Provide signature page.

August 5, 2020
See comment letter also.
Mr. Jim Morley
Morley-Bentley Investments, LLC
20 Boulder Crescent, 1st Floor
Colorado Springs, CO 80903

RE: Homestead North Phase 1
Traffic Impact Study
El Paso County, Colorado
LSC \#204380

Dear Mr. Morley:

LSC Transportation Consultants, Inc. has prepared this Traffic Impact Study for Homestead North Phase 1. As shown in Figure 1, Homestead North is located east of Vollmer Road and north of the future extension of Briargate Parkway in El Paso County, Colorado. Homestead North Phase 1 is part of the Sterling Ranch Master Plan area. This report is intended as a site-specific, final plat traffic report for the currently proposed filing.

REPORT CONTENTS

The preparation of this report included the following:

- A list of previous Sterling Ranch traffic reports and traffic reports completed by LSC Transportation Consultants, Inc. for other area developments;
- A summary of the proposed land use and access plan;
- The existing roadway and traffic conditions in the site's vicinity, including the roadway widths, surface conditions, lane geometries, traffic controls, and posted speed limits;
- Existing (2020) traffic-volume data;
- Estimates of projected short-term and long-term traffic volumes;
- The projected average weekday and peak-hour vehicle trips to be generated by the proposed development;
- The assignment of the projected site-generated traffic volumes to the area roadways;
- The projected short-term and long-term total traffic volumes on the area roadways;
- The projected levels of service at the key intersections in the vicinity of the site;
- The recommended street classifications for the internal streets within the proposed development;
- The project's obligation to the County roadway improvement fee program; and
- Recommended roadway improvements

RECENT TRAFFIC REPORTS

LSC prepared a traffic impact study (TIS) for the entire Sterling Ranch development dated June 5, 2008. LSC also prepared a traffic impact analysis for the first phase of the Sterling Ranch development, dated March 16, 2015; a memorandum for Phases 1-3, dated October 2, 2017; and a traffic impact analysis for the Sterling Ranch Phase 2 Preliminary Plan, dated December 20, 2018. The following site-specific, final plat traffic reports have also been prepared:

- Branding Iron at Sterling Ranch Filing No. 1 and Homestead at Sterling Ranch Filing No. 1, dated December 19, 2017
- Sterling Ranch Filing No. 2, dated April 3, 2018
- Sterling Ranch Phase 2, dated December 20, 2018
- Copper Chase at Sterling Ranch, dated December 20, 2018
- Homestead at Sterling Ranch Filing No. 2, dated March 3, 2020
- Branding Iron at Sterling Ranch Filing No. 2, dated March 31, 2020 (revised May 6, 2020)
- Sterling Ranch Filing No. 2 and Sterling Ranch Phase 2, dated June 11, 2020

LSC prepared a TIS for the Retreat at TimberRidge, located just north of the Homestead North development, dated January 25, 2018. LSC also prepared transportation memoranda for the Retreat at TimberRidge Preliminary Plan dated June 29 ${ }^{\text {th }}, 2018$ and the Retreat at TimberRidge Filing No. 1 dated April 3, 2020.

STUDY AREA

Study Area Land Use

Sketch Plan

Figure 2 shows the location of currently-proposed Homestead North Phase 1 development. These parcels were included as part of traffic analysis zone (TAZ) 21 in the 2008 master traffic impact report. Table 1 shows the land uses assumed for TAZ 21 in the 2008 report and the land uses assumed in this report. A copy of the TAZ map from the 2008 report has been attached. As shown in Table 1, the 2008 report assumed the study area would be developed with 327 single-family homes. This same area is now planned to be developed with about 224 single-family homes. This includes 147 single-family homes currently proposed in Phase 1 and 77 single-family homes assumed in future Homestead North phases.

Study Area Access Plan

The access plan for the current study area is generally consistent with the access plan shown in the master traffic report. The following summarizes the minor change:

- The Sterling Ranch access to Briargate Parkway just east of Vollmer Road (Wheatland Drive) was previously shown as a right-in/right-out-only intersection in the Sketch Plan. The south leg is now proposed as a three-quarter-movement (left-in/right-in/right-out-only) access. A deviation request for this access point has been submitted and approved. The north leg that will serve Homestead North Phase 1 is still proposed to be restricted to right-in/right-out only.

These changes to the plan will result in some localized shifts in intersection turning movements shown in the master traffic study long-term traffic projections, but nothing significant requiring an update to the master study.

