#### FINAL DRAINAGE REPORT FOR SOLACE APARTMENTS FILING NO. 1

Prepared For: CS Powers and Galley, LLC 510 S Neil St Champaign, IL 61820 (734) 216-2577

> November 11, 2021 Project No. 25174.00

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

PCD File No. PPR-20-047 PCD File No. SF2032

#### **ENGINEER'S STATEMENT:**

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

ADO LICI

11/1/21

bate

Mike Bramlett, Colorado P.E. # 32314 For and On Behalf of JR Engineering, LLC

#### **DEVELOPER'S STATEMENT:**

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

**Business Name:** 

CS Powers and Galley, LLC

By:

Title: Address:

11/12/2021 an MEMBER 510 S Neil St

Champaign, IL 61820

#### El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

| Jennifer | Irvine, | P.E.   |               |
|----------|---------|--------|---------------|
| County   | Enginee | r/ ECM | Administrator |

Date

Conditions:



# **CONTENTS**

| PURPOSE                                                                                                                                                                                                     | 1                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
| GENERAL LOCATION AND DESCRIPTION                                                                                                                                                                            | 1                          |
| LOCATION<br>DESCRIPTION OF PROPERTY<br>FLOODPLAIN STATEMENT                                                                                                                                                 | 2                          |
| DRAINAGE BASINS AND SUB-BASINS                                                                                                                                                                              | 2                          |
| Existing Major Basin Descriptions<br>Existing Sub-basin Drainage<br>Proposed Sub-basin Drainage<br>Existing Major Drainageway – Sand Creek                                                                  | 3<br>5                     |
| DRAINAGE DESIGN CRITERIA 1                                                                                                                                                                                  | 3                          |
| DEVELOPMENT CRITERIA REFERENCE                                                                                                                                                                              | 13                         |
| DRAINAGE FACILITY DESIGN 1                                                                                                                                                                                  | 4                          |
| GENERAL CONCEPT1SPECIFIC DETAILS1Four Step Process to Minimize Adverse Impacts of Urbanization1Water Quality1Erosion Control Plan1Operation & Maintenance1Drainage & Bridge Fees1Construction Cost Opinion1 | 14<br>14<br>15<br>16<br>16 |
| SUMMARY 1                                                                                                                                                                                                   | 8                          |
| REFERENCES: 2                                                                                                                                                                                               | 20                         |

#### **APPENDICES**

- A. Figures and ExhibitsB. Hydrologic/Hydraulic CalculationsC. Detention and Water Quality Calculations
- D. Reference Materials
- E. Drainage Maps



# PURPOSE

This document is the Final Drainage report for the Solace Apartments. The purpose of this report is to:

- 1. Identify on-site and off-site drainage patterns.
- 2. Design storm water facilities to collect and convey storm runoff from the proposed development to appropriate discharge and/or detention locations.
- 3. Design water quality and detention facilities to control discharge release rates to below historic.
- 4. Demonstrate compliance with surrounding major drainage basin planning studies, master development drainage plans and flood insurance studies.

# **GENERAL LOCATION AND DESCRIPTION**

## Location

The proposed Solace Apartments, known as "Solace" from herein, is a parcel of land located in Section 7, Township 14 South, Range 65 West of the 6<sup>th</sup> Principal Meridian in El Paso County, Colorado. Solace is a 28.83 acre, urban, multifamily-development and is comprised of 16 apartment dwellings and associated infrastructure. Solace will be split into two phases for construction, lot 1 (phase 1) contains most of the site with lot 2 (phase 2) containing the northern most section of the development. See appendix A for a site plan exhibit showing the Solace phasing. Solace is bound by existing industrial developments to the North and vacant land to the West. Galley Road bounds the property to the south and existing light industrial businesses to the east. A vicinity map of the area is presented in Appendix A.

Currently, there is one major Drainageway that runs along Solace: Sand Creek (Center Tributary) Drainageway. This Drainageway was analyzed, both hydrologically and hydraulically, in the following reports:

- Sand Creek Drainage Basin Planning Study (KEC), January 1993.
- Flood Insurance Study– El Paso County, Colorado & Incorporated Areas Vol 7 of 8, December 2018.
- Sand Creek Center Tributary Channel Analysis Report for Solace Apartments (JR), June 2020
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.

The impact of this Drainageway and planning studies on the proposed development will be discussed later in the report.

### **Description of Property**

Solace is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, Solace slopes from northwest to southeast.

Per an NRCS web soil survey of the area, Solace is made up of Type B soils with a very small percentage of Type A in the northwest corner of the property. This Type B soil is a Blendon sandy loam. This soil type has a moderate infiltration rate when thoroughly wet. It also consists of moderately deep or deep, moderately well drained or well drained soil. A soil survey map has been presented in Appendix A.

### **Floodplain Statement**

Based on the FEMA FIRM Maps number 08041C0751G and 08041C0752G, dated December 7, 2018, a portion of the existing drainageway lies within Zone AE and Zone X. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The FIRM Maps have been presented in Appendix A.

# DRAINAGE BASINS AND SUB-BASINS

### **Existing Major Basin Descriptions**

Solace lies within Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" prepared by Kiowa Engineering in January 1993.

The Sand Creek Drainage Basin covers approximately 54 square miles in unincorporated El Paso County, CO. The Sand Creek Drainage Basin is tributary to Fountain Creek. In its existing condition, the basin is comprised of rolling rangeland with fair to good vegetative cover associated with Colorado's semi-arid climate. The natural Drainageway within the site limits is typically deep and narrow with a well-defined flow path in most areas. Anticipated land use for the basin includes multifamily residential and open space.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Sand Creek Drainage Basin Planning Study prepared by Kiowa Engineering Corporation in January 1993.
- Flood Insurance Study– El Paso County, Colorado, & Incorporated Areas Vol 7, December 2018.
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.
- Sand Creek Center Tributary Channel Analysis Report for Solace Apartments (JR), June 2020

• Preliminary Drainage Report For Solace Apartments (JR), September 3, 2020

The *Sand Creek Drainage Basin Planning Study* was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Sand Creek Drainage Basin. Based on provided drainage maps and analysis, in its existing condition, the Sand Creek Center Tributary Drainageway contains a 100-year flow of 820-1100 cfs along Solace's east property line. The major Sand Creek Drainageway conveys the stormwater south along the eastern property line where it ultimately outfalls into the Fountain Creek. JR Engineering has performed checks on these flow rates to verify their validity. Basin calculations show that the 820-1100 cfs are still valid for this existing condition.

FEMA prepared a revised FIS for El Paso County Colorado, Volume 7 of 8, dated December 7, 2018. The effective floodplain for the site is shown on the FIRM 08041C0752G, revised to reflect LOMR, dated December 7, 2018. The study area of the FIS where the Sand Creek Drainageway crosses Galley Road, was found to overtop the culverts and flow onto the road. According to the FIS, this crossing has a 10% annual chance of flooding and is located in Zone AE of the FIRM. The *Sand Creek Drainage Basin LOMR* was executed on May 23, 2007. The LOMR revised the flood zone or the area south of Galley Road. See FIRM Map Panel 08041C0752G for limits of LOMR study and revised flood zones, presented in Appendix D.

### **Existing Sub-basin Drainage**

On-site, existing basin drainage patterns are generally from northwest to southeast by way of on-site swales. Existing on-site areas flow directly into the Sand Creek Drainageway. For this development, the existing onsite drainage has been broken into Basin A and Basin B. All existing basins that are offsite are represented by Basin OS. All basin delineation for the existing condition can be found in the existing drainage map located in Appendix E.

Basin A contains a total of 23.98 acres and is broken down into three sub-basins: A1, A2, and A3. This basin represents a majority of the proposed development and is comprised solely of undeveloped land. Flows from this basin are tributary to the Sand Creek Center Tributary Drainageway in the existing condition.

Sub-basin A1 ( $Q_5=3.1$  cfs,  $Q_{100}=21.0$  cfs) is 14.75 acres of undeveloped land, and represents the easternmost portion of the site that is adjacent to the Sand Creek Center Tributary Drainageway. Storm runoff from this sub-basin flows southeast, via overland flow, directly into the Sand Creek Center Tributary Drainageway at Design Point 1.

Sub-basin A2 ( $Q_5=0.9$  cfs,  $Q_{100}=6.2$  cfs) is 3.79 acres and represents the undeveloped land in the center of the development. Storm runoff from this sub-basin flows south (Design Point 2), via overland flow, directly onto Galley Road. From here, flows are conveyed east in the existing curb and gutter into the Sand Creek Center Tributary Drainageway.

Sub-basin A3 ( $Q_5=1.4$  cfs,  $Q_{100}=9.5$  cfs) is 5.44 Acres and represents the undeveloped land on the southern property line of the development. Storm runoff from this sub basin flows south (Design Point 3), via overland flow, directly onto Galley Road. From here, flows are conveyed east via the existing curb and gutter to the Sand Creek Center Tributary Drainageway.

Sub-basin B1 ( $Q_5=1.3$  cfs,  $Q_{100}=9.0$  cfs) Sub-basin B1 consists of 4.84 acres of undeveloped land that drains overland to the southwest (Design Point 4) and offsite where it ultimately outfalls into an existing retention pond on the northeast corner of the intersection of Galley Road and Powers Blvd. This basin represents the westernmost portion of the site.

Basin OS consists of Sub-Basins OS1-OS2 combining for a total of 26.66 acres. This basin represents the developed land located to the north of the proposed development's property line, where the site ties in to Paonia Street. These sub-basins are primarily light industrial sites, and stormwater runoff is conveyed via overland flow and local roads.

Sub-basin OS1 ( $Q_5=36.7$  cfs,  $Q_{100}=73.1$  cfs) consists of the existing Paonia Street and the existing light industrial properties located just north of the site. In the existing condition, a portion of runoff from this sub-basin is captured by an existing concrete line channel along the north boundary of the site. The remaining runoff flows south onsite into the second drainageway where it ultimately outfalls into Sand Creek Center Tributary Drainageway at Galley Road. In the proposed condition, the runoff will be captured by the existing concrete channel and a proposed overflow channel at the north property line (Design Point 5 in the existing condition and Design Point 43 in the proposed condition) to prevent any offsite flows from entering the property. Once this existing flow has been captured, the runoff will be conveyed directly into the existing Sand Creek Center Tributary Drainageway at Design Point 1.1. Capturing this flow and draining it directly into the Sand Creek Center Tributary Drainageway will cause a slight change in the existing drainage patterns. A portion of this flow will no longer enter the existing second drainageway along the proposed Paonia Street alignment. Instead, this entire flow will enter the Sand Creek Center Tributary Drainageway near the north property line at Design Point 1.1. In order to accommodate this change, combination of rip rap and concrete lining shall be utilized in the overflow channel to prevent channel erosion. The Sand Creek Drainageway channel shall be modified to give the drainageway adequate capacity to contain the 100 year water surface and protect against erosive velocities in the channel. A typical cross section of the channel can also be found on the Channel Improvement Plans in Appendix E, for further detail of channel improvements see the JR Engineering Sand Creek Center Tributary Channel Improvements Letter. Channel analysis and weir calculations can be found in the Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments, prepared by JR Engineering in May 2020.

Sub-basin OS2 ( $Q_5=21.3$  cfs,  $Q_{100}=42.5$  cfs) consists of the existing Ainsworth Street and the existing light industrial properties located just east of Ainsworth Street. Runoff from this sub-basin is captured by an existing swale along N. Powers Boulevard. The Solace Apartment site has a 5' berm that is proposed along the northern property line. This berm will prevent any drainage from this

basin to reach the site, and will utilize an onsite conveyance swale located at the toe of the berm to convey the flow to the western property line (Design Point 6 in the existing condition and Design Point 44 in the proposed condition). This proposed berm will slightly modify the existing drainage patterns, as it will prevent offsite flows from entering the northwestern corner of the site. To route flows offsite, an 18" depth swale with a 2' bottom is present at the bottom of the berm which will route flows to the west and outfall into the CDOT right-of-way located to the west of the site. According to UDFCD Chapter 8, figure 8-22, protection for this swale shall be Type VL riprap, see appendix B for this table.

Flows within the Sand Creek Drainageway are represented by Design Points 1.0-1.3 in the existing condition, and Design Points 5.0-5.3 in the proposed condition. Flows for these design points were taken directly from modeling date used by FEMA for the determination of the flood plain extents shown in FEMA FIRM 08041C0752G. These flows were used in the development of the HEC-RAS model to show the 100-year capacity of the drainageway in its proposed condition. Design Point 1.0 in the existing condition and 5.0 in the proposed condition ( $Q_{100}$ =820 cfs) represents the flows in the drainageway prior to entering the site boundary. Design Point 1.1 in the existing condition and 5.1 in the proposed condition ( $Q_{100}$ =820 cfs) represents the flow in the drainageway after the flows from Basin OS1 enter the channel. Design Point 1.2 in the existing condition and 5.2 in the proposed condition ( $Q_{100}$ =1037 cfs) represents the area where flows enter the drainageway from developments and roads located to the east of the site. Design Point 1.3 in the existing condition and 5.3 in the proposed condition ( $Q_{100}$ =1100 cfs) represents the flows at the Galley Road crossing. This flow was used to analyze the overtopping of Galley Road and the existing weir structure on the south side of the road.

### **Proposed Sub-basin Drainage**

The proposed Solace basin delineation is as follows;

Sub-basin A1 ( $Q_5=1.7$  cfs,  $Q_{100}=3.3$  cfs) contains a total of 0.50 acres. This basin represents the north eastern portion of the proposed Phase 1 development. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured via a series of on-grade and sump inlets (Design Point 4). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A2 ( $Q_5=1.6$  cfs,  $Q_{100}=3.1$  cfs) contains a total of 0.47 acres. This basin represents the eastern portion of the proposed along the Phase 1 development phase line. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured via a series of on-grade and sump inlets (Design Point 5). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A3 ( $Q_5=1.6$  cfs,  $Q_{100}=3.1$  cfs) contains a total of 0.45 acres. This basin represents the center portion of the proposed development along the Phase 1 development phase line. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 6). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A4 ( $Q_5=0.6$  cfs,  $Q_{100}=1.0$  cfs) contains a total of 0.15 acres. This basin represents a northern half of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 2.1). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A5 ( $Q_5=0.5$  cfs,  $Q_{100}=1.0$  cfs) contains a total of 0.13 acres. This basin represents a northern half of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 2.3). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A6 ( $Q_5=3.2$  cfs,  $Q_{100}=7.0$  cfs) contains a total of 1.51 acres. This basin represents the central portion of the proposed Phase 1 development. This basin is primarily multi-family residential and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 10). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A7 ( $Q_5=1.0 \text{ cfs}$ ,  $Q_{100}=2.4 \text{ cfs}$ ) contains a total of 0.58 acres. This basin represents the northwestern portion of Paonia Street and minor open. This basin is primarily minor open space with some asphalt paving and concrete sidewalks. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 11). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A8 ( $Q_5=0.8$  cfs,  $Q_{100}=1.7$  cfs) contains a total of 0.30 acres. This basin represents the northeastern portion of Paonia Street. Half of this sub-basin is comprised of asphalt paving, while the second half is open space. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 12). Runoff from this sub-basin ultimately

outfalls into the proposed onsite Pond A. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin A9 ( $Q_5=0.4$  cfs,  $Q_{100}=2.9$  cfs) contains a total of 1.33 acres. This basin represents the northeastern portion of the development. This basin is primarily open space and Pond A. Stormwater runoff from this basin is conveyed via overland flow, where it is captured by Pond A (Design Point 6A). From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-basin B1 ( $Q_5=1.6$  cfs,  $Q_{100}=2.8$  cfs) contains a total of 0.37 acres. This basin represents the western portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an on-grade inlet (Design Point 14). Runoff from this sub-basin, ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B2 ( $Q_5=1.4$  cfs,  $Q_{100}=2.7$  cfs) contains a total of 0.35 acres. This basin represents a small western portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 15). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B3 ( $Q_5=1.2$  cfs,  $Q_{100}=2.4$  cfs) contains a total of 0.35 acres. This basin represents the northwestern portion of the proposed Phase 1 development along the phase line. This basin is primarily parking lot and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 16). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B4 ( $Q_5=0.1$  cfs,  $Q_{100}=0.2$  cfs) contains a total of 0.03 acres. This basin represents a western portion of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.2). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B5 ( $Q_5=1.0 \text{ cfs}$ ,  $Q_{100}=1.8 \text{ cfs}$ ) contains a total of 0.26 acres. This basin represents a eastern portion of a proposed building and a small western portion of an adjacent building. This sub-basin is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.3).

Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B6 ( $Q_5=1.9$  cfs,  $Q_{100}=4.1$  cfs) contains a total of 0.73 acres. This basin represents the western drive aisle of the proposed Phase 1 development. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 19). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B7 ( $Q_5=0.8$  cfs,  $Q_{100}=2.0$  cfs) contains a total of 0.47 acres. This basin represents a proposed building and open space in the center of the development. This sub-basin is comprised primarily of proposed roof and open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 3.5). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B8 ( $Q_5=0.9$  cfs,  $Q_{100}=1.7$  cfs) contains a total of 0.25 acres. This basin represents an eastern portion of a proposed building and a small western portion of an adjacent building. This sub-basin is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.6). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B9 ( $Q_5=0.7$  cfs,  $Q_{100}=1.3$  cfs) contains a total of 0.19 acres. This basin represents a eastern portion of a proposed building and is comprised solely of proposed roof. Stormwater runoff from this basin is captured by proposed roof drains and conveyed to the proposed storm sewer infrastructure (Design Point 3.7). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B10 ( $Q_5=1.0 \text{ cfs}$ ,  $Q_{100}=2.2 \text{ cfs}$ ) contains a total of 0.38 acres. This basin represents the clubhouse parking area and open space. This basin is primarily parking lot with open space. Stormwater runoff from this basin is conveyed curb and gutter, where it is captured by an on-grade inlet (Design Point 23). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B11 ( $Q_5=1.0 \text{ cfs}$ ,  $Q_{100}=2.6 \text{ cfs}$ ) contains a total of 0.74 acres. This basin represents a proposed building and open space in the center of the development. This sub-basin is comprised primarily of proposed roof and open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 4.0). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B12 ( $Q_5=2.7$  cfs,  $Q_{100}=5.6$  cfs) contains a total of 1.08 acres. This basin represents the drive aisle just west of the clubhouse of the Phase 1 development. This basin is primarily parking lot with garages and minor open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 27). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B13 ( $Q_5=1.5$  cfs,  $Q_{100}=3.2$  cfs) contains a total of 0.48 acres. This basin represents the drive aisle and open space in the center of Basin B. This basin is primarily parking lot with open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by an area inlet (Design Point 25). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B13A ( $Q_5=0.5$  cfs,  $Q_{100}=1.6$  cfs) contains a total of 0.58 acres. This basin represents a northern portion of a proposed building and the southern portion of another, the middle portion of the basin is comprised of minor open space. Stormwater runoff from this basin is captured by proposed roof and area drains. Runoff is then conveyed to the propose storm sewer infrastructure (Design Point 3.9). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B14 ( $Q_5$ =1.3 cfs,  $Q_{100}$ =2.6 cfs) contains a total of 0.49 acres. This basin represents the western portion of the clubhouse and associated parking and drive aisle. This basin is primarily roof, parking lot, and open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 28). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B15 ( $Q_5=0.9$  cfs,  $Q_{100}=1.8$  cfs) contains a total of 0.27 acres. This basin represents the eastern portion of the clubhouse and associated parking and drive aisle. This basin is primarily roof, parking lot, and open space. Stormwater runoff from this basin is conveyed via private streets, where it is captured by a sump inlet (Design Point 30). Runoff from this sub-basin ultimately outfalls into

the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B16 ( $Q_5=0.4$  cfs,  $Q_{100}=0.8$  cfs) contains a total of 0.15 acres. This basin represents a southern portion of a proposed building and a small open space area. Stormwater runoff from this basin is captured by proposed roof drains and an area inlet. Runoff is then conveyed to the proposed storm sewer infrastructure (Design Point 4.3). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-basin B17 ( $Q_5=1.8$  cfs,  $Q_{100}=4.5$  cfs) contains a total of 0.99 acres. This basin represents the northwestern portion of Paonia Street within Basin B. This basin is primarily road paving and open space. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 31). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B18 ( $Q_5=1.1$  cfs,  $Q_{100}=2.4$  cfs) contains a total of 0.47 acres. This basin represents the northeastern portion of Paonia Street within Basin B. This basin is primarily road paving and minor open space. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 32). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B19 ( $Q_5=2.1$  cfs,  $Q_{100}=5.7$  cfs) contains a total of 1.92 acres. This basin represents the southern half of the clubhouse and patio area, along with the southwestern portion of Paonia Street within Basin B. This basin is primarily road paving, open space, and roof. Stormwater runoff from this basin is conveyed via overland flow and curb & gutter, where it is captured by an on-grade inlet (Design Point 33). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B20 ( $Q_5=0.6$  cfs,  $Q_{100}=1.4$  cfs) contains a total of 0.26 acres. This basin represents the southeastern portion of Paonia Street within Basin B. This basin is primarily road paving and minor open space. Stormwater runoff from this basin is conveyed via curb & gutter, where it is captured by an on-grade inlet (Design Point 34). Runoff from this sub-basin ultimately outfalls into the proposed onsite Pond B. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-basin B21 ( $Q_5=0.5$  cfs,  $Q_{100}=3.6$  cfs) contains a total of 2.46 acres. This basin represents the northeastern portion of the development. This basin is primarily open space and Pond B. Stormwater runoff from this basin is conveyed via overland flow, where it is captured by Pond B

(Design Point 37). From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3

Sub-Basin C1 ( $Q_5=0.8$  cfs,  $Q_{100}=2.2$  cfs) contains a total of 0.74 acres. This basin represents the southernmost portion of the proposed development. This basin is primarily proposed roadway and minor open space. Stormwater runoff from this basin is conveyed via proposed curb and gutter to a proposed crosspan (Design Point 40) at the intersection of Paonia Street and Galley Road. Runoff is then conveyed east by the existing curb and gutter in Galley Road to the Sand Creek Center Tributary Drainageway, per historic conditions.

Sub-Basin C2 ( $Q_5=0.3$  cfs,  $Q_{100}=2.3$  cfs) contains a total of 0.80 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

Sub-Basin D1 ( $Q_5=0.7$  cfs,  $Q_{100}=2.6$  cfs) contains a total of 0.95 acres and represents the northern most portion of Paonia Street and the site. This basin is comprised primarily of proposed roadway and open space. Runoff from this basin is conveyed via emergency overflow channel to the Sand Creek Center Tributary Drainageway (Design Point 42) per historic conditions. See the *Sand Creek-Center Tributary Channel Analysis Report for Solace Apartments*, prepared by JR Engineering October 15<sup>th</sup>, 2020 for overflow channel details.

Sub-Basin F1 ( $Q_5=2.2$  cfs,  $Q_{100}=4.7$  cfs) contains a total of 0.92 acres and represents the northwestern most portion of the Pond A tributary. This basin is comprised primarily of future parking areas, open space, and a future building. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 1). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F2 ( $Q_5=0.5$  cfs,  $Q_{100}=1.0$  cfs) contains a total of 0.14 acres and represents the future parking spaces along the drive aisle of the northernmost site access location. This basin is comprised solely of future parking. Runoff from this basin will be captured by the existing storm sewer infrastructure (Design Point 4). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond,

the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F3 ( $Q_5=2.1$  cfs,  $Q_{100}=4.4$  cfs) contains a total of 0.73 acres and represents the eastern portion of the future parking spaces along the north property line of the site. This basin is comprised primarily of future parking and open space. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 3). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F4 ( $Q_5=0.8$  cfs,  $Q_{100}=2.3$ . cfs) contains a total of 0.68 acres and represents a portion of the Phase 2 improvements located in the center of the site. This basin is comprised primarily of future open space and a future building. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 7). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond A. The proposed Pond A has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.2.

Sub-Basin F5 ( $Q_5$ =5.7 cfs,  $Q_{100}$ =14.7 cfs) contains a total of 3.88 acres and represents the western portion of the future parking spaces along the north property line of the site, the future buildings on the northwest portion of the site, and the open space associated with these improvements. This basin is comprised primarily of future parking, future buildings, and open space. Runoff from this basin will be captured by future storm sewer infrastructure (Design Point 3.0). The proposed storm sewer infrastructure for the Phase 1 improvements have been sized to account for the future flows from this sub-basin. The future flows have also been analyzed in the Storm CAD model to ensure ultimate build out conditions have been accounted for. Runoff from this sub-basin will ultimately outfall into the proposed onsite Pond B. The proposed Pond B has also been sized to account for these future flows. From the detention pond, the treated flows are then released directly into the Sand Creek Center Tributary Drainageway below historic rates at Design Point 5.3.

Sub-Basin F6 ( $Q_5=0.2$  cfs,  $Q_{100}=1.0$  cfs) contains a total of 0.35 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

Sub-Basin F7 ( $Q_5=0.2$  cfs,  $Q_{100}=1.5$  cfs) contains a total of 0.53 acres. This basin represents the westernmost portion of the proposed Phase 1 development. This basin is solely comprised of open space. Stormwater runoff from this basin follows historic drainage patterns and sheet flows offsite (Design Point 41).

All calculations and stormwater routing can be found in Appendix B.

### Existing Major Drainageway – Sand Creek

The Sand Creek channel conveys an existing 820-1100 cfs along the sites eastern property line. In order to maintain the drainage patterns on the site, 2 detention ponds have been proposed to release developed flows, at or below historic rates. Based on the results of the Sand Creek - Center Tributary Channel Analysis Report for Solace Apartments, prepared by JR Engineering in May 2020, the existing channel sections will need protection from erosion as a result of the Solace development. This report analyzed the existing conditions to ensure that the Sand Creek channel is stable and velocities do not exceed allowable limits. Based on the results of this report, it was found that the channel in its current conditions is inadequate, as velocities in the channel exceeded allowable limits and overtopping occurs at the Galley Road. The report recommended several improvements to ensure channel stability, including channel lining such as riprap or concrete to protect from the high velocities, widening the channel to increase capacity and decrease velocity & adding check/ drop structures to reduce velocities. The report also indicates that improvements will be necessary to address the overtopping at the Galley Road crossing. An existing overflow structure is currently in place to convey any overtopping flows, but does not have adequate capacity. Analysis of the proposed improvements to the channel can be found in the Sand Creek Center Tributary Channel Improvements Letter. Channel hydraulic analysis sheets are presented in Appendix B of the aforementioned report and Channel Plans for the proposed improvements can be found in Appendix E. A drainage map for the Solace site can be found in Appendix E.

# DRAINAGE DESIGN CRITERIA

### **Development Criteria Reference**

Storm drainage analysis and design criteria for the project were taken from the "*City of Colorado Spring/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

## Hydrologic Criteria

All hydrologic data was obtained from the "El Paso Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Rational Method calculations were prepared, in accordance with

Chapter 6, Section 3.0 of the EPCDCM, for the sub-basins that directly impact the sizing of the proposed storm sewer outfalls. Rational method calculations are presented in Appendix B.

Mile High Flood District's MHFD-Detention, Version 4.03 workbook was used for pond sizing. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Pond sizing spreadsheets are presented in Appendix C.

# Hydraulic Criteria

GeoHECRAS was used as the primary analysis method for the site in the *Sand Creek – Center Tributary Channel Analysis Report for Solace Apartments* and the *Sand Creek Center Tributary Channel Improvements Letter*. GeoHECRAS was used to model existing flows within the Sand Creek Drainageway in its existing and proposed conditions. This model was used to verify flood plains and analyze any overtopping that may occur within the project site. The 100-year water surface profiles for the model were analyzed form the north property line of the site to the area just south of the Galley Road Crossing.

Using StormCAD V8i, a modeling program for stormwater drainage, the hydraulic grade lines and energy grade lines were determined for the storm sewer network. Manhole and pipe losses for the model were obtained from the *Urban Storm Drainage Criteria Manual*, Mile High Flood District. Model results for the project site have been included in Appendix B.

# DRAINAGE FACILITY DESIGN

# **General Concept**

The proposed stormwater conveyance system was designed to convey the developed Solace runoff to two proposed full spectrum water quality and detention ponds via private storm sewer. The proposed pond bottoms are approximately 1.5 feet higher than the existing channel bottom. This allows adequate drainage from the ponds to outfall into the channel without the need for backflow prevention measures. The proposed ponds were also designed to release at less than historic rates to minimize adverse impacts downstream. Treated water will outfall directly into the Sand Creek Drainageway, where it will eventually outfall into Fountain Creek. The current site will be constructed in 2 phases. Both of the proposed ponds will be designed and constructed with the Phase 1 improvements along with the storm sewer within Paonia Street. Proposed drainage maps are presented in Appendix E, showing locations of the pond and channel outfall locations and improvements.

# Specific Details

### Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step

process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is a proposed multi-family development with open spaces and lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes.

Step 2, Stabilize Drainageways: Solace utilizes private storm sewer throughout the project site. This private storm sewer directs the on-site development flows to the multiple detention ponds within the project that release at or below historic rates into the Sand Creek Drainageway. Sand Creek (Center Tributary) Drainageway is stabilized downstream of the development, however additional stabilization measures shall be implemented to prevent any negative impacts to the drainageway. Drop structures have been added in order to reduce the slope of the channel. The channel shall also utilize concrete paving to avoid any erosion of the channel along the site.

Step 3, Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV in multiple full spectrum water quality and detention ponds that are designed per current El Paso County drainage criteria for Extended Detention Basins (EDB). These ponds will facilitate pollutant removal for the site, while also reducing peak stormwater rates into the Sand Creek Drainageway.

Step 4, Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. However, a site specific storm water quality and erosion control plan and narrative have been prepared in conjunction with this final drainage report. Site specific temporary source control BMPs as well as permanent BMP's are detailed in this plan and narrative to protect receiving waters.

### Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full spectrum water quality and detention are provided for all developed basins. Outlet structure release rates shall be limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities. Complete pond and outlet structure designs can be found in the appendix C. See Table 3 below for the proposed pond parameters.

| Tributary<br>Sub-Basin | Pond<br>Name | Tributary<br>Acres | Comp.<br>%<br>Imperv. | WQ<br>Volume<br>(ac-ft) | Total<br>Detention<br>Volume<br>(ac-ft) | Provided<br>Volume<br>(ac-ft) |
|------------------------|--------------|--------------------|-----------------------|-------------------------|-----------------------------------------|-------------------------------|
| А                      | POND A       | 7.89               | 49.43                 | 0.135                   | 0.732                                   | 1.292                         |
| В                      | POND B       | 17.50              | 40.6                  | 0.264                   | 1.412                                   | 2.659                         |

Table 3: Pond Summary

Per Section I.7.1.B.7 of the ECM – Stromwater Quality Policy and Procedures, sites with land disturbance to undeveloped land (land with no human-made structures such as buildings or pavement) that will remain undeveloped after the site, may be excluded from the water quality requirements set for in Section 1.7. Per this section, we respectfully request that Basins C2, F6, and F7 be excluded from permanent stormwater quality management. Due to existing topography and design constraints, Basins C1 and D1 could not be captured and routed to a permanent full spectrum water quality and detention pond. Per Section I.7.1.C.1 of the ECM – Stormwater Quality Policy and Procedures, the County may exclude up to 20%, not to exceed 1 acre, of the applicable development site, from the WQCV standard. Basin C1 & D1 contain approximately 0.32 acres of pavement, equal to approximately 1.11% of the total development site. Per this section, we respectfully request that Basin C1 & D1 be excluded from the permanent stromwater quality management.

### Erosion Control Plan

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted with each Final Drainage Report. The Erosion Control Plan for Solace has been submitted with this report.

### **Operation & Maintenance**

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within the any platted County ROW will be owned and maintained by El Paso County. All proposed drainage structures within the property or tracts will be owned and maintained by the property owner. Vegetation in the natural and improved portions of Sand Creek Drainageway is the responsibility of El Paso County. This includes all mowing, seeding and weed control activities. An Inspection & Maintenance Plan has been submitted concurrently with this report that details the required maintenance activities and intervals to ensure proper function of all stormwater infrastructure in the future. The full spectrum detention ponds will be owned & maintained by the property owner.

### Drainage & Bridge Fees

The site lies within the Sand Creek Drainage Basin.

| 202                      | 1 DRAINAGE AN                   | ID BRIDGE FEES – So           | olace Apartn              | nents                |
|--------------------------|---------------------------------|-------------------------------|---------------------------|----------------------|
| Impervious<br>Acres (ac) | Drainage Fee<br>(Per Imp. Acre) | Bridge Fee<br>(Per Imp. Acre) | Solace<br>Drainage<br>Fee | Solace<br>Bridge Fee |
| 11.67                    | \$20,387                        | \$8,339                       | \$237,916                 | \$97,316             |

The Solace development will receive full credit for any channel improvements indicated in the Sand Creek DBPS. From the Sand Creek DBPS, the channel improvements estimated for this reach of the tributary was estimated to be \$323,500. The table regarding these costs can be found in the Appendix. From the *Sand Creek (Center Tributary) Channel Analysis, by* JR Engineering, the estimated channel improvements will cost \$554,950. Per the Sand Creek Drainage Basin Planning Study, the Center Tributary has proposed crossing improvements at Terminal Avenue and Omaha

Boulevard. Both of these crossing were estimated to be \$72,000. Crossing improvements were also proposed at W. Frontage Road for \$106,200, US 24 Bypass for \$211,500, E. Frontage Road for \$84,600, Bijou Street for \$84,600, Platte Avenue for \$169,200, & Galley Road for \$90,000. These estimates provide costs for the storm sewer required to replace the existing infrastructure at these locations. The Galley Road crossing estimate reflects upsizing the existing culverts to 5'x 8' concrete box structures. These estimates can be found in Appendix D. Based on these estimated costs, it is presumed that no drainage basin fees will be necessary.

#### **Construction Cost Opinion**

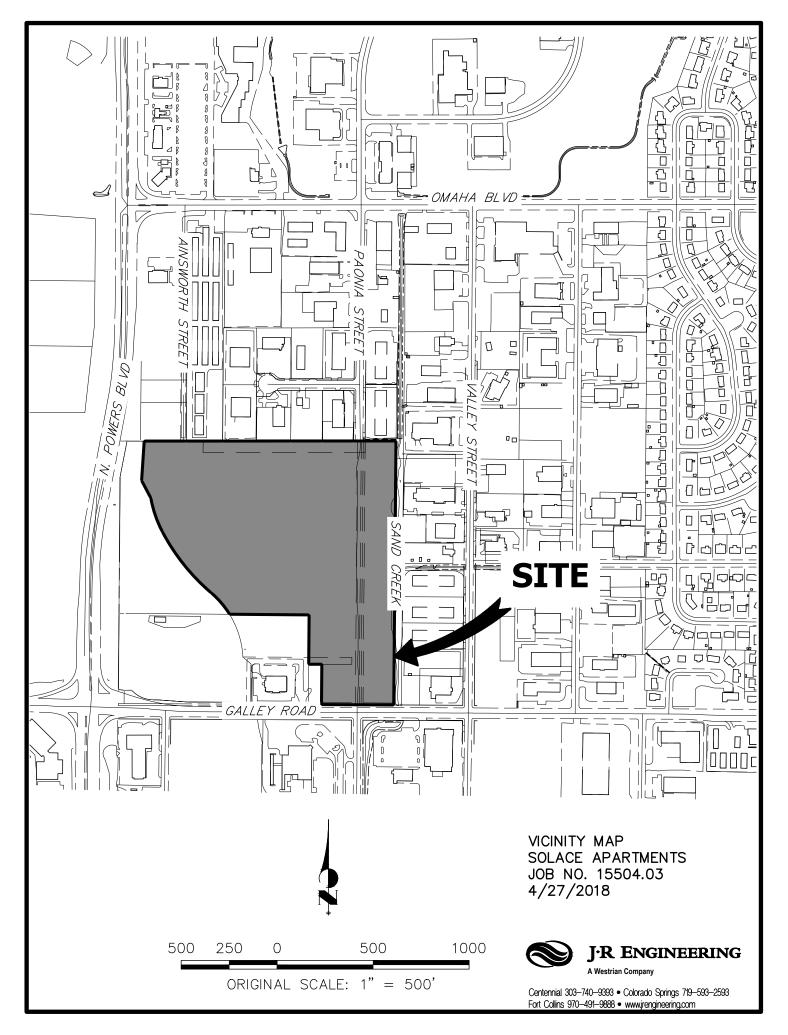
El Paso County specifies a cost estimate of proposed drainage facility improvements be submitted with the Final Drainage Report. A construction cost opinion for both public and private drainage improvements have been provided below. Please note that the following cost estimate does not include channel improvements.

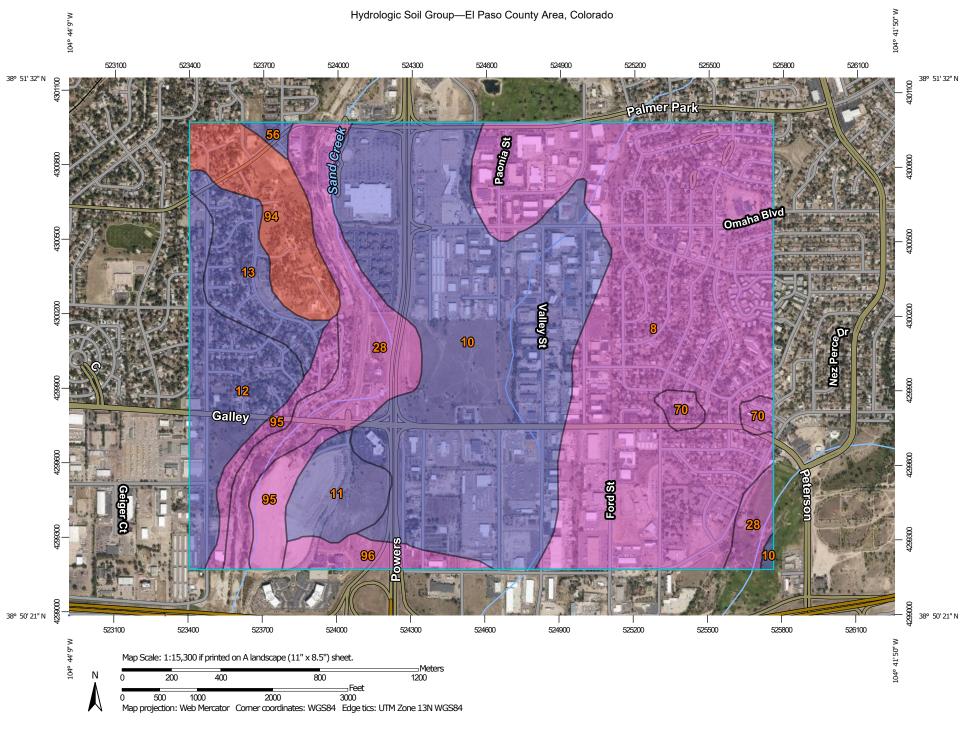
| PUBLIC DRAINAGE FACILITIES     |            |             |                |                  |
|--------------------------------|------------|-------------|----------------|------------------|
| Item                           | Quantity   | Unit        | Unit<br>Price  | Extended<br>Cost |
| 18" RCP                        | 93         | LF          | \$65.00        | \$6,045.00       |
| 24" RCP                        | 41         | LF          | \$78.00        | \$3,198.00       |
| 36" RCP                        | 188        | LF          | \$120.00       | \$22,560.00      |
| 42" RCP                        | 31         | LF          | \$160.00       | \$4,960.00       |
| 5' Type R Inlet                | 2          | EA          | \$6,200.00     | \$12,400.00      |
| 10' Type R Inlet               | 4          | EA          | \$7,600.00     | \$30,400.00      |
| 15' Type R Inlet               | 2          | EA          | \$12,000.00    | \$24,000.00      |
| Storm Sewer Manhole (Box Base) | 2          | EA          | \$11,627.00    | \$23,254.00      |
|                                |            |             | Sub-Total      | \$126,817.00     |
|                                | 10% Eng. A | and Conting | ency           | \$12,681.70      |
|                                |            |             | Grand<br>Total | \$139,498.70     |

| PRIVATE DRAINAGE FACILITIES     |            |            |                |                  |
|---------------------------------|------------|------------|----------------|------------------|
| Item                            | Quantity   | Unit       | Unit<br>Price  | Extended<br>Cost |
| 18" RCP                         | 1,254      | LF         | \$65.00        | \$81,510.00      |
| 24" RCP                         | 763        | LF         | \$78.00        | \$59,514.00      |
| 30" RCP                         | 464        | LF         | \$97.00        | \$45,008.00      |
| 36" RCP                         | 327        | LF         | \$120.00       | \$39,240.00      |
| 42" RCP                         | 44         | LF         | \$160.00       | \$7,040.00       |
| 18" FES                         | 2          | EA         | \$390.00       | \$780.00         |
| 24" FES                         | 1          | EA         | \$468.00       | \$468.00         |
| 5' Type R Inlet                 | 8          | EA         | \$6,159.00     | \$49,274.00      |
| Type 13 Valley Inlet            | 7          | EA         | \$4,640.00     | \$32,480.00      |
| Storm Sewer Manhole (Slab Base) | 18         | EA         | \$6,395.00     | \$115,110.00     |
| Storm Sewer Manhole (Box Base)  | 3          | EA         | \$11,627.00    | \$34,881.00      |
| Pond Grading                    | 3,682      | CY         | \$20.00        | \$73,640.00      |
| Pond Spillway                   | 2          | EA         | \$7,500.00     | \$15,000.00      |
| Pond Outlet Structure           | 2          | EA         | \$25,000.00    | \$50,000.00      |
| Pond Forebay                    | 4          | EA         | \$12,000.00    | \$48,000.00      |
| 2' Concrete Trickle Channel     | 728        | LF         | \$75.00        | \$54,600.00      |
| Maintenance Trail (Asphalt)     | 2486       | SY         | \$90.00        | \$223,740.00     |
| Rip Rap                         | 198        | СҮ         | \$112.00       | \$22,176.00      |
|                                 |            |            | Sub-Total      | \$952,461.00     |
|                                 | 10% Eng. A | And Contin | gency          | \$95,246.10      |
|                                 |            |            | Grand<br>Total | \$1,047,707.10   |

# SUMMARY

The proposed development remains consistent with pre-development drainage conditions with the construction of the recommended drainage improvements, including storm sewer, detention ponds and existing drainageways. The proposed development will not adversely affect the offsite major drainageways or surrounding development. In order to safely convey flows through the Sand Creek Drainageway, channel improvements will be necessary to ensure channel stability and prevent channel degradation. Concrete paving will be required to armor the channel and stabilize the slopes during a major storm event. These improvements will ensure the drainageway functions properly as

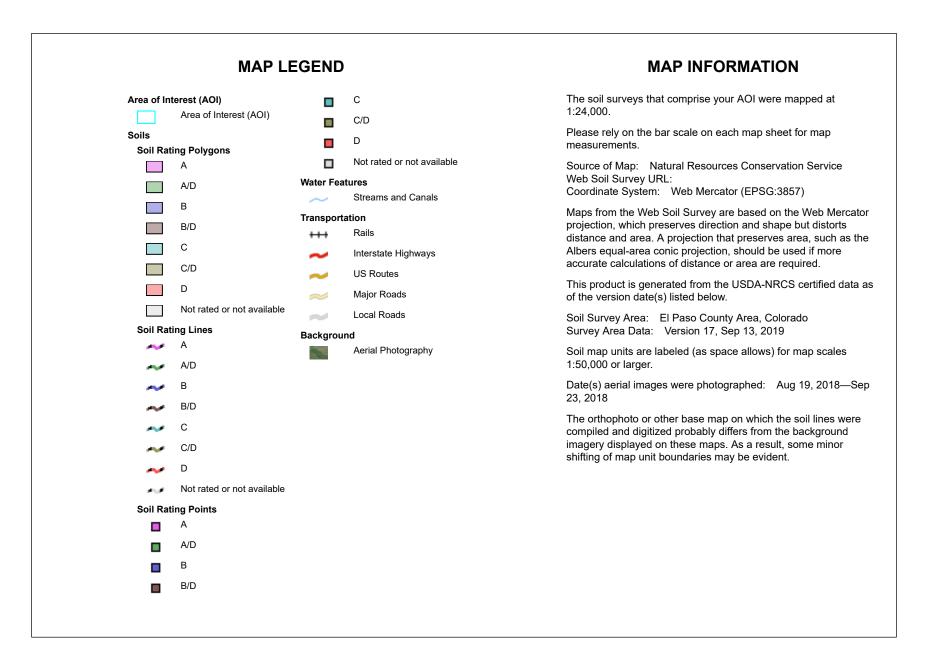

a primary drainage conveyance system for the Solace Apartments. These improvements to the Sand Creek Center Tributary Drainageway are discussed in the *Sand Creek Center Tributary Channel Improvements Letter*. This report meets the latest El Paso County Drainage Criteria requirements for this site.


## **REFERENCES:**

- 1. <u>El Paso County Drainage Criteria Manual Volume 1</u>, El Paso County, CO, 1994.
- 2. <u>Urban Storm Drainage Criteria Manual Volumes 1-3</u>, Mile High Flood District, Latest Revisions.
- Flood Insurance Study- El Paso County, Colorado & Incorporated Areas Vol 7 of 8, Federal Emergency Management Agency, December 7, 2018.
- 4. Sand Creek Drainage Basin Planning Study, Kiowa Engineering, January 1993.
- 5. <u>Sand Creek Drainage Basin LOMR</u>, Federal Emergency Management Agency, May 23, 2007.
- Sand Creek Center Tributary Channel Analysis Report for Solace Apartments, JR Engineering, May, 2020
- 7. Preliminary Drainage Report for Solace Apartments, JR Engineering, September 3, 2020
- 8. <u>El Paso County Engineering Criteria Manual</u>, El Paso County, Latest Revision (2020)
- 9. <u>City of Colorado Springs Design Criteria Manual Volume 1</u>, City of Colorado Springs, Latest Revision (2014)

# APPENDIX A

# FIGURES AND EXHIBITS






USDA Natural Resources

Conservation Service

4/14/2020 Page 1 of 4



# Hydrologic Soil Group

| Map unit symbol          | Map unit name                                                  | Rating | Acres in AOI | Percent of AOI |
|--------------------------|----------------------------------------------------------------|--------|--------------|----------------|
| 8                        | Blakeland loamy sand, 1<br>to 9 percent slopes                 | A      | 373.7        | 35.4%          |
| 10                       | Blendon sandy loam, 0<br>to 3 percent slopes                   | В      | 321.4        | 30.5%          |
| 11                       | Bresser sandy loam,<br>cool, 0 to 3 percent<br>slopes          | В      | 31.9         | 3.0%           |
| 12                       | Bresser sandy loam,<br>cool, 3 to 5 percent<br>slopes          | В      | 69.8         | 6.6%           |
| 13                       | Bresser sandy loam,<br>cool, 5 to 9 percent<br>slopes          | В      | 41.4         | 3.9%           |
| 28                       | Ellicott loamy coarse<br>sand, 0 to 5 percent<br>slopes        | A      | 96.1         | 9.1%           |
| 56                       | Nelson-Tassel fine<br>sandy loams, 3 to 18<br>percent slopes   | В      | 3.7          | 0.3%           |
| 70                       | Pits, gravel                                                   | A      | 10.3         | 1.0%           |
| 94                       | Travessilla-Rock outcrop<br>complex, 8 to 90<br>percent slopes | D      | 51.5         | 4.9%           |
| 95                       | Truckton loamy sand, 1<br>to 9 percent slopes                  | A      | 35.7         | 3.4%           |
| 96                       | Truckton sandy loam, 0<br>to 3 percent slopes                  | A      | 19.7         | 1.9%           |
| Totals for Area of Inter | rest                                                           |        | 1,055.2      | 100.0%         |

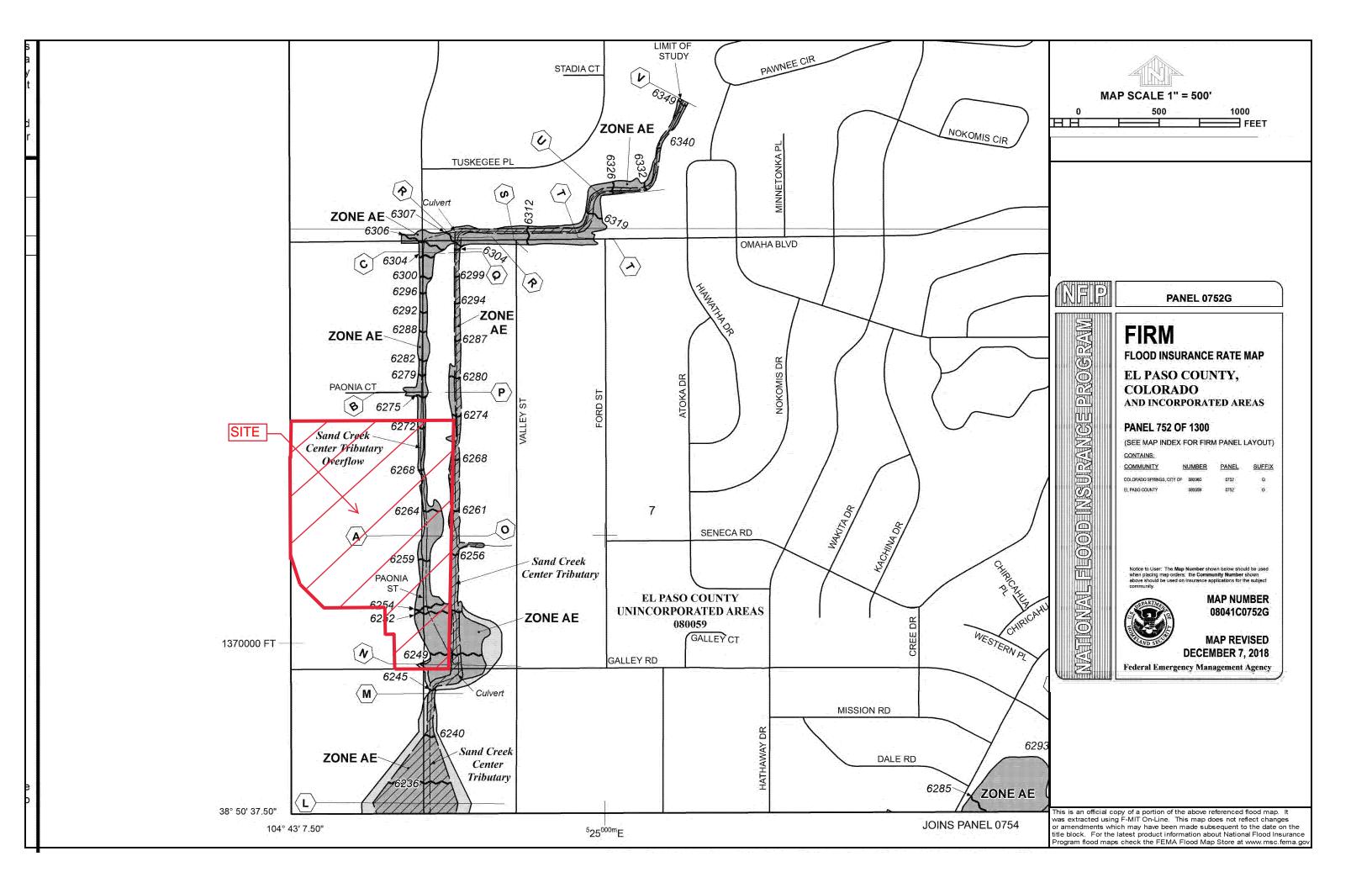
# Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.


Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

## **Rating Options**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher



| <b>NOTES TO USERS</b><br>This map is for use in administering the National Flood Insurance Program. It does<br>not necessarily identify all areas subject to flooding, particularly from local drainage<br>sources of small size. The <b>community map repository</b> should be consulted for<br>possible updated or additional flood hazard information.                                                                                                                                                                                                                                                                                                                                                                                                   | -1(                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| To obtain more detailed information in areas where <b>Base Flood Elevations</b> (BFEs) and/or <b>floodways</b> have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management. | 38° 52' 30.00<br><b>ZONE AE</b><br>6371<br>1380000 FT |
| <b>Coastal Base Flood Elevations</b> shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.                                                                                                                                                                                                                            |                                                       |
| Boundaries of the <b>floodways</b> were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.                                                                                                                                                                                                                                                                                                                                                                                             |                                                       |
| Certain areas not in Special Flood Hazard Areas may be protected by <b>flood control structures</b> . Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                       |
| The <b>projection</b> used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The <b>horizontal datum</b> was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                       |

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

differences in map features across jurisdiction boundaries. These differences do not

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

affect the accuracy of this FIRM.

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

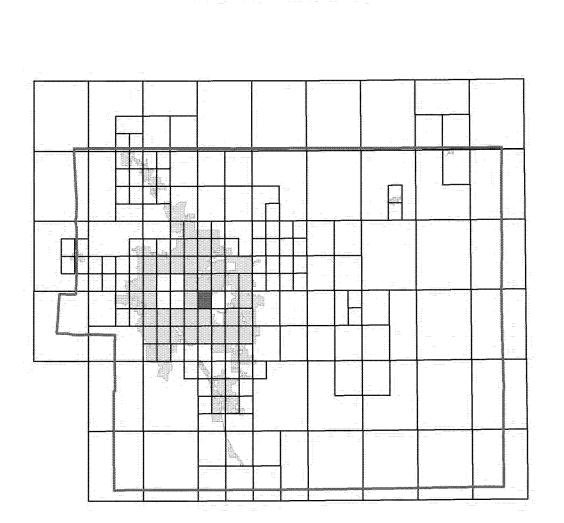
Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile baselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.


If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip. El Paso County Vertical Datum Offset Table

Vertical Datum Offset (ft)

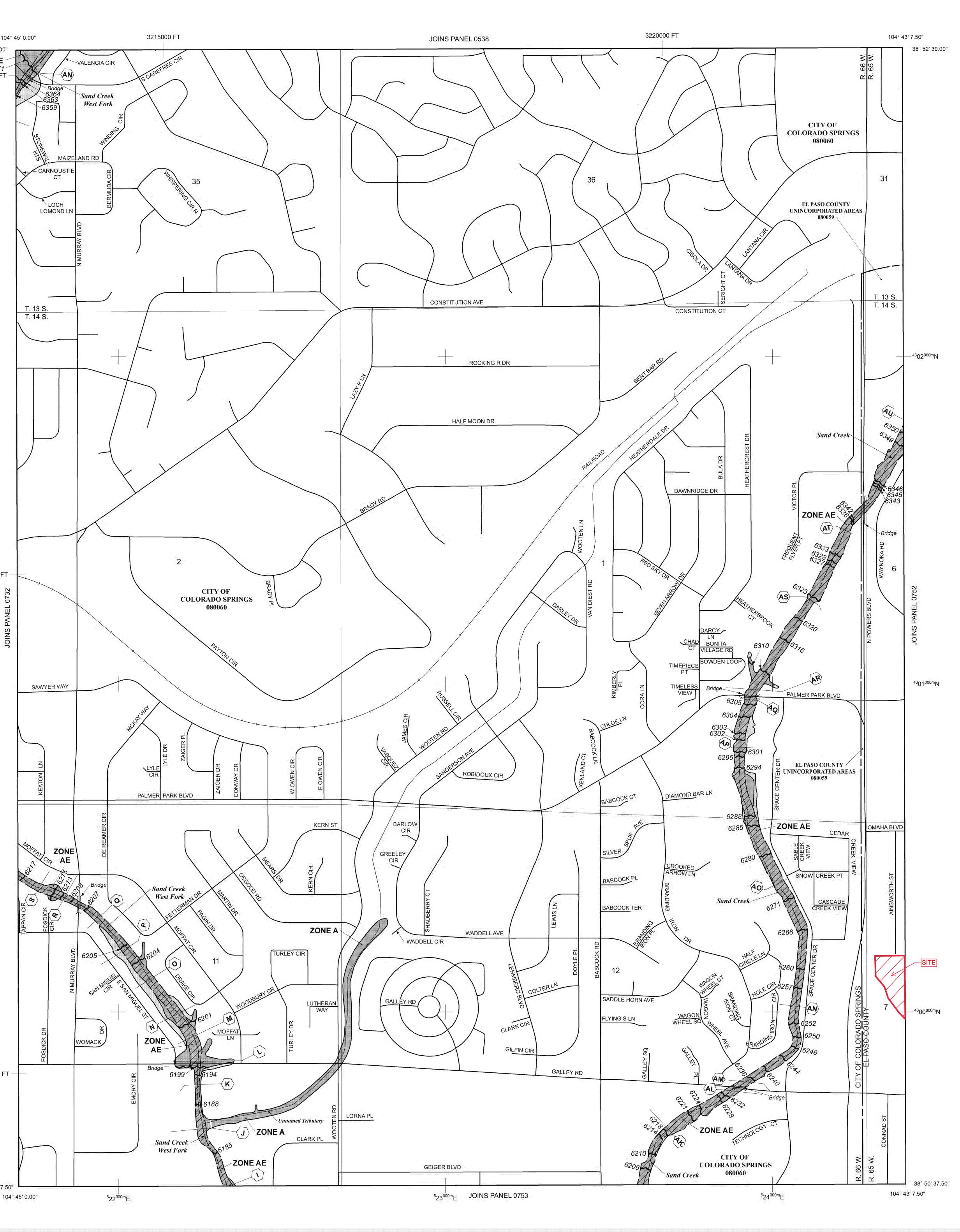
REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

Panel Location Map

Flooding Source



This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).




Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

1370000 FT

1375000 FT

104° 45' 0.00"



|                                                                                          | <u></u>                                                                                                                                     | LEGEND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                          |                                                                                                                                             | FLOOD HAZARD AREAS (SFHAS) SUBJECT TO<br>ON BY THE 1% ANNUAL CHANCE FLOOD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| that has a 1%<br>Hazard Area<br>Special Flood                                            | 6 chance of be<br>is the area sub<br>Hazard include                                                                                         | d (100-year flood), also known as the base flood, is the flood<br>ing equaled or exceeded in any given year. The Special Flood<br>bject to flooding by the 1% annual chance flood. Areas of<br>a Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood<br>e elevation of the 1% annual chance flood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ZONE A<br>ZONE AE                                                                        | No Base Flood                                                                                                                               | d Elevations determined.<br>levations determined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ZONE AH                                                                                  |                                                                                                                                             | s of 1 to 3 feet (usually areas of ponding); Base Flood                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ZONE AO                                                                                  |                                                                                                                                             | of 1 to 3 feet (usually sheet flow on sloping terrain); average mined. For areas of alluvial fan flooding, velocities also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ZONE AR                                                                                  | Special Flood<br>flood by a floo<br>indicates that                                                                                          | Hazard Area Formerly protected from the 1% annual chance<br>od control system that was subsequently decertified. Zone AR<br>t the former flood control system is being restored to provide<br>om the 1% annual chance or greater flood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ZONE A99                                                                                 | Area to be p<br>protection s                                                                                                                | protected from 1% annual chance flood by a Federal flood<br>system under construction; no Base Flood Elevations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ZONE V                                                                                   | determined.<br>Coastal flood<br>Elevations det                                                                                              | l zone with velocity hazard (wave action); no Base Flood<br>termined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| ZONE VE                                                                                  | Coastal flood<br>Elevations det                                                                                                             | d zone with velocity hazard (wave action); Base Flood<br>termined.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                          |                                                                                                                                             | Y AREAS IN ZONE AE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| kept free of                                                                             |                                                                                                                                             | l of a stream plus any adjacent floodplain areas that must be<br>so that the 1% annual chance flood can be carried without<br>I heights.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                          | OTHER FLC                                                                                                                                   | OOD AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ZONE X                                                                                   | average dept                                                                                                                                | % annual chance flood; areas of 1% annual chance flood with<br>ths of less than 1 foot or with drainage areas less than 1<br>and areas protected by levees from 1% annual chance flood.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                          | OTHER ARI                                                                                                                                   | ne en el ser en la secte de la secte d<br>La secte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| ZONE X                                                                                   |                                                                                                                                             | ined to be outside the 0.2% annual chance floodplain.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                          |                                                                                                                                             | h flood hazards are undetermined, but possible. BARRIER RESOURCES SYSTEM (CBRS) AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                          |                                                                                                                                             | SE PROTECTED AREAS (OPAs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| CBRS areas a                                                                             |                                                                                                                                             | ormally located within or adjacent to Special Flood Hazard Areas.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                          |                                                                                                                                             | Floodplain boundary<br>Floodway boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                          |                                                                                                                                             | Zone D Boundary                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                          |                                                                                                                                             | CBRS and OPA boundary<br>Boundary dividing Special Flood Hazard Areas of different Base                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| ~~ 513                                                                                   | ~~ I                                                                                                                                        | Flood Elevations, flood depths or flood velocities.<br>Base Flood Elevation line and value; elevation in feet*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| (EL 987                                                                                  | · · · · · · · · · · · · · · · · · · ·                                                                                                       | Base Flood Elevation value where uniform within zone;<br>elevation in feet*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Kererenced                                                                               |                                                                                                                                             | merican Vertical Datum of 1988 (NAVD 88)<br>Cross section line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| ( <u>23</u>                                                                              |                                                                                                                                             | Transect line                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 97° 07' 30<br>32° 22' 30                                                                 |                                                                                                                                             | Geographic coordinates referenced to the North American<br>Datum of 1983 (NAD 83)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <sup>42</sup> 75 <sup>000m</sup>                                                         | 'N                                                                                                                                          | 1000-meter Universal Transverse Mercator grid ticks,<br>zone 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 6000000                                                                                  | FT                                                                                                                                          | 5000-foot grid ticks: Colorado State Plane coordinate system, central zone (FIPSZONE 0502),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DY551(                                                                                   | : : )                                                                                                                                       | Lambert Conformal Conic Projection<br>Bench mark (see explanation in Notes to Users section of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DX5510                                                                                   | × t                                                                                                                                         | this FIRM panel)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| NA3 +                                                                                    | <u> </u>                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| • M1.5                                                                                   |                                                                                                                                             | River Mile                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                          | · · · · · · · · · · · ·                                                                                                                     | River Mile<br>MAP REPOSITORIES<br>efer to Map Repositories list on Map Index                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                          | Re                                                                                                                                          | MAP REPOSITORIES<br>efer to Map Repositories list on Map Index<br>EFFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                          | EFFECTI                                                                                                                                     | MAP REPOSITORIES<br>efer to Map Repositories list on Map Index<br>EFFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>IVE DATE(S) OF REVISION(S) TO THIS PANEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DECEMI                                                                                   | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are                                                                                              | MAP REPOSITORIES<br>efer to Map Repositories list on Map Index<br>EFFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DECEMI<br>Special Fi<br>For communit                                                     | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoi                                                                                  | MAP REPOSITORIES<br>efer to Map Repositories list on Map Index<br>EFFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>IVE DATE(S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>prate previously issued Letters of Map Revision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine                    | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoi<br>ty map revision<br>Table located in<br>e if flood insura                      | MAP REPOSITORIES<br>efer to Map Repositories list on Map Index<br>EFFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>IVE DATE(S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>mate previously issued Letters of Map Revision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine                    | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoi<br>ty map revision<br>Table located in<br>e if flood insura                      | MAP REPOSITORIES<br>efer to Map Repositories list on Map Index<br>EFFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>IVE DATE(S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>arate previously issued Letters of Map Revision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine                    | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoi<br>ty map revision<br>Table located in<br>e if flood insura                      | MAP REPOSITORIES<br>efer to Map Repositories list on Map Index<br>EFFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>IVE DATE(S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>mate previously issued Letters of Map Revision.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine                    | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoi<br>ty map revision<br>Table located in<br>e if flood insura                      | HAP REPOSITORIES<br>efer to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>NVE DATE(S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>are previously issued Letters of Map Revision.<br>In history prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>bod Insurance Program at 1-800-638-6620.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoi<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo  | MAP REPOSITORIES         efer to Map Repositories list on Map Index         EFFECTIVE DATE OF COUNTYWIDE         FLOOD INSURANCE RATE MAP         MARCH 17, 1997         IVE DATE(S) OF REVISION(S) TO THIS PANEL         o update corporate limits, to change Base Flood Elevations and eas, to update map format, to add roads and road names, and to urate previously issued Letters of Map Revision.         history prior to countywide mapping, refer to the Community the Flood Insurance Study report for this jurisdiction.         ance is available in this community, contact your insurance bod Insurance Program at 1-800-638-6620.         MAP SCALE 1" = 500"         0       500                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES         efer to Map Repositories list on Map Index         EFFECTIVE DATE OF COUNTYWIDE         FLOOD INSURANCE RATE MAP         MARCH 17, 1997         IVE DATE(S) OF REVISION(S) TO THIS PANEL         to update corporate limits, to change Base Flood Elevations and         to update corporate limits, to change Base Flood Elevations and         to update map format, to add roads and road names, and to         to update previously issued Letters of Map Revision.         thistory prior to countywide mapping, refer to the Community         the Flood Insurance Study report for this jurisdiction.         ance is available in this community, contact your insurance         to Insurance Program at 1-800-638-6620.         MAP SCALE 1" = 500'         0       500         1000         Image: Solution in the second in the second insurance program at 1-800-638-6620.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES         efer to Map Repositories list on Map Index         EFFECTIVE DATE OF COUNTYWIDE         FLOOD INSURANCE RATE MAP         MARCH 17, 1997         IVE DATE(S) OF REVISION(S) TO THIS PANEL         to update corporate limits, to change Base Flood Elevations and         to update corporate limits, to change Base Flood Elevations and         to update map format, to add roads and road names, and to         to update previously issued Letters of Map Revision.         thistory prior to countywide mapping, refer to the Community         the Flood Insurance Study report for this jurisdiction.         ance is available in this community, contact your insurance         to Insurance Program at 1-800-638-6620.         MAP SCALE 1" = 500'         0       500         1000         Image: Solution in the second in the second insurance program at 1-800-638-6620.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES         ter to Map Repositories list on Map Index         EFFECTIVE DATE OF COUNTYWIDE         FLOOD INSURANCE RATE MAP         MARCH 17, 1997         IVE DATE(S) OF REVISION(S) TO THIS PANEL         to update corporate limits, to change Base Flood Elevations and eas, to update map format, to add roads and road names, and to rate previously issued Letters of Map Revision.         thistory prior to countywide mapping, refer to the Community the Flood Insurance Study report for this jurisdiction.         ance is available in this community, contact your insurance bod Insurance Program at 1-800-638-6620.         MAP SCALE 1" = 500'         0       500         1000       FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES         fer to Map Repositories list on Map Index         EFFECTIVE DATE OF COUNTYWIDE         FLOOD INSURANCE RATE MAP         MARCH 17, 1997         IVE DATE(S) OF REVISION(S) TO THIS PANEL         to update corporate limits, to change Base Flood Elevations and eas, to update map format, to add roads and road names, and to are previously issued Letters of Map Revision.         thistory prior to countywide mapping, refer to the Community the Flood Insurance Study report for this jurisdiction.         ance is available in this community, contact your insurance bod Insurance Program at 1-800-638-6620.         MAP SCALE 1" = 500'         0       500         1000       FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES         ter to Map Repositories list on Map Index         EFFECTIVE DATE OF COUNTYWIDE         FLOOD INSURANCE RATE MAP         MARCH 17, 1997         IVE DATE(S) OF REVISION(S) TO THIS PANEL         to update corporate limits, to change Base Flood Elevations and eas, to update map format, to add roads and road names, and to rate previously issued Letters of Map Revision.         thistory prior to countywide mapping, refer to the Community the Flood Insurance Study report for this jurisdiction.         ance is available in this community, contact your insurance bod Insurance Program at 1-800-638-6620.         MAP SCALE 1" = 500'         0       500         1000       FEET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | APP REPOSITORIES<br>fer to Map Repositories list on Map Index.<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>IVE DATE(S) OF REVISION(S) TO THIS PANEL<br>o update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>rate previously issued Letters of Map Revision.<br>In history prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>bod Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 500 1000<br>FEET<br>0 150 300<br>PANEL 0751G<br>FIRMN<br>FLOOD INSURANCE RATE MAP<br>EL PASO COUNTY,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | AP REPOSITORIES<br>fer to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>IVE DATE(S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>rate previously issued Letters of Map Revision.<br>Thistory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>bod Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 50 100<br>FEET<br>0 150 300<br>PANEL 0751G<br>FLOOD INSURANCE RATE MAP<br>FLOOD INSURANCE RATE MAP<br>EL PASO COUNTY,<br>COLORADO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | AP REPOSITORIES<br>fer to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>NE DATE (S) OF REVISION(S) TO THIS PANEL<br>to update map format, to add roads and road names, and to<br>eas, to update map format, to add roads and road names, and to<br>eas, to update map format, to add roads and road names, and to<br>eas, to update map format, to add roads and road names, and to<br>eas, to update map format, to add roads and road names, and to<br>east outpate corporate limits, to change Base Flood Elevations and<br>east outpate corporate limits, to change Base Flood Insurance, and to<br>rate previously issued Letters of Map Revision.<br>and Insurance Study report for this jurisdiction.<br>and Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 500 1000<br>FEET<br>0 150 300<br>PANEL 0751G<br>FLOOD INSURANCE RATE MAP<br>FLOOD INSURANCE RATE MAP<br>FLOOD INSURANCE RATE MAP<br>FLOOD INSURANCE RATE MAP<br>AND INCORPORATED AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | APPREPOSITORIES<br>for to Map Repositories list on Map Index<br>SFECTIVE DATE OF COUNTYWIDE<br>flood insurANCE RATE MAP<br>MARCH 17, 1997<br>INFORMED SOF REVISION(S) TO THIS PANEL<br>to update orgonrate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>rate previously issued Letters of Map Revision.<br>Instory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>for Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 50 1000<br>FEET<br>0 150 300<br>PANEL 07511G<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>FLOOD INSURANCE RATE MAP<br>FLOOD INSURANCE RATE MAP<br>FLOOD INSURANCE RATE MAP<br>AND INCORPORATED AREAS<br>AND INCORPORATED AREAS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | APP REPOSITORIES<br>fer to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>VE DATE(S) OF REVISION(S) TO THIS PANEL<br>o update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>rate previously issued Letters of Map Revision.<br>Thistory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>and insurance Study report for this jurisdiction.<br>and insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 500 1000<br>0 FEET<br>0 100<br>0 FEET<br>0 FEET<br>0 100<br>0 FEET<br>0 FEET<br>0 100<br>0 FEET<br>0 FEET |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | APPREPOSITORIES<br>fer to Map Repositories list on Map Index.<br>EFFECTIVE DATE OF COUNTYWIDE<br>FloubinsurAnce RATE MAP<br>MARCH 17, 1997<br>IVE DATE (S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>rate previously issued Letters of Map Revision.<br>Instory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>food Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 500 1000<br>FEET<br>0 500 1000<br>METERS<br>0 150 300<br>PANEL 07511G<br>FIRMN<br>FLOOD INSURANCE RATE MAP<br>EL PASO COUNTY,<br>COLORADO<br>AND INCORPORATED AREAS<br>PANEL 751 OF 13000<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | APREPOSITORIES<br>for to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>INE DATE(S) OF REVISION(S) TO THIS PANEL<br>oupdate corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>rate previously issued Letters of Map Revision.<br>In history prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>for Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 0 100<br>FEET<br>0 150 300<br>PANEL 0751G<br>FIRMM<br>FLOOD INSURANCE RATE MAP<br>FLOOD INSURANCE RATE MAP<br>COLLORADO<br>AND INCORPORATED AREAS<br>PANEL 751 OF 1300<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT<br>CONTAINS:<br>COMMUNITY NUMBER PANEL SUFFI)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | APREPOSITORIES<br>for to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>VE DATE(S) OF REVISION(S) TO THIS PANEL<br>oupdate corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>reas, to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update corporate the community.<br>Thistory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>The Story prior to countywide mapping, refer to the Community<br>the Flood Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 50 1000<br>FEET<br>0 150 300<br>PANEL 0751G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | APREPOSITORIES<br>for to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>VE DATE(S) OF REVISION(S) TO THIS PANEL<br>oupdate corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>reas, to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update corporate the community.<br>Thistory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>The Story prior to countywide mapping, refer to the Community<br>the Flood Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 50 1000<br>FEET<br>0 150 300<br>PANEL 0751G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | APREPOSITORIES<br>for to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>VE DATE(S) OF REVISION(S) TO THIS PANEL<br>oupdate corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>reas, to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update corporate limits, to change Base Flood Elevations and<br>eas, to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update map format, to add roads and road names, and to<br>reas to update corporate the community.<br>Thistory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>The Story prior to countywide mapping, refer to the Community<br>the Flood Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500'<br>0 50 1000<br>FEET<br>0 150 300<br>PANEL 0751G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES         Beter to Map Repositories list on Map Index.         EFECTIVE DATE OF COUNTYWIDE         FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997         INSURATION OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>care previously issued Letters of Map Revision.         Instory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.         Instory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.         Instrume Program at 1-800-638-6620.         Image: Community contact your insurance<br>food Insurance Program at 1-800-638-6620.         Image: Community contact your insurance<br>food Insurance Program at 1-800-638-6620.         Image: Community contact your insurance<br>food Insurance Program at 1-800-638-6620.         Image: Community contact your insurance<br>food Insurance Program at 1-800-638-6620.         Image: Community contact your insurance<br>food Insurance Program at 1-800-638-6620.         Image: Community contact your insurance<br>food Insurance Program at 1-800-638-6620.         Image: Community contact your insurance<br>food Insurance Program at 1-800-638-6620.         Image: Contact your insurance<br>food Insurance Program at 1-800-6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | IMP REPOSITORIES         Seter to Map Repositories list on Map Index.         EFECTIVE DATE OF COUNTYWIDE         FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997         INP DATE(S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to cadr noads and road names, and to<br>eas, to update map format, to add noads and road names, and to<br>irate previously issued Letters of Map Revision.         INP DATE(S) OF REVISION(S) TO THIS PANEL<br>to update orporate limits, to cadr noads and road names, and to<br>eas, to update map format, to add noads and road names, and to<br>rate previously issued Letters of Map Revision.         INP DATE(S) OF REVISION(S) TO THIS pentity,<br>the Flood Insurance Study report for this jurisdiction.         and available in this community, contact your insurance<br>of Insurance Program at 1-800-638-6620.         PANEL 0751G         PANEL 0751G         PANEL 0751G         PANEL 0751G         PANEL 0751G         FLOOD INSURANCE RATE MAP<br>EL PASO COUNTY,<br>COLORADO<br>AND INCORPORATED AREAS         PANEL 751 OF 1300         (SEE MAP INDEX FOR FIRM PANEL LAYOUT<br>CONTAINS:         COMMUNITY       NUMBER         OMMUNITY       NUMBER         Notice to User: The Map Number shown below should be used<br>when placing map orders: the Community Number shown<br>above should be usee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES<br>feter to Map Repositories list on Map Index<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>INSTATE(S) OF REVISION(S) TO THIS PANEL<br>to update corporate limits, to change Base Flood Elevations and<br>teas, to update map format, to add mads and road names, and to<br>rate previously issued Letters of Map Revision.<br>Instory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>arce is available in this community, contact your insurance<br>sood Insurance Program at 1-800-638-6620.<br>MAP SCALE 1" = 500<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES<br>fer to Map Repositories list on Map Index.<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>INSURTE(S) OF REVISION(S) TO THIS PANEL<br>to update oroporate limits, to add markes, and to<br>rate previously issued Letters of Map Revision.<br>Instory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>of 50 100 for Teers<br>MAP SCALE 1" = 500 <sup>1</sup><br>0 50 100<br>PANEL 0751G<br>PANEL 0751G<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>EL PASO COUNTY,<br>COLORADO<br>AND INCORPORATED AREAS<br>PANEL 751 OF 1300<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT<br>CONTAINS:<br><u>OMMINITY NUMBER PANEL SUFFIN</u><br>COLORADO SPRINGS, CITY OF 00000 0731 6<br>EL PASO COUNTY 080059 0751 8<br>Notice to User: The Map Number shown below should be used<br>when placing map orders: the Community Number shown<br>above should be used on insurance applications for the subject<br>community.<br>MAP NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| DECEMI<br>Special Fl<br>For communit<br>Map History T<br>To determine<br>agent or call t | EFFECTI<br>BER 7, 2018 - to<br>lood Hazard Are<br>incorpoin<br>ty map revision<br>Table located in<br>e if flood insura<br>the National Flo | MAP REPOSITORIES<br>fer to Map Repositories list on Map Index.<br>EFECTIVE DATE OF COUNTYWIDE<br>FLOOD INSURANCE RATE MAP<br>MARCH 17, 1997<br>INSURTE(S) OF REVISION(S) TO THIS PANEL<br>to update oroporate limits, to add markes, and to<br>rate previously issued Letters of Map Revision.<br>Instory prior to countywide mapping, refer to the Community<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>the Flood Insurance Study report for this jurisdiction.<br>ance is available in this community, contact your insurance<br>of 50 100 for Teers<br>MAP SCALE 1" = 500 <sup>1</sup><br>0 50 100<br>PANEL 0751G<br>PANEL 0751G<br>FIRM<br>FLOOD INSURANCE RATE MAP<br>EL PASO COUNTY,<br>COLORADO<br>AND INCORPORATED AREAS<br>PANEL 751 OF 1300<br>(SEE MAP INDEX FOR FIRM PANEL LAYOUT<br>CONTAINS:<br><u>OMMINITY NUMBER PANEL SUFFIN</u><br>COLORADO SPRINGS, CITY OF 00000 0731 6<br>EL PASO COUNTY 080059 0751 8<br>Notice to User: The Map Number shown below should be used<br>when placing map orders: the Community Number shown<br>above should be used on insurance applications for the subject<br>community.<br>MAP NUMBER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

# APPENDIX B

# HYDROLOGIC/ HYDRAULIC CALCULATIONS

#### COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Solace (Existing Condition) El Paso County Project Name: Solace Apartments

Project No.: 25174.00 Calculated By: JBP Checked By:

Date: 6/29/20

|                 | Total        | Str   | eets (10         | 0% Impe      | rvious)            | R              | oofs (90         | % Imper      | vious)             | Light I        | ndustria         | ıl (80% Ir   | npervious)         | Unde           | eveloped         | d (2% Im     | pervious)          | Basins                  | s Total                    | <b>Basins Total</b> |
|-----------------|--------------|-------|------------------|--------------|--------------------|----------------|------------------|--------------|--------------------|----------------|------------------|--------------|--------------------|----------------|------------------|--------------|--------------------|-------------------------|----------------------------|---------------------|
| Basin ID        | Area<br>(ac) | $C_5$ | C <sub>100</sub> | Area<br>(ac) | Weighted<br>% Imp. | C <sub>5</sub> | C <sub>100</sub> | Area<br>(ac) | Weighted<br>% Imp. | C <sub>5</sub> | C <sub>100</sub> | Area<br>(ac) | Weighted<br>% Imp. | C <sub>5</sub> | C <sub>100</sub> | Area<br>(ac) | Weighted<br>% Imp. | Weigł<br>C <sub>5</sub> | nted C<br>C <sub>100</sub> | Weighted %<br>Imp.  |
|                 |              |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            |                     |
| A1              | 14.75        | 0.90  | 0.96             | 0.00         | 0.0%               | 0.73           | 0.81             | 0.00         | 0.0%               | 0.59           | 0.70             | 0.00         | 0.0%               | 0.09           | 0.36             | 14.75        | 2.0%               | 0.09                    | 0.36                       | 2.0%                |
| A2              | 3.79         | 0.90  | 0.96             | 0.00         | 0.0%               | 0.73           | 0.81             | 0.00         | 0.0%               | 0.59           | 0.70             | 0.00         | 0.0%               | 0.09           | 0.36             | 3.79         | 2.0%               | 0.09                    | 0.36                       | 2.0%                |
| A3              | 5.44         | 0.90  | 0.96             | 0.00         | 0.0%               | 0.73           | 0.81             | 0.00         | 0.0%               | 0.59           | 0.70             | 0.00         | 0.0%               | 0.09           | 0.36             | 5.44         | 2.0%               | 0.09                    | 0.36                       | 2.0%                |
| B1              | 4.84         | 0.90  | 0.96             | 0.00         | 0.0%               | 0.73           | 0.81             | 0.00         | 0.0%               | 0.59           | 0.70             | 0.00         | 0.0%               | 0.09           | 0.36             | 4.84         | 2.0%               | 0.09                    | 0.36                       | 2.0%                |
| OS1             | 17.73        | 0.90  | 0.96             | 0.00         | 0.0%               | 0.73           | 0.81             | 0.00         | 0.0%               | 0.59           | 0.70             | 17.73        | 80.0%              | 0.09           | 0.36             | 0.00         | 2.0%               | 0.59                    | 0.70                       | 80.0%               |
| OS2             | 8.93         | 0.90  | 0.96             | 0.00         | 0.0%               | 0.73           | 0.81             | 0.00         | 0.0%               | 0.73           | 0.81             | 8.93         | 90.0%              | 0.09           | 0.36             | 0.00         | 2.0%               | 0.73                    | 0.81                       | 90.0%               |
|                 |              |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            |                     |
|                 |              |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            |                     |
|                 |              |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            |                     |
|                 |              |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            |                     |
|                 |              |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            |                     |
|                 |              |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            |                     |
|                 |              |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            |                     |
| TOTAL (A1-B1)   | 28.82        |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            | 2.0%                |
| TOTAL (OS1-OS3) | 26.66        |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            | 83.3%               |
| TOTAL           | 55.48        |       |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                |                  |              |                    |                         |                            | 41.1%               |

#### **STANDARD FORM SF-2** TIME OF CONCENTRATION

Subdivision: Solace (Existing Condition)

Location: El Paso County

#### Project Name: Solace Apartments

Project No.: 25174.00

Calculated By: JBP Checked By:

Date: 6/29/20

|       |       | SUB-I       | BASIN      |                |                  | INITI | AL/OVER           | LAND  |                |                | TRAVEL TI         | ME     |                |                      | tc CHECK    |                 |                |
|-------|-------|-------------|------------|----------------|------------------|-------|-------------------|-------|----------------|----------------|-------------------|--------|----------------|----------------------|-------------|-----------------|----------------|
|       |       | DA          | ATA        |                |                  |       | (T <sub>i</sub> ) |       |                |                | (T <sub>t</sub> ) |        | (U             | FINAL                |             |                 |                |
| BASIN | D.A.  | Hydrologic  | Impervious | C <sub>5</sub> | C <sub>100</sub> | L     | S <sub>o</sub>    | t i   | L <sub>t</sub> | S <sub>t</sub> | K                 | VEL.   | t <sub>t</sub> | COMP. t <sub>c</sub> | TOTAL       | Urbanized $t_c$ | t <sub>c</sub> |
| ID    | (ac)  | Soils Group | (%)        |                |                  | (ft)  | (%)               | (min) | (ft)           | (%)            |                   | (ft/s) | (min)          | (min)                | LENGTH (ft) | (min)           | (min)          |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |
| A1    | 14.75 | В           | 2%         | 0.09           | 0.36             | 100   | 2.4%              | 13.7  | 1119           | 2.0%           | 7.0               | 1.0    | 18.8           | 32.5                 | 1219.0      | 39.9            | 32.5           |
| A2    | 3.79  | В           | 2%         | 0.09           | 0.36             | 100   | 2.0%              | 14.5  | 611            | 1.8%           | 7.0               | 0.9    | 10.8           | 25.4                 | 711.0       | 33.8            | 25.4           |
| A3    | 5.44  | В           | 2%         | 0.09           | 0.36             | 100   | 1.8%              | 15.0  | 444            | 1.9%           | 7.0               | 1.0    | 7.7            | 22.7                 | 544.0       | 31.4            | 22.7           |
| B1    | 4.84  | В           | 2%         | 0.09           | 0.36             | 100   | 3.0%              | 12.7  | 351            | 1.2%           | 7.0               | 0.8    | 7.6            | 20.3                 | 451.0       | 31.4            | 20.3           |
| OS1   | 17.73 | В           | 80%        | 0.59           | 0.70             | 100   | 1.9%              | 7.5   | 1236           | 1.8%           | 20.0              | 2.7    | 7.7            | 15.1                 | 1336.0      | 20.0            | 15.1           |
| OS2   | 8.93  | В           | 90%        | 0.73           | 0.81             | 100   | 2.1%              | 5.2   | 415            | 1.9%           | 15.0              | 2.1    | 3.3            | 8.6                  | 515.0       | 13.0            | 8.6            |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |
|       |       |             |            |                |                  |       |                   |       |                |                |                   |        |                |                      |             |                 |                |

#### NOTES:

 $t_c = t_i + t_t$ Equation 6-2  $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$ Equation 6-3 Where: Where:  $t_c$  = computed time of concentration (minutes)  $t_i$  = overland (initial) flow time (minutes)  $C_5$  = runoff coefficient for 5-year frequency (from Table 6-4)  $L_i$  = length of overland flow (ft) ti = overland (initial) flow time (minutes)  $t_t$  = channelized flow time (minutes).  $S_o =$  average slope along the overland flow path (ft/ft). Paved areas and shallow paved swales  $t_{c} = (26 - 17i) + \frac{L_{t}}{60(14i + 9)\sqrt{S_{t}}}$  $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$ Equation 6-5 Equation 6-4 Where:  $t_c$  = minimum time of concentration for first design point when less than  $t_c$  from Equation 6-1.  $L_t =$ length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)  $S_t = \text{slope of the channelized flow path (ft/ft)}.$ 

#### Table 6-2. NRCS Conveyance factors, K Type of Land Surface Conveyance Factor, K Heavy meadow 2.5 Tillage/field 5 Short pasture and lawns 7 Nearly bare ground 10 Grassed waterway 15

Where

 $t_t$  = channelized flow time (travel time, min)  $L_t$  = waterway length (ft)  $S_o$  = waterway slope (ft/ft)  $V_t$  = travel time velocity (ft/sec) = K $\sqrt{S_o}$ K = NRCS conveyance factor (see Table 6-2).

Use a minimum te value of 5 minutes for urbanized areas and a minimum te value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

20

#### STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Solace Apartments

| Subdivision:<br>Location:<br>Design Storm: | El Pas       | o Cour   | ing Cor<br>nty | ndition       | )           |          |           |         |                                            |          |           |         |                                 |          |           | Cal                     | oject N<br>Projec<br>Iculate<br>Checke | t No.:<br>d By: | 25174<br>JBP       | 1.00        | linen          | 13          |                                                                                                                            |
|--------------------------------------------|--------------|----------|----------------|---------------|-------------|----------|-----------|---------|--------------------------------------------|----------|-----------|---------|---------------------------------|----------|-----------|-------------------------|----------------------------------------|-----------------|--------------------|-------------|----------------|-------------|----------------------------------------------------------------------------------------------------------------------------|
|                                            |              |          |                | DIRE          | CT RUI      | NOFF     |           |         | TOTAL RUNOFF STREET/SWALE PIPE TRAVEL TIME |          |           |         |                                 |          |           |                         |                                        |                 |                    |             |                |             |                                                                                                                            |
| STREET                                     | Design Point | Basin ID | Area (Ac)      | Runoff Coeff. | $t_c$ (min) | C*A (Ac) | l (in/hr) | Q (cfs) | tc (min)                                   | C*A (ac) | l (in/hr) | Q (cfs) | O <sub>street/swale</sub> (cfs) | C*A (ac) | Slope (%) | O <sub>pipe</sub> (cfs) | C*A (ac)                               | Slope (%)       | Pipe Size (inches) | Length (ft) | Velocity (fps) | $t_t$ (min) | REMARKS                                                                                                                    |
|                                            | 1            | A1       | 14.75          | 0.09          | 32.5        | 1.33     | 2.36      | 3.1     |                                            |          |           |         | 3.1                             | 1.33     | 0.7       |                         |                                        |                 |                    |             |                |             | Surface runoff from existing basin A1,<br>Surface flow into Sand Creek Drainageway at DP 1                                 |
|                                            | 2            | A2       | 3.79           |               | 25.4        |          |           |         |                                            |          |           |         | 0.9                             | 0.34     | 2.0       |                         |                                        |                 |                    |             |                |             | Surface flow offsite to the south at DP 2                                                                                  |
|                                            | 3            | A3       | 5.44           |               |             |          |           |         |                                            |          |           |         | 1.4                             | 0.49     | 2.5       |                         |                                        |                 |                    |             |                |             | Surface runoff from Basin A3<br>Surface flow offsite to the south at DP 3                                                  |
|                                            | 4            | B1       | 4.84           | 0.09          | 20.3        |          | 3.07      | 1.3     |                                            |          |           |         | 1.3                             | 0.44     | 1.0       |                         |                                        |                 |                    |             |                |             | Surface runoff from Basin B1<br>Surface flow offsite to the southwest at DP 4                                              |
|                                            | 5            | OS1      | 17.73          |               |             | 10.46    |           |         |                                            |          |           |         | 36.7                            | 10.46    | 1.78      |                         |                                        |                 |                    | 200         | 2.0            | 1.7         | Surface runoff from Basin OS1, captured by existing concrete channel at DP 5<br>Channel conveyance to Sand Creek at DP 1.1 |
|                                            | 6            | OS2      |                | 0.73          |             |          |           |         |                                            |          |           |         | 28.4                            | 6.52     | 3.2       |                         |                                        |                 |                    | 147         | 2.7            |             | Surface runoff from Basin OS2<br>diverted to swale west of site at DP 6                                                    |
|                                            | 1.0          | -        | -              | -             |             | -        | -         | -       |                                            |          |           |         |                                 |          |           |                         |                                        |                 |                    |             |                |             | 5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.                                    |
|                                            | 1.1          | -        | -              | -             |             | -        | -         | -       |                                            |          |           |         |                                 |          |           |                         |                                        |                 |                    |             |                |             | 5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.                                    |
|                                            | 1.2          | -        | -              | -             |             | -        | -         | -       |                                            |          |           |         |                                 |          |           |                         |                                        |                 |                    |             |                |             | 5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.                                    |
|                                            | 1.3          | -        | -              | -             | -           | -        | -         | -       |                                            |          |           |         |                                 |          |           |                         |                                        |                 |                    |             |                |             | 5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.                                    |
|                                            | 1.4          | -        | -              | -             | -           | -        | -         | -       |                                            |          |           |         |                                 |          |           |                         |                                        |                 |                    |             |                |             | 5-Year Flows were not analyzed as part of the LOMR for Sand Creek Center Tributary.                                        |
|                                            | 1.5          | -        | -              | -             |             | -        | -         | -       |                                            |          |           |         |                                 |          |           |                         |                                        |                 |                    |             |                |             | 5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.                                    |
|                                            | 1.6          | -        | -              | -             |             | -        | -         | -       |                                            |          |           |         |                                 |          |           |                         |                                        |                 |                    |             |                |             | 5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.                                    |

Street and Pipe C\*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

#### STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

|               | Solace (Existing Condition) |
|---------------|-----------------------------|
|               | El Paso County              |
| Design Storm: | 100-Year                    |

Project Name: Solace Apartments Project No.: 25174.00 Calculated By: Checked By: Date: 6/29/20

|             |              |          |           | DIR           | FCT R                | UNOFF    |           |         | 1        | OTAL     | RUNO      | FF      | STRE                |          | PIPE      |                         |     |       | /EL TIN            | ЛF          |                |                      |                                                                                                                                                   |
|-------------|--------------|----------|-----------|---------------|----------------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------|----------|-----------|-------------------------|-----|-------|--------------------|-------------|----------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| Description | Design Point | Basin ID | Area (ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | Ostreet/swale (CfS) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | ac) | (%) e | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                                                                                           |
|             | 1            | A1       | 14.75     | 0.36          | 32.5                 | 5.31     | 3.96      | 21.0    |          |          |           |         | 21.0                | 5.31     | 0.7       |                         |     |       |                    |             |                |                      | Surface runoff from existing basin A1,<br>Surface flow into Sand Creek Drainageway at DP 1                                                        |
|             | 2            | A2       | 3.79      | 0.36          |                      | 1.36     | 4.59      | 6.2     |          |          |           |         |                     | 1.36     |           |                         |     |       |                    |             |                |                      | Surface runoff from Basin A2<br>Surface flow offsite to the south at DP 2                                                                         |
|             | 3            | A3       | 5.44      | 0.36          | 22.7                 | 1.96     | 4.87      | 9.5     |          |          |           |         |                     | 1.96     |           |                         |     |       |                    |             |                |                      | Surface runoff from Basin A3<br>Surface flow offsite to the south at DP 3                                                                         |
|             | 4            | B1       | 4.84      | 0.36          | 20.3                 | 1.74     | 5.15      | 9.0     |          |          |           |         |                     | 1.74     |           |                         |     |       |                    |             |                |                      | Surface runoff from Basin B1<br>Surface flow offsite to the southwest at DP 4                                                                     |
|             | 5            | OS1      | 17.73     | 0.70          | 15.1                 | 12.41    | 5.89      | 73.1    |          |          |           | 573.1   | 573.1               |          | 1.78      |                         |     |       |                    | 200         |                |                      | Surface runoff from Basin OS1 & DP 1.4, captured by existing concrete channel at DP 5<br>Street conveyance to DP 5, flow split to DP 1.5 & DP 1.6 |
|             | 6            | OS2      | 8.93      | 0.81          | 8.6                  | 7.23     | 7.32      | 52.9    |          |          |           |         |                     | 7.23     | 3.2       |                         |     |       |                    | 147         | 2.7            |                      | Surface runoff from Basin OS2<br>diverted to swale west of site at DP 6                                                                           |
|             | 1.0          | -        | -         | -             |                      | -        | -         | 820.0   |          |          |           |         | 820.0               |          |           |                         |     |       |                    |             |                |                      | Flow taken directly from the Sand Creek Drainage Basin Planning Study                                                                             |
|             | 1.1          | -        | -         |               |                      | -        | -         | 820.0   |          |          |           |         | 820.0               |          |           |                         |     |       |                    |             |                |                      | Flow taken directly from the Sand Creek Drainage Basin Planning Study                                                                             |
|             | 1.2          | -        | -         |               | -                    | -        | -         | 1037.0  |          |          |           |         | 1037.0              |          |           |                         |     |       |                    |             |                |                      | Flow taken directly from the Sand Creek Drainage Basin Planning Study                                                                             |
|             | 1.3          | -        | -         |               | -                    | -        | -         | 1100.0  |          |          |           |         | 1100.0              |          |           |                         |     |       |                    |             |                |                      | Flow taken directly from the Sand Creek Drainage Basin Planning Study                                                                             |
|             | 1.4          | -        | -         | -             |                      | -        |           | 500.0   |          |          |           |         | 500.0               |          |           |                         |     |       |                    |             |                |                      | Flow taken directly from the LOMR for Sand Creek Center Tributary<br>Street conveyance to DP 5                                                    |
|             | 1.5          |          |           |               |                      |          |           |         |          |          |           | 244.0   | 244.0               |          |           |                         |     |       |                    |             |                |                      | Second Dralangeway<br>Channel conveyance to Sand Creek at DP 1                                                                                    |
| Notes:      | 1.6          |          |           |               |                      |          |           |         |          |          |           | 42.1    | 42.1                |          |           |                         |     |       |                    |             |                |                      | Existing Concrete Channel<br>Channel conveyance to Sand Creek at DP 1.1                                                                           |

Notes: Street and Pipe C\*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

# COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Solace El Paso County Project Name: Solace Apartments

Project No.: 25174.00 Calculated By: AAM Checked By:

Date: 3/12/21

|           | Total | Str            | eets (10         | 0% Impe | rvious)  | R              | oofs (90         | % Imper | /ious)   | Light I        | ndustria         | l (80% In | npervious) | L              | awns (0°         | % Imper\ | vious)   | Basins         | s Total          | Basins Total |
|-----------|-------|----------------|------------------|---------|----------|----------------|------------------|---------|----------|----------------|------------------|-----------|------------|----------------|------------------|----------|----------|----------------|------------------|--------------|
| Basin ID  | Area  | C <sub>5</sub> | C <sub>100</sub> | Area    | Weighted | C <sub>5</sub> | C <sub>100</sub> | Area    | Weighted | C <sub>5</sub> | C                | Area      | Weighted   | C <sub>5</sub> | C <sub>100</sub> | Area     | Weighted | Weigl          | nted C           | Weighted %   |
| Dasiii iD | (ac)  | 05             | C100             | (ac)    | % Imp.   | 05             | C100             | (ac)    | % Imp.   | 05             | C <sub>100</sub> | (ac)      | % Imp.     | 05             | C100             | (ac)     | % Imp.   | C <sub>5</sub> | C <sub>100</sub> | Imp.         |
|           |       |                |                  |         |          |                |                  |         |          |                |                  |           | -          |                |                  |          |          |                |                  |              |
| A1        | 0.50  | 0.90           | 0.96             | 0.29    | 58.0%    | 0.73           | 0.81             | 0.11    | 19.8%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.10     | 0.0%     | 0.70           | 0.81             | 77.8%        |
| A2        | 0.47  | 0.90           | 0.96             | 0.36    | 76.6%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.11     | 0.0%     | 0.71           | 0.82             | 76.6%        |
| A3        | 0.45  | 0.90           | 0.96             | 0.35    | 77.8%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.10     | 0.0%     | 0.72           | 0.82             | 77.8%        |
| A4        | 0.15  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.15    | 90.0%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.00     | 0.0%     | 0.73           | 0.81             | 90.0%        |
| A5        | 0.13  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.13    | 90.0%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.00     | 0.0%     | 0.73           | 0.81             | 90.0%        |
| A6        | 1.51  | 0.90           | 0.96             | 0.53    | 35.1%    | 0.73           | 0.81             | 0.38    | 22.6%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.60     | 0.0%     | 0.53           | 0.68             | 57.7%        |
| A7        | 0.58  | 0.90           | 0.96             | 0.24    | 41.4%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.34     | 0.0%     | 0.42           | 0.60             | 41.4%        |
| A8        | 0.30  | 0.90           | 0.96             | 0.16    | 53.3%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.14     | 0.0%     | 0.52           | 0.68             | 53.3%        |
| A9        | 1.33  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 1.33     | 0.0%     | 0.08           | 0.35             | 0.0%         |
| B1        | 0.37  | 0.90           | 0.96             | 0.29    | 78.4%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.08     | 0.0%     | 0.72           | 0.83             | 78.4%        |
| B2        | 0.35  | 0.90           | 0.96             | 0.33    | 94.3%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.02     | 0.0%     | 0.85           | 0.93             | 94.3%        |
| B3        | 0.35  | 0.90           | 0.96             | 0.25    | 71.4%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.10     | 0.0%     | 0.67           | 0.79             | 71.4%        |
| B4        | 0.03  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.03    | 90.0%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.00     | 0.0%     | 0.73           | 0.81             | 90.0%        |
| B5        | 0.26  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.26    | 90.0%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.00     | 0.0%     | 0.73           | 0.81             | 90.0%        |
| B6        | 0.73  | 0.90           | 0.96             | 0.43    | 58.9%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.30     | 0.0%     | 0.56           | 0.71             | 58.9%        |
| B7        | 0.47  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.21    | 40.2%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.26     | 0.0%     | 0.37           | 0.56             | 40.2%        |
| B8        | 0.25  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.25    | 90.0%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.00     | 0.0%     | 0.73           | 0.81             | 90.0%        |
| B9        | 0.19  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.19    | 90.0%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.00     | 0.0%     | 0.73           | 0.81             | 90.0%        |
| B10       | 0.38  | 0.90           | 0.96             | 0.21    | 55.3%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.17     | 0.0%     | 0.53           | 0.69             | 55.3%        |
| B11       | 0.74  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.29    | 35.3%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.45     | 0.0%     | 0.33           | 0.53             | 35.3%        |
| B12       | 1.08  | 0.90           | 0.96             | 0.66    | 61.1%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.42     | 0.0%     | 0.58           | 0.72             | 61.1%        |
| B13       | 0.58  | 0.90           | 0.96             | 0.33    | 56.9%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.25     | 0.0%     | 0.55           | 0.70             | 56.9%        |
| B13A      | 0.48  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.11    | 20.6%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.37     | 0.0%     | 0.23           | 0.46             | 20.6%        |
| B14       | 0.49  | 0.90           | 0.96             | 0.29    | 59.2%    | 0.73           | 0.81             | 0.05    | 9.2%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.15     | 0.0%     | 0.63           | 0.76             | 68.4%        |
| B15       | 0.27  | 0.90           | 0.96             | 0.19    | 70.4%    | 0.73           | 0.81             | 0.02    | 6.7%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.06     | 0.0%     | 0.71           | 0.81             | 77.0%        |
| B16       | 0.15  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.11    | 66.0%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.04     | 0.0%     | 0.56           | 0.69             | 66.0%        |
| B17       | 0.99  | 0.90           | 0.96             | 0.40    | 40.4%    | 0.73           | 0.81             | 0.01    | 0.9%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.58     | 0.0%     | 0.42           | 0.60             | 41.3%        |
| B18       | 0.47  | 0.90           | 0.96             | 0.24    | 51.1%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.23     | 0.0%     | 0.50           | 0.66             | 51.1%        |

|                 | Total | Str            | eets (10         | 0% Impe | rvious)  | R              | oofs (90         | % Imper | vious)   | Light I        | ndustria         | l (80% In | npervious) | L              | awns (0          | % Imper\ | vious)   | Basins         | s Total          | Basins Total |
|-----------------|-------|----------------|------------------|---------|----------|----------------|------------------|---------|----------|----------------|------------------|-----------|------------|----------------|------------------|----------|----------|----------------|------------------|--------------|
| Basin ID        | Area  | C <sub>5</sub> | C <sub>100</sub> | Area    | Weighted | C <sub>5</sub> | C <sub>100</sub> | Area    | Weighted | C <sub>5</sub> | C <sub>100</sub> | Area      | Weighted   | C <sub>5</sub> | C <sub>100</sub> | Area     | Weighted | 5              | nted C           | Weighted %   |
|                 | (ac)  | -0             | - 100            | (ac)    | % Imp.   | -5             | - 100            | (ac)    | % Imp.   | -0             | - 100            | (ac)      | % Imp.     | -5             | - 100            | (ac)     | % Imp.   | C <sub>5</sub> | C <sub>100</sub> | Imp.         |
| B19             | 1.92  | 0.90           | 0.96             | 0.44    | 22.9%    | 0.73           | 0.81             | 0.16    | 7.5%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 1.32     | 0.0%     | 0.32           | 0.53             | 30.4%        |
| B20             | 0.26  | 0.90           | 0.96             | 0.13    | 50.0%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.13     | 0.0%     | 0.49           | 0.66             | 50.0%        |
| B21             | 2.46  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 2.46     | 0.0%     | 0.08           | 0.35             | 0.0%         |
| C1              | 0.74  | 0.90           | 0.96             | 0.19    | 25.7%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.55     | 0.0%     | 0.29           | 0.51             | 25.7%        |
| C2              | 0.80  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.80     | 0.0%     | 0.08           | 0.35             | 0.0%         |
| D1              | 0.95  | 0.90           | 0.96             | 0.13    | 13.7%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.82     | 0.0%     | 0.19           | 0.43             | 13.7%        |
| F1              | 0.92  | 0.90           | 0.96             | 0.33    | 35.9%    | 0.73           | 0.81             | 0.21    | 20.5%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.38     | 0.0%     | 0.52           | 0.67             | 56.4%        |
| F2              | 0.14  | 0.90           | 0.96             | 0.11    | 78.6%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.03     | 0.0%     | 0.72           | 0.83             | 78.6%        |
| F3              | 0.73  | 0.90           | 0.96             | 0.44    | 60.3%    | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.29     | 0.0%     | 0.57           | 0.72             | 60.3%        |
| F4              | 0.68  | 0.90           | 0.96             | 0.02    | 2.9%     | 0.73           | 0.81             | 0.21    | 27.8%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.45     | 0.0%     | 0.30           | 0.51             | 30.7%        |
| F5              | 3.88  | 0.90           | 0.96             | 0.79    | 20.4%    | 0.73           | 0.81             | 0.66    | 15.3%    | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 2.43     | 0.0%     | 0.36           | 0.55             | 35.7%        |
| F6              | 0.35  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.35     | 0.0%     | 0.08           | 0.35             | 0.0%         |
| F7              | 0.53  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 0.00      | 0.0%       | 0.08           | 0.35             | 0.53     | 0.0%     | 0.08           | 0.35             | 0.0%         |
| OS1             | 17.73 | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 17.73     | 80.0%      | 0.08           | 0.35             | 0.00     | 0.0%     | 0.59           | 0.70             | 80.0%        |
| OS2             | 8.93  | 0.90           | 0.96             | 0.00    | 0.0%     | 0.73           | 0.81             | 0.00    | 0.0%     | 0.59           | 0.70             | 8.93      | 90.0%      | 0.08           | 0.35             | 0.00     | 0.0%     | 0.59           | 0.70             | 90.0%        |
| TOTAL (A1-D1)   | 21.18 |                |                  |         |          |                |                  |         |          |                |                  |           |            |                |                  |          |          |                |                  | 40.9%        |
| TOTAL (F1-F7)   | 7.23  |                |                  |         |          |                |                  |         |          |                |                  |           |            |                |                  |          |          |                |                  | 36.8%        |
| TOTAL (OS1-OS2) | 26.66 |                |                  |         |          |                |                  |         |          |                |                  |           |            |                |                  |          |          |                |                  | 83.3%        |
| TOTAL           | 55.07 |                |                  |         |          |                |                  |         |          |                |                  |           |            |                |                  |          |          |                |                  | 60.9%        |

## STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Solace

Location: El Paso County

Project Name: Solace Apartments

Project No.: 25174.00 Calculated By: AAM Checked By: Date: 3/12/21

|     |                |                |                | 1       | tc CHEC                | K                        |                |
|-----|----------------|----------------|----------------|---------|------------------------|--------------------------|----------------|
|     |                |                |                |         | (URBANIZED E           | BASINS)                  | FINAL          |
| DMF | t <sub>t</sub> | t <sub>t</sub> | t <sub>t</sub> | COMP. t | . t <sub>c</sub> TOTAL | Urbanized t <sub>c</sub> | t <sub>c</sub> |
| (mi | (min)          | (min)          | (min)          | (min)   | n) LENGTH (ft          | :) (min)                 | (min)          |
|     |                |                |                |         |                        |                          |                |
|     | 1.7            | 1.1            | 1.7            | 7 5     | 5.7 260                | .0 14.5                  | 5.             |
|     | 1.6            | 1.0            | 1.6            | 6 6     | 6.2 285                | .0 14.6                  | 6.2            |
|     | 1.3            | 1.3            | 1.3            | 3 5     | 5.9 239                | .0 14.0                  | 5.9            |
|     | 1.0            | 1.(            | 1.0            | 0 4     | 4.0 140                | .0 11.6                  | 5.0            |
|     | 1.0            | 1.(            | 1.0            | 0 4     | 4.0 140                | .0 11.6                  | 5.0            |
|     | 1.7            | 1.1            | 1.7            | 7 10    | 10.5 327               | .0 18.2                  | 10.5           |
|     | 1.8            | 1.8            | 1.8            | 3 10    | 10.6 347               | .0 21.4                  | 10.0           |
|     | 2.2            | 2.2            | 2.2            | 2 5     | 5.9 336                | .0 19.5                  | 5.9            |
|     | 1.9            | 1.9            | 1.9            | 9 13    | 13.9 346               | .0 29.2                  | 13.9           |
|     | 1.3            | 1.3            | 1.3            | 3 5     | 5.1 227                | .0 13.9                  | 5.1            |
|     | 1.3            | 1.3            | 1.3            | 3 3     | 3.7 259                | .0 11.1                  | 5.0            |
|     | 1.2            | 1.2            | 1.2            | 2 4     | 4.6 173                | .0 15.1                  | 5.0            |
|     | 0.3            | 0.3            | 0.3            | 3 3     | 3.3 60                 | .0 11.0                  | 5.0            |
|     | 1.0            | 1.(            | 1.0            | 0 4     | 4.0 140                | .0 11.6                  | 5.0            |
|     | 1.7            | 1.1            | 1.7            | 7 7     | 7.1 292                | .0 18.0                  | ) 7.1          |
|     | 0.6            | 0.0            | 0.6            | 5 7     | 7.0 142                | .0 19.8                  | 3 7.0          |
|     | 1.0            | 1.(            | 1.0            | ) 4     | 4.0 140                | .0 11.6                  | 5.0            |
|     | 1.0            | 1.(            | 1.0            | ) 4     | 4.0 140                | .0 11.6                  | 5.0            |
|     | 0.7            | 0.             | 0.7            | 7 5     | 5.2 154                | .0 17.4                  | 5.2            |
|     | 1.4            | 1.4            | 1.4            | 4 11    | 11.1 270               | .0 21.6                  | <b>11</b> .1   |
|     | 3.2            | 3.2            | 3.2            | 2 9     | 9.2 489                | .0 19.3                  | 9.2            |
|     | 0.9            | 0.9            | 0.9            | 9 6     | 6.4 279                | .0 17.4                  | 6.4            |
|     | 1.6            | 1.0            | 1.6            | 5 9     | 9.4 257                | .0 25.3                  | 9.4            |
|     | 0.2            | 0.2            | 0.2            | 2 9     | 9.4 218                | .0 14.6                  | 9.4            |
|     | 0.1            | 0.1            | 0.1            | 1 5     | 5.7 123                | .0 13.0                  | 5.             |
|     | 1.0            | 1.(            | 1.0            | 5 5     | 5.4 140                | .0 15.9                  | 5.4            |
|     | 3.4            | 3.4            | 3.4            | 4 8     | 8.2 526                | .0 23.5                  | 5 8.2          |
|     | 3.4            | 3.4            | 3.4            | 4 7     | 7.2 514                | .0 21.5                  | 5 7.2          |
|     | 1.5            | 1.5            | 1.5            | 5 16    | 16.9 428               | .0 23.1                  | 16.9           |
|     | 2.3            | 2.3            | 2.3            | 3 6     | 6.3 300                | .0 20.4                  | 6.3            |

## STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Solace

Location: El Paso County

Project Name: Solace Apartments

Project No.: 25174.00 Calculated By: AAM Checked By: Date: 3/12/21

|       |       | SUB-E       | BASIN      |                |                  | INITI | AL/OVERI          | AND   |                |                | TRAVEL TI         | ME     |                |                      | tc CHECK     |                 |                |
|-------|-------|-------------|------------|----------------|------------------|-------|-------------------|-------|----------------|----------------|-------------------|--------|----------------|----------------------|--------------|-----------------|----------------|
|       |       | DA          | TA         |                |                  |       | (T <sub>i</sub> ) |       |                |                | (T <sub>t</sub> ) |        |                | (L                   | IRBANIZED BA | ASINS)          | FINAL          |
| BASIN | D.A.  | Hydrologic  | Impervious | C <sub>5</sub> | C <sub>100</sub> | L     | S <sub>o</sub>    | t i   | L <sub>t</sub> | S <sub>t</sub> | К                 | VEL.   | t <sub>t</sub> | COMP. t <sub>c</sub> | TOTAL        | Urbanized $t_c$ | t <sub>c</sub> |
| ID    | (ac)  | Soils Group | (%)        |                |                  | (ft)  | (%)               | (min) | (ft)           | (%)            |                   | (ft/s) | (min)          | (min)                | LENGTH (ft)  | (min)           | (min)          |
| B21   | 2.46  | В           | 0%         | 0.08           | 0.35             | 250   | 2.5%              | 21.5  | 736            | 1.0%           | 15.0              | 1.5    | 8.2            | 29.7                 | 986.0        | 39.6            | 29.7           |
| C1    | 0.74  | В           | 26%        | 0.29           | 0.51             | 153   | 2.0%              | 14.4  | 95             | 1.8%           | 20.0              | 2.7    | 0.6            | 15.0                 | 248.0        | 22.6            | 15.0           |
| C2    | 0.80  | В           | 0%         | 0.08           | 0.35             | 30    | 5.0%              | 5.9   | 30             | 5.0%           | 7.0               | 1.6    | 0.3            | 6.3                  | 60.0         | 26.2            | 6.3            |
| D1    | 0.95  | В           | 14%        | 0.19           | 0.43             | 83    | 2.0%              | 11.9  | 155            | 3.3%           | 15.0              | 2.7    | 0.9            | 12.8                 | 238.0        | 25.0            | 12.8           |
| F1    | 0.92  | В           | 56%        | 0.52           | 0.67             | 112   | 5.5%              | 6.3   | 196            | 1.8%           | 20.0              | 2.7    | 1.2            | 7.5                  | 308.0        | 17.9            | 7.5            |
| F2    | 0.14  | В           | 79%        | 0.72           | 0.83             | 30    | 4.0%              | 2.4   | 257            | 1.1%           | 20.0              | 2.1    | 2.1            | 4.4                  | 287.0        | 14.7            | 5.0            |
| F3    | 0.73  | В           | 60%        | 0.57           | 0.72             | 66    | 13.5%             | 3.3   | 331            | 1.5%           | 20.0              | 2.4    | 2.3            | 5.5                  | 397.0        | 18.3            | 5.5            |
| F4    | 0.68  | В           | 31%        | 0.30           | 0.51             | 173   | 6.0%              | 10.5  | 97             | 1.0%           | 20.0              | 2.0    | 0.8            | 11.3                 | 270.0        | 22.0            | 11.3           |
| F5    | 3.88  | В           | 36%        | 0.36           | 0.55             | 115   | 5.0%              | 8.5   | 283            | 1.7%           | 20.0              | 2.6    | 1.8            | 10.3                 | 398.0        | 22.5            | 10.3           |
| F6    | 0.35  | В           | 0%         | 0.08           | 0.35             | 30    | 8.0%              | 5.1   | 30             | 8.0%           | 7.0               | 2.0    | 0.3            | 5.3                  | 60.0         | 26.2            | 5.3            |
| F7    | 0.53  | В           | 0%         | 0.08           | 0.35             | 20    | 25.0%             | 2.8   | 516            | 2.0%           | 15.0              | 2.1    | 4.1            | 6.9                  | 536.0        | 32.8            | 6.9            |
| OS1   | 17.73 | В           | 80%        | 0.59           | 0.70             | 100   | 1.9%              | 7.5   | 1236           | 1.8%           | 20.0              | 2.7    | 7.7            | 15.1                 | 1336.0       | 20.0            | 15.1           |
| OS2   | 8.93  | В           | 90%        | 0.59           | 0.70             | 100   | 2.1%              | 7.2   | 425            | 1.9%           | 15.0              | 2.1    | 3.4            | 10.6                 | 525.0        | 13.1            | 10.6           |

#### NOTES:

| $t_c = t_i + t_t$                                                                                                                                                                                                               | Equation 6-2 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{c_1^{0.033}}$                                                                                                                                                         | E                                         | Table 6-2. NRCS Conv                 |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------------|
| Where:                                                                                                                                                                                                                          | $t_i = \frac{S_0^{0.033}}{S_0^{0.033}}$                                                                                                                                                                                     | Equation 6-3                              | Type of Land Surface                 |
| where:                                                                                                                                                                                                                          |                                                                                                                                                                                                                             |                                           | Heavy meadow                         |
| $t_c$ = computed time of concentration (minutes)                                                                                                                                                                                | Where:                                                                                                                                                                                                                      |                                           | Tillage/field                        |
| $t_i$ = overland (initial) flow time (minutes)                                                                                                                                                                                  | $t_i$ = overland (initial) flow time (minutes)                                                                                                                                                                              |                                           | Short pasture and lawns              |
|                                                                                                                                                                                                                                 | $C_5$ = runoff coefficient for 5-year frequency (from Table 6-4)<br>$L_i$ = length of overland flow (ft)                                                                                                                    |                                           | Nearly bare ground                   |
| $t_t$ = channelized flow time (minutes).                                                                                                                                                                                        | $S_0$ = average slope along the overland flow path (ft/ft).                                                                                                                                                                 |                                           | Grassed waterway                     |
| L. L.                                                                                                                                                                                                                           | L,                                                                                                                                                                                                                          | _                                         | Paved areas and shallow paved swales |
| $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$                                                                                                                                                                           | Equation 6-4 $t_r = (26 - 17i) + \frac{L_r}{60(14i + 9)\sqrt{S_r}}$                                                                                                                                                         | Equation 6-5                              |                                      |
| Where:                                                                                                                                                                                                                          | Where:                                                                                                                                                                                                                      |                                           |                                      |
| $t_t = \text{channelized flow time (travel time, min)}$<br>$L_t = waterway length (ft)$<br>$S_0 = waterway slope (ft/ft)$<br>$V_t = travel time velocity (ft/sec) = K \left S_0$<br>K = NRCS conveyance factor (see Table 6-2). | $t_e$ = minimum time of concentration for first design point when les<br>$L_e$ = length of channelized flow path (ft)<br>i = imperviousness (expressed as a decimal)<br>$S_i$ = slope of the channelized flow path (ft/ft). | is than t <sub>c</sub> from Equation 6-1. |                                      |

- i = imperviousness (expressed as a decimal) S<sub>t</sub> = slope of the channelized flow path (ft/ft).

Use a minimum te value of 5 minutes for urbanized areas and a minimum te value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

Table 6-2. NRCS Conveyance factors, K

Conveyance Factor, K

2.5

5

7

10

15

20

Project Name: Solace Apartments

| ubdivision:<br>Location: |              |          | atu .     |               |                      |          |           |         |            |          |                                         |                                 |                       |                         | Project  | t No.:     | 25174              | 4.00        | linei          | 113                  |                                                                                         |
|--------------------------|--------------|----------|-----------|---------------|----------------------|----------|-----------|---------|------------|----------|-----------------------------------------|---------------------------------|-----------------------|-------------------------|----------|------------|--------------------|-------------|----------------|----------------------|-----------------------------------------------------------------------------------------|
| sign Storm:              |              |          | ny        |               |                      |          |           |         |            |          | _                                       |                                 |                       | (                       | Checke   | d By:      |                    |             |                |                      |                                                                                         |
|                          |              | 1        |           | DIDE          | OT DU                | NOFE     |           |         | <b>.</b> . |          |                                         | CTD                             |                       | -                       |          | Date:      |                    |             | (F) T)         |                      |                                                                                         |
|                          |              |          |           | DIRE          | CT RU                | NOFF     |           |         |            | OTAL RU  | NOFF                                    | STR                             | ET/SWALE              |                         | PI       | ν <u>ε</u> | _                  | TRAV        | ELTI           | VIE                  |                                                                                         |
| STREET                   | Design Point | Basin ID | Area (Ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (Ac) | l (in/hr) | Q (cfs) | tc (min)   | C*A (ac) | с (пі/тії)<br>Q (cfs)                   | O <sub>street/swale</sub> (cfs) | C*A (ac)<br>Slope (%) | O <sub>pipe</sub> (cfs) | C*A (ac) | Slope (%)  | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                                 |
|                          | 1            | F1       | 0.92      | 0.52          | 7.5                  | 0.48     | 4.56      | 2.2     |            |          |                                         |                                 |                       | 2.2                     | 0.48     | 1.0        | 18                 | 320         | 4.6            | 1.2                  | Future on-grade inlet<br>Future pipe conveyance to DP 1.0                               |
|                          | 2            | F2       | 0.14      | 0.72          | 5.0                  | 0 10     | 5.17      | 0.5     |            |          |                                         | 0.5                             | 0.10 2.1              | 8                       |          |            |                    | 33          | 3.0            | 0.2                  | Future overland flow to DP 4<br>Infrastructure to South Detention Pond at DP 2          |
|                          |              |          |           |               |                      |          |           |         |            |          |                                         |                                 |                       |                         | 0.40     | 1.0        | 10                 |             | 5.0            |                      | Future sump inlet                                                                       |
|                          | 3            | F3       | 0.73      |               |                      |          | 5.02      |         |            |          |                                         | 0.1                             | 0.03 1                | 5                       | 0.42     |            |                    | 64<br>300   | 1.8            | 2.7                  | Future pipe conveyance to DP 1.0 On-grade inlet, Carryover flow to DP 11                |
| -                        | 4            | A1       | 0.50      | 0.70          | 5.7                  | 0.35     | 4.97      | 1.7     |            |          | _                                       |                                 |                       | 1.6                     |          |            |                    |             |                |                      | Piped to DP 1.0<br>Sum of DP 1, DP 2, DP 3, & DP 4                                      |
|                          | 1.0          |          |           |               |                      |          |           |         | 8.7        | 1.32 4   | .35 5.                                  | 7 5.7                           | 1.32 0                |                         | 1.32     | 2.1        | 36                 | 221<br>185  |                |                      | Piped to DP 4P<br>Pond A Forebay                                                        |
|                          | 4P           |          |           |               |                      |          |           |         | 8.7        | 1.32 4   | .35 5.                                  | 7                               | 0.12 1                | 2                       |          |            |                    | 290         |                |                      | Trickle channel conveyance to DP 6P<br>No. 16-valley inlet, Carryover flow to DP 10     |
|                          | 5            | A2       | 0.47      | 0.71          | 6.2                  | 0.33     | 4.85      | 1.6     |            |          |                                         |                                 |                       | 1.0                     | 0.21     | 2.0        | 18                 | 33          | 4.6            | 0.1                  | Piped to DP 2.2                                                                         |
|                          | 6            | A3       | 0.45      | 0.72          | 5.9                  | 0.32     | 4.92      | 1.6     |            |          |                                         | 0.6                             | 0.12 1                | .5                      | 0.20     | 1.0        | 18                 | 321<br>0    | 1.8<br>3.6     | 2.9                  | No. 16-valley inlet, Carryover flow to DP 10<br>Piped to DP 2.0                         |
|                          | 7            | F4       | 0.68      | 0.30          | 11.3                 | 0.21     | 3.95      | 0.8     |            |          |                                         |                                 |                       | 0.8                     | 0.21     | 1.0        | 15                 | 27          | 3.5            | 0.1                  | Future roof drains and area inlets<br>Future pipe conveyance to DP 2.0                  |
|                          | 2.0          |          |           |               |                      |          |           |         | 11 /       | 0.41 3   | .93 1.                                  | 6                               |                       | 1.6                     | 0.41     | 1.0        | 18                 |             |                |                      | Sum of DP 6 & DP 7<br>Piped to DP 2.1                                                   |
|                          | 8            | A4       | 0.15      | 0.72          | F 0                  | 0.11     | F 17      | 0.6     |            | 0.41 3   | .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                 |                       |                         |          |            |                    | 105         |                |                      | Piped to DP 2.1                                                                         |
|                          |              | A4       | 0.15      | 0.73          | 5.0                  | 0.11     | 5.17      | 0.0     |            |          |                                         |                                 |                       | 0.6                     |          |            |                    |             |                |                      | Sum of DP 8 & DP 2.0                                                                    |
|                          | 2.1          |          |           |               |                      |          |           |         | 11.4       | 0.52 3   | .93 2.                                  | 1                               |                       | 2.1                     | 0.52     | 1.0        | 18                 | 101         | 4.6            | 0.4                  | Piped to DP 2.2<br>Sum of DP 5 & DP 2.1                                                 |
|                          | 2.2          |          |           |               |                      |          |           |         | 11.8       | 0.73 3   | .88 2.                                  | 8                               |                       | 2.8                     | 0.73     | 1.0        | 24                 | 105         | 4.9            | 0.4                  | Piped to DP 2.3 Roof drains                                                             |
|                          | 9            | A5       | 0.13      | 0.73          | 5.0                  | 0.09     | 5.17      | 0.5     |            |          |                                         |                                 |                       | 0.5                     | 0.09     | 1.0        | 15                 | 7           | 3.0            | 0.0                  | Piped to DP 2.3<br>Sum of DP 9 & DP 2.2                                                 |
|                          | 2.3          |          |           |               |                      |          |           |         | 12.2       | 0.82 3   | .83 3.                                  | 1                               |                       | 3.1                     | 0.82     | 1.3        | 24                 | 114         | 5.4            | 0.4                  | Piped to DP 2.4                                                                         |
|                          | 10           | A6       | 1.51      | 0.53          | 10.5                 | 0.80     | 4.06      | 3.2     | 10.5       | 1.04 4   | .06 4.                                  | 2                               |                       | 4.2                     | 1.04     | 1.3        | 24                 | 0           | 6.0            | 0.0                  | Sump Inlet. Sum of Carryover flows from DP 5, DP 6, and Sub-Basin A6<br>Piped to DP 2.4 |
|                          | 2.4          |          |           |               |                      |          |           |         | 12.5       | 1.86 3   | .79 7.                                  | 1                               |                       | 7.1                     | 1.86     | 2.0        | 30                 | 31          | 8.0            | 0.1                  | Sum of DP 9 & DP 2.2<br>Piped to DP 2.5                                                 |
|                          | 11           | A7       | 0.58      | 0.42          | 10.6                 | 0.24     | 4.05      | 1.0     | 10.6       | 0.27 4   | .05 1.                                  | 1                               |                       | 1.1                     | 0.27     | 2.0        | 30                 | 0           | 4.5            | 0.0                  | On-grade Inlet, Sum of carryover from DP 4 and Sub-Basin A7<br>Piped to DP 2.5          |
|                          | 2.5          |          |           |               |                      |          |           |         |            | 2.13 3   |                                         |                                 |                       | 8.1                     |          |            |                    |             |                |                      | Sum of DP 11 & DP 2.4<br>Piped to DP 2.6                                                |
| <u> </u>                 |              | 4.0      | 0.20      | 0.50          | F 0                  | 0.17     | 4.00      | 0.0     |            | 2.13 3   | ., 0 0.                                 | 1                               |                       |                         |          |            |                    |             |                |                      | On-grade inlet                                                                          |
|                          | 12           | A8       | 0.30      | 0.52          | 5.9                  | 0.16     | 4.92      | 0.8     |            |          |                                         | +                               |                       |                         | 0.16     |            |                    |             | 4.0            |                      | Piped to DP 2.6<br>Sum of DP 12 & DP 2.5                                                |
|                          | 2.6          |          |           |               |                      |          |           |         |            | 2.29 3   |                                         | 8.6                             | 2.29 0                |                         | 2.29     | 2.4        | 36                 | 55<br>45    |                |                      | Pond A Forebay                                                                          |
|                          | 5P           | <u> </u> |           |               |                      |          |           |         | 12.7       | 2.29 3   | .77 8.                                  |                                 | 0.11 2.1              | 8                       |          |            |                    |             |                |                      | Trickle channel conveyance to DP 6P<br>Overland Flow                                    |
|                          | 6P           | A9       | 1.33      | 0.08          | 13.9                 | 0.11     | 3.64      | 0.4     |            |          |                                         |                                 |                       |                         |          |            |                    |             |                |                      | Pond Conveyance to DP 6P Pond Vertex Structure                                          |
|                          | 6P           |          |           |               |                      |          |           |         | 13.9       | 3.72 3   | .64 13.                                 | 5                               |                       |                         |          |            |                    |             |                |                      | Release detained flows into Sandcreek Drainageway                                       |
| 1                        |              |          |           |               |                      |          | 1 1       | 1       | 1          | I I      |                                         | 1                               | 1 1                   | 1                       | 1        |            |                    |             |                | 1                    |                                                                                         |

170 1.3

3.4 0.82

1.

2.2 Future Phase 2 developed flows minus roof drains and future area inlet flows Pan conveyance to DP 14

X:\2510000.all\2517400\Excel\Drainage\2517400\_Drainage\_Calcs\_Template\_v2.xlsm

13 F5 3.88 0.36 10.3 0.82 4.09

3.4

| bdivision:<br>Location: |              |       | -    |          |        |      |         |         |       |          |                  |         |                  |          |           | I                 | ject Nan<br>Project N | lo.: 25   | 5174.0            |             | unell          | 13     |                                                                                                                            |
|-------------------------|--------------|-------|------|----------|--------|------|---------|---------|-------|----------|------------------|---------|------------------|----------|-----------|-------------------|-----------------------|-----------|-------------------|-------------|----------------|--------|----------------------------------------------------------------------------------------------------------------------------|
| ocation:<br>1 Storm:    |              |       | пу   |          |        |      |         |         |       |          |                  |         |                  |          |           |                   | culated E<br>hecked E |           | -NVI              |             |                |        |                                                                                                                            |
|                         | 5.00         |       |      |          |        |      |         |         |       |          |                  |         |                  |          |           |                   |                       | te: 3/    | 12/21             | 1           |                |        |                                                                                                                            |
|                         |              |       |      | DIRF     | CT RU  | NOFF |         |         | Т     | OTAL     | RUNO             | FF      | STRF             | ET/SW    | ALE       |                   | PIPE                  | _         | TF                | RAVE        | EL TIN         | 1F     |                                                                                                                            |
|                         |              |       |      | Dirte    | 01.110 |      |         |         |       |          |                  |         | UTILE            |          |           |                   |                       | 1         | -                 |             |                |        |                                                                                                                            |
|                         |              |       |      | <u></u>  |        |      |         |         |       |          |                  |         | (cfs)            |          |           |                   |                       | -         | che               |             |                |        |                                                                                                                            |
| STREET                  | oin          |       | _    | Coeff.   |        |      |         |         |       |          |                  |         | <sup>ae</sup> (C |          |           |                   |                       |           | u)                | £           | (fps           |        | REMARKS                                                                                                                    |
| OTTLET                  | gn P         | П     | (Ac) | ff C     | (mim)  | (Ac) | (in/hr) | (S      | (min) | (ac)     | (in/hr)          | (S      | t/ swa           | (ac)     | %) @      | (cfs)             | (ac)                  | %)        | SIZE              | th (I       | city           | (min)  |                                                                                                                            |
|                         | Jesign Point | 3asin | Area | Runoff ( | Ĕ      | ¥.   | (in/    | Q (cfs) | c (n  | C*A (ac) | (in/             | Q (cfs) | Ostreet/swale    | :*A (ac) | Slope (%) | O <sub>pipe</sub> | C*A (ac)              | Slope (%) | upe size (inches) | Length (ft) | Velocity (fps) | ے<br>ت |                                                                                                                            |
|                         |              |       |      |          |        | 0    | _       | 0       |       |          | -                | 0       | 2.4              | 0        | 1.1       | 0                 |                       |           |                   | 89          | 1.6            |        | Sum of carryover flows from DP 13 and Sub-Basin B1, No. 16-valley inlet, Carryover flow to DP 16                           |
|                         | 14           | B1    | 0.37 | 0.72     | 5.1    | 0.27 | 5.13    | 1.4     | 12.4  | 1.09     | 3.80             | 4.1     |                  |          |           | 1.7               | 0.45                  | 1.0       | 18                | 0           | 4.3            | 0.0    | Piped to DP 3.0                                                                                                            |
|                         | 3.0          |       |      |          |        |      |         |         | 12.4  | 1.68     | 3.80             | 6.4     |                  |          |           | 6.4               | 1.68                  | 1.0       | 18                | 89          | 6.2            | 0.2    | Flows captured by No. 16-Valley inlet and future building and area drains connecting directly to inlet.<br>Piped to DP 3.1 |
|                         |              | ~ ~   |      |          |        |      |         |         |       |          |                  |         |                  |          |           |                   |                       |           |                   |             |                |        | On-grade inlet                                                                                                             |
|                         | 15           | B2    | 0.35 | 0.85     | 5.0    | 0.30 | 5.17    | 1.6     |       |          |                  |         |                  |          |           | 1.6               | 0.30                  | 2.0       | 18                | 75          | 5.4            | 0.2    | Piped to DP 3.1<br>Sum of carryover flow from DP 14 and Sub-Basin B3,On-grade inlet. Carryover flow to DP 19               |
|                         | 16           | B3    | 0.35 | 0.67     | 5.0    | 0.23 | 5.17    | 1.2     | 13.4  | 0.87     | 3.69             | 3.2     |                  |          |           | 3.2               | 0.87                  | 1.0       | 18                | 0           | 5.2            | 0.0    | Piped to DP 3.1                                                                                                            |
|                         | 0.1          |       |      |          |        |      |         |         |       | 0.05     | 2.0              | 10.5    |                  |          |           | 10.5              | 0.05                  | 0.5       | 20                | 20          | <b>F</b> 4     | 0.1    | Sum of DP 14, DP 15 & DP 16                                                                                                |
|                         | 3.1          |       |      |          |        |      |         |         | 13.4  | 2.85     | 3.69             | 10.5    |                  |          |           | 10.5              | 2.85                  | 0.5       | 30                | 30          | 5.4            | 0.1    | Piped to DP 3.2<br>Roof drains                                                                                             |
|                         | 17           | B4    | 0.03 | 0.73     | 5.0    | 0.02 | 5.17    | 0.1     |       |          |                  |         |                  |          |           | 0.1               | 0.02                  | 1.0       | 8                 | 40          | 1.9            | 0.3    | Piped to DP 3.2                                                                                                            |
|                         | 3.2          |       |      |          |        |      |         |         | 125   | 2 07     | 3.68             | 10.6    |                  |          |           | 10.6              | 2.87                  | 0.5       | 30                | 163         | 5.4            | 0.5    | Sum of DP 17 & DP 3.1<br>Piped to DP 3.3                                                                                   |
|                         | J.2          |       |      |          |        |      |         |         | 13.3  | 2.07     | 5.00             | 10.0    |                  |          |           | 10.0              | 2.07                  | 0.5       | 30                | 103         | 3.4            | 0.0    | Roof drains                                                                                                                |
|                         | 18           | B5    | 0.26 | 0.73     | 5.0    | 0.19 | 5.17    | 1.0     |       |          |                  |         |                  |          |           | 1.0               | 0.19                  | 1.0       | 8                 | 40          | 3.8            | 0.2    | Piped to DP 3.3                                                                                                            |
|                         | 3.3          |       |      |          |        |      |         |         | 14.0  | 3.06     | 3.63             | 11.1    |                  |          |           | 11.1              | 3.06                  | 1.9       | 30                | 75          | 8.8            | 0.1    | Sum of DP 18 & DP 3.2<br>Piped to DP 3.4                                                                                   |
|                         |              |       |      |          |        |      |         |         |       | 0.00     |                  |         | 0.8              | 0.17     | 1.1       |                   |                       |           | 4                 | 445         | 1.6            | 4.7    | No. 16-valley inlet, Carryover flow to DP 27                                                                               |
|                         | 19           | B6    | 0.73 | 0.56     | 7.1    | 0.41 | 4.65    | 1.9     |       |          |                  |         |                  |          |           | 1.1               | 0.24                  | 1.0       | 18                | 13          | 3.8            | 0.1    | Piped to DP 3.4<br>Sum of DP 19 & DP 3.3                                                                                   |
|                         | 3.4          |       |      |          |        |      |         |         | 14.1  | 3.29     | 3.61             | 11.9    |                  |          |           | 11.9              | 3.29                  | 1.0       | 30                | 29          | 7.2            | 0.1    | Piped to DP 3.5                                                                                                            |
|                         |              |       |      |          |        |      |         |         |       |          |                  |         |                  |          |           |                   |                       |           |                   |             |                |        | Roof drains                                                                                                                |
|                         | 20           | B7    | 0.47 | 0.37     | 7.0    | 0.17 | 4.66    | 0.8     |       |          |                  |         |                  |          |           | 0.8               | 0.17                  | 1.0       | 15                | 60          | 3.5            | 0.3    | Piped to DP 3.5<br>Sum of DP 20 & DP 3.4                                                                                   |
|                         | 3.5          |       |      |          |        |      |         |         | 14.2  | 3.46     | 3.60             | 12.5    |                  |          |           | 12.5              | 3.46                  | 0.5       | 30                | 143         | 5.7            | 0.4    | Piped to DP 3.6                                                                                                            |
|                         | 21           | DO    | 0.25 | 0.73     | F 0    | 0.18 | 5.17    | 0.0     |       |          |                  |         |                  |          |           | 0.9               | 0.18                  | 1.0       | 15                | 10          | 27             | 0.0    | Roof drains                                                                                                                |
|                         | 21           | B8    | 0.25 | 0.73     | 5.0    | 0.18 | 5.17    | 0.9     |       |          |                  |         |                  |          |           | 0.9               | 0.18                  | 1.0       | 15                | 10          | 3.6            | 0.0    | Piped to DP 3.6<br>Sum of DP 21 & DP 3.5                                                                                   |
|                         | 3.6          |       |      |          |        |      |         |         | 14.6  | 3.64     | 3.56             | 13.0    |                  |          |           | 13.0              | 3.64                  | 0.5       | 30                | 191         | 5.8            | 0.6    | Piped to DP 3.7                                                                                                            |
|                         | 22           | B9    | 0 10 | 0.73     | 5.0    | 0.14 | 5.17    | 0.7     |       |          |                  |         |                  |          |           | 0.7               | 0.14                  | 1.0       | 15                | 15          | 3.4            | 0.1    | Roof drains<br>Piped to DP 3.7                                                                                             |
|                         | 22           | 07    | 0.17 | 0.75     | 5.0    | 0.14 | 3.17    | 0.7     |       |          |                  |         |                  |          |           | 0.7               | 0.14                  | 1.0       | 13                | 15          | 3.4            | 0.1    | Sum of DP 22 & DP 3.6                                                                                                      |
|                         | 3.7          |       |      |          |        |      |         |         | 15.2  | 3.78     | 3.50             | 13.3    |                  |          |           | 13.3              | 3.78                  | 0.5       | 30                | 101         | 5.8            | 0.3    | Piped to DP 3.8                                                                                                            |
|                         | 23           | B10   | 0.38 | 0.53     | 5.2    | 0.20 | 5.10    | 1.0     |       |          |                  |         |                  |          |           | 1.0               | 0.20                  | 2.0       | 18                | 15          | 4.7            | 0.1    | Sump Inlet<br>Piped to DP 3.8                                                                                              |
|                         |              |       |      |          |        |      |         |         |       |          |                  |         |                  |          |           |                   |                       |           |                   |             |                |        | Sum of DP 23 & DP 3.7                                                                                                      |
|                         | 3.8          |       |      |          |        |      |         |         | 15.5  | 3.98     | 3.48             | 13.8    |                  |          |           | 13.8              | 3.98                  | 0.5       | 36                | 46          | 5.8            | 0.1    | Piped to DP 4.2<br>Roof drains                                                                                             |
|                         | 24           | B13A  | 0.48 | 0.23     | 9.4    | 0.11 | 4.22    | 0.5     |       |          |                  |         |                  |          |           | 0.5               | 0.11                  | 1.0       | 15                | 47          | 3.0            | 0.3    | Piped to DP 3.9                                                                                                            |
|                         |              |       |      |          |        |      |         |         |       |          |                  |         | 0.6              | 0.13     | 3.0       |                   |                       |           |                   | 40          | 2.6            | 0.3    | No. 16-valley inlet, Carryover flow to DP 28                                                                               |
|                         | 25           | B13   | 0.58 | 0.55     | 6.4    | 0.32 | 4.80    | 1.5     |       |          | $\left  \right $ |         |                  |          |           | 0.9               | 0.19                  | 2.0       | 18                | 0           | 4.4            | 0.0    | Piped to DP 3.9<br>Sum of DP 24 & DP 25                                                                                    |
|                         | 3.9          |       |      |          |        |      |         |         | 9.7   | 0.30     | 4.18             | 1.2     |                  |          |           | 1.2               | 0.30                  | 2.0       | 18                | 41          | 4.9            | 0.1    | Piped to DP 4.1                                                                                                            |
|                         | 24           | D11   | 0.74 | 0.22     | 11.1   | 0.25 | 3.98    | 1.0     |       |          |                  |         |                  |          |           | 1.0               | 0.25                  | 1.0       | 15                | 20          | 27             | 0.7    | Roof drains                                                                                                                |
|                         | 26           | B11   | 0.74 | 0.33     | 11.1   | 0.25 | ა.98    | 1.0     |       |          | $\left  \right $ |         |                  |          |           | 1.0               | U.20                  | 1.0       | 10                | 37          | J.1            | 0.2    | Piped to DP 4.0<br>Sump Inlet, sum of carryover from DP 19 and Sub-Basin B12                                               |
|                         | 27           | B12   | 1.08 | 0.58     | 9.2    | 0.63 | 4.25    | 2.7     | 11.8  | 0.80     | 3.89             | 3.1     |                  |          |           | 3.1               | 0.80                  | 1.0       | 18                | 0           | 5.2            | 0.0    | Piped to DP 4.0                                                                                                            |
|                         | 4.0          |       |      |          |        |      |         |         | 11 0  | 1 05     | 3.89             | 4.1     |                  |          |           | 4.1               | 1.05                  | 1.0       | 18                | 32          | 5.6            | 01     | Sum of DP 26 & DP 27<br>Piped to DP 4.1                                                                                    |
|                         | 4.0          |       |      |          |        |      |         |         | 11.0  | 1.00     | 3.07             | 9.1     |                  |          |           | 4.1               | 1.03                  | 1.0       | 10                | JZ          |                |        | Sump Inlet, sum of carryover from DP 25 & Sub-Basin B14                                                                    |

1.2

12 1 8 0.0

Sump Inlet, sum of carryover from DP 25 & Sub-Basin B14 D Piped to DP 4.1

1.9 0.44

9.4 0.44 4.22

1.2

10

28 B14 0.49 0.63

9.4 0.31 4.22

| bdivision:<br>Location:<br>gn Storm: | El Pas       | o Cour   | nty       |               |                      |          |           |         |          |          |           |         |                     |          |           | Ca                      | oject N<br>Projec<br>Iculate<br>Checke | ct No.<br>ed By:<br>ed By: | 2517<br>AAM        | 4.00        |                | 11.3                 |                                                                                                                                                    |
|--------------------------------------|--------------|----------|-----------|---------------|----------------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------|----------|-----------|-------------------------|----------------------------------------|----------------------------|--------------------|-------------|----------------|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|
|                                      |              |          |           | DIRE          | CT RU                | NOFF     |           |         | T        | OTAL     | RUNO      | FF      | STRE                | ET/SW    | VALE      | I                       | PI                                     | PE                         |                    | TRA         | VEL TI         | ME                   |                                                                                                                                                    |
| STREET                               | Design Point | Basin ID | Area (Ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (Ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | Ostreet/swale (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)                               | Slope (%)                  | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) |                                                                                                                                                    |
|                                      | 4.1          |          |           |               |                      |          |           |         | 11.9     | 1.79     | 3.87      | 6.9     |                     |          |           | 6.9                     | 1.79                                   | 1.0                        | 24                 | 44          | 6.3            | 0.                   | Sum of DP 28, DP 3.9, & DP 4.0<br>1 Piped to DP 4.2                                                                                                |
|                                      | 4.2          |          |           |               |                      |          |           |         |          |          | 3.46      | 20.0    |                     |          |           | 20.0                    | 5.78                                   | 8 0.5                      | 36                 | 158         | 8 6.4          | 0.                   | Sum of DP 3.8 & DP 4.1<br>4 Piped to DP 4.4                                                                                                        |
|                                      | 29           | B16      | 0.15      | 0.56          | 5.4                  | 0.08     | 5.06      | 0.4     |          | 5.70     |           |         |                     |          |           | 0.4                     |                                        |                            |                    |             |                |                      | Roof drains<br>3 Piped to DP 4.3                                                                                                                   |
|                                      | 30           | B15      | 0.13      |               |                      | 0.19     |           |         |          |          |           |         |                     |          |           | 0.9                     |                                        |                            |                    |             |                |                      | Sump Inlet<br>OPiced to DP 4.3                                                                                                                     |
|                                      |              | B12      | 0.27      | 0.71          | 5.7                  | 0.19     | 4.96      | 0.9     |          |          |           |         |                     |          |           |                         |                                        | 2.0                        |                    |             |                |                      | Sum of DP 29 & DP 30                                                                                                                               |
|                                      | 4.3          |          |           |               |                      |          |           |         | 5.7      | 0.27     | 4.96      | 1.3     |                     |          |           | 1.3                     |                                        | 2.0                        |                    |             |                |                      | 1 Piped to DP 4.4<br>Sum of DP 4.2 & DP 4.3                                                                                                        |
|                                      | 4.4          |          |           |               |                      |          |           |         | 16.0     | 6.05     | 3.42      | 20.7    |                     |          |           | 20.7                    | 6.05                                   | 5 0.8                      | 36                 | 311         | 7.7            | 0.                   | 7 Piped to DP 4.5<br>On-grade inlet                                                                                                                |
|                                      | 31           | B17      | 0.99      | 0.42          | 8.2                  | 0.41     | 4.43      | 1.8     |          |          |           |         |                     |          |           | 1.8                     | 0.41                                   | 2.0                        | 18                 | 13          | 5.6            | 0.                   | 0 Piped to DP 4.5<br>Sum of DP 31 & DP 4.4                                                                                                         |
|                                      | 4.5          |          |           |               |                      |          |           |         | 16.7     | 6.46     | 3.36      | 21.7    |                     |          |           | 21.7                    | 6.46                                   | 0.5                        | 42                 | 32          | 6.5            | 0.                   | 1 Piped to DP 2.6                                                                                                                                  |
|                                      | 32           | B18      | 0.47      | 0.50          | 7.2                  | 0.23     | 4.62      | 1.1     |          |          |           |         |                     |          |           | 1.1                     | 0.23                                   | 8 0.5                      | 42                 | (           | 2.7            | 0.                   | On-grade inlet<br>0 Piped to DP 4.6                                                                                                                |
|                                      | 4.6          |          |           |               |                      |          |           |         | 16.8     | 6.69     | 3.35      | 22.4    |                     |          |           | 22.4                    | 6.69                                   | 0.5                        | 42                 |             |                |                      | Sum of DP 32 & DP 4.5<br>1 Piped to DP 35                                                                                                          |
|                                      | 35           |          |           |               |                      |          |           |         | 16.8     | 6.7      | 3.35      | 22.4    | 22.4                | 6.69     | 0.5       |                         |                                        |                            |                    | 336         | 5 1.1          | 5.                   | 3 Pond B forebay<br>Trickle channel conveyance to DP 37                                                                                            |
|                                      | 33           | B19      | 1.92      | 0.32          | 16.9                 | 0.62     | 3.34      | 2.1     |          |          |           |         |                     |          |           | 2.1                     | 0.62                                   | 2 1.0                      | ) 18               | 55          | 6 4.5          | 0.                   | On-grade Inlet<br>2 Piped to DP 4.7                                                                                                                |
|                                      | 34           | B20      | 0.26      |               |                      | 0.13     |           |         |          |          |           |         |                     |          |           | 0.6                     |                                        | 3 1.0                      |                    |             | ) 3.1          |                      | On-grade Inlet<br>O Piped to DP 4.7                                                                                                                |
|                                      |              | D20      | 0.20      | 0.47          | 0.5                  | 0.13     | 4.03      | 0.0     |          | 0.75     |           | 0.5     |                     |          |           |                         |                                        |                            |                    |             |                |                      | Sum of DP 33 & DP 34                                                                                                                               |
|                                      | 4.7          |          |           |               |                      |          |           |         |          |          | 3.32      |         | 2.5                 | 0.75     | 0.5       | 2.5                     | 0.75                                   | 5 1.0                      | 24                 | 52<br>106   |                |                      | 2 Piped to DP 2.6<br>7 Pond B forebay                                                                                                              |
|                                      | 36           |          |           |               |                      |          |           |         | 17.1     | 0.8      | 3.32      | 2.5     | 0.5                 | 0.20     | 2.18      |                         |                                        |                            |                    |             |                |                      | Trickle channel conveyance to DP 37<br>Overland Flow                                                                                               |
|                                      | 37           | B21      | 2.46      | 0.08          | 29.7                 | 0.20     | 2.50      | 0.5     |          |          |           |         |                     |          |           |                         |                                        |                            |                    |             |                |                      | Pond Conveyance to DP 37 Pond outlet Structure                                                                                                     |
|                                      | 37           |          |           |               |                      |          |           |         | 22.0     | 7.64     | 2.94      | 22.5    | 0.2                 | 0.03     | 5.0       |                         |                                        |                            |                    | (           | ) 4.5          | 0.                   | Release detained flows into Sandcreek Drainageway O Future overland flow                                                                           |
|                                      | 38           | F6       | 0.35      | 0.08          | 5.3                  | 0.03     | 5.07      | 0.2     |          |          |           |         |                     | 0.03     |           |                         |                                        |                            |                    | Ì           | ) 2.8          |                      | Sheet flow offsite per historic condition<br>0 Future overland flow                                                                                |
|                                      | 39           | F7       | 0.53      | 0.08          | 6.9                  | 0.04     | 4.69      | 0.2     |          |          |           |         |                     |          |           |                         |                                        |                            |                    |             |                |                      | Existing swale conveyance offsite per historic condition                                                                                           |
|                                      | 40           | C1       | 0.74      | 0.29          | 15.0                 | 0.22     | 3.52      | 0.8     |          |          |           |         |                     | 0.22     |           |                         |                                        |                            |                    |             | 3 2.0          |                      | 5 Future overland flow to DP 40<br>Existing swale conveyance offsite per historic condition                                                        |
|                                      | 41           | C2       | 0.80      | 0.08          | 6.3                  | 0.06     | 4.83      | 0.3     |          |          |           |         | 0.3                 | 0.06     | 4.57      |                         |                                        |                            |                    | (           | 4.3            |                      | 0 Overland flow<br>Sheet flow offsite per historic condition                                                                                       |
|                                      | 42           | D1       | 0.95      | 0.19          | 12.8                 | 0.18     | 3.76      | 0.7     |          |          |           |         | 0.7                 | 0.18     | 3.3       |                         |                                        |                            |                    | (           | 3.6            | 0.                   | 0 Overland flow<br>Overflow channel to the Sandcreek Drainageway                                                                                   |
|                                      | 43           |          | 17.73     |               |                      |          |           |         |          | 1        |           |         | 36.7                | 10.46    | 3.2       |                         |                                        |                            | 1                  | 225         | 3.6            | 1.                   | 0 Surface runoff from Basin OS1, captured by existing channel and proposed overflow channel at DP 43<br>Channel conveyance to Sand Creek at DP 5.1 |
|                                      | 43           | OS2      |           |               |                      |          | 4.04      |         |          |          |           |         | 21.3                | 5.27     | 3.2       |                         |                                        |                            | 1                  | 147         | 2.7            | 0.                   | 9 Surface runnef from Basin OS2<br>Diverted to swale west of site at DP 44                                                                         |

5.0

5.1

5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.

