FINAL DRAINAGE REPORT
 FOR
 SOLACE AT CIMARRON HILLS

Prepared For:
Jackson Dearborn Partners
404 S. Wells Street, Suite 400
Chicago, IL 60607
(734) 216-2577

March 12, 2021
Project No. 25174.00

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive
Colorado Springs, CO 80919
719-593-2593

PCD File No. PPR-20-047
PCD File No. SF2032

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. \# 32314
Date
For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: Jackson Dearborn Partners

By:
Title:
Address:
404 S. Wells Street
Chicago, IL 60607

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Conditions:

OONIENIS

PURPOSE. 1
GENERAL LOCATION AND DESCRIPTION 1
LOCATION. 1
DESCRIPTION OF PROPERTY 2
Floodplain Statement 2
DRAINAGE BASINS AND SUB-BASINS 2
Existing Major Basin Descriptions 2
Existing Sub-basin Drainage 3
Proposed Sub-basin Drainage 5
Existing Major Drainageway - Sand Creek 13
DRAINAGE DESIGN CRITERIA 13
Development Criteria Reference 13
Hydrologic Criteria. 13
Hydraulic Criteria 14
DRAINAGE FACILITY DESIGN 14
General Concept. 14
Specific Details 14
Four Step Process to Minimize Adverse Impacts of Urbanization 14
Water Quality 15
Erosion Control Plan 16
Operation \& Maintenance 16
Drainage \& Bridge Fees 16
Construction Cost Opinion 17
SUMMARY 18
REFERENCES: 20

APPENDICES

A. Figures and Exhibits
B. Hydrologic/Hydraulic Calculations
C. Detention and Water Quality Calculations
D. Reference Materials
E. Drainage Maps

Purpose

This document is the Final Drainage report for the Solace Apartments. The purpose of this report is to:

1. Identify on-site and off-site drainage patterns.
2. Design storm water facilities to collect and convey storm runoff from the proposed development to appropriate discharge and/or detention locations.
3. Design water quality and detention facilities to control discharge release rates to below historic.
4. Demonstrate compliance with surrounding major drainage basin planning studies, master development drainage plans and flood insurance studies.

General Location and Description

Location

The proposed Solace Apartments, known as "Solace" from herein, is a parcel of land located in Section 7, Township 14 South, Range 65 West of the $6{ }^{\text {th }}$ Principal Meridian in El Paso County, Colorado. Solace is a 28.83 acre, urban, multifamily-development and is comprised of 16 apartment dwellings and associated infrastructure. Solace will be split into two phases for construction, lot 1 (phase 1) contains most of the site with lot 2 (phase 2) containing the northern most section of the development. See appendix A for a site plan exhibit showing the Solace phasing. Solace is bound by existing industrial developments to the North and vacant land to the West. Galley Road bounds the property to the south and existing light industrial businesses to the east. A vicinity map of the area is presented in Appendix A.

Currently, there is one major Drainageway that runs along Solace: Sand Creek (Center Tributary) Drainageway. This Drainageway was analyzed, both hydrologically and hydraulically, in the following reports:

- Sand Creek Drainage Basin Planning Study (KEC), January 1993.
- Flood Insurance Study- El Paso County, Colorado \& Incorporated Areas Vol 7 of 8, December 2018.
- Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments (JR), June 2020
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.

The impact of this Drainageway and planning studies on the proposed development will be discussed later in the report.

Description of Property

Solace is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, Solace slopes from northwest to southeast.

Per an NRCS web soil survey of the area, Solace is made up of Type B soils with a very small percentage of Type A in the northwest corner of the property. This Type B soil is a Blendon sandy loam. This soil type has a moderate infiltration rate when thoroughly wet. It also consists of moderately deep or deep, moderately well drained or well drained soil. A soil survey map has been presented in Appendix A.

Floodplain Statement

Based on the FEMA FIRM Maps number 08041C0751G and 08041C0752G, dated December 7, 2018, a portion of the existing drainageway lies within Zone AE and Zone X. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The FIRM Maps have been presented in Appendix A.

Drainage Basins and Sub-basins

Existing Major Basin Descriptions

Solace lies within Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" prepared by Kiowa Engineering in January 1993.

The Sand Creek Drainage Basin covers approximately 54 square miles in unincorporated El Paso County, CO. The Sand Creek Drainage Basin is tributary to Fountain Creek. In its existing condition, the basin is comprised of rolling rangeland with fair to good vegetative cover associated with Colorado's semi-arid climate. The natural Drainageway within the site limits is typically deep and narrow with a well-defined flow path in most areas. Anticipated land use for the basin includes multifamily residential and open space.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Sand Creek Drainage Basin Planning Study prepared by Kiowa Engineering Corporation in January 1993.
- Flood Insurance Study- El Paso County, Colorado, \& Incorporated Areas Vol 7, December 2018.
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.
- Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments (JR), June 2020

Final Drainage Report

Solace at Cimaron Hills

- Preliminary Drainage Report For Solace Apartments (JR), September 3, 2020

The Sand Creek Drainage Basin Planning Study was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Sand Creek Drainage Basin. Based on provided drainage maps and analysis, in its existing condition, the Sand Creek Center Tributary Drainageway contains a 100-year flow of 820-1100 cfs along Solace's east property line. The major Sand Creek Drainageway conveys the stormwater south along the eastern property line where it ultimately outfalls into the Fountain Creek. JR Engineering has performed checks on these flow rates to verify their validity. Basin calculations show that the $820-1100 \mathrm{cfs}$ are still valid for this existing condition.

FEMA prepared a revised FIS for El Paso County Colorado, Volume 7 of 8, dated December 7, 2018. The effective floodplain for the site is shown on the FIRM 08041C0752G, revised to reflect LOMR, dated December 7, 2018. The study area of the FIS where the Sand Creek Drainageway crosses Galley Road, was found to overtop the culverts and flow onto the road. According to the FIS, this crossing has a 10% annual chance of flooding and is located in Zone AE of the FIRM. The Sand Creek Drainage Basin LOMR was executed on May 23, 2007. The LOMR revised the flood zone or the area south of Galley Road. See FIRM Map Panel 08041C0752G for limits of LOMR study and revised flood zones, presented in Appendix D.

Existing Sub-basin Drainage

On-site, existing basin drainage patterns are generally from northwest to southeast by way of on-site swales. Existing on-site areas flow directly into the Sand Creek Drainageway. For this development, the existing onsite drainage has been broken into Basin A and Basin B. All existing basins that are offsite are represented by Basin OS. All basin delineation for the existing condition can be found in the existing drainage map located in Appendix E.

Basin A contains a total of 23.98 acres and is broken down into three sub-basins: A1, A2, and A3. This basin represents a majority of the proposed development and is comprised solely of undeveloped land. Flows from this basin are tributary to the Sand Creek Center Tributary Drainageway in the existing condition.

Sub-basin A1 ($\left.\mathrm{Q}_{5}=3.1 \mathrm{cfs}, \mathrm{Q}_{100}=21.0 \mathrm{cfs}\right)$ is 14.75 acres of undeveloped land, and represents the easternmost portion of the site that is adjacent to the Sand Creek Center Tributary Drainageway. Storm runoff from this sub-basin flows southeast, via overland flow, directly into the Sand Creek Center Tributary Drainageway at Design Point 1.

Sub-basin A2 $\left(\mathrm{Q}_{5}=0.9 \mathrm{cfs}, \mathrm{Q}_{100}=6.2 \mathrm{cfs}\right)$ is 3.79 acres and represents the undeveloped land in the center of the development. Storm runoff from this sub-basin flows south (Design Point 2), via overland flow, directly onto Galley Road. From here, flows are conveyed east in the existing curb and gutter into the Sand Creek Center Tributary Drainageway.

Sub-basin A3 ($\left.\mathrm{Q}_{5}=1.4 \mathrm{cfs}, \mathrm{Q}_{100}=9.5 \mathrm{cfs}\right)$ is 5.44 Acres and represents the undeveloped land on the southern property line of the development. Storm runoff from this sub basin flows south (Design Point 3), via overland flow, directly onto Galley Road. From here, flows are conveyed east via the existing curb and gutter to the Sand Creek Center Tributary Drainageway.

Sub-basin B1 ($\left.\mathrm{Q}_{5}=1.3 \mathrm{cfs}, \mathrm{Q}_{100}=9.0 \mathrm{cfs}\right)$ Sub-basin B1 consists of 4.84 acres of undeveloped land that drains overland to the southwest (Design Point 4) and offsite where it ultimately outfalls into an existing retention pond on the northeast corner of the intersection of Galley Road and Powers Blvd. This basin represents the westernmost portion of the site.

Basin OS consists of Sub-Basins OS1-OS2 combining for a total of 26.66 acres. This basin represents the developed land located to the north of the proposed development's property line, where the site ties in to Paonia Street. These sub-basins are primarily light industrial sites, and stormwater runoff is conveyed via overland flow and local roads.

Sub-basin OS1 $\left(\mathrm{Q}_{5}=36.7 \mathrm{cfs}, \mathrm{Q}_{100}=73.1 \mathrm{cfs}\right)$ consists of the existing Paonia Street and the existing light industrial properties located just north of the site. In the existing condition, a portion of runoff from this sub-basin is captured by an existing concrete line channel along the north boundary of the site. The remaining runoff flows south onsite into the second drainageway where it ultimately outfalls into Sand Creek Center Tributary Drainageway at Galley Road. In the proposed condition, the runoff will be captured by the existing concrete channel and a proposed overflow channel at the north property line (Design Point 5 in the existing condition and Design Point 43 in the proposed condition) to prevent any offsite flows from entering the property. Once this existing flow has been captured, the runoff will be conveyed directly into the existing Sand Creek Center Tributary Drainageway at Design Point 1.1. Capturing this flow and draining it directly into the Sand Creek Center Tributary Drainageway will cause a slight change in the existing drainage patterns. A portion of this flow will no longer enter the existing second drainageway along the proposed Paonia Street alignment. Instead, this entire flow will enter the Sand Creek Center Tributary Drainageway near the north property line at Design Point 1.1. In order to accommodate this change, combination of rip rap and concrete lining shall be utilized in the overflow channel to prevent channel erosion. The Sand Creek Drainageway channel shall be modified to give the drainageway adequate capacity to contain the 100 year water surface and protect against erosive velocities in the channel. A typical cross section of the channel can also be found on the Channel Improvement Plans in Appendix E, for further detail of channel improvements see the JR Engineering Sand Creek Center Tributary Channel Improvements Letter. Channel analysis and weir calculations can be found in the Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments, prepared by JR Engineering in May 2020.

Sub-basin OS2 ($\left.\mathrm{Q}_{5}=21.3 \mathrm{cfs}, \mathrm{Q}_{100}=42.5 \mathrm{cfs}\right)$ consists of the existing Ainsworth Street and the existing light industrial properties located just east of Ainsworth Street. Runoff from this sub-basin is captured by an existing swale along N. Powers Boulevard. The Solace Apartment site has a 5' berm that is proposed along the northern property line. This berm will prevent any drainage from this
basin to reach the site, and will utilize an onsite conveyance swale located at the toe of the berm to convey the flow to the western property line (Design Point 6 in the existing condition and Design Point 44 in the proposed condition). This proposed berm will slightly modify the existing drainage patterns, as it will prevent offsite flows from entering the northwestern corner of the site. These flows however, will still continue to outfall into the CDOT right-of-way located to the west of the site.

Flows within the Sand Creek Drainageway are represented by Design Points 1.0-1.3 in the existing condition, and Design Points 5.0-5.3 in the proposed condition. Flows for these design points were taken directly from modeling date used by FEMA for the determination of the flood plain extents shown in FEMA FIRM 08041C0752G. These flows were used in the development of the HEC-RAS model to show the 100-year capacity of the drainageway in its proposed condition. Design Point 1.0 in the existing condition and 5.0 in the proposed condition $\left(\mathrm{Q}_{100}=820 \mathrm{cfs}\right)$ represents the flows in the drainageway prior to entering the site boundary. Design Point 1.1in the existing condition and 5.1 in the proposed condition $\left(\mathrm{Q}_{100}=820 \mathrm{cfs}\right)$ represents the flow in the drainageway after the flows from Basin OS1 enter the channel. Design Point 1.2 in the existing condition and 5.2 in the proposed condition ($\mathrm{Q}_{100}=1037 \mathrm{cfs}$) represents the area where flows enter the drainageway from developments and roads located to the east of the site. Design Point 1.3 in the existing condition and 5.3 in the proposed condition ($\mathrm{Q}_{100}=1100 \mathrm{cfs}$) represents the flows at the Galley Road crossing. This flow was used to analyze the overtopping of Galley Road and the existing weir structure on the south side of the road.

Proposed Sub-basin Drainage

The proposed Solace basin delineation is as follows;

Sub-basin A1 ($\left.\mathrm{Q}_{5}=1.7 \mathrm{cfs}, \mathrm{Q}_{100}=3.3 \mathrm{cfs}\right)$ contains a total of 0.50 acres. This basin represents the north eastern portion of the proposed Phase 1 development. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured via a series of on-grade and sump inlets (Design Point 4). Runoff from this subbasin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A2 ($\left.\mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.1 \mathrm{cfs}\right)$ contains a total of 0.47 acres. This basin represents the eastern portion of the proposed along the Phase 1 development phase line. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured via a series of on-grade and sump inlets (Design Point 5). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A3 ($\mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.1 \mathrm{cfs}$) contains a total of 0.45 acres. This basin represents the center portion of the proposed development along the Phase 1 development phase line. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 6). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin $\mathrm{A} 4\left(\mathrm{Q}_{5}=0.6 \mathrm{cfs}, \mathrm{Q}_{100}=1.0 \mathrm{cfs}\right)$ contains a total of 0.15 acres. This basin represents a northern half of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 2.1). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A5 ($\left.\mathrm{Q}_{5}=0.5 \mathrm{cfs}, \mathrm{Q}_{100}=1.0 \mathrm{cfs}\right)$ contains a total of 0.13 acres. This basin represents a northern half of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 2.3). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin $\mathrm{A} 6\left(\mathrm{Q}_{5}=3.2 \mathrm{cfs}, \mathrm{Q}_{100}=7.0 \mathrm{cfs}\right)$ contains a total of 1.51 acres. This basin represents the central portion of the proposed Phase 1 development. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 10). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin $\mathrm{A} 7\left(\mathrm{Q}_{5}=1.0 \mathrm{cfs}, \mathrm{Q}_{100}=2.4 \mathrm{cfs}\right)$ contains a total of 0.58 acres. This basin represents the northwestern portion of Paonia Street and minor open. This basin is primarily minor open space with some asphalt paving and concrete sidewalks. Stormwater runoff from this basin is conveyed via curb \& gutter, where it is captured by an on-grade inlet (Design Point 11). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A8 ($\left.\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=1.7 \mathrm{cfs}\right)$ contains a total of 0.30 acres. This basin represents the northeastern portion of Paonia Street. Half of this sub-basin is comprised of asphalt paving, while the second half is open space. Stormwater runoff from this basin is conveyed via curb \& gutter, where it is captured by an on-grade inlet (Design Point 12). Runoff from this sub-basin ultimately

Final Drainage Report

Solace at Cimarmon Hills
outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A9 ($\left.\mathrm{Q}_{5}=0.4 \mathrm{cfs}, \mathrm{Q}_{100}=2.9 \mathrm{cfs}\right)$ contains a total of 1.33 acres. This basin represents the northeastern portion of the development. This basin is primarily open space and Pond A. Stormwater runoff from this basin is conveyed via overland flow, where it is captured by Pond A (Design Point 6A). From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin $\mathrm{B} 1\left(\mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=2.8 \mathrm{cfs}\right)$ contains a total of 0.37 acres. This basin represents the western portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an on-grade inlet (Design Point 14). Runoff from this sub-basin, ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 2\left(\mathrm{Q}_{5}=1.4 \mathrm{cfs}, \mathrm{Q}_{100}=2.7 \mathrm{cfs}\right)$ contains a total of 0.35 acres. This basin represents a small western portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 15). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin $\mathrm{B} 3\left(\mathrm{Q}_{5}=1.2 \mathrm{cfs}, \mathrm{Q}_{100}=2.4 \mathrm{cfs}\right)$ contains a total of 0.35 acres. This basin represents the northwestern portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 16). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin $\mathrm{B} 4\left(\mathrm{Q}_{5}=0.1 \mathrm{cfs}, \mathrm{Q}_{100}=0.2 \mathrm{cfs}\right)$ contains a total of 0.03 acres. This basin represents a western portion of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.2). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 5\left(\mathrm{Q}_{5}=1.0 \mathrm{cfs}, \mathrm{Q}_{100}=1.8 \mathrm{cfs}\right)$ contains a total of 0.26 acres. This basin represents a eastern portion of a proposed building and a small western portion of an adjacent building. This subbasin is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.3).

Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 6\left(\mathrm{Q}_{5}=1.9 \mathrm{cfs}, \mathrm{Q}_{100}=4.1 \mathrm{cfs}\right)$ contains a total of 0.73 acres. This basin represents the western drive aisle of the proposed Phase 1 development. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 19). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 7\left(\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=2.0 \mathrm{cfs}\right)$ contains a total of 0.47 acres. This basin represents a proposed building and open space in the center of the development. This sub-basin is comprised primarily of proposed roof and open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 3.5). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B8 ($\mathrm{Q}_{5}=0.9 \mathrm{cfs}, \mathrm{Q}_{100}=1.7 \mathrm{cfs}$) contains a total of 0.25 acres. This basin represents an eastern portion of a proposed building and a small western portion of an adjacent building. This subbasin is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.6). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 9\left(\mathrm{Q}_{5}=0.7 \mathrm{cfs}, \mathrm{Q}_{100}=1.3 \mathrm{cfs}\right)$ contains a total of 0.19 acres. This basin represents a eastern portion of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.7). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 10\left(\mathrm{Q}_{5}=1.0 \mathrm{cfs}, \mathrm{Q}_{100}=2.2 \mathrm{cfs}\right)$ contains a total of 0.38 acres. This basin represents the clubhouse parking area and open space. This basin is primarily parking lot with open space. Stormwater runoff from this basin is conveyed curb and gutter, where it is captured by an on-grade inlet (Design Point 23). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 11\left(\mathrm{Q}_{5}=1.0 \mathrm{cfs}, \mathrm{Q}_{100}=2.6 \mathrm{cfs}\right)$ contains a total of 0.74 acres. This basin represents a proposed building and open space in the center of the development. This sub-basin is comprised primarily of proposed roof and open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 4.0). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 12\left(\mathrm{Q}_{5}=2.7 \mathrm{cfs}, \mathrm{Q}_{100}=5.6 \mathrm{cfs}\right)$ contains a total of 1.08 acres. This basin represents the drive aisle just west of the clubhouse of the Phase 1 development. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 27). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 13\left(\mathrm{Q}_{5}=1.5 \mathrm{cfs}, \mathrm{Q}_{100}=3.2 \mathrm{cfs}\right)$ contains a total of 0.48 acres. This basin represents the drive aisle and open space in the center of Basin B. This basin is primarily parking lot with open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 25). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B13A ($\mathrm{Q}_{5}=0.5 \mathrm{cfs}, \mathrm{Q}_{100}=1.6 \mathrm{cfs}$) contains a total of 0.58 acres. This basin represents a northern portion of a proposed building and the southern portion of another, the middle portion of the basin is comprised of minor open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the propose storm sewer infrastructure (Design Point 3.9). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B14 ($\mathrm{Q}_{5}=1.3 \mathrm{cfs}, \mathrm{Q}_{100}=2.6 \mathrm{cfs}$) contains a total of 0.49 acres. This basin represents the western portion of the clubhouse and associated parking and drive aisle. This basin is primarily roof, parking lot, and open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 28). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B15 ($\mathrm{Q}_{5}=0.9 \mathrm{cfs}, \mathrm{Q}_{100}=1.8 \mathrm{cfs}$) contains a total of 0.27 acres. This basin represents the eastern portion of the clubhouse and associated parking and drive aisle. This basin is primarily roof, parking lot, and open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 30). Runoff from this sub-basin ultimately outfalls into
the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B16 ($\left.\mathrm{Q}_{5}=0.4 \mathrm{cfs}, \mathrm{Q}_{100}=0.8 \mathrm{cfs}\right)$ contains a total of 0.15 acres. This basin represents a southern portion of a proposed building and a small open space area. Stormwater runoff from this basin is captured by proposed roof drains and an area inlet. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 4.3). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin $\mathrm{B} 17\left(\mathrm{Q}_{5}=1.8 \mathrm{cfs}, \mathrm{Q}_{100}=4.5 \mathrm{cfs}\right)$ contains a total of 0.99 acres. This basin represents the northwestern portion of Paonia Street within Basin B. This basin is primarily road paving and open space. Stormwater runoff from this basin is conveyed via curb \& gutter, where it is captured by an on-grade inlet (Design Point 31). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B18 ($\left.\mathrm{Q}_{5}=1.1 \mathrm{cfs}, \mathrm{Q}_{100}=2.4 \mathrm{cfs}\right)$ contains a total of 0.47 acres. This basin represents the northeastern portion of Paonia Street within Basin B. This basin is primarily road paving and minor open space. Stormwater runoff from this basin is conveyed via curb \& gutter, where it is captured by an on-grade inlet (Design Point 32). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin $\mathrm{B} 19\left(\mathrm{Q}_{5}=2.1 \mathrm{cfs}, \mathrm{Q}_{100}=5.7 \mathrm{cfs}\right)$ contains a total of 1.92 acres. This basin represents the southern half of the clubhouse and patio area, along with the southwestern portion of Paonia Street within Basin B. This basin is primarily road paving, open space, and roof. Stormwater runoff from this basin is conveyed via overland flow and curb \& gutter, where it is captured by an on-grade inlet (Design Point 33). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin $\mathrm{B} 20\left(\mathrm{Q}_{5}=0.6 \mathrm{cfs}, \mathrm{Q}_{100}=1.4 \mathrm{cfs}\right)$ contains a total of 0.26 acres. This basin represents the southeastern portion of Paonia Street within Basin B. This basin is primarily road paving and minor open space. Stormwater runoff from this basin is conveyed via curb \& gutter, where it is captured by an on-grade inlet (Design Point 34). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B21 ($\mathrm{Q}_{5}=0.5 \mathrm{cfs}, \mathrm{Q}_{100}=3.6 \mathrm{cfs}$) contains a total of 2.46 acres. This basin represents the northeastern portion of the development. This basin is primarily open space and Pond B.
Stormwater runoff from this basin is conveyed via overland flow, where it is captured by Pond B
(Design Point 37). From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-Basin C1 ($\left.\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=2.2 \mathrm{cfs}\right)$ contains a total of 0.74 acres. This basin represents the southernmost portion of the proposed development. This basin is primarily proposed roadway and minor open space. Stormwater runoff from this basin is conveyed via proposed curb and gutter to a proposed crosspan (Design Point 40) at the intersection of Paonia Street and Galley Road. Runoff is then conveyed east by the existing curb and gutter in Galley Road to the Sand Creek Center Tributary Drainageway, per historic conditions.

Sub-Basin $\mathrm{C} 2\left(\mathrm{Q}_{5}=0.3 \mathrm{cfs}, \mathrm{Q}_{100}=2.3 \mathrm{cfs}\right)$ contains a total of 0.80 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

Sub-Basin $\mathrm{D} 1\left(\mathrm{Q}_{5}=0.7 \mathrm{cfs}, \mathrm{Q}_{100}=2.6 \mathrm{cfs}\right)$ contains a total of 0.95 acres and represents the northern most portion of Paonia Street and the site. This basin is comprised primarily of proposed roadway and open space. Runoff from this basin is conveyed via emergency overflow channel to the Sand Creek Center Tributary Drainageway (Design Point 42) per historic conditions. See the Sand CreekCenter Tributary Channel Analysis Report for Solace Apartments, prepared by JR Engineering October $15^{\text {th }}, 2020$ for overflow channel details.

Sub-Basin $\mathrm{F} 1\left(\mathrm{Q}_{5}=2.2 \mathrm{cfs}, \mathrm{Q}_{100}=4.7 \mathrm{cfs}\right)$ contains a total of 0.92 acres and represents the northwestern most portion of the Pond A tributary. This basin is comprised primarily of future parking areas, open space, and a future building. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 1). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F2 ($\mathrm{Q}_{5}=0.5 \mathrm{cfs}, \mathrm{Q}_{100}=1.0 \mathrm{cfs}$) contains a total of 0.14 acres and represents the future parking spaces along the drive aisle of the northernmost site access location. This basin is comprised solely of future parking. Runoff from this basin will be captured by the existing storm sewer infrastructure (Design Point 4). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond,
the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F3 ($\left.\mathrm{Q}_{5}=2.1 \mathrm{cfs}, \mathrm{Q}_{100}=4.4 \mathrm{cfs}\right)$ contains a total of 0.73 acres and represents the eastern portion of the future parking spaces along the north property line of the site. This basin is comprised primarily of future parking and open space. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 3). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin $\mathrm{F} 4\left(\mathrm{Q}_{5}=0.8 \mathrm{cfs}, \mathrm{Q}_{100}=2.3\right.$. cfs) contains a total of 0.68 acres and represents a portion of the Phase 2 improvements located in the center of the site. This basin is comprised primarily of future open space and a future building. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 7). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F5 ($\left.\mathrm{Q}_{5}=5.7 \mathrm{cfs}, \mathrm{Q}_{100}=14.7 \mathrm{cfs}\right)$ contains a total of 3.88 acres and represents the western portion of the future parking spaces along the north property line of the site, the future buildings on the northwest portion of the site, and the open space associated with these improvements. This basin is comprised primarily of future parking, future buildings, and open space. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 3.0). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond B. The proposed Pond B has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-Basin F6 ($\mathrm{Q}_{5}=0.2 \mathrm{cfs}, \mathrm{Q}_{100}=1.0 \mathrm{cfs}$) contains a total of 0.35 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

Sub-Basin $\mathrm{F} 7\left(\mathrm{Q}_{5}=0.2 \mathrm{cfs}, \mathrm{Q}_{100}=1.5 \mathrm{cfs}\right)$ contains a total of 0.53 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

All calculations and stormwater routing can be found in Appendix B.

Existing Major Drainageway - Sand Creek

The Sand Creek channel conveys an existing 820-1100 cfs along the sites eastern property line. In order to maintain the drainage patterns on the site, 2 detention ponds have been proposed to release developed flows, at or below historic rates. Based on the results of the Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments, prepared by JR Engineering in May 2020, the existing channel sections will need protection from erosion as a result of the Solace development. This report analyzed the existing conditions to ensure that the Sand Creek channel is stable and velocities do not exceed allowable limits. Based on the results of this report, it was found that the channel in its current conditions is inadequate, as velocities in the channel exceeded allowable limits and overtopping occurs at the Galley Road. The report recommended several improvements to ensure channel stability, including channel lining such as riprap or concrete to protect from the high velocities, widening the channel to increase capacity and decrease velocity \& adding check/ drop structures to reduce velocities. The report also indicates that improvements will be necessary to address the overtopping at the Galley Road crossing. An existing overflow structure is currently in place to convey any overtopping flows, but does not have adequate capacity. Analysis of the proposed improvements to the channel can be found in the Sand Creek Center Tributary Channel Improvements Letter. Channel hydraulic analysis sheets are presented in Appendix B of the aforementioned report and Channel Plans for the proposed improvements can be found in Appendix E. A drainage map for the Solace site can be found in Appendix E.

Drainage Design Criteria

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1-3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Rational Method calculations were prepared, in accordance with

Chapter 6, Section 3.0 of the EPCDCM, for the sub-basins that directly impact the sizing of the proposed storm sewer outfalls. Rational method calculations are presented in Appendix B.

Mile High Flood District's MHFD-Detention, Version 4.03 workbook was used for pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix C.

Hydraulic Criteria

GeoHECRAS was used as the primary analysis method for the site in the Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments and the Sand Creek Center Tributary Channel Improvements Letter. GeoHECRAS was used to model existing flows within the Sand Creek Drainageway in its existing and proposed conditions. This model was used to verify flood plains and analyze any overtopping that may occur within the project site. The 100-year water surface profiles for the model were analyzed form the north property line of the site to the area just south of the Galley Road Crossing.

Using StormCAD V8i, a modeling program for stormwater drainage, the hydraulic grade lines and energy grade lines were determined for the storm sewer network. Manhole and pipe losses for the model were obtained from the Urban Storm Drainage Criteria Manual, Mile High Flood District. Model results for the project site have been included in Appendix B.

