25.1
H3	28.40	B	3\%	0.09	0.35	150	1.4\%	20.3	645	1.9\%	7.0	1.0	11.1	31.3	795.0	33.8	31.3

NOTES:

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Existing Conditions Homestead Fil. 3 Location: El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date: 1/4/22

SUB-BASIN						INITIAL/ OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right)$			$\left(\mathrm{T}_{\mathrm{t}}\right)$					(URBANIZED BASINS)			
BASIN ID	D.A. (ac)	Hydrologic Soils Group	Impervious (\%)	C_{5}	C_{100}	L (ft)	$\begin{gathered} \hline \mathbf{S}_{\mathbf{o}} \\ (\%) \\ \hline \hline \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \end{gathered}$	L_{t} (ft)	$\begin{gathered} \mathbf{S}_{\mathbf{t}} \\ (\%) \\ \hline \end{gathered}$	K	VEL. (ft/s)	$\begin{gathered} t_{t} \\ (\min) \end{gathered}$	$\begin{gathered} \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{gathered}$	TOTAL LENGTH (ft)	$\begin{gathered} \text { Urbanized } \mathbf{t}_{\mathbf{c}} \\ \quad(\min) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{gathered}$

Use a minimum t_{c} value of 5 minutes for urbanized areas and a minimum t_{c} value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN
(RATIONAL M ETHOD PROCEDURE)
Project Name: Homestead North
Project No.: 25188.00
Subdivision: Existing Conditions Homestead Fil. 3
Calculated By: AR
Checked By:
Date: $\overline{1 / 4 / 22}$

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Subdivision: Existing Conditions Homestead Fil. 3 Location: El Paso County
Design Storm: 5-Year
Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date: $\overline{1 / 4 / 22}$

STREET	는00000	DIRECT RUNOFF							TOTAL RUNOFF				STREET/ SWALE			PIPE				TRAVEL TIME			
		Q ¢ ¢ 0 0			¢		$\begin{aligned} & \text { In } \\ & \hline \end{aligned}$	$\begin{gathered} \frac{n}{4} \\ 0 \\ 0 \end{gathered}$			$\xrightarrow{\text { E }}$	$\begin{gathered} \frac{\pi}{4} \\ 0 \\ \hline \end{gathered}$			$\begin{aligned} & \text { So } \\ & 0 \\ & 0 . \\ & \text { on } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{y}{n}_{4}^{6} \\ & 0^{\frac{0}{2}} \\ & \hline 0 \end{aligned}$					π 4 4 $\frac{0}{2}$ 0 0	$\underset{ \pm}{\widehat{\xi}}$	REM ARKS

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Subdivision: Existing Conditions Homestead Fil. 3
Location: El Paso County
Design Storm: 100 -Year

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By
Date: 1 14/22

Description		DIRECT RUNOFF							TOTAL RUNOFF				STREET/ SWALE			PIPE				TRAVEL TIME			
		$\begin{aligned} & \text { @ } \\ & \text { W } \\ & \text { © } \\ & \hline \end{aligned}$			$\stackrel{\overparen{C}}{\underline{E}}$	$$	$\underset{y}{\text { I }}$	$\begin{gathered} \frac{\pi}{4} \\ 0 \end{gathered}$			$\underset{\substack{\text { IN }}}{\text { In }}$	$\frac{\stackrel{n}{4}}{0}$				$\begin{aligned} & \frac{\pi}{0} \\ & \underbrace{0} \\ & 0^{\frac{0}{2}} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{0} \\ & \stackrel{\rightharpoonup}{4} \\ & \hline \end{aligned}$			E E E	$\begin{aligned} & \frac{\pi}{2} \\ & 4 \\ & \frac{1}{\lambda} \\ & 0 \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\xrightarrow{\text { ¢ }}$	REM ARKS
	10	E-1	4.50	0.39	48.7	1.76	2.94	5.2															
	1h	H1	45.20	0.36	34.7	16.05	3.80	61.0	48.7	17.81	2.94	52.4											Drains to swale H1 and E1
	2h	H2	16.10	0.35	25.1	5.64	4.61	26.0	48.7	23.45	2.94	69.0											Accepts runoff from H1, H2 and E-1
	20	E-2	180.30	0.35	47.4	64.00	3.01	192.9															
	3h	H3	28.40	0.35	31.3	10.07	4.05	40.8	47.4	74.07	3.01	223.2											Total Runoff; E-2 and H3
	30	E-3	12.39	0.37	46.9	4.52	3.04	13.7															Runoff: E-3 Runoff in Vollmer rd side swale
	40	E-4	70.90	0.35	49.0	24.82	2.93	72.7															
	50	E-5	18.80	0.35	34.9	6.58	3.78	24.9	49.0	31.40	2.93	92.0											Total Runoff; E-4 and E-5
	6.20	E6.2	49.61	0.35	44.2	17.36	3.19	55.4															To low point
	6.10	E6.1	124.90	0.35	48.1	43.72	2.97	130.0	49.0	92.48	2.93	270.9											Total Runoff E-6, E-4, E-5 Runoff makes it's way into sand creek

Notes.
Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

COM POSITE \% IM PERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:	Homestead Fil. 3 - Interim Condition
Location:	El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: AR
Checked By: \qquad
Date: 1/4/21

Basin ID	Total Area (ac)	Streets/ Paved (100\% Impervious)				Residential (45\%-65\% Impervious)				Lawns (2\% Impervious)				Basins Total Weighted C Values		Basins Total Weighted \% Imp.
		C_{5}	C_{100}	Area (ac)	$\begin{gathered} \text { Weighted } \\ \text { \% Imp. } \\ \hline \end{gathered}$	C_{5}	C_{100}	Area (ac)	Weighted \% Imp.	C_{5}	C_{100}	Area (ac)	Weighted \% Imp.			
C-1	22.30	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	22.30	2.0\%	0.08	0.35	2.0\%
C-2	2.67	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	2.67	2.0\%	0.08	0.35	2.0\%
D	17.29	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	17.29	2.0\%	0.08	0.35	2.0\%
OS	124.20	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	124.20	2.0\%	0.08	0.35	2.0\%
0-S1	5.51	0.90	0.96	0.09	1.6\%	0.45	0.59	0.00	0.0\%	0.08	0.35	5.42	2.0\%	0.09	0.36	3.6\%
0-S2	180.30	0.90	0.96	1.46	0.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	178.84	2.0\%	0.09	0.35	2.8\%
0-S3	1.16	0.90	0.96	0.19	16.4\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.97	1.7\%	0.21	0.45	18.1\%
0-S4	67.77	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	67.77	2.0\%	0.08	0.35	2.0\%
0-S5	6.18	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	6.18	2.0\%	0.08	0.35	2.0\%
0-S6	35.25	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	35.25	2.0\%	0.08	0.35	2.0\%
0-S7	17.36	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	17.36	2.0\%	0.08	0.35	2.0\%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Homestead Fil. 3 - Interim Condition Location: El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date: $\overline{1 / 4 / 21}$

SUB-BASIN						INITIAL/ OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right)$			(t_{t})					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \end{aligned}$	Hydrologic Soils Group	Impervious (\%)	C5	C_{100}	$\begin{gathered} \hline \mathbf{L} \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \hline \mathbf{S} \\ & \text { (\%) } \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\mathrm{min}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{L}_{\mathrm{t}} \\ & \mathrm{ft}) \\ & \hline \end{aligned}$	$\begin{gathered} \hline \mathbf{S}_{\mathbf{t}} \\ (\%) \\ \hline \hline \end{gathered}$	K	$\begin{aligned} & \hline \text { VEL. } \\ & \text { (} \mathrm{ft} / \mathrm{s} \text {) } \\ & \hline \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\mathrm{min}) \end{gathered}$	COMP. t_{c} (min)	TOTAL LENGTH (ft)	$\begin{array}{\|c\|} \hline \text { Urbanized } \mathbf{t}_{\mathrm{c}} \\ (\min) \end{array}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{gathered}$
C-1	22.30	B	2\%	0.08	0.35	150	2.0\%	17.9	1378	2.2\%	7.0	1.0	22.1	40.1	1528.0	42.3	40.1
C-2	2.66	B	2\%	0.08	0.35	30	2.0\%	8.0	1000	2.0\%	7.0	1.0	16.8	24.9	1030.0	38.4	24.9
D	17.29	B	2\%	0.08	0.35	30	2.0\%	8.0	6925	14.0\%	7.0	2.6	44.1	52.1	6955.0	58.9	52.1
OS	124.20	B	2\%	0.08	0.35	600	2.0\%	35.9	2899.91	1.8\%	7.0	0.9	51.5	87.4	3499.9	64.5	64.5
0-S1	5.51	B	4\%	0.09	0.36	300	1.5\%	27.5	999	2.5\%	7.0	1.1	15.0	42.6	1299.0	36.5	36.5
0-S2	180.30	B	3\%	0.09	0.35	300	1.0\%	31.7	3007	1.7\%	7.0	3.2	15.7	47.4	3307.0	66.1	47.4
0-S3	1.16	B	18\%	0.21	0.45	30	2.0\%	7.0	580	3.9\%	7.0	1.4	7.0	14.0	610.0	27.2	14.0
0-54	67.77	B	2\%	0.08	0.35	500	1.0\%	41.2	645	1.9\%	7.0	1.0	11.1	52.3	1145.0	34.0	34.0
0-55	6.18	B	2\%	0.08	0.35	300	1.5\%	27.9	400	2.0\%	7.0	1.0	6.7	34.6	700.0	30.7	30.7
0-56	35.25	B	2\%	0.08	0.35	300	2.0\%	25.4	1700	2.9\%	7.0	7.2	3.9	29.3	2000.0	43.6	29.3
0-57	17.36	B	2\%	0.08	0.35	300	2.0\%	25.4	2053	2.4\%	7.0	8.2	4.2	29.5	2353.0	49.5	29.5

NOTES:

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Homestead Fil. 3 - Interim Condition Location: El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date: 1/4/21

SUB-BASIN						INITIAL/ OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right)$			$\left(\mathrm{T}_{\mathrm{t}}\right)$					(URBANIZED BASINS)			
BASIN ID	D.A. (ac)	Hydrologic Soils Group	Impervious (\%)	C_{5}	C_{100}	L (ft)	$\begin{gathered} \hline \mathbf{S}_{\mathbf{o}} \\ (\%) \\ \hline \hline \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \end{gathered}$	L_{t} (ft)	$\begin{gathered} \mathbf{S}_{\mathbf{t}} \\ (\%) \\ \hline \end{gathered}$	K	VEL. (ft/s)	$\begin{gathered} t_{t} \\ (\min) \end{gathered}$	$\begin{gathered} \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{gathered}$	TOTAL LENGTH (ft)	$\begin{gathered} \text { Urbanized } \mathbf{t}_{\mathbf{c}} \\ \quad(\min) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{gathered}$

Use a minimum t_{c} value of 5 minutes for urbanized areas and a minimum t_{c} value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentation

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONALM ETHOD PROCEDURE)

[^0]
STANDARD FORM SF-3

(RATIONAL M ETHOD PROCEDURE)

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONALMETHOD PROCEDURE)

Street and Pipe $\mathrm{C}^{*} \mathrm{~A}$ values are determined by Q / i using the catchment's intensity value.
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