CURRENTLY PROPOSED LAND USE AND ACCESS

Land Use and Vehicle Access

Homestead North Phase 1 is planned to include 147 lots for single-family homes. A full-movement site access is proposed to Vollmer Road about 1,410 feet north of Briargate Parkway and 1,370 feet south of Poco Road. An additional access is proposed to Briargate Parkway about 750 feet east of Vollmer Road aligning with Wheatland Drive. In the short term, full-movement access will be allowed at this intersection, as only a half section of Briargate Parkway is planned to be constructed between Vollmer Road and Wheatland Drive. Once Briargate Parkway is widened to the full Principal Arterial cross-section, the north leg serving Homestead North will be restricted to right-in/right-out only and the south leg will be restricted to three-quarter movements (left-in/right-in/right-out only). In the future, Homestead North Phase 1 will also have access through future Homestead North phases and the Retreat at TimberRidge to Poco Road.

Sight Distance Analysis

Figure 3 shows a sight distance analysis at the future intersection to Vollmer Road. Based on a design speed of 40 miles per hour (mph) and the criteria contained in Table 2-21 of the El Paso County Engineering Criteria Manual (ECM), the required intersection sight distance at the future intersections is 445 feet. Based on the criteria contained in Table 2-17 of the ECM, the required stopping sight distance approaching this intersection is 305 feet. As shown in Figure 4, the future intersection analyzed will meet the criteria.

Pedestrian and Bicycle Access

There are no existing schools within two miles of the site. However, there are planned future school sites within the Sterling Ranch Master Plan area south of Briargate Parkway. There are planned sidewalks on Vollmer Road and Briargate Parkway adjacent to the site. School crossings will be needed at the intersection of Briargate Parkway/Vollmer Road. School crossings should not be allowed at the intersection of Briargate Parkway/Wheatland Drive.

EXISTING ROAD AND TRAFFIC CONDITIONS

The adjacent streets are shown in Figure 1 and are described below. Copies of the 2016 El Paso County Major Transportation Corridors Plan (MTCP), 2040 Roadway Plan, and 2016 MTCP 2060 Corridor Preservation Plan with the site location identified on each of them have been attached to this report.

Vollmer Road is currently a five-lane urban street within the City of Colorado Springs limits between Black Forest Road and Cowpoke Road; and a two-lane, rural, paved roadway north of Cowpoke Road extending to north of Hodgen Road. In the southbound direction, Vollmer Road has a posted speed limit of 45 miles per hour (mph). South of Cowpoke Road, Vollmer Road has a $40-\mathrm{mph}$ posted speed limit. The 2040 El Paso County Major Transportation Corridors Plan (MTCP) and the Sterling Ranch master traffic study show Vollmer Road as a four-lane Urban Minor Arterial adjacent to the site. Vollmer Road is planned to transition to a 2-lane Rural Minor Arterial north of Poco Road. In the interim, auxiliary turn lanes will be completed on Vollmer Road at Briargate Parkway as part of the Homestead at Sterling Ranch Filing No. 2 development.

Marksheffel Road is a Principal Arterial extending north from the City of Fountain to Woodmen Road. Marksheffel Road is planned to ultimately be widened to six lanes and extended north and west from Woodmen Road to connect to Research Parkway at Black Forest Road. Marksheffel Road is shown as a six-lane Principal Arterial through the Sterling Ranch Master Plan area on the El Paso County MTCP.

/Stapleton Road

Briargate Parkway is a six-lane, Principal Arterial that extends east from I-25 to Grand Lawn Circle (about one-half mile east of Powers Boulevard). Briargate Parkwan is planned ultimately to extend to Towner Drive. The section of Briargate Parkway between Vollmer Road and the first Sterling Ranch access (Wheatland Drive) is planned to be constructed in the short-term with the Homestead at Sterling Ranch Filing No. 2 development.
Address Poco Road Existing Traffic Voiumes
as a partial
cross-section
Figure 4 shows the existing (2020) peak-hour traffic volumes at the intersections of Dines/Vollmer. The traffic volumes shown for the intersection of Dines/Vollmer were based on traffic counts conducted by LSC in May 2020. These traffic counts were conducted at a time when COVID-19 pandemic-related restrictions were in place. However, traffic counts conducted at the intersection of Black Forest Road/Vollmer Road in December 2019 (pre-pandemic) and repeated during the same week that the Dines/Vollmer counts were conducted indicate only minor impacts to traffic volumes on Vollmer Road due to these restrictions. The traffic count sheets are attached.

Figure 4 also shows the daily traffic volumes on Vollmer Road in the vicinity of the site. These volumes are estimates by LSC, based on the 2020 peak-hour counts and the ratio of peak-hour to daily traffic volumes from 24-hour traffic counts conducted on Vollmer Road just south of Poco Road by LSC in 2017.