Drainage Facility Design

General Concept

The proposed stormwater conveyance system was designed to convey the developed Solace runoff to two proposed full spectrum water quality and detention ponds via private storm sewer. The proposed pond bottoms are approximately 1.5 feet higher than the existing channel bottom. This allows adequate drainage from the ponds to outfall into the channel without the need for backflow prevention measures. The proposed ponds were also designed to release at less than historic rates to minimize adverse impacts downstream. Treated water will outfall directly into the Sand Creek Drainageway, where it will eventually outfall into Fountain Creek. The current site will be constructed in 2 phases. Both of the proposed ponds will be designed and constructed with the Phase 1 improvements along with the storm sewer within Paonia Street. Proposed drainage maps are presented in Appendix E, showing locations of the pond and channel outfall locations and improvements.

Specific Details

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step
process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is a proposed multi-family development with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes.

Step 2, Stabilize Drainageways: Solace utilizes private storm sewer throughout the project site. This private storm sewer directs the on-site development flows to the multiple detention ponds within the project that release at or below historic rates into the Sand Creek Drainageway. Sand Creek (Center Tributary) Drainageway is stabilized downstream of the development, however additional stabilization measures shall be implemented to prevent any negative impacts to the drainageway. Drop structures have been added in order to reduce the slope of the channel. The channel shall also utilize concrete paving to avoid any erosion of the channel along the site.

Step 3, Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV in multiple full spectrum water quality and detention ponds that are designed per current El Paso County drainage criteria for Extended Detention Basins (EDB). These ponds will facilitate pollutant removal for the site, while also reducing peak stormwater rates into the Sand Creek Drainageway.

Step 4, Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative have been prepared in conjunction with this final drainage report. Site specific temporary source control BMPs as well as permanent BMP's are detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. Outlet structure release rates shall be limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities. Complete pond and outlet structure designs can be found in the appendix C. See Table 3 below for the proposed pond parameters.

Table 3: Pond Summary

Tributary Sub-Basin	Pond Name	Tributary Acres	Comp. \% Imperv.	WQ Volume (ac-ft)	Total Detention Volume $(\mathrm{ac}-\mathrm{ft})$	Provided Volume (ac-ft)
A	PONDA	7.89	49.43	0.135	0.732	1.292
B	PONDB	17.50	40.6	0.264	1.412	2.659

Final Drainage Report
 Solace at Cimamon Hills

Per Section I.7.1.B. 7 of the ECM - Stromwater Quality Policy and Procedures, sites with land disturbance to undeveloped land (land with no human-made structures such as buildings or pavement) that will remain undeveloped after the site, may be excluded from the water quality requirements set for in Section 1.7. Per this section, we respectfully request that Basins C2, F6, and F7 be excluded from permanent stormwater quality management. Due to existing topography and design constraints, Basins C1 and D1 could not be captured and routed to a permanent full spectrum water quality and detention pond. Per Section I.7.1.C. 1 of the ECM - Stormwater Quality Policy and Procedures, the County may exclude up to 20%, not to exceed 1 acre, of the applicable development site, from the WQCV standard. Basin C1 \& D1 contain approximately 0.32 acres of pavement, equal to approximately 1.11% of the total development site. Per this section, we respectfully request that Basin C1 \& D1 be excluded from the permanent stromwater quality management.

Erosion Control Plan

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted with each Final Drainage Report. The Erosion Control Plan for Solace has been submitted with this report.

Operation \& Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within the property or tracts will be owned and maintained by the property owner. Vegetation in the natural and improved portions of Sand Creek Drainageway is the responsibility of El Paso County. This includes all mowing, seeding and weed control activities. An Inspection \& Maintenance Plan has been submitted concurrently with this report that details the required maintenance activities and intervals to ensure proper function of all stormwater infrastructure in the future. The full spectrum detention ponds will be owned \& maintained by the property owner.

Drainage \& Bridge Fees

The site lies within the Sand Creek Drainage Basin.

2021 DRAINAGE AND BRIDGE FEES - Solace Apartments				
Impervious Acres (ac)	Drainage Fee (Per Imp. Acre)	Bridge Fee (Per Imp. Acre)	Solace Drainage Fee	Solace Bridge Fee
11.67	$\$ 20,387$	$\$ 8,339$	$\$ 237,916$	$\$ 97,316$

The Solace development will receive full credit for any channel improvements indicated in the Sand Creek DBPS. From the Sand Creek DBPS, the channel improvements estimated for this reach of the tributary was estimated to be $\$ 323,500$. The table regarding these costs can be found in the Appendix. From the Sand Creek (Center Tributary) Channel Analysis, by JR Engineering, the estimated channel improvements will cost $\$ 554,950$. Per the Sand Creek Drainage Basin Planning Study, the Center Tributary has proposed crossing improvements at Terminal Avenue and Omaha

Boulevard. Both of these crossing were estimated to be $\$ 72,000$. Crossing improvements were also proposed at W. Frontage Road for $\$ 106,200$, US 24 Bypass for $\$ 211,500$, E. Frontage Road for $\$ 84,600$, Bijou Street for $\$ 84,600$, Platte Avenue for $\$ 169,200, \&$ Galley Road for $\$ 90,000$. These estimates provide costs for the storm sewer required to replace the existing infrastructure at these locations. The Galley Road crossing estimate reflects upsizing the existing culverts to 5'x 8' concrete box structures. These estimates can be found in Appendix D. Based on these estimated costs, it is presumed that no drainage basin fees will be necessary.

Construction Cost Opinion

El Paso County specifies a cost estimate of proposed drainage facility improvements be submitted with the Final Drainage Report. A construction cost opinion for both public and private drainage improvements have been provided below. Please note that the following cost estimate does not include channel improvements.

PUBLIC DRAINAGE FACILITIES							
Item	Quantity	Unit	Unit Price	Extended Cost			
$18^{\prime \prime}$ RCP	93	LF	$\$ 65.00$	$\$ 6,045.00$			
$24^{\prime \prime}$ RCP	41	LF	$\$ 78.00$	$\$ 3,198.00$			
$36^{\prime \prime}$ RCP	188	LF	$\$ 120.00$	$\$ 22,560.00$			
$42^{\prime \prime}$ RCP	31	LF	$\$ 160.00$	$\$ 4,960.00$			
5^{\prime} Type R Inlet	2	EA	$\$ 6,200.00$	$\$ 12,400.00$			
10^{\prime} Type R Inlet	4	EA	$\$ 7,600.00$	$\$ 30,400.00$			
15^{\prime} Type R Inlet	2	EA	$\$ 12,000.00$	$\$ 24,000.00$			
Storm Sewer Manhole (Box Base)	2	EA	$\$ 11,627.00$	$\$ 23,254.00$			
			Sub-Total	$\$ 126,817.00$			
	10% Eng. And Contingency	$\$ 12,681.70$					
						Grand Total	$\$ 139,498.70$

PRIVATE DRAINAGE FACILITIES				
Item	Quantity	Unit	$\begin{array}{\|l\|} \hline \text { Unit } \\ \text { Price } \end{array}$	Extended Cost
18 " RCP	1,254	LF	\$65.00	\$81,510.00
24 " RCP	763	LF	\$78.00	\$59,514.00
$30^{\prime \prime} \mathrm{RCP}$	464	LF	\$97.00	\$45,008.00
36" RCP	327	LF	\$120.00	\$39,240.00
42" RCP	44	LF	\$160.00	\$7,040.00
18" FES	2	EA	\$390.00	\$780.00
$24^{\prime \prime}$ FES	1	EA	\$468.00	\$468.00
5' Type R Inlet	8	EA	\$6,159.00	\$49,274.00
Type 13 Valley Inlet	7	EA	\$4,640.00	\$32,480.00
Storm Sewer Manhole (Slab Base)	18	EA	\$6,395.00	\$115,110.00
Storm Sewer Manhole (Box Base)	3	EA	\$11,627.00	\$34,881.00
Pond Grading	3,682	CY	\$20.00	\$73,640.00
Pond Spillway	2	EA	\$7,500.00	\$15,000.00
Pond Outlet Structure	2	EA	\$25,000.00	\$50,000.00
Pond Forebay	4	EA	\$12,000.00	\$48,000.00
2' Concrete Trickle Channel	728	LF	\$75.00	\$54,600.00
Maintenance Trail (Asphalt)	2486	SY	\$90.00	\$223,740.00
Rip Rap	198	CY	\$112.00	\$22,176.00
			Sub-Total	\$952,461.00
	10\% Eng. And Contingency			\$95,246.10
			$\begin{array}{\|l} \hline \text { Grand } \\ \text { Total } \end{array}$	\$1,047,707.10

SUMMARY

The proposed development remains consistent with pre-development drainage conditions with the construction of the recommended drainage improvements, including storm sewer, detention ponds and existing drainageways. The proposed development will not adversely affect the offsite major drainageways or surrounding development. In order to safely convey flows through the Sand Creek Drainageway, channel improvements will be necessary to ensure channel stability and prevent channel degradation. Concrete paving will be required to armor the channel and stabilize the slopes during a major storm event. These improvements will ensure the drainageway functions properly as

Solace at Cimamon Hills
a primary drainage conveyance system for the Solace Apartments. These improvements to the Sand Creek Center Tributary Drainageway are discussed in the Sand Creek Center Tributary Channel
Improvements Letter. This report meets the latest El Paso County Drainage Criteria requirements for this site.

REFERENCES:

1. El Paso County Drainage Criteria Manual Volume 1, El Paso County, CO, 1994.
2. Urban Storm Drainage Criteria Manual, Mile High Flood District, Latest Revision.
3. Flood Insurance Study- El Paso County, Colorado \& Incorporated Areas Vol 7 of 8, Federal Emergency Management Agency, December 7, 2018.
4. Sand Creek Drainage Basin Planning Study, Kiowa Engineering, January 1993.
5. Sand Creek Drainage Basin LOMR, Federal Emergency Management Agency, May 23, 2007.
6. Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments, JR Engineering, May, 2020
7. Preliminary Drainage Report for Solace Apartments, JR Engineering, September 3, 2020

Final Drainage Report
Solace at Cimaron Hills

APPENDIX A

FIGURES AND EXHIBITS

MAP LEGEND

Area of Interest (AOI)

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Aug 19, 2018—Sep 23, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	373.7	35.4\%
10	Blendon sandy loam, 0 to 3 percent slopes	B	321.4	30.5\%
11	Bresser sandy loam, cool, 0 to 3 percent slopes	B	31.9	3.0\%
12	Bresser sandy loam, cool, 3 to 5 percent slopes	B	69.8	6.6\%
13	Bresser sandy loam, cool, 5 to 9 percent slopes	B	41.4	3.9\%
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	A	96.1	9.1\%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	B	3.7	0.3\%
70	Pits, gravel	A	10.3	1.0\%
94	Travessilla-Rock outcrop complex, 8 to 90 percent slopes	D	51.5	4.9\%
95	Truckton loamy sand, 1 to 9 percent slopes	A	35.7	3.4\%
96	Truckton sandy loam, 0 to 3 percent slopes	A	19.7	1.9\%
Totals for Area of Interest			1,055.2	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

Lemectar Lioon Lend

$\square \square$ HCOOOWMA AREGS IN ZONE AE
Nisin
\square OTHER HOOD AREAS

\square оTHERAEGS

coastal barreir resources striten (GBRS) areas
\square OTHeRwSE Protecten areas (OPAS)

(23---13) Trosed tre

atsen
conoor Tr
DX5510x

MAP SCALEE ${ }^{\prime \prime}$ S 500	
	$\rightleftharpoons \stackrel{\text { moorer }}{ }$
気	$\xrightarrow[100]{100}$
NWinim	PANEL 0751 G

FIRM
flood insurance rate map
FLOOD INSURANCE RATE
EL PASO COUNTY,
EL PASO COUNTY,
COLORADO
AND INCORPORATED AREAS
PaNEL 751 OF 1300

(2)

MAP PUMEBER
O8041COT51G

 DECEMBER T, 2018

Final Drainage Report
Solace at Cimarmon Hills

APPENDIX B

HYDROLOGIC/ HYDRAULIC CALCULATIONS

COM POSITE \% IM PERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision:
Location:

Solace (Existing Condition) El Paso County

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: JBP
Checked By:
Date: $\overline{6 / 29 / 20}$

Basin ID	$\begin{array}{\|c\|} \hline \text { Total } \\ \text { Area } \\ \text { (ac) } \\ \hline \end{array}$	Streets (100\% Impervious)				Roofs (90\% Impervious)				Light Industrial (80\% Impervious)				Undeveloped (2\% Impervious)				Basins Total Weighted C		Basins Total Weighted \% Imp.
		C_{5}	C_{100}	$\begin{gathered} \hline \text { Area } \\ \text { (ac) } \\ \hline \end{gathered}$	Weighted \% Imp.	C_{5}	C_{100}	$\begin{array}{r} \hline \text { Area } \\ \text { (ac) } \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \text { Weighted } \\ \text { \% Imp. } \end{array}$	C_{5}	C_{100}	$\begin{aligned} & \hline \text { Area } \\ & \text { (ac) } \\ & \hline \end{aligned}$	$\begin{array}{c\|} \hline \text { Weighted } \\ \text { \% Imp. } \end{array}$	C_{5}	C_{100}	$\begin{gathered} \hline \text { Area } \\ \text { (ac) } \end{gathered}$	$\begin{aligned} & \hline \text { Weighted } \\ & \text { \%Imp. } \end{aligned}$			
A1	14.75	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.09	0.36	14.75	2.0\%	0.09	0.36	2.0\%
A2	3.79	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.09	0.36	3.79	2.0\%	0.09	0.36	2.0\%
A3	5.44	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.09	0.36	5.44	2.0\%	0.09	0.36	2.0\%
B1	4.84	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.09	0.36	4.84	2.0\%	0.09	0.36	2.0\%
OS1	17.73	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	17.73	80.0\%	0.09	0.36	0.00	2.0\%	0.59	0.70	80.0\%
OS2	8.93	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.73	0.81	8.93	90.0\%	0.09	0.36	0.00	2.0\%	0.73	0.81	90.0\%
TOTAL (A1-B1)	28.82																			2.0\%
TOTAL (0S1-0S3)	26.66																			83.3\%
TOTAL	55.48																			41.1\%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Solace (Existing Condition)
Location: El Paso County

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: JBP
Checked By:
Date: 6/29/20

SUB-BASIN						INITIAL/ OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						$\left(\mathrm{T}_{\mathrm{i}}\right)$			$\left(\mathrm{T}_{\mathrm{t}}\right)$					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \hline \end{gathered}$	$\begin{aligned} & \text { D.A. } \\ & \text { (ac) } \\ & \hline \end{aligned}$	Hydrologic Soils Group	Impervious (\%)	C_{5}	C_{100}	L (ft)	So (\%)	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathbf{L}_{\mathbf{t}} \\ & \mathrm{fft}) \end{aligned}$	$\begin{aligned} & \hline \mathbf{S}_{\mathrm{t}} \\ & (\%) \\ & \hline \end{aligned}$	K	VEL (ft/s)	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\min) \\ \hline \end{gathered}$	COMP. t_{c} (min)	TOTAL LENGTH (ft)	Urbanized $\mathbf{t}_{\mathbf{c}}$ (min)	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \\ \hline \end{gathered}$
A1	14.75	B	2\%	0.09	0.36	100	2.4\%	13.7	1119	2.0\%	7.0	1.0	18.8	32.5	1219.0	39.9	32.5
A2	3.79	B	2\%	0.09	0.36	100	2.0\%	14.5	611	1.8\%	7.0	0.9	10.8	25.4	711.0	33.8	25.4
A3	5.44	B	2\%	0.09	0.36	100	1.8\%	15.0	444	1.9\%	7.0	1.0	7.7	22.7	544.0	31.4	22.7
B1	4.84	B	2\%	0.09	0.36	100	3.0\%	12.7	351	1.2\%	7.0	0.8	7.6	20.3	451.0	31.4	20.3
OS1	17.73	B	80\%	0.59	0.70	100	1.9\%	7.5	1236	1.8\%	20.0	2.7	7.7	15.1	1336.0	20.0	15.1
OS2	8.93	B	90\%	0.73	0.81	100	2.1\%	5.2	415	1.9\%	15.0	2.1	3.3	8.6	515.0	13.0	8.6

NOTES:

t_{c}	$=t_{i}+t_{t}$
t_{c}	$=$ computed time of concentration (minutes)
t_{t}	$=$ overland (initial) flow time (minutes)
t_{t}	$=$ channelized flow time (minutes).
t_{t}	$=\frac{L_{t}}{60 \mathrm{~K} \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}}$
ere:	

Equation 6-2

$$
t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{o}^{033}}
$$

ation 6 -
Where:
$t_{i}=$ overland (initial) flow time (minutes)
$C_{s}=$ runoff coefficient for 5 -year frequency (from Table $6-4$)
$L_{i}=$ ength of overland flow ft$)$
$S_{0}=$ average slope along the overland flow path (ff/ft).
Equation 6-4
$t_{t}=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S_{t}}}$
Equation 6-5
Where:
$t_{c}=$ minimum time of concentration for first design point when less than t_{c} from Equation 6 -
ed flow path (ff)
$i=$ imperviousness (expressed as a decimal)
$S_{t}=$ slope of the channelized flow path (fffft)

Use a minimum t_{c} value of 5 minutes for urbanized areas and a minimum t_{c} value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

STANDARD FORM SF－3

STORM DRAINAGE SYSTEM DESIG

（RATIONAL M ETHOD PROCEDURE）

Subdivision：Solace（Existing Condition）
Location：El Paso County
Design Storm： 5 －Year

Project Name：Solace Apartments
Project No．： 25174.00
Project No．： 2517
Calculated By：
Calculated By：
Checked By：
Date：6／29／20

STREET	$\begin{aligned} & \text { H } \\ & \text { O } \\ & \frac{0}{0} \\ & \frac{0}{y} \\ & \hline \end{aligned}$	DIRECT RUNOFF							TOTAL RUNOFF				STREET／SWALE			PIPE				TRAVEL TIME			
		$\begin{aligned} & \text { Q } \\ & \text { 告 } \\ & \hline 0 . \\ & \hline \end{aligned}$			气气	$\begin{aligned} & \tilde{8} \\ & \overleftarrow{4} \\ & \hline \end{aligned}$		$\frac{\pi}{0}$	$\begin{gathered} \text { 气. } \\ \cline { 1 - 2 } \\ \hline \end{gathered}$	$\begin{aligned} & \tilde{0} \\ & \underset{\sim}{U} \\ & \hline \end{aligned}$		$\frac{\pi}{4}$	$\begin{aligned} & \frac{\pi}{6} \\ & \frac{0}{0} \\ & \frac{0}{6} \\ & \frac{1}{8} \\ & \frac{8}{6} \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \frac{\sqrt{U}}{\theta^{8}} \\ & \frac{8}{2} \\ & \hline \end{aligned}$				$\begin{array}{r} \mathbb{E} \\ \text { 흥 } \\ \text { § } \\ \hline \end{array}$			REM ARKS
	1	A1	14.75	0.09	32.5	1.33	2.36	3.1					3.1	1.33	0.7								Surface runoff from existing basin A1， Surface flow into Sand Creek Drainageway at DP 1
	2	A2	3.79	0.09	25.4	0.34	2.73	0.9					0.9	0.34	2.0								Surface runoff from Basin A2 Surface flow offsite to the south at DP 2
	3	A3	5.44	0.09	22.7	0.49	2.90	1.4					1.4	0.49	2.5								Surface runoff from Basin A3 Surface flow offsite to the south at DP 3
	4	B1	4.84	0.09	20.3	0.44	3.07	1.3					1.3	0.44	1.0								Surface runoff from Basin B1 Surface flow offsite to the southwest at DP 4
	5	OS1	17.73	0.59	15.1	10.46	3.51	36.7					36.7	10.46	1.78					200	2.0	1.7	Surface runoff from Basin OS1，captured by existing concrete channel at DP 5 Channel conveyance to Sand Creek at DP 1.1
	6	OS2	8.93	0.73	8.6	6.52	4.36	28.4					28.4	6.52	3.2					147	2.7	0.9	Surface runoff from Basin OS2 diverted to swale west of site at DP 6
	1.0	－	－	－	－	－	－	－															5－Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study．
	1.1	－	－	－	－	－	－	－															5－Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study．
	1.2	－	－	－	－	－	－	－															5－Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study．
	1.3	－	－	－	－	－	－	－															5－Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study．
	1.4	－	－	－	－	－	－	－															5－Year Flows were not analyzed as part of the LOMR for Sand Creek Center Tributary．
	1.5	－	－	－	－	－	－	－															5－Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study．
	1.6	－	－	－	－	－	－	－															5－Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study．

Street and Pipe $\mathrm{C}^{*} \mathrm{~A}$ values are determined by Q / i using the catchment＇s intensity value．
All pipes are private and RCP unless otherwise noted．Pipe size shown in table column．

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

Notes:
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

COM POSITE \% IM PERVIOUS \& COM POSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

Solace El Paso County

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By:
Date: $3 / 12 / 21$

Basin ID	$\begin{array}{\|c\|} \hline \text { Total } \\ \text { Area } \\ \text { (ac) } \\ \hline \end{array}$	Streets (100% Impervious)				Roofs (90\% Impervious)				Light Industrial (80\% Impervious)				Lawns (0\% Impervious)				Basins Total Weighted C		Basins Total Weighted \% Imp.
		C_{5}	C_{100}		$\begin{gathered} \text { Weighted } \\ \% \text { Imp. } \\ \hline \end{gathered}$	C_{5}	C_{100}		$\begin{gathered} \text { Weighted } \\ \% \text { Imp. } \\ \hline \end{gathered}$	C_{5}	C_{100}	$\begin{gathered} \text { Area } \\ \text { (ac) } \\ \hline \hline \end{gathered}$	$\begin{gathered} \text { Weighted } \\ \text { \% Imp. } \\ \hline \end{gathered}$	C_{5}	C_{100}	$\begin{aligned} & \text { Area } \\ & \text { (ac) } \\ & \hline \hline \end{aligned}$	$\begin{gathered} \text { Weighted } \\ \% \text { Imp. } \\ \hline \hline \end{gathered}$			
A1	0.50	0.90	0.96	0.29	58.0\%	0.73	0.81	0.11	19.8\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.10	0.0\%	0.70	0.81	77.8\%
A2	0.47	0.90	0.96	0.36	76.6\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.11	0.0\%	0.71	0.82	76.6\%
A3	0.45	0.90	0.96	0.35	77.8\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.10	0.0\%	0.72	0.82	77.8\%
A4	0.15	0.90	0.96	0.00	0.0\%	0.73	0.81	0.15	90.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.00	0.0\%	0.73	0.81	90.0\%
A5	0.13	0.90	0.96	0.00	0.0\%	0.73	0.81	0.13	90.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.00	0.0\%	0.73	0.81	90.0\%
A6	1.51	0.90	0.96	0.53	35.1\%	0.73	0.81	0.38	22.6\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.60	0.0\%	0.53	0.68	57.7\%
A7	0.58	0.90	0.96	0.24	41.4\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.34	0.0\%	0.42	0.60	41.4\%
A8	0.30	0.90	0.96	0.16	53.3\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.14	0.0\%	0.52	0.68	53.3\%
A9	1.33	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	1.33	0.0\%	0.08	0.35	0.0\%
B1	0.37	0.90	0.96	0.29	78.4\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.08	0.0\%	0.72	0.83	78.4\%
B2	0.35	0.90	0.96	0.33	94.3\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.02	0.0\%	0.85	0.93	94.3\%
B3	0.35	0.90	0.96	0.25	71.4\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.10	0.0\%	0.67	0.79	71.4\%
B4	0.03	0.90	0.96	0.00	0.0\%	0.73	0.81	0.03	90.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.00	0.0\%	0.73	0.81	90.0\%
B5	0.26	0.90	0.96	0.00	0.0\%	0.73	0.81	0.26	90.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.00	0.0\%	0.73	0.81	90.0\%
B6	0.73	0.90	0.96	0.43	58.9\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.30	0.0\%	0.56	0.71	58.9\%
B7	0.47	0.90	0.96	0.00	0.0\%	0.73	0.81	0.21	40.2\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.26	0.0\%	0.37	0.56	40.2\%
B8	0.25	0.90	0.96	0.00	0.0\%	0.73	0.81	0.25	90.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.00	0.0\%	0.73	0.81	90.0\%
B9	0.19	0.90	0.96	0.00	0.0\%	0.73	0.81	0.19	90.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.00	0.0\%	0.73	0.81	90.0\%
B10	0.38	0.90	0.96	0.21	55.3\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.17	0.0\%	0.53	0.69	55.3\%
B11	0.74	0.90	0.96	0.00	0.0\%	0.73	0.81	0.29	35.3\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.45	0.0\%	0.33	0.53	35.3\%
B12	1.08	0.90	0.96	0.66	61.1\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.42	0.0\%	0.58	0.72	61.1\%
B13	0.58	0.90	0.96	0.33	56.9\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.25	0.0\%	0.55	0.70	56.9\%
B13A	0.48	0.90	0.96	0.00	0.0\%	0.73	0.81	0.11	20.6\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.37	0.0\%	0.23	0.46	20.6\%
B14	0.49	0.90	0.96	0.29	59.2\%	0.73	0.81	0.05	9.2\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.15	0.0\%	0.63	0.76	68.4\%
B15	0.27	0.90	0.96	0.19	70.4\%	0.73	0.81	0.02	6.7\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.06	0.0\%	0.71	0.81	77.0\%
B16	0.15	0.90	0.96	0.00	0.0\%	0.73	0.81	0.11	66.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.04	0.0\%	0.56	0.69	66.0\%
B17	0.99	0.90	0.96	0.40	40.4\%	0.73	0.81	0.01	0.9\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.58	0.0\%	0.42	0.60	41.3\%
B18	0.47	0.90	0.96	0.24	51.1\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.23	0.0\%	0.50	0.66	51.1\%

Basin ID	Total Area (ac)	Streets ($\mathbf{1 0 0 \%}$ Impervious)				Roofs (90\% Impervious)				Light Industrial (80\% Impervious)				Lawns (0\% Impervious)				Basins Total Weighted C		Basins Total Weighted \% Imp.
		C_{5}	C_{100}	$\begin{aligned} & \hline \text { Area } \\ & \text { (ac) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Weighted } \\ \% \text { Imp. } \end{gathered}$	C_{5}	C_{100}	$\begin{gathered} \text { Area } \\ \text { (ac) } \\ \hline \end{gathered}$	Weighted \% Imp.	C_{5}	C_{100}	$\begin{gathered} \hline \text { Area } \\ \text { (ac) } \\ \hline \end{gathered}$	$\begin{gathered} \text { Weighted } \\ \% \text { Imp. } \end{gathered}$	C_{5}	C_{100}	$\begin{gathered} \hline \text { Area } \\ \text { (ac) } \end{gathered}$	Weighted \% Imp.			
B19	1.92	0.90	0.96	0.44	22.9\%	0.73	0.81	0.16	7.5\%	0.59	0.70	0.00	0.0\%	0.08	0.35	1.32	0.0\%	0.32	0.53	30.4\%
B20	0.26	0.90	0.96	0.13	50.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.13	0.0\%	0.49	0.66	50.0\%
B21	2.46	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	2.46	0.0\%	0.08	0.35	0.0\%
C1	0.74	0.90	0.96	0.19	25.7\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.55	0.0\%	0.29	0.51	25.7\%
C2	0.80	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.80	0.0\%	0.08	0.35	0.0\%
D1	0.95	0.90	0.96	0.13	13.7\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.82	0.0\%	0.19	0.43	13.7\%
F1	0.92	0.90	0.96	0.33	35.9\%	0.73	0.81	0.21	20.5\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.38	0.0\%	0.52	0.67	56.4\%
F2	0.14	0.90	0.96	0.11	78.6\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.03	0.0\%	0.72	0.83	78.6\%
F3	0.73	0.90	0.96	0.44	60.3\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.29	0.0\%	0.57	0.72	60.3\%
F4	0.68	0.90	0.96	0.02	2.9\%	0.73	0.81	0.21	27.8\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.45	0.0\%	0.30	0.51	30.7\%
F5	3.88	0.90	0.96	0.79	20.4\%	0.73	0.81	0.66	15.3\%	0.59	0.70	0.00	0.0\%	0.08	0.35	2.43	0.0\%	0.36	0.55	35.7\%
F6	0.35	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.35	0.0\%	0.08	0.35	0.0\%
F7	0.53	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	0.00	0.0\%	0.08	0.35	0.53	0.0\%	0.08	0.35	0.0\%
OS1	17.73	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	17.73	80.0\%	0.08	0.35	0.00	0.0\%	0.59	0.70	80.0\%
OS2	8.93	0.90	0.96	0.00	0.0\%	0.73	0.81	0.00	0.0\%	0.59	0.70	8.93	90.0\%	0.08	0.35	0.00	0.0\%	0.59	0.70	90.0\%
TOTAL (A1-D1)	21.18																			40.9\%
TOTAL (F1-F7)	7.23																			36.8\%
TOTAL (OS1-OS2)	26.66																			83.3\%
TOTAL	55.07																			60.9\%