Subdivision:
Location:
Loc

Basin ID	Total Area (ac)	Streets/ Paved (100\% Impervious)				Residential (45\%-65\% Impervious)				Lawns (2\%\%mpervious)				Basins Total Weighted C Values		Basins Total Weighted \% Imp.
		c_{5}	C_{10}	Area (ac)	Weighted	c_{5}	c_{10}	Area	Weighted	c_{5}	C_{100}	Area	Weighted			
A1	3.67	0.90	0.96	0.82	22.4\%	0.45	0.59	2.41	29.5\%	0.08	0.35	0.44	0.2\%	0.51	0.64	52.2\%
A2	3.27	0.90	0.96	0.84	25.6\%	0.45	0.59	2.19	30.1\%	0.08	0.35	0.24	0.1\%	0.54	0.67	55.9\%
A3	4.79	0.90	0.96	0.79	16.4\%	0.45	0.59	3.56	33.4\%	0.08	0.35	0.45	0.2\%	0.49	0.63	50.0\%
A4	3.95	0.90	0.96	0.77	19.6\%	0.45	0.59	2.99	34.1\%	0.08	0.35	0.18	0.1\%	0.52	0.65	53.8\%
A5	5.43	0.90	0.96	0.67	12.4\%	0.45	0.59	4.47	37.0\%	0.08	0.35	0.29	0.1\%	0.49	0.62	49.5\%
A6	3.94	0.90	0.96	0.67	17.1\%	0.45	0.59	3.17	36.2\%	0.08	0.35	0.09	0.0\%	0.52	0.65	53.4\%
A7	1.97	0.90	0.96	0.22	11.0\%	0.45	0.59	0.12	2.7\%	0.08	0.35	1.63	1.7\%	0.19	0.43	15.4\%
A8	0.46	0.90	0.96	0.21	45.6\%	0.45	0.59	0.05	5.4\%	0.08	0.35	0.20	0.8\%	0.50	0.66	51.8\%
A9	2.78	0.90	0.96	0.00	0.0\%	0.45	0.59	0.93	15.1\%	0.08	0.35	1.85	1.3\%	0.20	0.43	16.4\%
Pond A	30.26															46.5\%
B1.	3.36	0.90	0.96	0.48	14.2\%	0.45	0.59	2.29	30.7\%	0.08	0.35	0.59	0.4\%	0.45	0.60	45.2\%
B1.2	1.81	0.90	0.96	0.32	17.9\%	0.45	0.59	1.43	35.5\%	0.08	0.35	0.06	0.1	0.52	0.65	53.5\%
B1.3	0.47	0.90	0.96	0.20	41.4\%	0.45	0.59	0.05	5.0\%	0.08	0.35	0.22	0.9	0.4	0.6	47.4\%
B2	0.82	0.90	0.96	0.33	40.2\%	0.45	0.59	0.32	17.3\%	0.08	0.35	0.17	0.4\%	0.55	0.69	5.9\%
B3	0.24	0.90	0.96	0.19	7\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.05	0.4\%	0.73	0.83	79.1\%
B4	4.21	0.90	0.96	0.46	\%\%	0.45	0.59	2.63	28.1	0.08	0.35	1.13	0.5\%	0.40	0.57	39.4\%
B5	1.75	0.90	0.96	0.44	25.1\%	0.45	0.59	1.26	32.4\%	0.08	0.35	0.05	0.1\%	0.55	0.6	57.5\%
B6	3.66	0.90	0.96	1.25	\%	0.45	0.59	1.85	22.8\%	0.08	0.35	0.55	0.3\%	0.55	0.68	57.3\%
B7	1.28	0.90	0.96	0.38	\%	0.45	0.59	0.84	29.5\%	0.08	0.35	0.06	0.1\%	0.57	0.69	59.6\%
B8	2.30	0.90	96	0.53	22.9\%	0.45	0.59	1.63	31.9\%	0.08	0.35	0.14	0.19	0.53	0.6	54.9\%
в9	3.69	0.90	0.96	0.80	21.7\%	0.45	0.59	2.43	42.7\%	0.08	0.35	0.47	0.3\%	0.50	0.64	64.6\%
B10	0.22	0.90	0.96	0.18	79.1\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.05	0.4	0.73	0.8	79.5\%
811	1.65	61.50	0.96	0.00	0.0\%	0.45	0.59	0.35	13.7\%	0.08	0.35	1.30	1.6\%	0.16	0.4	15.2\%
812	2.40	0.90	0.96	0.00	0.0\%	0.45	0.59	1.45	39.3\%	0.08	0.35	0.95	0.8\%	0.30	0.5	40.1\%
Pond B	27.86															50.0\%
Cl	2.82	0.90	0.96	0.49	17.2\%	0.45	0.59	2.25	51.7\%	0.08	0.35	0.09	0.1\%	0.52	0.65	69.0\%
C2. 1	0.20	0.90	0.96	0.18	90.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.02	0.2\%	0.82	0.90	90.7\%
C2.2	4.69	0.90	0.96	1.26	26.9\%	0.45	0.59	3.33	46.1\%	0.08	0.35	0.10	0.0\%	0.56	0.68	73.0\%
C2.3	0.83	0.90	0.96	0.28	34.1\%	0.45	0.59	0.41	32.4\%	0.08	0.35	0.13	0.3\%	0.54	0.68	66.9\%
C3. 1	0.35	0.90	0.96	0.25	72.8\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.09	0.5\%	0.68	0.79	73.3\%
C3.2	1.46	0.90	0.96	0.42	28.4\%	0.45	0.59	0.96	42.8\%	0.08	0.35	0.08	0.1\%	0.56	0.68	71.3\%
C4.1	6.35	0.90	0.96	1.04	16.4\%	0.45	0.59	4.76	48.8\%	0.08	0.35	0.54	0.2\%	0.49	0.63	65.4\%
C4.2	3.44	0.90	0.96	0.59	17.1\%	0.45	0.59	2.20	41.6\%	0.08	0.35	0.65	0.4\%	0.46	0.61	59.1\%
C5	0.16	0.90	0.96	0.13	80.9\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.03	0.4\%	0.74	0.84	81.3\%
c6	2.48	0.90	0.96	0.27	11.0\%	0.45	0.59	0.32	8.5\%	0.08	0.35	1.89	1.5\%	0.22	0.45	21.0\%
D1	1.83	0.90	0.96	0.69	37.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	1.14	1.2\%	0.39	0.58	38.8\%
D2	1.77	0.90	0.96	0.75	42.1\%	0.45	0.59	0.00	0.0\%	0.08	0.35	1.02	1.2\%	0.43	0.61	43.3\%
D3	0.18	0.90	0.96	0.12	67.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.06	0.7\%	0.63	0.76	67.6\%
D4	0.19	0.90	0.96	0.11	56.6\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.08	0.9\%	0.54	0.70	57.5\%
D5	0.91	0.90	0.96	0.70	76.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.21	0.5\%	0.71	0.82	77.0\%
D6	0.83	0.90	0.96	0.57	68.4\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.26	0.6\%	0.64	0.77	69.0\%
D7	0.75	0.90	0.96	0.59	78.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.16	0.4\%	0.72	0.83	78.9\%
D8	0.72	0.90	0.96	0.49	68.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	0.23	0.6\%	0.64	0.77	69.1\%
Offfite Basins																
OS1	2.85	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	2.85	2.0\%	0.08	0.35	2.0\%
052	179.61	0.90	0.96	0.91	0.5\%	0.45	0.59	0.00	0.0\%	0.08	0.35	178.71	2.0\%	0.08	0.35	2.5\%
053	11.99	0.90	0.96	0.00	0.0\%	0.45	0.59	0.00	0.0\%	0.08	0.35	11.99	2.0\%	0.08	0.35	2.0\%
Pond C	224.42															10.3\%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Homestead North - Proposed Conditions Location: El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date: 1/6/22

SUB-BASIN						INITIAL/ OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right.$)			$\left(\mathrm{T}_{\mathrm{t}}\right.$)					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \hline \text { ID } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \end{aligned}$	Hydrologic Soils Group	Impervious (\%)	C5	C_{100}	L (ft)	$\begin{aligned} & \hline \mathbf{S}_{\mathbf{o}} \\ & (\%) \\ & \hline \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \\ \hline \end{gathered}$	$\begin{aligned} & \mathbf{L}_{\mathrm{t}} \\ & \mathrm{ft}) \end{aligned}$	$\begin{aligned} & \hline \mathbf{S}_{\mathrm{t}} \\ & (\%) \\ & \hline \hline \end{aligned}$	K	VEL. (ft / s)	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\min) \\ \hline \end{gathered}$	COMP. t_{c} (min)	TOTAL LENGTH (ft)	$\begin{array}{\|c} \hline \begin{array}{c} \text { Urbanized } \mathbf{t}_{\mathbf{c}} \\ (\min) \end{array} \\ \hline \hline \end{array}$	$\begin{gathered} \hline \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \\ \hline \end{gathered}$
A1	3.67	B	52\%	0.51	0.64	150	2.0\%	10.4	589	3.0\%	20.0	3.5	2.8	13.3	739.0	20.6	13.3
A2	3.27	B	56\%	0.54	0.67	150	2.0\%	9.9	595	1.6\%	20.0	2.5	3.9	13.8	745.0	21.2	13.8
A3	4.79	B	50\%	0.49	0.63	150	2.0\%	10.7	645	2.9\%	20.0	3.4	3.2	13.9	795.0	21.5	13.9
A4	3.95	B	54\%	0.52	0.65	150	2.0\%	10.2	653	1.9\%	20.0	2.7	4.0	14.2	803.0	21.7	14.2
A5	5.43	B	50\%	0.49	0.62	187	7.0\%	8.0	531	2.1\%	20.0	2.9	3.1	11.1	718.0	21.5	11.1
A6	3.94	B	53\%	0.52	0.65	230	4.5\%	9.7	435	1.6\%	20.0	2.6	2.8	12.5	665.0	20.4	12.5
A7	1.97	B	15\%	0.19	0.43	240	4.9\%	15.1	125	0.6\%	20.0	1.5	1.4	16.5	365.0	25.9	16.5
A8	0.46	B	52\%	0.50	0.66	9.5	2.0\%	2.7	230	1.9\%	20.0	2.8	1.4	4.1	239.5	18.9	5.0
A9	2.78	B	16\%	0.20	0.43	30	2.0\%	7.0	535	0.5\%	20.0	1.4	6.3	13.4	565.0	34.4	13.4
B1.1	3.36	B	45\%	0.45	0.60	125	2.0\%	10.5	610	3.1\%	20.0	3.5	2.9	13.4	735.0	22.1	13.4
B1.2	1.81	B	54\%	0.52	0.65	150	2.0\%	10.2	577	3.4\%	20.0	3.7	2.6	12.8	727.0	20.1	12.8
B1.3	0.47	B	47\%	0.46	0.63	50	2.0\%	6.5	270	2.0\%	20.0	2.8	1.6	8.1	320.0	20.0	8.1
B2	0.82	B	58\%	0.55	0.69	9.5	2.0\%	2.4	368	3.4\%	20.0	3.7	1.7	4.1	377.5	18.1	5.0
B3	0.24	B	79\%	0.73	0.83	9.5	2.0\%	1.7	360	3.7\%	20.0	3.9	1.6	3.2	369.5	14.1	5.0
B4	4.21	B	39\%	0.40	0.57	25	2.0\%	5.0	680	1.6\%	20.0	2.5	4.5	9.5	705.0	25.5	9.5
B5	1.75	B	58\%	0.55	0.68	25	2.0\%	3.9	590	1.6\%	20.0	2.6	3.8	7.8	615.0	20.7	7.8
B6	3.66	B	57\%	0.55	0.68	9.5	2.0\%	2.4	855	3.0\%	20.0	3.5	4.1	6.6	864.5	21.1	6.6
B7	1.28	B	60\%	0.57	0.69	50	1.0\%	6.8	315	1.5\%	20.0	2.4	2.1	8.9	365.0	18.3	8.9
B8	2.30	B	55\%	0.53	0.66	50	1.0\%	7.3	280	1.0\%	20.0	2.0	2.4	9.6	330.0	19.5	9.6
B9	3.69	B	65\%	0.50	0.64	140	2.0\%	10.2	600	2.9\%	20.0	3.4	2.9	13.1	740.0	18.3	13.1
B10	0.22	B	80\%	0.73	0.83	9.5	2.0\%	1.6	200	0.5\%	20.0	1.4	2.4	4.1	209.5	14.9	5.0
B11	1.65	B	15\%	0.16	0.40	30	2.0\%	7.4	250	0.1\%	20.0	0.4	9.3	16.7	280.0	40.1	16.7
B12	2.40	B	40\%	0.30	0.50	30	2.0\%	6.3	900	0.1\%	20.0	0.4	33.5	39.8	930.0	65.1	39.8
Cl	2.82	B	69\%	0.52	0.65	130	2.0\%	9.6	690	2.6\%	20.0	3.2	3.6	13.1	820.0	18.1	13.1
C2.1	0.20	B	91\%	0.82	0.90	7.5	2.0\%	1.1	300	1.0\%	20.0	2.0	2.5	3.6	307.5	12.9	5.0
C2.2	4.69	B	73\%	0.56	0.68	150	2.0\%	9.5	630	2.5\%	20.0	3.2	3.3	12.8	780.0	17.0	12.8
C2.3	0.83	B	67\%	0.54	0.68	100	2.0\%	8.0	462	3.3\%	20.0	3.6	2.1	10.1	562.0	16.9	10.1

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Homestead North - Proposed Conditions Location: El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date: $\overline{1 / 6 / 22}$