BACKGROUND (BASELINE) CONDITIONS

Background traffic is the traffic estimated to be on the adjacent roadways and at adjacent intersections without the proposed development's trip generation of site-generated traffic volumes. Background traffic includes the through traffic and the traffic generated by nearby developments, but assumes zero traffic generated by Homestead North Phase 1.

Figure 5 shows the projected short-term background traffic volumes at the key area intersections. The short-term background volumes assume a half section of Briargate Parkway has been constructed between Vollmer Road and Wheatland Drive and that full-movement access is permitted at the intersection of Briargate/Wheatland. The short-term background traffic includes the existing traffic volumes (from Figure 3) plus increases in through traffic due to regional growth, plus traffic estimated to be generated by buildout of the Homestead at Sterling Ranch Filings 1 and 2, Branding Iron at Sterling Ranch Filings 1 and 2, Sterling Ranch Filing No. 2, Sterling Ranch Phase 2, and the Retreat at TimberRidge Filing No. 1 to be located generally northeast of the intersection of Vollmer Road and Poco Road.

Figure 6 shows the projected 2040 background traffic volumes at the key area intersections. 2040 background traffic volume estimates were based on 2040 volume projections in the El Paso County Major Transportation Corridors Plan (MTCP) and previous work completed in the area by LSC, including the Sterling Ranch Updated Traffic Impact Analysis by LSC (dated June 5, 2008) and the Retreat at TimberRidge Updated Traffic Impact Analysis by LSC (dated January 25, 2018). The 2040 background traffic volumes assume buildout of the Sterling Ranch development, including future phases of Homestead North, and buildout of the Retreat at TimberRidge. The 2040 background traffic assumes Briargate Parkwa has been constructed between Black Forest Road and Towner Avenue and that the intersection of Briargate/Wheatland is restricted to a three-quarter movement (left-in/right-in/right-out only for the south leg and right-in/right-out only for the north leg. The 2040 background traffic alsd assumes a connection between the intersection of Wheatland/Briargate and Poco Road throughthe Homestead North area.

TRIP GENERATION

The site-generated vehicle trips were estimated using the nationally published trip-generation rates from Trip Generation, 10th Edition, 2017 by the Institute of Transportation Engineers (ITE). Table 1 shows the trip-generation estimates.

Homestead North Phase 1 is projected to generate about 1,388 new external vehicle-trips on the average weekday, with about half entering and half exiting the site during a 24 -hour period. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 27 vehicles would enter and 82 vehicles would exit the site. During the afternoon peak hour, which generally occurs for one hour between $4: 15$ and $6: 15$ p.m., about 92 vehicles would enter and 54 vehicles would exit the site.

TRIP DISTRIBUTION AND ASSIGNMENT

The directional distribution of the site-generated traffic volumes on the street and roadway system serving the site is one of the most inportant factors in determining the site's traffic impacts. The specific short-term and intekmediate-term distribution estimates are shown in Figure 7. The directional distribution estimates are based on the following factors: the location of the site with respect to the Colorado Springs metropolitan area, the planned access system for the site, the street and roadway system serving the site, the land uses proposed for the site, and the distribution of existing traffic volumes at the intersection of Dines Boulevard/Vollmer. The short-term distribution estimate assumes only the short section of Briargate Parkway between Vollmer Road and Wheatland Drive has been constructed in the vicinity of the site and the long-term distribution estimate assumes full buildout of the future roadway network in the vicinity of the site.

When the distribution percentages (from Figure 7) are applied to the trip-generation estimates (from Table 1), the resulting site-generated traffic volumes can be determined. Figures 8 and 9 show the short-term and 2040 site-generated traffic volume estimate for Homestead North Phase 1. The short-term site-generated traffic volumes assume the intersection of Briargate/Wheatland as an interim full-movement intersection. The long-term site-generated traffic volumes assume the north leg of this intersection has been restricted to right-in/right-out only.

TOTAL TRAFFIC

Short-Term Total Traffic Volumes

Figure 10 shows the projected short-term total traffic volumes at the intersection of Briargate/Vollmer and the site access points. The short-term total traffic volumes are the sum of the short-term background traffic volumes (from Figure 5) and the short-term site-generated traffic volumes (from Figure 8).

2040 Total Traffic Volumes

Figure 11 shows the projected 2040 total traffic volumes at the intersection of Briargate/Vollmer and the site access points. The 2040 total traffic volumes are the sum of the 2040 background traffic volumes (from Figure 6) and the long-term site-generated traffic volumes (from Figure 9).

LEVEL OF SERVICE ANALYSIS

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A represents control delay of less than 10 seconds for unsignalized intersections. LOS F represents control delay of more than 50 seconds for unsignalized intersections. Table 2 shows the level of service delay ranges.