STANDARD FORM SF-2

TIME OF CONCENTRATION

Subdivision: Solace
Location: El Paso County

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By:
Date: $\overline{3 / 12 / 21}$

SUB-BASIN						INITIAL OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						(T_{i})			$\left(\mathrm{T}_{\mathrm{t}}\right.$)					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \hline \end{gathered}$	$\begin{aligned} & \text { D.A. } \\ & \text { (ac) } \\ & \hline \end{aligned}$	Hydrologic Soils Group	$\begin{array}{\|c\|} \hline \text { Impervious } \\ (\%) \\ \hline \end{array}$	C5	C_{100}	$\begin{gathered} \mathbf{L} \\ (\mathrm{ft}) \end{gathered}$	$\begin{aligned} & \mathbf{S}_{\mathbf{o}} \\ & (\%) \\ & \hline \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \end{gathered}$	$\overline{L_{t}}$ (ft)	$\begin{gathered} \mathbf{S}_{\mathbf{t}} \\ (\%) \\ \hline \end{gathered}$	K	$\begin{aligned} & \text { VEL. } \\ & \text { (} \mathrm{ft} / \mathrm{s} \text {) } \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\mathrm{min}) \end{gathered}$	$\begin{array}{c\|} \hline \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{array}$	TOTAL LENGTH (ft)	$\begin{array}{\|c\|} \hline \text { Urbanized } \mathbf{t}_{\boldsymbol{c}} \\ (\min) \\ \hline \end{array}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \\ \hline \end{gathered}$
A1	0.50	B	78\%	0.70	0.81	48	2.0\%	4.0	212	1.1\%	20.0	2.1	1.7	5.7	260.0	14.5	5.7
A2	0.47	B	77\%	0.71	0.82	78	2.5\%	4.6	207	1.2\%	20.0	2.2	1.6	6.2	285.0	14.6	6.2
A3	0.45	B	78\%	0.72	0.82	54	1.3\%	4.7	185	1.5\%	20.0	2.4	1.3	5.9	239.0	14.0	5.9
A4	0.15	B	90\%	0.73	0.81	20	1.0\%	3.0	120	1.0\%	20.0	2.0	1.0	4.0	140.0	11.6	5.0
A5	0.13	B	90\%	0.73	0.81	20	1.0\%	3.0	120	1.0\%	20.0	2.0	1.0	4.0	140.0	11.6	5.0
A6	1.51	B	58\%	0.53	0.68	110	1.9\%	8.8	217	1.2\%	20.0	2.1	1.7	10.5	327.0	18.2	10.5
A7	0.58	B	41\%	0.42	0.60	86	2.2\%	8.8	261	1.5\%	20.0	2.4	1.8	10.6	347.0	21.4	10.6
A8	0.30	B	53\%	0.52	0.68	20	2.0\%	3.7	316	1.5\%	20.0	2.4	2.2	5.9	336.0	19.5	5.9
A9	1.33	B	0\%	0.08	0.35	152	7.0\%	11.9	194	1.3\%	15.0	1.7	1.9	13.9	346.0	29.2	13.9
B1	0.37	B	78\%	0.72	0.83	56	2.3\%	3.9	171	1.3\%	20.0	2.3	1.3	5.1	227.0	13.9	5.1
B2	0.35	B	94\%	0.85	0.93	44	1.9\%	2.4	215	1.9\%	20.0	2.8	1.3	3.7	259.0	11.1	5.0
B3	0.35	B	71\%	0.67	0.79	33	2.3\%	3.4	140	1.0\%	20.0	2.0	1.2	4.6	173.0	15.1	5.0
B4	0.03	B	90\%	0.73	0.81	20	1.0\%	3.0	40	1.0\%	20.0	2.0	0.3	3.3	60.0	11.0	5.0
B5	0.26	B	90\%	0.73	0.81	20	1.0\%	3.0	120	1.0\%	20.0	2.0	1.0	4.0	140.0	11.6	5.0
B6	0.73	B	59\%	0.56	0.71	70	3.6\%	5.3	222	1.2\%	20.0	2.1	1.7	7.1	292.0	18.0	7.1
B7	0.47	B	40\%	0.37	0.56	88	7.3\%	6.4	54	1.0\%	15.0	1.5	0.6	7.0	142.0	19.8	7.0
B8	0.25	B	90\%	0.73	0.81	20	1.0\%	3.0	120	1.0\%	20.0	2.0	1.0	4.0	140.0	11.6	5.0
B9	0.19	B	90\%	0.73	0.81	20	1.0\%	3.0	120	1.0\%	20.0	2.0	1.0	4.0	140.0	11.6	5.0
B10	0.38	B	55\%	0.53	0.69	43	3.2\%	4.6	111	1.9\%	20.0	2.8	0.7	5.2	154.0	17.4	5.2
B11	0.74	B	35\%	0.33	0.53	140	5.0\%	9.6	130	1.0\%	15.0	1.5	1.4	11.1	270.0	21.6	11.1
B12	1.08	B	61\%	0.58	0.72	71	2.3\%	6.0	418	1.2\%	20.0	2.1	3.2	9.2	489.0	19.3	9.2
B13	0.58	B	57\%	0.55	0.70	87	4.9\%	5.5	192	3.4\%	20.0	3.7	0.9	6.4	279.0	17.4	6.4
B13A	0.48	B	21\%	0.23	0.46	60	3.9\%	7.8	197	1.0\%	20.0	2.0	1.6	9.4	257.0	25.3	9.4
B14	0.49	B	68\%	0.63	0.76	195	2.1\%	9.2	23	1.0\%	20.0	2.0	0.2	9.4	218.0	14.6	9.4
B15	0.27	B	77\%	0.71	0.81	117	2.5\%	5.7	6	1.0\%	20.0	2.0	0.1	5.7	123.0	13.0	5.7
B16	0.15	B	66\%	0.56	0.69	20	1.0\%	4.4	120	1.0\%	20.0	2.0	1.0	5.4	140.0	15.9	5.4
B17	0.99	B	41\%	0.42	0.60	32	3.0\%	4.8	494	1.5\%	20.0	2.4	3.4	8.2	526.0	23.5	8.2
B18	0.47	B	51\%	0.50	0.66	20	2.0\%	3.9	494	1.5\%	20.0	2.4	3.4	7.2	514.0	21.5	7.2
B19	1.92	B	30\%	0.32	0.53	250	3.0\%	15.5	178	1.0\%	20.0	2.0	1.5	16.9	428.0	23.1	16.9
B20	0.26	B	50\%	0.49	0.66	20	2.0\%	3.9	280	1.0\%	20.0	2.0	2.3	6.3	300.0	20.4	6.3

STANDARD FORM SF-2

TIME OF CONCENTRATION

Subdivision: Solace
Location: El Paso County

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By:
Date: $3 / 12 / 21$

SUB-BASIN						INITIAL OVERLAND			TRAVEL TIME					tc CHECK			FINAL
DATA						(T_{i})			$\left(\mathrm{T}_{\mathrm{t}}\right)$					(URBANIZED BASINS)			
$\begin{gathered} \hline \text { BASIN } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & \text { (ac) } \\ & \hline \end{aligned}$	Hydrologic Soils Group	Impervious (\%)	C_{5}	C_{100}	$\begin{gathered} \mathbf{L} \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \mathbf{S}_{\mathbf{o}} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{t}_{\mathbf{i}} \\ (\min) \end{gathered}$	L_{t} (ft)	$\begin{gathered} \mathbf{S}_{\mathbf{t}} \\ (\%) \\ \hline \end{gathered}$	K	$\begin{aligned} & \begin{array}{l} \text { VEL. } \\ (\mathrm{ft} / \mathrm{s}) \\ \hline \end{array} \end{aligned}$	$\begin{gathered} \mathbf{t}_{\mathbf{t}} \\ (\min) \end{gathered}$	$\begin{array}{c\|} \hline \text { COMP. } \mathbf{t}_{\mathbf{c}} \\ (\mathrm{min}) \end{array}$	TOTAL LENGTH (ft)	$\begin{array}{\|c\|} \hline \text { Urbanized } \mathbf{t}_{\mathbf{c}} \\ (\min) \end{array}$	$\begin{gathered} \mathbf{t}_{\mathbf{c}} \\ (\min) \end{gathered}$
B21	2.46	B	0\%	0.08	0.35	250	2.5\%	21.5	736	1.0\%	15.0	1.5	8.2	29.7	986.0	39.6	29.7
C1	0.74	B	26\%	0.29	0.51	153	2.0\%	14.4	95	1.8\%	20.0	2.7	0.6	15.0	248.0	22.6	15.0
C2	0.80	B	0\%	0.08	0.35	30	5.0\%	5.9	30	5.0\%	7.0	1.6	0.3	6.3	60.0	26.2	6.3
D1	0.95	B	14\%	0.19	0.43	83	2.0\%	11.9	155	3.3\%	15.0	2.7	0.9	12.8	238.0	25.0	12.8
F1	0.92	B	56\%	0.52	0.67	112	5.5\%	6.3	196	1.8\%	20.0	2.7	1.2	7.5	308.0	17.9	7.5
F2	0.14	B	79\%	0.72	0.83	30	4.0\%	2.4	257	1.1\%	20.0	2.1	2.1	4.4	287.0	14.7	5.0
F3	0.73	B	60\%	0.57	0.72	66	13.5\%	3.3	331	1.5\%	20.0	2.4	2.3	5.5	397.0	18.3	5.5
F4	0.68	B	31\%	0.30	0.51	173	6.0\%	10.5	97	1.0\%	20.0	2.0	0.8	11.3	270.0	22.0	11.3
F5	3.88	B	36\%	0.36	0.55	115	5.0\%	8.5	283	1.7\%	20.0	2.6	1.8	10.3	398.0	22.5	10.3
F6	0.35	B	0\%	0.08	0.35	30	8.0\%	5.1	30	8.0\%	7.0	2.0	0.3	5.3	60.0	26.2	5.3
F7	0.53	B	0\%	0.08	0.35	20	25.0\%	2.8	516	2.0\%	15.0	2.1	4.1	6.9	536.0	32.8	6.9
OS1	17.73	B	80\%	0.59	0.70	100	1.9\%	7.5	1236	1.8\%	20.0	2.7	7.7	15.1	1336.0	20.0	15.1
OS2	8.93	B	90\%	0.59	0.70	100	2.1\%	7.2	425	1.9\%	15.0	2.1	3.4	10.6	525.0	13.1	10.6

NOTES:

$$
\begin{aligned}
& t_{c}=t_{i}+t_{t} \\
& \text { Where: } \\
& t_{c}=\text { computed time of concentration (minutes) } \\
& t_{i}=\text { overland (initial) flow time (minutes) } \\
& t=\text { channelized flow time (minutes) } \\
& t_{t}=\frac{L_{t}}{60 K \sqrt{S_{o}}}=\frac{L_{t}}{60 V_{t}} \\
& \text { Where: } \\
& t_{t}=\text { channelized flow time (travel time, } \min \text {) } \\
& \begin{array}{l}
L_{t}=\text { waterway length (fit) } \\
L_{0}=\text { waterway slope }
\end{array}
\end{aligned}
$$

Equation 6-2
$t_{i}=\frac{0.395\left(1.1-C_{5}\right) \sqrt{L_{i}}}{S_{0}^{033}}$
Where:
$t_{i}=$ overland (initial) flow time (minutes)
$C_{s}=$ runoff coefficient for tore 5 -year frequenency (from Table $6-4$)
$L_{s}=$ length of overland flow (ft)
$L_{i}=$ length of overland flow (ff)
$S_{o}=$ average slope along the overland flow path (f/fi)
$t=(26-17 i)+\frac{L_{t}}{60(14 i+9) \sqrt{S_{t}}}$
Where:
$t_{c}=$ minimum time of concentration for first design point when less than t_{c} from Equation 6-1
$L_{t}=$ length of channelized flow path (ft)
$=$ imperviousness (expressed as a deci
$i=$ imperviousness (expressed as a decimal)
$S_{t}=$ slope of the channelized flow path (ffff).

Use a minimum t_{c} value of S minutes for urbanized areas and a minimum t_{c} value of 10 minutes for areas
that are not considered urban. Use minimum values even when calculations result in a lesser time of
concentration.

STANDARD FORM SF－3

STORM DRAINAGE SYSTEM DESIGN

（RATIONAL M ETHOD PROCEDURE）
ubdivision：Solace Location：EIPaso County sign Storm：5－Year

Project Name：Solace Apartments
Project No．： 25174.0
Calculated By：AAM
Checked By

Date： $3 / 12 / 21$
 3／12／21

STREET		DIRECT RUNOFF							TOTAL RUNOFF				STREET／SWALE			PIPE				TRAVEL TIME			
		$\begin{aligned} & \text { 号 } \\ & \stackrel{c}{y} \\ & \hline \end{aligned}$			$\begin{gathered} \hat{\tilde{y}} \\ \underline{y} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{y}{8} \\ & \underset{E}{4} \\ & \hline \end{aligned}$		$\frac{\pi}{6}$	$\begin{gathered} \text { जै } \\ \cline { 1 - 3 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { ⿹勹口 } \\ & \tilde{t} \\ & \hline \end{aligned}$		$\begin{array}{\|c} \frac{\pi}{6} \\ 0 \\ \hline \end{array}$		$\begin{aligned} & \frac{\tilde{0}}{\underset{U}{*}} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \text { O} \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \tilde{0} \\ & \underset{氏}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \frac{0}{0} \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \mathbb{E} \\ & \text { 空 } \\ & \stackrel{1}{9} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { 合 } \\ & \underline{y} \\ & \hline \end{aligned}$	REM ARKS
	1	F1	0.92	0.52	7.5	0.48	4.56	2.2								2.2	0.48	1.0	18	320	4.6	1.2	Future on－grade inlet Future pipe conveyance to DP 1.0
	2	F2	0.14	0.72	5.0	0.10	5.17	0.5					0.5	0.10	2.18					33	3.0	0.2	Future overland flow to DP 4 Infrastructure to South Detention Pond at DP 2
	3	F3	0.73	0.57	5.5	0.42	5.02	2.1								2.1	0.42	1.9	18	64	5.8	0.2	Future sump inlet Future pipe conveyance to DP 1.0
	4	A1	0.50	0.70	57	0.35	4.97	17					0.1	0.03	1.5	1.6	0.32	1.5	18	$\begin{array}{\|c\|} \hline 300 \\ 8 \end{array}$	1.8 4	2.7	On－grade inlet，Carryover flow to DP 11 Piped to DP 10
																							Sum of DP 1，DP 2，DP 3，\＆DP 4
	1.0								8.7	1.32	4.35	5.7				5.7	1.32	2.1	36	221	7.4	0.5	Piped to DP 4P
	4 P								8.7	1.32	4.35	5.7	5.7	1.32	0.5					185	1.1	2.9	Pond A Forebay Trickle channel conveyance to DP 6P
	5	A2	0.47	0.71	6.2	0.33	4.85	1.6					0.6	0.12	1.2	1.0	0.21	2.0	18	$\begin{array}{r} 290 \\ 33 \end{array}$	1.6 4.6	2.9 0.1	No．16－valley inlet，Carryover flow to DP 10 Piped to DP 2.2
													0.6	0.12	1.5					${ }^{321}$	1.8 3	2.9	No．16－valley inlet，Carryover flow to DP 10
	6	A3	0.45	0.72	5.9	0.32	4.92	1.6								1.0	0.20	1.0	18	0	3.6	0.0	Piped to DP 2.0 Future roof drains and area inlets
	7	F4	0.68	0.30	11.3	0.21	3.95	0.8								0.8	0.21	1.0	15	27	3.5	0.1	Future pipe conveyance to DP 2.0
	2.0								11.4	0.41	3.93	1.6				1.6	0.41	1.0	18	14	4.3	0.1	Sum of DP 6 \＆DP 7 Piped to DP 2.1
	8	A4	0.15	0.73	5.0	0.11	5.17	0.6								0.6	0.11	1.0	15	105	3.1	0.6	Roof drains Piped to DP 2.1
																							Sum of DP 8\＆DP 2.0
	2.1								11.4	0.52	3.93	2.1				2.1	0.52	1.0	18	101	4.6	0.4	Piped to DP 2.2
	2.2								11.8	0.73	3.88	2.8				2.8	0.73	1.0	24	105	4.9	0.4	Sum of DP $5 \&$ DP 2.1 Piped to DP 2.3
																							Roof drains
	9	A5	0.13	0.73	5.0	0.09	5.17	0.5								0.5	0.09	1.0	15	7	3.0	0.0	Piped to DP 2.3
	2.3								12.2	0.82	3.83	3.1				3.1	0.82	1.3	24	114	5.4	0.4	Piped to DP 2.4
	10	A6	1.51	0.53	10.5	0.80	4.06	3.2	10.5	1.04	4.06	4.2				4.2	1.04	1.3	24	0	6.0	0.0	Sump Inlet．Sum of Carryover flows from DP 5，DP 6，and Sub－Basin A6 Piped to DP 2.4
	2.4								12.5	1.86	3.79	7.1				7.1	1.86	2.0	30	31	8.0	0.1	Sum of DP $9 \&$ DP 2.2 Piped to DP 2.5
	11	A7	0.58	0.42	10.6	0.24	4.05	1.0	10.6	0.27	4.05	1.1				1.1	0.27	2.0	30	0	4.5	0.0	On－grade Inlet，Sum of carryover from DP 4 and Sub－Basin A7 Piped to DP 2.5
																							Sum of DP 11 \＆DP 2.4
	2.5								12.6	2.13	3.78	8.1				8.1	2.13	2.0	36	44	8.0	0.1	Piped to DP 2.6
	12	A8	0.30	0.52	5.9	0.16	4.92	0.8								0.8	0.16	2.0	30	0	4.0	0.0	On－grade inlet Piped to DP 2.6
	2.6								12.7	2.29	3.77	8.6				8.6	2.29	2.4	36	55	8.8	0.1	Sum of DP 12 \＆DP 2.5 Piped to DP 5P
	5P								12.7	2.29	3.77	8.6	8.6	2.29	0.5					45	1.1	0.7	Pond A Forebay Trickle channel conveyance to DP 6P
	6 P	A9	1.33	0.08	13.9	0.11	3.64	0.4					0.4	0.11	2.18								Overland Flow Pond Conveyance to DP 6P
																							Pond outlet Structure
	6 P								13.9	3.72	3.64	13.5											Release detained flows into Sandcreek Drainageway
	13	F5	3.88	0.36	10.3	0.82	4.09	3.4					3.4	0.82	1.2					170	1.3	2.2	Future Phase 2 developed flows minus roof drains and future area inlet flows Pan conveyance to DP 14

STANDARD FORM SF－3

STORM DRAINAGE SYSTEM DESIGN

（RATIONAL M ETHOD PROCEDURE）
ubdivision：Solace
Project Name：Solace Apartments
Project No．： 25174.00
Calculated By：AA
Checked By：
Date：
$3 / 12 / 21$
sign Storm：5－Yea
Date：3／12／21

STREET	H$\frac{1}{0}$05000	DIRECT RUNOFF							TOTALRUNOFF				STREET／SWALE			PIPE				TRAVEL TIME			
		$\begin{aligned} & \underline{0} \\ & \frac{5}{6} \\ & \hline 0 \end{aligned}$			$\underset{y}{\hat{y}}$	$\begin{aligned} & \frac{y}{4} \\ & \underset{U}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \stackrel{y}{5} \end{aligned}$	$\frac{\widehat{N}}{0}$	$\begin{aligned} & \text { 들 } \\ & \text { yy } \\ & \hline \end{aligned}$	$\begin{aligned} & \bar{\theta} \\ & \underset{\sim}{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{1}{5} \\ & \stackrel{y}{5} \end{aligned}$	$\stackrel{\pi}{0}$		$\begin{aligned} & \bar{⿹} \\ & \underset{\sim}{t} \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\circ}{0} \\ \stackrel{0}{0} \\ \tilde{\sigma} \end{gathered}$	$\frac{\stackrel{\pi}{6}}{\frac{8}{2}}$	$\begin{aligned} & \tilde{0} \\ & \underset{\sim}{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 厅 } \\ & \text { Ö } \\ & \stackrel{0}{\sigma} \end{aligned}$	$\begin{aligned} & \bar{y} \\ & \vdots \\ & \stackrel{y}{y} \\ & \stackrel{y}{y} \\ & \ddot{y} \\ & \frac{0}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathbb{E} \\ & \text { 知 } \\ & \mathbb{I} \\ & \hline \end{aligned}$	$$	$\hat{\underline{\varepsilon}}$	REM ARKS
	14	B1	0.37	0.72	5.1	0.27	5.13	1.4	12.4	1.09	3.80	4.1	2.4	0.64	1.1	1.7	0.45	1.0	18	89 0	$\begin{aligned} & \hline \hline 1.6 \\ & 4.3 \end{aligned}$	$\begin{aligned} & \hline 0.9 \\ & 0.0 \end{aligned}$	Sum of carryover flows from DP 13 and Sub－Basin B1，No． 16 －valley inlet，Carryover flow to DP 16 Piped to DP 3.0
	3.0								12.4	1.68	3.80	6.4				6.4	1.68	1.0	18	89	6.2	0.2	Flows captured by No． 16 －Valley inlet and future building and area drains connecting directly to inlet． Piped to DP 3.1
	15	B2	0.35	0.85	5.0	0.30	5.17	1.6								1.6	0.30	2.0	18	75	5.4	0.2	On－grade inlet Piped to DP 3.1
	16	B3	0.35	0.67	5.0	0.23	5.17	1.2	13.4	0.87	3.69	3.2				3.2	0.87	1.0	18	0	5.2	0.0	Sum of carryover flow from DP 14 and Sub－Basin B3，On－grade inlet．Carryover flow to DP 19 Piped to DP 3.1
																							Sum of DP 14，DP $15 \&$ DP 16
	3.1								13.4	2.85	3.69	10.5				10.5	2.85	0.5	30	30	5.4	0.1	Piped to DP 3.2
	17	B4	0.03	0.73	5.0	0.02	5.17	0.1								0.1	0.02	1.0	8	40	1.9	0.3	Roof drains Piped to DP 3.2
	3.2								13.5	2.87	3.68	10.6				10.6	2.87	0.5	30	163	5.4	0.5	Sum of DP 17 \＆DP 3.1 Piped to DP 3.3
																							Roof drains
	18	B5	0.26	0.73	5.0	0.19	5.17	1.0								1.0	0.19	1.0	8	40	3.8	0.2	Piped to DP 3.3
	3.3								14.0	3.06	3.63	11.1				11.1	3.06	1.9	30	75	8.8	0.1	Sum of DP 18 \＆DP 3.2 Piped to DP 3.4
													0.8	0.17	1.1					445	1.6	4.7	No．16－valley inlet，Carryover flow to DP 27
	19	B6	0.73	0.56	7.1	0.41	4.65	1.9								1.1	0.24	1.0	18	13	3.8	0.1	Piped to DP 3.4
	3.4								14.1	3.29	3.61	11.9				11.9	3.29	1.0	30	29	7.2	0.1	Sum of DP 19 \＆DP 3.3 Piped to DP 3.5
																							Roof drains
	20	B7	0.47	0.37	7.0	0.17	4.66	0.8								0.8	0.17	1.0	15	60	3.5	0.3	Piped to DP 3.5
	3.5								14.2	3.46	3.60	12.5				12.5	3.46	0.5	30	143	5.7	0.4	Sum of DP 20 \＆DP 3.4 Piped to DP 3.6
	21	B8	0.25	0.73	5.0	0.18	5.17	0.9								0.9	0.18	1.0	15	10	3.6	0.0	Roof drains Piped to DP 3.6
																							Sum of DP $21 \&$ DP 3.5
	3.6								14.6	3.64	3.56	13.0				13.0	3.64	0.5	30	191	5.8	0.6	Piped to DP 3.7
	22	B9	0.19	0.73	5.0	0.14	5.17	0.7								0.7	0.14	1.0	15	15	3.4	0.1	Roof drains Piped to DP 3.7
	3.7								152	378	3.50	13.3				13.3	3.78	0.5	30	101	5.8	0.3	Sum of DP 22 \＆DP 3.6 Piped to DP 38
																							Sump Inlet
	23	B10	0.38	0.53	5.2	0.20	5.10	1.0								1.0	0.20	2.0	18	15	4.7	0.1	Piped to DP 3.8
	3.8								15.5	3.98	3.48	13.8				13.8	3.98	0.5	36	46	5.8	0.1	Sum of DP $23 \&$ DP 3.7 Piped to DP 4.2
																							Roof drains
	24	B13A	0.48	0.23	9.4	0.11	4.22	0.5								0.5	0.11	1.0	15	47	3.0	0.3	Piped to DP 3.9
	25	B13	0.58	0.55	6.4	0.32	4.80	1.5					0.6	0.13	3.0	0.9	0.19	2.0	18	40	2.6 4.4	0.3 0.0	No．16－valley inlet，Carryover flow to DP 28 Piped to DP 3.9
																							Sum of DP $24 \&$ DP 25
	3.9								9.7	0.30	4.18	1.2				1.2	0.30	2.0	18	41	4.9	0.1	Piped to DP 4.1
	26	B11	0.74	0.33	11.1	0.25	3.98	1.0								1.0	0.25	1.0	15	39	3.7	0.2	Roof drains Piped to DP 4.0
																							Sump Inlet，sum of carryover from DP 19 and Sub－Basin B12
	27	B12	1.08	0.58	9.2	0.63	4.25	2.7	11.8	0.80	3.89	3.1				3.1	0.80	1.0	18	0	5.2	0.0	Piped to DP 4.0
	4.0								11.8	1.05	3.89	4.1				4.1	1.05	1.0	18	32	5.6	0.1	Sum of DP 26 \＆DP 27 Piped to DP 4.1
	28	B14	0.49	0.63	9.4	0.31	4.22	1.3	9.4	0.44	4.22	1.9				1.9	0.44	1.2	18	12	4.8	0.0	Sump Inlet，sum of carryover from DP 25 \＆Sub－Basin B14 Piped to DP 4.1

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL M ETHOD PROCEDURE)

ubdivision: Solace Location: EI Paso County sign Storm: 5-Year

Project Name: Solace Apartments
Project No.: 25174.0
Calculated By: AA
Checked By:
Date: $3 / 12 / 21$

		DIRECT RUNOFF							TOTAL RUNOFF				STREET/SWALE			PIPE				TRAVEL TIME			
STREET		$\begin{aligned} & \text { Q } \\ & \frac{\rightharpoonup}{6} \\ & 0 \\ & \hline \end{aligned}$			$\underset{y}{\text { § }}$	$\begin{aligned} & \frac{y}{4} \\ & \underset{U}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ex } \\ & \stackrel{y}{E} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\pi}{6} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { y } \\ & \underline{y} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { B0 } \\ & \underset{甘}{6} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 톨 } \\ & \underline{E} \\ & \hline \end{aligned}$	$\begin{gathered} \frac{\pi}{6} \\ \hline 0 \end{gathered}$		$\begin{aligned} & \overline{e d} \\ & \underset{4}{t} \\ & \hline \end{aligned}$	$$	$\begin{aligned} & \frac{\tilde{\theta}}{\hat{\theta}} \\ & \frac{8}{2} \\ & 0^{2} \end{aligned}$	$\begin{aligned} & \text { od } \\ & \underset{U}{t} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { § } \\ & 0 \\ & 0.0 \\ & 0 \end{aligned}$	$\begin{aligned} & \bar{y} \\ & \vdots \\ & \stackrel{y}{y} \\ & \stackrel{y}{y} \\ & \ddot{y} \\ & \frac{0}{2} \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{\pi}{2} \\ & \stackrel{y}{2} \\ & 20 \\ & 0 \\ & \hline 0.0 \\ & \hline 0 \end{aligned}$		REM ARKS
	4.1								11.9	1.79	3.87	6.9				6.9	1.79	1.0	24	44	6.3	0.1	Sum of DP 28, DP 3.9, \& DP 4.0 Piped to DP 4.2
																							Sum of DP 3.8 \& DP 4.1
	4.2								15.6	5.78	3.46	20.0				20.0	5.78	0.5	36	158	6.4	0.4	Piped to DP 4.4 Roof drains
	29	B16	0.15	0.56	5.4	0.08	5.06	0.4								0.4	0.08	1.0	15	47	2.8	0.3	Piped to DP 4.3
	30	B15	0.27	0.71	5.7	0.19	4.96	0.9								0.9	0.19	2.0	18	0	4.6	0.0	Sump Inlet Piped to DP 4.3
																							Sum of DP $29 \&$ DP 30
	4.3								5.7	0.27	4.96	1.3				1.3	0.27	2.0	18	34	5.1	0.1	Piped to DP 4.4
	4.4								16.0	6.05	3.42	20.7				20.7	6.05	0.8	36	311	7.7	0.7	Sum of DP 4.2 \& DP 4.3 Piped to DP 4.5
	31	B17	0.99	0.42	8.2	0.41	4.43	1.8								1.8	0.41	2.0	18	13	5.6	0.0	On-grade inlet Piped to DP 4.5
																							Sum of DP 31\& DP 4.4
	4.5								16.7	6.46	3.36	21.7				21.7	6.46	0.5	42	32	6.5	0.1	Piped to DP 2.6
	32	B18	0.47	0.50	7.2	0.23	4.62	1.1								1.1	0.23	0.5	42	0	2.7	0.0	On-grade inlet Piped to DP 4.6
																							Sum of DP $32 \&$ DP 4.5
	4.6								16.8	6.69	3.35	22.4				22.4	6.69	0.5	42	52	6.6	0.1	Piped to DP 35
	35								16.8	6.7	3.35	22.4	22.4	6.69	0.5					336	1.1	5.3	Pond B forebay Trickle channel conveyance to DP 37
	33	B19	1.92	0.32	16.9	0.62	3.34	2.1								2.1	0.62	1.0	18	55	4.5	0.2	On-grade Inlet Piped to DP 4.7
	34	B20	0.26	0.49	6.3	0.13	4.83	0.6								0.6	0.13	1.0	24	0	3.1	0.0	On-grade Inlet
																							Sum of DP $33 \&$ DP 34
	4.7								17.1	0.75	3.32	2.5				2.5	0.75	1.0	24	52	4.7	0.2	Piped to DP 2.6
	36								17.1	0.8	3.32	2.5	2.5	0.75	0.5					106	1.1	1.7	Pond B forebay Trickle channel conveyance to DP 37
	37	B21	2.46	0.08	29.7	0.20	2.50	0.5					0.5	0.20	2.18								Overland Flow Pond Conveyance to DP 37
	37								220	7.64	2.94	22.5											Pond outlet Structure
													0.2	0.03	5.0					0	4.5	0.0	Future overland flow
	38	F6	0.35	0.08	5.3	0.03	5.07	0.2															Sheet flow offsite per historic condition
	39	F7	0.53	0.08	6.9	0.04	4.69	0.2					0.2	0.04	2.0					0	2.8	0.0	Future overland flow Existing swale conveyance offsite per historic condition
	40	C1	0.74	0.29	15.0	0.22	3.52	0.8					0.8		1.0					183	2.0	1.5	Future overland flow to DP 40 Existing swale conveyance offsite per historic condition
	41	C2	0.80	0.08	6.3	0.06	4.83	0.3					0.3	0.06	4.57					0	4.3	0.0	Overland flow Sheet flow offsite per historic condition
	42	D1	0.95	0.19	12.8	0.18	3.76	0.7					0.7	0.18	3.3					0	3.6	0.0	Overland flow
	43	OS1	17.73	0.59	15.1	10.46	3.51	36.7					36.7	10.46	3.2					225	3.6	1.0	Surface runoff from Basin OS1, captured by existing channel and proposed overflow channel at DP 43 Channel conveyance to Sand Creek at DP 5.1
	44	OS2	8.93	0.59	10.6	5.27	4.04	21.3					21.3	5.27	3.2					147	2.7	0.9	Surface runoff from Basin OS2 Diverted to swale west of site at DP 44
	5.0	.	.	-	.	-	-	.															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	5.1	-	-	-	-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.