SUB-BASIN						INITIAL/ OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right.$)			(t_{t})					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \hline \text { ID } \\ \hline \hline \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & (\mathrm{ac}) \\ & \hline \end{aligned}$	Hydrologic Soils Group	Impervious (\%)	C_{5}	C_{100}	L (ft)	$\begin{aligned} & \hline \mathbf{S}_{\mathbf{o}} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \\ \hline \end{gathered}$	L_{t} (ft)	$\begin{aligned} & \hline \mathbf{S}_{\mathrm{t}} \\ & (\%) \\ & \hline \hline \end{aligned}$	K	VEL. (ft/s)	$\begin{gathered} \hline \mathbf{t}_{\mathbf{t}} \\ (\mathrm{min}) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \\ \hline \end{array}$	TOTAL LENGTH (ft)	$\begin{array}{c\|} \hline \text { Urbanized } \mathbf{t}_{\mathrm{c}} \\ (\min) \end{array}$	$\begin{gathered} \hline \mathbf{t}_{\mathbf{c}} \\ (\min) \\ \hline \end{gathered}$
C3.1	0.35	B	73\%	0.68	0.79	9.5	2.0\%	1.9	460	2.6\%	20.0	3.2	2.4	4.2	469.5	16.0	5.0
C3.2	1.46	B	71\%	0.56	0.68	50	2.0\%	5.5	365	1.1\%	20.0	2.1	2.9	8.4	415.0	16.9	8.4
C4.1	6.35	B	65\%	0.49	0.63	150	2.0\%	10.7	366	4.8\%	21.0	4.6	1.3	12.0	516.0	16.4	12.0
C4.2	3.44	B	59\%	0.46	0.61	150	2.0\%	11.3	367	4.6\%	22.0	4.7	1.3	12.6	517.0	17.6	12.6
C5	0.16	B	81\%	0.74	0.84	9.5	2.0\%	1.6	368	0.3\%	23.0	1.3	4.9	6.4	377.5	17.7	6.4
C6	2.48	B	21\%	0.22	0.45	15	2.0\%	4.9	160	0.5\%	20.0	1.4	1.9	6.8	175.0	25.6	6.8
D1	1.83	B	39\%	0.39	0.58	30	1.0\%	7.0	1365	2.5\%	15.0	2.4	9.7	16.7	1395.0	29.5	16.7
D2	1.77	B	43\%	0.43	0.61	30	1.0\%	6.7	1365	2.5\%	15.0	2.4	9.6	16.3	1395.0	28.2	16.3
D3	0.18	B	68\%	0.63	0.76	30	1.0\%	4.7	150	1.7\%	20.0	3.2	0.8	5.4	180.0	15.5	5.4
D4	0.19	B	57\%	0.54	0.70	30	1.0\%	5.5	150	1.7\%	20.0	3.2	0.8	6.3	180.0	17.4	6.3
D5	0.91	B	77\%	0.71	0.82	15	2.0\%	2.2	740	3.4\%	20.0	3.2	3.9	6.0	755.0	16.3	6.0
D6	0.83	B	69\%	0.64	0.77	15	2.0\%	2.6	740	3.4\%	20.0	3.2	3.9	6.4	755.0	17.8	6.4
D7	0.75	B	79\%	0.72	0.83	15	2.0\%	2.1	550	2.0\%	20.0	4.2	2.2	4.3	565.0	15.8	5.0
D8	0.72	B	69\%	0.64	0.77	15	2.0\%	2.6	550	2.0\%	20.0	5.2	1.8	4.3	565.0	17.7	5.0
OS1	2.85	B	2\%	0.08	0.35	50	1.0\%	13.0	280	3.9\%	7.0	3.2	1.5	14.5	330.0	28.2	14.5
OS2	179.61	B	2\%	0.08	0.35	300	1.0\%	31.8	3007	1.7\%	7.0	3.2	15.7	47.4	3307.0	66.3	47.4
OS3	11.99	B	2\%	0.08	0.35	300	1.0\%	31.9	3008	1.8\%	7.0	3.2	15.7	47.6	3308.0	66.2	47.6

NOTES:
$t_{c}=t_{i}+t_{p}$
Where:
$t_{c}=$ computed time of concentration (minutes)
$t_{i}=$ overland (initial) flow time (minutes)
$t_{t}=$ channelized flow time (minutes).
$t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$
Where:
$=$ channelized flow time (travel time, \min)
$L_{t}=$ waterway length (ft)

$K=$ NRCS conveyance factor (see Table $6-2$)

Equation 6-2 $\quad t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{o}^{033}}$
Where
$t_{i}=$ overland (initial) flow time (minutes)
$C_{s}=$ runoff coefficient for 5 -year frequency (from Table 6-4)
$L_{i}=$ length of overland flow ft
$S_{0}=$ average slope along the overland flow path (ff/ft).
$t_{t}=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S t}}$
Where:
$t_{c}=$ minimum time of concentration for first design point when less than t_{c} from Equation 6-1.
$L_{t}=$ length of channelized flow path (ft)
$i=$ imperviousness (expressed as a decimal)
$S_{t}=$ slope of the channelized flow path (ff/ft).

Use a minimum t_{c} value of 5 minutes for urbanized areas and a minimum t_{c} value of 10 minutes for areas
hat are not considered urban. Use minimum values even when calculations result in a lesser time of concentration

STORM DRAINAGE SYSTEM DESIGN

(RATIONALM ETHOD PROCEDURE)

STANDARD FORM SF－3
STORM DRAINAGE SYSTEM DESIGN
（RATIONALM ETHOD PROCEDURE）
Subdivision：Homestead North－Proposed Conditions
Project Name：Homestead North
Project No．： 25180.00
Calculated By：
Checked By：
Date：
$1 / 6 / 22$

STREET		DIRECT RUNOFF							TOTAL RUNOFF				STREET／SWALE			PIPE				TRAVEL TIME			
		$\begin{aligned} & 0 \\ & \text { 気 } \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{巳 y}{4} \\ & \mathbb{y y} \\ & \hline \end{aligned}$			$$		$\begin{aligned} & \hat{y} \\ & \underline{0} \\ & \hline \end{aligned}$	$\begin{gathered} \underline{y} \\ \hline \underline{y} \\ \hline \end{gathered}$			$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \end{aligned}$		$$	$\begin{aligned} & \text { ò } \\ & \stackrel{\rightharpoonup}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\underset{0_{0}^{\frac{8}{2}}}{\stackrel{\pi}{8}}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		$\begin{array}{\|l\|} \hline \mathbb{E} \\ \text { 気 } \\ \mathbb{y} \\ \hline \end{array}$	$\begin{aligned} & \frac{\pi}{0} \\ & \frac{2}{2} \\ & \frac{2}{6} \\ & \frac{0}{0} \\ & \hline \hline \end{aligned}$	$\begin{aligned} & \hat{\mathrm{E}} \\ & \underline{\varepsilon} \\ & \hline \end{aligned}$	REM ARKS
	5b	B5	1.75	0.55	7.8	0.96	4.51	4.3															Street flow
	7b	B7	1.28	0.57	8.9	0.73	4.30	3.1	8.9	1.69	4.30	7.3	0.1	0.05	1.6					340	2.5	2.2	On－grade Type R Inlet，Bypass to DP 8B
	2.2								11.3	4.13	3.94	16.3							24				Piped runoff Tributary Basins B4 and B5
	2.3								14.5	6.57	3.58	23.5							24				Piped runoff Tributary Basins B1．1，B1．2，B4 and B5
	8b	B8	2.30	0.53	9.6	1.22	4.19	5.1	11.2	1.27	3.96	5.0											Street Flow，Recives bypass flow from DP 7B
	2.4								14.5	9.94	3.58	35.6							36				Piped runoff Tributary Basins $\mathrm{B} 1.1, \mathrm{~B} 1.2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{~B} 5, \mathrm{~B} 6, \mathrm{~B} 7$ ，and B 9
	10 b	B10	0.22	0.73	5.0	0.16	5.17	0.8	11.2	1.43	3.96	5.7											Sump inlet revices by－pass flow from 7 b and runoff from $5 \mathrm{~b}, 8 \mathrm{~b}$ ，and 10b
	2.5								14.5	11.89	3.58	42.5							48				Piped runoff Tributary Basins B1．1，B1．2，B3，B4，B5，B6，B7，B8，B9，and B10
	11b	B11	1.65	0.16	16.7	0.26	3.36	0.9															Pond B
	12 b	B12	2.40	0.30	39.8	0.73	2.06	1.5															Runoff Collected from walk out lots facing sand creek

STORM DRAINAGE SYSTEM DESIGN

（RATIONAL METHOD PROCEDURE）

Subdivision：Homestead North－Proposed Conditions Location：ElPaso County Design Storm： 5 －Year

Project Name：Homestead North
Project No．： 25188.00
Calculated By：
Calculated By：
Checked By：
Checked By：
Date：
$1 / 6 / 22$

STREET	$\begin{array}{\|l} \hline \frac{1}{2} \\ 0 \\ 0 \\ \text { 曾 } \\ \hline \end{array}$	DIRECT RUNOFF							TOTAL RUNOFF				STREET／SWALE			PIPE				TRAVEL TIME			
		$\begin{array}{r} \text { O} \\ \text { 旨 } \\ \text { en } \\ \hline \end{array}$	$\begin{array}{r} \frac{8}{8} \\ 8 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & 4 \\ & \ddot{0} \\ & \ddot{8} \\ & \frac{4}{2} \\ & \frac{2}{2} \end{aligned}$	$\begin{gathered} \text { 气气 } \\ \hline \end{gathered}$	$\begin{aligned} & \frac{y}{4} \\ & \underline{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{E} \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \frac{\pi}{8} \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \underline{y} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { E气 } \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \text { 合 } \\ & \hline \end{aligned}$				$\begin{gathered} \frac{\pi}{6} \\ \frac{8}{0_{2}^{2}} \\ \hline \end{gathered}$	$$				$\begin{aligned} & \frac{0}{2} \\ & \stackrel{2}{2} \\ & 0 \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{gathered} \widehat{\tilde{\xi}} \\ \end{gathered}$	REM ARKS
	2.6								14.5	12.88	3.58	46.1											Flow confluences into Pond B．All of Basin B
	$1 c$	Cl	2.82	0.52	13.1	1.46	3.72	5.4															
	2．3c	C2．3	0.83	0.54	10.1	0.45	4.11	1.9	13.1	1.91	3.72	7.1	0.1	0.03	1.6					185	2.5	1.2	On－Grade Type R Inlet，Street runoff from basin C1 and basin C2．3
	2.1 C	C2．1	0.20	0.82	5.0	0.16	5.17	0.8					0.0	0	2.83					630	3.4	3.1	On－Grade Type R Inlet
	2.2 C	C2．2	4.69	0.56	12.8	2.64	3.76	9.9	13.1	2.64	3.72	9.8											Runoff from basins $1 \mathrm{c}, 2.3 \mathrm{c}, 2.1 \mathrm{c}$ and 2．2c
	4.2 C	C4．2	3.44	0.46	12.6	1.57	3.78	5.9					0.00	0	2.84					1010	3.4	5.0	On－Grade Type R Inlet，by pass to 4．2c
	3.1								12.6	1.73	3.78	6.5							18				Piped runoff Tributary Basins C4．2，and C2．1
	4 C	C4．1	6.35	0.49	12.0	3.13	3.85	12.1	17.6	5.77	3.28	18.9											Sump Inlet
	3.1 c	C3．1	0.35	0.68	5.0	0.24	5.17	1.2					0.00	0	2.84					200	3.4	1.0	On－Grade Type R inlet，By pass flow to DP 3．2c
	3.2								13.1	2.12	3.72	7.9							18				Piped runoff Tributary Basins C1，C2．3 and C3．1
	3.2 c	C3．2	1.46	0.56	8.4	0.82	4.39	3.6	8.4	0.82	4.39	3.6											Recives by－pass flow from DP 3．1c
	3.3								13.1	3.85	3.72	14.3							24				Piped runoff Tributary Basins $\mathrm{Cl}, \mathrm{C} 2.3$ ，and C 3.1
	3.4								17.6	9.62	3.28	31.6							36				Piped runoff Tributary Basins $\mathrm{C1}, \mathrm{C} 2.3, \mathrm{C} 3.1, \mathrm{C} 4.2$ ，and C 2.1
	5 C	C5	0.16	0.74	6.4	0.12	4.79	0.6	8.4	0.94	4.39	4.1											Sump Inlet
	3.5								17.6	10.56	3.28	34.7							36				Runoff into pond forebay
	6 C	C6	2.48	0.22	6.8	0.54	4.71	2.5															Conluenced flow for Pond C
	3.6								13.1	11.13	3.72	41.4							36				Conluenced flow for Pond C for all of basin C
	10	OS1	2.85	0.08	14.5	0.23	3.57	0.8															offsite basin to type D inlet
	$1 d$	D1	1.83	0.39	16.7	0.71	3.36	2.4															Tributary basin D1 NW portion of Vollmer in Swale
	1．1d								16.7	0.94	3.36	3.2							18				Tributary basin D1 and OS1 NW portion of Vollmer in Swale
	2d	D2	1.77	0.43	16.3	0.75	3.40	2.5															Tributary basin D2 SE portion of Vollmer in Swale
	1．2d								16.7	1.69	3.36	5.7							18				