Table 2: Intersection Levels of Service Delay Ranges

	Signalized Intersections	Unsignalized Intersections
Level of Service	Average Control Delay (seconds per vehicle)	Average Control Delay (seconds per vehicle) ${ }^{(\mathbf{1})}$
A	10.0 sec or less	10.0 sec or less
B	$10.1-20.0 \mathrm{sec}$	$10.1-15.0 \mathrm{sec}$
C	$20.1-35.0 \mathrm{sec}$	$15.1-25.0 \mathrm{sec}$
D	$35.1-55.0 \mathrm{sec}$	$25.1-35.0 \mathrm{sec}$
E	$55.1-80.0 \mathrm{sec}$	$35.1-50.0 \mathrm{sec}$
F	80.1 sec or more	50.1 sec or more

(1) For unsignalized intersections, if V / C ratio is greater than 1.0 the level of service is LOS F, regardless of the projected average control delay per vehicle.

The intersection of Briargate/Vollmer and the site access points have been analyzed to determine the projected intersection levels of service for short-term and 2040 background and total traffic scenarios for the morning and afternoon peak-hour periods. The short-term analysis of the intersection of Briargate/Vollmer and the short-term and 2040 analysis of the site access points were based on the unsignalized intersection analysis procedures from the Highway Capacity Manual, 6th Edition. The intersection of Briargate/Vollmer was analyzed as a signalized intersection using Synchro for the 2040 analysis. Figures 5, 6, 10, and 11 show the level of service analysis results. The level of service reports are attached.

Briargate Parkway/Vollmer Road

The intersection of Briargate/Vollmer is projected to operate at a satisfactory level of service (LOS C or better) as a stop sign-controlled intersection, based on the short-term total traffic. This analysis assumes Briargate Parkway has only been extended east of Vollmer Road to Wheatland Drive. By 2040, it was assumed that Briargate Road would be extended east to Black Forest Road and west to connect to its current terminus. It was also assumed that the intersection of Briargate/Vollmer would be signal-controlled by 2040. This intersection is projected to operate at an overall satisfactory level of service (LOS D or better) as a signalized intersection.

Briargate Parkway/Wheatland Drive

The intersection of Briargate/Wheatland is projected to operate at a LOS B or better for all movements as a full-movement stop sign-controlled intersection, based on the short-term total traffic. This analysis assumes a half section of Briargate Parkway has been constructed between Vollmer Road to Wheatland Drive. By 2040, it was assumed that the Briargate Parkway would be constructed to its full Principal Arterial cross-section and the south leg of the intersection of Briargate/Wheatland would be restricted to three-quarter movement (left-in/right-in/right-out only) and the north leg would be restricted to right-in/right-out only. Based on the 2040 total
traffic volumes and lane geometry shown in Figure 11, all movements at this intersection are projected to operate at LOS D or better during the peak hours.

Vollmer Road/Site Access

The full-movement site access point to Vollmer Road is projected to operate at LOS C or better for all movements during the peak hours as a stop sign-controlled intersection, based on the projected short-term and 2040 total traffic volumes.

SUBDIVISION STREET CLASSIFICATIONS

Figure 12 shows the recommended street classifications for the streets in the vicinity of the site.

AREA MTCP 2040 ROADWAY IMPROVEMENT PROJECTS

The El Paso County 2016 Major Transportation Corridors Plan Update identified the following 2040 roadway improvement projects within the study area:
(Briargate Pkwy)

- C13: Vollmer Road, from Marksheffel Road to Stapleton Drive, as a Rural 4-Lane Minor Arterial
- N5 Stapleton Drive [Briargate Parkway], from Towner Road to Black Forest Road, as a 4 Lane Urban Principal Arterial
N12: Marksheffel Road, from Woodman Road to Research Parkway, as a 4-Lane Urban Principal Arterial
- M11: Vollmer Road Bicycle \& Primary Regional Trail, from Marksheffel Road to Shoup Road
Address potential extension of project to Poco (?) due to projected link ADT ROADWAY IMPROVEMENTS

Vollmer Road

Roadway improvements to Vollmer Road including auxiliary turn lanes, as discussed in our October 2, 2017 transportation memorandum, are required as part of the Subdivision Improvements Agreement (SIA) for Homestead at Sterling Ranch Filing No. 1 and Branding Iron at Sterling Ranch Filing No. 1. The applicant will be constructing an interim cross section for Vollmer Road between Marksheffel Road and Briargate Parkway, no later than May 30, 2021. The interim road improvement would widen the roadway to the east side. There would continue to be one through lane in each direction, but the interim road improvements would allow for southbound left-turn and northbound right-turn lanes at the intersection of Briargate Parkway/Vollmer Road. The developer will be responsible for funding all roadway improvements.