STANDARD FORM SF-3

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)
ubdivision: Solace
Location: ElPaso County
sign Storm: 5-Year

Project Name: Solace Apartments
Project No.: 25174.00
Calculated By: AAM
Checked By:
Date: 3/12/21

		DIRECT RUNOFF							TOTAL RUNOFF				STREET/SWALE			PIPE				TRAVEL TIME			
STREET					$\begin{gathered} \hat{c} \\ \underline{y} \\ \hline \end{gathered}$	$\begin{aligned} & \frac{\pi}{4} \\ & \frac{1}{4} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \hline 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \frac{6}{6} \\ & \underset{t}{t} \end{aligned}$	$\begin{aligned} & \text { 들 } \\ & \text { S} \end{aligned}$	$\begin{aligned} & \frac{\pi}{6} \\ & \hline 0 \\ & \hline \end{aligned}$		$\begin{array}{r} \text { dob } \\ \underset{U}{U} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \\ & \hline \stackrel{0}{0} \\ & \hline \hline \end{aligned}$		$\begin{array}{r} \text { d } \\ \underset{\sim}{t} \\ \hline \end{array}$			$$		$\begin{aligned} & \hat{\tilde{y}} \\ & \hline \end{aligned}$	REM ARKS
	5.2	-	-	-	-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.
	5.3	-	-	-	-	-	-	-															5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.

Street and Pipe $C^{*} \mathrm{~A}$ values are determined by Q / i using the catchment's intensity value.
All pipes are private and RCP unless otherwise noted. Pipe size shown in table column

STORM DRAINAGE SYSTEM DESIGN

(RATIONALM ETHOD PROCEDURE)

Project Name: Solace Apartments
Project No:: 25174.00
Calculated By:
Calculated By:
Checked By:

$$
\begin{aligned}
& \text { ked By: } \\
& \text { Date: } 3 / 12 / 21
\end{aligned}
$$

Description	$\begin{array}{\|l} \hline \frac{1}{0} \\ 0 \\ \text { 2 } \\ \text { I } \\ \hline \end{array}$	DIRECT RUNOFF							TOTAL RUNOFF				STREET/SWALE			PIPE				TRAVEL TIME			
		$\begin{array}{r} \text { O } \\ \text { 気 } \\ 0 \\ \hline \end{array}$				$\begin{aligned} & \underline{0} \\ & \underline{t} \\ & \hline \end{aligned}$		$\begin{aligned} & \hat{\pi} \\ & 0 \\ & \hline 0 \end{aligned}$		$\begin{aligned} & \overline{0} \\ & \overleftarrow{C} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{y}{c} \\ & \stackrel{y}{s} \end{aligned}$	$\begin{aligned} & \overline{\mathrm{y}} \\ & \underline{0} \\ & \hline \end{aligned}$		$\begin{array}{r} \tilde{0} \\ \underset{~}{t} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\underset{\frac{\tilde{\theta}}{\frac{\pi}{2}}}{\substack{\frac{8}{2}}}$	$\begin{aligned} & \tilde{0} \\ & \underset{U}{4} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ó } \\ & \stackrel{0}{0} \\ & \frac{0}{0} \\ & \hline \hline \end{aligned}$			$\begin{aligned} & \frac{\pi}{2} \\ & \stackrel{y}{2} \\ & \frac{0}{0} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	$\begin{gathered} \hat{\bar{c}} \\ \underset{y y}{\hat{5}} \\ \hline \end{gathered}$	REM ARKS
	15	B2	0.35	0.93	5.0	0.32	8.68	2.8								2.8	0.32	2.0	18	75	6.4	0.2	On-grade inlet Piped to DP 3.1
	16	B3	0.35	0.79	5.0	0.28	8.68	2.4	12.8	1.35	6.31	8.5	0.3	0.05	1.1	8.2	1.30	1.0	18	89	1.6 6.6	0.9 0.0	Sum of carryover flow from DP 14 and Sub-Basin B3,On-grade inlet. Carryover flow to DP 19 Piped to DP 3.1
	3.1								12.8	3.02	6.31	19.0				19.0	3.02	0.5	30	30	6.3	0.1	Sum of DP 14, DP 15 \& DP 16 Piped to DP 32
																							Roof drains 3
	17	B4	0.03	0.81	5.0	0.02	8.68	0.2								0.2	0.02	1.0	8	40	2.3	0.3	Piped to DP 3.2
	3.2								12.9	3.04	6.29	19.1				19.1	3.04	0.5	30	163	6.3	0.4	Piped to DP 3.3
	18	B5	0.26	0.81	5.0	0.21	8.68	1.8								1.8	0.21	1.0	8	40	5.2	0.1	Roof drains Piped to DP 3.3
	3.3								13.3	3.25	6.21	20.2				20.2	3.25	1.9	30	75	10.4	0.1	Sum of DP $18 \&$ DP 3.2 Piped to DP 3.4
	19	B6	0.73	0.71	7.1	0.52	7.81	4.1	8.0	0.57	7.50	4.3	2.5	0.33	1.1	1.8	0.24	1.0	18	$\begin{array}{\|c\|} \hline 445 \\ \hline 12 \end{array}$	1.6 4.4	4.7 0.0	No. 16-valley inlet, Carryover flow to DP 27
																							Sum of DP 19 \& DP 3.3
	3.4								13.5	3.49	6.19	21.6				21.6	3.49	1.0	30	29	8.5	0.1	Piped to DP 3.5
	20	B7	0.47	0.56	7.0	0.26	7.83	2.0								2.0	0.26	1.0	15	60	4.6	0.2	Roof drains Piped to DP 3.5
	3.5								13.5	3.75	6.17	23.2				23.2	3.75	0.5	30	143	6.6	0.4	Sum of DP $20 \&$ DP 3.4 Piped to DP 3.6
	21	B8	0.25	0.81	5.0	0.20	8.68	1.7								1.7	0.20	1.0	15	10	4.4	0.0	Roof drains Piped to DP 3.6
																							Sum of DP $21 \&$ DP 3.5
	3.6								13.9	3.95	6.11	24.1				24.1	3.95	0.5	30	191	6.6	0.5	Piped to DP 3.7
	22	B9	0.19	0.81	5.0	0.15	8.68	1.3								1.3	0.15	1.0	15	15	4.0	0.1	Roof drains Piped to DP 3.7
	3.7								14.4	4.10	6.02	24.7				24.7	4.10	0.5	30	101	6.7	0.3	Sum of DP 22 \& DP 3.6 Piped to DP 3.8
	23	B10	0.38	0.69	5.2	0.26	8.56	2.2								2.2	0.26	2.0	18	15	5.9	0.0	Sump Inlet Piped to DP 3.8
																							Sum of DP $23 \&$ DP 3.7
	3.8								14.6	4.36	5.98	26.1				26.1	4.36	0.5	36	46	6.9	0.1	Piped to DP 4.2
	24	B13A	0.48	0.46	9.4	0.22	7.08	1.6								1.6	0.22	1.0	15	47	4.3	0.2	Piped to DP 3.9
	25	B13	0.58	0.70	6.4	0.40	8.06	3.2					1.7	0.21	3.0	1.5	0.19	2.0	18	${ }^{40}$	2.6 5.2	0.3 0.0	No. 16-valley inlet, Carryover flow to DP 28 Piped to DP 3.9
	3.9								9.6	0.41	7.04	2.9				2.9	0.41	2.0	18	41	6.4	0.1	Sum of DP 24 \& DP 25 Piped to DP 4.1
	26	B11	0.74	0.53	11.1	0.39	6.68	2.6								2.6	0.39	1.0	15	39	4.9	0.1	Roof drains Piped to DP 4.0
																							Sump Inlet, sum of carryover from DP 19 and Sub-Basin B12
	27	B12	1.08	0.72	9.2	0.78	7.13	5.6	12.7	1.11	6.33	7.1				7.1	1.11	1.0	18	0	6.4	0.0	Piped to DP 4.0
	4.0								12.7	1.50	6.33	9.5				9.5	1.50	1.0	18	32	6.7	0.1	Sum of DP 26 \& DP 27 Piped to DP 4.1
	28	B14	0.49	0.76	9.4	0.37	7.08	2.6	9.4	0.58	7.08	4.1				4.1	0.58	1.2	18	12	5.9	0.0	Sump Inlet, sum of carryover from DP $25 \&$ Sub-Basin B14 Piped to DP 4.1
	4.1								12.8	2.49	6.31	15.7				15.7	2.49	1.0	24	44	7.8	0.1	Sum of DP 28, DP 3.9, \& DP 4.0 Piped to DP 4.2
																							Sum of DP $3.8 \&$ DP 4.1
									14.7	6.85	5.96	40.8						0.5			7.5		Piped to DP 4.4
	29	B16	0.15	0.69	5.4	0.10	8.49	0.8								0.8	0.10	1.0	15	47	3.6		Piped to DP 4.3

STANDARD FORM SF－3

STORM DRAINAGE SYSTEM DESIGN

（RATIONALM ETHOD PROCEDURE）
Project Name：Solace Apartments
Project No．： 25174.0

		DIRECT RUNOFF							TOTAL RUNOFF				STREET／SWALE			PIPE				TRAVEL TIME			
Description		$\begin{aligned} & \text { Q } \\ & \stackrel{N_{0}^{\prime}}{8} \end{aligned}$	$\begin{aligned} & \frac{\mathscr{6}}{8} \\ & \frac{8}{4} \\ & \hline \end{aligned}$		$\begin{gathered} \hat{c} \\ \underset{y}{\xi} \end{gathered}$	$\begin{aligned} & \frac{\tilde{0}}{氏} \\ & \underset{U}{2} \end{aligned}$	$\begin{aligned} & \bar{乌} \\ & \text { Eٍ } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \hat{E} \\ & \text { gen } \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\Gamma}{E} \\ & \stackrel{\Xi}{=} \end{aligned}$	$\begin{aligned} & \frac{\pi}{0} \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \tilde{0} \\ & \underset{U}{U} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 厄i } \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \frac{\tilde{8}}{8} \\ & \frac{8}{0_{2}^{2}} \\ & \hline \end{aligned}$		$$				$\underset{~}{\underline{\underline{y}}}$	REM ARKS
	30	B15	0.27	0.81	5.7	0.22	8.33	1.8								1.8	0.22	2.0	18	0	5.6	0.0	Sump Inlet Piped to DP 4.3
	4.3								5.7	0.32	8.33	2.7				2.7	0.32	2.0	18	34	6.4	0.1	Sum of DP $29 \&$ DP 30 Piped to DP 4.4
	4.4								15.1	7.17	5.90	42.3				42.3	7.17	0.8	36	311	9.1	0.6	Sum of DP 4.2 \＆DP 4.3 Piped to DP 4.5
	31	B17	0.99	0.60	8.2	0.60	7.43	4.5					0.2	0.02	1.0	4.3	0.58	2.0	18	292 13	1.5 7.2	3.2	On－grade inlet，carryover flow to DP 33 Piped to DP 4.5
																							Sum of DP $31 \&$ DP 4.4
	4.5								15.6	7.75	5.81	45.0				45.0	7.75	0.5	42	32	7.8	0.1	Piped to DP 2.6
	32	B18	0.47	0.66	7.2	0.31	7.75	2.4								2.4	0.31	0.5	42	0	3.4	0.0	On－grade inlet Piped to DP 4.6
	4.6								15.7	8.06	5.80	46.7				46.7	8.06	0.5	42	52	7.9	0.1	Sum of DP 32 \＆DP 4.5 Piped to DP 35
	35								15.7	8.1	5.8	46.7	46.7	8.06	0.5					336	1.1	5.3	Pond B forebay Trickle channel conveyance to DP 37
	33	B19	1.92	0.53	16.9	1.01	5.60	5.7	16.9	1.03	5.60	5.8				5.8	1.03	1.0	18	55	6.0	0.2	Sum of carryover from DP 31 and Sub－basin B19，On－grade Inlet Piped to DP 4.7
																							On－grade Inlet
	34	B20	0.26	0.66	6.3	0.17	8.12	1.4								1.4	0.17	1.0	24	0	3.9	0.0	Piped to DP 4.7
	4.7								17.1	1.20	5.58	6.7				6.7	1.20	1.0	24	52	6.2	0.1	Sum of DP 33 \＆DP 34 Piped to DP 2.6
	36								17.1	1.2	5.6	6.7	6.7	1.20	0.5					106	1.1	1.7	Pond B forebay Trickle channel conveyance to DP 37
	37	B21	2.46	0.35	29.7	0.86	4.19	3.6					3.6	0.86	2.18								Overland Flow Pond Conveyance to DP 37
	37								21.0	10.12	5.06	51.3											Pond outlet Structure Release detained flows into Sandcreek Drainageway
	38	F6	0.35	0.35	5.3	0.12	8.52	1.0					1.0	0.12	5.0					0	4.5	0.0	Future overland flow Sheet flow offsite per historic condition
	39	F7	0.53	0.35	6.9	0.19	7.87	1.5					1.5	0.19	2.0					0	2.8	0.0	Future overland flow Existing swale convevance offsite per historic condition
	40	Cl	0.74	0.51	15.0	0.37	5.91	2.2					2.2	0.37	1.0					183	2.0		Future overland flow to DP 40 Existing swale conveyance offsite per historic condition
	41	C2	0.80	0.35	6.3	0.28	8.12	2.3					2.3	0.28	4.57					0	4.3	0.0	Overland flow Sheet flow offsite per historic condition
	42	D1	0.95	0.43	12.8	0.41	6.31	2.6					2.6	0.41	3.3					0	3.6	0.0	Overland flow Overflow channel to the Sandcreek Drainageway
	43	OS1	17.73	0.70	15.1	12.41	5.89	73.1					73.1	12.41	3.2					225	3.6		Surface runoff from Basin OS1，captured by existing channel and proposed overflow channel at DP 43 Channel conveyance to Sand Creek at DP 5.1
	44	OS2	8.93	0.70	10.6	6.25	6.78	42.4					42.4	6.25	3.2					147	2.7	0.9	Surface runoff from Basin OS2 Diverted to swale west of site at DP 44
	5.0	．	．	－	．	．	．	820.0					820.0										Flow taken directly from the Sand Creek Drainage Basin Planning Study
	5.1	．	－	．	．	－	－	820.0					820.0										Flow taken directly from the Sand Creek Drainage Basin Planning Study
	5.2	．	．	．	－	－	．	1037.0					1037.0										Flow taken directly from the Sand Creek Drainage Basin Planning Study
	5.3	．	．	．	．	．	．	1100.0					1100.0										Flow taken directly from the Sand Creek Drainage Basin Planning Study

Street and Pipe $\mathrm{C} *$ A values are determined by O / i using the catchment＇s intensity value．
All pipes are private and RCP unless otherwise noted．Pipe size shown in table column．

Scenario: 5 year

Current Time Step: 0.000 h
Conduit FlexTable: Combined Pipe/Node Report

Upstream Structure	Label	$\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \end{aligned}$	Diameter (in)	$\begin{gathered} \text { Slope } \\ \text { (Calculated) } \\ \text { (ft/ft) } \end{gathered}$	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (In) (ft)	$\begin{aligned} & \hline \text { Hydraulic } \\ & \text { Grade } \\ & \text { Line } \\ & (\text { Out) }(\mathrm{ft}) \end{aligned}$	Energy Grade Line (In) (ft)	$\begin{aligned} & \hline \text { Energy } \\ & \text { Grade } \\ & \text { Line } \\ & \text { (Out) (ft) } \end{aligned}$	Velocity (ft/s)	Upstream Structure Coefficient \qquad	$\begin{gathered} \hline \text { Length } \\ \text { (User } \\ \text { Defined) } \\ (\mathrm{ft}) \end{gathered}$
DP09-2	CO-1	2.10	12.0	0.010	6,263.75	6,263.66	6,267.82	6,268.25	6,264.37	6,264.34	6,264.63	6,264.55	4.76	1.000	8.8
DP09-1	CO-2	2.10	12.0	0.010	6,263.46	6,262.84	6,268.25	6,267.71	6,264.08	6,263.91	6,264.34	6,264.02	4.71	1.000	62.5
DP01-2	P01-1	22.40	42.0	0.005	6,246.24	6,245.98	6,252.97	6,249.87	6,247.69	6,247.33	6,248.24	6,248.00	6.55	0.050	52.0
DP01-11	P01-10	11.90	30.0	0.010	6,255.56	6,253.84	6,262.02	6,260.91	6,256.72	6,255.06	6,257.16	6,255.45	7.24	1.020	171.7
DP01-12	P01-11	11.10	24.0	0.010	6,256.81	6,256.06	6,264.38	6,262.02	6,258.00	6,257.05	6,258.50	6,257.85	7.18	0.050	74.6
DP01-13	P01-12	10.60	24.0	0.010	6,258.65	6,257.01	6,265.62	6,264.38	6,259.82	6,257.97	6,260.30	6,258.75	7.09	0.640	163.6
DP01-14	P01-13	10.50	24.0	0.010	6,259.07	6,258.85	6,265.81	6,265.62	6,260.23	6,260.13	6,260.71	6,260.51	7.09	1.020	21.8
DP01-15	P01-14	9.60	18.0	0.010	6,259.32	6,259.20	6,265.70	6,265.81	6,260.82	6,260.72	6,261.28	6,261.18	6.74	0.050	11.8
DP01-16	P01-15	6.40	18.0	0.010	6,260.28	6,259.59	6,265.15	6,265.70	6,261.26	6,260.84	6,261.69	6,261.10	6.23	0.000	69.2
DP01-3	P01-2	21.70	42.0	0.005	6,246.60	6,246.44	6,252.79	6,252.97	6,248.03	6,247.78	6,248.57	6,248.42	6.48	1.020	32.2
DP01-4	P01-3	20.70	36.0	0.007	6,248.21	6,246.80	6,255.53	6,252.79	6,249.67	6,248.58	6,250.24	6,248.93	7.49	1.320	188.4
DP01-5	P01-4	20.70	36.0	0.005	6,249.02	6,248.41	6,257.20	6,255.53	6,250.48	6,250.42	6,251.05	6,250.69	6.44	1.020	122.5
DP01-6	P01-5	20.00	36.0	0.005	6,250.01	6,249.22	6,257.99	6,257.20	6,251.45	6,251.06	6,252.00	6,251.36	6.40	1.020	158.1
DP01-7	P01-6	13.80	36.0	0.010	6,250.87	6,250.41	6,258.31	6,257.99	6,252.05	6,252.01	6,252.49	6,252.21	7.44	1.020	46.0
DP01-8	P01-7	13.30	30.0	0.005	6,251.88	6,251.37	6,259.77	6,258.31	6,253.11	6,252.56	6,253.59	6,253.08	5.80	0.400	101.1
DP01-9	P01-8	13.00	30.0	0.005	6,252.23	6,252.08	6,258.40	6,259.77	6,253.44	6,253.30	6,253.91	6,253.76	5.75	0.400	30.0
DP01-10	P01-9	13.00	30.0	0.008	6,253.64	6,252.43	6,260.91	6,258.40	6,254.85	6,253.48	6,255.32	6,254.17	6.68	0.450	161.0
DP02-2	P02-1	8.60	24.0	0.030	6,255.29	6,253.65	6,262.08	6,256.99	6,256.34	6,254.31	6,256.75	6,255.72	9.98	0.050	54.9
DP02-3	P02-2	8.10	24.0	0.010	6,256.39	6,255.94	6,262.08	6,262.08	6,257.40	6,256.78	6,257.80	6,257.43	6.64	0.050	44.3
DP02-4	P02-3	7.10	18.0	0.010	6,257.20	6,256.89	6,262.72	6,262.08	6,258.23	6,257.81	6,258.70	6,258.42	6.36	0.100	31.2
DP02-5	P02-4	3.10	18.0	0.010	6,258.54	6,257.40	6,264.18	6,262.72	6,259.21	6,258.28	6,259.47	6,258.41	5.18	0.100	113.6
DP02-6	P02-5	2.80	18.0	0.010	6,259.78	6,258.74	6,266.02	6,264.18	6,260.42	6,259.27	6,260.66	6,259.66	5.02	0.520	104.5
DP02-7	P02-6	2.10	18.0	0.010	6,260.42	6,259.98	6,265.64	6,266.02	6,260.97	6,260.54	6,261.17	6,260.73	4.66	0.400	43.6
DP02-8	P02-7	2.10	18.0	0.010	6,261.19	6,260.62	6,267.06	6,265.64	6,261.74	6,261.07	6,261.94	6,261.41	4.65	0.050	56.6
DP02-9	P02-8	1.60	18.0	0.010	6,261.55	6,261.39	6,266.82	6,267.06	6,262.02	6,261.79	6,262.20	6,262.07	4.30	0.000	15.9
DP03-2	P03-1	4.30	18.0	0.031	6,259.72	6,255.40	6,267.19	6,258.76	6,260.52	6,255.89	6,260.83	6,257.03	8.58	0.400	137.2
DP-03-3	P03-2	4.30	18.0	0.010	6,261.36	6,260.52	6,266.61	6,267.19	6,262.16	6,261.19	6,262.47	6,261.68	5.64	1.520	84.2
DP03-4	P03-3(1)	2.20	18.0	0.010	6,264.44	6,262.84	6,269.46	6,267.71	6,265.00	6,263.91	6,265.21	6,263.95	4.70	0.050	160.0
MH-5	P03-3(2)	4.30	18.0	0.010	6,262.64	6,261.56	6,267.71	6,266.61	6,263.44	6,262.64	6,263.75	6,262.79	5.72	1.500	104.2
DP03-5	P03-4	2.20	18.0	0.010	6,265.17	6,264.64	6,270.32	6,269.46	6,265.73	6,265.11	6,265.94	6,265.45	4.69	0.000	53.3
DP04-1	P04-1	6.90	24.0	0.010	6,251.65	6,251.21	6,256.47	6,257.99	6,252.58	6,251.98	6,252.94	6,252.58	6.32	1.520	44.0
DP04-2	P04-2	1.20	18.0	0.010	6,252.26	6,251.85	6,257.41	6,256.47	6,253.13	6,253.13	6,253.15	6,253.14	3.95	0.000	41.0
DP05-1	P05-1	1.60	18.0	0.015	6,261.02	6,260.02	6,265.37	6,265.81	6,261.50	6,260.72	6,261.67	6,260.78	4.95	0.400	66.9
DP05-2	P05-2	1.60	18.0	0.020	6,261.70	6,261.22	6,266.72	6,265.37	6,262.18	6,261.56	6,262.35	6,262.00	5.49	0.000	24.1
DP06-1	P06-1	4.10	18.0	0.020	6,252.49	6,251.85	6,257.48	6,256.47	6,253.27	6,253.13	6,253.57	6,253.23	7.18	0.000	32.0
DP07-1	P07-1	1.90	18.0	0.020	6,252.09	6,251.85	6,256.68	6,256.47	6,253.12	6,253.13	6,253.15	6,253.15	5.76	0.000	12.1
DP08-1	P08-01	1.00	18.0	0.020	6,261.57	6,260.91	6,266.14	6,266.02	6,261.94	6,261.17	6,262.08	6,261.53	4.79	0.000	33.0
DP10-1	P10-1	0.00	18.0	0.050	6,261.97	6,261.60	6,266.90	6,266.61	6,262.64	6,262.64	6,262.64	6,262.64	0.00	0.000	7.4
DP11-2	P11-1	2.50	18.0	0.007	6,245.02	6,244.65	6,250.01	6,246.66	6,245.75	6,245.77	6,245.88	6,245.82	4.38	0.050	49.8
DP11-3	P11-2	2.10	18.0	0.008	6,245.65	6,245.22	6,249.80	6,250.01	6,246.20	6,245.70	6,246.40	6,245.99	4.26	0.000	54.4
DP12-1	P12-1	1.80	18.0	0.020	6,248.05	6,247.80	6,252.95	6,252.79	6,248.55	6,248.58	6,248.74	6,248.64	5.68	0.000	12.6
DP13-1	P13-1	1.30	18.0	0.040	6,251.86	6,250.52	6,256.31	6,257.20	6,252.29	6,251.06	6,252.44	6,251.14	6.59	0.000	33.6
DP14-1	P14-1	1.00	18.0	0.040	6,252.89	6,252.37	6,257.83	6,258.31	6,253.26	6,252.60	6,253.40	6,253.11	6.12	0.000	12.9
DP15-1	P15-1	1.10	18.0	0.067	6,257.43	6,256.56	6,261.74	6,262.02	6,257.82	6,257.17	6,257.96	6,257.21	7.52	0.000	13.0
Structure - (81) (STORM)	Pipe - (66) (STORM)	2.70	36.0	0.010	6,243.00	6,242.44	6,247.85	6,245.78	6,243.51	6,242.85	6,243.69	6,243.18	4.61	0.000	56.3
Structure - 93) (STORM)	Pipe - (75) (STORM)	1.30	36.0	0.010	6,250.10	6,249.18	6,257.50	6,252.53	6,250.45	6,249.47	6,250.57	6,249.68	3.71	0.000	92.0