STANDARD FORM SF-3
STORM DRAINAGE SYSTEM DESIGN
(RATIONALM ETHOD PROCEDURE)

Subdivision: Homestead North - Proposed Conditions
Location: EIPast County
Location: ElPaso County
Design Storm: 5

Project Name: Homestead North
Project No.: 25188.00
Calculated By:
Checked By:
Date:
$1 / 6 / 22$

		DIRECT RUNOFF							TOTAL RUNOFF				STREET/SWALE			PIPE				TRAVEL TIME			
STREET					듣 	$\begin{array}{\|l} \frac{y}{4} \\ \underset{U}{2} \\ \hline \end{array}$	$\begin{aligned} & \text { 들 } \\ & \underline{E} \end{aligned}$	$\begin{aligned} & \frac{\pi}{8} \\ & \hline 0 \end{aligned}$	$\begin{gathered} \hat{y} \\ \underline{\xi} \\ \hline \end{gathered}$		$\begin{aligned} & \frac{T}{5} \\ & \text { S. } \end{aligned}$	$\begin{array}{r} \widehat{\pi} \\ 0 \\ \hline 0 \end{array}$		$\begin{aligned} & \frac{\tilde{0}}{4} \\ & t \\ & \hline \end{aligned}$						$\begin{array}{\|c} \mathbb{E} \\ \text { E } \\ \text { 흐́ } \\ \hline \end{array}$		$\begin{gathered} \hat{\mathrm{c}} \\ \underset{y}{\mathrm{~g}} \\ \hline \end{gathered}$	REM ARKS
	3d	D3	0.18	0.63	5.4	0.11	5.04	0.6															Tributary basin;D3 Runoff captured on on grade inlet
	4 d	D4	0.19	0.54	6.3	0.10	4.83	0.5	6.3	0.21	4.83	1.0											Tributary basin; D4 Runoff captured on on grade inlet
	1.3d								6.3	0.10	4.83	0.5							18				Tributary basin; D4 and D3 Runoff captured on on grade inlet
	1.4d								16.7	1.90	3.36	6.4							24				Tributary basins: D1-D4 and OS1 Runoff piped
	20	OS2	179.61	0.08	47.4	15.11	1.79	27.1															Runoff captured in $6^{\prime} \mathrm{mh} \mathrm{w} /$ trash rack
	6 d	D6	0.83	0.64	6.4	0.53	4.80	2.5															
	5d	D5	0.91	0.71	6.0	0.64	4.89	3.1															
	1.5d								47.4	16.28	1.79	29.2							48				Tributary basins: 5D-6D and OS2 Runoff piped
	1.6 d								47.4	18.18	1.79	32.6							60				Tributary basins: 1D-6D and OS1 and OS2 Runoff piped
	30	us3	11.99	0.08	41.6	0.96	1.19	1.1															
	8d	D8	0.72	0.64	5.0	0.46	5.17	2.4	47.6	1.42	1.79	2.5											Tributary basins: OS3 and D8 Runoff captured on ongrade inlet
	7 d	D7	0.75	0.72	5.0	0.54	5.17	2.8															Runoff captured on ongrade inlet
	2.1d								47.6	1.96	1.79	3.5							60				Tributary basins: D7,D8 and OS1 Runoff piped
	1.7d								47.6	20.14	1.79	36.0							60				Tributary basins: 1D-4D and OS1, OS2 and OS3 Runoff piped to Pond C
	5								47.6	31.27	1.79	56.0											Total runoff into Pond C

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value,
All pipes are RCP unless otherwise noted

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Homestead North - Proposed Conditions Location: El Paso County

Project Name: Homestead North Design Storm: $\frac{100-Y e a r}{}$

Project No: 25188.00
Calculated By: ARJ
Calculated By:
Checked By:
Date:
$1 / 6 / 22$

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision: Homestead North - Proposed Conditions Location: El Paso County

Project Name: Homestead North
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date:
$1 / 6 / 22$

Description	$\begin{aligned} & . \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \frac{5}{5} \\ & . \overline{8} \\ & \hline \end{aligned}$	DIRECT RUNOFF							TOTAL RUNOFF				STREE	T/ SW	ALE	PIPE				TRAVELTIME			
		$\begin{aligned} & \underline{0} \\ & \frac{\sqrt{6}}{8} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & 0 \\ & \hline \end{aligned}$		$\underset{\underline{c}}{\underline{E}}$	$\begin{aligned} & \underset{\sim}{0} \\ & \underset{U}{4} \end{aligned}$	$\begin{aligned} & \text { 톨 } \\ & \text { S. } \end{aligned}$	$\frac{\mathrm{N}}{\underset{0}{0}}$	$\begin{aligned} & \underset{y}{\hat{c}} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{6} \\ & \underset{U}{4} \end{aligned}$	$\stackrel{\substack{\hat{E}}}{\stackrel{s}{s}}$	$\stackrel{\pi}{0}$			$\begin{aligned} & \text { ஃ } \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\Pi} \end{aligned}$	$\underset{\sigma_{0}^{\frac{8}{2}}}{\frac{\pi}{8}}$	$\begin{aligned} & \overline{8} \\ & \underset{氏}{U} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ஃ } \\ & \ddot{O} \\ & \frac{0}{\Pi} \end{aligned}$	$\begin{aligned} & \bar{y} \\ & \frac{0}{E} \\ & \underline{y} \\ & 0 \\ & 0 \\ & \frac{0}{0} \end{aligned}$		$\begin{aligned} & \frac{\pi}{2} \\ & \frac{2}{2} \\ & 0 \\ & \frac{0}{0} \end{aligned}$	气	REM ARKS
	9 b	B9	3.69	0.64	13.1	2.36	6.25	14.8	14.5	5.05	6.00	30.2946											Direct Runoff from $\mathrm{B1} 1.3, \mathrm{B2}, \mathrm{B3}, \mathrm{B6}$ and $\mathrm{B9}$
	5b	B5	1.75	0.68	7.8	1.18	7.57	8.9															Street flow
	7 b	B7	1.28	0.69	8.9	0.88	7.22	6.4	8.9	2.06	7.22	14.9	3.2	0.44	1.6					340	2.5	2.2	On-grade Type R Inlet, Bypass to DP 8B
	2.2								11.3	4.97	6.62	32.9							24				Piped runoff Tributary Basins B4 and B5
	2.3								14.5	7.87	6.00	47.3							24				Piped runoff Tributary Basins B1.1, B1.2, B4 and B5
	8b	B8	2.30	0.66	9.6	1.52	7.03	10.7	11.2	1.96	6.65	13.1											Street Flow, Recives bypass flow from DP 7B
	2.4								14.5	12.92	6.00	77.6							36				Piped runoff Tributary Basins $\mathrm{B} 1.1, \mathrm{~B} 1.2, \mathrm{~B} 3, \mathrm{~B} 4, \mathrm{~B} 5, \mathrm{~B} 6, \mathrm{~B} 7$, and $\mathrm{B9}$
	10b	B10	0.22	0.83	5.0	0.19	8.68	1.6	11.2	2.15	6.65	14.3											Sump inlet revices by-pass flow from 7b and runoff from 5b,8b, and 10b
	2.5								14.5	15.24	6.00	91.5							48				Piped runoff Tributary Basins B1.1, B1.2,B3, B4, B5, B6, B7, B8, B9, and B10
	11b	B11	1.65	0.40	16.7	0.66	5.64	3.7															
	12b	B12	2.40	0.50	39.8	1.19	3.45	4.1															
	2.6								14.5	17.09	6.00	102.6											Flow confluences into Pond B. All of Basin B
	1 c	C1	2.82	0.65	13.1	1.82	6.25	11.4															
	2.3 c	C2.3	0.83	0.68	10.1	0.56	6.91	3.9	13.1	2.38	6.25	14.9	3.6	0.58	1.6					185	2.5	1.2	On-Grade Type R Inlet, Street runoff from basin Cl and basin C 2.3
	2.1C	C2.1	0.20	0.90	5.0	0.18	8.68	1.6					0.1	0.01	2.83					630	3.4	3.1	On-Grade Type R Inlet
	2.2 C	C2.2	4.69	0.68	12.8	3.21	6.32	20.3	13.1	3.22	6.25	20.1											Runoff from basins $1 \mathrm{cc}, 2.3 \mathrm{c}, 2.1 \mathrm{c}$ and 2.2c
	4.2 c	C4.2	3.44	0.61	12.6	2.09	6.35	13.3					2.60	0.41	2.84					1010	3.4	5.0	On-Grade Type R Inlet, by pass to 4.2c
	3.1								12.6	1.85	6.35	11.7							18				Piped runoff Tributary Basins C4.2, and C2.1
	4C	C4.1	6.35	0.63	12.0	4.00	6.47	25.9	17.6	7.63	5.51	42.0											Sump Inlet
	3.1c	C3.1	0.35	0.79	5.0	0.28	8.68	2.4					0.60	0.07	2.84					200	3.4	1.0	On-Grade Type R inlet, By pass flow to DP 3.2c
	3.2								13.1	2.01	6.25	12.6							18				Piped runoff Tributary Basins C1,C2.3 and C3.1
	3.2 c	C3.2	1.46	0.68	8.4	1.00	7.37	7.4	8.4	1.07	7.37	7.9											Recives by-pass flow from DP 3.1c
	3.3								13.1	3.86	6.25	24.1							24				Piped runoff Tributary Basins $\mathrm{C1}, \mathrm{C} 2.3$, and C 3.1

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Subdivision: Homestead North - Proposed Conditions Location: EI Paso County

Project Name: Homestead North
Design Storm: $\frac{100-Y e a r}{}$
Project No.: 25188.00
Calculated By: ARJ
Checked By:
Date:
$1 / 6 / 22$

		DIRECT RUNOFF							TOTAL RUNOFF				STREET/SWALE		ALE	PIPE				TRAVEL TIME			
Description	$\begin{aligned} & \stackrel{4}{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 8 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { O } \\ & \stackrel{\rightharpoonup}{\bar{W}} \\ & 0 \\ & \hline \end{aligned}$			$\begin{gathered} \hat{c} \\ \underline{y} \\ \hline \end{gathered}$	$\begin{aligned} & \hat{0} \\ & \underset{U}{4} \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{\pi}{6} \\ & \hline 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \bar{d} \\ & \underset{U}{U} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { E. } \\ & \stackrel{y}{s} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{\pi}{6} \\ 0 \\ \hline \end{gathered}$		$\begin{aligned} & \overline{6} \\ & \underset{U}{4} \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{\sqrt{0}}{8} \\ & \frac{8}{2} \\ & 0^{\frac{8}{2}} \end{aligned}$	$\begin{aligned} & \overline{6} \\ & \underset{\sim}{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 厅 } \\ & \ddot{0} \\ & \stackrel{0}{\sigma} \\ & \hline \end{aligned}$		$\begin{aligned} & \mathbb{E} \\ & \text { ⿹ㅡㅇ } \\ & \text { I } \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{0}{2} \\ & \frac{2}{2} \\ & \text { 200 } \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{\widetilde{x}} \\ & \hline \end{aligned}$	REM ARKS
	3.4								17.6	11.49	5.51	63.3							36				Piped runoff Tributary Basins C1, C2.3, C3.1, C4.2, and C2.1
	5 C	C5	0.16	0.84	6.4	0.13	8.04	1.0	8.4	1.20	7.37	8.8											Sump Inlet
	3.5								17.6	12.69	5.51	69.9							36				Runoff into pond forebay
	6 C	C6	2.48	0.45	6.8	1.11	7.91	8.8	17.6														
	3.6								17.6	14.38	5.51	79.2											Conluenced flow for Pond C for all of basin C
	10	OS1	2.85	0.35	14.5	1.00	6.00	6.0															offsite basin to type D inlet
	1d	D1	1.83	0.58	16.7	1.06	5.64	6.0															Tributary basin D1 NW portion of Vollmer in Swale
	1.1d								16.7	2.06	5.64	11.6							18				Tributary basin D1 and OS1 NW portion of Vollmer in Swale
	2d	D2	1.77	0.61	16.3	1.07	5.71	6.1															Tributary basin D2 SE portion of Vollmer in Swale
	1.2d								16.7	3.13	5.64	17.7							18				
	3d	D3	0.18	0.76	5.4	0.14	8.47	1.2															Tributary basins; Runoff capture on on grade inlet
	4d	D4	0.19	0.70	6.3	0.13	8.11	1.1					0.30	0.04	2.25					750	3.0	4.2	Tributary basins; D4 Runoff captured on on-grade inlet by passed to DP 6
	1.3d								6.3	0.27	8.11	2.2							18				Tributary basin; D4 and D3 Runoff captured on on grade inlet
	1.4d								16.7	3.40	5.64	19.2							24				Tributary basins: D1-D4 and OS1 Runoff piped
	20	OS2	179.61	0.35	47.4	63.42	3.01	190.9															Runoff captured in $6^{\prime} \mathrm{mh} \mathrm{w} /$ trash rack
	6d	D6	0.83	0.77	6.4	0.64	8.05	5.2	10.6	0.68	6.79	4.6	0.40	0.05	3					555	3.5	2.7	Tributary basins; D6 Runoff captured on on-grade inlet by passed to DP 8
	5d	D5	0.91	0.82	6.0	0.74	8.20	6.1					0.70	0.09	3					555	3.5	2.7	
	1.5d								47.4	64.80	3.01	195.0							48				Tributary basins: 5D-6D and 0S2 Runoff piped
	1.6 d								47.4	68.20	3.01	205.3							60				Tributary basins: 1D-6D and OS1 and OS2 Runoff piped
	30	OS3	11.99	0.35	47.6	4.20	3.00	12.6															
	8d	D8	0.72	0.77	5.0	0.55	8.68	4.8	47.6	4.80	3.00	14.4	0.70	0.08	2.2								Tributary basins: OS3 and D8 Runoff captured on on grade inlet, by-pass flow goes down stream
	7d	D7	0.75	0.83	5.0	0.62	8.68	5.4	7.7	0.62	7.60	4.7											Runoff captured on ongrade inlet
	2.1d								47.6	5.37	3.00	16.1							24				Tributary basins: D7,D8 and OS1 Runoff piped
	1.7d								47.6	73.57	3.00	220.9							60				Tributary basins: 1D-4D and OS1, OS2 and OS3 Runoff piped to Pond C
	5								47.6	87.95	3.00	264.1											Total runoff into Pond C