TRANSPORTATION IMPROVEMENT FEE PROGRAM

The applicant will be required to participate in the Countywide Transportation Improvement Fee Program. These projects will annex into the 10 mil PID, which has a per-lot upfront building permit fee of $\$ 1,221$ per dwelling unit. The total building permit fee amount for the 147 lots within Homestead North Phase 1 would be $\$ 179,487$.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

Homestead North Phase 1 is projected to generate about 1,388 new external vehicle trips on the average weekday, with about half entering and half exiting the site during a 24 -hour period. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 27 vehicles would enter and 82 vehicles would exit the site. During the afternoon peak hour, which generally occurs for one hour between $4: 15$ and 6:15 p.m., about 92 vehicles would enter and 54 vehicles would exit the site.
east

Level of Service

- In the short term, the intersection of Briargate/Vollmer is projected to operate at a satisfactory level of service as a stop sign-controlled / $T^{\prime \prime}$ intersection. By 2040, jt was assumed that Briargate Road would be extended east to Black Forest Road and west to connect to its current terminus. It was also assumed that the intersection of Briargate/Vollmer would be signal controlled by 2040. This intersection is projected to operate at an overall satisfactory level of service (LOS D or better) as a signalized intersection.
- The proposed site access points to Vollmer Road and Briargate Parkway are projected to operate at a satisfactory level of service as stop sign-controlled intersections, based on the short-term and 2040 total traffic volumes and lane geometry shown in Figures 10 and 11.

Recommended Improvements

A list of all improvements in the vicinity of the site is presented in Table 3.

Please contact me if you have any questions regarding this report.
Sincerely,

LSC TRANSPORTATION CONSULTANTS, INC.

By
Jeffrey C. Hodsdon, P.E.
Principal

KDF:jas

Enclosures: Tables 1 and 3
Figures 1-12
TAZ Map
MTCP Maps
Traffic Count Reports
Level of Service Reports

Tables and Figures

Add a line for "Vollmer Road safety improvements - lane and shoulder widening between - Poco Road and Marksheffel Road", include timing, etc.; Sam Bass to Marksheffel (in areas where plans are not currently approved) with Homestead North phase TBD.

LEGEND:
$\frac{X X}{X X}=\frac{\text { AM Weekday Peak-Hour Traffic (vehicles per hour) }}{\text { PM Weekday Peak-Hour Traffic (vehicles per hour) }}$ Based on counts by LSC May 2020 $X X X=$ Average Weekday Traffic (vehicles per day) Estimate by LSC

LEGEND:

$$
\frac{X X \%}{X X \%}=\frac{\text { Short-Term Percent Directional Distribution }}{\text { Long-Term Percent Directional Distribution }}
$$

TAZ Map

MTCP Maps

Map 14: 2040 Roadway Plan (Classification and Lanes)

Traffic Counts

LSC Transportation Consultants, Inc.

LSC Transportation Consultants, Inc.
File Name : Vollmer Rd - Dines Blvd AM

LSC Transportation Consultants, Inc.

File Name : Vollmer Rd - Dines Blvd PM Site Code : 00204380
Start Date $: 5 / 27 / 2020$
Page No $: 1$
LSC Transportation Consultants, Inc.
File Name : Vollmer Rd - Dines Blvd PM

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1}$	A
Traffic Vol, veh/h	10	3	277	3	2	339
Future Vol, veh/h	10	3	277	3	2	339
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	235	-	235	385	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	12	4	326	4	2	399

Intersection						
Int Delay, s/veh	0.3					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	$\mathbf{7}$	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1}$	A
Traffic Vol, veh/h	7	2	416	12	7	314
Future Vol, veh/h	7	2	416	12	7	314
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	235	-	235	385	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	8	2	489	14	8	369

Intersection												
Int Delay, s/veh	7.8											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\dagger			\uparrow			\uparrow			\dagger	
Traffic Vol, veh/h	18	0	5	0	0	0	13	0	0	0	0	55
Future Vol, veh/h	18	0	5	0	0	0	13	0	0	0	0	55
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	100	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\# -	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	21	0	6	0	0	0	15	0	0	0	0	65

Intersection						
Int Delay, s/veh	1.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{7}$	$\mathbf{1}$	A
Traffic Vol, veh/h	62	6	283	20	3	356
Future Vol, veh/h	62	6	283	20	3	356
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	235	-	235	385	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	73	7	333	24	4	419