12510000 all 25174001 StormCADISolace stsw

Scenario: 100 year

Current Time Step: 0.000 h
Conduit FlexTable: Combined Pipe/Node Report

Upstream Structure	Label	$\begin{aligned} & \text { Flow } \\ & \text { (cfs) } \end{aligned}$	Diameter (in)	$\begin{gathered} \text { Slope } \\ \text { (Calculated) } \\ \text { (ft/ft) } \end{gathered}$	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	Hydraulic Grade Line (In) (ft)	$\begin{aligned} & \hline \text { Hydraulic } \\ & \text { Grade } \\ & \text { Line } \\ & (\text { Out) }(\mathrm{ft}) \end{aligned}$	Energy Grade Line (In) (ft)	$\begin{aligned} & \hline \text { Energy } \\ & \text { Grade } \\ & \text { Line } \\ & \text { (Out) (ft) } \end{aligned}$	Velocity (ft/s)	Upstream Structure Headloss Coefficient	$\begin{gathered} \hline \text { Length } \\ \text { (User } \\ \text { Defined) } \\ (\mathrm{ft}) \end{gathered}$
DP09-2	CO-1	4.40	12.0	0.010	6,263.75	6,263.66	6,267.82	6,268.25	6,266.76	6,266.62	6,267.25	6,267.11	5.60	1.000	8.8
DP09-1	CO-2	4.40	12.0	0.010	6,263.46	6,262.84	6,268.25	6,267.71	6,266.14	6,265.18	6,266.62	6,265.67	5.60	1.000	62.5
DP01-2	P01-1	46.70	42.0	0.005	6,246.24	6,245.98	6,252.97	6,249.87	6,248.37	6,248.05	6,249.27	6,249.02	7.89	0.050	52.0
DP01-11	P01-10	21.60	30.0	0.010	6,255.56	6,253.84	6,262.02	6,260.91	6,257.14	6,255.65	6,257.82	6,256.15	8.47	1.020	171.7
DP01-12	P01-11	20.20	24.0	0.010	6,256.81	6,256.06	6,264.38	6,262.02	6,258.42	6,257.83	6,259.28	6,258.56	8.16	0.050	74.6
DP01-13	P01-12	19.10	24.0	0.010	6,258.65	6,257.01	6,265.62	6,264.38	6,260.22	6,258.42	6,261.03	6,259.43	8.08	0.640	163.6
DP01-14	P01-13	19.00	24.0	0.010	6,259.07	6,258.85	6,265.81	6,265.62	6,260.79	6,260.74	6,261.47	6,261.33	8.10	1.020	21.8
DP01-15	P01-14	17.30	18.0	0.010	6,259.32	6,259.20	6,265.70	6,265.81	6,261.80	6,261.48	6,263.29	6,262.97	9.79	0.050	11.8
DP01-16	P01-15	9.10	18.0	0.010	6,260.28	6,259.59	6,265.15	6,265.70	6,262.40	6,261.88	6,262.81	6,262.29	5.15	0.000	69.2
DP01-3	P01-2	45.00	42.0	0.005	6,246.60	6,246.44	6,252.79	6,252.97	6,248.69	6,248.47	6,249.57	6,249.41	7.81	1.020	32.2
DP01-4	P01-3	42.30	36.0	0.007	6,248.21	6,246.80	6,255.53	6,252.79	6,250.33	6,249.58	6,251.31	6,250.18	8.92	1.320	188.4
DP01-5	P01-4	42.30	36.0	0.005	6,249.02	6,248.41	6,257.20	6,255.53	6,252.11	6,251.62	6,252.67	6,252.17	5.98	1.020	122.5
DP01-6	P01-5	40.80	36.0	0.005	6,250.01	6,249.22	6,257.99	6,257.20	6,253.27	6,252.68	6,253.79	6,253.20	5.77	1.020	158.1
DP01-7	P01-6	26.10	36.0	0.010	6,250.87	6,250.41	6,258.31	6,257.99	6,253.87	6,253.80	6,254.08	6,254.01	8.86	1.020	46.0
DP01-8	P01-7	24.70	30.0	0.005	6,251.88	6,251.37	6,259.77	6,258.31	6,254.45	6,254.08	6,254.84	6,254.48	5.03	0.400	101.1
DP01-9	P01-8	24.10	30.0	0.005	6,252.23	6,252.08	6,258.40	6,259.77	6,254.71	6,254.61	6,255.08	6,254.98	6.61	0.400	30.0
DP01-10	P01-9	24.10	30.0	0.008	6,253.64	6,252.43	6,260.91	6,258.40	6,255.31	6,254.86	6,256.05	6,255.24	7.78	0.450	161.0
DP02-2	P02-1	19.40	24.0	0.030	6,255.29	6,253.65	6,262.08	6,256.99	6,256.87	6,255.46	6,257.70	6,256.11	12.42	0.050	54.9
DP02-3	P02-2	18.20	24.0	0.010	6,256.39	6,255.94	6,262.08	6,262.08	6,257.93	6,257.31	6,258.69	6,258.29	8.06	0.050	44.3
DP02-4	P02-3	15.10	18.0	0.010	6,257.20	6,256.89	6,262.72	6,262.08	6,259.00	6,258.30	6,260.13	6,259.49	8.54	0.100	31.2
DP02-5	P02-4	6.10	18.0	0.010	6,258.54	6,257.40	6,264.18	6,262.72	6,259.49	6,259.11	6,259.91	6,259.30	6.18	0.100	113.6
DP02-6	P02-5	5.50	18.0	0.010	6,259.78	6,258.74	6,266.02	6,264.18	6,260.68	6,259.51	6,261.06	6,260.07	6.00	0.520	104.5
DP02-7	P02-6	4.30	18.0	0.010	6,260.42	6,259.98	6,265.64	6,266.02	6,261.22	6,260.88	6,261.53	6,261.12	5.66	0.400	43.6
DP02-8	P02-7	4.30	18.0	0.010	6,261.19	6,260.62	6,267.06	6,265.64	6,261.98	6,261.29	6,262.30	6,261.79	5.66	0.050	56.6
DP02-9	P02-8	3.50	18.0	0.010	6,261.55	6,261.39	6,266.82	6,267.06	6,262.26	6,262.00	6,262.54	6,262.42	5.36	0.000	15.9
DP03-2	P03-1	11.30	18.0	0.031	6,259.72	6,255.40	6,267.19	6,258.76	6,261.00	6,256.24	6,261.77	6,258.14	11.05	0.400	137.2
DP-03-3	P03-2	11.30	18.0	0.010	6,261.36	6,260.52	6,266.61	6,267.19	6,262.74	6,261.80	6,263.43	6,262.57	6.39	1.520	84.2
DP03-4	P03-3(1)	4.70	18.0	0.010	6,264.44	6,262.84	6,269.46	6,267.71	6,265.37	6,265.18	6,265.63	6,265.29	5.78	0.050	160.0
MH-5	P03-3(2)	9.10	18.0	0.010	6,262.64	6,261.56	6,267.71	6,266.61	6,264.56	6,263.78	6,264.98	6,264.19	5.15	1.500	104.2
DP03-5	P03-4	4.70	18.0	0.010	6,265.17	6,264.64	6,270.32	6,269.46	6,266.00	6,265.34	6,266.34	6,265.86	5.77	0.000	53.3
DP04-1	P04-1	15.70	24.0	0.010	6,251.65	6,251.21	6,256.47	6,257.99	6,254.01	6,253.80	6,254.40	6,254.19	5.00	1.520	44.0
DP04-2	P04-2	2.90	18.0	0.010	6,252.26	6,251.85	6,257.41	6,256.47	6,254.63	6,254.60	6,254.67	6,254.64	1.64	0.000	41.0
DP05-1	P05-1	2.80	18.0	0.015	6,261.02	6,260.02	6,265.37	6,265.81	6,261.66	6,261.48	6,261.90	6,261.52	5.81	0.400	66.9
DP05-2	P05-2	2.80	18.0	0.020	6,261.70	6,261.22	6,266.72	6,265.37	6,262.33	6,261.68	6,262.58	6,262.26	6.44	0.000	24.1
DP06-1	P06-1	9.50	18.0	0.020	6,252.49	6,251.85	6,257.48	6,256.47	6,254.86	6,254.60	6,255.31	6,255.05	5.38	0.000	32.0
DP07-1	P07-1	4.10	18.0	0.020	6,252.09	6,251.85	6,256.68	6,256.47	6,254.62	6,254.60	6,254.70	6,254.68	2.32	0.000	12.1
DP08-1	P08-01	1.50	18.0	0.020	6,261.57	6,260.91	6,266.14	6,266.02	6,262.03	6,261.23	6,262.20	6,261.68	5.39	0.000	33.0
DP10-1	P10-1	2.30	18.0	0.050	6,261.97	6,261.60	6,266.90	6,266.61	6,263.79	6,263.78	6,263.81	6,263.81	1.30	0.000	7.4
DP11-2	P11-1	6.70	18.0	0.007	6,245.02	6,244.65	6,250.01	6,246.66	6,248.16	6,247.96	6,248.39	6,248.18	3.79	0.050	49.8
DP11-3	P11-2	5.80	18.0	0.008	6,245.65	6,245.22	6,249.80	6,250.01	6,248.34	6,248.17	6,248.51	6,248.34	3.28	0.000	54.4
DP12-1	P12-1	4.30	18.0	0.020	6,248.05	6,247.80	6,252.95	6,252.79	6,249.60	6,249.58	6,249.70	6,249.68	2.43	0.000	12.6
DP13-1	P13-1	2.70	18.0	0.040	6,251.86	6,250.52	6,256.31	6,257.20	6,252.58	6,252.68	6,252.74	6,252.71	8.16	0.000	33.6
DP14-1	P14-1	2.20	18.0	0.040	6,252.89	6,252.37	6,257.83	6,258.31	6,254.08	6,254.08	6,254.11	6,254.11	7.72	0.000	12.9
DP15-1	P15-1	1.80	18.0	0.067	6,257.43	6,256.56	6,261.74	6,262.02	6,257.93	6,257.83	6,258.12	6,257.85	8.71	0.000	13.0
Structure - (81) (STORM)	Pipe - (66) (STORM)	3.30	36.0	0.010	6,243.00	6,242.44	6,247.85	6,245.78	6,248.73	6,248.73	6,248.73	6,248.73	0.47	0.000	56.3
Structure - 93) (STORM)	Pipe - (75) (STORM)	3.20	36.0	0.010	6,250.10	6,249.18	6,257.50	6,252.53	6,254.22	6,254.22	6,254.23	6,254.22	0.45	0.000	92.0

12510000 all 2517400 StormCADISolace stsu

Scenario: 5 year

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type =	CDOT Type R Curb Opening		
	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	5.00	5.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	$Q=$	1.6	2.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_{b}=$	0.1	1.0	cfs
Capture Percentage $=\mathbf{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	93	71	\%

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)	Type $=$	MINOR	MAJOR	inches
		Denver	ey Grate	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	2.0	2.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No $=$	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	3.00	3.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	1.73	1.73	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{Cr}_{r}-\mathrm{G}=$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{+}-\mathrm{C}=$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.0	1.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.6	1.6	cts
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	63	48	\%

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type =	Denver No. 16 Valley Grate		
	$a_{\text {LOCAL }}=$	2.0	2.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	3.00	3.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	1.73	1.73	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{C}=$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.0	1.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.6	1.6	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathrm{Q}_{0}=$	C\% =	63	48	\%

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input) \quad CDOT Type R Curb	MINOR MAJOR			inches
Type of Inlet $\boldsymbol{V}^{\text {a }}$ - Type = CDOT Type R Curb Opening				
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$\mathrm{C}_{+}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.1	3.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	100	\%

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')		3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$\mathrm{C}_{\mathrm{r}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.8	1.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	100	\%

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet Local Depression (additional to continuous gutter depression 'a')	Type =	Denver No. 16 Valley Grate		
	$a_{\text {LOCAL }}=$	2.0	2.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	3.00	3.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	1.73	1.73	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{C}=$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.7	2.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	2.4	7.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathrm{Q}_{0}=$	C\% =	42	28	\%

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet $\boldsymbol{V}^{\text {a }}$ - Type = CDOT Type R Curb Opening				
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$\mathrm{C}_{+}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.6	2.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	100	\%

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet \quad Type = CDOT Type R Curb Opening				
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$\mathrm{C}_{+}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.2	8.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.3	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	96	\%

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	$\text { Type }=$	Denver No. 16 Valley Grate		
Local Depression (additional to continuous gutter depression 'a')		2.0	2.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	3.00	3.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	1.73	1.73	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{C}=$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.1	1.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.8	2.5	cfs
Capture Percentage $=\mathbf{Q}_{\mathrm{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	59	42	\%

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	$\text { Type }=$	Denver No. 16 Valley Grate		
Local Depression (additional to continuous gutter depression 'a')		2.0	2.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	3.00	3.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	1.73	1.73	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	0.50	0.50	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{C}=$	N/A	N/A	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.9	1.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.6	1.7	cfs
Capture Percentage $=\mathbf{Q}_{\mathrm{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	62	46	\%

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Design Information (Input) \quad CDOT Type R Curb Opening	MINOR MAJOR			
Type of Inlet CDOT Type R Curb Opening Type = CDOT Type R Curb Opening				inches
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {Iocal }}=$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	inches
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.8	6.8	
Grate Information		MINOR	MAJOR	Override Depths feet
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening Height of Vertical Curb Opening in Inches	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	
	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	feet inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches degrees feet
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Low Head Performance Reduction (Calculated)	$\begin{aligned} \mathrm{d}_{\text {Grate }} & = \\ \mathrm{d}_{\text {Curb }} & = \\ \mathrm{RF}_{\text {Combination }} & = \\ \mathrm{RF}_{\text {Curb }} & = \\ \mathrm{RF}_{\text {Grate }} & = \end{aligned}$	MINOR	MAJOR	$\mathrm{ft}^{\mathrm{ft}}$
Depth for Grate Midwidth Depth for Curb Opening Weir Equation Combination Inlet Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Factor for Long Inlets Grated Inlet Performance Reduction Factor for Long Inlets		N/A	N/A	
		0.23	0.40	
		0.62	0.88	
		1.00	1.00	
		N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathrm{Q}_{\mathrm{a}}=$	3.2	7.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	3.1	7.1	cfs

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet $\boldsymbol{V}^{\text {a }}$ - Type = CDOT Type R Curb Opening				
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$\mathrm{C}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.8	4.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.2	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	96	\%

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet $\boldsymbol{V}^{\text {a }}$ - Type = CDOT Type R Curb Opening				
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$\mathrm{C}_{+}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.1	2.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	100	\%

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE
Version 4.06 Released August 2018

Design Information (Input)	MINOR MAJOR			inches
Type of Inlet $\boldsymbol{V}^{\text {a }}$ - Type = CDOT Type R Curb Opening				
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$\mathrm{C}_{+}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.1	5.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathbf{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	100	\%

Version 4.06 Released August 2018

INLET ON A CONTINUOUS GRADE

Design Information (Input)		MINOR	MAJOR	inches
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a')		3.0	3.0	
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{r}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$\mathrm{C}_{\mathrm{r}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.6	1.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	0.0	cfs
Capture Percentage $=\mathrm{Q}_{\mathrm{a}} / \mathbf{Q}_{0}=$	$\mathrm{C} \%=$	100	100	\%

Final Drainage Report
Solace at Cimaron Hills

APPENDIX C

WATER QUALITY AND DETENTION CALCULATIONS

DETENTION BASIN STAGE-STORAGE TABLE BUILDER												
MHFD-Detention, Version 4.03 (May 2020)												
	olace Apartments											
Basin ID: Pond A												
Depth Increment $=$ \square ft												
PERMANENT- Example Zone Configuration (Retention Pond)			Stage - Storage Description	$\begin{gathered} \text { Stage } \\ (t t) \end{gathered}$	$\begin{aligned} & \text { Optional } \\ & \text { Override } \\ & \text { Stage (ft) } \\ & \hline \end{aligned}$	$\underset{\substack{\text { Length } \\ \text { (tt) }}}{\substack{\text { ch}}}$	with (tt)	$\begin{aligned} & \text { Area } \\ & \left(t^{2}\right) \end{aligned}$	Optiona Override Area $\left(\mathrm{ft}^{2}\right.$)	$\begin{gathered} \text { Area } \\ \text { (acre) } \end{gathered}$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{ft}^{3}\right) \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & \text { (ac-ft) } \end{aligned}$
Watershed Information			Top of Micropool	-.	0.00	--	-..	-.	10	0.000		
Selected BMP Type = Watershed Area =	EDB		ELEV:6252	.-	1.00	-	-	-	909	0.021	459	0.011
	acres		ELEV:6253	.-	2.00	.-	4,500	0.103	3,164	0.073
Watershed Length $=$	790 ft		ELEV:6254	\cdots	3.00	\cdots	\cdots	\cdots	8,857	0.203	9,842	0.226
Watershed Length to Centroid $=$	340 ft		ELEV:6255	-	4.00	.-	.-	.-	13,976	0.321	21,259	0.488
Watershed Slope $=$	$0.020 \mathrm{t} / \mathrm{t}$		ELEV:6256	\cdots	5.00	\cdots	..	\cdots	17,609	0.404	37,051	0.851
Watershed I Imperiousness $=$	49.43\% percent		ELEV:6257	.	6.00	\cdots	..	\cdots	20,879	0.479	56,295	1.292
Percentage Hydrologic Soil Group $\mathrm{A}=$	1.0\% percent			\cdots		\cdots	\cdots	.-				
Percentage Hydrologic Soil Group $\mathrm{B}=$	99.0\% percent			.		\cdots	.	\cdots				
Percentage Hydrologic Soil Groups CID $=$	0.0\% percent			-		-	\cdots	\cdots				
Target Wocv Drain Time $=$	40.0 hours			-		-	-	\cdots				
Location for 1-hr Rainfall Depths $=$	ser Input			\cdots		-	--	\cdots				
Atter providing required inputs above incl	ding 1-hour rainfall			-		-	--	-				
depths, click 'Run CUHP' to generate runo	hydrographs using			\cdots		\cdots	-	-				
the embedded Colorado Urban Hydrog	aph Procedure.	Optional User Overrides		\cdots		\cdots	..	-				
Water Quality Capture Volume (WQCV) $=$	0.135 acre-feet	acre-feet		\cdots		\cdots	.-	-				
Excess Urban Runoff Volume (EURV) $=$	0.417 acre-feet	acre-feet		\cdots		\cdots	\cdots	\cdots				
2.yr Runoff Volume ($\mathrm{P}=1.19 \mathrm{in}$.) $)=$	0.382 acre-feet	1.19 inches		-		-	..	.-				
5 -yr Runoff Volume ($\mathrm{P} 1=1.5 \mathrm{in}.)=$	0.546 acre-feet	1.50 inches		\cdots		\cdots	-	\cdots				
10 -yr Runoff Volume ($\mathrm{P} 1=1.75 \mathrm{in}$.$))$	0.691 acre-feet	1.75 inches		-		-	-	-				
25 -yr Runoff Volume ($\mathrm{Pl}=2 \mathrm{in}$. $)=$	0.887 acre-feet	2.00 inches		-		-	-	\cdots				
$50 . y \mathrm{yr}$ Runoff Volume ($\mathrm{P1}=2.26 \mathrm{in}$.) $=$	1.052 acre-feet	2.26 inches		\cdots		\cdots	-	\cdots				
100.yr Runoff Volume ($\mathrm{P} 1=2.52 \mathrm{in}$. $)=$	1.247 acre-feet	2.52 inches		\cdots		\cdots	.-	\cdots				
$500-\mathrm{yr}$ R Runoff Volume ($\mathrm{P} 1=3.14 \mathrm{in}$. $)=$	1.654 acre-feet	inches		-		-	..	-				
Approximate 2-yr Detention Volume $=$	0.314 acre-feet			-		-	.-	-				
Approximate 5.yr Detention Volume $=$	0.430 acre-feet			\cdots		.	\cdots	\cdots				
Approximate 10.yr Detention Volume $=$	0.570 acre-feet			\cdots		\cdots	\cdots	\cdots				
Approximate 25-yr Detention Volume $=$	0.626 acre-feet			-		.-	-	-				
Approximate 50-yr Detention Volume $=$	0.657 acre-feet			-		-	-	-				
Approximate 100-yr Detention Volume $=$	0.732 acre-feet			\cdots		\cdots	-	\cdots				
				\cdots		\cdots	\cdots	\cdots				
Define Zones and Basin Geometry				\cdots		-	-	\cdots				
Zone 1 Volume (WOCV) $=$	0.135 acre-feet			-		-	.-	-				
Zone 2 Volume (EURV - Zone 1) $=$	0.282 acre-feet			.		.-	.	-				
Zone 3 Volume (100 -year - Zones $1 \& 2)=$	0.315 acre-feet			\cdots		-	\cdots	\cdots				
Total Detention Basin Volume $=$	0.732 acre-feet			\cdots		\cdots	\cdots	\cdots				
Initial Surcharge Volume (ISV) $=$	user ft^{3}			\cdots		\cdots	\cdots	\cdots				
Initial Surcharge Depth (ISD) $=$	user ${ }^{\text {ft }}$			\cdots		\cdots	\cdots	-				
Total Available Detention Depth (Htotal) $=$	user ft			\cdots		\cdots	\cdots	\cdots				
Depth of Trickle Channel ($H_{\text {Tc }}$) $=$	user ft			-		\cdots	-	-				
Slope of Trickle Channel ($\mathrm{S}_{\text {c }}$) $=$	user t / t			-		-	-	-				
Slopes of Main Basin Sides ($\mathrm{S}_{\text {minin }}$) $=$	user H:V			\cdots		\cdots	\cdots	\cdots				
Basin Length-to-Width Ratio (Ruw) $=$	user			\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
Initial Surcharge Area (AIsy) $=$	user tt^{2}			-		.-	.-	\cdots				
Surcharge Volume Length (LLsv) =	user ft			-		-	-	-				
Surcharge Volume Width ($w_{\text {Ls }}$) $)=$	user ft			\cdots		\cdots	\cdots	\cdots				
Depth of Basin Floor (Hfilook) =	user ft			\cdots		\cdots	.-	-				
Length of Basin Floor (Lflook) $=$	user ft			-				
Width of Basin Floor ($\mathrm{W}_{\text {Floor }}$) $=$	user $^{\text {ft }}$			-		.-	-	-				
Area of Basin Floor (Afloor) $=$	user tt^{2}			.-		.-	.-	.-				
Volume of Basin Floor ($\mathrm{V}_{\text {Fiook }}$) $=$	user ta^{3}			\cdots		\cdots	\cdots	\cdots				
Depth of Main Basin ($\mathrm{H}_{\text {Man }}$) $=$	user ft			\cdots		\cdots	\cdots	\cdots				
Length of Main Basin ($\left.L_{\text {maxw }}\right)=$	user ft			\cdots		\cdots	\cdots	\cdots				
Wicth of Main Basin ($W_{\text {Mata }}$) $=$	${ }_{\text {user }} \mathrm{ft}$			\cdots		\cdots	\cdots	-				
Area of Main Basin (Aman) $=$	user t^{2}			..		\cdots	..	\cdots				
Volume of Main Basin ($\left.V_{\text {MaAl }}\right)=$	user t^{3}			\cdots		.	.	.				
Calculated Total Basin Volume ($\left.V_{\text {cotala }}\right)=$	user acre-feet			\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				.-		\cdots	\cdots	\cdots				
				\cdots		\cdots	\because	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				-		-	.-	.-				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				.		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				\cdots		\cdots	\cdots	\cdots				
				.-		.-	.-	.-				
				\cdots		..	\cdots	\cdots				

DETENTION BASIN OUTLET STRUCTURE DESIGN

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.70	1.40	2.10				
Orifice Area (sq. inches)	0.40	0.45	0.52	0.52				
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice		
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected	
Invert of Vertical Orifice $=$	2.49	N/A			0.00	N/A	ft^{2}
Depth at top of Zone using Vertical Orifice $=$	3.77	N/A			0.02	N/A	
Vertical Orifice Diameter =	0.38	N/A					

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

put: Overflow Weir (Dropbox with Fla	ped Grate and	Pip	ngular/Trapezoidal Weir (and No Outle	tlet Pipe)	ulated Para	俍	
	Zone 3 Weir	Not Selected			Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	3.77	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	f) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	3.77	N/A	feet
Overflow Weir Front Edge Length $=$	4.00	N/A	feet	Overflow Weir Slope Length $=$	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	$\mathrm{H}: \mathrm{V}$ Gra	Grate Open Area / 100-yr Orifice Area $=$	28.73	N/A	
Horiz. Length of Weir Sides =	3.00	N/A	feet Ove	verflow Grate Open Area w/o Debris =	8.40	N/A	ft^{2}
Overflow Grate Open Area \%	70\%	N/A	\%, grate open area/total area O	Overflow Grate Open Area w/ Debris $=$	4.20	N/A	ft^{2}
Debris Clogging \% =	50\%	N/A	\%				

Spillway Invert Stage=	5.47	tive to basin bottom at St
Spillway Crest Length =	40.00	feet
Spillway End Slopes =	10.00	$\mathrm{H}: \mathrm{V}$
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway		
Spillway Design Flow Depth=	0.31	feet
Stage at Top of Freeboard =	6.78	feet
Basin Area at Top of Freeboard =	0.48	acres
Basin Volume at Top of Freeboard =	1.29	acre-ft

ph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).									
Design Storm Return Period $=$	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.26	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.135	0.417	0.382	0.546	0.691	0.887	1.052	1.247	1.654
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.382	0.546	0.691	0.887	1.052	1.247	1.654
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.9	2.7	4.0	7.2	9.1	11.2	15.7
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.12	0.34	0.51	0.91	1.15	1.42	1.99
Peak Inflow Q (cfs) =	N/A	N/A	6.7	9.8	12.0	15.6	18.5	22.1	28.9
Peak Outflow Q (cfs) $=$	0.1	0.1	0.1	1.3	2.7	2.9	3.0	3.2	12.0
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.5	0.7	0.4	0.3	0.3	0.8
Structure Controlling Flow $=$	Plate	Overflow Weir 1	Vertical Orifice 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) $=$	N/A	N/A	N/A	0.1	0.3	0.3	0.3	0.4	0.4
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) $=$	38	70	67	71	69	67	66	65	62
Time to Drain 99\% of Inflow Volume (hours) =	42	76	73	78	77	76	75	75	74
Maximum Ponding Depth (ft) $=$	2.49	3.77	3.58	3.89	4.01	4.46	4.80	5.26	5.64
Area at Maximum Ponding Depth (acres) $=$	0.15	0.29	0.27	0.31	0.32	0.36	0.39	0.42	0.45
Maximum Volume Stored (acre-ft) $=$	0.135	0.417	0.364	0.450	0.491	0.641	0.768	0.954	1.125