Appendix C Hydraulic Calculations

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.03 (May 2020)

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)
Underdrain Orifice Invert Depth $=\square \mathrm{ft}$ (distance below the filtration media surface)
inches

	Calculated Parameters fo
Underdrain Orifice Area	$=\square$
ft^{2}	
Underdrain Orifice Centroid	$=\square \mathrm{feet}$

User Input: Orifice Plate with one or more o Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate $=$		cal Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)		Calculated Parameters for Plate	
	0.00			N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	4.27	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width $=$	N/A	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row $=$	N/A	inches	Elliptical Slot Area $=$	N/A	ft^{2}

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (optional)	kow 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	0.00	1.42	2.85	3.85				
	2.00	2.00	2.00	2.00				
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Kow 10 (optiona	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid =	Calculated Parameters for Vertical Orifice	
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice $=$		N/A			N/A	N/A
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A
Vertical Orifice Diameter $=$	N/A	N/A				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

| Depth to Invert of Outlet Pipe |
| ---: | :--- |
| Circular Orifice Diameter |$=$| Not Selected | Not Selected | | | |
| :---: | :---: | :---: | :---: | :---: |
| 0.00 | $\mathrm{~N} / \mathrm{A}$ | | | |
| ft | | | | |
| 24.00 | $\mathrm{~N} / \mathrm{A}$ | | | |
| inches | | | | |
| 17.00 | | | | |

Outlet Orifice Area =	Not Selected	Not Selected
	2.83	N/A
	0.71	N/A
Restrictor Plate on Pipe $=$	N/A	N/A

User Input: Emergency Spillway (Rectanqular or Trapezoidal)

Spillway Invert Stage=	7.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	23.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

	Calculated Parameters for Spillway	
Spillway Design Flow Depth=	0.91	feet
Stage at Top of Freeboard =	8.91	feet
Basin Area at Top of Freeboard =	0.78	acres
Basin Volume at Top of Freeboard $=$	4.06	acre-ft

$\frac{\text { Routed Hydrograph Results }}{\text { Design Storm Return Period }=}$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) $=$	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	4.00
CUHP Runoff Volume (acre-ft) =	0.496	1.496	1.437	2.082	2.652	3.437	4.063	4.866	8.760
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.437	2.082	2.652	3.437	4.063	4.866	8.760
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	2.8	7.8	11.9	21.5	27.0	34.5	68.0
IPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cff/acre) =	N/A	N/A	0.09	0.26	0.39	0.71	0.89	1.14	2.25
Peak Inflow Q (cfs) =	N/A	N/A	19.2	28.4	35.4	48.2	56.8	67.6	118.9
Peak Outflow Q (cfs) $=$	0.2	6.3	1.8	7.8	13.6	25.2	31.0	33.0	90.5
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	1.0	1.1	1.2	1.1	1.0	1.3
Structure Controlling Flow =	Plate	pverflow Weir	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) $=$	N/A	0.35	0.07	0.4	0.7	1.3	1.6	1.7	1.8
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) $=$	39	67	69	68	66	64	62	60	51
Time to Drain 99\% of Inflow Volume (hours) $=$	41	71	73	73	72	71	70	69	66
Maximum Ponding Depth (ft) $=$	2.81	4.96	4.56	4.99	5.25	5.62	5.87	6.55	7.79
Area at Maximum Ponding Depth (acres) $=$	0.41	0.53	0.50	0.53	0.54	0.56	0.58	0.62	0.70
Maximum Volume Stored (acre-ft) =	0.498	1.500	1.295	1.516	1.650	1.860	2.003	2.405	3.230

DETENTION BASIN OUTLET STRUCTURE DESIGN

nflow Hydrographs
he user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

SOURCE	CUHP								
TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
0:00:00									

$0.00: 00$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$0: 05: 00$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
$0: 10: 00$	0.00	0.00	0.00	0.00	0.00	0.00	0.17	0.02	1.31
$0: 15: 00$	0.00	0.00	1.51	2.48	3.07	2.06	2.60	2.52	534

$0: 20: 00$	0.00	0.00	5.58	7.43	9.27	5.55	6.50	6.93	13.75
$0: 25: 00$	0.00	0.00	13.53	20.41	26.80	13.34	15.83	17.66	40.70
$0: 30: 00$	0.00	0.00	19.02	28.37	35.40	37.26	44.67	50.71	94.45
$0.35: 00$	0.00	0.00	19.19	2.01	34.50	47.24	56.03		

100

$1: 00: 00$	
$1: 10: 00$	
$1: 15: 00$	

1
1

$0: 35: 00$	0.00	0.00	19.19
$0: 40: 00$	0.00	0.00	17.78
$0: 45: 00$	0.00	0.00	15.66
$0: 50: 00$	0.00	0.00	13.86

$1|1| 1 \mid$

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	stage [ft]	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { [acres] } \end{aligned}$	Volume [ft ${ }^{3}$]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
							For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

User Input: Orifice at Underdrain Outlet (typically used to drain WOCV in a Filtration BMP)

$$
\begin{aligned}
\text { Underdrain Orifice Invert Depth } & =\text { N/A } \\
\text { Underdrain Orifice Diameter } & =\text { N/A } \text { (distance below the filtration media surface) } \\
& \text { inches }
\end{aligned}
$$

Underdrain Orifice Area $=$
Calculated Parameters for Underdrain
Underdrain Orifice Centroid $=$