5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study.

| division:<br>ocation:<br>n Storm: | El Pas       | io Coui  | nty       |               |                      |          |           |         |          |          |           |         |                     |          |           | Calc                    | ect Na<br>Project<br>culated<br>necked<br>D | d By: 🛛   | AAM                |             | rtmer          | nts                  |                                                                                         |
|-----------------------------------|--------------|----------|-----------|---------------|----------------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------|----------|-----------|-------------------------|---------------------------------------------|-----------|--------------------|-------------|----------------|----------------------|-----------------------------------------------------------------------------------------|
|                                   |              |          |           | DIRE          | CT RU                | NOFF     |           |         | T        | OTAL     | RUNO      | FF      | STRE                | ET/SW    | ALE       |                         | PIF                                         | ΡE        |                    | TRAV        | 'EL TII        | ME                   |                                                                                         |
| STREET                            | Design Point | Basin ID | Area (Ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (Ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | Ostreet/swale (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)                                    | Slope (%) | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                                 |
|                                   | 5.2          | -        | -         | -             | -                    |          | -         | -       |          |          |           |         |                     |          |           |                         |                                             |           |                    |             |                |                      | 5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study. |
|                                   | 5.3          | -        | -         | -             | -                    | -        | -         | -       |          |          |           |         |                     |          |           |                         |                                             |           |                    |             |                |                      | 5-Year Flows were not analyzed as part of the Sand Creek Drainage Basin Planning Study. |

Notes: Street and Pipe C\*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

Subdivision: Solace Des

Project Name: Solace Apartments Project No.: 25174.00 Calculated By: AAM Checked By:

|             | El Paso County |
|-------------|----------------|
| sian Storm: | 100-Year       |

| Design Storm: | 100-10       | cai      |           |               |                      |          |           |         |          |          |           |         |                     |          |           |                         | лескес<br>С | Date:           | 3/12/              | 21          |                |                      |                                                                                                                            |
|---------------|--------------|----------|-----------|---------------|----------------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------|----------|-----------|-------------------------|-------------|-----------------|--------------------|-------------|----------------|----------------------|----------------------------------------------------------------------------------------------------------------------------|
|               |              |          |           | DI            | RECT F               | RUNOFF   |           | 1       | T        | OTAL F   | RUNO      | FF      | STRE                | et/sw    | ALE       |                         | PIF         | E               |                    | TRAV        | el tin         | ИE                   |                                                                                                                            |
| Description   | Design Point | Basin ID | Area (ac) | Runoff Coeff. | t <sub>c</sub> (min) | C*A (ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | Ostreet/swale (cfs) | C*A (ac) | Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac)    | Slope (%)       | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                                                                    |
|               | 1            | F1       | 0.92      | 0.6           | 7.5                  | 5 0.62   | 7.66      | 4.7     |          |          |           |         |                     |          |           | 4.7                     | 0.62        | 1.0             | 18                 | 320         | 5.8            | 0.9                  | Future on-grade inlet<br>Future pipe conveyance to DP 1.0                                                                  |
|               | 2            |          | 0.14      |               |                      |          |           |         |          |          |           |         | 1.0                 | 0.12     | 2.18      | 7.7                     | 0.02        | 1.0             | 10                 | 33          |                |                      | Future overland flow to DP 4                                                                                               |
|               | ~            | F2       |           |               |                      | 0.12     |           | 1.0     |          |          |           |         |                     |          |           |                         |             |                 |                    |             |                |                      | Infrastructure to South Detention Pond at DP 2 Future sump inlet                                                           |
|               | 3            | F3       | 0.73      | 0.72          | 2 5.5                | 5 0.52   | 8.43      | 4.4     |          |          |           |         | 1.0                 | 0.12     | 1.5       | 4.4                     | 0.52        | 1.9             | 18                 | 64<br>300   | 7.1            | 0.2                  | Future pipe conveyance to DP 1.0 On-grade inlet, Carryover flow to DP 11                                                   |
|               | 4            | A1       | 0.50      | 0.8           | 5.7                  | 7 0.40   | 8.35      | 3.3     |          |          |           |         |                     |          |           | 2.3                     | 0.28        | 1.5             | 18                 | 8           |                |                      | Piped to DP 1.0<br>Sum of DP 1, DP 2, DP 3, & DP 4                                                                         |
|               | 1.0          |          |           |               |                      |          |           |         | 8.4      | 1.54     | 7.36      | 11.3    |                     |          |           | 11.3                    | 1.54        | 2.1             | 36                 |             |                |                      | Piped to DP 4P                                                                                                             |
|               | 4P           |          |           |               |                      |          |           |         | 8.4      | 1.54     | 7.36      | 11.3    |                     | 1.54     |           |                         |             |                 |                    | 185         |                |                      | Pond A Forebay<br>Trickle channel conveyance to DP 6P                                                                      |
|               | 5            | A2       | 0.47      | 0.82          | 2 6.2                | 2 0.38   | 8.14      | 3.1     |          |          |           |         | 1.6                 | 0.20     | 1.2       | 1.5                     | 0.18        | 2.0             | 18                 | 290<br>33   | 1.6<br>5.2     | 2.9                  | No. 16-valley inlet, Carryover flow to DP 10<br>Piped to DP 2.2                                                            |
|               |              |          |           |               |                      | 9 0.37   |           | 3.1     |          |          |           |         | 1.6                 | 0.19     | 1.5       |                         |             |                 |                    | 321<br>0    | 1.8            | 2.0                  | No. 16-valley inlet, Carryover flow to DP 10<br>Piped to DP 2.0                                                            |
|               | 6            | A3       | 0.45      |               |                      |          |           |         |          |          |           |         |                     |          |           | 1.5                     |             |                 |                    |             |                |                      | Future roof drains and area inlets                                                                                         |
|               | 7            | F4       | 0.68      | 0.51          | 11.3                 | 3 0.35   | 6.63      | 2.3     |          |          |           |         |                     |          |           | 2.3                     | 0.35        | 1.0             | 15                 | 27          | 4.8            | 0.                   | Future pipe conveyance to DP 2.0<br>Sum of DP 6 & DP 7                                                                     |
|               | 2.0          |          |           |               | _                    |          |           |         | 11.4     | 0.53     | 6.61      | 3.5     |                     |          |           | 3.5                     | 0.53        | 1.0             | 18                 | 14          | 5.3            | 0.0                  | Piped to DP 2.1<br>Roof drains                                                                                             |
|               | 8            | A4       | 0.15      | 0.81          | 5.0                  | 0.12     | 8.68      | 1.0     |          |          |           |         |                     |          |           | 1.0                     | 0.12        | 1.0             | 15                 | 105         | 3.9            | 0.9                  | Piped to DP 2.1                                                                                                            |
|               | 2.1          |          |           |               |                      |          |           |         | 11.4     | 0.65     | 6.60      | 4.3     |                     |          |           | 4.3                     | 0.65        | 1.0             | 18                 | 101         | 5.6            | 0.3                  | Sum of DP 8 & DP 2.0<br>Piped to DP 2.2                                                                                    |
|               | 2.2          |          |           |               |                      |          |           |         | 11.7     | 0.84     | 6.54      | 5.5     |                     |          |           | 5.5                     | 0.84        | 1.0             | 24                 | 105         | 5.9            | 0.3                  | Sum of DP 5 & DP 2.1<br>Piped to DP 2.3                                                                                    |
|               | 9            | A5       | 0.13      | 0.8           | E                    | 0.11     | 8.68      | 1.0     |          | 0.01     |           |         |                     |          |           | 1.0                     |             |                 |                    | 7           |                |                      | Roof drains<br>Piped to DP 2.3                                                                                             |
|               |              | AD       | 0.13      | 0.0           | 5.0                  | 5 0.11   | 0.00      | 1.0     |          |          |           |         |                     |          |           |                         |             |                 |                    |             |                |                      | Sum of DP 9 & DP 2.2                                                                                                       |
|               | 2.3          |          |           |               |                      |          |           |         | 12.0     | 0.95     | 6.47      | 6.1     |                     |          |           | 6.1                     | 0.95        | 1.3             | 24                 | 114         | 6.6            | 0.3                  | Piped to DP 2.4<br>Sump Inlet. Sum of Carryover flows from DP 5, DP 6, and Sub-Basin A6                                    |
|               | 10           | A6       | 1.51      | 0.68          | 3 10.5               | 5 1.03   | 6.82      | 7.0     | 10.5     | 1.41     | 6.82      | 9.6     |                     |          |           | 9.6                     | 1.41        | 1.3             | 24                 | 0           | 7.6            | 0.0                  | Piped to DP 2.4<br>Sum of DP 9 & DP 2.2                                                                                    |
|               | 2.4          |          |           |               |                      |          |           |         | 12.3     | 2.36     | 6.41      | 15.1    |                     |          |           | 15.1                    | 2.36        | 2.0             | 30                 | 31          | 9.8            | 0.                   | Piped to DP 2.5                                                                                                            |
|               | 11           | A7       | 0.58      | 0.60          | 10.6                 | 6 0.35   | 6.79      | 2.4     | 10.6     | 0.47     | 6.79      | 3.2     |                     |          |           | 3.2                     | 0.47        | 2.0             | 30                 | 0           | 6.4            | 0.0                  | On-grade Inlet, Sum of carryover from DP 4 and Sub-Basin A7<br>Piped to DP 2.5                                             |
|               | 2.5          |          |           |               |                      |          |           |         | 12.3     | 2.83     | 6.40      | 18.2    |                     |          |           | 18.2                    | 2.83        | 2.0             | 36                 | 44          | 10.2           | 0.1                  | Sum of DP 11 & DP 2.4<br>Piped to DP 2.6                                                                                   |
|               | 12           | A8       | 0.30      | 0.68          |                      | 9 0.20   | 8.27      | 1.7     |          | 2.00     |           |         |                     |          |           | 1.7                     |             |                 |                    | 0           | 5.2            |                      | Piped to DP 2.6                                                                                                            |
|               |              | Ao       | 0.30      | 0.00          | 0.5                  | 7 0.20   | 0.27      | 1.7     |          |          |           |         |                     |          |           |                         |             |                 |                    | 0           |                |                      | Sum of DP 12 & DP 2.5                                                                                                      |
|               | 2.6          |          |           |               | +                    |          |           |         | 12.4     | 3.03     | 6.39      | 19.4    | 19.4                | 3.03     | 0.5       | 19.4                    | 3.03        | 2.4             | 36                 | 55<br>45    | 11.2           |                      |                                                                                                                            |
| L             | 5P           |          |           |               | -                    |          |           |         | 12.4     | 3.03     | 6.39      | 19.4    |                     | 0.47     |           |                         |             | $ \rightarrow $ |                    |             |                | -                    | Trickle channel conveyance to DP 6P<br>Overland Flow                                                                       |
|               | 6P           | A9       | 1.33      | 0.3           | 5 13.9               | 9 0.47   | 6.11      | 2.9     |          |          |           |         | 2.7                 | 0.77     | 2.10      |                         |             |                 |                    |             |                |                      | Pond Conveyance to DP 6P                                                                                                   |
|               | 6P           |          |           |               |                      |          |           |         | 13.9     | 5.04     | 6.11      | 30.8    |                     |          |           |                         |             |                 |                    |             |                |                      | Pond outlet Structure<br>Release detained flows into Sandcreek Drainageway                                                 |
|               |              |          |           |               |                      |          |           |         |          |          |           |         |                     |          |           |                         |             |                 |                    |             |                |                      |                                                                                                                            |
|               | 13           | F5       | 2.00      | 0.59          | 0 0 7                | 7 1.18   | 7.00      | 8.3     |          |          |           |         | 8.3                 | 1.18     | 1.2       |                         |             |                 |                    | 170         | 1.3            | 2.2                  | Future Phase 2 developed flows minus roof drains and future area inlet flows<br>Pan conveyance to DP 14                    |
|               |              |          |           |               |                      |          |           |         | 14.0     |          | 1.50      | 0-      | 7.0                 | 1.07     | 1.1       | o -                     | 0.10        |                 | 40                 | 89          |                |                      | Sum of carryover flows from DP 13 and Sub-Basin B1, No. 16-valley inlet, Carryover flow to DP 16                           |
|               | 14           | B1       | 0.37      | 0.83          | 3 5.1                | 1 0.31   | 8.61      | 2.7     | 11.9     |          | 6.50      | 9.7     |                     |          |           | 2.7                     |             |                 |                    | 0           |                |                      | Piped to DP 3.0<br>Flows captured by No. 16-Valley inlet and future building and area drains connecting directly to inlet. |
|               | 3.0          |          |           |               |                      |          |           |         | 11.9     | 1.40     | 6.50      | 9.1     |                     |          |           | 9.1                     | 1.40        | 1.0             | 18                 | 89          | 6.7            | 0.                   | Piped to DP 3.1                                                                                                            |

| Subdivision: |                |
|--------------|----------------|
| Location:    | El Paso County |

Project Name: Solace Apartments Project No.: 25174.00 Calculated By: AAM

|               | El Paso Coun |
|---------------|--------------|
| Design Storm: | 100-Year     |

|    | CI | necke<br>[ |    | 3/12/ | 21   |         |    |  |
|----|----|------------|----|-------|------|---------|----|--|
| LE |    | PIF        | ΡĒ |       | TRAV | 'EL TIN | ЛE |  |
|    |    |            |    |       |      |         |    |  |

| New Principal         New Prin                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             |              |            |           |               |                                  |           |         |          |          |         |        |                       |                         |          | Date:     | 3/12/              | 21          |                |                      |                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------|------------|-----------|---------------|----------------------------------|-----------|---------|----------|----------|---------|--------|-----------------------|-------------------------|----------|-----------|--------------------|-------------|----------------|----------------------|-------------------------------------------------------------------------------------------|
| No.         No. <td></td> <td></td> <td></td> <td></td> <td>DIR</td> <td>ECT RUNOFF</td> <td>-</td> <td></td> <td>TC</td> <td>TAL RUN</td> <td>IOFF</td> <td>STREET</td> <td>/SWALE</td> <td></td> <td>PI</td> <td>PE</td> <td></td> <td>TRAV</td> <td>el tin</td> <td>ЛE</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              |            |           | DIR           | ECT RUNOFF                       | -         |         | TC       | TAL RUN  | IOFF    | STREET | /SWALE                |                         | PI       | PE        |                    | TRAV        | el tin         | ЛE                   |                                                                                           |
| 15         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16         16<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Description | Design Point | Basin ID   | Area (ac) | Runoff Coeff. | t <sub>c</sub> (min)<br>C*A (ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | Q (cfs) | e      | C*A (ac)<br>Slope (%) | Q <sub>pipe</sub> (cfs) | C*A (ac) | Slope (%) | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) |                                                                                           |
| 16         8.1         0.2         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4 <th0.4< th="">         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4         0.4</th0.4<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |             | 15           | <b>D</b> 2 | 0.25      | 0.02          | E 0 0 22                         | 0.40      | 2.0     |          |          |         |        |                       | 2.0                     | 0.22     | 2.0       | 10                 | 75          | 4.4            | 0.7                  | On-grade inlet                                                                            |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              |            |           |               |                                  |           |         |          |          |         | 0.3    | 0.05 1.1              | 1                       |          |           |                    | 89          | 1.6            | 0.9                  | Sum of carryover flow from DP 14 and Sub-Basin B3,On-grade inlet. Carryover flow to DP 19 |
| Int         Int <td></td> <td>16</td> <td>B3</td> <td>0.35</td> <td>0.79</td> <td>5.0 0.28</td> <td>8.68</td> <td>2.4</td> <td>12.8</td> <td></td> <td></td> <td>5</td> <td>_</td> <td>8.2</td> <td>1.30</td> <td>1.0</td> <td>18</td> <td>0</td> <td>6.6</td> <td>0.0</td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |             | 16           | B3         | 0.35      | 0.79          | 5.0 0.28                         | 8.68      | 2.4     | 12.8     |          |         | 5      | _                     | 8.2                     | 1.30     | 1.0       | 18                 | 0           | 6.6            | 0.0                  |                                                                                           |
| 17         84         02         03         65         0.0         64         04         2.3         3/3         06         06         02         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2        <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 3.1          |            |           |               |                                  |           |         | 12.8     | 3.02 6.  | 31 19.0 | )      |                       | 19.0                    | 3.02     | 0.5       | 30                 | 30          | 6.3            | 0.1                  |                                                                                           |
| 32         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 17           | B4         | 0.03      | 0.81          | 5.0 0.02                         | 8.68      | 0.2     |          |          |         |        |                       | 0.2                     | 0.02     | 1.0       | 8                  | 40          | 2.3            | 0.3                  | Piped to DP 3.2                                                                           |
| 19         19         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10         10<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 3.2          |            |           |               |                                  |           |         | 12.9     | 3.04 6.3 | 29 19.1 |        |                       | 19.1                    | 3.04     | 0.5       | 30                 | 163         | 6.3            | 0.4                  | Piped to DP 3.3                                                                           |
| 13         14         15         15         16         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 18           | B5         | 0.26      | 0.81          | 5.0 0.21                         | 8.68      | 1.8     |          |          |         |        |                       | 1.8                     | 0.21     | 1.0       | 8                  | 40          | 5.2            | 0.1                  |                                                                                           |
| 10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10       10 <th< td=""><td></td><td>33</td><td></td><td></td><td></td><td></td><td></td><td></td><td>13.3</td><td>3 25 6</td><td>21 20 2</td><td>,</td><td></td><td>20.2</td><td>3 25</td><td>1 9</td><td>30</td><td>75</td><td>10.4</td><td>0.1</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 33           |            |           |               |                                  |           |         | 13.3     | 3 25 6   | 21 20 2 | ,      |                       | 20.2                    | 3 25     | 1 9       | 30                 | 75          | 10.4           | 0.1                  |                                                                                           |
| 1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1         1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              | D/         | 0.70      | 0.71          | 71 0.52                          | 7.01      | 4.1     |          |          |         | 2.5 (  | 0.33 1.1              | 1                       |          |           |                    | 445         |                |                      | No. 16-valley inlet, Carryover flow to DP 27                                              |
| 20       87       9.47       9.67       9.67       9.20       7.8       2.0       9.2       9.1       7.6       9.64       9.20       Pot fails<br>Sum of P2 36 P3 4         10       15       1       15       17       13.5       3.7       6.17       2.2       2.1       5.5       5.1       14.6       6.4       6.22 Papt 10 P 3.5       Sum of P2 36 P 3.4         10       13       13.5       3.75       6.17       2.2       1       1       0.20       1.4       6.6       6.6       Pot fails       Sum of P2 36 P3 4         10       13       13       2.5       1.1       2.2       2.1       1.4       6.6       0.17       1.4       0.6       0.17       0.1       1.4       0.6       0.17       0.1       1.4       0.0       0.1       1.7       0.20       1.0       1.4       0.1       0.1       1.1       0.2       0.1       1.4       0.1       0.1       1.4       0.1       0.1       1.4       0.1       0.1       1.4       0.1       0.1       1.4       0.1       0.1       1.4       0.1       0.1       1.4       0.1       0.1       1.4       0.1       0.1       0.1       0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |             |              | B0         | 0.73      | 0.71          | 7.1 0.52                         | 7.81      | 4.1     |          |          |         | 5      |                       |                         |          |           |                    |             |                |                      | Sum of DP 19 & DP 3.3                                                                     |
| 10         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17         17<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 3.4          |            |           |               |                                  |           |         | 13.5     | 3.49 6.  | 19 21.6 | b      |                       | 21.6                    | 3.49     | 1.0       | 30                 | 29          | 8.5            | 0.1                  |                                                                                           |
| As         As<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 20           | B7         | 0.47      | 0.56          | 7.0 0.26                         | 7.83      | 2.0     |          |          |         |        |                       | 2.0                     | 0.26     | 1.0       | 15                 | 60          | 4.6            | 0.2                  | Piped to DP 3.5                                                                           |
| 1         8         9.5         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0         9.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 3.5          |            |           |               |                                  |           |         | 13.5     | 3.75 6.  | 17 23.2 | 2      |                       | 23.2                    | 3.75     | 0.5       | 30                 | 143         | 6.6            | 0.4                  | Piped to DP 3.6                                                                           |
| 3 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |             | 21           | B8         | 0.25      | 0.81          | 5.0 0.20                         | 8.68      | 1.7     |          |          |         |        |                       | 1.7                     | 0.20     | 1.0       | 15                 | 10          | 4.4            | 0.0                  |                                                                                           |
| 22       80       0.1       0.81       5.0       0.15       8.66       1.3       1.4       4.10       6.02       24.7       4.10       6.5       5.6       0.0       Northweight with with with with with with with wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 3.6          |            |           |               |                                  |           |         | 13.9     | 3.95 6.  | 11 24.1 |        |                       | 24.1                    | 3.95     | 0.5       | 30                 | 191         | 6.6            | 0.5                  |                                                                                           |
| And       A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |              | RO         | 0.10      | 0.81          | 5.0 0.15                         | 8 68      | 13      |          |          |         |        |                       |                         |          |           |                    |             |                |                      | Roof drains                                                                               |
| 23       B10       0.38       0.69       52       0.26       8.56       2.2       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4 <th< td=""><td></td><td></td><td>57</td><td>0.17</td><td>0.01</td><td>3.0 0.13</td><td>0.00</td><td>1.5</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Sum of DP 22 &amp; DP 3.6</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |             |              | 57         | 0.17      | 0.01          | 3.0 0.13                         | 0.00      | 1.5     |          |          |         |        |                       |                         |          |           |                    |             |                |                      | Sum of DP 22 & DP 3.6                                                                     |
| 38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       38       39       38       38       39       38       38       39       38       38       39       38       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       39       68       26       40       20       15       101       20       18       40       25       0.0       0.1       10.0       10.0       10.0       10.0       10.0       10.0       10.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             |              |            |           |               |                                  |           |         | 14.4     | 4.10 6.  | JZ 24.1 |        |                       |                         |          |           |                    |             |                |                      | Sump Inlet                                                                                |
| 24       B13A       0.48       0.46       9.4       0.22       7.08       1.6       0.22       1.0       15       0.12       1.0       1.6       0.22       1.0       15       47       4.3       0.22       Piped to DP 3.9         25       B13       0.58       0.70       6.4       0.40       8.06       3.2       1.7       0.21       3.0       1.5       0.19       2.0       18       0.52       0.0       Piped to DP 3.9         3.9       1.0       1.0       0.58       0.70       6.4       0.40       8.06       3.2       2.9       0.41       2.0       18       0.52       0.0       Piped to DP 3.9         3.9       1.1       0.39       6.68       2.6       0.41       7.04       2.9       2.9       0.41       2.0       18       41       6.4       0.1       Piped to DP 4.1         26       B11       0.74       0.53       11.1       0.39       6.68       2.6       1.7       1.11       1.0       1.0       15       39       4.9       0.1       Piped to DP 4.1         27       B12       1.08       0.72       1.11       6.33       7.1       7.1       1.11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |             | 23           | B10        | 0.38      | 0.69          | 5.2 0.26                         | 8.56      | 2.2     |          |          |         |        | _                     | 2.2                     | 0.26     | 2.0       | 18                 | 15          | 5.9            | 0.0                  |                                                                                           |
| 1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |             | 3.8          |            |           |               |                                  |           |         | 14.6     | 4.36 5.  | 26.1    |        |                       | 26.1                    | 4.36     | 0.5       | 36                 | 46          | 6.9            | 0.1                  |                                                                                           |
| 25       B13       0.58       0.70       6.4       0.40       0.806       3.2       0       1.5       0.19       0.10       1.8       0       5.2       0.0       Piped to DP 3.9         39       0.7       0.7       0.41       0.7       0.41       0.41       0.4       0.1       0.4       0.1       0.4       0.1       0.4       0.1       0.4       0.1       0.4       0.1       0.4       0.1       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4       0.4<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |             | 24           | B13A       | 0.48      | 0.46          | 9.4 0.22                         | 7.08      | 1.6     |          |          |         |        |                       |                         | 0.22     | 1.0       | 15                 |             |                |                      | Piped to DP 3.9                                                                           |
| 3.9       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1.0       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 25           | B13        | 0.58      | 0.70          | 6.4 0.40                         | 8.06      | 3.2     |          |          |         | 1.7 (  | ).21 3.0              |                         | 0.19     | 2.0       | 18                 | 40<br>0     | 2.6<br>5.2     | 0.3                  | Piped to DP 3.9                                                                           |
| 26       B11       0.74       0.53       1.1       0.39       6.68       2.6       2.6       2.6       0.39       1.0       15       39       4.9       0.1       Piped to DP 4.0         27       B12       1.08       0.72       9.2       0.78       7.13       5.6       12.7       1.11       6.33       7.1       7.1       1.11       1.0       18       0       6.4       0.0       Piped to DP 4.0         201       Piped to DP 4.0         202       B14       0.49       0.76       9.4       0.37       7.18       1.11       6.33       9.5       9.5       1.50       1.0       18       0       6.4       0.0       Piped to DP 4.0         203       B14       0.49       0.76       9.4       0.37       7.08       2.6       9.4       0.58       7.08       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50       1.50 <th< td=""><td></td><td>3.9</td><td></td><td></td><td></td><td></td><td></td><td></td><td>9.6</td><td>0.41 7.</td><td>04 2.9</td><td>)</td><td></td><td>2.9</td><td>0.41</td><td>2.0</td><td>18</td><td>41</td><td>6.4</td><td>0.1</td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             | 3.9          |            |           |               |                                  |           |         | 9.6      | 0.41 7.  | 04 2.9  | )      |                       | 2.9                     | 0.41     | 2.0       | 18                 | 41          | 6.4            | 0.1                  |                                                                                           |
| 27       B12       1.08       0.72       9.2       0.78       7.1       5.6       12.7       1.11       6.33       7.1       7.1       1.11       1.0       18       0       6.4       0.0       Piped to DP 4.0         4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |             |              | R11        | 0.74      | 0.53          | 11 1 0 20                        | 6.68      | 26      |          |          |         |        |                       |                         |          |           |                    |             |                |                      | Roof drains                                                                               |
| 4.0       4.0       4.0       5.0       5.0       6.3       9.5       1.50       6.3       9.5       1.50       1.0       1.8       32       6.7       0.1       Piped to DP 4.1         28       B14       0.49       0.76       9.4       0.37       7.08       2.6       9.4       1.57       1.0       1.0       1.8       1.2       1.8       1.2       5.9       0.0       Piped to DP 4.1         3.1       1.1       1.2       1.2       1.57       2.49       1.57       2.49       1.0       24       4.8       1.78       0.1       Piped to DP 4.1         Sum of DP 28, DP 3,9, & DP 4.0       1.2       1.2       1.57       2.49       1.0       24       4.8       1.78       0.1       Piped to DP 4.1         Sum of DP 28, DP 3,9, & DP 4.0       1.2       1.2       1.57       2.49       1.0       24       4.8       1.78       1.78       1.78       1.78       1.78       1.78       1.78       1.78       1.78       1.78       1.78       1.78       1.796       1.50       1.47       1.58       1.58       1.58       7.5       0.4       Piped to DP 4.4       1.47       1.58       1.58       1.58       7.5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |             |              |            |           |               |                                  |           |         | 10.7     | 1 1 1    |         |        |                       |                         |          |           |                    |             |                |                      | Sump Inlet, sum of carryover from DP 19 and Sub-Basin B12                                 |
| 28       B14       0.49       0.76       9.4       0.37       7.08       2.6       9.4       0.58       7.08       4.1       0.58       12       18       12       5.9       0.0 Piped to DP 4.1       0.0P 3.9 & DP 4.0         4.1       4.1       0.58       7.08       4.1       15.7       2.49       1.0       24       44       7.8       0.1 Piped to DP 4.0         4.1       4.1       4.1       0.58       7.08       4.1       15.7       2.49       1.0       24       44       7.8       0.1 Piped to DP 4.0         4.1       4.1       4.1       0.58       7.08       4.1       15.7       2.49       1.0       24       44       7.8       0.1 Piped to DP 4.0         4.1       4.1       4.0       6.85       0.5       5.96       40.8       40.8       6.85       0.5       36       158       7.5       0.4 Piped to DP 4.4         4.1       4.1       4.1       4.1       5.96       40.8       6.85       0.5       36       158       7.5       0.1 Piped to DP 4.4         4.1       4.1       4.1       5.96       40.8       40.8       5.96       0.5       50       50       50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |              | в12        | 1.08      | 0.72          | 9.2 0.78                         | 7.13      | 5.6     |          |          |         |        |                       |                         |          |           |                    |             |                |                      | Sum of DP 26 & DP 27                                                                      |
| 28       B14       0.49       0.76       9.4       0.37       7.08       2.6       9.4       0.58       7.08       4.1       0.58       1.2       18       12       5.9       0.0       Piped to DP 4.1         1       1       1       1       1       1       0.58       7.08       4.1       0.58       7.08       1.2       18       12       5.9       0.0       Piped to DP 4.1         1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 4.0          | <u> </u>   |           |               |                                  |           |         |          |          |         | 5      |                       | 9.5                     | 1.50     | 1.0       | 18                 | 32          |                |                      |                                                                                           |
| 4.1     4.1     12.8     2.49     6.31     15.7     2.49     10.     24     44     7.8     0.1     Piped to DP 4.2       4.2     4.2     4.2     4.2     4.2     4.2     4.4     7.8     0.1     Piped to DP 4.2       4.2     4.4     4.4     7.5     0.4     Piped to DP 4.2     Sum of DP 3.8 & DP 4.1       4.2     4.4     7.8     0.1     Piped to DP 4.4     Sum of DP 3.8 & DP 4.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |             | 28           | B14        | 0.49      | 0.76          | 9.4 0.37                         | 7.08      | 2.6     | 9.4      | 0.58 7.0 | 08 4.1  |        |                       | 4.1                     | 0.58     | 1.2       | 18                 | 12          | 5.9            | 0.0                  | Piped to DP 4.1                                                                           |
| 4.2       4.2       4.2       14.7       6.85       5.96       40.8       6.85       0.5       36       158       7.5       0.4       Piped to DP 4.4         Image: Constraint of the system of |             | 4.1          |            |           |               |                                  |           |         | 12.8     | 2.49 6.  | 31 15.7 | ,      |                       | 15.7                    | 2.49     | 1.0       | 24                 | 44          | 7.8            | 0.1                  | Piped to DP 4.2                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 4.2          |            |           |               |                                  |           |         | 14.7     | 6.85 5.  | 96 40.8 | 3      |                       | 40.8                    | 6.85     | 0.5       | 36                 | 158         | 7.5            | 0.4                  | Piped to DP 4.4                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |             | 29           | B16        | 0.15      | 0.69          | 5.4 0.10                         | 8.49      | 0.8     |          |          |         |        |                       | 0.8                     | 0.10     | 1.0       | 15                 | 47          | 3.6            | 0.2                  |                                                                                           |

| Subdivision:  | Solace         |
|---------------|----------------|
|               | El Paso County |
| Design Storm: | 100-Year       |

Project Name: Solace Apartments Project No.: 25174.00 Calculated By: AAM Checked By: Date: 3/12/21

|             |              |          |           | DIR           | RECT R      | UNOFF    |           |         | T        | OTAL F   | RUNO      | FF      | STREE               | et/sw    | /ALE      |                         | PI       | PE        |                    | TRAV        | el tin         | ЛE                   |                                                                                           |
|-------------|--------------|----------|-----------|---------------|-------------|----------|-----------|---------|----------|----------|-----------|---------|---------------------|----------|-----------|-------------------------|----------|-----------|--------------------|-------------|----------------|----------------------|-------------------------------------------------------------------------------------------|
| Description | Design Point | Basin ID | Area (ac) | Runoff Coeff. | $t_c$ (min) | C*A (ac) | l (in/hr) | Q (cfs) | tc (min) | C*A (ac) | l (in/hr) | Q (cfs) | Ostreet/swale (cfs) | C*A (ac) | Slope (%) | O <sub>pipe</sub> (cfs) | C*A (ac) | Slope (%) | Pipe Size (inches) | Length (ft) | Velocity (fps) | t <sub>t</sub> (min) | REMARKS                                                                                   |
|             | 30           | B15      | 0.27      | 0.81          | 5.7         | 0.22     | 8.33      | 1.8     |          |          |           |         |                     |          |           | 1.8                     | 0.22     | 2.0       | 18                 | 0           | 5.6            |                      | Sump Inlet<br>Piped to DP 4.3                                                             |
|             | 4.3          |          |           |               |             |          |           |         | 5.7      | 0.32     | 8.33      | 2.7     |                     |          |           | 2.7                     | 0.32     | 2.0       | 18                 | 34          | 6.4            | 0.1                  | Sum of DP 29 & DP 30<br>Piped to DP 4.4                                                   |
|             | 4.4          |          |           |               |             |          |           |         | 15.1     | 7.17     | 5.90      | 42.3    |                     |          |           | 42.3                    | 7.17     | 0.8       | 36                 | 311         | 9.1            |                      | Sum of DP 4.2 & DP 4.3<br>Piped to DP 4.5                                                 |
|             | 31           | B17      | 0.99      | 0.60          | 8.2         | 0.60     | 7.43      | 4.5     |          |          |           |         | 0.2                 | 0.02     | 1.0       | 4.3                     | 0.58     | 2.0       | 18                 | 292<br>13   |                | 3.2<br>0.0           | On-grade inlet, carryover flow to DP 33<br>Piped to DP 4.5                                |
|             | 4.5          |          |           |               |             |          |           |         | 15.6     | 7.75     | 5.81      | 45.0    |                     |          |           | 45.0                    | 7.75     | 0.5       | 42                 | 32          | 7.8            | 0.1                  | Sum of DP 31 & DP 4.4<br>Piped to DP 2.6                                                  |
|             | 32           | B18      | 0.47      | 0.66          | 7.2         | 0.31     | 7.75      | 2.4     |          |          |           |         |                     |          |           | 2.4                     | 0.31     | 0.5       | 42                 | 0           | 3.4            |                      | On-grade inlet<br>Piped to DP 4.6                                                         |
|             | 4.6          |          |           |               |             |          |           |         | 15.7     | 8.06     | 5.80      | 46.7    |                     |          |           | 46.7                    | 8.06     | 0.5       | 42                 |             |                |                      | Sum of DP 32 & DP 4.5<br>Piped to DP 35                                                   |
|             | 35           |          |           |               |             |          |           |         | 15.7     | 8.1      | 5.8       | 46.7    | 46.7                | 8.06     | 0.5       |                         |          |           |                    | 336         | 1.1            |                      | Pond B forebay<br>Trickle channel conveyance to DP 37                                     |
|             | 33           | B19      | 1.92      | 0.53          | 16.9        | 1.01     | 5.60      | 5.7     | 16.9     | 1.03     | 5.60      | 5.8     |                     |          |           | 5.8                     | 1.03     | 1.0       | 18                 | 55          | 6.0            | 0.2                  | Sum of carryover from DP 31 and Sub-basin B19,0n-grade Inlet<br>Piped to DP 4.7           |
|             | 34           | B20      | 0.26      | 0.66          | 6.3         | 0.17     | 8.12      | 1.4     |          |          |           |         |                     |          |           | 1.4                     | 0.17     | 1.0       | 24                 | 0           | 3.9            |                      | On-grade Inlet<br>Piped to DP 4.7                                                         |
|             | 4.7          |          |           |               |             |          |           |         | 17.1     | 1.20     | 5.58      | 6.7     |                     |          |           | 6.7                     | 1.20     | 1.0       | 24                 | 52          | 6.2            |                      | Sum of DP 33 & DP 34<br>Piped to DP 2.6                                                   |
|             | 36           |          |           |               |             |          |           |         | 17.1     | 1.2      | 5.6       | 6.7     | 6.7                 |          |           |                         |          |           |                    | 106         | 1.1            |                      | Pond B forebay<br>Trickle channel conveyance to DP 37                                     |
|             | 37           | B21      | 2.46      | 0.35          | 29.7        | 0.86     | 4.19      | 3.6     |          |          |           |         | 3.6                 | 0.86     | 2.18      |                         |          |           |                    |             |                |                      | Overland Flow<br>Pond Conveyance to DP 37                                                 |
|             | 37           |          |           |               |             |          |           |         | 21.0     | 10.12    | 5.06      | 51.3    |                     |          |           |                         |          |           |                    |             |                |                      | Pond outlet Structure<br>Release detained flows into Sandcreek Drainageway                |
|             | 38           | F6       | 0.35      | 0.35          | 5.3         | 0.12     | 8.52      | 1.0     |          |          |           |         |                     | 0.12     |           |                         |          |           |                    | 0           |                |                      | Future overland flow<br>Sheet flow offsite per historic condition                         |
|             | 39           | F7       | 0.53      | 0.35          | 6.9         | 0.19     | 7.87      | 1.5     |          |          |           |         | 1.5                 |          |           |                         |          |           |                    | 0           |                |                      | Future overland flow<br>Existing swale conveyance offsite per historic condition          |
|             | 40           | C1       | 0.74      | 0.51          | 15.0        | 0.37     | 5.91      | 2.2     |          |          |           |         | 2.2                 |          |           |                         |          |           |                    | 183         |                |                      | Future overland flow to DP 40<br>Existing swale conveyance offsite per historic condition |
|             | 41           | C2       | 0.80      | 0.35          | 6.3         | 0.28     | 8.12      | 2.3     |          |          |           |         | 2.3                 |          |           |                         |          |           |                    | 0           | 1.0            |                      | Overland flow<br>Sheet flow offsite per historic condition                                |
|             | 10           | 54       | 0.05      | 0.40          | 40.0        | 0.44     | ( 04      |         |          |          |           |         | 2.6                 | 0.41     | 3.3       |                         |          |           |                    | 0           | 3.6            | 0.0                  | Overland flow                                                                             |

3.2

73.1 12.41

820.0

820.0

1037.0

1100.0

42.4 6.25 3.2

3.6

2.7

Surface runoff from Basin OS2

Diverted to swale west of site at DP 44

225

147

Overflow channel to the Sandcreek Drainageway Surface runoff from Basin OS1, captured by existing channel and proposed overflow channel at DP 43 Channel conveyance to Sand Creek at DP 5.1

Flow taken directly from the Sand Creek Drainage Basin Planning Study

Flow taken directly from the Sand Creek Drainage Basin Planning Study

Flow taken directly from the Sand Creek Drainage Basin Planning Study

Flow taken directly from the Sand Creek Drainage Basin Planning Study

Notes: Street and Pipe C\*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

42 D1 0.95 0.43 12.8 0.41

OS1 17.73 0.70

43

44 OS2 8.93 0.70 10.6

5.0

5.1

5.2

5.3

6.31

5.89 73.1

6.78

15.1 12.41

6.25

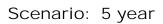
2.6

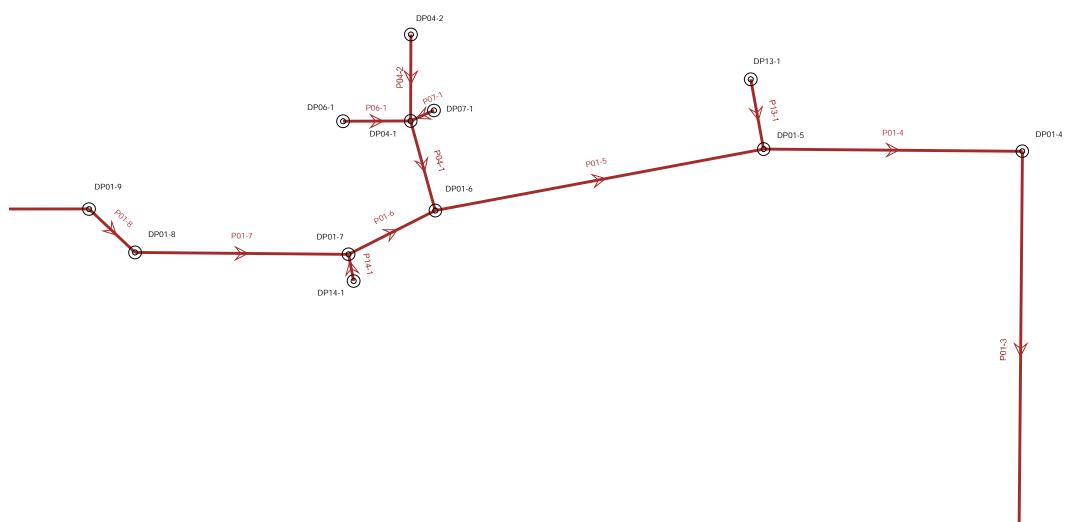
42.4

820.0

820.0

1037.0

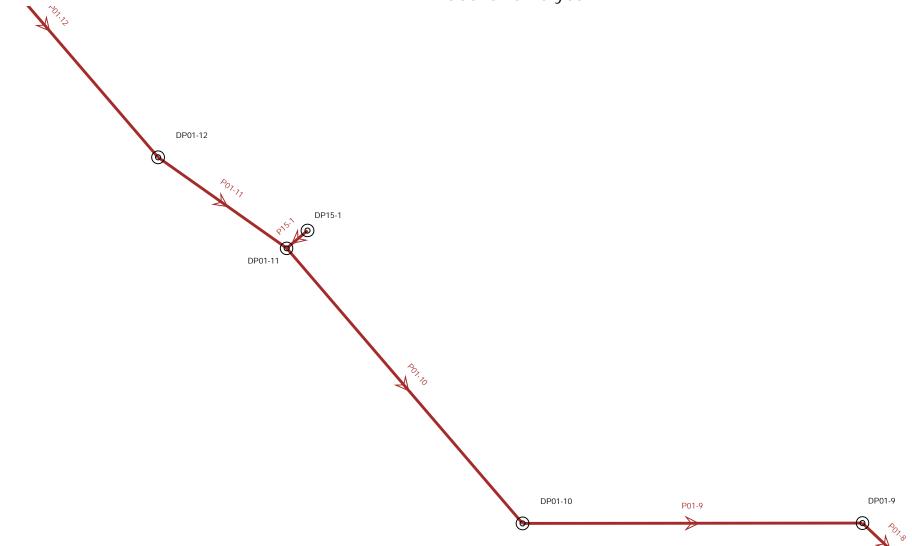

1100.0


| Upstream<br>Structure  | Label                     | Flow<br>(cfs) | Diameter<br>(in) | Slope<br>(Calculated)<br>(ft/ft) | Invert<br>(Start)<br>(ft) | Invert<br>(Stop)<br>(ft) | Elevation<br>Ground<br>(Start)<br>(ft) | Elevation<br>Ground<br>(Stop)<br>(ft) | Hydraulic<br>Grade<br>Line (In)<br>(ft) | Hydraulic<br>Grade<br>Line<br>(Out) (ft) | Energy<br>Grade<br>Line (In)<br>(ft) | Energy<br>Grade<br>Line<br>(Out) (ft) | Velocity<br>(ft/s) | Upstream<br>Structure<br>Headloss<br>Coefficient | Length<br>(User<br>Defined)<br>(ft) |
|------------------------|---------------------------|---------------|------------------|----------------------------------|---------------------------|--------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------|--------------------|--------------------------------------------------|-------------------------------------|
| DP09-2                 | CO-1                      | 2.10          | 12.0             | 0.010                            | 6,263.75                  | 6,263.66                 | 6,267.82                               | 6,268.25                              | 6,264.37                                | 6,264.34                                 | 6,264.63                             | 6,264.55                              | 4.76               | 1.000                                            | 8.8                                 |
| DP09-1                 | CO-2                      | 2.10          | 12.0             | 0.010                            | 6,263.46                  | 6,262.84                 | 6,268.25                               | 6,267.71                              | 6,264.08                                | 6,263.91                                 | 6,264.34                             | 6,264.02                              | 4.71               | 1.000                                            | 62.5                                |
| DP01-2                 | P01-1                     | 22.40         | 42.0             | 0.005                            | 6,246.24                  | 6,245.98                 | 6,252.97                               | 6,249.87                              | 6,247.69                                | 6,247.33                                 | 6,248.24                             | 6,248.00                              | 6.55               | 0.050                                            | 52.0                                |
| DP01-11                | P01-10                    | 11.90         | 30.0             | 0.010                            | 6,255.56                  | 6,253.84                 | 6,262.02                               | 6,260.91                              | 6,256.72                                | 6,255.06                                 | 6,257.16                             | 6,255.45                              | 7.24               | 1.020                                            | 171.7                               |
| DP01-12                | P01-11                    | 11.10         | 24.0             | 0.010                            | 6,256.81                  | 6,256.06                 | 6,264.38                               | 6,262.02                              | 6,258.00                                | 6,257.05                                 | 6,258.50                             | 6,257.85                              | 7.18               | 0.050                                            | 74.6                                |
| DP01-13                | P01-12                    | 10.60         | 24.0             | 0.010                            | 6,258.65                  | 6,257.01                 | 6,265.62                               | 6,264.38                              | 6,259.82                                | 6,257.97                                 | 6,260.30                             | 6,258.75                              | 7.09               | 0.640                                            | 163.6                               |
| DP01-14                | P01-13                    | 10.50         | 24.0             | 0.010                            | 6,259.07                  | 6,258.85                 | 6,265.81                               | 6,265.62                              | 6,260.23                                | 6,260.13                                 | 6,260.71                             | 6,260.51                              | 7.09               | 1.020                                            | 21.8                                |
| DP01-15                | P01-14                    | 9.60          | 18.0             | 0.010                            | 6,259.32                  | 6,259.20                 | 6,265.70                               | 6,265.81                              | 6,260.82                                | 6,260.72                                 | 6,261.28                             | 6,261.18                              | 6.74               | 0.050                                            | 11.8                                |
| DP01-16                | P01-15                    | 6.40          | 18.0             | 0.010                            | 6,260.28                  | 6.259.59                 | 6.265.15                               | 6.265.70                              | 6.261.26                                | 6.260.84                                 | 6,261.69                             | 6.261.10                              | 6.23               | 0.000                                            | 69.2                                |
| DP01-3                 | P01-2                     | 21.70         | 42.0             | 0.005                            | 6.246.60                  | 6.246.44                 | 6.252.79                               | 6.252.97                              | 6.248.03                                | 6.247.78                                 | 6.248.57                             | 6.248.42                              | 6.48               | 1.020                                            | 32.2                                |
| DP01-4                 | P01-3                     | 20.70         | 36.0             | 0.007                            | 6.248.21                  | 6.246.80                 | 6,255.53                               | 6,252.79                              | 6.249.67                                | 6.248.58                                 | 6,250.24                             | 6,248.93                              | 7.49               | 1.320                                            | 188.4                               |
| DP01-5                 | P01-4                     | 20.70         | 36.0             | 0.005                            | 6,249.02                  | 6,248.41                 | 6,257.20                               | 6,255.53                              | 6,250.48                                | 6,250.42                                 | 6,251.05                             | 6,250.69                              | 6.44               | 1.020                                            | 122.5                               |
| DP01-6                 | P01-5                     | 20.00         | 36.0             | 0.005                            | 6,250.01                  | 6,249.22                 | 6,257.99                               | 6,257.20                              | 6,251.45                                | 6,251.06                                 | 6,252.00                             | 6,251.36                              | 6.40               | 1.020                                            | 158.1                               |
| DP01-7                 | P01-6                     | 13.80         | 36.0             | 0.010                            | 6,250.87                  | 6,250.41                 | 6,258.31                               | 6,257.99                              | 6,252.05                                | 6,252.01                                 | 6,252.49                             | 6,252.21                              | 7.44               | 1.020                                            | 46.0                                |
| DP01-8                 | P01-7                     | 13.30         | 30.0             | 0.005                            | 6,251.88                  | 6,251.37                 | 6,259.77                               | 6,258.31                              | 6,253.11                                | 6,252.56                                 | 6,253.59                             | 6,253.08                              | 5.80               | 0.400                                            | 101.1                               |
| DP01-9                 | P01-8                     | 13.00         | 30.0             | 0.005                            | 6,252.23                  | 6,252.08                 | 6,258.40                               | 6,259.77                              | 6,253.44                                | 6,253.30                                 | 6,253.91                             | 6,253.76                              | 5.75               | 0.400                                            | 30.0                                |
| DP01-10                | P01-9                     | 13.00         | 30.0             | 0.008                            | 6,253.64                  | 6,252.43                 | 6,260.91                               | 6,258.40                              | 6,254.85                                | 6,253.48                                 | 6,255.32                             | 6,254.17                              | 6.68               | 0.450                                            | 161.0                               |
| DP02-2                 | P02-1                     | 8.60          | 24.0             | 0.030                            | 6.255.29                  | 6.253.65                 | 6.262.08                               | 6.256.99                              | 6.256.34                                | 6.254.31                                 | 6.256.75                             | 6.255.72                              | 9.98               | 0.050                                            | 54.9                                |
| DP02-2<br>DP02-3       | P02-2                     | 8.10          | 24.0             | 0.030                            | 6.256.39                  | 6.255.94                 | 6.262.08                               | 6.262.08                              | 6.257.40                                | 6.256.78                                 | 6.257.80                             | 6.257.43                              | 6.64               | 0.050                                            | 44.3                                |
| DP02-3<br>DP02-4       | P02-2                     | 7.10          | 18.0             | 0.010                            | 6,257.20                  | 6,256.89                 | 6,262.72                               | 6,262.08                              | 6,258.23                                | 6,257.81                                 | 6,258.70                             | 6,258.42                              | 6.36               | 0.100                                            | 31.2                                |
| DP02-4<br>DP02-5       | P02-3<br>P02-4            | 3.10          | 18.0             | 0.010                            | 6,257.20                  | 6,256.69                 | 6,262.72                               | 6,262.08                              | 6,259.25                                | 6,258.28                                 | 6,259.47                             | 6,258.42                              | 5.18               | 0.100                                            | 113.6                               |
| DP02-5<br>DP02-6       | P02-4<br>P02-5            | 2.80          | 18.0             | 0.010                            | 6,259.78                  | 6,257.40                 | 6,266.02                               | 6,262.72                              | 6,260.42                                | 6,259.26                                 | 6,259.47                             | 6,259.66                              | 5.02               | 0.520                                            | 104.5                               |
| DP02-6<br>DP02-7       | P02-5<br>P02-6            |               | 18.0             | 0.010                            | 6,259.78                  | 6,259.98                 | 6,265.64                               | 6,266.02                              | 6,260.42                                | 6,259.27                                 | 6,260.66                             | 6,259.00                              | 4.66               |                                                  | 43.6                                |
| DP02-7<br>DP02-8       | P02-6<br>P02-7            | 2.10          |                  | 0.010                            |                           | 6,259.98                 | 6,267.06                               |                                       |                                         |                                          | 6,261.17                             |                                       |                    | 0.400 0.050                                      | 43.6                                |
| DP02-8<br>DP02-9       | P02-7<br>P02-8            | 2.10<br>1.60  | 18.0<br>18.0     | 0.010                            | 6,261.19<br>6,261.55      | 6,261.39                 | 6,266.82                               | 6,265.64                              | 6,261.74                                | 6,261.07<br>6,261.79                     | 6,261.94                             | 6,261.41                              | 4.65               | 0.000                                            | 15.9                                |
|                        | P02-0<br>P03-1            |               |                  |                                  | 6.259.72                  | 6.255.40                 |                                        | 6,267.06                              | 6,262.02                                |                                          |                                      | 6,262.07                              | 4.30               |                                                  |                                     |
| DP03-2                 | P03-1<br>P03-2            | 4.30          | 18.0             | 0.031                            |                           |                          | 6,267.19                               | 6,258.76                              | 6,260.52                                | 6,255.89                                 | 6,260.83                             | 6,257.03                              | 8.58               | 0.400                                            | 137.2                               |
| DP-03-3                |                           | 4.30<br>2.20  | 18.0             | 0.010                            | 6,261.36                  | 6,260.52                 | 6,266.61                               | 6,267.19                              | 6,262.16                                | 6,261.19                                 | 6,262.47                             | 6,261.68                              | 5.64               | 1.520                                            | 84.2                                |
| DP03-4                 | P03-3(1)                  |               | 18.0             | 0.010                            | 6,264.44                  | 6,262.84                 | 6,269.46                               | 6,267.71                              | 6,265.00                                | 6,263.91                                 | 6,265.21                             | 6,263.95                              | 4.70               | 0.050                                            | 160.0                               |
| MH-5                   | P03-3(2)                  | 4.30          | 18.0             | 0.010                            | 6,262.64                  | 6,261.56                 | 6,267.71                               | 6,266.61                              | 6,263.44                                | 6,262.64                                 | 6,263.75                             | 6,262.79                              | 5.72               | 1.500                                            | 104.2                               |
| DP03-5                 | P03-4                     | 2.20          | 18.0             | 0.010                            | 6,265.17                  | 6,264.64                 | 6,270.32                               | 6,269.46                              | 6,265.73                                | 6,265.11                                 | 6,265.94                             | 6,265.45                              | 4.69               | 0.000                                            | 53.3                                |
| DP04-1                 | P04-1                     | 6.90          | 24.0             | 0.010                            | 6,251.65                  | 6,251.21                 | 6,256.47                               | 6,257.99                              | 6,252.58                                | 6,251.98                                 | 6,252.94                             | 6,252.58                              | 6.32               | 1.520                                            | 44.0                                |
| DP04-2                 | P04-2                     | 1.20          | 18.0             | 0.010                            | 6,252.26                  | 6,251.85                 | 6,257.41                               | 6,256.47                              | 6,253.13                                | 6,253.13                                 | 6,253.15                             | 6,253.14                              | 3.95               | 0.000                                            | 41.0                                |
| DP05-1                 | P05-1                     | 1.60          | 18.0             | 0.015                            | 6,261.02                  | 6,260.02                 | 6,265.37                               | 6,265.81                              | 6,261.50                                | 6,260.72                                 | 6,261.67                             | 6,260.78                              | 4.95               | 0.400                                            | 66.9                                |
| DP05-2                 | P05-2                     | 1.60          | 18.0             | 0.020                            | 6,261.70                  | 6,261.22                 | 6,266.72                               | 6,265.37                              | 6,262.18                                | 6,261.56                                 | 6,262.35                             | 6,262.00                              | 5.49               | 0.000                                            | 24.1                                |
| DP06-1                 | P06-1                     | 4.10          | 18.0             | 0.020                            | 6,252.49                  | 6,251.85                 | 6,257.48                               | 6,256.47                              | 6,253.27                                | 6,253.13                                 | 6,253.57                             | 6,253.23                              | 7.18               | 0.000                                            | 32.0                                |
| DP07-1                 | P07-1                     | 1.90          | 18.0             | 0.020                            | 6,252.09                  | 6,251.85                 | 6,256.68                               | 6,256.47                              | 6,253.12                                | 6,253.13                                 | 6,253.15                             | 6,253.15                              | 5.76               | 0.000                                            | 12.1                                |
| DP08-1                 | P08-01                    | 1.00          | 18.0             | 0.020                            | 6,261.57                  | 6,260.91                 | 6,266.14                               | 6,266.02                              | 6,261.94                                | 6,261.17                                 | 6,262.08                             | 6,261.53                              | 4.79               | 0.000                                            | 33.0                                |
| DP10-1                 | P10-1                     | 0.00          | 18.0             | 0.050                            | 6,261.97                  | 6,261.60                 | 6,266.90                               | 6,266.61                              | 6,262.64                                | 6,262.64                                 | 6,262.64                             | 6,262.64                              | 0.00               | 0.000                                            | 7.4                                 |
| DP11-2                 | P11-1                     | 2.50          | 18.0             | 0.007                            | 6,245.02                  | 6,244.65                 | 6,250.01                               | 6,246.66                              | 6,245.75                                | 6,245.77                                 | 6,245.88                             | 6,245.82                              | 4.38               | 0.050                                            | 49.8                                |
| DP11-3                 | P11-2                     | 2.10          | 18.0             | 0.008                            | 6,245.65                  | 6,245.22                 | 6,249.80                               | 6,250.01                              | 6,246.20                                | 6,245.70                                 | 6,246.40                             | 6,245.99                              | 4.26               | 0.000                                            | 54.4                                |
| DP12-1                 | P12-1                     | 1.80          | 18.0             | 0.020                            | 6,248.05                  | 6,247.80                 | 6,252.95                               | 6,252.79                              | 6,248.55                                | 6,248.58                                 | 6,248.74                             | 6,248.64                              | 5.68               | 0.000                                            | 12.6                                |
| DP13-1                 | P13-1                     | 1.30          | 18.0             | 0.040                            | 6,251.86                  | 6,250.52                 | 6,256.31                               | 6,257.20                              | 6,252.29                                | 6,251.06                                 | 6,252.44                             | 6,251.14                              | 6.59               | 0.000                                            | 33.6                                |
| DP14-1                 | P14-1                     | 1.00          | 18.0             | 0.040                            | 6,252.89                  | 6,252.37                 | 6,257.83                               | 6,258.31                              | 6,253.26                                | 6,252.60                                 | 6,253.40                             | 6,253.11                              | 6.12               | 0.000                                            | 12.9                                |
| DP15-1                 | P15-1                     | 1.10          | 18.0             | 0.067                            | 6,257.43                  | 6,256.56                 | 6,261.74                               | 6,262.02                              | 6,257.82                                | 6,257.17                                 | 6,257.96                             | 6,257.21                              | 7.52               | 0.000                                            | 13.0                                |
| Structure - (81) (STOR |                           | 2.70          | 36.0             | 0.010                            | 6,243.00                  | 6,242.44                 | 6,247.85                               | 6,245.78                              | 6,243.51                                | 6,242.85                                 | 6,243.69                             | 6,243.18                              | 4.61               | 0.000                                            | 56.3                                |
| Structure - (93) (STOR | RM)   Pipe - (75) (STORM) | 1.30          | 36.0             | 0.010                            | 6,250.10                  | 6,249.18                 | 6,257.50                               | 6,252.53                              | 6,250.45                                | 6,249.47                                 | 6,250.57                             | 6,249.68                              | 3.71               | 0.000                                            | 92.0                                |