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		\uparrow			\uparrow
Traffic Vol, veh/h	17	9	283	6	3	342
Future Vol, veh/h	17	9	283	6	3	342
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	20	11	333	7	4	402

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	747	337	0	0	340	0
Stage 1	337	-	-	-	-	-
Stage 2	410	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	381	705	-	-	1219	-
Stage 1	723	-	-	-	-	-
Stage 2	670	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	379	705	-	-	1219	-
Mov Cap-2 Maneuver	379	-	-	-	-	-
Stage 1	723	-	-	-	-	-
Stage 2	667	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	13.6		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	451	1219	-
HCM Lane V/C Ratio		-	-	0.068	0.003	-
HCM Control Delay (s)		-	-	13.6	8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0	-

Intersection												
Int Delay, s/veh	6.7											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	\uparrow			\uparrow			\uparrow			\dagger	
Traffic Vol, veh/h	62	0	19	0	0	0	9	0	0	0	0	36
Future Vol, veh/h	62	0	19	0	0	0	9	0	0	0	0	36
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Free	Free	Stop	Stop	Stop	Stop	Stop	Stop
RT Channelized	-	-	None									
Storage Length	100	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	85	85	85	85	85	85	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	73	0	22	0	0	0	11	0	0	0	0	42

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	$\mathbf{7}$	$\mathbf{4}$	$\mathbf{7}$	\mathbf{T}	A
Traffic Vol, veh/h	41	4	436	71	10	325
Future Vol, veh/h	41	4	436	71	10	325
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	-	235	-	235	385	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	48	5	513	84	12	382

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Fin		\uparrow			\uparrow
Traffic Vol, veh/h	11	6	420	20	10	324
Future Vol, veh/h	11	6	420	20	10	324
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	13	7	494	24	12	381

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	911	506	0	0	518	0
Stage 1	506	-	-	-	-	-
Stage 2	405	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	304	566	-	-	1048	-
Stage 1	606	-	-	-	-	-
Stage 2	673	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	299	566	-	-	1048	-
Mov Cap-2 Maneuver	299	-	-	-	-	-
Stage 1	606	-	-	-	-	-
Stage 2	663	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	15.6		0		0.3	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	359	1048	-
HCM Lane V/C Ratio		-	-	0.056	0.011	-
HCM Control Delay (s)		-	-	15.6	8.5	0
HCM Lane LOS		-	-	C	A	A
HCM 95th \%tile Q(veh)		-	-	0.2	0	-

	\rangle			7			4	\uparrow	＋		\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	＊	个 \uparrow	「	\％${ }^{1+1}$	个 \uparrow	「	\％	性	「	\％	性	7
Traffic Volume（vph）	55	824	60	333	1442	57	90	123	124	92	304	125
Future Volume（vph）	55	824	60	333	1442	57	90	123	124	92	304	125
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split（s）	10.0	53.0	53.0	22.0	65.0	65.0	15.0	30.0	30.0	15.0	30.0	30.0
Total Split（\％）	8．3\％	44．2\％	44．2\％	18．3\％	54．2\％	54．2\％	12．5\％	25．0\％	25．0\％	12．5\％	25．0\％	25．0\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None											
Act Effct Green（s）	43.6	38.2	38.2	15.2	51.5	51.5	21.9	15.1	15.1	22.2	15.2	15.2
Actuated g／C Ratio	0.46	0.40	0.40	0.16	0.54	0.54	0.23	0.16	0.16	0.23	0.16	0.16
v／c Ratio	0.33	0.61	0.09	0.64	0.79	0.07	0.35	0.23	0.34	0.29	0.57	0.34
Control Delay	16.1	25.4	0.2	47.4	23.6	0.4	32.6	40.8	7.0	31.3	44.5	7.1
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	16.1	25.4	0.2	47.4	23.6	0.4	32.6	40.8	7.0	31.3	44.5	7.1
LOS	B	C	A	D	C	A	C	D	A	C	D	A
Approach Delay		23.2			27.2			26.1			33.2	
Approach LOS		C			C			C			C	
Intersection Summary												

Cycle Length： 120
Actuated Cycle Length： 95.3
Natural Cycle： 65
Control Type：Actuated－Uncoordinated
Maximum v／c Ratio： 0.79
Intersection Signal Delay： 27.0
Intersection LOS：C
Intersection Capacity Utilization 74．1\％ ICU Level of Service D
Analysis Period（min） 15
Splits and Phases：8：Vollmer Rd \＆Briargate Pkwy

Intersection						
Int Delay, s/veh	0.5					
Movement V	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	* ${ }^{\prime}$		中4	F	${ }^{1}$	44
Traffic Vol, veh/h	31	1	227	9	0	490
Future Vol, veh/h	31	1	227	9	0	490
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	155	205	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	33	1	239	9	0	516