N / A
Nt / A
fe


```Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =```	0.00	$\mathrm{ft}($ relative to basin bottom at Stage $=0 \mathrm{ft}$ )$\mathrm{ft}($ relative to basin bottom at Stage $=0 \mathrm{ft})$inchesinches	WQ Orifice Area per Row = Elliptical Half-Width = Elliptical Slot Centroid = Elliptical Slot Area =	N/A	$\mathrm{ft}^{2}$
	4.11			N/A	feet
	N/A			N/A	feet
	N/A			N/A	$\mathrm{ft}^{2}$

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Ow 4 (optiona	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	low 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.37	2.74	3.20				
Orifice Area (sq. inches)	1.60	1.60	1.60	9.00				


	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	ow 12 (optiond	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	ow 16 (optional)
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)								



User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectanqular/Trapezoidal Weir (and No Outlet Pipe)

t: Overflow W	ped Grate a	Outlet Pipe	nqular/Trapezoidal Weir (and No Outlet Pipe)	culated Paran	s for Overflo	W We
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.11	N/A	ft (relative to basin bottom at Stage $=01 \mathrm{Htgight} \mathrm{of} \mathrm{Grate} \mathrm{Upper} \mathrm{Edge}, \mathrm{H}_{\mathrm{t}}=$	4.11	N/A	feet
Overflow Weir Front Edge Length $=$	5.00	N/A	feet Overflow Weir Slope Length =	5.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	5.76	N/A	
Horiz. Length of Weir Sides $=$	5.00	N/A	feet Overflow Grate Open Area w/o Debris =	17.50	N/A	$\mathrm{ft}^{2}$
Overflow Grate Open Area \%	70\%	N/A	\%, grate open area/total area Overflow Grate Open Area w/ Debris =	5.25	N/A	$\mathrm{ft}^{2}$
Debris Clogging \% =	70\%	N/A				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

bottom at Stage = 0 ft)	Outlet Orifice Area = Outlet Orifice Centroid =	Zone 3 Restrictor	Not Selected	$\mathrm{ft}^{2}$
		3.04	N/A	
		0.80	N/A	feet
Half-Central Angle of R	Restrictor Plate on Pipe $=$	1.59	N/A	

User Input: Emergency Spillway (Rectanqular or Trapezoidal)

Emergency Spillway (Rectanqular or Trapezoidal)	
Spillway Invert Stage	$=5.16$
St (relative to basin bottom at Stage $=0 \mathrm{ft}$ )	
Spillway Crest Length	$=23.00$
Spillway End Slopes	$=4.00$
feet	H:V
Speeboard above Max Water Surface	$=1.00$



WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	4.00
0.479	1.489	1.408	2.012	2.543	3.255	3.834	4.566	8.151
N/A	N/A	1.408	2.012	2.543	3.255	3.834	4.566	8.151
N/A	N/A	3.2	9.1	13.8	24.2	30.4	38.6	75.6
N/A	N/A							
N/A	N/A	0.12	0.33	0.49	0.87	1.09	1.39	2.71
N/A	N/A	23.9	34.9	42.9	56.2	66.2	79.0	137.9
0.2	1.0	0.5	3.4	6.8	13.4	18.2	25.4	67.6
N/A	N/A	N/A	0.4	0.5	0.6	0.6	0.7	0.9
Plate	Overflow Weir 1	Plate	verflow Weir	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	verflow Weir	Spillway
N/A	0.03	N/A	0.2	0.4	0.7	1.0	1.4	1.9
N/A								
38	64	63	66	65	63	61	59	51
40	67	67	70	70	70	69	68	65
3.13	4.18	4.05	4.34	4.50	4.73	4.88	5.09	5.75
0.63	1.34	1.23	1.46	1.59	1.81	1.84	1.87	1.94
0.483	1.492	1.312	1.701	1.945	2.354	2.629	3.019	4.276

DETENTION BASIN OUTLET STRUCTURE DESIGN



S-A-V-D Chart Axis Override	X-axis	Left Y-Axis	Right Y-Axis
minimum bound			
maximum bound			

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP								
me Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.26	0.03	1.94
	0:15:00	0.00	0.00	2.25	3.68	4.56	3.07	3.82	3.74	7.60
	0:20:00	0.00	0.00	7.96	10.47	12.93	7.75	9.02	9.68	18.73
	0:25:00	0.00	0.00	18.41	27.41	35.61	18.07	21.36	23.77	53.14
	0:30:00	0.00	0.00	23.88	34.90	42.90	48.54	57.90	65.58	118.97
	0:35:00	0.00	0.00	22.17	31.65	38.52	56.18	66.22	79.00	137.93
	0:40:00	0.00	0.00	19.33	26.98	32.92	53.54	62.76	74.62	129.24
	0:45:00	0.00	0.00	16.01	22.72	28.26	46.69	54.71	67.07	116.05
	0:50:00	0.00	0.00	13.29	19.30	23.63	41.48	48.60	59.29	102.37
	0:55:00	0.00	0.00	11.19	16.14	20.00	34.37	40.35	50.64	87.66
	1:00:00	0.00	0.00	9.79	14.00	17.71	28.69	33.79	43.89	76.53
	1:05:00	0.00	0.00	8.75	12.42	15.96	24.94	29.48	39.51	69.11
	1:10:00	0.00	0.00	7.35	10.96	14.29	20.83	24.67	32.15	56.88
	1:15:00	0.00	0.00	6.06	9.22	12.69	17.21	20.44	25.64	46.02
	1:20:00	0.00	0.00	4.95	7.48	10.52	13.53	16.04	19.30	34.53
	1:25:00	0.00	0.00	4.15	6.23	8.45	10.42	12.31	14.00	25.12
	1:30:00	0.00	0.00	3.71	5.57	7.21	7.92	9.35	10.26	18.74
	1:35:00	0.00	0.00	3.50	5.22	6.44	6.42	7.55	8.05	14.86
	1:40:00	0.00	0.00	3.40	4.64	5.89	5.49	6.42	6.66	12.33
	1:45:00	0.00	0.00	3.33	4.18	5.51	4.88	5.67	5.69	10.58
	1:50:00	0.00	0.00	3.27	3.85	5.24	4.47	5.16	5.03	9.37
	1:55:00	0.00	0.00	2.86	3.60	4.89	4.20	4.82	4.56	8.50
	2:00:00	0.00	0.00	2.51	3.31	4.37	4.01	4.58	4.26	7.93
	2:05:00	0.00	0.00	1.89	2.48	3.24	3.00	3.42	3.16	5.85
	2:10:00	0.00	0.00	1.38	1.80	2.32	2.16	2.46	2.28	4.19
	2:15:00	0.00	0.00	1.00	1.30	1.67	1.56	1.77	1.65	3.04
	2:20:00	0.00	0.00	0.72	0.93	1.20	1.12	1.27	1.20	2.19
	2:25:00	0.00	0.00	0.51	0.64	0.84	0.79	0.89	0.84	1.54
	2:30:00	0.00	0.00	0.35	0.43	0.58	0.55	0.62	0.59	1.07
	2:35:00	0.00	0.00	0.23	0.30	0.39	0.38	0.43	0.40	0.73
	2:40:00	0.00	0.00	0.14	0.19	0.24	0.24	0.27	0.26	0.46
	2:45:00	0.00	0.00	0.07	0.10	0.13	0.14	0.15	0.14	0.25
	2:50:00	0.00	0.00	0.03	0.05	0.05	0.06	0.07	0.06	0.11
	2:55:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

## DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	stage   [ft]	$\begin{aligned} & \text { Area } \\ & {\left[\mathrm{ft}^{2}\right]} \end{aligned}$	$\begin{aligned} & \text { Area } \\ & \text { [acres] } \end{aligned}$	Volume   [ft ${ }^{3}$ ]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
							For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.   Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

Project: Pond C with offsite flow

## Basin ID:


Watershed Information

Selected BMP Type =	EDB
Watershed Area $=$	224.42
Watershed Length $=$	5,645
Watershed Length to Centroid =	3,387
Watershed Slope =	0.034
Watershed Imperviousness =	10.30\%
Percentage Hydrologic Soil Group $\mathrm{A}=$	0.0\%
Percentage Hydrologic Soil Group B =	100.0\%
Percentage Hydrologic Soil Groups C/D $=$	0.0\%
Target WQCV Drain Time =	40.0

$$
\text { Location for 1-hr Rainfall Depths }=\text { User Input }
$$

After providing required inputs above including 1 -hour rainfall. depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure. Water Quality Capture Volume (WQCV) $=1.285$ acre-feet Excess Urban Runoff Volume (EURV) $=2.178$ acre-feet 2 -yr Runoff Volume ( $\mathrm{P} 1=1.19 \mathrm{in}$.) $=$

5 -yr Runoff Volume ( $\mathrm{P} 1=1.5 \mathrm{in}$ ) $=$ 10-yr Runoff Volume ( $\mathrm{P} 1=1.75$ in.) $)=$ 25 -yr Runoff Volume $(\mathrm{P} 1=2 \mathrm{in})=$. 100 -yr Runoff Volume $(\mathrm{Pl}=2.52$ in. $)=27.489$ acre-feet 500 -yr Runoff Volume $(\mathrm{Pl}=4 \mathrm{in})=$.55.501 acre-feet Approximate 2 -yr Detention Volume $=1.394$ acre-feet Approximate 5 -yr Detention Volume $=2.182$ acre-feet Approximate 10 -yr Detention Volume $=4.471$ acre-feet Approximate 25 -yr Detention Volume $=6.215$ acre-feet | Approximate $50-\mathrm{yr}$ Detention Volume $=$ | 6.507 | acre-feet |
| ---: | ---: | ---: |
| Approximate $100-\mathrm{yr}$ Detention Volume | $=8.396$ | acre-feet | Define Zones and Basin Geometry






## DETENTION BASIN OUTLET STRUCTURE DESIGN



User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Pla					
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ ) inches   sq. inches (use rectangular openings)	WQ Orifice Area per Row = Elliptical Half-Width = Elliptical Slot Centroid = Elliptical Slot Area =	$3.660 \mathrm{E}-02$	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \\ & \text { feet } \\ & \mathrm{ft}^{2} \end{aligned}$
Depth at top of Zone using Orifice Plate $=$	4.27			N/A	
Orifice Plate: Orifice Vertical Spacing $=$	17.72			N/A	
Orifice Plate: Orifice Area per Row	5.27			N/A	


Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	0.00	1.50	3.00					
	5.27	5.27	5.27					
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)


User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ )   ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ )	Vertical Orifice Area $=$ Vertical Orifice Centroid =	Calculated Parameters for Vertical Orif	
	Not Selected	Not Selected			Not Selected	Not Selected
Invert of Vertical Orifice $=$	N/A	N/A			N/A	N/A
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A			N/A	N/A
Vertical Orifice Diameter $=$	N/A	N/A				


User Input: Overflow Weir (Dropbox with Flat	ped Grate an	Pipe OR	angular/Trapezoidal Weir (and No Outl	tlet Pipe)	culated Par	for Overflow
	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	4.36	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$ )	ft) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	7.47	N/A
Overflow Weir Front Edge Length $=$	7.00	N/A	feet	Overflow Weir Slope Length =	12.80	N/A
Overflow Weir Grate Slope =	4.00	N/A	$\mathrm{H}: \mathrm{V}$	Grate Open Area / 100-yr Orifice Area =	7.22	N/A
Horiz. Length of Weir Sides =	12.42	N/A	feet Ov	verflow Grate Open Area w/o Debris =	70.89	N/A
Overflow Grate Type =	Close Mesh Grate	N/A		Overflow Grate Open Area w/ Debris $=$	17.72	N/A
Debris Clogging \%	75\%	N/A	\%			



Routed Hydrograph ResultsDesign Storm Return Period $=$	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through At							
	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	1.285	2.178	3.054	6.693	10.318	16.758	21.161	27.489
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	3.054	6.693	10.318	16.758	21.161	27.489
CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A	17.6	49.5	77.1	142.4	179.0	229.9
	N/A	N/A						
	N/A	N/A	0.08	0.22	0.34	0.63	0.80	1.02
Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) =	N/A	N/A	29.3	63.0	90.7	154.7	191.6	243.4
Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	0.7	0.9	2.4	20.6	43.8	91.6	124.1	173.9
	N/A	N/A	N/A	0.4	0.6	0.6	0.7	0.8
$\begin{aligned} \text { Structure Controlling Flow } & = \\ \text { Max Velocity through Grate } 1 \text { ( } \mathrm{fps} \text { ) } & \end{aligned}$	Plate	Plate	Overflow Weir 1					
	N/A	N/A	0.02	0.3	0.6	1.3	1.7	2.4
Max Velocity through Grate 2 (fps)	N/A							
	38	50	57	54	50	45	41	36
Time to Drain 99\% of Inflow Volume (hours) =	40	53	62	61	59	56	54	52
$\begin{aligned}\text { Maximum Ponding Depth (ft) }) & \\ \text { Area at Maximum Ponding Depth (acres) } & = \\ \text { Maximum Volume Stored (acre-ft) } & =\end{aligned}$	3.32	4.27	4.80	6.22	7.10	8.35	9.02	9.94
	0.87	1.01	1.05	1.17	1.25	1.35	1.41	1.49
	1.288	2.178	2.714	4.310	5.376	6.988	7.928	9.263


ice
$\mathrm{ft}^{2}$
feet
eir
feet
feet
$\mathrm{ft}^{2}$
$\mathrm{ft}^{2}$

tite
$\mathrm{ft}^{2}$
feet
radians

500 Year
4.00
55.501
5.501
455.8
2.03
469.0
466.7
1.0
Spillway
2.6
$\mathrm{~N} / \mathrm{A}$
20
44
10.81
1.58
10.603



Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.08
	0:15:00	0.00	0.00	0.09	0.15	0.19	0.13	0.17	0.16	0.44
	0:20:00	0.00	0.00	0.46	1.05	1.76	0.51	0.62	0.65	3.37
	0:25:00	0.00	0.00	3.52	9.98	17.69	3.45	4.47	6.28	34.90
	0:30:00	0.00	0.00	11.93	30.05	47.70	31.84	41.28	50.76	137.07
	0:35:00	0.00	0.00	21.52	49.78	73.78	79.92	101.83	125.08	274.28
	0:40:00	0.00	0.00	27.38	60.22	86.67	120.91	151.70	187.33	379.67
	0:45:00	0.00	0.00	29.25	62.98	90.72	143.37	178.24	222.26	437.75
	0:50:00	0.00	0.00	28.91	61.90	89.69	153.61	190.33	239.35	464.94
	0:55:00	0.00	0.00	27.31	58.31	84.83	154.68	191.57	243.35	468.96
	1:00:00	0.00	0.00	25.18	53.76	79.20	148.05	183.67	237.22	457.96
	1:05:00	0.00	0.00	23.30	49.83	74.65	139.47	173.85	229.30	445.23
	1:10:00	0.00	0.00	21.67	46.46	70.66	130.94	164.08	219.55	429.09
	1:15:00	0.00	0.00	20.00	43.13	66.79	121.64	153.20	205.59	405.92
	1:20:00	0.00	0.00	18.33	39.85	62.92	111.74	141.31	189.15	377.68
	1:25:00	0.00	0.00	16.89	37.05	59.18	102.49	129.96	173.22	348.90
	1:30:00	0.00	0.00	15.71	34.69	55.38	94.65	120.20	159.28	322.04
	1:35:00	0.00	0.00	14.62	32.42	51.53	87.45	111.13	146.62	296.98
	1:40:00	0.00	0.00	13.57	30.12	47.70	80.71	102.63	135.06	273.69
	1:45:00	0.00	0.00	12.54	27.73	43.94	74.27	94.49	124.18	251.62
	1:50:00	0.00	0.00	11.51	25.31	40.27	68.04	86.63	113.68	230.48
	1:55:00	0.00	0.00	10.47	22.89	36.64	61.91	78.93	103.47	209.98
	2:00:00	0.00	0.00	9.42	20.50	32.98	55.88	71.36	93.53	190.08
	2:05:00	0.00	0.00	8.40	18.24	29.54	49.93	63.88	83.80	170.99
	2:10:00	0.00	0.00	7.56	16.54	26.96	44.50	57.07	74.97	154.29
	2:15:00	0.00	0.00	6.99	15.33	24.95	40.53	52.07	68.30	141.02
	2:20:00	0.00	0.00	6.50	14.25	23.11	37.31	47.94	62.76	129.64
	2:25:00	0.00	0.00	6.05	13.24	21.40	34.51	44.31	57.85	119.36
	2:30:00	0.00	0.00	5.61	12.27	19.77	31.96	40.98	53.40	109.96
	2:35:00	0.00	0.00	5.19	11.33	18.21	29.61	37.92	49.28	101.24
	2:40:00	0.00	0.00	4.78	10.42	16.69	27.35	34.98	45.43	93.08
	2:45:00	0.00	0.00	4.38	9.53	15.24	25.17	32.18	41.82	85.46
	2:50:00	0.00	0.00	3.99	8.66	13.83	23.07	29.47	38.41	78.26
	2:55:00	0.00	0.00	3.61	7.80	12.48	20.99	26.82	35.02	71.23
	3:00:00	0.00	0.00	3.22	6.96	11.18	18.93	24.20	31.66	64.33
	3:05:00	0.00	0.00	2.84	6.13	9.88	16.88	21.59	28.30	57.45
	3:10:00	0.00	0.00	2.46	5.30	8.60	14.84	19.00	24.94	50.60
	3:15:00	0.00	0.00	2.09	4.48	7.32	12.80	16.41	21.60	43.76
	3:20:00	0.00	0.00	1.71	3.67	6.05	10.77	13.83	18.25	36.94
	3:25:00	0.00	0.00	1.34	2.85	4.79	8.74	11.25	14.92	30.15
	3:30:00	0.00	0.00	0.98	2.05	3.54	6.71	8.69	11.59	23.40
	3:35:00	0.00	0.00	0.62	1.27	2.37	4.71	6.15	8.30	16.92
	3:40:00	0.00	0.00	0.35	0.78	1.68	2.85	3.83	5.32	11.64
	3:45:00	0.00	0.00	0.24	0.58	1.32	1.82	2.56	3.55	8.30
	3:50:00	0.00	0.00	0.19	0.45	1.05	1.19	1.76	2.42	6.00
	3:55:00	0.00	0.00	0.15	0.37	0.84	0.80	1.23	1.61	4.27
	4:00:00	0.00	0.00	0.12	0.29	0.67	0.52	0.84	1.03	2.97
	4:05:00	0.00	0.00	0.10	0.23	0.52	0.36	0.60	0.63	2.00
	4:10:00	0.00	0.00	0.08	0.18	0.39	0.24	0.41	0.35	1.29
	4:15:00	0.00	0.00	0.06	0.13	0.28	0.16	0.28	0.20	0.83
	4:20:00	0.00	0.00	0.05	0.10	0.20	0.12	0.20	0.15	0.60
	4:25:00	0.00	0.00	0.04	0.07	0.14	0.08	0.15	0.12	0.44