X:\2510000.all\2517400\StormCAD\Solace.stsw

| Upstream<br>Structure   | Label          | Flow<br>(cfs) | Diameter<br>(in) | Slope<br>(Calculated)<br>(ft/ft) | Invert<br>(Start)<br>(ft) | Invert<br>(Stop)<br>(ft) | Elevation<br>Ground<br>(Start)<br>(ft) | Elevation<br>Ground<br>(Stop)<br>(ft) | Hydraulic<br>Grade<br>Line (In)<br>(ft) | Hydraulic<br>Grade<br>Line<br>(Out) (ft) | Energy<br>Grade<br>Line (In)<br>(ft) | Energy<br>Grade<br>Line<br>(Out) (ft) | Velocity<br>(ft/s) | Upstream<br>Structure<br>Headloss<br>Coefficient | Length<br>(User<br>Defined)<br>(ft) |
|-------------------------|----------------|---------------|------------------|----------------------------------|---------------------------|--------------------------|----------------------------------------|---------------------------------------|-----------------------------------------|------------------------------------------|--------------------------------------|---------------------------------------|--------------------|--------------------------------------------------|-------------------------------------|
| DP09-2                  | CO-1           | 4.40          | 12.0             | 0.010                            | 6,263.75                  | 6,263.66                 | 6,267.82                               | 6,268.25                              | 6,266.76                                | 6,266.62                                 | 6,267.25                             | 6,267.11                              | 5.60               | 1.000                                            | 8.8                                 |
| DP09-1                  | CO-2           | 4.40          | 12.0             | 0.010                            | 6,263.46                  | 6,262.84                 | 6,268.25                               | 6,267.71                              | 6,266.14                                | 6,265.18                                 | 6,266.62                             | 6,265.67                              | 5.60               | 1.000                                            | 62.5                                |
| DP01-2                  | P01-1          | 46.70         | 42.0             | 0.005                            | 6,246.24                  | 6,245.98                 | 6,252.97                               | 6,249.87                              | 6,248.37                                | 6,248.05                                 | 6,249.27                             | 6,249.02                              | 7.89               | 0.050                                            | 52.0                                |
| DP01-11                 | P01-10         | 21.60         | 30.0             | 0.010                            | 6,255.56                  | 6,253.84                 | 6,262.02                               | 6,260.91                              | 6,257.14                                | 6,255.65                                 | 6,257.82                             | 6,256.15                              | 8.47               | 1.020                                            | 171.7                               |
| DP01-12                 | P01-11         | 20.20         | 24.0             | 0.010                            | 6,256.81                  | 6,256.06                 | 6,264.38                               | 6,262.02                              | 6,258.42                                | 6,257.83                                 | 6,259.28                             | 6,258.56                              | 8.16               | 0.050                                            | 74.6                                |
| DP01-13                 | P01-12         | 19.10         | 24.0             | 0.010                            | 6,258.65                  | 6,257.01                 | 6,265.62                               | 6,264.38                              | 6,260.22                                | 6,258.42                                 | 6,261.03                             | 6,259.43                              | 8.08               | 0.640                                            | 163.6                               |
| DP01-14                 | P01-13         | 19.00         | 24.0             | 0.010                            | 6,259.07                  | 6,258.85                 | 6,265.81                               | 6,265.62                              | 6,260.79                                | 6,260.74                                 | 6,261.47                             | 6,261.33                              | 8.10               | 1.020                                            | 21.8                                |
| DP01-15                 | P01-14         | 17.30         | 18.0             | 0.010                            | 6,259.32                  | 6,259.20                 | 6,265.70                               | 6,265.81                              | 6,261.80                                | 6,261.48                                 | 6,263.29                             | 6,262.97                              | 9.79               | 0.050                                            | 11.8                                |
| DP01-16                 | P01-15         | 9.10          | 18.0             | 0.010                            | 6,260.28                  | 6,259.59                 | 6,265.15                               | 6,265.70                              | 6,262.40                                | 6,261.88                                 | 6,262.81                             | 6,262.29                              | 5.15               | 0.000                                            | 69.2                                |
| DP01-3                  | P01-2          | 45.00         | 42.0             | 0.005                            | 6,246.60                  | 6,246.44                 | 6,252.79                               | 6,252.97                              | 6,248.69                                | 6,248.47                                 | 6,249.57                             | 6,249.41                              | 7.81               | 1.020                                            | 32.2                                |
| DP01-4                  | P01-3          | 42.30         | 36.0             | 0.007                            | 6,248.21                  | 6,246.80                 | 6,255.53                               | 6,252.79                              | 6,250.33                                | 6,249.58                                 | 6,251.31                             | 6,250.18                              | 8.92               | 1.320                                            | 188.4                               |
| DP01-5                  | P01-4          | 42.30         | 36.0             | 0.005                            | 6.249.02                  | 6.248.41                 | 6,257.20                               | 6,255.53                              | 6,252.11                                | 6,251.62                                 | 6,252.67                             | 6,252.17                              | 5.98               | 1.020                                            | 122.5                               |
| DP01-6                  | P01-5          | 40.80         | 36.0             | 0.005                            | 6,250.01                  | 6,249.22                 | 6,257.99                               | 6,257.20                              | 6,253.27                                | 6,252.68                                 | 6,253.79                             | 6,253.20                              | 5.77               | 1.020                                            | 158.1                               |
| DP01-7                  | P01-6          | 26.10         | 36.0             | 0.000                            | 6,250.87                  | 6,250.41                 | 6,258.31                               | 6,257.99                              | 6,253.87                                | 6,253.80                                 | 6,254.08                             | 6,254.01                              | 8.86               | 1.020                                            | 46.0                                |
| DP01-8                  | P01-7          | 24.70         | 30.0             | 0.010                            | 6,251.88                  | 6,251.37                 | 6,259.77                               | 6,258.31                              | 6,254.45                                | 6,254.08                                 | 6,254.84                             | 6,254.01                              | 5.03               | 0.400                                            | 101.1                               |
| DP01-9                  | P01-8          | 24.10         | 30.0             | 0.005                            | 6,252.23                  | 6,252.08                 | 6,258.40                               | 6,259.77                              | 6,254.45                                | 6,254.61                                 | 6,255.08                             | 6,254.98                              | 6.61               | 0.400                                            | 30.0                                |
| DP01-9                  | P01-8          | 24.10         | 30.0             | 0.003                            | 6,253.64                  | 6,252.08                 | 6,260.91                               | 6,258.40                              | 6,255.31                                | 6,254.86                                 | 6,256.05                             | 6,255.24                              | 7.78               | 0.450                                            |                                     |
| DP01-10<br>DP02-2       | P01-9<br>P02-1 |               | 24.0             | 0.008                            | 6,255.29                  | 6,252.45                 | 6,262.08                               | 6,256.99                              | 6,255.31                                | 6,255.46                                 | 6,256.05                             | 6,255.24                              |                    |                                                  | 161.0<br>54.9                       |
|                         |                | 19.40         |                  |                                  |                           |                          |                                        |                                       |                                         |                                          |                                      |                                       | 12.42              | 0.050                                            |                                     |
| DP02-3                  | P02-2          | 18.20         | 24.0             | 0.010                            | 6,256.39                  | 6,255.94                 | 6,262.08                               | 6,262.08                              | 6,257.93                                | 6,257.31                                 | 6,258.69                             | 6,258.29                              | 8.06               | 0.050                                            | 44.3                                |
| DP02-4                  | P02-3          | 15.10         | 18.0             | 0.010                            | 6,257.20                  | 6,256.89                 | 6,262.72                               | 6,262.08                              | 6,259.00                                | 6,258.30                                 | 6,260.13                             | 6,259.49                              | 8.54               | 0.100                                            | 31.2                                |
| DP02-5                  | P02-4          | 6.10          | 18.0             | 0.010                            | 6,258.54                  | 6,257.40                 | 6,264.18                               | 6,262.72                              | 6,259.49                                | 6,259.11                                 | 6,259.91                             | 6,259.30                              | 6.18               | 0.100                                            | 113.6                               |
| DP02-6                  | P02-5          | 5.50          | 18.0             | 0.010                            | 6,259.78                  | 6,258.74                 | 6,266.02                               | 6,264.18                              | 6,260.68                                | 6,259.51                                 | 6,261.06                             | 6,260.07                              | 6.00               | 0.520                                            | 104.5                               |
| DP02-7                  | P02-6          | 4.30          | 18.0             | 0.010                            | 6,260.42                  | 6,259.98                 | 6,265.64                               | 6,266.02                              | 6,261.22                                | 6,260.88                                 | 6,261.53                             | 6,261.12                              | 5.66               | 0.400                                            | 43.6                                |
| DP02-8                  | P02-7          | 4.30          | 18.0             | 0.010                            | 6,261.19                  | 6,260.62                 | 6,267.06                               | 6,265.64                              | 6,261.98                                | 6,261.29                                 | 6,262.30                             | 6,261.79                              | 5.66               | 0.050                                            | 56.6                                |
| DP02-9                  | P02-8          | 3.50          | 18.0             | 0.010                            | 6,261.55                  | 6,261.39                 | 6,266.82                               | 6,267.06                              | 6,262.26                                | 6,262.00                                 | 6,262.54                             | 6,262.42                              | 5.36               | 0.000                                            | 15.9                                |
| DP03-2                  | P03-1          | 11.30         | 18.0             | 0.031                            | 6,259.72                  | 6,255.40                 | 6,267.19                               | 6,258.76                              | 6,261.00                                | 6,256.24                                 | 6,261.77                             | 6,258.14                              | 11.05              | 0.400                                            | 137.2                               |
| DP-03-3                 | P03-2          | 11.30         | 18.0             | 0.010                            | 6,261.36                  | 6,260.52                 | 6,266.61                               | 6,267.19                              | 6,262.74                                | 6,261.80                                 | 6,263.43                             | 6,262.57                              | 6.39               | 1.520                                            | 84.2                                |
| DP03-4                  | P03-3(1)       | 4.70          | 18.0             | 0.010                            | 6,264.44                  | 6,262.84                 | 6,269.46                               | 6,267.71                              | 6,265.37                                | 6,265.18                                 | 6,265.63                             | 6,265.29                              | 5.78               | 0.050                                            | 160.0                               |
| MH-5                    | P03-3(2)       | 9.10          | 18.0             | 0.010                            | 6,262.64                  | 6,261.56                 | 6,267.71                               | 6,266.61                              | 6,264.56                                | 6,263.78                                 | 6,264.98                             | 6,264.19                              | 5.15               | 1.500                                            | 104.2                               |
| DP03-5                  | P03-4          | 4.70          | 18.0             | 0.010                            | 6,265.17                  | 6,264.64                 | 6,270.32                               | 6,269.46                              | 6,266.00                                | 6,265.34                                 | 6,266.34                             | 6,265.86                              | 5.77               | 0.000                                            | 53.3                                |
| DP04-1                  | P04-1          | 15.70         | 24.0             | 0.010                            | 6,251.65                  | 6,251.21                 | 6,256.47                               | 6,257.99                              | 6,254.01                                | 6,253.80                                 | 6,254.40                             | 6,254.19                              | 5.00               | 1.520                                            | 44.0                                |
| DP04-2                  | P04-2          | 2.90          | 18.0             | 0.010                            | 6,252.26                  | 6,251.85                 | 6,257.41                               | 6,256.47                              | 6,254.63                                | 6,254.60                                 | 6,254.67                             | 6,254.64                              | 1.64               | 0.000                                            | 41.0                                |
| DP05-1                  | P05-1          | 2.80          | 18.0             | 0.015                            | 6,261.02                  | 6,260.02                 | 6,265.37                               | 6,265.81                              | 6,261.66                                | 6,261.48                                 | 6,261.90                             | 6,261.52                              | 5.81               | 0.400                                            | 66.9                                |
| DP05-2                  | P05-2          | 2.80          | 18.0             | 0.020                            | 6,261.70                  | 6,261.22                 | 6,266.72                               | 6,265.37                              | 6,262.33                                | 6,261.68                                 | 6,262.58                             | 6,262.26                              | 6.44               | 0.000                                            | 24.1                                |
| DP06-1                  | P06-1          | 9.50          | 18.0             | 0.020                            | 6,252.49                  | 6,251.85                 | 6,257.48                               | 6,256.47                              | 6,254.86                                | 6,254.60                                 | 6,255.31                             | 6,255.05                              | 5.38               | 0.000                                            | 32.0                                |
| DP07-1                  | P07-1          | 4.10          | 18.0             | 0.020                            | 6,252.09                  | 6,251.85                 | 6,256.68                               | 6,256.47                              | 6,254.62                                | 6,254.60                                 | 6,254.70                             | 6,254.68                              | 2.32               | 0.000                                            | 12.1                                |
| DP08-1                  | P08-01         | 1.50          | 18.0             | 0.020                            | 6,261.57                  | 6,260.91                 | 6,266.14                               | 6,266.02                              | 6,262.03                                | 6,261.23                                 | 6,262.20                             | 6,261.68                              | 5.39               | 0.000                                            | 33.0                                |
| DP10-1                  | P10-1          | 2.30          | 18.0             | 0.050                            | 6,261.97                  | 6,261.60                 | 6,266.90                               | 6,266.61                              | 6,263.79                                | 6,263.78                                 | 6,263.81                             | 6,263.81                              | 1.30               | 0.000                                            | 7.4                                 |
| DP11-2                  | P11-1          | 6.70          | 18.0             | 0.007                            | 6,245.02                  | 6,244.65                 | 6,250.01                               | 6,246.66                              | 6,248.16                                | 6,247.96                                 | 6,248.39                             | 6,248.18                              | 3.79               | 0.050                                            | 49.8                                |
| DP11-3                  | P11-2          | 5.80          | 18.0             | 0.008                            | 6,245.65                  | 6,245.22                 | 6,249.80                               | 6,250.01                              | 6,248.34                                | 6,248.17                                 | 6,248.51                             | 6,248.34                              | 3.28               | 0.000                                            | 54.4                                |
| DP12-1                  | P12-1          | 4.30          | 18.0             | 0.020                            | 6,248.05                  | 6,247.80                 | 6,252.95                               | 6,252.79                              | 6,249.60                                | 6,249.58                                 | 6,249.70                             | 6,249.68                              | 2.43               | 0.000                                            | 12.6                                |
| DP13-1                  | P13-1          | 2.70          | 18.0             | 0.040                            | 6,251.86                  | 6,250.52                 | 6,256.31                               | 6,257.20                              | 6,252.58                                | 6,252.68                                 | 6,252.74                             | 6,252.71                              | 8.16               | 0.000                                            | 33.6                                |
| DP14-1                  | P14-1          | 2.20          | 18.0             | 0.040                            | 6,252.89                  | 6,252.37                 | 6,257.83                               | 6,258.31                              | 6,254.08                                | 6,254.08                                 | 6,254.11                             | 6,254.11                              | 7.72               | 0.000                                            | 12.9                                |
| DP15-1                  | P15-1          | 1.80          | 18.0             | 0.067                            | 6,257.43                  | 6,256.56                 | 6,261.74                               | 6,262.02                              | 6,257.93                                | 6,257.83                                 | 6,258.12                             | 6,257.85                              | 8.71               | 0.000                                            | 13.0                                |
| Structure - (81) (STORM |                | 3.30          | 36.0             | 0.010                            | 6,243.00                  | 6,242.44                 | 6,247.85                               | 6,245.78                              | 6.248.73                                | 6,248.73                                 | 6,248.73                             | 6,248.73                              | 0.47               | 0.000                                            | 56.3                                |
| Structure - (93) (STORN |                | 3.20          | 36.0             | 0.010                            | 6,250.10                  | 6,249.18                 | 6,257.50                               | 6,252.53                              | 6,254.22                                | 6,254.22                                 | 6,254.23                             | 6,254.22                              | 0.47               | 0.000                                            | 92.0                                |

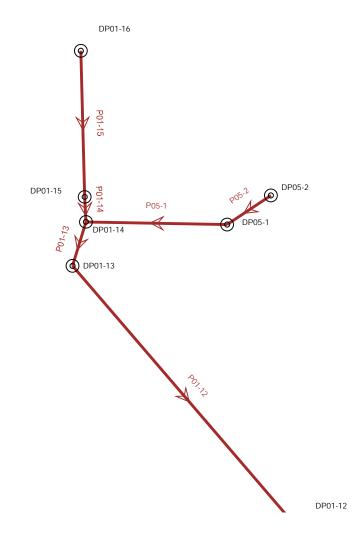
X:\2510000.all\2517400\StormCAD\Solace.stsw



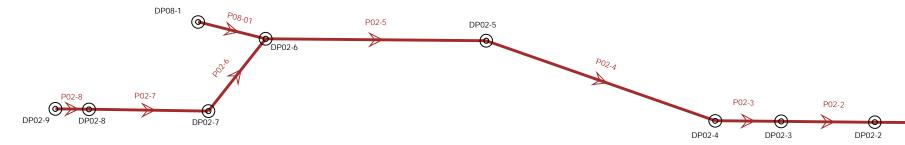



DP12-1 P01-2 DP12-1 DP01-2 DP01-3 DP01-2




Scenario: 5 year

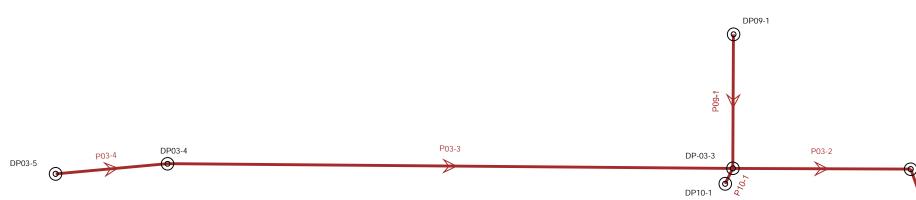


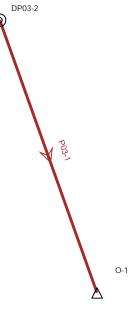

Solace.stsw 9/29/2020

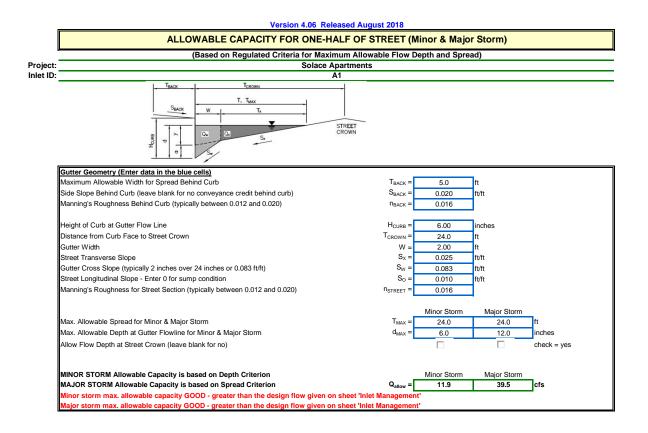


Scenario: 5 year



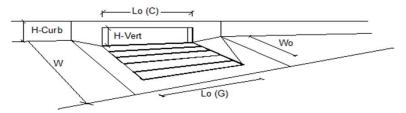

Scenario: 5 year



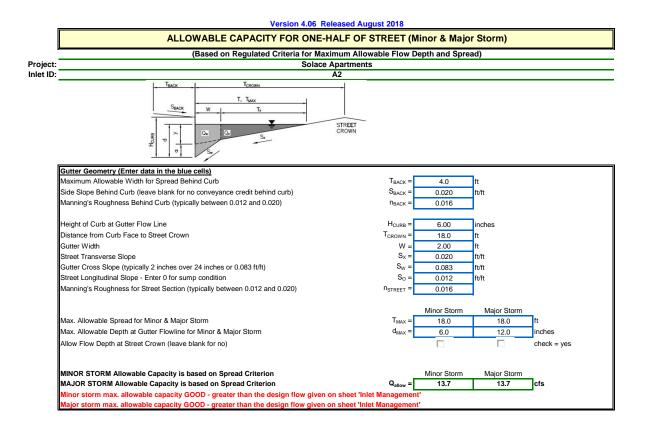




P02-1 0-2

Scenario: 5 year

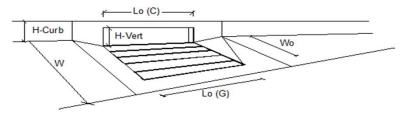




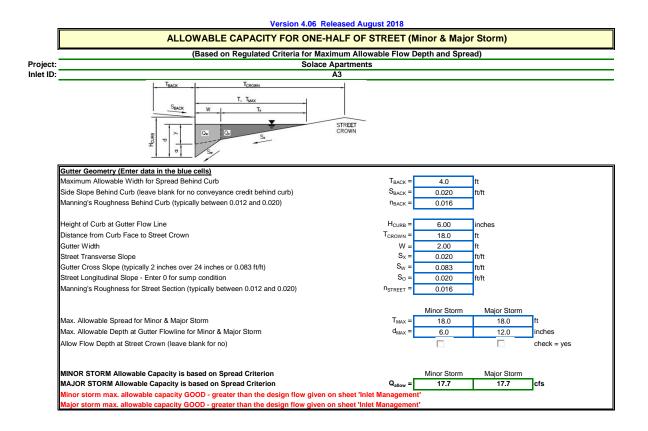







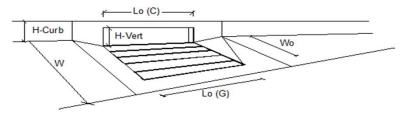




| Design Information (Input)                                                | 1                    | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening | 7      |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 5.00        | 5.00           | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 1.6         | 2.3            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.1         | 1.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 93          | 71             | %      |

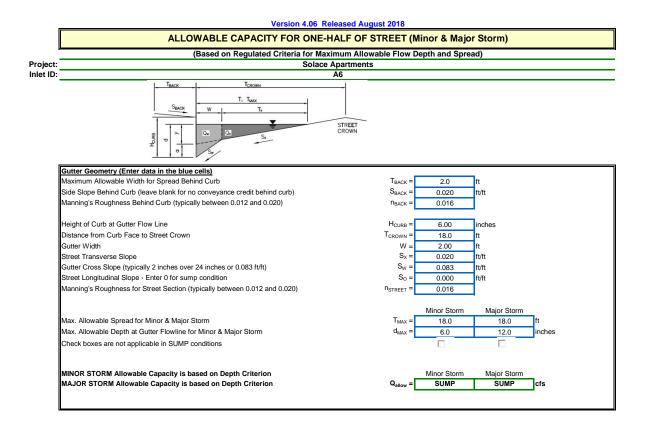






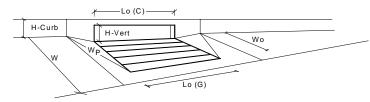




| Design Information (Input) Denver No. 16 Valley Grate                     |                      | MINOR        | MAJOR           |        |
|---------------------------------------------------------------------------|----------------------|--------------|-----------------|--------|
| Type of Inlet                                                             | Type =               | Denver No. 7 | 16 Valley Grate |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 2.0          | 2.0             | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1            | 1               |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 3.00         | 3.00            | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | 1.73         | 1.73            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | 0.50         | 0.50            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | N/A          | N/A             |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR        | MAJOR           | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 1.0          | 1.5             | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.6          | 1.6             | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 63           | 48              | %      |

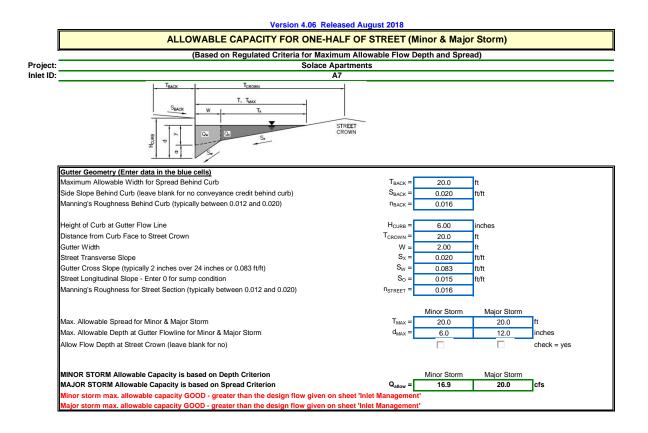






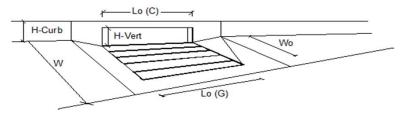




| Design Information (Input) Denver No. 16 Valley Grate                     |                      | MINOR        | MAJOR           |        |
|---------------------------------------------------------------------------|----------------------|--------------|-----------------|--------|
| Type of Inlet                                                             | Type =               | Denver No. 7 | 16 Valley Grate |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 2.0          | 2.0             | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1            | 1               |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 3.00         | 3.00            | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | 1.73         | 1.73            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | 0.50         | 0.50            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | N/A          | N/A             |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR        | MAJOR           | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 1.0          | 1.5             | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.6          | 1.6             | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 63           | 48              | %      |

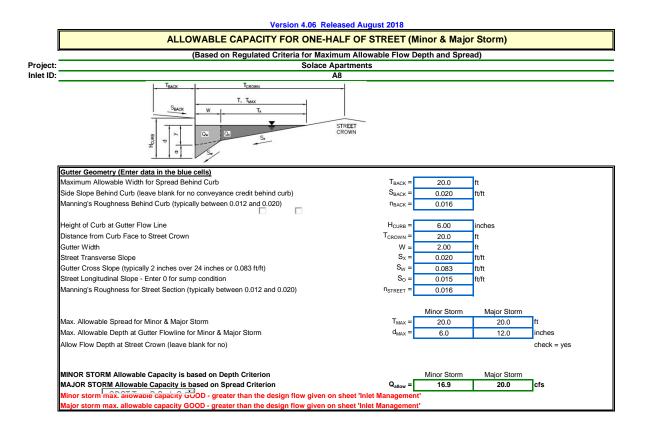



### INLET IN A SUMP OR SAG LOCATION

Version 4.06 Released August 2018

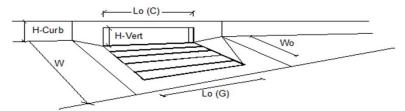



| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet                                                                | Type =                      | CDOT Type R | Curb Opening | 7               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 4.7         | 6.4          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{o}(G) =$                | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          |                 |
| Curb Opening Information                                                     |                             | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{o}(C) =$                | 10.00       | 10.00        | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60        | 3.60         | 1               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.23        | 0.37         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.45        | 0.61         | ]               |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.85        | 0.96         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          | 1               |
|                                                                              | _                           | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 4.3         | 10.0         | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 4.2         | 9.6          | cfs             |

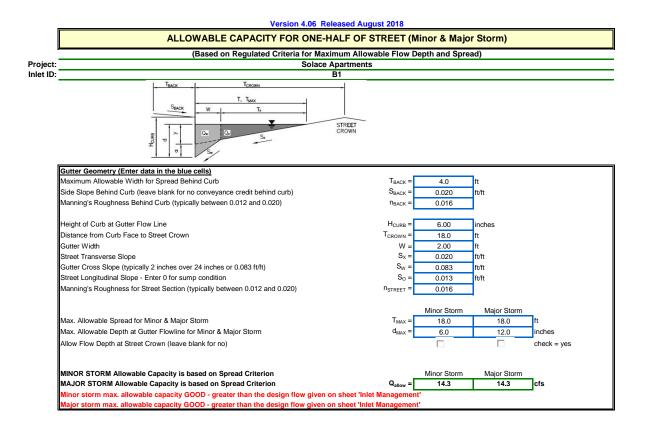






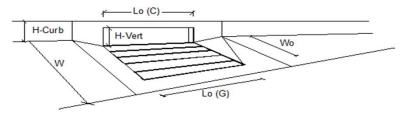




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening | 7      |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                    | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.1         | 3.2            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = $Q_a/Q_o$ =                                          | C% =                 | 100         | 100            | %      |

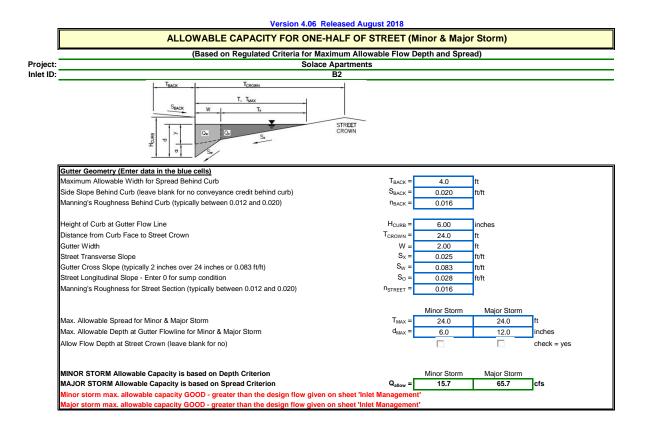



# INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

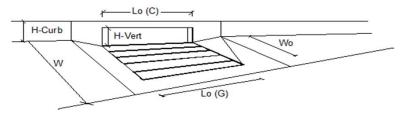



| Design Information (Input)                                                |                                 | MINOR | MAJOR |        |
|---------------------------------------------------------------------------|---------------------------------|-------|-------|--------|
| Type of Inlet                                                             | Type = CDOT Type R Curb Opening |       |       |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =            | 3.0   | 3.0   | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                            | 1     | 1     |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =                | 10.00 | 10.00 | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =                | N/A   | N/A   | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =             | N/A   | N/A   |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =             | 0.10  | 0.10  |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                                 | MINOR | MAJOR |        |
| Total Inlet Interception Capacity                                         | Q =                             | 0.8   | 1.7   | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =                | 0.0   | 0.0   | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                            | 100   | 100   | %      |

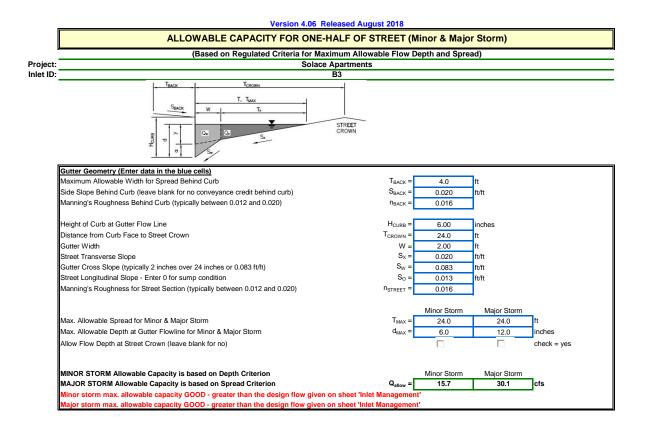






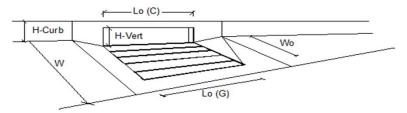




| Design Information (Input)                                                | 1                    | MINOR        | MAJOR           |        |
|---------------------------------------------------------------------------|----------------------|--------------|-----------------|--------|
| Type of Inlet                                                             | Type =               | Denver No. 7 | 16 Valley Grate |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 2.0          | 2.0             | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1            | 1               |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 3.00         | 3.00            | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | 1.73         | 1.73            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | 0.50         | 0.50            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | N/A          | N/A             |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR        | MAJOR           | _      |
| Total Inlet Interception Capacity                                         | Q =                  | 1.7          | 2.7             | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 2.4          | 7.0             | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 42           | 28              | %      |

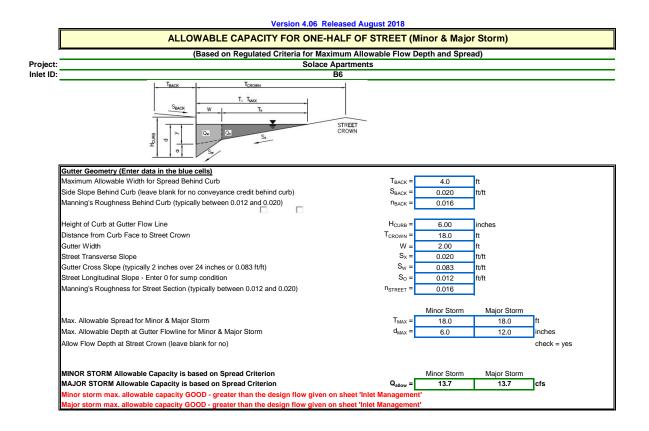






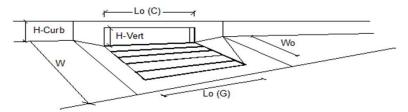




| Design Information (Input)                                                |                      | MINOR                           | MAJOR |        |
|---------------------------------------------------------------------------|----------------------|---------------------------------|-------|--------|
| Type of Inlet                                                             | Type =               | Type = CDOT Type R Curb Opening |       |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0                             | 3.0   | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1                               | 1     |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00                           | 10.00 | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A                             | N/A   | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A                             | N/A   |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10                            | 0.10  |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR                           | MAJOR |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.6                             | 2.8   | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0                             | 0.0   | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100                             | 100   | %      |

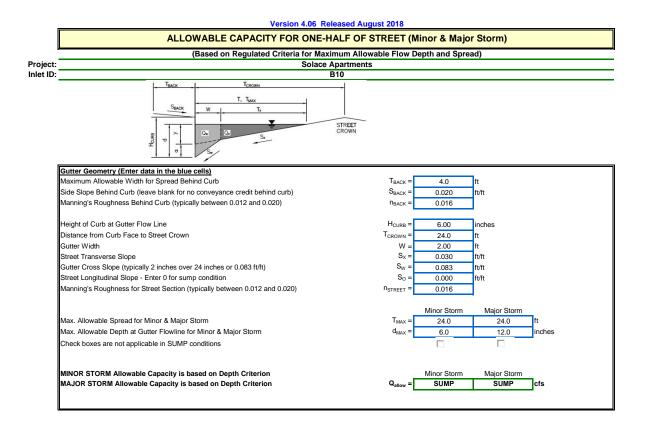


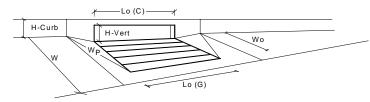




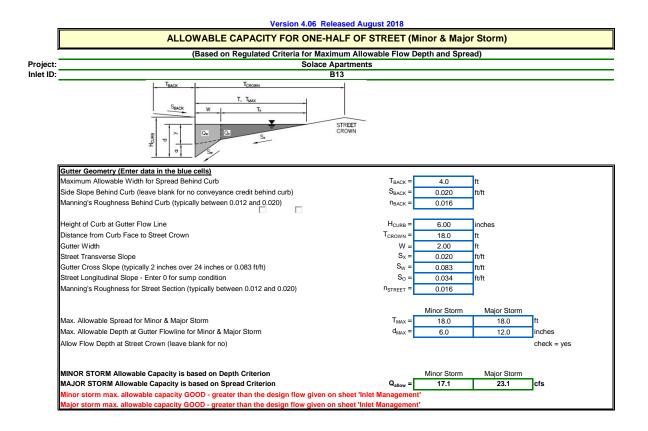




| Design Information (Input)                                                |                      | MINOR                           | MAJOR |        |
|---------------------------------------------------------------------------|----------------------|---------------------------------|-------|--------|
| Type of Inlet                                                             | Type =               | Type = CDOT Type R Curb Opening |       |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0                             | 3.0   | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1                               | 1     |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00                           | 15.00 | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A                             | N/A   | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A                             | N/A   |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10                            | 0.10  |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR                           | MAJOR |        |
| Total Inlet Interception Capacity                                         | Q =                  | 3.2                             | 8.2   | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0                             | 0.3   | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100                             | 96    | %      |



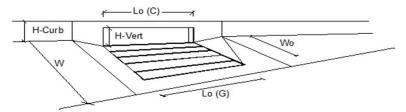


## INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

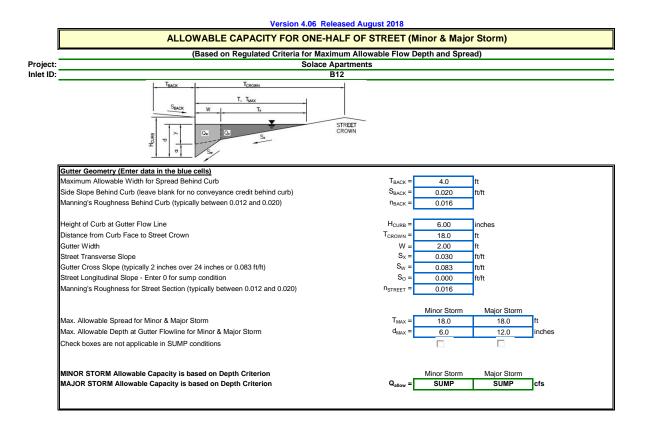


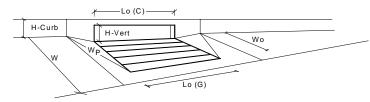

| Design Information (Input)                                                |                         | MINOR        | MAJOR          |        |
|---------------------------------------------------------------------------|-------------------------|--------------|----------------|--------|
| Type of Inlet                                                             | Type =                  | Denver No. 1 | 6 Valley Grate |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 2.0          | 2.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1            | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 3.00         | 3.00           | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | 1.73         | 1.73           | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | 0.50         | 0.50           |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | $C_{f}-C =$             | N/A          | N/A            |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                       | MINOR        | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                     | 1.1          | 1.8            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.8          | 2.5            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 59           | 42             | %      |



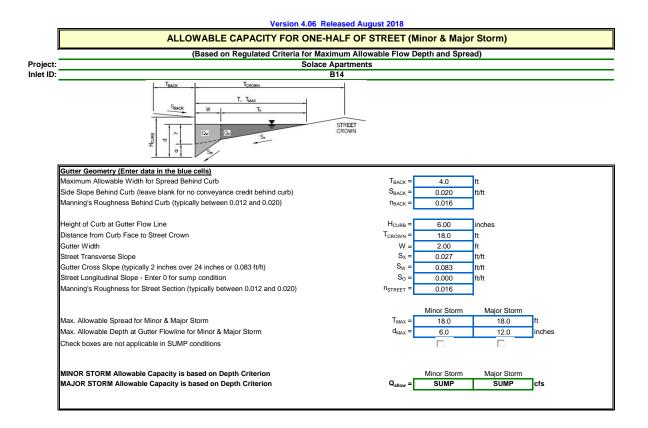


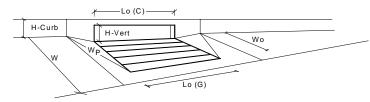

| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet CDOT Type R Curb Opening                                       | Type =                      | CDOT Type R | Curb Opening | 7               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 3.5         | 4.2          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{o}(G) =$                | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_{f}(G) =$                | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_{o}(G) =$                | N/A         | N/A          | 7               |
| Curb Opening Information                                                     | _                           | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{o}(C) =$                | 5.00        | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60        | 3.60         | 1               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.13        | 0.19         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.45        | 0.54         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 0.99        | 1.00         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          | 1               |
|                                                                              | _                           | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 1.2         | 2.3          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 1.0         | 2.2          | cfs             |



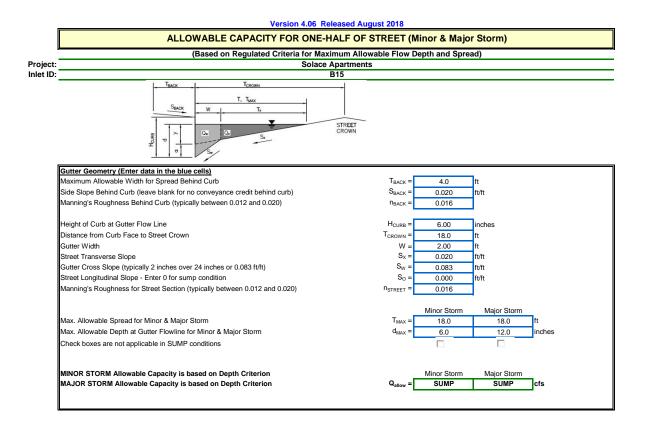


## INLET ON A CONTINUOUS GRADE

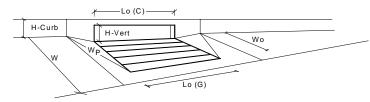
Version 4.06 Released August 2018



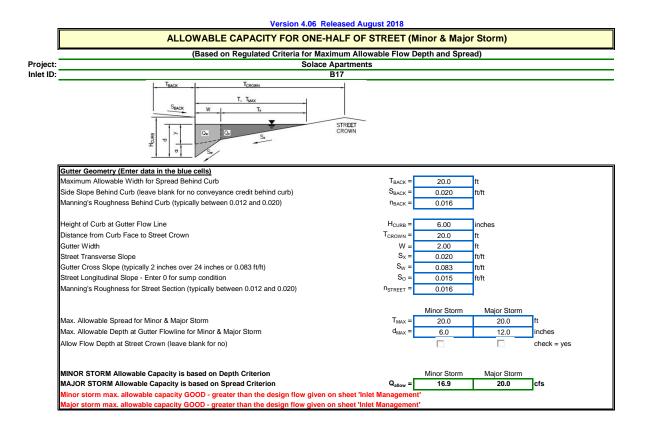


| Design Information (Input)                                                |                      | MINOR        | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|--------------|----------------|--------|
| Type of Inlet                                                             | Type =               | Denver No. 1 | 6 Valley Grate |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 2.0          | 2.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1            | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 3.00         | 3.00           | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | 1.73         | 1.73           | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | 0.50         | 0.50           |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | $C_{f}-C =$          | N/A          | N/A            |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    | _                    | MINOR        | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 0.9          | 1.5            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.6          | 1.7            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 62           | 46             | %      |





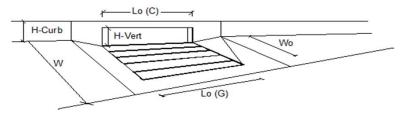


| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet CDOT Type R Curb Opening                                       | Type =                      | CDOT Type R | Curb Opening | 7               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 4.8         | 6.8          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{o}(G) =$                | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_{f}(G) =$                | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | $C_{o}(G) =$                | N/A         | N/A          | 7               |
| Curb Opening Information                                                     | _                           | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{o}(C) =$                | 5.00        | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60        | 3.60         | 1               |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.23        | 0.40         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.62        | 0.88         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 1.00        | 1.00         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          | 1               |
|                                                                              | _                           | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 3.2         | 7.2          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 3.1         | 7.1          | cfs             |



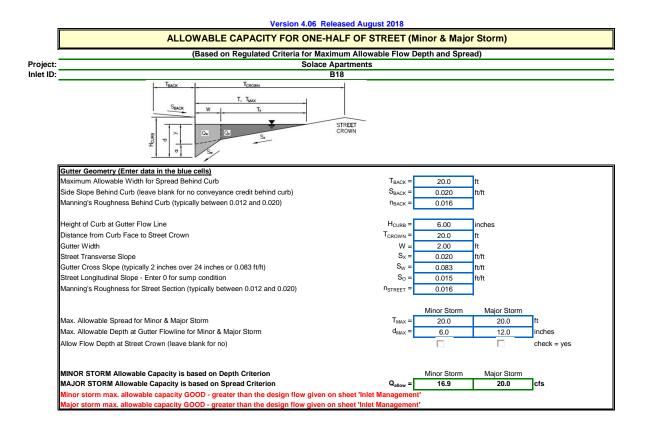



| Design Information (Input)                                                   |                             | MINOR       | MAJOR        |                 |
|------------------------------------------------------------------------------|-----------------------------|-------------|--------------|-----------------|
| Type of Inlet CDOT Type R Curb Opening                                       | Type =                      | CDOT Type R | Curb Opening | 7               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 3.00        | 3.00         | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 1           | 1            |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 4.7         | 5.4          | inches          |
| Grate Information                                                            |                             | MINOR       | MAJOR        | Override Depths |
| Length of a Unit Grate                                                       | $L_{o}(G) =$                | N/A         | N/A          | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | N/A         | N/A          | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | N/A         | N/A          |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | C <sub>f</sub> (G) =        | N/A         | N/A          |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | N/A         | N/A          |                 |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | N/A         | N/A          | 7               |
| Curb Opening Information                                                     | _                           | MINOR       | MAJOR        |                 |
| Length of a Unit Curb Opening                                                | $L_{o}(C) =$                | 5.00        | 5.00         | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | 6.00        | 6.00         | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | 6.00        | 6.00         | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | 63.40       | 63.40        | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | 2.00        | 2.00         | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | 0.10        | 0.10         |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | $C_w(C) =$                  | 3.60        | 3.60         |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | 0.67        | 0.67         |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR       | MAJOR        |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | N/A         | N/A          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | 0.23        | 0.28         | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | 0.61        | 0.69         |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | 1.00        | 1.00         |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | N/A         | N/A          |                 |
|                                                                              | _                           | MINOR       | MAJOR        | _               |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 3.1         | 4.2          | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 1.9         | 4.1          | cfs             |