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.24
	0:15:00	0.00	0.00	0.66	1.08	1.34	0.90	1.12	1.10	1.55
	0:20:00	0.00	0.00	2.29	2.99	3.69	2.21	2.58	2.76	3.72
	0:25:00	0.00	0.00	5.25	7.86	10.25	5.16	6.14	6.79	10.27
	0:30:00	0.00	0.00	6.66	9.76	11.95	14.01	16.83	18.97	25.29
	0:35:00	0.00	0.00	6.09	8.72	10.62	15.64	18.54	22.08	28.92
	0:40:00	0.00	0.00	5.30	7.42	9.07	14.86	17.52	20.71	27.03
	0:45:00	0.00	0.00	4.33	6.18	7.70	12.90	15.22	18.61	24.26
	0:50:00	0.00	0.00	3.56	5.17	6.33	11.37	13.40	16.27	21.18
	0:55:00	0.00	0.00	3.00	4.33	5.39	9.24	10.91	13.68	17.88
	1:00:00	0.00	0.00	2.63	3.76	4.77	7.76	9.21	11.94	15.65
	1:05:00	0.00	0.00	2.32	3.29	4.23	6.71	7.99	10.71	14.07
	1:10:00	0.00	0.00	1.90	2.84	3.72	5.49	6.56	8.51	11.25
	1:15:00	0.00	0.00	1.52	2.33	3.25	4.44	5.31	6.64	8.87
	1:20:00	0.00	0.00	1.22	1.86	2.66	3.38	4.03	4.82	6.43
	1:25:00	0.00	0.00	1.05	1.60	2.19	2.55	3.05	3.40	4.58
	1:30:00	0.00	0.00	0.98	1.47	1.90	1.99	2.37	2.55	3.46
	1:35:00	0.00	0.00	0.93	1.39	1.70	1.65	1.95	2.04	2.77
	1:40:00	0.00	0.00	0.91	1.23	1.56	1.42	1.67	1.70	2.30
	1:45:00	0.00	0.00	0.89	1.11	1.47	1.27	1.49	1.46	1.99
	1:50:00	0.00	0.00	0.88	1.02	1.40	1.18	1.36	1.30	1.76
	1:55:00	0.00	0.00	0.76	0.96	1.30	1.11	1.28	1.19	1.61
	2:00:00	0.00	0.00	0.67	0.88	1.16	1.07	1.22	1.13	1.53
	2:05:00	0.00	0.00	0.49	0.64	0.84	0.78	0.89	0.82	1.11
	2:10:00	0.00	0.00	0.36	0.46	0.60	0.56	0.64	0.59	0.80
	2:15:00	0.00	0.00	0.26	0.33	0.43	0.40	0.45	0.43	0.57
	2:20:00	0.00	0.00	0.18	0.23	0.30	0.28	0.32	0.30	0.40
	2:25:00	0.00	0.00	0.12	0.15	0.21	0.19	0.22	0.21	0.28
	2:30:00	0.00	0.00	0.08	0.10	0.14	0.13	0.15	0.14	0.19
	2:35:00	0.00	0.00	0.05	0.07	0.09	0.09	0.10	0.09	0.13
	2:40:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.05	0.07
	2:45:00	0.00	0.00	0.01	0.02	0.02	0.03	0.03	0.03	0.03
	2:50:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN
MHFD-Detention, Version 4.03 (May 2020)
Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points

Detention Pond A North Forebay Calalations

100 YR Discharge	11.3	CFS
WQCV Storage	0.135	AC-FT
Forebay Volume (2\% pf WQCV)	0.0027	AC-FT
Forebay Release Volume (2\% of 100 YR)	0.226	CFS

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Pond A North Forebay Calculations

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	$=0.42$
Bottom Length (ft)	$=0.25$	Q (cfs)	$=0.230$
Total Depth (ft)	$=1.25$	Area (sqft)	$=0.11$
		Velocity (ft/s)	$=2.17$
Calculations		Top Width (ft)	$=0.25$
Weir Coeff. Cw	$=3.33$		
Compute by:	Known Q		
Known Q (cfs)	$=0.23$		

Detention Pond A South Forebay Calalations

100 YR Discharge	19.4	CFS
WQCV Storage	0.135	AC-FT
Forebay Volume (2\% pf WQCV)	0.0027	AC-FT
Forebay Release Volume (2\% of 100 YR)	0.388	CFS

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Pond A South Forebay Calculations

Rectangular Weir	
Crest	$=$ Sharp
Bottom Length (ft)	$=0.25$
Total Depth (ft)	$=1.25$
Calculations	$=3.33$
Weir Coeff. Cw	$=0.39$
Compute by:	Known Q
Known Q (cfs)	$=0$

Highlighted	
Depth (ft)	$=0.60$
Q (cfs)	$=0.388$
Area (sqft)	$=0.15$
Velocity (ft/s)	$=2.58$
Top Width (ft)	$=0.25$

Pond A Trickel Channel

Rectangular	
Bottom Width (ft)	$=2.00$
Total Depth (ft)	$=0.50$
	$=1.00$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.013$
N-Value	
Calculations	Known Q
Compute by:	$=0.61$

Highlighted
Depth (ft)
$=0.12$
Q (cfs)
$=0.610$
Area (sqft)
Velocity (ft/s)
$=0.24$
Wetted Perim (ft)
$=2.54$
Crit Depth, Yc (ft)
Top Width (ft)
$=2.24$
$=0.15$
EGL (ft)

$$
=2.00
$$

$=0.22$

Elev (ft)
Section
Depth (ft)

Weir Report

Pond A Spillway

Trapezoidal Weir	
Crest	$=$ Sharp
Bottom Length (ft)	$=40.00$
Total Depth (ft)	$=1.44$
Side Slope $(\mathrm{z}: 1)$	$=4.00$
Calculations	$=3.10$
Weir Coeff. Cw	Known Q
Compute by:	$=30.80$

Depth (ft)
Pond A Spillway
Depth (ft)

Project: Solace Apartments

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underdr	
Underdrain Orifice Invert Depth = Underdrain Orifice Diameter =	N/A	ft (distance below the filtration media surface) inches	Underdrain Orifice Area = Underdrain Orifice Centroid =	N/A	$\begin{aligned} & \mathrm{ft}^{2} \\ & \text { feet } \end{aligned}$
	N/A			N/A	
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)				Calculated Parameters for Plate	
Invert of Lowest Orifice $=$	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	WQ Orifice Area per Row =	N/A	ft^{2}
Depth at top of Zone using Orifice Plate $=$	2.60	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Elliptical Half-Width $=$	N/A	feet
Orifice Plate: Orifice Vertical Spacing $=$	6.00	inches	Elliptical Slot Centroid $=$	N/A	feet
Orifice Plate: Orifice Area per Row $=$	N/A	inches	Elliptical Slot Area $=$	N/A	ft^{2}

Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	0.00	0.50	1.00	1.50	2.00			
	0.55	0.55	0.55	0.55	0.55			
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

Overflow Weir Front Edge Height, $\mathrm{Ho}=$ Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area \% = Debris Clogging \% =	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) feet	Zone 3 Weir	Not Selected
	3.63	N/A		3.63	N/A
	4.00	N/A	feet Overflow Weir Slope Length =	3.00	N/A
	0.00	N/A	$\mathrm{H}: \mathrm{V}$, Grate Open Area / 100-yr Orifice Area $=$	28.73	N/A
	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	8.40	N/A
	70\%	N/A	\%, grate open area/total area Overflow Grate Open Area w/ Debris =	4.20	N/A
	50\%	N/A	\%		

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Spillway Invert Stage=	6.10	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Spillway Crest Length =	50.00	feet
Spillway End Slopes =	10.00	$\mathrm{H}: \mathrm{V}$
Freeboard above Max Water Surface $=$	1.00	feet

Calculated Parameters for Spillway		
Spillway Design Flow Depth=	0.34	feet
Stage at Top of Freeboard =	7.44	feet
Basin Area at Top of Freeboard =	0.87	acres
Basin Volume at Top of Freeboard =	2.66	acre-ft

Routed Hydrograph Results	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.26	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.264	0.746	0.729	1.088	1.408	1.872	2.246	2.702	3.634
Inflow Hydrograph Volume (acre-ft) $=$	N/A	N/A	0.729	1.088	1.408	1.872	2.246	2.702	3.634
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	1.4	4.0	6.1	11.3	14.3	18.2	25.4
OPTIONAL Override Predevelopment Peak Q (cfs) $=$	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.08	0.23	0.35	0.64	0.82	1.04	1.45
Peak Inflow Q (cfs) =	N/A	N/A	8.4	12.8	16.1	23.1	27.6	32.7	43.5
Peak Outflow Q (cfs) =	0.1	0.2	0.2	2.7	2.8	3.0	3.2	3.3	15.8
Ratio Peak Outflow to Predevelopment $\mathrm{Q}=$	N/A	N/A	N/A	0.7	0.5	0.3	0.2	0.2	0.6
Structure Controlling Flow $=$	Vertical Orifice 1	Overflow Weir 1	Vertical Orifice 1	Outlet Plate 1	Spillway				
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.3	0.3	0.3	0.3	0.4	0.4
Max Velocity through Grate 2 (fps) =	N/A								
Time to Drain 97\% of Inflow Volume (hours) =	39	70	69	72	71	70	69	68	65
Time to Drain 99\% of Inflow Volume (hours) =	41	74	74	77	77	78	78	79	77
Maximum Ponding Depth (ft) $=$	2.60	3.63	3.52	3.85	4.19	4.79	5.25	5.83	6.29
Area at Maximum Ponding Depth (acres) $=$	0.35	0.57	0.55	0.60	0.64	0.70	0.73	0.75	0.86
Maximum Volume Stored (acre-ft) $=$	0.266	0.750	0.689	0.873	1.091	1.494	1.824	2.253	2.616

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.07	0.01	0.22
	0:15:00	0.00	0.00	0.60	0.98	1.22	0.82	1.04	1.00	1.47
	0:20:00	0.00	0.00	2.20	2.93	3.70	2.19	2.59	2.74	3.81
	0:25:00	0.00	0.00	5.52	8.65	11.64	5.47	6.59	7.37	11.75
	0:30:00	0.00	0.00	8.06	12.47	15.81	16.67	20.33	23.06	31.64
	0:35:00	0.00	0.00	8.44	12.83	16.12	21.61	26.01	30.90	41.39
	0:40:00	0.00	0.00	8.09	12.06	15.12	23.06	27.59	32.73	43.47
	0:45:00	0.00	0.00	7.34	11.00	14.00	21.99	26.27	31.95	42.38
	0:50:00	0.00	0.00	6.67	10.11	12.76	20.97	25.04	30.40	40.28
	0:55:00	0.00	0.00	6.11	9.24	11.75	19.06	22.79	28.22	37.47
	1:00:00	0.00	0.00	5.66	8.51	10.92	17.44	20.92	26.44	35.17
	1:05:00	0.00	0.00	5.24	7.83	10.14	16.03	19.28	24.94	33.21
	1:10:00	0.00	0.00	4.70	7.16	9.37	14.37	17.31	22.17	29.63
	1:15:00	0.00	0.00	4.19	6.44	8.65	12.75	15.38	19.40	26.05
	1:20:00	0.00	0.00	3.77	5.78	7.87	11.09	13.38	16.57	22.30
	1:25:00	0.00	0.00	3.46	5.31	7.15	9.78	11.80	14.33	19.34
	1:30:00	0.00	0.00	3.24	4.94	6.52	8.69	10.47	12.60	17.01
	1:35:00	0.00	0.00	3.03	4.60	5.96	7.78	9.36	11.17	15.07
	1:40:00	0.00	0.00	2.84	4.18	5.45	6.97	8.36	9.89	13.34
	1:45:00	0.00	0.00	2.65	3.78	4.96	6.23	7.45	8.73	11.76
	1:50:00	0.00	0.00	2.47	3.38	4.49	5.54	6.60	7.64	10.28
	1:55:00	0.00	0.00	2.18	3.00	3.99	4.87	5.78	6.61	8.88
	2:00:00	0.00	0.00	1.89	2.61	3.44	4.22	4.99	5.64	7.57
	2:05:00	0.00	0.00	1.52	2.09	2.75	3.37	3.97	4.47	5.98
	2:10:00	0.00	0.00	1.19	1.61	2.13	2.56	3.01	3.36	4.49
	2:15:00	0.00	0.00	0.94	1.27	1.71	1.89	2.22	2.45	3.32
	2:20:00	0.00	0.00	0.76	1.04	1.40	1.45	1.70	1.84	2.52
	2:25:00	0.00	0.00	0.63	0.85	1.15	1.13	1.33	1.40	1.93
	2:30:00	0.00	0.00	0.52	0.70	0.94	0.89	1.04	1.07	1.48
	2:35:00	0.00	0.00	0.42	0.57	0.77	0.70	0.82	0.81	1.12
	2:40:00	0.00	0.00	0.35	0.46	0.61	0.55	0.64	0.60	0.84
	2:45:00	0.00	0.00	0.28	0.37	0.48	0.43	0.50	0.45	0.62
	2:50:00	0.00	0.00	0.23	0.29	0.38	0.33	0.38	0.34	0.47
	2:55:00	0.00	0.00	0.18	0.23	0.30	0.26	0.30	0.27	0.37
	3:00:00	0.00	0.00	0.15	0.18	0.23	0.21	0.24	0.22	0.30
	3:05:00	0.00	0.00	0.12	0.14	0.18	0.16	0.19	0.17	0.24
	3:10:00	0.00	0.00	0.09	0.11	0.14	0.13	0.14	0.13	0.18
	3:15:00	0.00	0.00	0.06	0.08	0.10	0.09	0.11	0.10	0.13
	3:20:00	0.00	0.00	0.04	0.05	0.07	0.07	0.07	0.07	0.09
	3:25:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.04	0.06
	3:30:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.03
	3:35:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary Stage-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Detention Pond B South Forebay Calalations

100 YR Discharge	6.7	CFS
WQCV Storage	0.264	AC-FT
Forebay Volume (2\% pf WQCV)	0.00528	AC-FT
Forebay Release Volume (2\% of 100 YR)	0.134	CFS

Weir Report

Pond B South Forebay Calculations

Rectangular Weir		Highlighted	
Crest	Sharp	Depth (ft)	$=0.30$
Bottom Length (ft)	$=0.25$	Q (cfs)	$=0.134$
Total Depth (ft)	$=1.25$	Area (sqft)	$=0.07$
Calculations		Velocity $(\mathrm{ft} / \mathrm{s})$	$=1.81$
Weir Coeff. Cw	$=3.33$	Top Width (ft)	$=0.25$
Compute by:	Known Q		
Known Q (cfs)	$=0.13$		

Depth (ft) Pond B South Forebay Calculations

Detention Pond B North Forebay Caldalations

100 YR Discharge	46.7	CFS
WQCV Storage	0.264	AC-FT
Forebay Volume (2\% pf WQCV)	0.00528	AC-FT
Forebay Release Volume (2\% of 100 YR)	0.934	CFS

Weir Report

Pond B North Forebay Calculations

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	$=1.08$
Bottom Length (ft)	$=0.25$	Q (cfs)	$=0.930$
Total Depth (ft)	$=1.25$	Area (sqft)	$=0.27$
		Velocity (ft/s)	$=3.46$
Calculations		Top Width (ft)	$=0.25$
Weir Coeff. Cw	$=3.33$		
Compute by:	Known Q		
Known Q (cfs)	$=0.93$		

Depth (ft) Pond B North Forebay Calculations

Pond B Trickel Channel

Rectangular	
Bottom Width (ft)	$=2.00$
Total Depth (ft)	$=0.50$
	$=1.00$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=0.013$
N-Value	
Calculations	Known Q
Compute by:	$=1.06$

Highlighted
Depth (ft)
$=0.17$
Q (cfs)
$=1.060$
Area (sqft)
Velocity (ft/s)
$=0.34$
Wetted Perim (ft)
$=3.12$
Crit Depth, Yc (ft)
Top Width (ft)
$=2.34$
$=0.21$
EGL (ft)

$$
=2.00
$$

$$
=0.32
$$

Elev (ft)
2.00 Section

Weir Report

Pond B Spillway

Trapezoidal Weir	
Crest	$=$ Sharp
Bottom Length (ft)	$=50.00$
Total Depth (ft)	$=1.50$
Side Slope $(\mathrm{z}: 1)$	$=4.00$
Calculations	$=3.10$
Weir Coeff. Cw	Known Q
Compute by:	$=51.30$

Highlighted
Depth (ft)
$=0.47$
Q (cfs)
$=51.30$
Area (sqft)
$=24.38$
Velocity (ft/s)
$=2.10$
Top Width (ft)
$=3.10$
Known Q
$=51.30$

Depth (ft)
Pond B Spillway
Depth (ft)

Final Drainage Report
Solace at Cimaron Hills

APPENDIX D

REFERENCE MATERIALS

CERTIFIED MAIL
RETURN RECEIPT REQUESTED
The Honorable Sallie Clark
Chair, El Paso County
Board of Commissioners
27 East Vermijo Avenue
Colorado Springs, CO 80903
Dear Ms. Clark:

IN REPLY REFER TO:
Case No.: $\quad 05-08-0368 \mathrm{P}$
Community Name: El Paso County, CO
Community No.: 080059
Effective Date of MAY 232007 This Revision:

The Flood Insurance Study report and Flood Insurance Rate Map for your community have been revised by this Letter of Map Revision (LOMR). Please use the enclosed annotated map panel(s) revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals issued in your community.

Additional documents are enclosed which provide information regarding this LOMR. Please see the List of Enclosures below to determine which documents are included. Other attachments specific to this request may be included as referenced in the Determination Document. If you have any questions regarding floodplain management regulations for your community or the National Flood Insurance Program (NFIP) in general, please contact the Consultation Coordination Officer for your community. If you have any technical questions regarding this LOMR, please contact the Director, Federal Insurance and Mitigation Division of the Department of Homeland Security's Federal Emergency Management Agency (FEMA) in Denver, Colorado, at (303) 235-4830, or the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP). Additional information about the NFIP is available on our website at http://www.fema.gov/nfip.
Sincerely,

Patrick, F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section Mitigation Division

For: William R. Blanton Jr., CFM, Chief Engineering Management Section Mitigation Division

List of Enclosures:
Letter of Map Revision Determination Document
Annotated Flood Insurance Rate Map
Annotated Flood Insurance Study Report
cc: The Honorable Lionel Rivera
Mayor, City of Colorado Springs

Regional Floodplain Administrator
Pikes Peak Regional Building Department
J. F. Sato and Associates, Inc.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer
Engineering Management Section
Mitigation Division

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

OTHER COMMUNITIES AFFECTED BY THIS REVISION
CID Number: 080060 Name: City of Colorado Springs, Colorado

	AFFECTED MAP PANELS	AFFECTED PORTIONS OF THE FLOOD INSURANCE STUDY REPORT
TYPE: FIRM	NO.: 08041 C 0753 F	DATE: March 17, 1997
TYPE: FIRM	NO.: 08041 C 0754 F	DATE: March 17, 1997

Patrick F. Sacbibit, P.E., CFM, Project Engineer

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

NFIP regulations Subparagraph $603(\mathrm{~b})(7)$ requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section
Mitigation Division

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Jeanine D. Petterson
Director, Federal Insurance and Mitigation Division
Federal Emergency Management Agency, Region VIII
Denver Federal Center, Building 710
P.O. Box 25267

Denver, CO 80225-0267
(303) 235-4830

STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panel(s) and FIS report warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

Patrick F. Sacbibit, P.E., CFM, Project Engineer

LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

PUBLIC NOTIFICATION OF REVISION				
PUBLIC NOTIFICATION				
FLOODING SOURCE	LOCATION OF REFERENCED ELEVATION	BFE (FEET NGVD 29)		MAP PANEL NUMBER(S)
		EFFECTIVE	REVISED	
Sand Creek Center Tributary	Approximately 1,350 feet upstream of East Frontage Road	6,170	6,165	08041C0753 F
	Just downstream of Terminal Avenue	6,216	6,213	08041C0754 F

Within 90 days of the second publication in the local newspaper, a citizen may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90 -day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised BFEs presented in this LOMR may be changed.

A notice of changes will be published in the Federal Register. This information also will be published in your local newspaper on or about the dates listed below.

LOCAL NEWSPAPER Name: El Paso County News
Dates: 02/14/2007
02/21/2007

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.govinfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section

CHANGES ARE MADE IN DETERMINATIONS OF BASE FLOOD ELEVATIONS FOR THE CITY OF COLORADO SPRINGS AND THE UNINCORPORATED AREAS OF EL PASO COUNTY, COLORADO, UNDER THE NATIONAL FLOOD INSURANCE PROGRAM

On March 17, 1997, the Department of Homeland Security's Federal Emergency Management Agency identified Special Flood Hazard Areas (SFHAs) in the City of Colorado Springs and in the unincorporated areas of El Paso County, Colorado, through issuance of a Flood Insurance Rate Map (FIRM). The Mitigation Division has determined that modification of the elevations of the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood) for certain locations in these communities is appropriate. The modified Base Flood Elevations (BFEs) revise the FIRM for the communities.

The changes are being made pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (Public Law 93-234) and are in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, Public Law 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65.

A hydraulic analysis was performed to incorporate new topographic data for Sand Creek Center Tributary from just upstream of Airport Road to just upstream of Galley Road and for Sand Creek East Fork from approximately 970 feet downstream of Powers Boulevard to just downstream of Stewart Avenue. This has resulted in a revised delineation of the regulatory floodway, increases and decreases in SFHA width, and increased and decreased BFEs for both aforementioned flooding sources. The table below indicates existing and modified BFEs for selected locations along the affected lengths of the flooding source(s) cited above.

Location	Existing BFE (feet)*	Modified BFE (feet)*
Sand Creek Center Tributary:		\cdot
${ }^{1}$ Approximately 150 feet upstream of Airport Road	6,109	6,108
${ }^{1}$ Approximately 1,250 feet upstream of East Frontage Road	6,168	6,164
${ }^{2}$ Approximately 1,350 feet upstream of East Frontage Road	6,170	6,165
${ }^{2}$ Just downstream of Terminal Avenue	6,216	6,213
Sand Creek East Fork:		
${ }^{1}$ Approximately 810 feet downstream of Powers Boulevard	6,099	6,096
${ }^{1}$ Approximately 140 feet downstream of Stewart Avenue	6,206	6,205
${ }^{\text {* National Geodetic Vertical Datum, rounded to nearest whole foot }}$		
${ }^{1}$ City of Colorado Springs		
${ }^{2}$ Unincorporated areas of El Paso County		

Under the above-mentioned Acts of 1968 and 1973, the Mitigation Division must develop criteria for floodplain management. To participate in the National Flood Insurance Program (NFIP), the community must use the modified BFEs to administer the floodplain management measures of the NFIP. These modified BFEs will also be used to calculate the appropriate flood insurance premium rates for new buildings and their contents and for the second layer of insurance on existing buildings and contents.

Upon the second publication of notice of these changes in this newspaper, any person has 90 days in which he or she can request, through the Chief Executive Officer of the community, that the Mitigation Division reconsider the determination. Any request for reconsideration must be based on knowledge of
changed conditions or new scientific or technical data. All interested parties are on notice that until the 90 -day period elapses, the Mitigation Division's determination to modify the BFEs may itself be changed.

Any person having knowledge or wishing to comment on these changes should immediately notify:

The Honorable Sallie Clark
Chair, El Paso County
Board of Commissioners
27 East Vermijo Avenue
Colorado Springs, CO 80903

OR

The Honorable Lionel Rivera
Mayor, City of Colorado Springs
P.O. Box 1575

Colorado Springs, CO 80901

FLOODING SOURCE		FLOODWAY			BASE FLOODWATER SURFACE ELEVATION			
cross section	distance ${ }^{1}$	WIDTH (FEET)	SECTION AREA (SQUARE FEET)	mean velocity (FEET PER SECOND)	regulatory	WITHOOT FLOODWAY	fh FLODDWAY	InCREASE
Sand Creek Center Tributary								0.0
A	940	40	92	8.6	6,106.5	6,106.5	6,106.5	0.0
B	990	40	118	6.7	$6,107.2$	$\begin{aligned} & 6,107.2 \\ & 6.120 .2 \end{aligned}$	$\begin{aligned} & 6,107.2 \\ & 6,120.2 \end{aligned}$	$\begin{aligned} & 0.0 \\ & 0.0 \end{aligned}$
C	2,238	91	120	6.6	$6,120.2$	$6.120 .2$		
D	3,948	46	95	- 8.0	6,138.3	6,138.3	6,138.3	0.0
E	4,547	170	159	1 4.8	6,147.4	6,147.4	6,147.4	0.0
F	5,539	52	97	7.8	6,156.8	6,156.8	6,156.8	0.0
G	7,191	63	104	7.3	6,176.2	6,176.2	6,176.2	0.0
H	7,940	52	\%o		6,189.6	6,189.6	6,189.6	0.0
I	8,527	40			6,197.6	6,197.6	6,197.6	0.0
J	9,366	17	42	9.0	6,213.4	6,213.4	6,213.4	0.0
K	10,055	232	278	4.0	6,221.9	6,221.9	6,221.9	0.0
L	10,627	539	469	2.4	6,230.6	6,230.6	6,230.6	0.0
M	11,321	31	79	9.1	6,241.1	6,241.1	6,241.1	0.0
N	11,648	60	99	7.3	6,244.6	6,244.6	6,245.4	0.8
0	12,840	29	85	9.6	6,253.8	6,253.8	6,253.8	0.0
P	13,730	27	83	9.9	6,273.6	6,273.6	6,273.6	0.0
Q	14,592	26	68	9.3	6,299.7	6,299.7	6,299.7	0.0
R	14,670	40	61	6.9	6,304.2	6,304.2	6,305.2	1.0
S	15,050	20	63	ヘ 10.1	6,307.6	6,307.6	6,308.1	0.5
T	15,460	25	68	9.5	6,310.8	6,310.8	6,311.4	0.6
U	15,750	20	41	7.8	6,319.6	6,319.6	6,319.6	0.0
V	16,670	20	39	8.1	6,346.0	6,346.0	6,346.0	0.0
			Flow rat	$\mathrm{e}=822 \mathrm{cfs}$				

SAND CREEK DRAINAGE BASIN PLANNING STUDY
PRELIMINARY DESIGN REPORT
CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO

解：$: \geq \geq$
－anarm
み子寸スの
$\infty \infty \infty \infty \infty$ ののの
․ํํํํ

table of Contents

II．Study area description
IV．HYDRAULIC ANALYSIS AND FLOOD PLAIN DESCRIPTION
$\frac{\text { Reach Delineation }}{\text { Elood History }}$
Hydraulic Structure Inventory
Elood Plains
V．EVALUATION OF CONCEPTUAL ALTERNATIVES
Su
Preliminary Marrix of Conce，
Drainageway System Alternatives
Table VIII-5 Detention Basin Cost Estimate
Table VIII-6 Miscellaneous Drainageway Cost Estimate
Table VIII-7 Bridge Crossing Cost Estimate
Table VIII-8 Drainage Basin Fee Estimation
Table VIII-9 City Bridge Fee Calculation
Table VIII-10 County Bridge Fee Calculation
Table VIII-11 Regional Detention Basin Land Fee Calculation
Table VIII-12 Regional Detention Basin Capital Cost Fee Calculation
LIST OF TABLES
Table III-1 Percent Impervious Values
$\begin{array}{ll}\text { Table III-2 } & \begin{array}{l}\text { Summary of Peak Discharges - 24-Hour Duration } \\ \text { Storm, Baseline Conditions }\end{array} \\ \text { Table IV-1 } & \text { Summary of Hydraulic Structures - Crossings } \\ \text { Table IV-2 } & \text { Summary of Hydraulic Structures - Channels } \\ \text { Table V-1 } & \text { Summary of Wildlife Habitat Acreages } \\ \text { Table VI-1 } & \text { Matrix of Channel Alternatives } \\ \text { Table VI-2 } & \begin{array}{l}\text { Evaluation of Conceptual Channel Alternatives } \\ \text { Floodplain Preservation }\end{array} \\ \text { Table VI-3 } & \begin{array}{l}\text { Evaluation of Conceptual Channel Alternatives } \\ \text { Channelization }\end{array} \\ \text { Table VI-4 } & \begin{array}{l}\text { Evaluation of Conceptual Channel Alternatives } \\ \text { Selective Drainageway Improvements }\end{array} \\ \text { Table VI-5 } & \begin{array}{l}\text { Evaluation of Conceptual Channel Alternatives } \\ \text { West Fork Sand Creek }\end{array}\end{array}$
Table VI-6 Evaluation of Conceptual Channel Alternatives
Center Tributary Sand Creek
Table VI-7 Matrix of Recommended Channel Alternatives
Table VII-1 Summary of Peak Discharges Selected Detention
Alternative
Table VII-2 $\begin{aligned} & \text { Regional Detention Basin Water Quality Storage } \\ & \text { Requirements }\end{aligned}$
Table VIII-1 Unit Construction Costs
Table VIII-2 Drainageway Conveyance Cost Estimate
Table VIII-3 Tributary Drainageway Conveyance Cost Estimate
Table VIII-4 Roadway Culvert Crossing Cost Estimate

S6-68I ON LO!ntosay
Resolution No. 189-95
A RESOLUTION ADOPTING THE SAND CREEK
DRAINAGE BASIN PLANNING STUDY AND
ESTABLISHING A DRAINAGE FEE, A DETENTION POND
CAPITAL FEE, A DETENTION POND LAND FEE, AND AN
ARTERIAL BRIDGE FEE FOR THE BASIN.
WHEREAS, the City Engineering Division of the City of Colorado Springs
Department of Planning and Development has reviewed the Sand Creek Drainage
Basin Planning Study as prepared by Kiowa Engineering Corporation, Colorado
Springs, Colorado dated November 2, 1995, and
WHEREAS, the City/County Drainage Board has recommended approval of the
above study at their November 2, 1995, meeting;
WHEREAS, the Sand Creek Drainage Basin includes unplatted land within the
City limits;
NOW THEREFORE, BE IT RESOLVED by the City Council of the City of
Colorado Springs:
Section 1. That the Sand Creek Drainage Basin Planning Study, dated November
1995, by Kiowa Engineering Corporation is adopted for use. City Engineering will
utilize that study to assist in evaluating subdivision drainage reports.
Section 2. That a Sand Creek Drainage Basin Fee be established as $\$ 4,895 / a c r e, ~$
that a Sand Creek Detention Pond Capital Fee be established as $\$ 1,213 /$ acre, that a
Sand Creek Detention Pond Land Fee be established as $\$ 167 / a c r e, ~ a n d ~ t h a t ~ a ~ S a n d ~$
Creek Arterial Eridge Fee be established as $\$ 323 / a c r e, ~ a s ~ p a r t ~ o f . ~$

9.	Cond
10.	Recommend and prepare a preliminary design for a selected alternative plan.
11.	Develop drainage and bridge fees for the basin.
12.	Prepare a written report discussing all items examined in the study.
13.	Conduct presentations to public and private entities in order to define project goals, and to involve agencies with specific interest to help define feasible alternatives.
	Summary of Data Obrained
study:	Listed below are the technical reports collected for the review as part of preparing this
1.	Soil Survey for El Paso County, Colorado, dated June 1981.
2.	"City of Colorado Springs/El Paso County Drainage Criteria Manual", prepared by City of Colorado Springs, El Paso County, and HDR Infrastructure, Inc., dated May 1987.
3.	"Flood Insurance Studies for Colorado Springs, and El Paso County, Colorado", prepared by the Federal Emergency Management Agency (FEMA), revised 1989.
4.	Flood Insurance Restudy, Hydrology Report and Hydrologic Analyses, prepared by RCI, Inc., 1989.
5.	Sand Creek Drainage Basin Planning Study prepared by Simons, Li \& Associates, Inc., dated July, 1985.
6.	Flood Hazard Analysis, Sand Creek, City of Colorado Springs and El Paso County, Colorado, prepared by the Soil Conservation Service, dated December, 1973.
7.	Banning-Lewis Ranch Master Drainage Plan, prepared by MSM Consultants, Inc., dated June 1981.
8.	Sand Creek Drainage Basin Study, prepared by United Planning and Engineering Company, October, 1977.
9.	Draft East Fork Sand Creek Drainage Basin Planning Study, prepared by Kiowa Engineering Corporation, January, 1989.
10.	Drainage Basin Inventory, Sand Creek Drainage Basin, prepared by Oliver E. Watts, P.E., June 1990.
	In addition to the above listed reports there were a number of drainage study reports, plans, preliminary and final design drawings, land use and zoning maps, development

INTRODUCTION
 the existing and future needs within the Sand Creek Drainage Basin. The Sand Creek basin is to be referred to throughout this study and is inclusive of the Sand Creek mainstem and East Fork Sand Creek watersheds. The specific scope of work for this study included the following tasks: 1. Meet with the City to: insure compliance with the services required by this agreement,
 plans, procure cative to right-of-way limitations, proposed stormwater projects, potential

 interest in the study area.
3. Utilize City policies and criteria and applicable information wherever possible. Perform hydraulic and hydrologic analyses within the study area. Identify environmental setting of basin.
Identify existing and potential drainage and/or flooding problems.
Develop improvement alternatives to reduce existing and potential flooding problems, along the drainageway(s).
8. Examine the operation and maintenance aspects of feasible alternatives.
plans, and existing drainage facility maps that were collected from the City, County, and other local agencies.