	4:30:00	0.00	0.00	0.03	0.05	0.11	0.06	0.12	0.09	0.35
	4:35:00	0.00	0.00	0.02	0.04	0.08	0.05	0.09	0.07	0.27
	4:40:00	0.00	0.00	0.02	0.02	0.06	0.03	0.06	0.05	0.20
	4:45:00	0.00	0.00	0.01	0.01	0.04	0.02	0.05	0.04	0.14
	4:50:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.09
	4:55:00	0.00	0.00	0.00	0.01	0.01	0.01	0.02	0.01	0.06
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.03
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

## DETENTION BASIN OUTLET STRUCTURE DESIGN <br> MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage $\begin{gathered}\text { Description }\end{gathered}$	Stage   [ft]	Area $\left[\mathrm{ft}^{2}\right]$	Area [acres]	Volume [ft ${ }^{3}$ ]	Volume [ac-ft]	$\begin{gathered} \text { Total } \\ \text { Outflow } \\ \text { [cfs] } \end{gathered}$	
							For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.   Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input) $\quad$ CDOT Type R Curb Opening	Type =	MINOR	MAJOR	inches
Type of Inlet		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$a_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - - Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	$Q=$	7.1	12.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	2.8	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	81	\%

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input) $\quad$ CDOT Type R Curb Opening	Type =	MINOR	MAJOR	inches
Type of Inlet \| CDOT Type R Curb Open		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$a_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - - Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	8.2	14.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.2	6.1	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	98	70	\%

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## Version 4.05 Released March 2017

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)



Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


$\mathrm{H}_{\text {CURB }}=$	6.00
$\mathrm{T}_{\text {CROWN }}=$	18.0
W =	2.00
$\mathrm{S}_{\mathrm{x}}=$	0.020
$\mathrm{S}_{\mathrm{w}}=$	0.083
$\mathrm{S}_{\mathrm{o}}=$	0.000
$\mathrm{n}_{\text {STREET }}=$	0.016



MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

## INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {bocal }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	4	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	8.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	eet
Width of a Unit Grate	$\mathrm{W}_{0}$	N/A	N/A	eet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {raio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value $0.50-0.70$ )	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	eet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\text {f }}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{Co}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.33	0.53	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$R \mathrm{~F}_{\text {Combination }}=$	0.57	0.78	
Curb Opening Performance Reduction Factor for Long Inlets	RF ${ }_{\text {curb }}=$	0.79	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	18.2	39.7	cfs
Enlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peak required }}=$	10.5	29.7	cfs

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input) $\quad$ CDOT Type R Curb Opening	Type =	MINOR	MAJOR	inches
Type of Inlet \| CDOT Type R Curb Open		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$a_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - - Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	$Q=$	6.4	11.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	1.7	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	87	\%

Version 4.05 Released March 2017

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Spread Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type $=$	CDOT Type R Curb Opening		
	$a_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{+}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.0	12.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	3.6	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	78	\%

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## Version 4.05 Released March 2017

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)



Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


$\mathrm{H}_{\text {CURB }}=$	6.00
$\mathrm{T}_{\text {CROWN }}=$	18.0
W =	2.00
$\mathrm{S}_{\mathrm{x}}=$	0.020
$\mathrm{S}_{\mathrm{w}}=$	0.083
$\mathrm{S}_{\mathrm{o}}=$	0.000
$\mathrm{n}_{\text {STREET }}=$	0.016



MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

## INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017


Design Information (lnput)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.8	8.3	inches
Grate Information		MINOR	MAJOR	$\checkmark$ Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\text {f }}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{Co}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.32	0.53	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.55	0.78	
Curb Opening Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {curb }}=$	0.78	0.91	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	12.5	29.4	cfs
Lnlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peak ReQuired }}=$	11.3	19.9	cfs

Version 4.05 Released March 2017


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input) $\quad$ CDOT Type R Curb Opening	Type =	MINOR	MAJOR	inches
Type of Inlet		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$a_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - - Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	$Q=$	5.3	9.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	1.5	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	87	\%

Version 4.05 Released March 2017


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input) $\quad$ CDOT Type R Curb Opening	Type =	MINOR	MAJOR	inches
Type of Inlet		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$a_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - - Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	$Q=$	3.6	7.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.2	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	97	\%

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input) $\quad$ CDOT Type R Curb Opening	Type =	MINOR	MAJOR	inches
Type of Inlet \| CDOT Type R Curb Open		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$a_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - - Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	$Q=$	6.7	11.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.1	4.1	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	99	74	\%

Version 4.05 Released March 2017


## INLET IN A SUMP OR SAG LOCATION

## Version 4.05 Released March 2017



Design Information (Input) $\quad$ CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	V Override Depths
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	13.5	39.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {PEAK Required }}=$	12.5	30.9	cfs

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input) $\quad$ CDOT Type R Curb Opening	Type =	MINOR	MAJOR	inches
Type of Inlet \| CDOT Type R Curb Open		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$a_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - - Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	$Q=$	7.0	11.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.1	3.2	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	98	78	\%

## Version 4.05 Released March 2017

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

## (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)



Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions




MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

## INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.8	8.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	eet
Width of a Unit Grate	$\mathrm{W}_{0}$	N/A	N/A	eet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {raio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value $0.50-0.70$ )	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	eet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\text {f }}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{Co}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.32	0.50	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.55	0.75	
Curb Opening Performance Reduction Factor for Long Inlets	RF ${ }_{\text {curb }}=$	0.78	0.89	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	12.5	27.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {peak reaured }}=$	5.0	12.5	cfs

## Version 4.05 Released March 2017

## ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

## (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)



Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managemen
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input)	Type =	MINOR	MAJOR	inches
Type of Inlet CDOT Type R Curb Opening		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}$ =	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value =0.1)	$\mathrm{C}_{\text {f }}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.2	11.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.1	3.6	cfs
Capture Percentage $=\mathbf{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	98	76	\%

Version 4.05 Released March 2017


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Spread Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input)		MINOR MAJOR		inches
Type of Inlet   Local Depression (additional to continuous gutter depression 'a')	Type $=$	CDOT Type R Curb Opening		
	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{C}_{\mathrm{t}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.8	1.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_{b}=$	0.0	0.1	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	91	\%

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


Design Information (Input)		MINOR MAJOR		inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type $=$			
	$\mathrm{a}_{\text {LOCal }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{w}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\text {r }} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{Cr}_{-} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	5.9	10.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	2.6	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	C\% =	100	81	\%

Version 4.05 Released March 2017
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Allow Flow Depth at Street Crown (leave blank for no)


MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## INLET ON A CONTINUOUS GRADE



Design Information (Input)	Type =	MINOR	MAJOR	inches
Type of Inlet CDOT Type R Curb Opening		CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}$ =	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value =0.1)	$\mathrm{C}_{\text {f }}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.3	2.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.6	cfs
Capture Percentage $=\mathbf{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	97	79	\%

Version 4.05 Released March 2017


## INLET IN A SUMP OR SAG LOCATION

## Version 4.05 Released March 2017



Design Information (Input) $\quad$ CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening -	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	6.0	12.0	inches
Grate Information		MINOR	MAJOR	V Override Depths
Length of a Unit Grate	$L_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {Curb }}=$	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	$R F_{\text {curb }}=$	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	18.2	52.7	cfs
WARNING: Inlet Capacity less than Q Peak for Minor Storm	$\mathrm{Q}_{\text {PEAK Required }}=$	18.9	42.0	cfs

Version 4.05 Released March 2017


Gutter Geometry (Enter data in the blue cells)
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020 )
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{tt}$ )
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020 )

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm
Check boxes are not applicable in SUMP conditions


$\mathrm{H}_{\text {CURB }}=$	6.00	inches
$\mathrm{T}_{\text {CROWN }}=$	18.0	ft
W =	2.00	ft
$\mathrm{S}_{\mathrm{x}}=$	0.020	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{S}_{\mathrm{w}}=$	0.083	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{S}_{\mathrm{o}}=$	0.000	$\mathrm{ft} / \mathrm{ft}$
$\mathrm{n}_{\text {STREET }}=$	0.016	



MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

## INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017


Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {bocal }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No $=$	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	5.8	5.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}$	N/A	N/A	eet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {raio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value $0.50-0.70$ )	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	eet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\text {f }}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{Co}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.32	0.32	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.55	0.55	
Curb Opening Performance Reduction Factor for Long Inlets	RF ${ }_{\text {curb }}=$	0.92	0.92	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathrm{a}}=$	9.7	9.7	cfs
Enlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text {Peak required }}=$	4.2	9.0	cfs

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


Design Information (Input)		MINOR MAJOR		inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type $=$			