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	497	120	0	0	248	0
Stage 1	239	-	-	-	-	-
Stage 2	258	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	502	909	-	-	1315	-
Stage 1	778	-	-	-	-	-
Stage 2	761	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	502	909	-	-	1315	-
Mov Cap-2 Maneuver	502	-	-	-	-	-
Stage 1	778	-	-	-	-	-
Stage 2	761	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	12.6		0		0	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	509	1315	-
HCM Lane V/C Ratio		-	-	0.066	-	-
HCM Control Delay (s)		-	-	12.6	0	-
HCM Lane LOS		-	-	B	A	-
HCM 95th \%tile Q(veh)		-	-	0.2	0	-

	4			7	\leftarrow		4	4	p	＊	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％		「	\％${ }^{1+1}$	个4	「	\％		「	\％	性	F
Trafic Volume（vph）	184	1447	105	319	1195	87	205	396	367	108	213	109
Future Volume（vph）	184	1447	105	319	1195	87	205	396	367	108	213	109
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split（s）	20.0	52.0	52.0	27.0	59.0	59.0	21.0	27.0	27.0	14.0	20.0	20.0
Total Split（\％）	16．7\％	43．3\％	43．3\％	22．5\％	49．2\％	49．2\％	17．5\％	22．5\％	22．5\％	11．7\％	16．7\％	16．7\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	None
Act Effct Green（s）	62.0	49.9	49.9	16.3	54.2	54.2	31.9	18.6	18.6	21.4	12.8	12.8
Actuated g／C Ratio	0.55	0.44	0.44	0.14	0.48	0.48	0.28	0.16	0.16	0.19	0.11	0.11
v／c Ratio	0.70	0.95	0.14	0.68	0.74	0.11	0.65	0.70	0.76	0.50	0.56	0.32
Control Delay	33.8	45.8	0.4	53.9	28.5	0.4	43.5	52.0	21.2	40.5	54.3	2.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	33.8	45.8	0.4	53.9	28.5	0.4	43.5	52.0	21.2	40.5	54.3	2.4
LOS	C	D	A	D	C	A	D	D	C	D	D	A
Approach Delay		41.6			32.0			38.4			37.6	
Approach LOS		D			C			D			D	
Intersection Summary												

Cycle Length： 120
Actuated Cycle Length： 113.6
Natural Cycle： 90
Control Type：Actuated－Uncoordinated
Maximum v／c Ratio： 0.95
Intersection Signal Delay： 37.3
Intersection LOS：D
Intersection Capacity Utilization 83．0\％
ICU Level of Service E
Analysis Period（min） 15
Splits and Phases：8：Vollmer Rd \＆Briargate Pkwy

Intersection						
Int Delay, s/veh	0.3					
Movement W	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	* ${ }^{*}$		44	「	${ }^{7}$	44
Traffic Vol, veh/h	20	0	635	32	1	410
Future Vol, veh/h	20	0	635	32	1	410
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control Stap	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	155	205	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	21	0	668	34	1	432

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	886	334	0	0	702	0
Stage 1	668	-	-	-	-	-
Stage 2	218	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	284	662	-	-	891	-
Stage 1	471	-	-	-	-	-
Stage 2	797	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	284	662	-	-	891	-
Mov Cap-2 Maneuver	284	-	-	-	-	-
Stage 1	471	-	-	-	-	-
Stage 2	796	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	18.7		0		0	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	284	891	-
HCM Lane V/C Ratio		-	-	0.074	0.001	-
HCM Control Delay (s)		-	-	18.7	9	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0.2	0	-

	4			7	\leftarrow		4	4	p	＊	－	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％	舟	「	\％${ }^{1+1}$	个 \uparrow	「	\％	舟	「	\％	¢ \uparrow	F
Trafic Volume（vph）	64	824	60	367	1464	58	90	138	124	96	315	128
Future Volume（vph）	64	824	60	367	1464	58	90	138	124	96	315	128
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split（s）	10.0	53.0	53.0	22.0	65.0	65.0	15.0	30.0	30.0	15.0	30.0	30.0
Total Split（\％）	8．3\％	44．2\％	44．2\％	18．3\％	54．2\％	54．2\％	12．5\％	25．0\％	25．0\％	12．5\％	25．0\％	25．0\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None											
Act Effct Green（s）	43.9	38.5	38.5	15.9	52.5	52.5	22.3	15.5	15.5	22.6	15.6	15.6
Actuated g／C Ratio	0.45	0.40	0.40	0.16	0.54	0.54	0.23	0.16	0.16	0.23	0.16	0.16
v／c Ratio	0.39	0.62	0.09	0.69	0.80	0.07	0.35	0.26	0.34	0.30	0.58	0.35
Control Delay	18.1	25.9	0.2	48.8	24.2	0.5	32.9	41.0	6.9	31.7	45.0	7.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	18.1	25.9	0.2	48.8	24.2	0.5	32.9	41.0	6.9	31.7	45.0	7.4
LOS	B	C	A	D	C	A	C	D	A	C	D	A
Approach Delay		23.8			28.2			26.9			33.7	
Approach LOS		C			C			C			C	
Intersection Summary												