Reports which were prepared previous to the preliminary design report include the "Sand Creek Drainage Basin Planning Study Hydrology Report," and the "Sand Creek Drainage Basin Planning Study Development of Alternatives Report." These reports were prepared as part of the overall planning effort and have been referred to throughout this report. The Hydrology Report summarized peak flow data for existing and future basin development conditions without improvements in the basin, and established the base line hydrologic conditions from which the alrernative planning then proceeded. The Development of Alternatives report evaluated the various combinations of drainageway improvements for the basin, taking into account envirommental, cost, construction, right-of-way, maintenance and implementation factors for each feasible alternate plan. These reports are on file with the City Engineering Division, as well as technical addenda for each report. Both of these reports covered only the mainstem of the Sand Creek Basin. The similar information prepared for the draft East Fork Sand Creek Drainage Basin Planning Study has been summarized in this preliminary design report.

Mapping and Surveying

Mapping used in the planning effort for the mainstem of Sand Creek consisted of USGS $7-1 / 2$ minute quadrangles, and 2 -foot contour interval, 1 -inch to 200 -foot scale planimetric topographic maps. For the area of the basin north of Woodmen Road, aerial topographic mapping was compiled in May 1990. For the balance of the basin, the City of Colorado Springs Department of Public Utilities provided topographic mapping compiled from aerial photographs dited 1989. This mapping has been prepared as part of the Facility Inventory Management System (FIMS). The aerial topographic mapping was used in the drainage inventory, hydrologic/hydraulic analyses, and in the alternative planning phases of this project. All topographic mapping was based upon USGS vertical datum.

For the East Fork Sand Creek basin, mapping from the FIMS office and two-foot contour interval topography prepared in 1987 for the Banning-Lewis Ranch property were used in the preparation of the preliminary design. Where topographic mapping was not available, USGS quadrangle maps were used.
sections were verified against the cross-sections compiled in the 1986 City of Colorado Springs Flood Insurance Study (FIS), wherever possible.

Drainageway site inspections were conducted throughout the study area, and photographs were taken documenting the key drainage features.

The following general conditions have been placed upon the use of the FIMS topographic mapping:

Use of these products is restricted to the project for which the FIMS products are provided.

Only the body content found within the neatine of the borrowed maps may appear in any reportpublication developed for your study. Also, the labeling that appears on any

 destroyed.

The report(s) developed in which the FIMS' products are used shall include the following
"The maps and photographs included in this report were developed for purposes of the Colorado Springs Department of Utilities and are for internal use only. The Colorado
Springs Department of Utilities makes no warranty, expressed or implied, as to the completeness, accuracy, or content of such products or any reproductions thereof. Any

Original maps and photographs are the property of the Colorado Springs Department of

Regardless of the existence of purported copies of these official maps and photographs

 primary reason for the coordination effort was to obtain technical information and to identify concerns with regard to the development of drainageway facilities within the basin. During the course of preparing the Development of Alternatives report, the planning constraints and oncepts were discussed with the agencies and interested individuals and their input used to refine the feasible alternatives and to eventually identify a recommended drainageway plan for further design evaluation. The complete mailing list and project correspondence is contained in Appendix A of this report.
Coordination with a similar list of agencies and individuals was conducted during the preparation of the draft East Fork Sand Creek Drainage Basin Planning study. This study was
authorized and conducted for Aries Properties, Inc. Meetings with state and federal agencies, the
City and the County were involved in a series of meetings during the development of the
alternative planning concepts and the preliminary design for the East Fork Sand Creek basin. During the preparation of the study, several government agencies and interested individnals were routinely involved in the coordination activities. Representatives from the Colorado Division of Wildife, U.S. Army Corps of Engineers (COE), and various City listing of the individuals and agencies routinely coordinelopment of the alternative plans. A listing of the individuals and agencies routinely coordinated with during the study has been presented below:

気
Alan Morrice
John Fisher
Sue Johnson
Rick O'Connor
Hugh King
Gary Haynes
Bryce Thorson
Ken Sampley
Seve Jacobsen
Christine Lytte
Bruce Goforth
Dan Bunting
Sarah Fowler
John Lioul
Dave Frick
Bill Noonan
Anita Culp
John Maynard
John Covert
Peter Kerrkamp
Jim Rees
Fred Mais
Diana Medina
Dan Tippie Russ Nicklin
Wes Tyson
II. STUDY AREA DESCRIPTION

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the
west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subtributary. Figure II-1 shows the location of the Sand Creek basin.

Basin Description

The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin only.
 falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

Climate

This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about $30^{\circ} \mathrm{F}$ in the winter

the Banning Lewis property were obtained from the Banning-Lewis Ranch master plan. The location of roadways offsite from the Banning Lewis-Ranch were obtained from the El Paso County Major Transportation Plan dated 1988.
Park Land and Open Space
An inventory of park land and public open space was prepared. Many times, the combination of the drainageway and adjacent park lands can be used to visually extend the limits of a park or open space. The drainageway can also act to link parks and other land uses within the basin if multiple use trails are incorporated into the channel section(s). The Sand Creek drainageway has been identified as a major trail corridor within the City of Colorado Springs Trails Plan. Park land designated within the Banning-Lewis Ranch master plan were taken into account during the siting of stormwater facilities within the Banning-Lewis property.

THIS DRAWING IS A MASTER PLANNING SHEET
REPRESENTING PRELIMINARY AND CONCEPTUAL.
ENGINEERING. IT SHOULD NOT BE USED FOR
CONSTRUCTION PURPOSES.

TABLE VH-4: SAND CREEK DRAINAGE BASIN PLANNING STUDY

$\frac{\text { TABLE VII-4: }}{}$	sand creek drainage basin planning study roadway cul vert crossing cost estimate SAND CREEK RASINS			length	UNTT	UNIT cost	TOTAL COST	$\begin{gathered} \text { TOTAL } \\ \text { REIMBURSABLE } \\ \text { COST } \\ \hline \end{gathered}$
	REACH NUMBER	DRAINAGEWAY SEOMENT	CROSSING TYPE					
BANNING-LEWIS PRKW ARROYO LANE volLmer road BURGESS ROAD	sc-8	186	$6^{\prime} \mathrm{Hx} \times 10^{\prime} \mathrm{W}$ cbs	120	LF	5390	S46.800	\$46,800
	sc-9	171	6 'Hx12. ${ }^{\text {che }}$	80	LF	\$510	\$40,800	so
	sc.8	169	60-NCH CMP	80	1.5	\$120	\$9,600	so
	sc-9	173	"	${ }_{80}$	$\mathrm{LF}^{\text {F }}$	\$120	99,600	so
	sc. 9	176	42.12CH CMP	80	LF	575	\$6,000	so
	sc.-9	178	2-42-1NCH CMP	${ }_{80}$	${ }_{\text {LF }}$	\$150	\$12.000	so
terminal a venue omaha boulevard	center tributary							
	cr.2	144	4.5 $5^{\text {H }}$ \% $8^{\circ} \mathrm{WCBC}$	60	LF	\$1.200	572.000	${ }^{50}$
	CT. 2	$146-2$	$3-44^{\prime \prime} \mathrm{Hz} 9^{\prime} \mathrm{w}$ cre	${ }_{80}$	LF	5900	572,000	so
wooten road edison avenue PALMER PARK BLVD. chicagorirr half moon drive	WEST Hokk sand creek							
	wF-1	153	$2.4{ }^{4} \mathrm{H} \times 6^{\circ} \mathrm{W}$ CBC	100	${ }^{L}$	${ }^{4480}$	548,000	30
	wF-1	153	${ }^{2.4}{ }^{4} \mathrm{Hx} 6^{\circ} \mathrm{W}$ CBC	60	LF	5240	\$14,400	\$0
	wF-1	154.2	$2.4{ }^{4} \mathrm{Hx} 10^{\circ} \mathrm{W}$ CBC	80	${ }^{\text {LF }}$	5540	\$43,200	\$0
	wF-1	165-1	$4^{4} \mathrm{Hx} 8^{\prime} \mathrm{W}$ CBC	${ }^{220}$	LF	\$270	\$59,400	\$0
	WF-1	165.2	$4^{4} \mathrm{Hz6} \mathbf{W}^{\text {W C CBC }}$	60	LF	\$240	\$14,400	s0
TOTAL CULVERT Construction costs sand creek							\$1,902.600	\$1,111,000

Tabie VIT-7:

EL PASO COUNTY, COLORADO, AND INCORPORATED AREAS

COMMUNITY
NAME
CALHAN, TOWN OF
COLORADO SPRINGS, CITY OF EL PASO COUNTY
(UNINCORPORATED AREAS)
FOUNTAIN, CITY OF
GREEN MOUNTAIN FALLS, TOWN OF
MANITOU SPRINGS, CITY OF
MONUMENT, TOWN OF
PALMER LAKE, TOWN OF
RAMAH, TOWN OF

COMMUNNITY
NUMBER
080192
080060

080059
080061
080062
080063
080064
080065
080066

Revised: December 7, 2018

Federal Emergency Management Agency

NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) report may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.

Part or all of this FIS report may be revised and republished at any time. In addition, part of this FIS report may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS report. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS report components.

This FIS report was revised on December 7, 2018. Users should refer to Section 10.0, Revisions Description, for further information. Section 10.0 is intended to present the most up-to-date information for specific portions of this FIS report. Therefore, users of this report should be aware that the information presented in Section 10.0 superseded information in Sections 1.0 through 9.0 of this FIS report.

Initial Countywide FIS Report Effective Date: March 17, 1997
First Revised Countywide FIS Report Effective Date: August 23, 1999 - to add base flood elevations, to add special flood hazard areas, and to change special flood hazard areas.

Second Revised Countywide FIS Report Effective Date: December 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.

SAND CREEK - CENTER TRIBUTARY
 CHANNEL ANALYSIS REPORT
 FOR
 SOLACE APARTMENTS

Prepared For:
Jackson Dearborn Partners 404 S. Wells Street, Suite 400

Chicago, IL 60607
(734) 216-2577

June 30, 2020
Project No. 25174.00

Prepared By:
JR Engineering, LLC
5475 Tech Center Drive
Colorado Springs, CO 80919
719-593-2593

PCD File NO. SP201

CONTENIS

OVERVIEW 3
GENERAL LOCATION AND DESCRIPTION 3
LOCATION. 3
DESCRIPTION OF PROPERTY 3
Floodplain Statement 3
PREVIOUS SAND CREEK STUDIES 3
DRAINAGE DESIGN CRITERIA 7
Development Criteria Reference 7
Hydrologic Criteria. 8
Hydraulic Criteria 8
SUMMARY 8
REFERENCES: 9

APPENDICES

A. Figures and Exhibits
B. Hydraulic Calculations
C. Reference Material

Overview

This report was prepared to provide design information for the existing Sand Creek -Center Tributary Drainageway as part of the Solace Apartment development. This document is the Channel Analysis report for the Solace Apartments. The Sand Creek-Center Tributary Drainageway has been studied as part of a Flood Insurance Study (FIS) for El Paso County Colorado, Volume 7 of 8, revised December 7, 2018 and Sand Creek Drainage Basin Planning Study, dated January 1993. Existing flow rates from the Sand Creek Planning Study were used as the basis for the design of the existing channel condition.

General Location and Description

Location

The proposed Solace Apartments, known as "Solace" from herein, is a parcel of land located in Section 7, Township 14 South, Range 65 West of the $6{ }^{\text {th }}$ Principal Meridian in El Paso County, Colorado. Solace is a 28.99 acre, urban, multifamily-development and is comprised of 16 apartment buildings and associated infrastructure. Solace is bound by existing industrial developments to the North and vacant land to the West. Galley Road bounds the property to the south and existing light industrial businesses to the east. A vicinity map of the area is presented in Appendix A.

Description of Property

Solace is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, Solace slopes from northwest to southeast. The existing conditions of the Sand Creek -Center Tributary Drainageway on the site are heavily wooded for the length of the channel throughout the Solace site.

Per an NRCS web soil survey of the area, Solace is made up of Type B soils with a very small percentage of Type A in the northwest corner of the property. This Type B soil is a blendon sandy loam. This soil type has a moderate infiltration rate when thoroughly wet. It also consists of moderately deep or deep, moderately well drained or well drained soil. A soil survey map has been presented in Appendix A.

Floodplain Statement

Based on the FEMA FIRM Map numbers 08041C0751G \& 08041C0752G, dated December 7, 2018, a portion of the existing drainageway lies within Zone AE and Zone X. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event and is a flood hazard area. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2 -percent-annual-chance (or 500-year) flood. The FIRM Map has been presented in Appendix A. Currently a portion of the Solace site lies within Zone AE at the extension of Paonia Street to Galley Road, as seen in FEMA FIRM Map number 08041C0752G.

Previous Sand Creek Studies

Solace lies within Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" prepared by Kiowa Engineering in January 1993.

The Sand Creek Drainage Basin covers approximately 54 square miles in unincorporated El Paso County, CO. The Sand Creek Drainage Basin is tributary to Fountain Creek. In its existing condition, the basin is comprised of developed land with the exception of the Solace Parcel which is comprised of rolling rangeland with fair to good vegetative cover associated with Colorado's semi-arid climate. The natural Drainageway within the site limits is typically deep and narrow with a well-defined flow path in most areas. Anticipated land use for the Solace parcel includes multifamily residential and open space.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Sand Creek Drainage Basin Planning Study prepared by Kiowa Engineering Corporation in January 1993.
- Flood Insurance Study- El Paso County, Colorado \& Incorporated Areas Vol 7 of 8, December 2018.
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.

The Sand Creek Drainage Basin Planning Study was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Sand Creek Drainage Basin. The Sand Creek Drainage Basin Planning Study conducted a hydrologic analysis using a runoff model named the Soil Conservation Service (SCS) Computer Program for the Project Formulation Hydrology (TR20). Based on provided drainage maps and analysis, in its existing condition, the Sand Creek-Center Tributary Drainageway contains a 100-year flow of 720 cfs at upstream station 1053 then jumps to 960 cfs at station 1030 in Sand Creek along Solace's east property line. The flow then changes again at station 1014 , to a value of 956 cfs , where the flow from the secondary drainageway on Paonia Street converges with the Sand Creek Drainageway, this flow was based on JR Engineering analysis. These flows were used in the model as they were depicted as being the flows present in the project section of the Sand Creek Tributary Drainageway as called out in Sand Creek Drainage Basin Planning Study. The major Sand Creek-Center Tributary Drainageway conveys the stormwater south along the eastern property line where it ultimately outfalls into the Fountain Creek. JR Engineering also performed a hydrologic analysis to determine the flows in the Sand Creek-Center Tributary Drainageway and arrived at similar results to those shown in the Sand Creek Drainage Basin Planning Study, thus verifying the validity of these flows. These basin calculations show that the 720-960 cfs, based on the Sand Creek Drainage Basin Planning Study, are still valid for this existing condition, a summary table of the flows in the Sand Creek Drainageway based on various studies can be found below.

SOLACEAPARIMENIS		
Sand Creek Center Tributary Flow Summary Table		
Report/Study	Location	Flow (cfs)
Sand Creek DBPS, Kiowa Engineering, Rev. M arch 1996, Table III-2	DP 45, @ Galley Rd. Crossing	1,340
Sand Creek DBPS, Kiowa Engineering, Rev. March 1996, CTP-2	@ STA 125+00	960
Sand Creek DBPS, Kiowa Engineering, Rev. March 1996, CTP-2	@ STA 132+30	720
Flood Insurance Study, El Paso County, Rev. December 7, 2018	Section N, @ Galley Road	723
JR Engineering October 2019	@ Galley Road	956

FEMA prepared a revised FIS for El Paso County Colorado, Volume 7 of 8, dated December 7, 2018. The effective floodplain for the site is shown on the FIRM 08041C0752G, revised to reflect LOMR, dated May 23, 2007. The study area of the FIS where the Sand Creek Drainageway crosses Galley Road, was found to overtop the culverts and flow onto the road. According to the FIS, this crossing has a 10% annual chance of flooding and is located in Zone AE of the FIRM. This location is a Special Flood Hazard Area (SFHA) inundated by the 100-year flood, Zone AE (base flood elevations determined). The Sand Creek Drainage Basin LOMR was executed on May 23, 2007. The LOMR revised the flood zone or the area south of Galley Road. See FIRM Map Panel 08041C0752G for limits of LOMR study and revised flood zones, presented in Appendix C.

To the west of the Sand Creek-Center Tributary Drainageway is a secondary Drainageway that captures the flow coming from the west side of Paonia Street. This drainage way is located at the proposed extension of Paonia Street to meet Galley Road. The flows created by the secondary drainageway and the development north of the site will be captured on the Solace site, and transported to the Sand Creek-Center Tributary Drainageway. According to Sand Creek Drainage Basin LOMR, the flow present in this secondary drainageway in a 1-percent-annual-chance flood event is 213 cfs . This was calculated by use of the LOMR maps, and evaluating the difference in flow as the Sand Creek Center Tributary Drainageway splits as it crosses Omaha Boulevard. Section R of the FEMA Map Panel 08041C0752G, shows the split as the flow present in the channel drops to 421 cfs from 634 cfs at section S just upstream. The difference in these flows is 213 cfs this flow is assumed to overtop the road at Omaha Boulevard crossing structure, and travel west to Paonia Street and is routed south in the Sand Creek Center Tributary onto the Solace site. A calculation of the flows present in Paonia was also conducted by Galloway Engineering in the Preliminary Drainage Report and Floodplain Certification for Powers Center Point, dated October 1 ${ }^{\text {st }}$, 2007. This report used a similar methodology in calculating the flows; however this analysis was made using LOMR data from 1997 with higher flows thus resulting in a calculated flow of 500 cfs . To be conservative, JR Engineering's design will be based on the 500 cfs specified, rather than the 213 cfs calculated. Additional information has been requested via FEMA FIS data request. When this additional data
can be obtained, a proposed channel improvements report including both main channel and overflow improvements will be updated to reflect the latest available information. At the current point in time, all available published data has been exhausted to prove a reduced flow rate in the overflow channel (Paonia Street).

Just north of the Solace site on Paonia Street a concrete channel exists that diverts a portion of the flows present in Paonia Street back into the Sand Creek-Center Tributary Drainageway. However the size of this channel will not convey all flows present in Paonia, therefore improvements are necessary to mitigate the offsite flows. Potential options to mitigate these flows are discussed below. Each possible alternative has been preliminarily evaluated to ensure feasibility in mitigating the secondary drainageway currently existing in Paonia Street.

The first conceptual option would be to have future Paonia Street continue to maintain an existing super elevation that will direct all flows present on Paonia towards the east side of the road. GIS contours indicate this super elevation exists, as well as confirmation stated by the Galloway Engineering Preliminary Drainage Report. The curb and gutter along the east side of Paonia will be omitted to create a 110 ft weir that will route flows back to the existing Sand Creek-Center Tributary Drainageway. The 110 ft weir would reduce into a 40 ft wide channel as it approaches the existing channel at a 45 degree angle. Flow calculations for this overflow design can be found in Appendix B, along with flow capacity calculations for existing Paonia Street \& existing concrete channel north of the site.

A second conceptual option would be to create a low point in Paonia shortly after crossing south onto the subject property, thus creating a sump condition. The sump inlets would capture minor runoff and pipe it to the main channel, while a larger event would behave in a similar manner to the above scenario, routing via the same overflow weir and channel back to the main Sand Creek-Center Tributary Channel. The alternative profile for this scenario can be found in Appendix B, as well as on the preliminary Paonia Street Improvement plans.

Finally, a third option would be to widen the existing concrete channel at the property line to increase capacity enough to accept all flows from the overflow channel.

The first option has been presented in the drainage maps and preliminary plans associated with this report; however no alternative has been definitively selected at this time. One alternative or a combination of these alternatives may be utilized at time of final design to safely and efficiently route the Paonia Street overflow channel back to the main channel near the northern site boundary.

Channel Deficiencies

The Sand Creek Drainage Basin Planning Study performed a hydraulic analysis of the Sand CreekCenter Tributary Drainageway between Galley Road and Paonia Street, and an analysis of the crossing structure for Sand Creek at Galley Road. For the crossing structure at Galley Road they determined that the existing crossing structures were inadequate for the demands of the Drainageway
and would require improvements to expand the capacity of these structures. These results can be seen in Table IV-1 Summary of Hydraulic Structures - Crossings: Sand Creek Drainage Basin Planning Study shown below. The Study proposed improvements to the existing crossing structures by replacing them with $3-8^{\prime} \mathrm{Wx} 5^{\prime} \mathrm{H}$ Concrete Box Culverts.

TABLE IV-1: SUMMARY OF HYDRAULIC STRUCTURES - CROSSINGS SA.ND CREEK DRALNAGE BASN PLANNING STUDY						
LOCATION	$\begin{gathered} \text { REACH } \\ \# \end{gathered}$	SIZE	TYPE	CAPACITY EXISTING	CAPACITY FLTLRE (1)	COMMENTS
Airport Road	CT-1	$5.6{ }^{\prime} \times 8^{\prime}$	BOX CULVERT	ADSQUATE	ADEQUATE	
Pikes Peak Ave.	CT-1	NONE		NADEQUATE	Nadequate	POWERS BLVD. OVERTOPPED FREQUENTLY BETWEEN BLOU ST. AND PIKES PEAK AVE.
Powers Blvd.	CT-1	various	METALPIPE	NADEQUATE	Nadequate	
Plate Ave (LS 24)	CT-1	$8^{\prime} \times 4^{\prime}$	BOX CLLVERT	Nadequate	INADEQUATE	APPR OACH CHANNEL INNEED OF REALIGMMENT
Terminal Avenue	CT-2	$2-4{ }^{\prime} \times 8^{\prime}$	BOX CULVERT	NADEQUATE	INADEQUATE	
Galley Rood	CT-2	$3-42^{\prime \prime} \times 72^{-}$	METAL ARCH PIPE	INADEQUATE	INADEQUATE	
Omaha Boulevard	CT-2	$2.36 " \times 57^{\prime \prime}$	METAL ARCH PIPE	NADEQUATE	NADEQUATE	

The study also found the existing channel for the Sand Creek-Center Tributary Drainageway between Galley Road and Paonia Street to be inadequate for the given flow rate. The report says that the existing channel has limited maintenance access, leading to the channel degrading and being filled with obstructions. Those findings can be seen in Table IV-2 Summary of Hydraulic Structures - Channels: Sand Creek Drainage Basin Planning Study. The Sand Creek Drainage Basin Planning Study recommended improvements to the existing channel by lining the channel with concrete.

The GeoHecRas model results completed with this report contain similar findings to those in the drainage basin planning study. This model was based on the existing channel conditions; a model will be created for the sites proposed conditions in the final drainage report. Average velocities of $10-12 \mathrm{fps}$ for a majority of the channel reach exceed allowable limits for an unprotected channel. The current Galley road crossing structures lack of capacity also leads to overtopping of the road during these events. This report confirms that both this Sand Creek channel reach and Galley Road crossing structures are inadequate for the $100-\mathrm{yr}$ storm event.

Channel Improvement Recommendations

The Sand Creek Drainage Basin Planning Study (DBPS) concluded that the Sand Creek-Center Tributary Drainageway channel, in its current state, is inadequate to handle the historical flows tributary to the channel. This report falls in line, indicating that improvements shall be made to the channel in order to provide adequate capacity and prevent erosion. In the DBPS improvements are also designated for the crossing structures at Galley Road to provide adequate capacity and prevent overtopping of the road. Upon further investigation, this report found that overtopping of Galley Road appears to be addressed via the overflow structure and associate downstream bank protections shown in Figure 1. This weir was analyzed to determine the

Figure 1: Existing Drainage Structures at Galley Road (Viewed from South) effectiveness to safely pass overtopping flows. From the HEC-RAS model, it was determined that approximately 581 cfs overtops the roadway during a 100year event. The weir in its current configuration could only adequately pass approximately 40 cfs of this flow. On the north side of the Galley road crossing, there is a section of roadway without curb \& gutter; this allows the water transported along the north half of galley road to directly flow into the Sand Creek Center Tributary Drainageway. A picture of this curb opening is shown below in figure 2.

Figure 2: Curb Opening on North Half of the Galley Road Crossing (Looking to the North)

This analysis notes existing overtopping, further discussion with the county engineer to discuss potential solutions is recommended. One possible solution is that the existing culverts be replaced to prevent overtopping at Galley Road by upsizing to a larger culvert(s). Ultimately, culvert
improvements will be necessary when the County deems the historic overtopping of Galley Road above acceptable tolerance. Currently, no adjacent structures are impacted by this overtopping. Weir calculations can be found in the appendix.

Based upon the findings to the Sand Creek Drainage Basin Planning Study and the conforming GeoHecRas modeling contained in this report, potential recommended channel improvements include:

- Widening of the channel west bank to reduce flow depth, thus corresponding velocities
- Lining portions of the channel with riprap or other protective surfaces
- Adding check structures and potentially drop structures to reduce channel grade, a conceptual profile can be seen in Appendix A.
- Replacing existing culverts at Galley Road to prevent roadway overtopping

Stable slopes of 1% were chosen for the channel based on stable slope specified by The Sand Creek Drainage Basin Planning Study (DBPS.)