	$\mathrm{a}_{\text {LOCal }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{w}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\text {r }} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{Cr}_{-} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.5	1.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	C\% =	100	100	\%

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017



Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


Design Information (Input)		MINOR MAJOR		inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type $=$			
	$\mathrm{a}_{\text {LOCal }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{w}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\text {r }} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{Cr}_{-} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.5	4.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.4	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	C\% =	100	93	\%

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


Design Information (Input)		MINOR MAJOR		inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type $=$			
	$\mathrm{a}_{\text {LOCal }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{w}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\text {r }} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{Cr}_{-} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.0	3.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	C\% =	100	100	\%

Version 4.05 Released March 2017


## INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017


Design Information (Input)		MINOR MAJOR		inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type $=$			
	$\mathrm{a}_{\text {LOCal }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	20.00	20.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{w}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$ )	$\mathrm{C}_{\text {r }} \mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$ )	$\mathrm{Cr}_{-} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.5	13.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.7	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathrm{Q}_{0}=$	C\% =	100	95	\%

## Version 4.05 Released March 2017

## AREA INLET IN A SWALE



Analysis of Trapezoidal Grass-Lined Channel Using SCS Method
NRCS Vegetal Retardance (A, B, C, D, or E)
Manning's $n$ (Leave cell D16 blank to manually enter an $n$ value)
Channel Invert Slope
Bottom Width
Left Side Slope
Right Side Slope

Check one of the following soil types:				
Soil Type:	Max. Velocity $\left(\mathrm{V}_{\text {Max }}\right)$	Max Froude No. ( $\mathrm{F}_{\text {MAX }}$ )		
Non-Cohesive	5.0 fps	0.60		
Cohesive	7.0 fps	0.80		
Paved	N/A	N/A		

Max. Allowable Top Width of Channel for Minor \& Major Storm
Max. Allowable Water Depth in Channel for Minor \& Major Storm
A, B, C, D



Water Depth in Channel Based On Design Peak Flow
Design Peak Flow
Water Depth


Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

## Version 4.05 Released March 2017

AREA INLET IN A SWALE

Homestead North			
DP 10			
Inlet Design Information (Input)			
Type of Inlet $\quad$ CDOT TYPE D (Parallel) Inlet Type =	CDOT TYPE	arallel)	
Angle of Inclined Grate (must be $<=30$ degrees)	$\theta=$	0.00	degrees
Width of Grate	W =	6.00	feet
Length of Grate	L=	3.00	feet
Open Area Ratio	$A_{\text {Ratio }}=$	0.70	
Height of Inclined Grate	$\mathrm{H}_{\mathrm{B}}=$	0.00	feet
Clogging Factor	$\mathrm{C}_{\text {f }}$	0.38	
Grate Discharge Coefficient	$\mathrm{C}_{\mathrm{d}}=$	0.76	
Orifice Coefficient	$\mathrm{C}_{0}$	0.50	
Weir Coefficient	$\mathrm{C}_{\text {w }}=$	1.62	
	MINOR	MAJOR	
Water Depth at Inlet (for depressed inlets, 1 foot is added for depression)	0.40	1.07	
Total Inlet Interception Capacity (assumes clogged condition) $\mathbf{Q}_{\mathbf{a}}=$	6.5	28.4	cfs
Bypassed Flow, $\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathrm{Q}_{0}=\mathbf{C} \%$	100	100	\%


Subdivision:	Homestead North - Proposed Conditions
Location:	El Paso County
Project Name:	Homestead North
Project Number:	25188.00
Calculated By:	MAB
Checked By:	
Date:	$1 / 12 / 2022$

Design Point - 20 ( 6 ft . Dia M anhole w/ Trash Rack)
Design flow 190.9 cfs
Orifice Flow Calculation
$\mathrm{Q}=\mathrm{C}^{*} \mathrm{~A}^{*}$ square root (2gH)
$\mathrm{C}=0.6 \quad \mathrm{~A}=28.274 \mathrm{sq} \mathrm{ft} \quad \mathrm{g}=32.2$

Head (ft)	CA	$(2 \mathrm{GH})$	Sqrt (2GH)	Capacity
1	16.9644	64.40	8.025	136.1
2	16.9644	128.80	11.349	192.5
3	16.9644	193.20	13.900	235.8
4	16.9644	257.60	16.050	272.3
5	16.9644	322.00	17.944	304.4
6	16.9644	386.40	19.657	333.5



## Interim Channel Section - AA

Trapezoidal	
Bottom Width (ft)	$=5.00$
Side Slopes (z:1)	$=4.00,4.00$
Total Depth (ft)	$=4.00$
Invert Elev (ft)	$=7134.00$
Slope (\%)	$=2.62$
N-Value	$=0.040$
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=7.10$

Highlighted
Depth (ft) $\quad=0.40$
Q (cfs)
$=7.100$
Area (sqft)
$=2.64$
Velocity (ft/s)
$=2.69$
Wetted Perim (ft) $\quad=8.30$
Crit Depth, Yc (ft) $=0.36$
Top Width (ft)
$=8.20$
$=0.51$


Channel Report

## Interim Channel Section - BB

Trapezoidal

Bottom Width $(\mathrm{ft})$	$=5.00$
Side Slopes $(\mathrm{z}: 1)$	$=4.00,4.00$
Total Depth $(\mathrm{ft})$	$=4.00$
Invert Elev $(\mathrm{ft})$	$=7098.00$
Slope $(\%)$	$=2.00$
N-Value	$=0.040$

## Calculations

Compute by:
Known Q (cfs)

Known Q
$=197.30$

Highlighted

Depth (ft)	$=2.24$
Q (cfs)	$=197.30$
Area (sqft)	$=31.27$
Velocity (ft/s)	$=6.31$
Wetted Perim (ft)	$=23.47$
Crit Depth, Yc (ft)	$=2.19$
Top Width (ft)	$=22.92$
EGL (ft)	$=2.86$

USE PERMANENT EROSION
CONTROL BLANKET
V MAX SC250
OR EQUIVALENT

Elev ( ft )

## Section

Depth (ft)


## Interim Channel Section - CC

Trapezoidal	
Bottom Width (ft)	$=5.00$
Side Sopes (z:1)	$=4.00,4.00$
Total Depth (ft)	$=4.00$
Invert Elev (ft)	$=7010.00$
Slope (\%)	$=2.18$
N-Value	$=0.040$
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=196.20$

Highlighted
Depth (ft) $=2.19$
Q (cfs)
= 196.20
Area (sqft)
Velocity (ft/s)
= 30.13
= 6.51
Wetted Perim (ft) $\quad=23.06$
Crit Depth, Yc (ft)
= 2.19
Top Width (ft)
$=22.52$
EGL (ft)
$=2.85$

SSE PERMANENT EROSION
CONTROL BLANKET
VMAX SC250
OR EQUIVLENT


## Interim Channel Section - DD

Trapezoidal	
Bottom Width (ft)	$=3.00$
Side Slopes (z:1)	$=4.00,4.00$
Total Depth (ft)	$=4.00$
Invert Elev (ft)	$=7059.00$
Slope (\%)	$=2.25$
N-Value	$=0.040$
Calculations	
Compute by:	$=77.40$
Known Q (cfs)	

Highlighted
Depth (ft) $\quad=1.58$
Q (cfs)
$=77.40$
Area (sqft)
= 14.73
Velocity (ft/s)
$=5.26$
Wetted Perim (ft)
$=16.03$
Crit Depth, Yc (ft)
= 1.55
Top Width (ft) $=15.64$
EGL (ft)
= 2.01

USE PERMANENT EROSION
CONTROLBLANKET
V MAX SC250
OR EQUIVALENT


Crossing - Headwater at DP05, Design Discharge - 8.9 cfs


## HY-8 Analysis Results

## Crossing Summary Table

Culvert Crossing: Headwater at DP05

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7102.46	8.90	8.90	0.00	1
7104.50	26.18	26.18	0.00	Overtopping

[^1]Crossing - Headwater at DP04, Design Discharge - 91.3 cfs
Culvert - Culvert 1, Culvert Discharge - 91.3 cfs


## HY-8 Analysis Results

## Crossing Summary Table

Interim Condition
Culvert Crossing: Headwater at DP04

Headwater Elevation   (ft)	Total Discharge (cfs)	Culvert 1 Discharge   (cfs)	Roadway Discharge   (cfs)	Iterations
7108.54	91.30	91.30	0.00	1
7108.54	1.30	91.30	0.00	1
7108.54	91.30	91.30	0.00	1
7108.54	91.30	91.30	0.00	1
7108.54	91.30	91.30	0.00	1
7108.54	91.30	91.30	0.00	1
7108.54	91.30	91.30	0.00	1
7108.54	91.30	91.30	0.00	1
7108.54	91.30	91.30	0.00	1
7108.54	91.30	91.30	0.00	1
71108.54	91.30	91.30	0.00	1

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.1
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.2
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.3
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.4
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 2.1
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 2.2
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 2.3
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 2.4
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 2.5
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 3.1
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 3.2
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 3.3
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 3.4
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 3.5
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.1d
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.2d
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.3d
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.4d
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.5d
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.6d
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 2.1d
(

## CIRCULAR CONDUIT FLOW (Normal \& Critical Depth Computation)

MHFD-Culvert, Version 4.00 (May 2020)
Project: Homestead North - Proposed Conditions
Pipe I D: 100 YEAR- DP 1.7d
(

## Appendix D Drainage Maps

## EXISTING DRAINAGE MAP HOMESTEAD NORTH



## EXISTING DRAINAGE MAP HOMESTEAD NORTH






## EARLY GRADING - DRAINAGE MAP




EC－2 Temporary and Permanent Seeding（TS／PS）

			Pereminial Crases	
Sceling Dats	${ }_{\text {Warm }}$	Cool	Warm	${ }_{\text {coor }}$
Naxh $1 .-$－herili	4	$\stackrel{1,23}{ }$	r	
Mav 16.5 Ime 30	${ }_{4.567}$			
Jul $1-$ Iuly 15	5．6，7			
July 6 －－Aent 31				
Spepember 1．Seperemer 30		8，9，0，11		
Ocobor 1－December 31			$\checkmark$	$\checkmark$

Nulch
 Maintenance and Removal






## Concrete Washout Area（CWA）



COMA－1．CONCRETE WASHOUT AREA


为
Nity

豦


SC－7



EC－2 Temporary and Permanent Seeding（TS／PS）


comme	cex sumed	$\xrightarrow{\text { comemb }}$	${ }_{\text {comem }}^{\text {cromm }}$	$\substack{\text { Selede } \\ \text { Remud }}$	
Alatal Soulsed Mix					
Bammulte	cmoma	${ }_{\text {com }}$	${ }_{\text {come }}$		
	Remen	${ }^{\mathrm{com}}$			
	momm	［ol	bid		：s
${ }^{\text {In }}$					
		Cool	${ }_{\text {sod }}$	rs，mom	${ }^{20}$
Dian headseas		${ }_{\text {cosel }}$	${ }_{\text {Bmat }}$	S6，90	
Limonomonothome		${ }_{\text {cool }}$	${ }_{\text {sod }}$	Ba，amo	5
Satarsmemment hereses		${ }_{\text {cool }}$	${ }^{\text {sod }}$	ro，amo	${ }^{25}$
Stimb					${ }_{\substack{115 \\ 1 \\ 15}}$
隹					
Ratater		wam	Ompen	Someos	${ }_{0} 0.3$
Reatememper				ssmo	
		${ }^{\text {cool }}$	${ }_{\text {sod }}$	Bsamom	${ }^{30}$
Pamateramiluges		$w^{*} \mathrm{~m}$	${ }_{\text {sod }}$	ssamo	${ }^{10}$
Atumatuenegas	何	${ }_{\text {cool }}$	$\operatorname{smama}^{\text {a }}$	${ }^{73900}$	
Tomer					
	隹	${ }_{\text {coll }}$		${ }_{\text {chemo }}$	${ }^{1.0}$
	mmememe Coumem	com	sod	27，900	30
Limonomanammene		${ }_{\text {cosel }}$	sod	ga，amo	${ }^{20}$
Tout					



SC－7
Sediment Basin（SB）


	come	Stame	${ }_{\text {commm }}^{\text {cremm }}$	Semed	
5					
Bucmam	Sombeas gactis	wem	comel	${ }_{\text {2r }}^{2}$ ，00	
Cimefinelubuesm		$\mathrm{vam}^{\text {m }}$	Bman	2n，000	
$\frac{\text { Prinis suteded }}{\text { Smatdomed }}$		Nomm	$\substack{\text { Soxneod } \\ \text { hamid }}$		
		${ }_{\text {Wmm }}$	sod	91， 20	
	Asomosmemil	${ }_{\text {coil }}$	sod	H10，00	
Haty					
		${ }_{\text {coll }}$	$\mathrm{sou}^{\text {som }}$	${ }_{\text {rsamam }}$	
Siucome		${ }_{\text {cool }}$	sod	${ }_{\text {H，} 5 \text { an }}$	
Vamenisiases gem		wam	sod	งิ， 000	
Linone manathome		${ }_{\text {coll }}$	sod	Ba，000	
Weem	Asmomen matut tm	${ }_{\text {coil }}$	sod	11.400	
$\begin{array}{lll}\text { c } & \text { If site is to be irrigated，the transition turf seed rates should be doubled．} \\ { }^{\text {a }} & \text { Crested wheatgrass should not be used on slopes steeper than } 6 \mathrm{H} \text { to } 1 \mathrm{~V} \text { ．}\end{array}$					



## ediment Basin（SB）


Mavivivevaw waw wax


Esowir


Noms






## WATER QUALITY CAPTURE PLAN

HOMESTEAD NORTH


## Appendix E

## Reference Material

# SAND CREEK DRAINAGE BASIN PLANNING STUDY PRELIMINARY DESIGN REPORT 

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO


## II. STUDY AREA DESCRIPTION

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subtributary. Figure II-1 shows the location of the Sand Creek basin.

## Basin Description

The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin only.

The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

## Climate

This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about $30^{\circ} \mathrm{F}$ in the winter
to $75^{\circ}$ in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.

## Soils and Geology

Soils within the Sand Creek basin vary between soil types A through D, as identified by the U. S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type A and B soils give this basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.

## Property Ownership and Impervious Land Densities

Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no delineated drainage right-of-way or easements. There are several public parks which abut the mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin.

Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek. Presented on Figure II-3 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the County.

The land use information within the Banning-Lewis Ranch property was obtained from Aries Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was again reviewed with the City of Colorado Springs Department of Planning and was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of future arterial streets and roadways within



Figure 8-1. Sand Creek Drainage Basin Chanel Improvement IDs with Previous Constructed Areas




$$
x^{2}+4 x^{2}
$$


[^0]:    Notes:
    Street and Pipe C*A values are determined by $\mathrm{Q} / \mathrm{i}$ using the catchment's intensity value.
    All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

[^1]:    Interim Condition