Cycle Length： 120
Actuated Cycle Length： 96.7
Natural Cycle： 70
Control Type：Actuated－Uncoordinated
Maximum v／c Ratio： 0.80
Intersection Signal Delay： 27.8
Intersection LOS：C
Intersection Capacity Utilization 75．0\％ ICU Level of Service D
Analysis Period（min） 15

Splits and Phases：8：Vollmer Rd \＆Briargate Pkwy

Intersection						
Int Delay，s／veh	0.8					
Movement V	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	＊${ }^{\prime}$		中4	「	${ }^{7}$	革
Traffic Vol，veh／h	49	4	228	32	2	490
Future Vol，veh／h	49	4	228	32	2	490
Conflicting Peds，\＃／hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	－	None	－	None	－	None
Storage Length	0	－	－	155	205	－
Veh in Median Storage，\＃	\＃ 0	－	0	－	－	0
Grade，\％	0	－	0	－	－	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles，\％	2	2	2	2	2	2
Mvmt Flow	52	4	240	34	2	516

	4			7	\leftarrow		4	4	p	＊	\downarrow	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	\％		「	\％${ }^{1+1}$	个4	「	\％		「	\％	性	F
Trafic Volume（vph）	212	1447	105	342	1209	87	205	447	367	111	220	111
Future Volume（vph）	212	1447	105	342	1209	87	205	447	367	111	220	111
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split（s）	20.0	51.0	51.0	28.0	59.0	59.0	21.0	27.0	27.0	14.0	20.0	20.0
Total Split（\％）	16．7\％	42．5\％	42．5\％	23．3\％	49．2\％	49．2\％	17．5\％	22．5\％	22．5\％	11．7\％	16．7\％	16．7\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	Max	Max	None	Max	Max	None	None	None	None	None	None
Act Effct Green（s）	63.5	50.1	50.1	17.4	54.1	54.1	33.5	20.2	20.2	22.9	14.3	14.3
Actuated g／C Ratio	0.55	0.43	0.43	0.15	0.46	0.46	0.29	0.17	0.17	0.20	0.12	0.12
v／c Ratio	0.80	0.97	0.14	0.70	0.77	0.11	0.65	0.75	0.73	0.55	0.54	0.32
Control Delay	46.9	50.6	0.4	54.8	30.8	0.4	43.4	54.1	18.9	43.0	53.5	2.3
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	46.9	50.6	0.4	54.8	30.8	0.4	43.4	54.1	18.9	43.0	53.5	2.3
LOS	D	D	A	D	C	A	D	D	B	D	D	A
Approach Delay		47.0			34.2			39.1			38.0	
Approach LOS		D			C			D			D	
Intersection Summary												

Cycle Length： 120
Actuated Cycle Length： 116.4
Natural Cycle： 90
Control Type：Actuated－Uncoordinated
Maximum v／c Ratio： 0.97
Intersection Signal Delay： 40.1
Intersection LOS：D
Intersection Capacity Utilization 84．9\％
ICU Level of Service E
Analysis Period（min） 15

Splits and Phases：8：Vollmer Rd \＆Briargate Pkwy

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		4.	$\mathbf{7}$	$\mathbf{7}$	4.
Traffic Vol, veh/h	32	2	636	110	5	410
Future Vol, veh/h	32	2	636	110	5	410
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	155	205	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	95	95	95	95	95	95
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	34	2	669	116	5	432

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	895	335	0	0	785	0
Stage 1	669	-	-	-	-	-
Stage 2	226	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	280	661	-	-	829	-
Stage 1	471	-	-	-	-	-
Stage 2	790	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	278	661	-	-	829	-
Mov Cap-2 Maneuver	278	-	-	-	-	-
Stage 1	471	-	-	-	-	-
Stage 2	785	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	19.3		0		0.1	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	288	829	-
HCM Lane V/C Ratio		-	-	0.124	0.006	-
HCM Control Delay (s)		-	-	19.3	9.4	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	0.4	0	-