CONCEPT COST ESTIMATE

Below is Conceptual Cost Estimate for the proposed channel improvements to the Sand CreekCenter Tributary Drainageway.

Table 3: Cost Opinion-Public Reimbursable

PUBLIC DRAINAGE FACILITIES				
Item	Quantity	Unit	Unit Price	Extended Cost
Clearing \& Grubbing	2	AC	$\$ 5,000.00$	$\$ 10,000.00$
Channel Widening Earthwork (Cut)	7000	CY	$\$ 3.00$	$\$ 21,000.00$
Riprap Lining (Type M)	5100	CY	$\$ 85.00$	$\$ 433,500.00$
Drop Structures	2	EA	$\$ 20,000.00$	$\$ 40,000.00$
			Sub-Total	$\$ 504,500.00$
	10% Eng. And Contingency			$\$ 50,450.00$
		Grand Total	$\$ 554,950.00$	

Drainage Design Criteria

Development Criteria Reference

Storm drainage analysis techniques were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1-3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

Hydrologic Criteria

The hydrologic analysis for this project is based on the Sand Creek Drainage Basin Planning Study. The flow rates for the 100-yr storm event were taken from sheets CTP-2 \& CTP-3 of this study. The Baseline Flows from the Sand Creek Drainage Basin Planning Study are included in Appendix C.

Hydraulic Criteria

GeoHecRas was used as the primary analysis method for the site. GeoHecRas was used to model existing flows within the Sand Creek-Center Tributary Drainageway. This model was used to verify flood plains and analyze any overtopping that may occur within the project site. The 100 -year water surface profiles for the model were analyzed form the north property line of the site to the area 100 feet south of the Galley Road Crossing. Hydraulic computations for the models are contained in Appendix B. In the model the value for the roughness coefficient (n) were based upon those shown in Table 12-2 of the City of Colorado Springs Drainage Criteria Manual, Volume 1. The manning's roughness coefficient for the sides of the channel was evaluated as $n=0.05$, as the channel sides are most closely categorized as sluggish reaches with weeds, the minimum value of n was taken. For the bottom of the channel a manning's roughness coefficient value of $n=0.025$, as the existing channel bottom being very clear and free of plants or other debris, the minimum value of n was taken. Table 12-2 highlights the manning values used for the model. The channel was analyzed as a winding channel in the GeoHecRas model.

Table 12-2. Roughness Coefficients

Channel Description	Roughness Coefficient (n)		
	Minimum	Typical	Maximum
Natural Streams (top width at flood stage <100 feet 1. Streams on Plain			
a. Clean, straight, full stage, no rifts or deep pools	0.025	0.030	0.033
b. Same as above, but more stones and weeds	0.030	0.035	0.040
c. Clean, winding, some pools and shoals	0.033	0.040	0.045
d. Same as above, but some weeds and stones	0.035	0.045	0.050
e. Same as above, lower stages, more ineffective slopes and sections	0.040	0.048	0.055
f. Same as c, but more stones	0.045	0.050	0.060
g. Sluggish reaches, weedy, deep pools	0.050	0.070	0.080
h. Very weedy reaches, deep pools, or floodways with heavy stand of timber and underbrush	0.075	0.100	0.150
2. Mountain Streams, no vegetation in channel, banks usually steep, trees and brush along banks submerged at high stages			
a. Bottom: gravels, cobbles, and few boulders b. Bottom: cobbles with large boulders	See Jarrett's equation*		

The flows in the channel, upstream and downstream of the Solace site, were determined using the sheet CTP-2 of the Sand Creek Drainage Basin Planning Study, with the flow 720 cfs being used at the upstream end of the channel till river station 1031 where the flow changes to 960 cfs , and once again at the Galley Road crossing to 1340 cfs. These can be seen in the GeoHecRas output table. Geometry of the channel and the crossing structure at Galley Road was determined from survey
conducted by JR Engineering's internal survey department. The Galley road crossing structure was modeled in the GeoHecRas model; its geometric parameters were determined using survey obtained data to the crossing. The sizes of the 48 " CMP culverts in the crossing were also determined from survey data.

SUMMARY

This analysis of the Sand Creek-Center Tributary Drainageway remains consistent with previous studies. Velocities in the drainageway are of concern and require channel improvements, such as widening and riprap lining to ensure the Sand Creek Drainageway remains stable during a $100-\mathrm{yr}$ event. This report meets the latest El Paso County Drainage Criteria requirements for this site. The results of JR Engineering's GeoHecRas model for the channel appear accurate as the water surface elevations of the channel matchup very closely to the elevations called out in the FEMA FIS along the channel. The overtopping elevation at Galley Road shown in the model matches the elevation shown in the FEMA floodplain map of 6249 , showing that the GeoHecRas model results are valid. References:

1. El Paso County Drainage Criteria Manual Volume 1, El Paso County, CO, 1994.
2. Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, Latest Revision.
3. Flood Insurance Study- El Paso County, Colorado \& Incorporated Areas Vol 7 of 8, Federal Emergency Management Agency, December 7, 2018.
4. Sand Creek Drainage Basin Planning Study, Kiowa Engineering, January 1993.
5. Sand Creek Drainage Basin LOMR, Federal Emergency Management Agency, May 23, 2007.
6. Preliminary Drainage Report and Floodplain Certification for Powers Center Point, Galloway Engineering, October 2007.

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Froude \# Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	
CH01	1053	Sand Creek	760.00	6265.00	6269.26	6269.26	6270.04	0.003762	8.51	179.27	110.42	0.77
CH01	1052	Sand Creek	760.00	6258.00	6262.11	6262.11	6263.78	0.005804	10.49	77.83	25.50	0.96
CH 01	1051	Sand Creek	760.00	6257.00	6261.64	6261.64	6263.29	0.006883	10.30	74.47	24.12	0.98
CH01	1050	Sand Creek	760.00	6257.00	6261.55	6261.55	6263.17	0.005614	10.36	81.50	27.77	0.96
CH01	1049	Sand Creek	760.00	6257.00	6260.93	6260.93	6262.50	0.005917	10.15	80.51	28.71	0.97
$\mathrm{CH01}$	1048	Sand Creek	760.00	6255.00	6259.52	6259.52	6261.19	0.005730	10.51	80.21	27.19	0.97
$\mathrm{CH01}$	1047	Sand Creek	760.00	6254.00	6258.20	6258.20	6259.83	0.006013	10.34	79.30	27.50	0.98
CH01	1046	Sand Creek	760.00	6253.00	6257.62	6257.33	6258.86	0.004369	9.10	93.85	32.59	0.85
CH01	1045	Sand Creek	760.00	6253.00	6257.94		6258.62	0.002044	6.71	123.65	36.54	0.59
CH01	1044	Sand Creek	760.00	6252.00	6258.04		6258.47	0.000942	5.39	158.77	38.15	0.42
CH01	1043	Sand Creek	760.00	6252.00	6258.17		6258.40	0.000450	3.84	219.34	49.10	0.29
CH01	1042	Sand Creek	760.00	6252.00	6258.25		6258.35	0.000192	2.60	333.13	72.33	0.19
CH01	1041	Sand Creek	760.00	6251.00	6258.15	6254.86	6258.33	0.000342	3.46	250.00	54.53	0.26
CH01	1040	Sand Creek	760.00	6251.00	6257.48		6258.25	0.001509	7.34	129.48	31.17	0.53
CH01	1039	Sand Creek	720.00	6250.00	6256.03	6256.03	6258.09	0.005145	12.17	78.63	22.88	0.93
CH01	1038	Sand Creek	720.00	6250.00	6254.65	6254.65	6256.48	0.005632	11.04	74.30	23.99	0.96
CH01	1037	Sand Creek	720.00	6249.00	6254.26	6254.26	6256.12	0.005266	11.39	78.61	25.24	0.94
CH01	1036	Sand Creek	720.00	6249.00	6254.18	6253.87	6255.67	0.004153	10.16	86.85	27.64	0.84
CH01	1035	Sand Creek	720.00	6248.00	6254.49		6255.37	0.001997	8.12	123.42	33.33	0.60
CH01	1034	Sand Creek	720.00	6248.00	6253.87	6253.37	6255.23	0.003530	9.97	96.29	27.50	0.78
CH01	1033	Sand Creek	720.00	6248.00	6253.90	6253.27	6255.15	0.003218	9.54	100.27	28.48	0.75
CH01	1032	Sand Creek	720.00	6248.00	6254.02	6252.85	6254.99	0.002212	8.21	107.83	28.30	0.63
CH01	1031	Sand Creek	720.00	6247.00	6252.93	6252.93	6254.82	0.005902	11.67	81.05	24.65	0.92
CH01	1030	Sand Creek	960.00	6247.00	6253.53		6254.38	0.001956	8.14	169.51	45.64	0.61
CH01	1029	Sand Creek	960.00	6247.00	6253.61		6254.29	0.001452	7.08	180.40	43.93	0.52
CH01	1028	Sand Creek	960.00	6247.00	6253.63	6251.57	6254.24	0.001217	6.58	184.56	43.62	0.48
CH01	1027	Sand Creek	960.00	6247.00	6253.56		6254.17	0.001232	7.01	201.11	46.32	0.50
CH01	1026	Sand Creek	960.00	6247.00	6253.62		6254.11	0.000969	5.82	199.63	47.17	0.43
CH01	1025	Sand Creek	960.00	6247.00	6253.70	6250.88	6254.05	0.000644	4.85	227.01	48.43	0.35
CH01	1024	Sand Creek	960.00	6246.00	6253.67	6250.42	6254.02	0.000576	4.98	235.21	46.35	0.34
CH01	1023	Sand Creek	960.00	6246.00	6253.62	6250.47	6254.01	0.000626	5.21	225.63	43.80	0.35
CH01	1022	Sand Creek	960.00	6246.00	6253.61		6254.00	0.000607	5.19	221.85	41.91	0.35
CH01	1021	Sand Creek	960.00	6246.00	6253.17		6253.94	0.001350	7.37	164.92	36.16	0.51
CH01	1020	Sand Creek	960.00	6246.00	6252.32	6251.61	6253.82	0.003159	10.30	118.91	30.63	0.76
CH 01	1019	Sand Creek	960.00	6246.00	6252.49	6251.34	6253.62	0.002313	9.03	140.23	36.35	0.66
CH01	1018	Sand Creek	960.00	6246.00	6251.44	6251.44	6253.45	0.004819	12.21	109.12	31.63	0.94
$\mathrm{CH01}$	1017	Sand Creek	960.00	6245.00	6251.26	6250.03	6252.37	0.002324	8.73	133.16	32.49	0.65
CH01	1016	Sand Creek	960.00	6245.00	6250.14	6250.14	6252.15	0.005299	11.66	96.28	28.21	0.95
CH01	1015	Sand Creek	960.00	6244.00	6250.38	6248.09	6250.77	0.000839	5.11	215.92	53.82	0.39
$\mathrm{CH01}$	1014	Sand Creek	956.00	6244.00	6250.35	6248.71	6250.72	0.000950	5.78	370.06	207.76	0.42
CH01	1013	Sand Creek	956.00	6244.00	6249.89	6249.89	6250.66	0.001931	8.21	274.84	196.01	0.61
CH01	1012	Sand Creek	956.00	6244.00	6248.95	6248.95	6251.16	0.005865	12.67	104.90	38.16	1.02
CH01	1011	Sand Creek	956.00	6244.00	6249.28	6249.28	6250.05	0.002387	8.46	279.17	203.66	0.66
CH01	1010	Sand Creek	956.00	6244.00	6249.16	6249.16	6249.97	0.002504	8.54	254.79	169.44	0.67
CH01	1009	Sand Creek	956.00	6242.00	6249.14	6247.90	6249.85	0.001612	7.93	276.71	166.57	0.55
CH01	1008	Sand Creek	956.00	6242.00	6247.80	6247.80	6249.73	0.004748	11.73	106.54	31.47	0.91
CH01	1007	Sand Creek	956.00	6242.00	6248.22	6247.39	6249.22	0.002263	9.17	222.13	127.82	0.66
CH01	1006	Sand Creek	956.00	6242.00	6248.59	6247.92	6249.01	0.001105	6.67	368.21	181.76	0.46
CH01	1005	Sand Creek	956.00	6242.00	6248.64	6246.43	6248.97	0.000738	5.28	352.19	168.51	0.38
CH01	1004	Sand Creek	956.00	6242.00	6248.76	6245.39	6248.91	0.000242	3.31	399.38	160.30	0.22
CH01	1003.56		Culvert									
CH01	1003	Sand Creek	956.00	6239.00	6244.43	6242.22	6244.82	0.000233	4.99	191.73	160.51	0.40
CH01	1002	Sand Creek	956.00	6240.00	6243.32	6243.32	6244.68	0.001891	9.35	102.20	38.15	1.01
CH01	1001	Sand Creek	956.00	6239.00	6242.61	6242.61	6244.01	0.001806	9.51	100.52	34.95	0.99
CH01	1000	Sand Creek	956.00	6239.00	6242.44	6242.44	6243.85	0.001879	9.55	100.10	35.71	1.01

Worksheet for Rectangular Weir - 4' Openings (10)

Project Description

Solve For Discharge

Input Data

Headwater Elevation	0.50	ft	
Crest Elevation		0.00	ft
Tailwater Elevation	0.00	ft	
Weir Coefficient	3.10	US	
Crest Length	4.00	ft	
Number Of Contractions	0		

Number Of Contractions 0

Results

Discharge	4.38	ft / s
Headwater Height Above Crest	0.50	ft
Tailwater Height Above Crest	0.00	ft
Flow Area	2.00	ft^{2}
Velocity	2.19	ft / s
Wetted Perimeter	5.00	ft
Top Width	4.00	ft

36" RCP TOEWALL FOOTING ELEVATION VIEW

TOEWALL FOOTING PROFILE

BAFFLE BOULDER DETAIL

ENERGY DISSIPATION STRUCTURE
SOLACE APARTMENTS
JOB NO. 25174.00
5/1/20
SHEET 1 OF 1

Figure 9-30. Flared end section (FES) headwall concept

Ex. Concrete Channel

Trapezoidal
Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Depth (ft)
$=3.50$
$=1.33,1.53$
$=1.75$
$=6267.00$
$=1.41$
$=0.013$

Known Depth
$=0.88$

Highlighted
Depth (ft)
$=0.88$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=42.08$
$=4.19$
$=10.05$
$=6.57$
$=1.37$
$=6.02$
$=2.45$

Elev (ft)
Section
Depth (ft)

Reach (ft)

Weir Report

Paonia Street Weir

Compound Weir
Crest
Bottom Length (ft)
Total Depth (ft)
Length, x (ft)
Depth, a (ft)

Calculations

Weir Coeff. Cw
Compute by:
Known Q (cfs)
= Sharp
$=115.00$
$=1.25$
$=80.00$
$=0.50$
$=3.33$
Known Q
$=439.00$

Highlighted
Depth (ft)
$=1.24$
Q (cfs)
$=439.00$
Area (sqft)
= 125.10
Velocity (ft/s)
= 3.51
Top Width (ft) $\quad=115.00$

Depth (ft)
Paonia Street Weir
Depth (ft)

Overflow Channel

Trapezoidal

Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value
Calculations
Compute by:
Known Q (cfs)
$=115.00$
$=6.80,6.80$
$=0.65$
= 6265.66
$=1.68$
$=0.017$

Known Q
$=439.00$

Highlighted
Depth (ft)
$=0.52$
Q (cfs)
Area (sqft)
Velocity (ft/s)
$=439.00$
$=61.64$
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=7.12$
$=122.15$
$=0.65$
$=122.07$
$=1.31$

Elev (ft)
Section
Depth (ft)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Paonia Street Ex.

User-defined Invert Elev (ft)	$=6271.04$	Highlighted Depth (ft)	$=1.27$
Slope (\%)	$=1.00$	Q (cfs)	$=500.00$
N-Value	$=0.016$	Area (sqft)	$=66.09$
		Velocity (ft/s)	$=7.57$
Calculations	Known Q	Wetted Perim (ft)	$=89.48$
Compute by:	$=500.00$	Crit Depth, Yc (ft)	$=1.56$
Known Q (cfs)		Top Width (ft)	$=89.43$
	EGL (ft)	$=2.16$	

(Sta, EI, n)-(Sta, EI, n)...
$(0.00,6273.30)-(48.06,6271.58,0.016)-(86.95,6271.04,0.016)-(95.27,6271.26,0.016)-(99.33,6271.58,0.016)-(135.09,6273.05,0.016)$

Elev (ft)
Section
Depth (ft)

To: El Paso County Engineering Division

From: Mike Bramlett, PE
Date: November 25, 2020
Subject: Sand Creek Center Tributary Channel Improvements

The purpose of this letter is to provide design information for the existing conditions of the Sand Creek Center Tributary Drainageway, located east of the Solace Apartments site. This letter will also discuss the proposed improvements for the channel, design methodology, and the modeling results. For further information on the previous evaluation of the channel in its existing conditions and conceptual design, see the Sand Creek - Center Tributary Channel Analyses Report for Solace Apartments by JR Engineering. For further information concerning drainage for the Solace Apartments Site, see the Final Drainage Report for Solace Apartments, by JR Engineering.

Project General Discussion

The Sand Creek Center Tributary Channel is located in Section 7, Township 14 South, Range 65 West of the $6^{\text {th }}$ Principal Meridian in El Paso County, Colorado. The site is part of the Solace Apartments project and is located on the eastern edge of the project. As part of the proposed improvements for the Solace Apartments Project, this reach of the Sand Creek Center Tributary will also be improved. The sections upstream and downstream of the site have already undergone improvements, and the channel in its current state shows extensive flooding in a 100 year event. In addition to improvements to the Sand Creek Center Tributary Channel, the channels secondary drainageway located to the west of the channel in Paonia Street will also be improved with an overflow channel that will direct flow present in the secondary drainageway into the main channel and avoid further flooding of the Paonia Street extension into the Solace Apartments site.

Channel Flows

Evaluation of the flows present in the Sand Creek Center Tributary and its secondary drainageway were discussed in detail in the Sand Creek - Center Tributary Channel Analysis for Solace Apartments by JR Engineering. Since the initial analysis of the channel took place, JR Engineering was able to acquire the modeling data used by FEMA for determination of flood plain modeling shown in FEMA FIRM 08041C0752G. JR Engineering assumes FEMA's flows to be accurate, and thus utilized these as the basis for our model. The main channel contains 820 cfs of flow and the secondary channel contains 217 cfs. The flow in the main channel then jumps up to $1,037 \mathrm{cfs}$ at the convergence of the secondary drainageway. Downstream an existing channel coming from nearby Valley Road (east) converges with the main channel, we then utilized FEMA's $1,100 \mathrm{cfs}$ to model the remaining portion of the channel.

Existing Channel Conditions

In its existing conditions the Sand Creek Center Tributary Channel along the Solace site consists of a natural channel overgrown with trees and bushes along the sides of the channel with the bottom being relatively clean and free of obstacles. The 1,350 LF reach of the Sand Creek Center Tributary Channel located incorporated with the Solace site is undeveloped, as compared to the majority of channels in the basin which have had some improvement. Downstream and upstream sections of the Sand Creek Center Tributary Channel are concrete lined. The secondary Drainageway located in Paonia Street flows south from Omaha Blvd to the Solace Apartments site where flow splits between an existing concrete channel running east to the main Sand Creek Center Tributary Channel, and a swale flowing south where it eventually rejoins the main channel at the Galley Road crossing. It is anticipated that the concrete channel will divert 42 cfs from the 217 cfs present in the secondary drainageway, with 175 cfs flowing south down the existing swale. There is also an existing channel coming from Valley Road to the east. This channel intersects the main channel approximate halfway between the north and south limits of the site, adding 63 cfs to the main channel, as discussed in the Channel Flows section above. In its existing conditions, the Sand Creek Center Tributary Channel FEMA firm panel 08041 C 0752 G , depicts 100 year flooding extending into the adjacent properties to the east and onto Paonia Street improvements to the west. The existing channel currently overtops the Galley Road crossing; primarily due to the capacity of the culverts at the crossing rather than the channel's current conditions.

Proposed Channel Improvements

As determined by the Sand Creek Drainage Basin Planning Study (DBPS) \& and JR Engineering Sand Creek Center Tributary Channel Analysis for Solace Apartments, this section of the Sand Creek Center Tributary will require improvements to ensure adequate capacity in the channel and protection against erosive velocities. In order to be consistent with improvements already made in the surrounding area and to align with the recommendations made by the DBPS, JR Engineering is proposing concrete lining of the channel along the Solace site, along with widening of the existing channel and modification to the channel alignment in this area. JR Engineering is also proposing the addition of a USBR Type III Stilling Basin and 10 foot sloped concrete drop in the channel, in order to force a hydraulic jump in the channel and reduce velocities present in the channel while still matching existing grades for the majority of channel alignment. The design methodology of the sloped drop and USBR Type III Stilling Basin are based on the design procedure for Stilling Basins presented in the Federal Highway Administrations Hydraulic Engineering Circular No. 14, Chapter 8. Calculation for stilling basin and accessories sizing can be found in the Appendix of this letter. The proposed channel section shall be a trapezoidal channel section with a 10 ' bottom width, with a minimum channel depth of 6.5 ' and side slopes varying from $3: 1$ to $2: 1$ along the channel's alignment. The channel shall be lined with concrete for a depth of 4.5 ' to protect the channel from the erosive velocities present in the channel, with an average depth of flow in a 100 year event for the proposed channel being approximately 3 ' this will provide a freeboard of $1^{\prime}-1.5^{\prime}$ from the top of the concrete lining to the 100 year water surface. The concrete section shall typically be a 6 " thick concrete apron for the channel, with sections of the section of channel located within the sloped drop and stilling basin being a 12" thick concrete apron. In accordance with the DBPS the channel shall be designed with a stable slope of 1% for the majority of the channel. For further details please see the Channel Improvement Plans included in the Appendix of this letter. In order to reduce the velocities present in the

[^0]channel and avoid excessively steep slopes for extended portions of the channel's alignment, a 100' long sloped drop structure, with a total vertical drop of 10^{\prime}, will be placed at the upstream end of the channel. At the base of the drop will be a USBR Type III Stilling Basin that will include chute blocks, baffle blocks and a sill wall to decrease the velocity of the water coming down the sloped drop and force a hydraulic jump. This basin will also include a low flow channel through the sill wall located at the end of the stilling basin to allow water movement through the structure at lower flows and prevent ponding of water in the structure. Further detail for the sloped drop and stilling basin can be found in the channel improvement plans shown in the Appendix.

Paonia Street Secondary Drainageway Improvements

Part of the Sand Creek Center Tributary Improvements also includes the addition of a diversion channel that will direct flows present in the Paonia Street Secondary Drainageway into the main channel. This diversion will be known as the Overflow Channel for the remainder of this letter. The Overflow Channel shall be a concrete and riprapped lined channel with varying widths and depths that will convey the flows present in Paonia Street into the main channel. The diversion channel shall be concrete from the edge of Paonia to the right-of-way, after which it will become a riprap trapezoidal channel section with a typical bottom width of 20' and a depth of 2'3'. The channel will run east from Paonia until it intersects with the proposed Sand Creek Center Tributary Channel alignment, where it will outfall just upstream of the proposed sloped drop in the channel. Just south of the diversion channel opening along Paonia Street will be two 15 'type R inlets, that will be used to capture nuisance flows in the curb \& gutter and also any flow that may bypass the diversion channel. These inlets will directly outfall into the main channel and will not be detained by any of the onsite detention ponds. For further detail on the diversion channel please see the channel improvement plans, and for detail on the type R inlets see the exert of the Solace Construction Drawings, both shown in the Appendix of this letter.

Modeling Results

The proposed conditions of the channel and its second Drainageway were modeled using GeoHecRas to determine the extents of the 100 year floodplain for the site. Flow rates from the model were used based on those discussed in the Channel Flows section and Existing Conditions section of this letter. The model was run with downstream boundary conditions for each reach using critical depths, and the entirety of the model was ran using steady flow conditions. The model was contains four separate reaches, with the main reach modeling the proposed alignment and conditions for the Sand Creek Center Tributary Channel. The other reaches modeling the Paonia Street Overflow Channel, the existing concrete overflow channel at Paonia and an existing channel that runs east to west from Valley Street and intersects the Sand Creek Center Tributary Channel, each reach intersection were modeled using the energy equation. The model used manning's values (n) of 0.013 for the concrete lining, 0.033 for the riprap of the overflow channel, and 0.03 for the any location outside of the concrete or riprap extents as they were determined to be most similar to a grassed area with some weeds. The results of the GeoHecRas model show that the proposed improvements to the channel substantially reduce the extents of the flood plain in the channel and contain the 100 year flood plain within the concrete extents of the channel. The results also show a maximum velocity in the channel of $10.32 \mathrm{ft} / \mathrm{s}$ in a 100 year event, showing that the concrete lining of the channel will provide sufficient protection from erosive velocities present in the channel. The GeoHecRas model for the proposed conditions also shows overtopping of the channel crossing at Galley Road, which is consistent with the flood data presented by the FEMA FIRM 08041C0752G. Flooding of

[^1]the roadway is due to the insufficient capacity of the culvert crossing in this area, with the current configuration of three 48 " CMP culverts only providing 365 cfs of capacity of the $1,100 \mathrm{cfs}$ flow at the crossing. Flooding of the Galley Road Crossing could be alleviated by upsizing of the culvert(s), these improvements will be necessary when the County deems the historic overtopping of Galley Road to be above acceptable tolerance. The channel improvements did not results in any change to existing overtopping of Galley Road as this is due to insufficient capacity of the culverts at this crossing, which will ultimately be addressed at a later date. Further details on the model results can be found in the Appendix.

Summary

The analysis of the proposed improvements of the Sand Creek Center Tributary Drainageway and its secondary drainageway located in Paonia Street show significant reduction of the flood plain extents, with it now being contained within the channel extents and no longer extensively flooding properties adjacent the proposed Solace Apartment Site. The proposed diversion channel also redirects flow that would otherwise flood the proposed extension of Paonia Street back into the channel, thus alleviating the risk of the roadway flooding in a 100 year event.

Please contact me should you have any questions or concerns regarding this letter at 303-267-6240.
Sincerely,

JR ENGINEERING, LLC

Mike Bramlett, PE
JR Engineering

TABLE VIII-2 CONT'D		SAND CREEK DRAINAGEW CENTER TRL	K DRAINAGE BASIN PLANN way Conveyance cost es Ibutary Sand creek	G STUDY IMATE					
SEGMENT NUMBER	REACH NUMBER	SEGMENT LENGTH (FT)	IMPROVEMENT TYPE	IMPROVEMENT Length (FT)	$\begin{aligned} & \hline \text { UNTT } \\ & \text { CosT } \\ & \text { (SLLF) } \end{aligned}$	Nuniber of GRADE CONTROLS	\qquad	TOTAL REIMBURSABLE COSTS	TOTAL CosT
141	CT-1	2600	EX. RPRRAP TOREMAIN	1500	195	5	400	\$338,500	\$338,500
142	"	4100	100-YR RIPRAP (1)	1300	195	10	600	\$322,500	5322,500
143	"	2300	100-YR RIPRAP (1)	2300	195	8	480	so	\$503,700
144	CT-2	2800	EX. CHANNEL TO REMAN	200	195	0	0	539,000	539,000
145	"	720	100-YEAR CONCRETE	720	195	2	100	\$151,900	\$151,900
146-1	"	680	"	680	195	0	0	\$132,600	\$132,600
146-2	"	1300	EX. Channel to remain	1200	0	0	0	so	so

TOTAL CENTER TRIBUTARY SAND CREEK DRAINAGEWAYS
(1) A PORTION OF THESE IMPROVEMENTS TO BE CONSTRUCTED AS PART OF THE US 24 BYPASS PROJECT, PHASE II

Final Drainage Report
Solace at Cimaron Hills

APPENDIX E

DRAINAGE MAPS \& PLANS

Drainage Report - Final_V2.pdf Markup Summary

Ipackman (1)

	Subject: Text Box Page Label: 1	Please refer to drainage report in application
Author: Ipackman	SF-20-032 for review 2 comments.	
Date: $4 / 19 / 2021$ 4:08:49 PM		
Status:		
	Color: \square	
	Layer:	
	Space:	

[^0]: 3730 Sinton Road, Suite 219
 Colorado Springs, CO 80907
 303-740-9393 • Fax: 303-721-9019
 www.rengineering.com

[^1]: 3730 Sinton Road, Suite 219
 Colorado Springs, CO 80907
 303-740-9393 • Fax: 303-721-9019
 www.rengineering.com