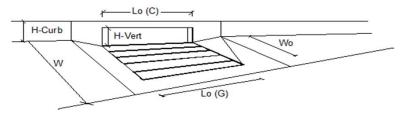



| Design Information (Input)                                                   |                             | MINOR        | MAJOR          |                 |
|------------------------------------------------------------------------------|-----------------------------|--------------|----------------|-----------------|
| Type of Inlet Denver No. 16 Valley Grate                                     | Type =                      | Denver No. 1 | 6 Valley Grate | 7               |
| Local Depression (additional to continuous gutter depression 'a' from above) | a <sub>local</sub> =        | 2.00         | 2.00           | inches          |
| Number of Unit Inlets (Grate or Curb Opening)                                | No =                        | 2            | 2              |                 |
| Water Depth at Flowline (outside of local depression)                        | Ponding Depth =             | 3.2          | 4.3            | inches          |
| Grate Information                                                            |                             | MINOR        | MAJOR          | Override Depths |
| Length of a Unit Grate                                                       | $L_{o}(G) =$                | 3.00         | 3.00           | feet            |
| Width of a Unit Grate                                                        | W <sub>o</sub> =            | 1.73         | 1.73           | feet            |
| Area Opening Ratio for a Grate (typical values 0.15-0.90)                    | A <sub>ratio</sub> =        | 0.31         | 0.31           |                 |
| Clogging Factor for a Single Grate (typical value 0.50 - 0.70)               | $C_{f}(G) =$                | 0.50         | 0.50           |                 |
| Grate Weir Coefficient (typical value 2.15 - 3.60)                           | C <sub>w</sub> (G) =        | 3.60         | 3.60           | 7               |
| Grate Orifice Coefficient (typical value 0.60 - 0.80)                        | C <sub>o</sub> (G) =        | 0.60         | 0.60           |                 |
| Curb Opening Information                                                     |                             | MINOR        | MAJOR          | _               |
| Length of a Unit Curb Opening                                                | $L_{o}(C) =$                | N/A          | N/A            | feet            |
| Height of Vertical Curb Opening in Inches                                    | H <sub>vert</sub> =         | N/A          | N/A            | inches          |
| Height of Curb Orifice Throat in Inches                                      | H <sub>throat</sub> =       | N/A          | N/A            | inches          |
| Angle of Throat (see USDCM Figure ST-5)                                      | Theta =                     | N/A          | N/A            | degrees         |
| Side Width for Depression Pan (typically the gutter width of 2 feet)         | W <sub>p</sub> =            | N/A          | N/A            | feet            |
| Clogging Factor for a Single Curb Opening (typical value 0.10)               | $C_{f}(C) =$                | N/A          | N/A            |                 |
| Curb Opening Weir Coefficient (typical value 2.3-3.7)                        | C <sub>w</sub> (C) =        | N/A          | N/A            |                 |
| Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)                 | C <sub>o</sub> (C) =        | N/A          | N/A            |                 |
| Low Head Performance Reduction (Calculated)                                  |                             | MINOR        | MAJOR          |                 |
| Depth for Grate Midwidth                                                     | d <sub>Grate</sub> =        | 0.294        | 0.381          | ft              |
| Depth for Curb Opening Weir Equation                                         | d <sub>Curb</sub> =         | N/A          | N/A            | ft              |
| Combination Inlet Performance Reduction Factor for Long Inlets               | RF <sub>Combination</sub> = | N/A          | N/A            |                 |
| Curb Opening Performance Reduction Factor for Long Inlets                    | RF <sub>Curb</sub> =        | N/A          | N/A            |                 |
| Grated Inlet Performance Reduction Factor for Long Inlets                    | RF <sub>Grate</sub> =       | 0.38         | 0.51           | _               |
|                                                                              | _                           | MINOR        | MAJOR          |                 |
| Total Inlet Interception Capacity (assumes clogged condition)                | <b>Q</b> <sub>a</sub> =     | 0.9          | 1.8            | cfs             |
| Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)                   | Q PEAK REQUIRED =           | 0.9          | 1.8            | cfs             |

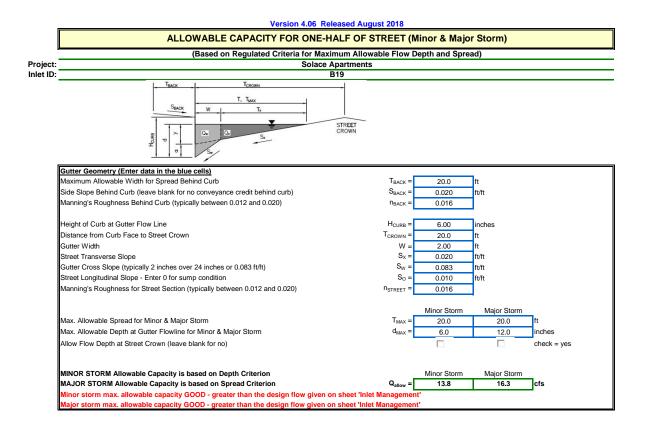






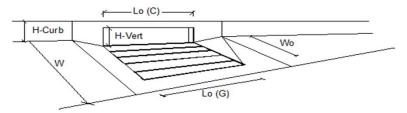




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening | 7      |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.8         | 4.3            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.2            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 96             | %      |

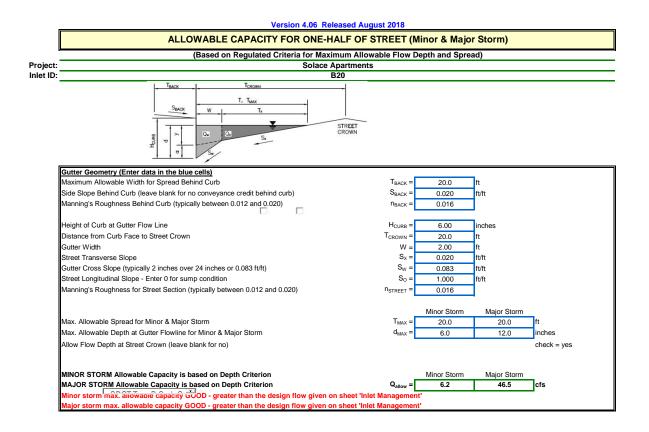






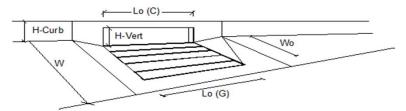




| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening | 7      |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                    | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.1         | 2.4            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = $Q_a/Q_o$ =                                          | C% =                 | 100         | 100            | %      |








| Design Information (Input)                                                |                      | MINOR       | MAJOR          |        |
|---------------------------------------------------------------------------|----------------------|-------------|----------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | R Curb Opening | 7      |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0            | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1              |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 15.00       | 15.00          | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A            | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A            |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10           |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR          |        |
| Total Inlet Interception Capacity                                         | Q =                  | 2.1         | 5.8            | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0            | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100            | %      |

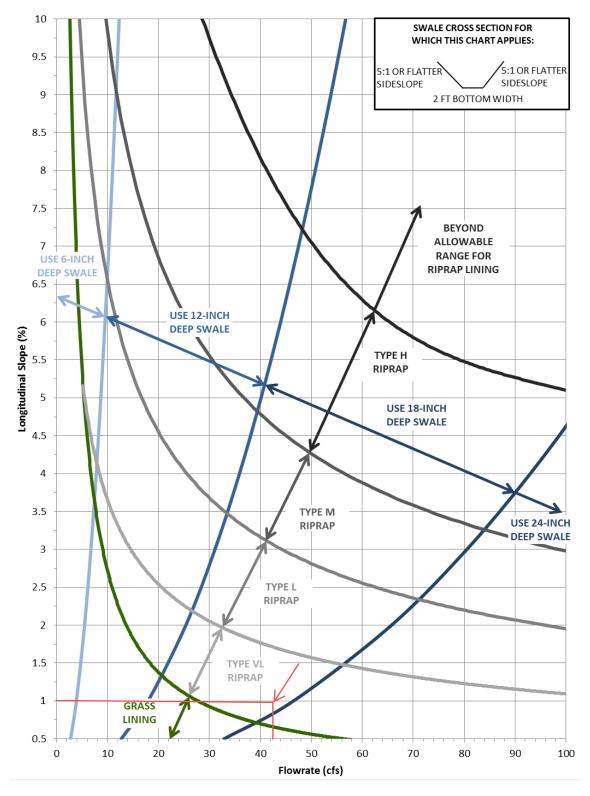


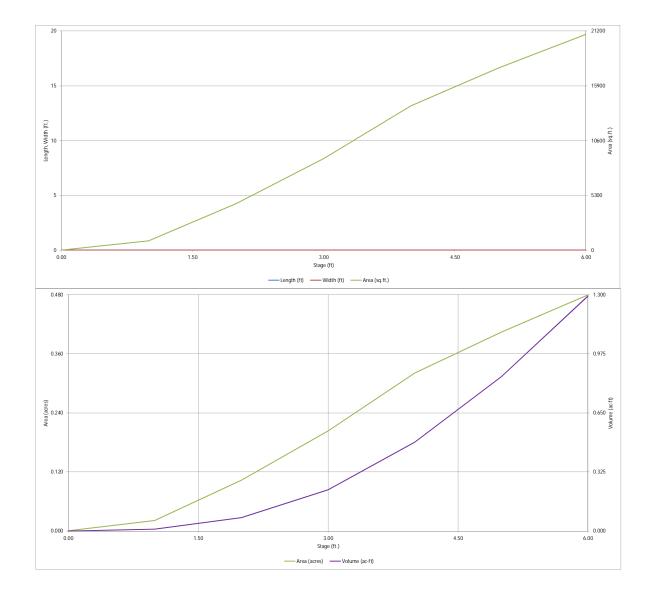
## INLET ON A CONTINUOUS GRADE

Version 4.06 Released August 2018

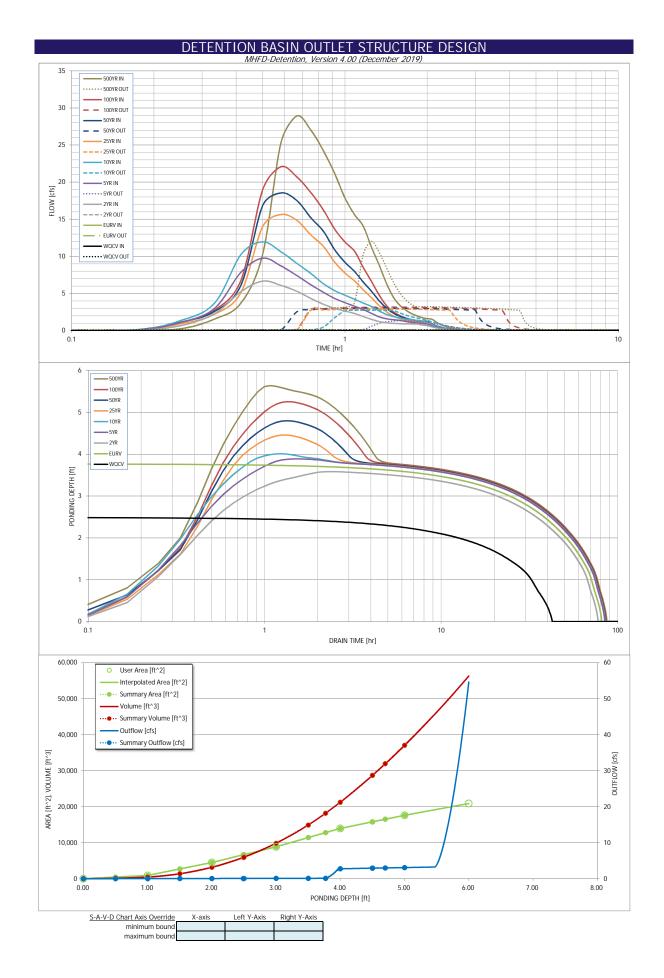


| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                      | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 0.6         | 1.4          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100          | %      |





Figure 8-22. Swale stability chart; 2- to 4-foot bottom width and side slopes between 5:1 and 10:1 (Note: Riprap classifications refer to gradation for riprap used in soil riprap or void-filled riprap. See Figure 8-34 for gradations.) (Source: Muller Engineering Company)

# APPENDIX C


# WATER QUALITY AND DETENTION CALCULATIONS

|                                                                                             |                                  |                        |              | MHFL             | D-Detention, Version   | on 4.03 (N | 1ay 2020)            |        |       |        |                      |        |                |            |
|---------------------------------------------------------------------------------------------|----------------------------------|------------------------|--------------|------------------|------------------------|------------|----------------------|--------|-------|--------|----------------------|--------|----------------|------------|
|                                                                                             | Solace Apar                      | rtments                |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Basin ID:                                                                                   |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             | 2<br>CONE 1                      |                        | ~            |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  | 1                      |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  | 100-YEA<br>ORIFICI     | NR<br>E      |                  | Depth Increment =      |            | ft                   |        |       |        |                      |        |                |            |
| PERMANENT ORIFIC                                                                            | ces<br>ces                       |                        |              |                  | Stage - Storage        | Stage      | Optional<br>Override | Length | Width | Area   | Optional<br>Override | Area   | Volume         | Volume     |
|                                                                                             | e oomigura                       | tion (reter            | nioni ona)   |                  | Description            | (ft)       | Stage (ft)           | (ft)   | (ft)  | (ft 2) | Area (ft 2)          | (acre) | (ft 3)         | (ac-ft)    |
| Watershed Information                                                                       | 500                              |                        |              | 6251             | Top of Micropool       |            | 0.00                 |        |       |        | 10                   | 0.000  |                |            |
| Selected BMP Type =                                                                         | EDB<br>7.89                      | _                      |              |                  | ELEV:6252<br>ELEV:6253 |            | 1.00                 |        |       |        | 909<br>4,500         | 0.021  | 459            | 0.011      |
| Watershed Area =<br>Watershed Length =                                                      | 7.89                             | acres<br>ft            |              |                  | ELEV:6253<br>ELEV:6254 |            | 2.00                 |        |       |        | 4,500                | 0.103  | 3,164<br>9,842 | 0.073      |
| Watershed Length to Centroid =                                                              | 340                              | ft                     |              |                  | ELEV:6255              |            | 4.00                 |        |       |        | 13,976               | 0.321  | 21,259         | 0.488      |
| Watershed Slope =                                                                           | 0.020                            | ft/ft                  |              |                  | ELEV:6256              |            | 5.00                 |        |       |        | 17,609               | 0.404  | 37,051         | 0.851      |
| Watershed Imperviousness =                                                                  | 49.43%                           | percent                |              |                  | ELEV:6257              |            | 6.00                 |        |       |        | 20,879               | 0.479  | 56,295         | 1.292      |
| Percentage Hydrologic Soil Group A =<br>Percentage Hydrologic Soil Group B =                | 1.0%                             | percent<br>percent     |              |                  |                        |            |                      |        |       |        |                      |        |                | <u> </u>   |
| Percentage Hydrologic Soil Groups C/D =                                                     | 0.0%                             | percent                |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Target WQCV Drain Time =                                                                    | 40.0                             | hours                  |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Location for 1-hr Rainfall Depths =                                                         | User Input                       | -                      |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| After providing required inputs above in                                                    |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                | <b>—</b>   |
| depths, click 'Run CUHP' to generate run<br>the embedded Colorado Urban Hydro               | off hydrograph<br>ograph Procedu | ns using<br>ure.       | Optional Use | or Quarridae     |                        |            |                      |        |       |        |                      |        |                |            |
| Water Quality Capture Volume (WQCV) =                                                       | 0.135                            | acre-feet              | optional USE | acre-feet        |                        |            |                      |        |       |        |                      |        |                |            |
| Excess Urban Runoff Volume (EURV) =                                                         | 0.417                            | acre-feet              |              | acre-feet        |                        |            |                      |        |       |        |                      |        |                |            |
| 2-yr Runoff Volume (P1 = 1.19 in.) =                                                        | 0.382                            | acre-feet              | 1.19         | inches           |                        |            |                      |        |       |        |                      |        |                |            |
| 5-yr Runoff Volume (P1 = 1.5 in.) =                                                         | 0.546                            | acre-feet              | 1.50         | inches           | -                      |            |                      |        |       |        |                      |        |                |            |
| 10-yr Runoff Volume (P1 = 1.75 in.) =<br>25-yr Runoff Volume (P1 = 2 in.) =                 | 0.691                            | acre-feet<br>acre-feet | 1.75         | inches<br>inches |                        |            |                      |        |       |        |                      |        |                |            |
| 50-yr Runoff Volume (P1 = 2 in.) =                                                          | 1.052                            | acre-feet              | 2.00         | inches           |                        |            |                      |        |       |        |                      |        |                |            |
| 100-yr Runoff Volume (P1 = 2.52 in.) =                                                      | 1.247                            | acre-feet              | 2.52         | inches           |                        |            |                      |        |       |        |                      |        |                |            |
| 500-yr Runoff Volume (P1 = 3.14 in.) =                                                      | 1.654                            | acre-feet              |              | inches           |                        |            |                      |        |       |        |                      |        |                |            |
| Approximate 2-yr Detention Volume =<br>Approximate 5-yr Detention Volume =                  | 0.314                            | acre-feet<br>acre-feet |              |                  |                        |            |                      |        |       |        |                      |        |                | <u> </u>   |
| Approximate 5-yr Detention Volume =<br>Approximate 10-yr Detention Volume =                 | 0.430                            | acre-feet              |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Approximate 25-yr Detention Volume =                                                        | 0.626                            | acre-feet              |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Approximate 50-yr Detention Volume =                                                        | 0.657                            | acre-feet              |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Approximate 100-yr Detention Volume =                                                       | 0.732                            | acre-feet              |              |                  |                        |            |                      |        |       |        |                      |        |                | L          |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                | <b>—</b>   |
| Define Zones and Basin Geometry<br>Zone 1 Volume (WQCV) =                                   | 0.135                            | acre-feet              |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Zone 2 Volume (EURV - Zone 1) =                                                             | 0.282                            | acre-feet              |              |                  |                        |            |                      | -      |       |        |                      |        |                |            |
| Zone 3 Volume (100-year - Zones 1 & 2) =                                                    | 0.315                            | acre-feet              |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Total Detention Basin Volume =                                                              | 0.732                            | acre-feet              |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Initial Surcharge Volume (ISV) =                                                            | user                             | ft <sup>3</sup>        |              |                  |                        |            |                      |        |       |        |                      |        |                | <b>—</b>   |
| Initial Surcharge Depth (ISD) =<br>Total Available Detention Depth (H <sub>total</sub> ) =  | user                             | ft<br>ft               |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Depth of Trickle Channel ( $H_{TC}$ ) =                                                     | user                             | ft                     |              |                  |                        |            |                      | -      |       |        |                      |        |                |            |
| Slope of Trickle Channel (STC) =                                                            | user                             | ft/ft                  |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Slopes of Main Basin Sides ( $S_{main}$ ) =                                                 | user                             | H:V                    |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Basin Length-to-Width Ratio $(R_{L/W}) =$                                                   | user                             |                        |              |                  |                        |            |                      |        |       |        |                      |        |                | <u> </u>   |
| Initial Surcharge Area (A <sub>ISV</sub> ) =                                                | user                             | ft 2                   |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Surcharge Volume Length (L <sub>ISV</sub> ) =                                               | user                             | ft                     |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Surcharge Volume Width (W <sub>ISV</sub> ) =                                                | user                             | ft                     |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Depth of Basin Floor $(H_{FLOOR})$ =                                                        | user                             | ft                     |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Length of Basin Floor $(L_{FLOOR}) =$                                                       | user                             | ft                     |              |                  |                        |            |                      |        |       |        |                      |        |                | <u> </u>   |
| Width of Basin Floor (W <sub>FLOOR</sub> ) =<br>Area of Basin Floor (A <sub>FLOOR</sub> ) = | user                             | ft<br>ft <sup>2</sup>  |              |                  |                        |            |                      |        |       |        |                      |        |                | <u> </u>   |
| Volume of Basin Floor (V <sub>FLOOR</sub> ) =                                               | user                             | ft <sup>3</sup>        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Depth of Main Basin ( $H_{MAIN}$ ) =                                                        | user                             | ft                     |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Length of Main Basin (L <sub>MAIN</sub> ) =                                                 | user                             | ft                     |              |                  |                        |            |                      |        |       |        |                      |        |                | <b>⊢</b> ] |
| Width of Main Basin (W <sub>MAIN</sub> ) =<br>Area of Main Basin (A <sub>MAIN</sub> ) =     | user                             | ft<br>ft <sup>2</sup>  |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Area of Main Basin (A <sub>MAIN</sub> ) =<br>Volume of Main Basin (V <sub>MAIN</sub> ) =    | user                             | π <sup>-</sup>         |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
| Calculated Total Basin Volume (V <sub>total</sub> ) =                                       | user                             | acre-feet              |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      | -      |                |            |
|                                                                                             |                                  |                        |              |                  | -                      |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      | -      |                |            |
|                                                                                             |                                  |                        |              |                  | -                      |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  | -                      |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                | ——]        |
|                                                                                             |                                  |                        |              |                  |                        |            | -                    |        |       |        | -                    |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                | ]          |
|                                                                                             |                                  |                        |              |                  | -                      |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                | <u> </u>   |
|                                                                                             |                                  |                        |              |                  | -                      |            |                      |        |       |        |                      |        |                |            |
|                                                                                             |                                  |                        |              |                  |                        |            |                      |        |       |        |                      |        |                |            |

MHFD-Detention, Version 4.03 (May 2020)



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | DE                                                                                                                                                       | TENTION                                                                                                                                          | BASIN OU                                                                                                                                                  | <b>FLET STRU</b>                                                                                                                         | CTURE DE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | SIGN                                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| Project                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Solace Apartment                                                                                                                                         | Л                                                                                                                                                | NHFD-Detention, V                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| Basin ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          | 5                                                                                                                                                |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| ZONE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                           | Estimated                                                                                                                                | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                           | Stage (ft)                                                                                                                               | Volume (ac-ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Outlet Type                                                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| VOLUME EURY WOCY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                          |                                                                                                                                                  | Zone 1 (WQCV)                                                                                                                                             | -                                                                                                                                        | 0.135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Orifice Plate                                                                                                                                                                                        |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| + + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 100-YEAR                                                                                                                                                 |                                                                                                                                                  | Zone 2 (EURV)                                                                                                                                             |                                                                                                                                          | 0.282                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Circular Orifice                                                                                                                                                                                     |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| ZONE 1 AND 2<br>ORIFICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ORIFICE                                                                                                                                                  |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Configuration (Re                                                                                                                                        | tention Pond)                                                                                                                                    | Zone 3 (100-year)                                                                                                                                         |                                                                                                                                          | 0.315                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weir&Pipe (Restrict)                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                  | <b>(D)</b>                                                                                                                                                | Total (all zones)                                                                                                                        | 0.732                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | J                                                                                                                                                                                                    | 0.1.1.1.1.0                                                                                                                                              | to an few life developments                                                                                                                                                             |                                                                                                                          |
| Iser Input: Orifice at Underdrain Outlet (typically<br>Underdrain Orifice Invert Depth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | y used to drain wQ                                                                                                                                       |                                                                                                                                                  |                                                                                                                                                           | o                                                                                                                                        | Lindon                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | drain Orifice Area =                                                                                                                                                                                 | Calculated Parame                                                                                                                                        | ters for Underdrain<br>ft <sup>2</sup>                                                                                                                                                  |                                                                                                                          |
| Underdrain Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                          | inches                                                                                                                                           | the filtration media                                                                                                                                      | suildce)                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Orifice Centroid =                                                                                                                                                                                 |                                                                                                                                                          | π<br>feet                                                                                                                                                                               |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          | inches                                                                                                                                           |                                                                                                                                                           |                                                                                                                                          | Undertarali                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                      |                                                                                                                                                          | leet                                                                                                                                                                                    |                                                                                                                          |
| Jser Input: Orifice Plate with one or more orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | es or Elliptical Slot V                                                                                                                                  | Neir (typically used                                                                                                                             | to drain WOCV and                                                                                                                                         | l/or FLIRV in a sedir                                                                                                                    | mentation BMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                      | Calculated Parame                                                                                                                                        | ters for Plate                                                                                                                                                                          |                                                                                                                          |
| Invert of Lowest Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.00                                                                                                                                                     |                                                                                                                                                  | bottom at Stage =                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ice Area per Row =                                                                                                                                                                                   | 3.125E-03                                                                                                                                                | ft <sup>2</sup>                                                                                                                                                                         |                                                                                                                          |
| Depth at top of Zone using Orifice Plate =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.49                                                                                                                                                     |                                                                                                                                                  | bottom at Stage =                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iptical Half-Width =                                                                                                                                                                                 | N/A                                                                                                                                                      | feet                                                                                                                                                                                    |                                                                                                                          |
| Orifice Plate: Orifice Vertical Spacing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                      | inches                                                                                                                                           |                                                                                                                                                           | ,                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ical Slot Centroid =                                                                                                                                                                                 | N/A                                                                                                                                                      | feet                                                                                                                                                                                    |                                                                                                                          |
| Orifice Plate: Orifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.45                                                                                                                                                     | sq. inches (diamet                                                                                                                               | er = 3/4 inch)                                                                                                                                            |                                                                                                                                          | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Iliptical Slot Area =                                                                                                                                                                                | N/A                                                                                                                                                      | ft <sup>2</sup>                                                                                                                                                                         |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          | -                                                                                                                                                                                       |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| Iser Input: Stage and Total Area of Each Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e Row (numbered fi                                                                                                                                       | · · · · ·                                                                                                                                        | est)                                                                                                                                                      |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Row 1 (required)                                                                                                                                         | Row 2 (optional)                                                                                                                                 | Row 3 (optional)                                                                                                                                          | Row 4 (optional)                                                                                                                         | Row 5 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Row 6 (optional)                                                                                                                                                                                     | Row 7 (optional)                                                                                                                                         | Row 8 (optional)                                                                                                                                                                        |                                                                                                                          |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                     | 0.70                                                                                                                                             | 1.40                                                                                                                                                      | 2.10                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.45                                                                                                                                                     | 0.45                                                                                                                                             | 0.45                                                                                                                                                      | 0.45                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         | l                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | · · · · · · · · · · · · · · · · · · ·                                                                                                                    |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         | 1                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Row 9 (optional)                                                                                                                                         | Row 10 (optional)                                                                                                                                | Row 11 (optional)                                                                                                                                         | Row 12 (optional)                                                                                                                        | Row 13 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Row 14 (optional)                                                                                                                                                                                    | Row 15 (optional)                                                                                                                                        | Row 16 (optional)                                                                                                                                                                       |                                                                                                                          |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| Jser Input: Vertical Orifice (Circular or Rectangu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ular)                                                                                                                                                    |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      | Calculated Paramo                                                                                                                                        | ters for Vertical Orif                                                                                                                                                                  | ico                                                                                                                      |
| iser input. Vertical office (circular of Rectarge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 2 Circular                                                                                                                                          | Not Selected                                                                                                                                     | 1                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      | Zone 2 Circular                                                                                                                                          | Not Selected                                                                                                                                                                            | ice                                                                                                                      |
| Invert of Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 2.49                                                                                                                                                     | N/A                                                                                                                                              | ft (relative to basir                                                                                                                                     | bottom at Stage =                                                                                                                        | 0 ft) Ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rtical Orifice Area =                                                                                                                                                                                | 0.00                                                                                                                                                     | N/A                                                                                                                                                                                     | ft <sup>2</sup>                                                                                                          |
| Depth at top of Zone using Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.77                                                                                                                                                     | N/A                                                                                                                                              | -                                                                                                                                                         | bottom at Stage =                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | I Orifice Centroid =                                                                                                                                                                                 | 0.02                                                                                                                                                     | N/A                                                                                                                                                                                     | feet                                                                                                                     |
| Vertical Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.38                                                                                                                                                     | N/A                                                                                                                                              | inches                                                                                                                                                    | - bottom at stage                                                                                                                        | vertice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                      | 0.02                                                                                                                                                     | 14/74                                                                                                                                                                                   | 1001                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.00                                                                                                                                                     |                                                                                                                                                  | monoo                                                                                                                                                     |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| Jser Input: Overflow Weir (Dropbox with Flat or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | r Sloped Grate and                                                                                                                                       | Outlet Pipe OR Rec                                                                                                                               | tangular/Trapezoida                                                                                                                                       | al Weir (and No Out                                                                                                                      | let Pipe)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                      | Calculated Parame                                                                                                                                        | ters for Overflow W                                                                                                                                                                     | eir                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir                                                                                                                                              | Not Selected                                                                                                                                     | 1                                                                                                                                                         | •                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      | Zone 3 Weir                                                                                                                                              | Not Selected                                                                                                                                                                            |                                                                                                                          |
| Overflow Weir Front Edge Height, Ho =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.77                                                                                                                                                     | N/A                                                                                                                                              | ft (relative to basin b                                                                                                                                   | ottom at Stage = 0 f                                                                                                                     | ) Height of Grat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e Upper Edge, H <sub>t</sub> =                                                                                                                                                                       | 3.77                                                                                                                                                     | N/A                                                                                                                                                                                     | feet                                                                                                                     |
| Overflow Weir Front Edge Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.00                                                                                                                                                     | N/A                                                                                                                                              | feet                                                                                                                                                      | -                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | /eir Slope Length =                                                                                                                                                                                  | 3.00                                                                                                                                                     | N/A                                                                                                                                                                                     | feet                                                                                                                     |
| Overflow Weir Grate Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                     | N/A                                                                                                                                              | H:V                                                                                                                                                       | G                                                                                                                                        | rate Open Area / 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 00-yr Orifice Area =                                                                                                                                                                                 | 28.73                                                                                                                                                    | N/A                                                                                                                                                                                     |                                                                                                                          |
| Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3.00                                                                                                                                                     | N/A                                                                                                                                              | feet                                                                                                                                                      | 0                                                                                                                                        | verflow Grate Open                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Area w/o Debris =                                                                                                                                                                                    | 8.40                                                                                                                                                     | N/A                                                                                                                                                                                     | ft <sup>2</sup>                                                                                                          |
| Overflow Grate Open Area % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70%                                                                                                                                                      | N/A                                                                                                                                              | %, grate open are                                                                                                                                         | a/total area                                                                                                                             | Overflow Grate Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Area w/ Debris =                                                                                                                                                                                   | 4.20                                                                                                                                                     | N/A                                                                                                                                                                                     | ft <sup>2</sup>                                                                                                          |
| Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 50%                                                                                                                                                      | N/A                                                                                                                                              | %                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                          |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      |                                                                                                                                                          |                                                                                                                                                                                         |                                                                                                                          |
| Jser Input: Outlet Pipe w/ Flow Restriction Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                          |                                                                                                                                                  | ectangular Orifice)                                                                                                                                       |                                                                                                                                          | <u>Ca</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alculated Parameters                                                                                                                                                                                 |                                                                                                                                                          |                                                                                                                                                                                         | ate                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Restrictor                                                                                                                                        | Not Selected                                                                                                                                     | 1                                                                                                                                                         |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      | Zone 3 Restrictor                                                                                                                                        | Not Selected                                                                                                                                                                            |                                                                                                                          |
| Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                     | N/A                                                                                                                                              |                                                                                                                                                           | sin bottom at Stage                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | utlet Orifice Area =                                                                                                                                                                                 | 0.29                                                                                                                                                     | N/A                                                                                                                                                                                     | ft <sup>2</sup>                                                                                                          |
| Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 18.00                                                                                                                                                    | N/A                                                                                                                                              | inches                                                                                                                                                    |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | t Orifice Centroid =                                                                                                                                                                                 | 0.20                                                                                                                                                     | N/A                                                                                                                                                                                     | feet                                                                                                                     |
| Restrictor Plate Height Above Pipe Invert =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.00                                                                                                                                                     |                                                                                                                                                  | inches                                                                                                                                                    | Half-Cen                                                                                                                                 | tral Angle of Restric                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ctor Plate on Pipe =                                                                                                                                                                                 | 0.98                                                                                                                                                     | N/A                                                                                                                                                                                     | radians                                                                                                                  |
| least least to Francisco Collinso (Collinso (Collinso )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Teenen-1d-P                                                                                                                                              |                                                                                                                                                  |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      | Coloulatid                                                                                                                                               | tone for Coll                                                                                                                                                                           |                                                                                                                          |
| Jser Input: Emergency Spillway (Rectangular or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rrapezoidal)                                                                                                                                             | a                                                                                                                                                |                                                                                                                                                           |                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                      | Calculated Parame                                                                                                                                        | ters for spillway                                                                                                                                                                       |                                                                                                                          |
| Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | E 47                                                                                                                                                     |                                                                                                                                                  |                                                                                                                                                           | 0.61)                                                                                                                                    | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | locian Eleve Dentil                                                                                                                                                                                  | 0.01                                                                                                                                                     | foot                                                                                                                                                                                    |                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.47                                                                                                                                                     |                                                                                                                                                  | n bottom at Stage =                                                                                                                                       | 0 ft)                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | esign Flow Depth=                                                                                                                                                                                    | 0.31                                                                                                                                                     | feet                                                                                                                                                                                    |                                                                                                                          |
| Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.00                                                                                                                                                    | feet                                                                                                                                             | n bottom at Stage =                                                                                                                                       | 0 ft)                                                                                                                                    | Stage at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Top of Freeboard =                                                                                                                                                                                   | 6.78                                                                                                                                                     | feet                                                                                                                                                                                    |                                                                                                                          |
| Spillway Crest Length =<br>Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.00<br>10.00                                                                                                                                           | feet<br>H:V                                                                                                                                      | 1 bottom at Stage =                                                                                                                                       | 0 ft)                                                                                                                                    | Stage at<br>Basin Area at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Top of Freeboard =<br>Top of Freeboard =                                                                                                                                                             | 6.78<br>0.48                                                                                                                                             | feet<br>acres                                                                                                                                                                           |                                                                                                                          |
| Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.00                                                                                                                                                    | feet                                                                                                                                             | 1 bottom at Stage =                                                                                                                                       | 0 ft)                                                                                                                                    | Stage at<br>Basin Area at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Top of Freeboard =                                                                                                                                                                                   | 6.78                                                                                                                                                     | feet                                                                                                                                                                                    |                                                                                                                          |
| Spillway Crest Length =<br>Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 40.00<br>10.00                                                                                                                                           | feet<br>H:V                                                                                                                                      | n bottom at Stage =                                                                                                                                       | 0 ft)                                                                                                                                    | Stage at<br>Basin Area at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Top of Freeboard =<br>Top of Freeboard =                                                                                                                                                             | 6.78<br>0.48                                                                                                                                             | feet<br>acres                                                                                                                                                                           |                                                                                                                          |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 40.00<br>10.00<br>1.00                                                                                                                                   | feet<br>H:V<br>feet                                                                                                                              |                                                                                                                                                           |                                                                                                                                          | Stage at<br>Basin Area at<br>Basin Volume at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Top of Freeboard =<br>Top of Freeboard =                                                                                                                                                             | 6.78<br>0.48<br>1.29                                                                                                                                     | feet<br>acres<br>acre-ft                                                                                                                                                                | F)                                                                                                                       |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>outed Hydrograph Results<br>Design Storm Return Period =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WQCV                                                                                               | feet<br>H:V<br>feet<br>ride the default CUI<br>EURV                                                                                              | HP hydrographs and<br>2 Year                                                                                                                              | runoff volumes by 5 Year                                                                                                                 | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>es in the Inflow Hyde<br>25 Year                                                                                                   | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year                                                                                                   | feet<br>acres<br>acre-ft<br>////////////////////////////////////                                                                                                                        | 500 Yea                                                                                                                  |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br><u>outed Hydrograph Results</u><br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WQCV<br>N/A                                                                                        | feet<br>H:V<br>feet<br>ride the default CUI<br>EURV<br>N/A                                                                                       | HP hydrographs and<br>2 Year<br>1.19                                                                                                                      | runoff volumes by<br>5 Year<br>1.50                                                                                                      | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year<br>1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00                                                                                              | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year<br>2.26                                                                                           | feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.52                                                                                                                                     | 500 Yea<br>3.14                                                                                                          |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>touted Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135                                                                               | feet<br>H:V<br>feet<br>EURV<br>N/A<br>0.417                                                                                                      | HP hydrographs and<br>2 Year<br>1.19<br>0.382                                                                                                             | 1 runoff volumes by<br>5 Year<br>1.50<br>0.546                                                                                           | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year<br>1.75<br>0.691                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00<br>0.887                                                                                     | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year<br>2.26<br>1.052                                                                                  | feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.52<br>1.247                                                                                                                            | 500 Yea<br>3.14<br>1.654                                                                                                 |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>touted Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WQCV<br>N/A                                                                                        | feet<br>H:V<br>feet<br>ride the default CUI<br>EURV<br>N/A                                                                                       | HP hydrographs and<br>2 Year<br>1.19                                                                                                                      | runoff volumes by<br>5 Year<br>1.50                                                                                                      | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year<br>1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00                                                                                              | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year<br>2.26                                                                                           | feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.52                                                                                                                                     | 500 Yea<br>3.14                                                                                                          |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                              | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>N/A<br>0.135<br>N/A<br>N/A<br>N/A                                                                  | feet<br>H:V<br>feet<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A                                                                                         | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.382<br>0.9                                                                                             | <i>trunoff volumes by</i><br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7                                                                     | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year<br>1.75<br>0.691<br>0.691<br>4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00<br>0.887<br>0.887<br>7.2                                                                                           | 6.78<br>0.48<br>1.29<br>tographs table (Col<br>50 Year<br>2.26<br>1.052<br>1.052<br>9.1                                                                  | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>11.2                                                                                                                  | 500 Yea<br>3.14<br>1.654<br>1.654<br>15.7                                                                                |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =                                                                                                                                                                                                                                                                             | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A                                                   | feet<br>H:V<br>feet<br>URV<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A                                                                           | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.382<br>0.9<br>0.12                                                                                     | runoff volumes by<br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7<br>0.34                                                                     | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>1.75<br>0.691<br>0.691<br>4.0<br>0.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00<br>0.887<br>0.887<br>7.2<br>0.91                                                                                   | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year<br>2.26<br>1.052<br>1.052<br>1.052<br>9.1<br>1.15                                                 | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247                                                                                      | 500 Yea<br>3.14<br>1.654<br>1.654<br>15.7<br>1.99                                                                        |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =                                                                                                                                                                                                                       | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                            | feet<br>H:V<br>feet<br>EURV<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                   | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.9<br>0.12<br>6.7                                                                                       | 1 runoff volumes by<br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7<br>0.34<br>9.8                                                            | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year<br>1.75<br>0.691<br>0.691<br>4.0<br>0.51<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00<br>0.887<br>0.887<br>7.2<br>0.91<br>15.6                                                                           | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year<br>2.26<br>1.052<br>1.052<br>9.1<br>1.15<br>18.5                                                  | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>1.247<br>11.2<br>1.42<br>2.1                                                                                          | 500 Yea<br>3.14<br>1.654<br>1.654<br>15.7<br>1.99<br>28.9                                                                |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (are-rt) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/ace) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =                                                                                                                                                                                                                                                                                                    | 40.00<br>10.00<br>1.00<br><i>The user can over</i> .<br>WQCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>0.1                                   | feet<br>H:V<br>feet<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>0.1                                                                    | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.382<br>0.9<br>0.12<br>6.7<br>0.1                                                                       | runoff volumes by<br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7<br>                                                                         | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year<br>1.75<br>0.691<br>0.691<br>0.691<br>0.51<br>12.0<br>2.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br><i>es in the Inflow Hyde</i><br>25 Year<br>2.00<br>0.887<br>0.887<br>0.887<br>0.91<br>15.6<br>2.9                                  | 6.78<br>0.48<br>1.29<br>cographs table (Col<br>50 Year<br>2.26<br>1.052<br>1.052<br>9.1<br>1.15<br>1.8.5<br>3.0                                          | feet<br>acres<br>acre-ft<br><u>100 Year</u><br>2.52<br>1.247<br>1.247<br>1.247<br>1.227<br>1.42<br>2.1<br>3.2                                                                           | 500 Yea<br>3.14<br>1.654<br>1.654<br>15.7<br>1.99<br>28.9<br>12.0                                                        |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =                                                                                                                                                                                                                       | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                            | feet<br>H:V<br>feet<br>EURV<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                   | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.9<br>0.12<br>6.7                                                                                       | 1 runoff volumes by<br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7<br>0.34<br>9.8                                                            | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year<br>1.75<br>0.691<br>0.691<br>4.0<br>0.51<br>12.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00<br>0.887<br>0.887<br>7.2<br>0.91<br>15.6<br>2.9<br>0.4<br>Outlet Plate 1                     | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year<br>2.26<br>1.052<br>1.052<br>9.1<br>1.15<br>18.5                                                  | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>1.247<br>11.2<br>1.42<br>2.1                                                                                          | 500 Yez<br>3.14<br>1.654<br>1.654<br>15.7<br>1.99<br>28.9<br>12.0<br>0.8<br>Spillwar                                     |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Couted Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow D (cfs) =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =                                                                                     | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                       | feet<br>H:V<br>feet<br>EURV<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Overflow Weir 1<br>N/A                                  | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.382<br>0.9<br>0.12<br>6.7<br>0.1<br>N/A<br>Vertical Orifice 1<br>N/A                                   | runoff volumes by<br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7<br>0.34<br>9.8<br>1.3<br>0.5<br>Overflow Weir 1<br>0.1                      | Stage at i<br>Basin Area at<br>Basin Volume at<br>10 Year<br>1.75<br>0.691<br>0.691<br>4.0<br>0.51<br>12.0<br>2.7<br>0.7<br>0.7<br>0.7<br>0.0tlet Plate 1<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00<br>0.887<br>7.2<br>0.91<br>15.6<br>2.9<br>0.4<br>Outlet Plate 1<br>0.3                                             | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year<br>2.26<br>1.052<br>9.1<br>1.15<br>18.5<br>3.0<br>0.3<br>Outlet Plate 1<br>0.3                    | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>0.3<br>0.3<br>Outlet Plate 1<br>0.4                                               | 500 Yea<br>3.14<br>1.654<br>1.654<br>15.7<br>28.9<br>12.0<br>0.8<br>Spillwa<br>0.4                                       |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (arce-ft) =<br>Inflow Hydrograph Volume (arce-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Nuflow Q (cfs) =<br>Peak Nuflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 1 (fps) =                                                                                                                  | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                       | feet<br>H:V<br>feet<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                        | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.382<br>0.9<br>0.12<br>6.7<br>0.1<br>N/A<br>Vertical Orifice 1<br>N/A                                   | Tunoff volumes by<br>5 Year<br>1.50<br>0.546<br>2.7<br>0.34<br>9.8<br>1.3<br>0.5<br>0verflow Weir 1<br>0.1<br>N/A                        | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>1.75<br>0.691<br>0.691<br>4.0<br>0.51<br>12.0<br>2.7<br>0.7<br>Outlet Plate 1<br>0.3<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br><i>as in the Inflow Hyde</i><br>25 Year<br>2.00<br>0.887<br>7.2<br>0.91<br>15.6<br>2.9<br>0.4<br>Outlet Plate 1<br>0.3<br>N/A      | 6.78<br>0.48<br>1.29<br>50 Year<br>2.26<br>1.052<br>1.052<br>9.1<br>1.15<br>18.5<br>3.0<br>0.3<br>Outlet Plate 1<br>0.3<br>N/A                           | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.227<br>1.247<br>0.3<br>0.3<br>Outlet Plate 1<br>0.4<br>N/A                               | 500 Yea<br>3.14<br>1.654<br>1.654<br>15.7<br>28.9<br>12.0<br>0.8<br>Spillwa<br>0.4<br>N/A                                |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Couted Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow to Predevelopment Q<br>Ratio Peak Outflow to Predevelopment Q<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) = | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Plate<br>N/A<br>N/A<br>37 | feet<br>H:V<br>feet<br>URV<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A<br>0.1<br>N/A<br>0.1<br>N/A<br>Overflow Weir 1<br>N/A<br>N/A<br>70        | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.382<br>0.9<br>0.12<br>6.7<br>0.1<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>67                      | runoff volumes by<br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7<br>0.34<br>9.8<br>1.3<br>0.5<br>Overflow Weir 1<br>0.1<br>N/A<br>72         | Stage at<br>Basin Area at<br>Basin Volume at<br>Content of the second s | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00<br>0.887<br>0.887<br>7.2<br>0.91<br>15.6<br>2.9<br>0.4<br>Outlet Plate 1<br>0.3<br>N/A<br>68 | 6.78<br>0.48<br>1.29<br>7000000000000000000000000000000000000                                                                                            | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>0.3<br>0.142<br>22.1<br>3.2<br>0.3<br>Outlet Plate 1<br>0.4<br>N/A<br>66 | 500 Yea<br>3.14<br>1.654<br>1.654<br>15.7<br>1.99<br>28.9<br>12.0<br>0.8<br>Spillway<br>0.4<br>N/A<br>63                 |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Cone-Hour Rainfail Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =<br>Time to Drain 99% of Inflow Volume (hours) =                         | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                       | feet<br>H:V<br>feet<br>EURV<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>0.1<br>N/A<br>Overflow Weir 1<br>N/A<br>N/A<br>70<br>76 | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.382<br>0.9<br>0.12<br>6.7<br>0.1<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>72 | 1 runoff volumes by<br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7<br>0.34<br>9.8<br>1.3<br>0.5<br>Overflow Weir 1<br>0.1<br>N/A<br>72<br>78 | Stage at<br>Basin Area at<br>Basin Volume at<br>entering new value<br>10 Year<br>1.75<br>0.691<br>0.691<br>4.0<br>0.51<br>12.0<br>2.7<br>0.7<br>Outlet Plate 1<br>0.3<br>N/A<br>70<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br><i>as in the Inflow Hyde</i><br>25 Year<br>2.00<br>0.887<br>7.2<br>0.91<br>15.6<br>2.9<br>0.4<br>Outlet Plate 1<br>0.3<br>N/A      | 6.78<br>0.48<br>1.29<br>rographs table (Col<br>50 Year<br>2.26<br>1.052<br>9.1<br>1.15<br>18.5<br>3.0<br>0.3<br>Outlet Plate 1<br>0.3<br>N/A<br>67<br>76 | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>0.3<br>0.3<br>Outlet Plate 1<br>0.4<br>N/A<br>N/A<br>N/A<br>5<br>75      | 500 Yea<br>3.14<br>1.654<br>1.654<br>1.654<br>1.654<br>1.99<br>28.9<br>12.0<br>0.8<br>Spillway<br>0.4<br>N/A<br>63<br>74 |
| Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =                                                                                  | 40.00<br>10.00<br>1.00<br><i>The user can over</i><br>WOCV<br>N/A<br>0.135<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Plate<br>N/A<br>N/A<br>37 | feet<br>H:V<br>feet<br>URV<br>N/A<br>0.417<br>N/A<br>N/A<br>N/A<br>N/A<br>0.1<br>N/A<br>0.1<br>N/A<br>Overflow Weir 1<br>N/A<br>N/A<br>70        | HP hydrographs and<br>2 Year<br>1.19<br>0.382<br>0.382<br>0.9<br>0.12<br>6.7<br>0.1<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>67                      | runoff volumes by<br>5 Year<br>1.50<br>0.546<br>0.546<br>2.7<br>0.34<br>9.8<br>1.3<br>0.5<br>Overflow Weir 1<br>0.1<br>N/A<br>72         | Stage at<br>Basin Area at<br>Basin Volume at<br>Content of the second s | Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>25 Year<br>2.00<br>0.887<br>7.2<br>0.91<br>15.6<br>2.9<br>0.4<br>Outlet Plate 1<br>0.3<br>N/A<br>68<br>76    | 6.78<br>0.48<br>1.29<br>7000000000000000000000000000000000000                                                                                            | feet<br>acres<br>acre-ft<br>100 Year<br>2.52<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>1.247<br>0.3<br>0.142<br>22.1<br>3.2<br>0.3<br>Outlet Plate 1<br>0.4<br>N/A<br>66 | 500 Yea<br>3.14<br>1.654<br>1.654<br>15.7<br>1.99<br>28.9<br>12.0<br>0.8<br>Spillway<br>0.4<br>N/A<br>63                 |



## DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

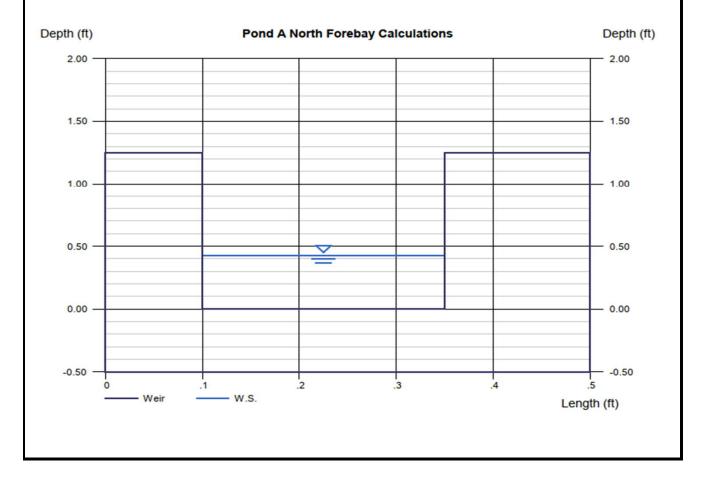
|              | SOURCE             | CUHP       | CUHP       | CUHP         | CUHP         | CUHP          | CUHP           | CUHP           | CUHP           | CUHP  |
|--------------|--------------------|------------|------------|--------------|--------------|---------------|----------------|----------------|----------------|-------|
| ime Interval | TIME               | WQCV [cfs] | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs] | 25 Year [cfs]  | 50 Year [cfs]  | 100 Year [cfs] |       |
| 5.00 min     | 0:00:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
| 3.00 11111   | 0:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 0:10:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.08           | 0.00           | 0.24  |
|              | 0:15:00            | 0.00       | 0.00       | 0.66         | 1.08         | 1.34          | 0.90           | 1.12           | 1.10           | 1.55  |
|              | 0:20:00            | 0.00       | 0.00       | 2.29         | 2.99         | 3.69          | 2.21           | 2.58           | 2.76           | 3.72  |
|              | 0:25:00            | 0.00       | 0.00       | 5.25         | 7.86         | 10.25         | 5.16           | 6.14           | 6.79           | 10.27 |
|              | 0:30:00            | 0.00       | 0.00       | 6.66         | 9.76         | 11.95         | 14.01          | 16.83          | 18.97          | 25.29 |
|              | 0:35:00            | 0.00       | 0.00       | 6.09         | 8.72         | 10.62         | 15.64          | 18.54          | 22.08          | 28.92 |
|              | 0:40:00            | 0.00       | 0.00       | 5.30         | 7.42         | 9.07          | 14.86          | 17.52          | 20.71          | 27.03 |
|              | 0:45:00            | 0.00       | 0.00       | 4.33<br>3.56 | 6.18<br>5.17 | 7.70<br>6.33  | 12.90<br>11.37 | 15.22<br>13.40 | 18.61<br>16.27 | 24.26 |
|              | 0:55:00            | 0.00       | 0.00       | 3.00         | 4.33         | 5.39          | 9.24           | 10.91          | 13.68          | 17.88 |
|              | 1:00:00            | 0.00       | 0.00       | 2.63         | 3.76         | 4.77          | 7.76           | 9.21           | 11.94          | 15.65 |
|              | 1:05:00            | 0.00       | 0.00       | 2.32         | 3.29         | 4.23          | 6.71           | 7.99           | 10.71          | 14.07 |
|              | 1:10:00            | 0.00       | 0.00       | 1.90         | 2.84         | 3.72          | 5.49           | 6.56           | 8.51           | 11.25 |
|              | 1:15:00            | 0.00       | 0.00       | 1.52         | 2.33         | 3.25          | 4.44           | 5.31           | 6.64           | 8.87  |
|              | 1:20:00            | 0.00       | 0.00       | 1.22         | 1.86         | 2.66          | 3.38           | 4.03           | 4.82           | 6.43  |
|              | 1:25:00            | 0.00       | 0.00       | 1.05         | 1.60         | 2.19          | 2.55           | 3.05           | 3.40           | 4.58  |
|              | 1:30:00            | 0.00       | 0.00       | 0.98         | 1.47         | 1.90          | 1.99           | 2.37           | 2.55           | 3.46  |
|              | 1:35:00            | 0.00       | 0.00       | 0.93         | 1.39<br>1.23 | 1.70<br>1.56  | 1.65<br>1.42   | 1.95<br>1.67   | 2.04           | 2.77  |
|              | 1:40:00            | 0.00       | 0.00       | 0.91         | 1.23         | 1.56          | 1.42           | 1.67           | 1.70           | 2.30  |
|              | 1:50:00            | 0.00       | 0.00       | 0.88         | 1.02         | 1.40          | 1.18           | 1.36           | 1.30           | 1.76  |
|              | 1:55:00            | 0.00       | 0.00       | 0.76         | 0.96         | 1.30          | 1.11           | 1.28           | 1.19           | 1.61  |
|              | 2:00:00            | 0.00       | 0.00       | 0.67         | 0.88         | 1.16          | 1.07           | 1.22           | 1.13           | 1.53  |
|              | 2:05:00            | 0.00       | 0.00       | 0.49         | 0.64         | 0.84          | 0.78           | 0.89           | 0.82           | 1.11  |
|              | 2:10:00            | 0.00       | 0.00       | 0.36         | 0.46         | 0.60          | 0.56           | 0.64           | 0.59           | 0.80  |
|              | 2:15:00            | 0.00       | 0.00       | 0.26         | 0.33         | 0.43          | 0.40           | 0.45           | 0.43           | 0.57  |
|              | 2:20:00<br>2:25:00 | 0.00       | 0.00       | 0.18         | 0.23         | 0.30          | 0.28           | 0.32           | 0.30           | 0.40  |
|              | 2:20:00            | 0.00       | 0.00       | 0.12         | 0.15         | 0.21          | 0.19           | 0.22           | 0.21           | 0.28  |
|              | 2:35:00            | 0.00       | 0.00       | 0.08         | 0.10         | 0.14          | 0.13           | 0.15           | 0.14           | 0.19  |
|              | 2:40:00            | 0.00       | 0.00       | 0.03         | 0.04         | 0.05          | 0.05           | 0.06           | 0.05           | 0.13  |
|              | 2:45:00            | 0.00       | 0.00       | 0.01         | 0.02         | 0.02          | 0.03           | 0.03           | 0.03           | 0.03  |
|              | 2:50:00            | 0.00       | 0.00       | 0.00         | 0.01         | 0.01          | 0.01           | 0.01           | 0.01           | 0.01  |
|              | 2:55:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:00:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:10:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:15:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:20:00<br>3:25:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:30:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:35:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:40:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:45:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:50:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 3:55:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:00:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:10:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:20:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:25:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:30:00<br>4:35:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:35:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:45:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:50:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 4:55:00<br>5:00:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:05:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:10:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:15:00<br>5:20:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:20:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:30:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:35:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:40:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:45:00<br>5:50:00 | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 5:55:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |
|              | 6:00:00            | 0.00       | 0.00       | 0.00         | 0.00         | 0.00          | 0.00           | 0.00           | 0.00           | 0.00  |

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.03 (May 2020) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

| ie user should graphically c   | ompare the summ | ary S-A-V-D tab | e to the full S-A | -V-D table in the  | e chart to confirm |                  | ey transition points.                                              |
|--------------------------------|-----------------|-----------------|-------------------|--------------------|--------------------|------------------|--------------------------------------------------------------------|
| Stage - Storage<br>Description | Stage           | Area            | Area              | Volume             | Volume             | Total<br>Outflow |                                                                    |
| Description                    | [ft]            | [ft 2]          | [acres]           | [ft <sup>3</sup> ] | [ac-ft]            | [cfs]            |                                                                    |
|                                | 0.00            | 10              | 0.000             | 0                  | 0.000              | 0.00             | For best results, include the                                      |
|                                | 0.50            | 460             | 0.011             | 117                | 0.003              | 0.01             | stages of all grade slope<br>changes (e.g. ISV and Floor)          |
|                                | 1.00            | 909             | 0.021             | 459                | 0.011              | 0.02             | from the S-A-V table on                                            |
|                                | 1.50            | 2,705           | 0.062             | 1,363              | 0.031              | 0.04             | Sheet 'Basin'.                                                     |
| 110014                         | 2.00            | 4,500           | 0.103             | 3,164              | 0.073              | 0.05             | Also bede the bounds of all                                        |
| WQCV                           | 2.49            | 6,635<br>6,678  | 0.152 0.153       | 5,892<br>5,959     | 0.135<br>0.137     | 0.07             | Also include the inverts of all<br>outlets (e.g. vertical orifice, |
|                                | 3.00            | 8,857           | 0.203             | 9,842              | 0.226              | 0.07             | overflow grate, and spillway,                                      |
|                                | 3.50            | 11,416          | 0.262             | 14,911             | 0.342              | 0.10             | where applicable).                                                 |
| EURV                           | 3.77            | 12,799          | 0.294             | 18,180             | 0.417              | 0.10             |                                                                    |
|                                | 4.00            | 13,976          | 0.321             | 21,259             | 0.488              | 2.75             |                                                                    |
|                                | 4.50            | 15,792          | 0.363             | 28,701             | 0.659              | 2.92             |                                                                    |
|                                | 4.50            | 15,792          | 0.363             | 28,701             | 0.659              | 2.92             |                                                                    |
| 100 YR                         | 4.70            | 16,519          | 0.379             | 31,932             | 0.733              | 2.99             |                                                                    |
|                                | 5.00            | 17,609          | 0.404             | 37,051             | 0.851              | 3.09             | •                                                                  |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                | -               |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                | _               |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                | +               |                 |                   |                    |                    |                  |                                                                    |
|                                | _               |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                | -               |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                | +               |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |
|                                | -               |                 |                   |                    |                    |                  | 4                                                                  |
|                                |                 |                 |                   |                    |                    |                  | ]                                                                  |
|                                |                 |                 |                   |                    |                    |                  | 4                                                                  |
|                                |                 |                 |                   |                    |                    |                  | 4                                                                  |
|                                |                 |                 |                   |                    |                    |                  | 1                                                                  |
|                                |                 |                 |                   |                    |                    |                  | 1                                                                  |
|                                |                 |                 |                   |                    |                    |                  | 4                                                                  |
|                                |                 |                 |                   |                    |                    |                  | 1                                                                  |
|                                |                 |                 |                   |                    |                    |                  | 1                                                                  |
|                                |                 |                 |                   |                    |                    |                  | ]                                                                  |
|                                |                 |                 |                   |                    |                    |                  |                                                                    |

# Detention Pond A North Forebay Calculations

| 100 YR Discharge                      | 11.3   | CFS   |
|---------------------------------------|--------|-------|
| WQCV Storage                          | 0.135  | AC-FT |
| Forebay Volume (2% pf WQCV)           | 0.0027 | AC-FT |
| Forebay Release Volume (2% of 100 YR) | 0.226  | CFS   |


# Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

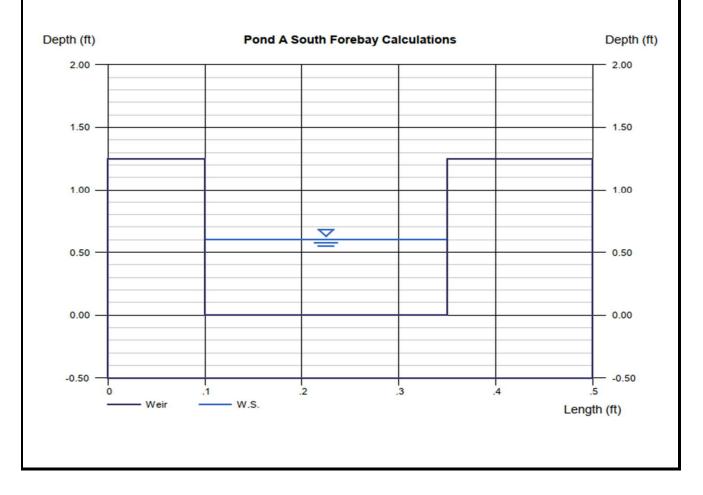
Friday, Nov 6 2020

### **Pond A North Forebay Calculations**

| <b>Rectangular Weir</b> |         | Highlighted     |         |
|-------------------------|---------|-----------------|---------|
| Crest                   | = Sharp | Depth (ft)      | = 0.42  |
| Bottom Length (ft)      | = 0.25  | Q (cfs)         | = 0.230 |
| Total Depth (ft)        | = 1.25  | Area (sqft)     | = 0.11  |
|                         |         | Velocity (ft/s) | = 2.17  |
| Calculations            |         | Top Width (ft)  | = 0.25  |
| Weir Coeff. Cw          | = 3.33  |                 |         |
| Compute by:             | Known Q |                 |         |
| Known Q (cfs)           | = 0.23  |                 |         |
|                         |         |                 |         |



# Detention Pond A South Forebay Calculations


| 100 YR Discharge                      | 19.4   | CFS   |
|---------------------------------------|--------|-------|
| WQCV Storage                          | 0.135  | AC-FT |
| Forebay Volume (2% pf WQCV)           | 0.0027 | AC-FT |
| Forebay Release Volume (2% of 100 YR) | 0.388  | CFS   |

# Weir Report

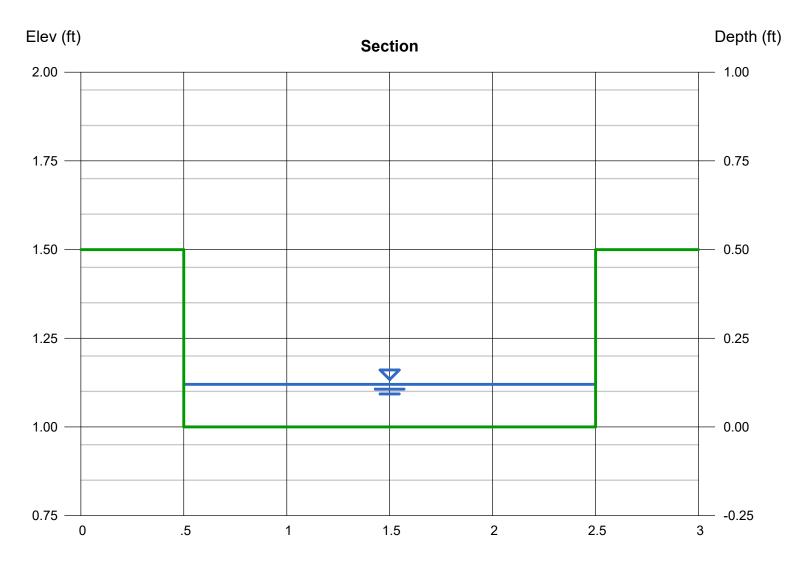
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### **Pond A South Forebay Calculations**

| <b>Rectangular Weir</b> |         | Highlighted     |         |
|-------------------------|---------|-----------------|---------|
| Crest                   | = Sharp | Depth (ft)      | = 0.60  |
| Bottom Length (ft)      | = 0.25  | Q (cfs)         | = 0.388 |
| Total Depth (ft)        | = 1.25  | Area (sqft)     | = 0.15  |
|                         |         | Velocity (ft/s) | = 2.58  |
| Calculations            |         | Top Width (ft)  | = 0.25  |
| Weir Coeff. Cw          | = 3.33  |                 |         |
| Compute by:             | Known Q |                 |         |
| Known Q (cfs)           | = 0.39  |                 |         |
|                         |         |                 |         |



Friday, Nov 6 2020


# **Channel Report**

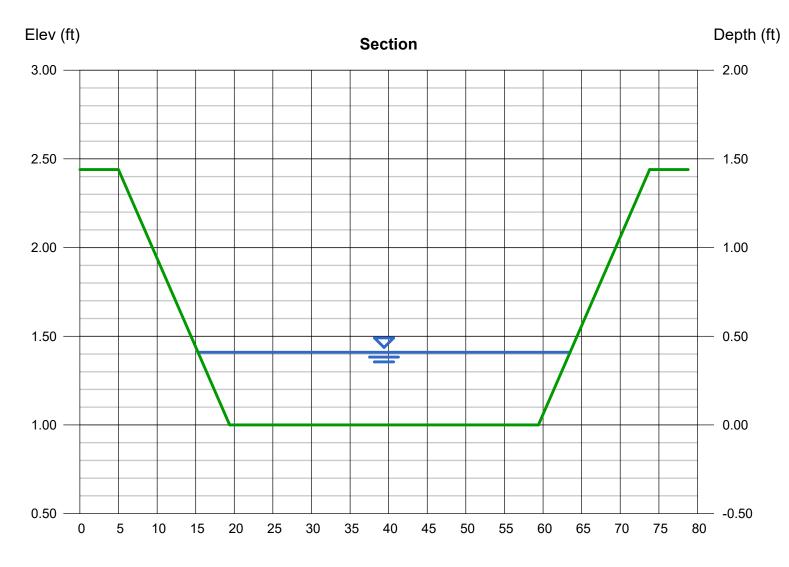
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 25 2020

# **Pond A Trickel Channel**

| Rectangular       |         | Highlighted         |         |
|-------------------|---------|---------------------|---------|
| Bottom Width (ft) | = 2.00  | Depth (ft)          | = 0.12  |
| Total Depth (ft)  | = 0.50  | Q (cfs)             | = 0.610 |
|                   |         | Area (sqft)         | = 0.24  |
| Invert Elev (ft)  | = 1.00  | Velocity (ft/s)     | = 2.54  |
| Slope (%)         | = 1.00  | Wetted Perim (ft)   | = 2.24  |
| N-Value           | = 0.013 | Crit Depth, Yc (ft) | = 0.15  |
|                   |         | Top Width (ft)      | = 2.00  |
| Calculations      |         | EGL (ft)            | = 0.22  |
| Compute by:       | Known Q |                     |         |
| Known Q (cfs)     | = 0.61  |                     |         |

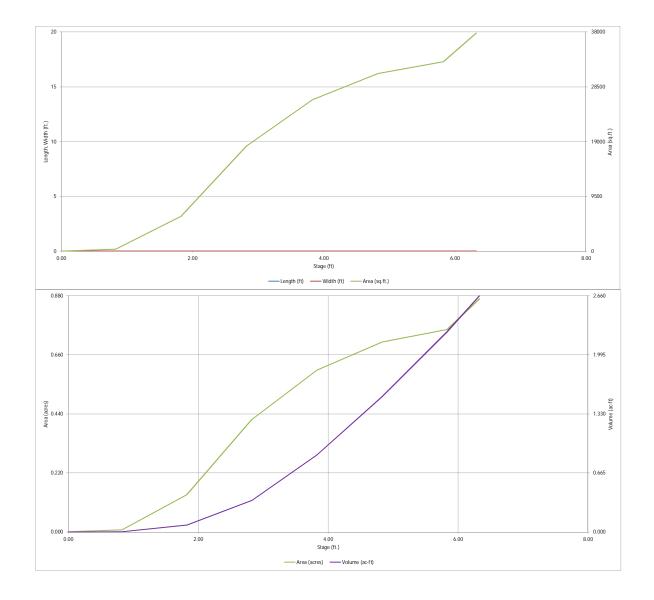



# **Channel Report**

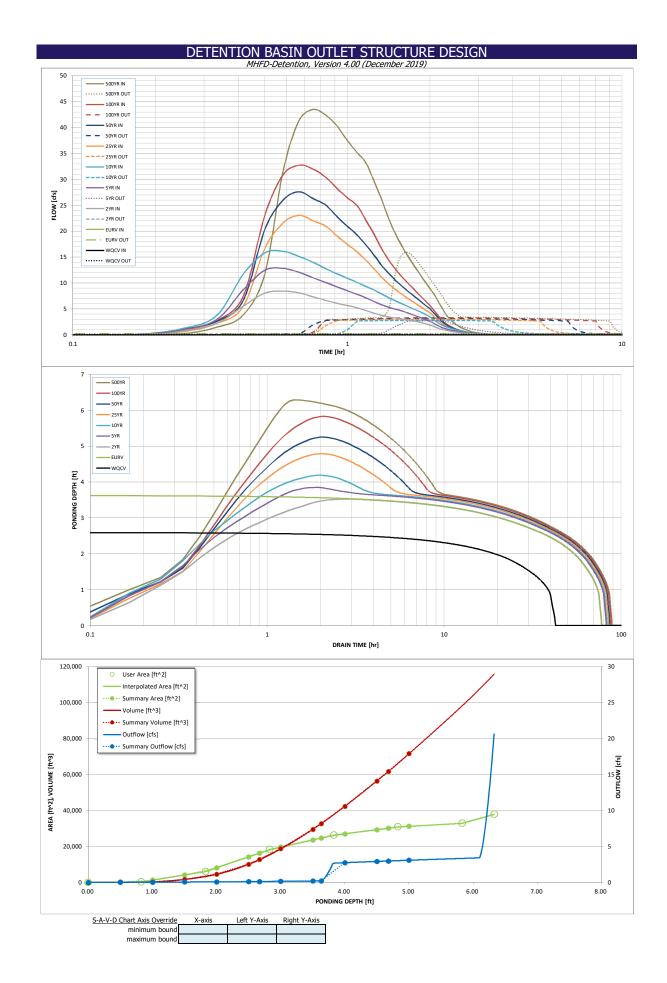
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, May 5 2021

# Pond A Spillway


| Trapezoidal       |                | Highlighted         |         |
|-------------------|----------------|---------------------|---------|
| Bottom Width (ft) | = 40.00        | Depth (ft)          | = 0.41  |
| Side Slopes (z:1) | = 10.00, 10.00 | Q (cfs)             | = 30.80 |
| Total Depth (ft)  | = 1.44         | Area (sqft)         | = 18.08 |
| Invert Elev (ft)  | = 1.00         | Velocity (ft/s)     | = 1.70  |
| Slope (%)         | = 0.20         | Wetted Perim (ft)   | = 48.24 |
| N-Value           | = 0.020        | Crit Depth, Yc (ft) | = 0.26  |
|                   |                | Top Width (ft)      | = 48.20 |
| Calculations      |                | EGL (ft)            | = 0.46  |
| Compute by:       | Known Q        |                     |         |
| Known Q (cfs)     | = 30.80        |                     |         |
|                   |                |                     |         |




Reach (ft)

|                                                                                      |                                  |                        |             | MHFD             | D-Detention, Versio            | on 4.03 (M    | lay 2020)            |                |       |                    |                      |        |         |         |
|--------------------------------------------------------------------------------------|----------------------------------|------------------------|-------------|------------------|--------------------------------|---------------|----------------------|----------------|-------|--------------------|----------------------|--------|---------|---------|
| Project:                                                                             | Solace Apar                      | tments                 |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Basin ID:                                                                            |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| ZONE 3                                                                               | 2                                |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      | ONE 1                            | T                      |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| VOLUME EURY WOCY                                                                     |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| 1                                                                                    |                                  | 100-YEA                | NR<br>E     |                  | Depth Increment =              |               | ft                   |                |       |                    |                      |        |         |         |
|                                                                                      | 1 AND 2                          |                        |             |                  |                                | 0             | Optional<br>Override |                | Width | Area               | Optional<br>Override | Area   | Volume  | Volume  |
| POOL Example Zone                                                                    | e Configura                      | tion (Reter            | ition Pond) |                  | Stage - Storage<br>Description | Stage<br>(ft) | Stage (ft)           | Length<br>(ft) | (ft)  | (ft <sup>2</sup> ) | Area (ft 2)          | (acre) | (ft 3)  | (ac-ft) |
| Watershed Information                                                                |                                  |                        |             | 6243.17          |                                |               | 0.00                 |                |       |                    | 10                   | 0.000  |         |         |
| Selected BMP Type =                                                                  | EDB                              |                        |             |                  | ELEV:6244                      |               | 0.83                 |                |       |                    | 332                  | 0.008  | 142     | 0.003   |
| Watershed Area =                                                                     | 17.50                            | acres                  |             |                  | ELEV:6245                      |               | 1.83                 |                |       |                    | 6,042                | 0.139  | 3,329   | 0.076   |
| Watershed Length =                                                                   | 1,631                            | ft                     |             |                  | ELEV:6246                      |               | 2.83                 |                |       |                    | 18,264               | 0.419  | 15,482  | 0.355   |
| Watershed Length to Centroid =                                                       | 740                              | ft                     |             |                  | ELEV:6247                      |               | 3.83                 |                |       | -                  | 26,278               | 0.603  | 37,753  | 0.867   |
| Watershed Slope =                                                                    | 0.014                            | ft/ft                  |             |                  | ELEV:6248                      |               | 4.83                 |                |       |                    | 30,833               | 0.708  | 66,308  | 1.522   |
| Watershed Imperviousness =                                                           | 40.55%                           | percent                |             |                  | ELEV:6549                      |               | 5.83                 |                |       |                    | 32,872               | 0.755  | 98,161  | 2.253   |
| Percentage Hydrologic Soil Group A =                                                 | 1.0%                             | percent                |             |                  | ELEV:6549.5                    |               | 6.33                 |                |       |                    | 37,812               | 0.868  | 115,832 | 2.659   |
| Percentage Hydrologic Soil Group B =                                                 | 99.0%                            | percent                |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Percentage Hydrologic Soil Groups C/D =                                              | 0.0%                             | percent                |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Target WQCV Drain Time =                                                             | 40.0                             | hours                  |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Location for 1-hr Rainfall Depths =                                                  |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| After providing required inputs above in<br>depths, click 'Run CUHP' to generate run | cluding 1-hour<br>off hydrograph | raintall<br>is using   |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| the embedded Colorado Urban Hydro                                                    |                                  |                        | Optional Us | er Overrides     |                                |               |                      |                |       |                    |                      |        |         |         |
| Water Quality Capture Volume (WQCV) =                                                | 0.264                            | acre-feet              |             | acre-feet        |                                |               |                      |                |       |                    |                      |        |         |         |
| Excess Urban Runoff Volume (EURV) =                                                  | 0.746                            | acre-feet              |             | acre-feet        |                                |               |                      |                |       |                    |                      |        |         |         |
| 2-yr Runoff Volume (P1 = 1.19 in.) =                                                 | 0.729                            | acre-feet              | 1.19        | inches           |                                |               |                      |                |       | -                  |                      |        |         |         |
| 5-yr Runoff Volume (P1 = 1.5 in.) =                                                  | 1.088                            | acre-feet              | 1.50        | inches           |                                |               |                      |                |       |                    |                      |        |         |         |
| 10-yr Runoff Volume (P1 = 1.75 in.) =                                                | 1.408                            | acre-feet              | 1.75        | inches           |                                |               |                      |                |       |                    |                      |        |         |         |
| 25-yr Runoff Volume (P1 = 2 in.) =                                                   | 1.872                            | acre-feet              | 2.00        | inches           |                                |               |                      |                |       |                    |                      |        |         |         |
| 50-yr Runoff Volume (P1 = 2.26 in.) =                                                | 2.246                            | acre-feet              | 2.26        | inches           |                                |               |                      |                |       |                    |                      |        |         |         |
| 100-yr Runoff Volume (P1 = 2.52 in.) =                                               | 2.702                            | acre-feet              | 2.52        | inches<br>inches |                                |               |                      |                |       |                    |                      |        |         |         |
| 500-yr Runoff Volume (P1 = 3.14 in.) =<br>Approximate 2-yr Detention Volume =        | 3.634<br>0.550                   | acre-feet<br>acre-feet |             | Turnes           |                                |               |                      |                |       |                    |                      |        |         |         |
| Approximate 5-yr Detention Volume =                                                  | 0.767                            | acre-feet              |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Approximate 10-yr Detention Volume =                                                 | 1.052                            | acre-feet              |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Approximate 25-yr Detention Volume =                                                 | 1.176                            | acre-feet              |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Approximate 50-yr Detention Volume =                                                 | 1.240                            | acre-feet              |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Approximate 100-yr Detention Volume =                                                | 1.412                            | acre-feet              |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Define Zones and Basin Geometry                                                      |                                  | -                      |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Zone 1 Volume (WQCV) =                                                               | 0.264                            | acre-feet              |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Zone 2 Volume (EURV - Zone 1) =                                                      | 0.482                            | acre-feet              |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Zone 3 Volume (100-year - Zones 1 & 2) =<br>Total Detention Basin Volume =           | 0.666                            | acre-feet<br>acre-feet |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Initial Surcharge Volume (ISV) =                                                     | USEF                             | ft 3                   |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Initial Surcharge Depth (ISD) =                                                      | user                             | ft                     |             |                  |                                |               |                      |                |       | -                  |                      |        |         |         |
| Total Available Detention Depth (H <sub>total</sub> ) =                              | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Depth of Trickle Channel (H <sub>TC</sub> ) =                                        | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Slope of Trickle Channel (STC) =                                                     | user                             | ft/ft                  |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Slopes of Main Basin Sides (Smain) =                                                 | user                             | H:V                    |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Basin Length-to-Width Ratio $(R_{L/W}) =$                                            | user                             |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      | r                                | 1.                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Initial Surcharge Area (A <sub>ISV</sub> ) =                                         | user                             | ft <sup>2</sup>        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Surcharge Volume Length $(L_{ISV}) =$<br>Surcharge Volume Width $(W_{ISV}) =$        | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Depth of Basin Floor $(W_{ISV}) =$                                                   | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Length of Basin Floor (L <sub>FLOOR</sub> ) =                                        | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Width of Basin Floor (W <sub>FLOOR</sub> ) =                                         | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Area of Basin Floor (A <sub>FLOOR</sub> ) =                                          | user                             | ft <sup>2</sup>        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Volume of Basin Floor (V <sub>FLOOR</sub> ) =                                        | user                             | ft <sup>3</sup>        |             |                  |                                |               |                      |                |       | 1                  |                      |        |         |         |
| Depth of Main Basin ( $H_{MAIN}$ ) =                                                 | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Length of Main Basin ( $L_{MAIN}$ ) =                                                | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Width of Main Basin (W <sub>MAIN</sub> ) =                                           | user                             | ft                     |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Area of Main Basin (A <sub>MAIN</sub> ) =                                            | user                             | ft <sup>2</sup>        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Volume of Main Basin (V <sub>MAIN</sub> ) =                                          | user                             | ft <sup>3</sup>        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
| Calculated Total Basin Volume ( $V_{total}$ ) =                                      | user                             | acre-feet              |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       | 1 1                |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      | -      |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       | -                  |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |
|                                                                                      |                                  |                        |             |                  |                                |               |                      |                |       |                    |                      |        |         |         |





|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | DI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ETENTION                                                                                                                                                                                                                                     | BASIN OUT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ILEI SIRU                                                                                                                                                                                                                                                                                              | CTURE DES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SIGN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Solace Apartments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                              | HFD-Detention, V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ersion 4.03 (May                                                                                                                                                                                                                                                                                       | 2020)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Basin ID:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ZONE 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Estimated                                                                                                                                                                                                                                                                                              | Estimated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Stage (ft)                                                                                                                                                                                                                                                                                             | Volume (ac-ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Outlet Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| OO-YR EURY WOCK                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              | Zone 1 (WQCV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | r                                                                                                                                                                                                                                                                                                      | 0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Orifice Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>71 k</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ZONE 1 AND 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00-YEAR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                              | Zone 2 (EURV)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 3.63                                                                                                                                                                                                                                                                                                   | 0.482                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Circular Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| PERMANENT ORIFICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              | Zone 3 (100-year)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.68                                                                                                                                                                                                                                                                                                   | 0.666                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weir&Pipe (Restrict)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Example Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Configuration (Ref                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | tention Pond)                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Total (all zones)                                                                                                                                                                                                                                                                                      | 1.412                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ser Input: Orifice at Underdrain Outlet (typically u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | sed to drain WQCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in a Filtration BMP)                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Calculated Paramet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ers for Underdrain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Underdrain Orifice Invert Depth =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft (distance below t                                                                                                                                                                                                                         | he filtration media su                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | urface)                                                                                                                                                                                                                                                                                                | Unde                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rdrain Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Underdrain Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | inches                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | Underdra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ser Input: Orifice Plate with one or more orifices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | or Elliptical Slot Wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r (typically used to d                                                                                                                                                                                                                       | rain WQCV and/or E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | URV in a sedimentat                                                                                                                                                                                                                                                                                    | tion BMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculated Paramet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ers for Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Invert of Lowest Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft (relative to basin                                                                                                                                                                                                                        | bottom at Stage = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) ft)                                                                                                                                                                                                                                                                                                  | WQ Or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth at top of Zone using Orifice Plate =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft (relative to basin                                                                                                                                                                                                                        | bottom at Stage = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ) ft)                                                                                                                                                                                                                                                                                                  | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | lliptical Half-Width =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Orifice Plate: Orifice Vertical Spacing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | inches                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | Ellip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | tical Slot Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Orifice Plate: Orifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | inches                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Elliptical Slot Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ser Input: Stage and Total Area of Each Orifice R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ow (numbered from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lowest to highest)                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Row 1 (required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Row 2 (optional)                                                                                                                                                                                                                             | Row 3 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Row 4 (optional)                                                                                                                                                                                                                                                                                       | Row 5 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Row 6 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Row 7 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Row 8 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                                                                                                                                                         | 1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.50                                                                                                                                                                                                                                                                                                   | 2.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.56                                                                                                                                                                                                                                         | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.52                                                                                                                                                                                                                                                                                                   | 0.52                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| onnee Area (aq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.50                                                                                                                                                                                                                                         | 0.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.02                                                                                                                                                                                                                                                                                                   | 0.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Row 9 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Row 10 (optional)                                                                                                                                                                                                                            | Row 11 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Row 12 (optional)                                                                                                                                                                                                                                                                                      | Row 13 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Row 14 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Row 15 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Row 16 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .tow 5 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .ton to (optional)                                                                                                                                                                                                                           | .tom II (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (optional)                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | .tow I (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | .tom 15 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Grince Area (sq. inclies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| ser Input: Vertical Orifice (Circular or Rectangula                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | r)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculated Paramet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ers for Vertical Orific                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| on inpati Perilear onnee (onealar or reetangala                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 2 Circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone 2 Circular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Invert of Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                          | ft (relative to basin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | bottom at Stage = (                                                                                                                                                                                                                                                                                    | ר <del>ה</del> א                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ertical Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Depth at top of Zone using Vertical Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | bottom at Stage = 0                                                                                                                                                                                                                                                                                    | Jit) Vertic                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | al Onnce Centrold =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Vertical Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A                                                                                                                                                                                                                                          | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Iser Input: Overflow Weir (Dropbox with Flat or S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | loped Grate and Out<br>Zone 3 Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u>let Pipe OR Rectang</u><br>Not Selected                                                                                                                                                                                                   | ular/Trapezoidal Wei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ir (and No Outlet Pip                                                                                                                                                                                                                                                                                  | e)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Calculated Paramet<br>Zone 3 Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ers for Overflow We                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <u>ir</u> ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| lser Input: Overflow Weir (Dropbox with Flat or S<br>Overflow Weir Front Edge Height, Ho =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <u>ir (and No Outlet Pip</u><br>ottom at Stage = 0 ft                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | te Upper Edge, H <sub>t</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>iir</u><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                        | ) Height of Gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | te Upper Edge, H <sub>t</sub> =<br>Weir Slope Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir<br>3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Selected<br>N/A                                                                                                                                                                                                                          | ft (relative to basin b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ottom at Stage = 0 ft                                                                                                                                                                                                                                                                                  | ) Height of Gra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone 3 Weir<br>3.63                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>3.63<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                   | ft (relative to basin b<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ottom at Stage = 0 ft                                                                                                                                                                                                                                                                                  | ) Height of Gra<br>Overflow<br>Grate Open Area / 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zone 3 Weir<br>3.63<br>3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir<br>3.63<br>4.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Selected<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                            | ft (relative to basin b<br>feet<br>H:V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oottom at Stage = 0 ft                                                                                                                                                                                                                                                                                 | ) Height of Gra<br>Overflow<br>Grate Open Area / 1<br>Overflow Grate Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>.00-yr Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 Weir<br>3.63<br>3.00<br>28.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Selected<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                     | ft (relative to basin b<br>feet<br>H:V<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oottom at Stage = 0 ft                                                                                                                                                                                                                                                                                 | ) Height of Gra<br>Overflow<br>Grate Open Area / 1<br>Overflow Grate Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>feet<br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                              | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | oottom at Stage = 0 ft                                                                                                                                                                                                                                                                                 | ) Height of Gra<br>Overflow<br>Grate Open Area / 1<br>Overflow Grate Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>feet<br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                       | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oottom at Stage = 0 ft                                                                                                                                                                                                                                                                                 | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                       | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oottom at Stage = 0 ft                                                                                                                                                                                                                                                                                 | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ictor Plate, or Recta                                                                                                                                                              | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | oottom at Stage = 0 ft                                                                                                                                                                                                                                                                                 | ) Height of Gra<br>Overflow I<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br><u>Circular Orifice, Restrictor</u><br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ictor Plate, or Recta<br>Not Selected                                                                                                                                              | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oottom at Stage = 0 ft<br>//total area                                                                                                                                                                                                                                                                 | ) Height of Gra<br>Overflow \<br>Grate Open Area / J<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restri<br>Zone 3 Restrictor<br>0.00<br>18.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ictor Plate, or Recta<br>Not Selected<br>N/A                                                                                                                                       | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =                                                                                                                                                                                                                                       | ) Height of Gra<br>Overflow V<br>Grate Open Area / J<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Iser Input: Outlet Pipe w/ Flow Restriction Plate (C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restri<br>Zone 3 Restrictor<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ictor Plate, or Recta<br>Not Selected<br>N/A                                                                                                                                       | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =                                                                                                                                                                                                                                       | ) Height of Gra<br>Overflow V<br>Grate Open Area / J<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br><u>s for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>0.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br><u>Zircular Orifice, Restri</u><br><u>Zone 3 Restrictor</u><br>0.00<br>18.00<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ictor Plate, or Recta<br>Not Selected<br>N/A                                                                                                                                       | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =                                                                                                                                                                                                                                       | ) Height of Gra<br>Overflow V<br>Grate Open Area / J<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restri<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br><u>ictor Plate, or Recta</u><br>Not Selected<br>N/A<br>N/A                                                                                                                         | ft (relative to basin b<br>feet<br>H:V<br>%, grate open area<br>%<br><u>ngular Orifice)</u><br>ft (distance below ba<br>inches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ct                                                                                                                                                                                                                            | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br><u>Circular Orifice, Restrictor</u><br>0.00<br>18.00<br>4.00<br><u>apezoidal</u><br>6.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin                                                                                                                                | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ct                                                                                                                                                                                                                            | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>Outl<br>entral Angle of Restr<br>Spillway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br><u>s for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br><u>Calculated Paramet</u><br>0.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ers for Spillway<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Sircular Orifice, Restri<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin<br>feet                                                                                                                        | ft (relative to basin b<br>feet<br>H:V<br>%, grate open area<br>%<br><u>ngular Orifice)</u><br>ft (distance below ba<br>inches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ct                                                                                                                                                                                                                            | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>= 0 ft) ()<br>Outl<br>entral Angle of Restr<br>Spillway  <br>Stage at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br><u>Calculated Paramet</u><br>0.34<br>7.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>ers for Spillway<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restri<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V                                                                                                                 | ft (relative to basin b<br>feet<br>H:V<br>%, grate open area<br>%<br><u>ngular Orifice)</u><br>ft (distance below ba<br>inches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ct                                                                                                                                                                                                                            | ) Height of Gra<br>Overflow \<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>()<br>entral Angle of Restr<br>Spillway  <br>Stage at<br>Basin Area at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br><u>Calculated Paramet</u><br>0.34<br>7.44<br>0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>ers for Spillway<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Sircular Orifice, Restri<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin<br>feet                                                                                                                        | ft (relative to basin b<br>feet<br>H:V<br>%, grate open area<br>%<br><u>ngular Orifice)</u><br>ft (distance below ba<br>inches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ct                                                                                                                                                                                                                            | ) Height of Gra<br>Overflow \<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>()<br>entral Angle of Restr<br>Spillway  <br>Stage at<br>Basin Area at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br><u>Calculated Paramet</u><br>0.34<br>7.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>ers for Spillway<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restri<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin<br>feet<br>H:V                                                                                                                 | ft (relative to basin b<br>feet<br>H:V<br>%, grate open area<br>%<br><u>ngular Orifice)</u><br>ft (distance below ba<br>inches<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ct                                                                                                                                                                                                                            | ) Height of Gra<br>Overflow \<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>()<br>entral Angle of Restr<br>Spillway  <br>Stage at<br>Basin Area at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br><u>Calculated Paramet</u><br>0.34<br>7.44<br>0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>ers for Spillway<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir           3.63           4.00           0.00           3.00           70%           50%           Circular Orifice, Restri           Zone 3 Restrictor           0.00           18.00           4.00           apezoidal)           6.10           50.00           10.00           1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Selected N/A N/A N/A N/A N/A N/A rictor Plate, or Recta N/A N/A ft (relative to basin feet H:V feet de the default CUHF                                                                                                                  | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | vottom at Stage = 0 ft<br>y/total area<br>asin bottom at Stage =<br>Half-Co<br>D ft)                                                                                                                                                                                                                   | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>Outl<br>entral Angle of Restr<br>Spillway /<br>Stage at<br>Basin Area at<br>Basin Volume at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br><u>s for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br><u>Calculated Paramet</u><br>0.34<br>7.44<br>0.87<br>2.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>ers for Spillway<br>feet<br>feet<br>acres<br>acre-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>fteet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>Ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outed Hydrograph Results<br>Design Storm Return Period =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>10.00<br>10.00<br>The user can overm<br>WQCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A tictor Plate, or Recta N/A N/A tictor Plate, or Recta N/A N/A Europe to basin feet H:V feet EURV                                                                      | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>hydrographs and ru<br>2 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ce<br>D ft)<br><u>noff volumes by ent</u><br>5 Year                                                                                                                                                                           | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br><u>Calculated Para</u> | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.56<br>2.56<br>2.56<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.56<br>2.57<br>2.57<br>2.56<br>2.57<br>2.57<br>2.56<br>2.57<br>2.57<br>2.56<br>2.57<br>2.57<br>2.56<br>2.57<br>2.57<br>2.56<br>2.57<br>2.57<br>2.57<br>2.56<br>2.57<br>2.57<br>2.57<br>2.57<br>2.56<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57<br>2.57                 | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restri<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>10.00<br>1.00<br>The user can overn<br>WQCV<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A ft (relative to basin feet H:V feet de the default CUHF EURV N/A                                                                                                      | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br><u>noular Orifice)</u><br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br><u>Phydrographs and nu</u><br><u>2 Year</u><br>1.19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Co<br>D ft)<br><u>noff volumes by ent</u><br><u>5 Year</u><br>1.50                                                                                                                                                            | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>. Top of Freeboard =<br>. Top of Streeboard =<br>. T                                                                                                                                                                                                                                                                                                                                                                                                                  | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br><u>s for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br><u>Calculated Paramet</u><br>0.34<br>7.44<br>0.87<br>2.66<br><u>50 Year</u><br>2.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outled Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acreft) =                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Some 3 Restrictor<br>0.00<br>18.00<br>4.00<br>4.00<br>4.00<br>10.00<br>1.00<br>The user can overn<br>WQCV<br>N/A<br>0.264                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Selected N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A 0.746                                                                                                                                              | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>hydrographs and ru<br>2 Year<br>1.19<br>0.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Co<br>0 ft)<br><u>noff volumes by ent</u><br><u>1.50</u><br><u>1.088</u>                                                                                                                                                      | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>()<br>= 0 ft) ()<br>= 0 ft) () ft) ()<br>= 0 ft) () ft) () ft) () () ft) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>the Inflow Hydrograf<br>25 Year<br>2.00<br>1.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>S0 Year<br>2.26<br>2.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>ers for Spillway<br>feet<br>feet<br>feet<br>acres<br>acre-ft<br><i>W through AF).</i><br>100 Year<br>2.52<br>2.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>fteet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restr<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>1.00<br>The user can overm<br>WQCV<br>N/A<br>0.264<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A ictor Plate, or Recta N/A f( (relative to basin feet H:V feet EURV N/A 0.746 N/A                                                                                      | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>2 hydrographs and ru<br>2 Year<br>1.19<br>0.729<br>0.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ce<br>0 ft)<br><u>5 Year<br/>1.50</u><br><u>1.088</u><br><u>1.088</u>                                                                                                                                                         | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>= 0 ft) ()<br>Outl<br>entral Angle of Restr<br>Spillway  <br>Stage at<br>Basin Area at<br>Basin Area at<br>Basin Volume at<br>tering new values in<br>1.75<br>1.408<br>1.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br><u>Top of Freeboard =</u><br><u>the Inflow Hydrograf</u><br><u>25 Year</u><br><u>2.00</u><br><u>1.872</u><br><u>1.872</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>chs table (Columns<br>2.26<br>2.246<br>2.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>4.00<br>18.00<br>10.00<br>10.00<br>1.00<br>The user can overm<br>WQCV<br>N/A<br>0.264<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A ft (relative to basin feet H:V feet CURV N/A 0.746 N/A N/A N/A N/A N/A                                                                                                | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>hydrographs and ru<br>2 Year<br>1.19<br>0.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Co<br>0 ft)<br><u>noff volumes by ent</u><br><u>1.50</u><br><u>1.088</u>                                                                                                                                                      | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>()<br>= 0 ft) ()<br>= 0 ft) () ft) ()<br>= 0 ft) () ft) () ft) () () ft) (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>the Inflow Hydrograf<br>25 Year<br>2.00<br>1.872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>S0 Year<br>2.26<br>2.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Pla<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>ers for Spillway<br>feet<br>feet<br>acres<br>acre-ft<br><i>W through AF).</i><br>100 Year<br>2.52<br>2.702                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                                                            | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br><u>Circular Orifice, Restri</u><br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>1.00<br>The user can overm<br>WQCV<br>N/A<br>0.264<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A ft (relative to basin feet H:V feet EURV K/A 0.746 N/A N/A N/A N/A N/A                                                                                                                      | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ngular Orifice)<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>2 hydrographs and ru<br>2 Year<br>1.19<br>0.729<br>0.729<br>1.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | vottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Co<br>0 ft)<br><u>noff volumes by ent</u><br><u>5 Year</u><br><u>1.088</u><br><u>1.088</u><br><u>4.0</u>                                                                                                                      | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>()<br>= 0 ft) ()<br>Outlentral Angle of Restr<br>Spillway ()<br>Stage at<br>Basin Area at<br>Basin Area at<br>Basin Area at<br>Basin Area at<br>Basin Volume at<br>Cering new values in<br>10 Year<br>1.75<br>1.408<br>6.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth =<br>. Top of Freeboard =<br>. Top of I. So top of<br>. Top of I. So top                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br><u>s for Outlet Pipe w/</u><br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br><u>Calculated Paramet</u><br>0.34<br>7.44<br>0.87<br>2.66<br><u>So Year</u><br>2.26<br>2.246<br>2.246<br>14.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Yee<br>3.14<br>3.634<br>3.634                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outed Hvdrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (are-ft) =<br>Inflow Hydrograph Volume (are-ft) =<br>Inflow Hydrograph Volume (are-ft) =                                                                                                                                                                                                                                                                                                                                       | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>4.00<br>18.00<br>10.00<br>10.00<br>1.00<br>The user can overm<br>WQCV<br>N/A<br>0.264<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A ft (relative to basin feet H:V feet CURV N/A 0.746 N/A N/A N/A N/A N/A                                                                                                | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>2 hydrographs and ru<br>2 Year<br>1.19<br>0.729<br>0.729                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ce<br>0 ft)<br><u>5 Year<br/>1.50</u><br><u>1.088</u><br><u>1.088</u>                                                                                                                                                         | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>= 0 ft) ()<br>Outl<br>entral Angle of Restr<br>Spillway  <br>Stage at<br>Basin Area at<br>Basin Area at<br>Basin Volume at<br>tering new values in<br>1.75<br>1.408<br>1.408                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br><u>Top of Freeboard =</u><br><u>the Inflow Hydrograf</u><br><u>25 Year</u><br><u>2.00</u><br><u>1.872</u><br><u>1.872</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>chs table (Columns<br>2.26<br>2.246<br>2.246                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Ir<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Ruonff Volume (are-ft) =<br>Inflow Hydrograph Volume (are: ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/arer) =                                                                                                                                                                                                                                                                                                                 | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restr<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>1.00<br>The user can overn<br>WQCV<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A ictor Plate, or Recta N/A ft (relative to basin feet H:V feet EURV N/A 0.746 N/A N/A N/A N/A                                                                              | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>2 hydrographs and nu<br>2 Year<br>1.19<br>0.729<br>0.729<br>1.4<br>0.08                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Co<br>D ft)                                                                                                                                                                                                                   | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>9<br>= 0 ft) (<br>0<br>= 1<br>= 0<br>= 1<br>= 0<br>= 1<br>= 1<br>= 1<br>= 1<br>= 1<br>= 1<br>= 1<br>= 1<br>= 1<br>= 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br><u>Calculated Parameter</u><br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br><u>Top of Freeboard =</u><br><u>25 Year</u><br><u>2.00</u><br><u>1.872</u><br><u>1.872</u><br><u>1.33</u><br><u>0.64</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>5 for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.246<br>2.246<br>2.246<br>14.3<br>0.82                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Ye<br>3.14<br>3.634<br>25.4<br>1.45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q                                                                                                                                                                                                                   | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restr<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>1.00<br>The user can overn<br>WQCV<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A ictor Plate, or Recta N/A ft (relative to basin feet H:V feet Ge the default CUHP EURV N/A 0.746 N/A                                  | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>2 hydrographs and ru<br>2 Year<br>1.19<br>0.729<br>0.729<br>1.4<br>0.08<br>8.4<br>0.2<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | witten at Stage = 0 ft         //total area         //total area         asin bottom at Stage =         Half-Ce         0 ft)         5 Year         1.50         1.088         1.088         4.0         0.23         12.8         2.7         0.7                                                    | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>9<br>= 0 ft) (<br>0<br>= 0 ft) (<br>0<br>0<br>= 0 ft) (<br>0<br>= 0 ft) | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Cop of Freeboard =<br>1.672<br>1.872<br>1.872<br>1.1.3<br>0.64<br>2.3.1<br>3.0<br>0.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>5 for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.246<br>2.246<br>2.246<br>14.3<br>0.82<br>2.7.6<br>3.2<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft W through AF). 100 Year 2.52 2.702 2.702 18.2 1.04 32.7 3.3 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Ye<br>3.14<br>3.634<br>2.5.4<br>1.45<br>4.3.5<br>1.45<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.3.5<br>4.5.5<br>4.5.5<br>4.5.5<br>4.5.5<br>5<br>5<br>5<br>5<br>5<br>5<br>5 |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow to Predevelopment Q =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =                                                                                                                                                                                                  | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>18.00<br>4.00<br>200<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.00<br>10.264<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A ictor Plate, or Recta N/A | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br><i>hydrographs and nu</i><br><u>2 Year</u><br>1.19<br>0.729<br>0.729<br>1.4<br>0.08<br>8.4<br>0.2<br>N/A<br>Vertical Orifice 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ce<br>0 ft)<br>1.088<br>1.088<br>1.088<br>1.088<br>1.088<br>0.23<br>12.8<br>2.7<br>0.7<br>Outlet Plate 1                                                                                                                      | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Overflow Grate Ove                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>the Inflow Hydrograp<br>25 Year<br>2.00<br>1.872<br>11.3<br>0.64<br>23.1<br>3.0<br>0.3<br>Outlet Plate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>20ne 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.246<br>2.246<br>14.3<br>0.82<br>2.7.6<br>3.2<br>0.2<br>0.2<br>0.2<br>0.9<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft W through AF). 100 Year 2.52 2.702 1.8.2 1.04 32.7 3.3 0.2 Outlet Plate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Ye<br>3.14<br>3.634<br>2.5.4<br>1.45<br>4.3.53<br>1.5.8<br>0.6<br>Spillwe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>OUTIONAL Override Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs) =<br>Peak Inflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =                                                                                                     | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>4.00<br>10.00<br>10.00<br>10.00<br>1.00<br>1.00<br>7he user can overn<br>WQCV<br>N/A<br>0.264<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A it (relative to basin feet N/A N/A ft (relative to basin feet H:V feet de the default CUH/F EURV N/A 0.746 N/A                    | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>maular Orifice)<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>2 hydrographs and ru<br>2 Year<br>1.19<br>0.729<br>0.729<br>1.4<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Co<br>0 ft)<br>1.088<br>1.088<br>1.088<br>4.0<br>0.23<br>1.2.8<br>2.7<br>0.7<br>Outlet Plate 1<br>0.3                                                                                                                         | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>. Top of Freeboard =<br>. Top of Area and A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.246<br>2.246<br>2.246<br>2.246<br>14.3<br>0.82<br>2.7.6<br>3.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0.2<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Ye<br>3.14<br>3.634<br>3.634<br>2.5.4<br>3.53<br>1.5.8<br>0.6<br>\$pillwa<br>0.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Tr<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Outed Hvdrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Inflow q (cfs)<br>Predevelopment Unit Peak Inflow q (cfs)<br>Predevelopment Unit Peak Inflow q (cfs)<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =                           | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Circular Orifice, Restr<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>1.00<br>The user can overn<br>WQCV<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A ictor Plate, or Recta N/A ft (relative to basin feet H:V feet CUHP EURV N/A                                                           | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br><i>Phydrographs and ru</i><br>2 Year<br>1.19<br>0.729<br>0.729<br>1.4<br>0.729<br>1.4<br>0.08<br>8.4<br>0.2<br>N/A<br>Vertical Orifice 1<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Co<br>D ft)                                                                                                                                                                                                                   | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>= 0 ft) 0<br>= 0 ft<br>=                                                                                                                                                                                                                                                        | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>en Area w/ Debris =<br><br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br><br>Design Flow Depth=<br><br>Top of Freeboard =<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>5 for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.26<br>2.246<br>2.246<br>2.246<br>2.246<br>14.3<br>0.82<br>2.7.6<br>3.2<br>0.2<br>Outlet Plate 1<br>0.3<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A rot Selected Area Spillway feet feet acres acre-ft 00 Year 2.52 2.702 2.702 2.702 2.702 1.04 32.7 3.3 0.2 Outlet Plate 1 0.4 N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | feet<br>feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Ye<br>3.14<br>7.3.634<br>2.5.4<br>1.45<br>4.3.5<br>1.51.8<br>0.6<br>Spillwe<br>0.4<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area %<br>Debris Clogging % =<br>ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>ser Input: Emergency Spillway (Rectangular or Ir<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>One-Hour Rainfall Depth (in) =<br>CUHP Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Ratio Peak Outflow Q (cfs) =<br>Ratio Peak Outflow Q (cfs) =<br>Max Velocity through Grate 1 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =                                          | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>1.00<br>7 <i>the user can overm</i><br>WQCV<br>N/A<br>0.264<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A ictor Plate, or Recta N/A N/A ictor Plate, or Recta N/A N/A N/A N/A Coverflow Veir 1 N/A                                          | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>bottom at Stage = 0<br>bottom at Stage = 0<br>0.729<br>0.729<br>0.729<br>1.4<br>0.729<br>0.729<br>1.4<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.720<br>0.729<br>0.729<br>0.720<br>0.729<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.7200<br>0.7200<br>0.7200<br>0.720000000000 | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ce<br>0 ft)                                                                                                                                                                                                                   | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>the Inflow Hydrograp<br>25 Year<br>2.00<br>1.872<br>11.3<br>0.64<br>23.1<br>3.0<br>0.3<br>Outlet Plate 1<br>0.3<br>N/A<br>70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>20ne 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.246<br>2.246<br>14.3<br>0.82<br>2.246<br>14.3<br>0.82<br>0.2<br>0.2<br>0.2<br>0.9<br>0.9<br>0.9<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.20<br>0.98<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.34<br>0.87<br>2.266<br>2.246<br>0.2.246<br>1.4.3<br>0.82<br>0.2.2<br>0.2<br>0.22<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.34<br>0.87<br>0.2.246<br>0.2.246<br>0.3.2<br>0.22<br>0.22<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.20<br>0.20<br>0.34<br>0.87<br>0.2.246<br>0.3.2<br>0.22<br>0.22<br>0.22<br>0.2<br>0.2<br>0.2<br>0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft W through AF). 100 Year 2.52 2.702 1.8.2 1.04 32.7 3.3 0.2 Outlet Plate 1 0.4 N/A 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Ye<br>3.14<br>3.634<br>25.4<br>1.45<br>4.3.5<br>15.8<br>0.6<br>Spillwa<br>0.4<br>N/A<br>N/A<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Ser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Unter Hudrograph Over Rusinfall Depth (in) =<br>CUHP Runoff Volume (are-ft) =<br>Inflow Hydrograph Volume (are-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>Predevelopment Unit Peak Flow, q (cfs/arce) =<br>Peak Inflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =<br>Time to Drain 97% of Inflow Volume (hours) =<br>Time to Drain 97% of Inflow Volume (hours) | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>18.00<br>4.00<br>10.00<br>10.00<br>10.00<br>1.00<br>7he user can overm<br>WQCV<br>N/A<br>0.264<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A ictor Plate, or Recta N/A ft (relative to basin feet H:V feet CUHP EURV N/A                                                           | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>Phydrographs and nu<br>2 Year<br>1.19<br>0.729<br>0.729<br>1.4<br>0.08<br>8.4<br>0.2<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>N/A<br>N/A<br>74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | wottom at Stage = 0 ft         //total area         asin bottom at Stage =         Half-Ca         0 ft)         5 Year         1.088         1.088         1.088         4.0         0.23         12.8         2.7         0.7         0.04Lter Plate 1         0.3         N/A         72         77 | ) Height of Gra<br>Overflow /<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>= 0 ft) ()<br>Outlentral Angle of Restr<br>Spillway /<br>Stage<br>Basin Area at<br>Basin Volume at<br>Basin Volume at<br>Basin Volume at<br>1.75<br>1.408<br>1.408<br>6.1<br>0.35<br>1.6.1<br>2.8<br>0.5<br>()<br>Outlet Plate 1<br>0.3<br>N/A<br>7.1<br>77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Weir Slope Length =<br>.00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>en Area w/ Debris =<br><br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br><br>Design Flow Depth=<br><br>Top of Freeboard =<br><br><br><br><br><br><br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.246<br>2.246<br>2.246<br>2.246<br>2.246<br>2.246<br>2.246<br>2.246<br>2.246<br>2.246<br>3.2<br>0.82<br>0.82<br>0.82<br>0.82<br>0.82<br>0.82<br>0.82<br>0.20<br>0.82<br>0.24<br>0.82<br>0.27.6<br>3.2<br>0.2<br>0.2<br>0.82<br>0.24<br>0.82<br>0.27.6<br>3.2<br>0.2<br>0.2<br>0.82<br>0.24<br>0.82<br>0.27.6<br>3.2<br>0.2<br>0.2<br>0.2<br>0.82<br>0.24<br>0.82<br>0.246<br>1.4.3<br>0.82<br>0.2<br>0.2<br>0.2<br>0.82<br>0.2<br>0.82<br>0.2<br>0.82<br>0.2<br>0.82<br>0.246<br>0.82<br>0.27.6<br>3.2<br>0.2<br>0.2<br>0.82<br>0.82<br>0.76<br>3.2<br>0.2<br>0.2<br>0.82<br>0.76<br>3.2<br>0.2<br>0.2<br>0.76<br>3.2<br>0.2<br>0.76<br>3.2<br>0.2<br>0.2<br>0.78<br>0.82<br>0.76<br>3.2<br>0.2<br>0.2<br>0.78<br>0.82<br>0.76<br>3.2<br>0.2<br>0.2<br>0.2<br>0.78<br>0.82<br>0.76<br>3.2<br>0.2<br>0.2<br>0.2<br>0.78<br>0.82<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.76<br>0.78<br>0.76<br>0.78<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.76<br>0.78<br>0.76<br>0.76<br>0.78<br>0.76<br>0.78<br>0.76<br>0.78<br>0.78<br>0.76<br>0.78<br>0.76<br>0.78<br>0.76<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0.78<br>0 | Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Rot Selected N/A N/A N/A N/A Rot Selected N/A Rot Selected N/A Rot Selected N/A N/A Rot Selected N/A Ro | feet<br>feet<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Yee<br>3.14<br>3.634<br>3.634<br>2.5.4<br>1.45<br>1.5.8<br>0.6<br>Spillwa<br>0.4<br>N/A<br>65<br>5<br>777                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Grate Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area %<br>Debris Clogging % =<br>iser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>Restrictor Plate Height Above Pipe Invert =<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Runoff Volume (acre-ft) =<br>CUHP Predevelopment Peak Q (cfs) =<br>OPTIONAL Override Predevelopment Peak Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Ratio Peak Outflow Q (cfs) =<br>Ratio Peak Outflow D Predevelopment Q =<br>Max Velocity through Grate 1 (fps) =<br>Time to Drain 97% of Inflow Volume (hours)                                                                           | Zone 3 Weir<br>3.63<br>4.00<br>0.00<br>3.00<br>70%<br>50%<br>Zone 3 Restrictor<br>0.00<br>18.00<br>4.00<br>apezoidal)<br>6.10<br>50.00<br>10.00<br>1.00<br>7 <i>the user can overm</i><br>WQCV<br>N/A<br>0.264<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Selected N/A N/A N/A N/A N/A N/A N/A ictor Plate, or Recta N/A N/A ictor Plate, or Recta N/A ft (relative to basin feet N/A N/A feet EURV N/A 0.746 N/A                                              | ft (relative to basin b<br>feet<br>H:V<br>feet<br>%, grate open area<br>%<br>ft (distance below ba<br>inches<br>inches<br>bottom at Stage = 0<br>bottom at Stage = 0<br>bottom at Stage = 0<br>0.729<br>0.729<br>0.729<br>1.4<br>0.729<br>0.729<br>1.4<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.729<br>0.720<br>0.729<br>0.729<br>0.720<br>0.729<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.720<br>0.7200<br>0.7200<br>0.7200<br>0.720000000000 | oottom at Stage = 0 ft<br>//total area<br>asin bottom at Stage =<br>Half-Ce<br>0 ft)                                                                                                                                                                                                                   | ) Height of Gra<br>Overflow V<br>Grate Open Area / 1<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Ope<br>Overflow Grate Op<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()<br>()                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Weir Slope Length =<br>00-yr Orifice Area =<br>n Area w/o Debris =<br>en Area w/ Debris =<br>Calculated Parameter<br>Dutlet Orifice Area =<br>et Orifice Centroid =<br>ictor Plate on Pipe =<br>Design Flow Depth=<br>Top of Freeboard =<br>Top of Freeboard =<br>Top of Freeboard =<br>100 of Freeboard =<br>100 of Freeboard =<br>25 Year<br>2.00<br>1.872<br>1.872<br>1.3<br>0.64<br>2.3.1<br>3.0<br>0.3<br>0.3<br>0.3<br>N/A<br>70<br>78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 Weir<br>3.63<br>3.00<br>28.73<br>8.40<br>4.20<br>20ne 3 Restrictor<br>0.29<br>0.20<br>0.98<br>Calculated Paramet<br>0.34<br>7.44<br>0.87<br>2.66<br>2.246<br>2.246<br>14.3<br>0.82<br>2.246<br>14.3<br>0.82<br>0.2<br>0.2<br>0.2<br>0.9<br>0.9<br>0.9<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.20<br>0.20<br>0.98<br>0.20<br>0.20<br>0.20<br>0.20<br>0.98<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.20<br>0.34<br>0.87<br>2.266<br>2.246<br>0.2.246<br>1.4.3<br>0.82<br>0.2.2<br>0.2<br>0.22<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.34<br>0.87<br>0.2.246<br>0.2.246<br>0.3.2<br>0.2<br>0.22<br>0.22<br>0.22<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.98<br>0.20<br>0.20<br>0.98<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.22<br>0.2<br>0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Not Selected N/A N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A N/A N/A ers for Spillway feet feet acres acre-ft W through AF). 100 Year 2.52 2.702 1.8.2 1.04 32.7 3.3 0.2 Outlet Plate 1 0.4 N/A 68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>feet<br>feet<br>ft²<br>ft²<br>feet<br>radians<br>500 Yea<br>3.14<br>3.634<br>3.634<br>25.4<br>1.45<br>4.3.53<br>15.8<br>0.6<br>5 Spillwa<br>0.4<br>N/A<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |



### DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

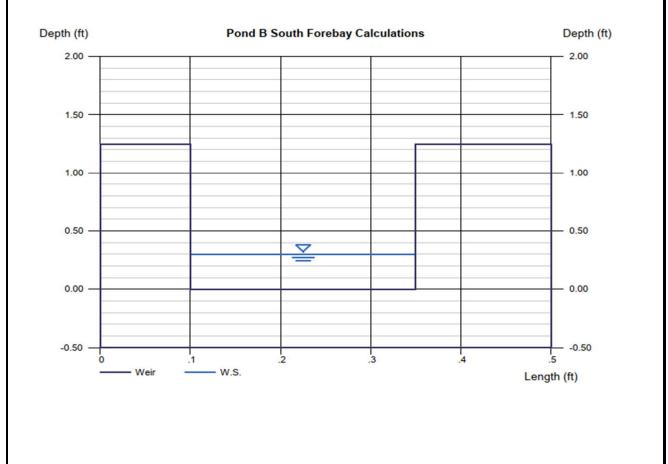
| ]            | SOURCE             | verride the calcul<br>CUHP | CUHP       | CUHP         | CUHP         | CUHP           | CUHP           | CUHP           | CUHP           | CUHP           |
|--------------|--------------------|----------------------------|------------|--------------|--------------|----------------|----------------|----------------|----------------|----------------|
| ime Interval | TIME               | WQCV [cfs]                 | EURV [cfs] | 2 Year [cfs] | 5 Year [cfs] | 10 Year [cfs]  | 25 Year [cfs]  | 50 Year [cfs]  | 100 Year [cfs] | 500 Year [cfs] |
| 5.00 min     | 0:00:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| 5.00 11111   | 0:05:00            |                            | 0.00       |              |              | 0.00           |                |                | 0.00           |                |
| ·            | 0:10:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| -            | 0:15:00            | 0.00                       | 0.00       | 0.60         | 0.00         | 1.22           | 0.00           | 1.04           | 1.00           | 1.47           |
|              | 0:20:00            | 0.00                       | 0.00       | 2.20         | 2.93         | 3.70           | 2.19           | 2.59           | 2.74           | 3.81           |
|              | 0:25:00            | 0.00                       | 0.00       | 5.52         | 8.65         | 11.64          | 5.47           | 6.59           | 7.37           | 11.75          |
|              | 0:30:00            | 0.00                       | 0.00       | 8.06         | 12.47        | 15.81          | 16.67          | 20.33          | 23.06          | 31.64          |
|              | 0:35:00            | 0.00                       | 0.00       | 8.44         | 12.83        | 16.12          | 21.61          | 26.01          | 30.90          | 41.39          |
|              | 0:40:00            | 0.00                       | 0.00       | 8.09         | 12.06        | 15.12          | 23.06          | 27.59          | 32.73          | 43.47          |
|              | 0:45:00            | 0.00                       | 0.00       | 7.34         | 11.00        | 14.00          | 21.99          | 26.27          | 31.95          | 42.38          |
|              | 0:50:00            | 0.00                       | 0.00       | 6.67         | 10.11        | 12.76          | 20.97          | 25.04<br>22.79 | 30.40          | 40.28          |
| -            | 1:00:00            | 0.00                       | 0.00       | 6.11<br>5.66 | 9.24<br>8.51 | 11.75<br>10.92 | 19.06<br>17.44 | 22.79          | 28.22<br>26.44 | 37.47<br>35.17 |
| ľ            | 1:05:00            | 0.00                       | 0.00       | 5.24         | 7.83         | 10.92          | 16.03          | 19.28          | 20.44          | 33.21          |
|              | 1:10:00            | 0.00                       | 0.00       | 4.70         | 7.16         | 9.37           | 14.37          | 17.31          | 22.17          | 29.63          |
| -            | 1:15:00            | 0.00                       | 0.00       | 4.19         | 6.44         | 8.65           | 12.75          | 15.38          | 19.40          | 26.05          |
| į            | 1:20:00            | 0.00                       | 0.00       | 3.77         | 5.78         | 7.87           | 11.09          | 13.38          | 16.57          | 22.30          |
|              | 1:25:00            | 0.00                       | 0.00       | 3.46         | 5.31         | 7.15           | 9.78           | 11.80          | 14.33          | 19.34          |
|              | 1:30:00            | 0.00                       | 0.00       | 3.24         | 4.94         | 6.52           | 8.69           | 10.47          | 12.60          | 17.01          |
|              | 1:35:00            | 0.00                       | 0.00       | 3.03         | 4.60         | 5.96           | 7.78           | 9.36           | 11.17          | 15.07          |
| ļ            | 1:40:00            | 0.00                       | 0.00       | 2.84         | 4.18         | 5.45           | 6.97           | 8.36           | 9.89           | 13.34          |
| ŀ            | 1:45:00<br>1:50:00 | 0.00                       | 0.00       | 2.65<br>2.47 | 3.78<br>3.38 | 4.96<br>4.49   | 6.23<br>5.54   | 7.45           | 8.73<br>7.64   | 11.76<br>10.28 |
| -            | 1:55:00            | 0.00                       | 0.00       | 2.47         | 3.00         | 3.99           | 4.87           | 5.78           | 6.61           | 8.88           |
|              | 2:00:00            | 0.00                       | 0.00       | 1.89         | 2.61         | 3.99           | 4.87           | 4.99           | 5.64           | 7.57           |
|              | 2:05:00            | 0.00                       | 0.00       | 1.52         | 2.01         | 2.75           | 3.37           | 3.97           | 4.47           | 5.98           |
| ľ            | 2:10:00            | 0.00                       | 0.00       | 1.19         | 1.61         | 2.13           | 2.56           | 3.01           | 3.36           | 4.49           |
|              | 2:15:00            | 0.00                       | 0.00       | 0.94         | 1.27         | 1.71           | 1.89           | 2.22           | 2.45           | 3.32           |
|              | 2:20:00            | 0.00                       | 0.00       | 0.76         | 1.04         | 1.40           | 1.45           | 1.70           | 1.84           | 2.52           |
|              | 2:25:00            | 0.00                       | 0.00       | 0.63         | 0.85         | 1.15           | 1.13           | 1.33           | 1.40           | 1.93           |
|              | 2:30:00            | 0.00                       | 0.00       | 0.52         | 0.70         | 0.94           | 0.89           | 1.04           | 1.07           | 1.48           |
|              | 2:35:00            | 0.00                       | 0.00       | 0.42         | 0.57         | 0.77           | 0.70           | 0.82           | 0.81           | 1.12           |
|              | 2:40:00            | 0.00                       | 0.00       | 0.35         | 0.46         | 0.61           | 0.55           | 0.64           | 0.60           | 0.84           |
| -            | 2:45:00<br>2:50:00 | 0.00                       | 0.00       | 0.28         | 0.37         | 0.48           | 0.43           | 0.50           | 0.45           | 0.62           |
|              | 2:50:00            | 0.00                       | 0.00       | 0.23         | 0.29         | 0.38           | 0.33           | 0.38           | 0.34           | 0.47           |
| -            | 3:00:00            | 0.00                       | 0.00       | 0.18         | 0.23         | 0.30           | 0.26           | 0.30           | 0.27           | 0.37           |
| ľ            | 3:05:00            | 0.00                       | 0.00       | 0.13         | 0.18         | 0.23           | 0.21           | 0.24           | 0.22           | 0.30           |
| ľ            | 3:10:00            | 0.00                       | 0.00       | 0.09         | 0.11         | 0.14           | 0.13           | 0.14           | 0.13           | 0.18           |
|              | 3:15:00            | 0.00                       | 0.00       | 0.06         | 0.08         | 0.10           | 0.09           | 0.11           | 0.10           | 0.13           |
|              | 3:20:00            | 0.00                       | 0.00       | 0.04         | 0.05         | 0.07           | 0.07           | 0.07           | 0.07           | 0.09           |
|              | 3:25:00            | 0.00                       | 0.00       | 0.03         | 0.04         | 0.05           | 0.04           | 0.05           | 0.04           | 0.06           |
|              | 3:30:00            | 0.00                       | 0.00       | 0.02         | 0.02         | 0.03           | 0.03           | 0.03           | 0.03           | 0.03           |
|              | 3:35:00            | 0.00                       | 0.00       | 0.01         | 0.01         | 0.01           | 0.01           | 0.01           | 0.01           | 0.02           |
|              | 3:40:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| -            | 3:45:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ł            | 3:50:00<br>3:55:00 | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ŀ            | 4:00:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ŀ            | 4:05:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ŀ            | 4:10:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ļ            | 4:15:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
|              | 4:20:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ŀ            | 4:25:00<br>4:30:00 | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ł            | 4:35:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
|              | 4:40:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| -            | 4:45:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ŀ            | 4:50:00<br>4:55:00 | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| į            | 5:00:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ļ            | 5:05:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ŀ            | 5:10:00<br>5:15:00 | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ŀ            | 5:20:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| į            | 5:25:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ļ            | 5:30:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ļ            | 5:35:00<br>5:40:00 | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ŀ            | 5:40:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ł            | 5:50:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
| ļ            | 5:55:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |
|              | 6:00:00            | 0.00                       | 0.00       | 0.00         | 0.00         | 0.00           | 0.00           | 0.00           | 0.00           | 0.00           |

### DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.03 (May 2020) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

| Stage - Storage | Stage | Area               | Area    | Volume | Volume  | Total<br>Outflow |                                 |
|-----------------|-------|--------------------|---------|--------|---------|------------------|---------------------------------|
| Description     | [ft]  | [ft <sup>2</sup> ] | [acres] | [ft 3] | [ac-ft] | [cfs]            |                                 |
|                 | 0.00  | 10                 | 0.000   | 0      | 0.000   | 0.00             | For best results, include the   |
|                 | 0.50  | 204                | 0.005   | 53     | 0.001   | 0.01             | stages of all grade slope       |
|                 | 1.00  | 1,303              | 0.030   | 281    | 0.006   | 0.03             | changes (e.g. ISV and Floor)    |
|                 | 1.50  | 4,158              | 0.095   | 1,646  | 0.038   | 0.05             | from the S-A-V table on         |
|                 | 2.00  | 8,120              | 0.186   | 4,533  | 0.104   | 0.08             | Sheet 'Basin'.                  |
|                 | 2.50  | 14,231             | 0.327   | 10,120 | 0.232   | 0.11             | Also include the inverts of all |
| WQCV            | 2.50  | 16,308             | 0.374   | 12,716 | 0.292   | 0.12             | outlets (e.g. vertical orifice, |
| WQCV            | 3.00  | 19,626             | 0.451   | 18,702 | 0.429   | 0.12             | overflow grate, and spillway,   |
|                 | 3.50  | 23,633             | 0.543   | 29,517 | 0.678   | 0.20             | where applicable).              |
| EURV            | 3.63  | 24,675             | 0.566   | 32,657 | 0.750   | 0.20             |                                 |
| Loity           | 4.00  | 27,052             | 0.621   | 42,286 | 0.971   | 2.75             |                                 |
|                 | 4.50  | 29,330             | 0.673   | 56,381 | 1.294   | 2.92             |                                 |
| 100-YEAR        | 4.68  | 30,150             | 0.692   | 61,735 | 1.417   | 2.98             |                                 |
| 100 12/11       | 5.00  | 31,180             | 0.716   | 71,579 | 1.643   | 3.09             |                                 |
|                 | 5.00  | ,                  |         | ,      |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 | -     |                    |         |        |         |                  |                                 |
|                 | -     |                    |         |        |         |                  |                                 |
|                 | -     |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  | 1                               |
|                 |       |                    |         |        |         |                  | 1                               |
|                 |       | -                  |         |        |         | -                | •                               |
|                 |       | -                  |         |        |         | -                | •                               |
|                 |       | -                  |         |        |         | -                | •                               |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  | ]                               |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  | ]                               |
|                 |       |                    |         |        |         |                  | 1                               |
|                 |       |                    |         |        |         |                  | 4                               |
|                 |       |                    |         |        |         |                  | {                               |
|                 |       |                    |         |        |         |                  | 4                               |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  | 1                               |
|                 |       |                    |         |        |         |                  | 1                               |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |
|                 |       |                    |         |        |         |                  |                                 |

### Detention Pond B South Forebay Calculations


| 100 YR Discharge                      | 6.7     | CES   |
|---------------------------------------|---------|-------|
| TOUTR Discharge                       | 0.7     | CF3   |
| WQCV Storage                          | 0.264   | AC-FT |
| Forebay Volume (2% pf WQCV)           | 0.00528 | AC-FT |
| Forebay Release Volume (2% of 100 YR) | 0.134   | CFS   |

### Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

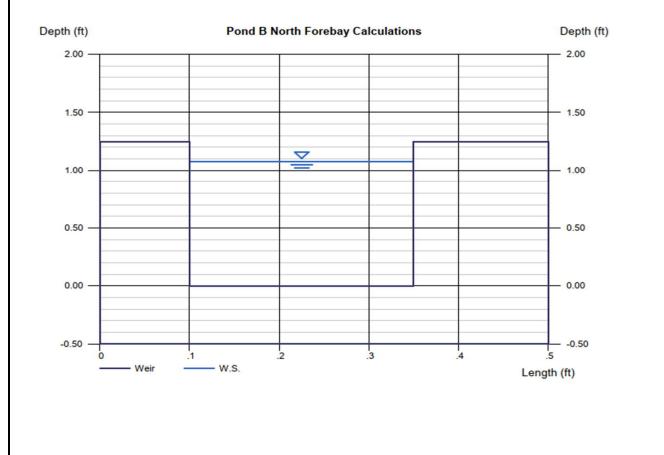
### Pond B South Forebay Calculations

| Rectangular Weir   |         | Highlighted     |         |
|--------------------|---------|-----------------|---------|
| Crest              | = Sharp | Depth (ft)      | = 0.30  |
| Bottom Length (ft) | = 0.25  | Q (cfs)         | = 0.134 |
| Total Depth (ft)   | = 1.25  | Area (sqft)     | = 0.07  |
|                    |         | Velocity (ft/s) | = 1.81  |
| Calculations       |         | Top Width (ft)  | = 0.25  |
| Weir Coeff. Cw     | = 3.33  |                 |         |
| Compute by:        | Known Q |                 |         |
| Known Q (cfs)      | = 0.13  |                 |         |
|                    |         |                 |         |



Wednesday, Nov 25 2020

### Detention Pond B North Forebay Calculations


| 100 YR Discharge                      | 46.7    | CFS   |
|---------------------------------------|---------|-------|
| WQCV Storage                          | 0.264   | AC-FT |
| Forebay Volume (2% pf WQCV)           | 0.00528 | AC-FT |
| Forebay Release Volume (2% of 100 YR) | 0.934   | CFS   |

### Weir Report

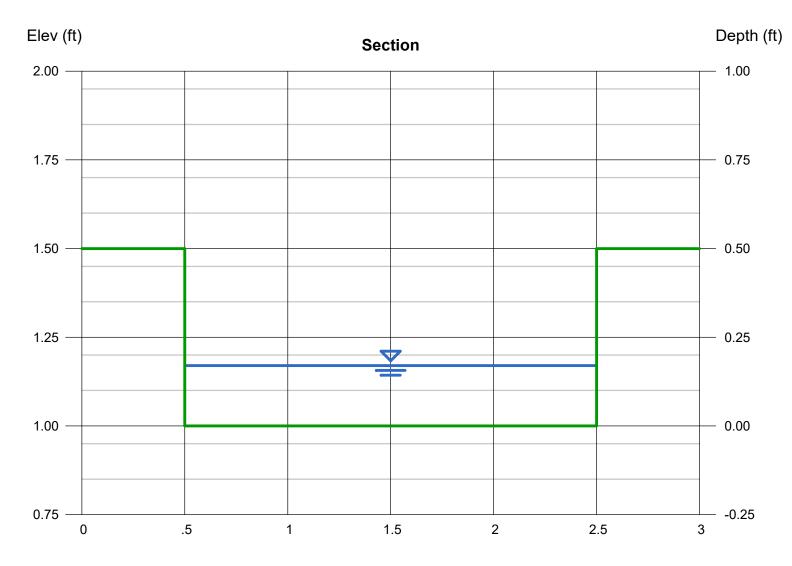
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

### Pond B North Forebay Calculations

| <b>Rectangular Weir</b> |         | Highlighted     |         |
|-------------------------|---------|-----------------|---------|
| Crest                   | = Sharp | Depth (ft)      | = 1.08  |
| Bottom Length (ft)      | = 0.25  | Q (cfs)         | = 0.930 |
| Total Depth (ft)        | = 1.25  | Area (sqft)     | = 0.27  |
|                         |         | Velocity (ft/s) | = 3.46  |
| Calculations            |         | Top Width (ft)  | = 0.25  |
| Weir Coeff, Cw          | = 3.33  |                 |         |
| Compute by:             | Known Q |                 |         |
| Known Q (cfs)           | = 0.93  |                 |         |
| Known Q (cfs)           |         |                 |         |



Wednesday, Nov 25 2020

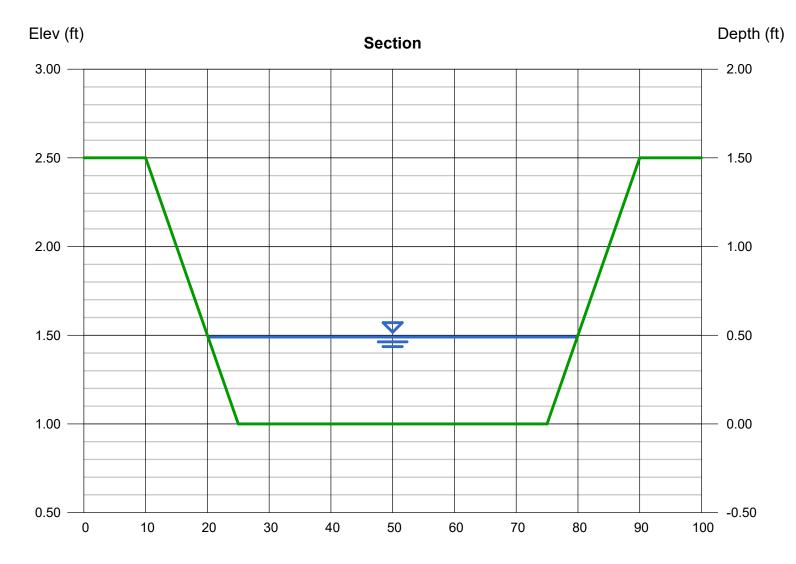

### **Channel Report**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Nov 25 2020

### **Pond B Trickel Channel**

| Rectangular       |         | Highlighted         |         |
|-------------------|---------|---------------------|---------|
| Bottom Width (ft) | = 2.00  | Depth (ft)          | = 0.17  |
| Total Depth (ft)  | = 0.50  | Q (cfs)             | = 1.060 |
|                   |         | Area (sqft)         | = 0.34  |
| Invert Elev (ft)  | = 1.00  | Velocity (ft/s)     | = 3.12  |
| Slope (%)         | = 1.00  | Wetted Perim (ft)   | = 2.34  |
| N-Value           | = 0.013 | Crit Depth, Yc (ft) | = 0.21  |
|                   |         | Top Width (ft)      | = 2.00  |
| Calculations      |         | EGL (ft)            | = 0.32  |
| Compute by:       | Known Q |                     |         |
| Known Q (cfs)     | = 1.06  |                     |         |




### **Channel Report**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

### **Pond B Spillway**

|                | Highlighted                                                        |                                                                                                                                                                                                                                                                                          |
|----------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| = 50.00        | Depth (ft)                                                         | = 0.49                                                                                                                                                                                                                                                                                   |
| = 10.00, 10.00 | Q (cfs)                                                            | = 51.30                                                                                                                                                                                                                                                                                  |
| = 1.50         | Area (sqft)                                                        | = 26.90                                                                                                                                                                                                                                                                                  |
| = 1.00         | Velocity (ft/s)                                                    | = 1.91                                                                                                                                                                                                                                                                                   |
| = 0.20         | Wetted Perim (ft)                                                  | = 59.85                                                                                                                                                                                                                                                                                  |
| = 0.020        | Crit Depth, Yc (ft)                                                | = 0.32                                                                                                                                                                                                                                                                                   |
|                | Top Width (ft)                                                     | = 59.80                                                                                                                                                                                                                                                                                  |
|                | EGL (ft)                                                           | = 0.55                                                                                                                                                                                                                                                                                   |
| Known Q        |                                                                    |                                                                                                                                                                                                                                                                                          |
| = 51.30        |                                                                    |                                                                                                                                                                                                                                                                                          |
|                | = 10.00, 10.00<br>= 1.50<br>= 1.00<br>= 0.20<br>= 0.020<br>Known Q | = 50.00       Depth (ft)         = 10.00, 10.00       Q (cfs)         = 1.50       Area (sqft)         = 1.00       Velocity (ft/s)         = 0.20       Wetted Perim (ft)         = 0.020       Crit Depth, Yc (ft)         Top Width (ft)       EGL (ft)         Known Q       Known Q |



Reach (ft)

### APPENDIX D

### **REFERENCE MATERIALS**



### Federal Emergency Management Agency

Washington, D.C. 20472

JAN 3 0 2007

### CERTIFIED MAIL RETURN RECEIPT REQUESTED

The Honorable Sallie Clark Chair, El Paso County Board of Commissioners 27 East Vermijo Avenue Colorado Springs, CO 80903

Dear Ms. Clark:

IN REPLY REFER TO:

Case No.:05-08-0368PCommunity Name:El Paso County, COCommunity No.:080059Effective Date of<br/>This Revision:MAY 2 3 2007

The Flood Insurance Study report and Flood Insurance Rate Map for your community have been revised by this Letter of Map Revision (LOMR). Please use the enclosed annotated map panel(s) revised by this LOMR for floodplain management purposes and for all flood insurance policies and renewals issued in your community.

Additional documents are enclosed which provide information regarding this LOMR. Please see the List of Enclosures below to determine which documents are included. Other attachments specific to this request may be included as referenced in the Determination Document. If you have any questions regarding floodplain management regulations for your community or the National Flood Insurance Program (NFIP) in general, please contact the Consultation Coordination Officer for your community. If you have any technical questions regarding this LOMR, please contact the Director, Federal Insurance and Mitigation Division of the Department of Homeland Security's Federal Emergency Management Agency (FEMA) in Denver, Colorado, at (303) 235-4830, or the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP). Additional information about the NFIP is available on our website at http://www.fema.gov/nfip.

Sincerely,

Patrick, F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section Mitigation Division

List of Enclosures:

Letter of Map Revision Determination Document Annotated Flood Insurance Rate Map Annotated Flood Insurance Study Report

cc: The Honorable Lionel Rivera Mayor, City of Colorado Springs

> Regional Floodplain Administrator Pikes Peak Regional Building Department

J. F. Sato and Associates, Inc.

Engineering and Surveying, Inc.

For: William R. Blanton Jr., CFM, Chief Engineering Management Section Mitigation Division

| Page 1 of 5                                                                                                         | Issue Date:                                                                                             | JAN 3 0                                                                                                                | 2007                                                                                                                                    | Effective Date                                                                                                                | : MAY                                                                                                | 2 3 2007                                                           | Case No.                                                                                             | 05-08-0368P                                                                                                                                                                                    | LOMR-APP                                                                       |
|---------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
|                                                                                                                     | A REAL PROPERTY OF                                                                                      | D SPECIAL                                                                                                              | Federa                                                                                                                                  | -                                                                                                                             | -                                                                                                    | <b>y Manag</b><br>n, D.C. 20472                                    | emen                                                                                                 | t Agency                                                                                                                                                                                       |                                                                                |
|                                                                                                                     |                                                                                                         |                                                                                                                        |                                                                                                                                         | TER OF N<br>ERMINATIO                                                                                                         |                                                                                                      | REVISION<br>OCUMENT                                                |                                                                                                      |                                                                                                                                                                                                |                                                                                |
|                                                                                                                     | COMMUNITY                                                                                               | AND REVISION                                                                                                           | INFORMATIO                                                                                                                              | N                                                                                                                             |                                                                                                      | PROJECT DESCRIPT                                                   | TION                                                                                                 | BASIS OF RE                                                                                                                                                                                    | QUEST                                                                          |
| COMMUNITY                                                                                                           |                                                                                                         | Co                                                                                                                     | so County<br>olorado<br>porated Areas                                                                                                   | s)                                                                                                                            | CHAN                                                                                                 | INELIZATION<br>/ERT                                                |                                                                                                      | FLOODWAY<br>HYDRAULIC ANAL<br>NEW TOPOGRAPH<br>BASEMAP CHANG                                                                                                                                   | IIC DATA                                                                       |
|                                                                                                                     | COMMUNIT                                                                                                | TY NO.: 080059                                                                                                         | (                                                                                                                                       |                                                                                                                               |                                                                                                      |                                                                    |                                                                                                      |                                                                                                                                                                                                |                                                                                |
| IDENTIFIER                                                                                                          | Sand Creek                                                                                              | Center Tributary                                                                                                       | / and East Fork                                                                                                                         | LOMR                                                                                                                          |                                                                                                      | XIMATE LATITUDE A                                                  |                                                                                                      | E: 38.846, -104.720<br>DATUM: NAD 27                                                                                                                                                           |                                                                                |
|                                                                                                                     | ANNOTAT                                                                                                 | ED MAPPING EI                                                                                                          | NCLOSURES                                                                                                                               |                                                                                                                               |                                                                                                      | ANNOT                                                              | TATED STUD                                                                                           | YENCLOSURES                                                                                                                                                                                    |                                                                                |
| TYPE: FIRM*<br>TYPE: FIRM<br>TYPE: FIRM                                                                             | NO.: 0                                                                                                  | 8041C0752 F<br>8041C0753 F<br>8041C0754 F                                                                              | DATE: Man<br>DATE: Man<br>DATE: Man                                                                                                     | ch 17, 1997                                                                                                                   | PRC                                                                                                  | DF EFFECTIVE FLOO<br>FILE(S): 206P<br>ODWAY DATA TABLE             |                                                                                                      | CE STUDY: August 23                                                                                                                                                                            | 3, 1999                                                                        |
| Enclosures reflect<br>* FIRM - Flood Ins                                                                            |                                                                                                         |                                                                                                                        | Flood Boundary                                                                                                                          |                                                                                                                               |                                                                                                      | M - Flood Hazard Bou<br>SED REACH(ES)                              | indary Map                                                                                           |                                                                                                                                                                                                |                                                                                |
| Sand Creek Cent                                                                                                     | er Tributary – f                                                                                        | from approximate                                                                                                       | əly 1,350 feet up                                                                                                                       |                                                                                                                               |                                                                                                      | ad to just upstream of                                             | Galley Road                                                                                          |                                                                                                                                                                                                |                                                                                |
|                                                                                                                     |                                                                                                         |                                                                                                                        |                                                                                                                                         | SUMMARY C                                                                                                                     |                                                                                                      |                                                                    |                                                                                                      |                                                                                                                                                                                                |                                                                                |
| Flooding Source<br>Sand Creek Cente                                                                                 |                                                                                                         |                                                                                                                        |                                                                                                                                         | Effective Floo<br>Zone AE<br>Floodway<br>BFEs*<br>Zone X (shade                                                               | -                                                                                                    | Revised Flooding<br>Zone AE<br>Floodway<br>BFEs<br>Zone X (shaded) | Increase<br>YES<br>YES<br>NONE<br>YES                                                                | S Decreases<br>YES<br>YES<br>YES<br>YES<br>YES                                                                                                                                                 |                                                                                |
| * BFEs - Base Flo                                                                                                   | ood Elevations                                                                                          |                                                                                                                        |                                                                                                                                         |                                                                                                                               |                                                                                                      |                                                                    |                                                                                                      |                                                                                                                                                                                                |                                                                                |
| regarding a req<br>a revision to the<br>warranted. This<br>panels revised<br>This determinatio<br>any questions abo | quest for a Le<br>the flood hazan<br>is document r<br>by this LOMF<br>on is based on<br>pout this docum | etter of Map Re<br>rds depicted in<br>revises the effe<br>R for floodplain<br>the flood data pre<br>nent, please conta | vision (LOMR)<br>the Flood Inst<br>ective NFIP ma<br>management<br>management<br>esently available<br>act the FEMA M<br>odria, VA 22304 | ) for the area des<br>urance Study (FIS<br>ap, as indicated in<br>purposes and fo<br>e. The enclosed do<br>lap Assistance Cen | land Sec<br>cribed a<br>S) report<br>n the att<br>r all floc<br>cuments<br>ter toll fre<br>ation abo | provide additional info<br>eat 1-877-336-2627 (                    | ormation su<br>od Insuranc<br>on. Please (<br>and renew)<br>and renew)<br>mation regar<br>1-877-FEMA | agement Agency (F<br>bmitted, we have de<br>e Program (NFIP) m<br>use the enclosed and<br>als in your communi<br>ding this determination<br>MAP) or by letter addre<br>ite at http://www.fema. | termined that<br>hap is<br>notated map<br>ty.<br>. If you have<br>essed to the |
|                                                                                                                     |                                                                                                         |                                                                                                                        | En                                                                                                                                      | trick F. Sacbibit, P.<br>Igineering Manager<br>tigation Division                                                              |                                                                                                      |                                                                    | 109770 <sup>-</sup>                                                                                  | 10.3.1.05080368                                                                                                                                                                                | 102-I-A-C                                                                      |

| CID Numb  | Der: 080060<br>AFFECTED<br>NO.: 08041C0753<br>NO.: 08041C0754 | DETER<br>OTHER C<br>Name<br>MAP PANELS<br>3 F DATE: | W<br>LETTER O<br>MINATION D<br>COMMUNITIES    | Vashington, D.C. 2047<br><b>F MAP REVISION</b><br><b>DOCUMENT (CONT</b><br><b>AFFECTED BY THIS</b><br>brado Springs, Colorad<br><u>AFFECTED PORTIONS</u><br>DATE OF EFFECTIVE FLOO | <b>FINUED)</b><br><b>REVISION</b><br>O<br>OF THE FLOOD INSURANCE STUE          |           |
|-----------|---------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|-----------|
| YPE: FIRM | AFFECTED<br>NO.: 08041C0753                                   | OTHER C<br>Name<br>MAP PANELS<br>3 F DATE:          | MINATION E<br>COMMUNITIES<br>e: City of Cold  | AFFECTED BY THIS<br>orado Springs, Colorad<br>AFFECTED PORTIONS<br>DATE OF EFFECTIVE FLOO                                                                                          | REVISION<br>O<br>OF THE FLOOD INSURANCE STUE                                   | )Y REPORT |
| YPE: FIRM | AFFECTED<br>NO.: 08041C0753                                   | Name<br>MAP PANELS<br>3 F DATE:                     | e: City of Colo                               | Drado Springs, Colorad<br>AFFECTED PORTIONS<br>DATE OF EFFECTIVE FLOO                                                                                                              | O<br>OF THE FLOOD INSURANCE STUD                                               | )Y REPORT |
| YPE: FIRM | AFFECTED<br>NO.: 08041C0753                                   | MAP PANELS                                          | March 17, 1997                                | AFFECTED PORTIONS                                                                                                                                                                  | OF THE FLOOD INSURANCE STUD                                                    | )Y REPORT |
|           | NO.: 08041C0753                                               | F DATE:                                             |                                               | DATE OF EFFECTIVE FLOO                                                                                                                                                             |                                                                                | OY REPORT |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    | D INSURANCE STUDY August 22                                                    |           |
| <u>.</u>  |                                                               |                                                     |                                               | FLOODWAY DATA TABL                                                                                                                                                                 | , 209P, and 210P                                                               | 1999      |
|           |                                                               |                                                     | <u>, , , , , , , , , , , , , , , , , , , </u> | <u></u>                                                                                                                                                                            |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    |                                                                                |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    | nformation regarding this determinatio<br>?7 (1-877-FEMA MAP) or by letter add |           |
|           |                                                               |                                                     |                                               |                                                                                                                                                                                    | able on our website at http://www.fema                                         |           |
|           |                                                               |                                                     | A-                                            | 0.11                                                                                                                                                                               |                                                                                |           |

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section Mitigation Division

109770 10.3.1.05080368

102-I-A-C

| <br>        |             |                |      |                 |     |    |      |           |             |          |
|-------------|-------------|----------------|------|-----------------|-----|----|------|-----------|-------------|----------|
| Page 3 of 5 | Issue Date: | <b>JAN 3 0</b> | 2007 | Effective Date: | MAY | 23 | 2007 | Case No.: | 05-08-0368P | LOMR-APP |



Federal Emergency Management Agency

Washington, D.C. 20472

### LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

### COMMUNITY INFORMATION

### APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

NFIP regulations Subparagraph 60.3(b)(7) requires communities to ensure that the flood-carrying capacity within the altered or relocated portion of any watercourse is maintained. This provision is incorporated into your community's existing floodplain management ordinances; therefore, responsibility for maintenance of the altered or relocated watercourse, including any related appurtenances such as bridges, culverts, and other drainage structures, rests with your community. We may request that your community submit a description and schedule of maintenance activities necessary to ensure this requirement.

### **COMMUNITY REMINDERS**

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section Mitigation Division

109770 10.3.1.05080368

102-I-A-C

| Page 4 of 5 | Issue Date: | JAN 3 0 2007 | Effective Date: MAY 2 3 2007 | Case No.: 05-08-0368P | LOMR-APP |
|-------------|-------------|--------------|------------------------------|-----------------------|----------|
|             |             |              |                              |                       |          |



Federal Emergency Management Agency

Washington, D.C. 20472

### LETTER OF MAP REVISION DETERMINATION DOCUMENT (CONTINUED)

We have designated a Consultation Coordination Officer (CCO) to assist your community. The CCO will be the primary liaison between your community and FEMA. For information regarding your CCO, please contact:

Ms. Jeanine D. Petterson Director, Federal Insurance and Mitigation Division Federal Emergency Management Agency, Region VIII Denver Federal Center, Building 710 P.O. Box 25267 Denver, CO 80225-0267 (303) 235-4830

### STATUS OF THE COMMUNITY NFIP MAPS

We will not physically revise and republish the FIRM and FIS report for your community to reflect the modifications made by this LOMR at this time. When changes to the previously cited FIRM panel(s) and FIS report warrant physical revision and republication in the future, we will incorporate the modifications made by this LOMR at that time.

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section Mitigation Division

109770 10.3.1.05080368

102-I-A-C

| Page 5 of 5 Issue Date:     | JAN 3 0 2007 Effective Date: MAY                   | 2 3 2007                 | Case No.: 05-08-0368P | LOMR-AP      |
|-----------------------------|----------------------------------------------------|--------------------------|-----------------------|--------------|
| TO HOLE AND                 | Federal Emergenc<br>Washingtor                     | y Manag<br>1, D.C. 20472 | Ŭ                     | ey           |
|                             | LETTER OF MAP R<br>DETERMINATION DOCUME            |                          | NUED)                 |              |
|                             | PUBLIC NOTIFICATION                                | OF REVISION              | ]                     |              |
|                             | PUBLIC NOTIFICA                                    | TION                     |                       |              |
| FLOODING SOURCE             | LOCATION OF REFERENCED ELEVATION                   | BFE                      | (FEET NGVD 29)        | MAP PANEL    |
| FEODING SOURCE              | LOCATION OF REFERENCED ELEVATION                   | EFFECTIVE                | REVISED               | NUMBER(S)    |
| Sand Creek Center Tributary | Approximately 1,350 feet upstream of East Frontage | 6,170                    | 6,165                 | 08041C0753 F |
|                             | Road                                               | 1                        |                       |              |

Within 90 days of the second publication in the local newspaper, a citizen may request that we reconsider this determination. Any request for reconsideration must be based on scientific or technical data. Therefore, this letter will be effective only after the 90-day appeal period has elapsed and we have resolved any appeals that we receive during this appeal period. Until this LOMR is effective, the revised BFEs presented in this LOMR may be changed.

A notice of changes will be published in the *Federal Register*. This information also will be published in your local newspaper on or about the dates listed below.

LOCAL NEWSPAPER

Name: *El Paso County News* Dates: 02/14/2007 02/21/2007

This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

Patrick F. Sacbibit, P.E., CFM, Project Engineer Engineering Management Section Mitigation Division

109770 10.3.1.05080368

### CHANGES ARE MADE IN DETERMINATIONS OF BASE FLOOD ELEVATIONS FOR THE CITY OF COLORADO SPRINGS AND THE UNINCORPORATED AREAS OF EL PASO COUNTY, COLORADO, UNDER THE NATIONAL FLOOD INSURANCE PROGRAM

On March 17, 1997, the Department of Homeland Security's Federal Emergency Management Agency identified Special Flood Hazard Areas (SFHAs) in the City of Colorado Springs and in the unincorporated areas of El Paso County, Colorado, through issuance of a Flood Insurance Rate Map (FIRM). The Mitigation Division has determined that modification of the elevations of the flood having a 1-percent chance of being equaled or exceeded in any given year (base flood) for certain locations in these communities is appropriate. The modified Base Flood Elevations (BFEs) revise the FIRM for the communities.

The changes are being made pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (Public Law 93-234) and are in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, Public Law 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65.

A hydraulic analysis was performed to incorporate new topographic data for Sand Creek Center Tributary from just upstream of Airport Road to just upstream of Galley Road and for Sand Creek East Fork from approximately 970 feet downstream of Powers Boulevard to just downstream of Stewart Avenue. This has resulted in a revised delineation of the regulatory floodway, increases and decreases in SFHA width, and increased and decreased BFEs for both aforementioned flooding sources. The table below indicates existing and modified BFEs for selected locations along the affected lengths of the flooding source(s) cited above.

| T                                                                    | Existing BFE | Modified BFE |
|----------------------------------------------------------------------|--------------|--------------|
| Location                                                             | (feet)*      | (feet)*      |
| Sand Creek Center Tributary:                                         |              |              |
| <sup>1</sup> Approximately 150 feet upstream of Airport Road         | 6,109        | 6,108        |
| <sup>1</sup> Approximately 1,250 feet upstream of East Frontage Road | 6,168        | 6,164        |
| <sup>2</sup> Approximately 1,350 feet upstream of East Frontage Road | 6,170        | 6,165        |
| <sup>2</sup> Just downstream of Terminal Avenue                      | 6,216        | 6,213        |
| Sand Creek East Fork:                                                |              |              |
| <sup>1</sup> Approximately 810 feet downstream of Powers Boulevard   | 6,099        | 6,096        |
| <sup>1</sup> Approximately 140 feet downstream of Stewart Avenue     | 6,206        | 6,205        |

\*National Geodetic Vertical Datum, rounded to nearest whole foot

<sup>1</sup>City of Colorado Springs

<sup>2</sup>Unincorporated areas of El Paso County

Under the above-mentioned Acts of 1968 and 1973, the Mitigation Division must develop criteria for floodplain management. To participate in the National Flood Insurance Program (NFIP), the community must use the modified BFEs to administer the floodplain management measures of the NFIP. These modified BFEs will also be used to calculate the appropriate flood insurance premium rates for new buildings and their contents and for the second layer of insurance on existing buildings and contents.

Upon the second publication of notice of these changes in this newspaper, any person has 90 days in which he or she can request, through the Chief Executive Officer of the community, that the Mitigation Division reconsider the determination. Any request for reconsideration must be based on knowledge of

changed conditions or new scientific or technical data. All interested parties are on notice that until the 90-day period elapses, the Mitigation Division's determination to modify the BFEs may itself be changed.

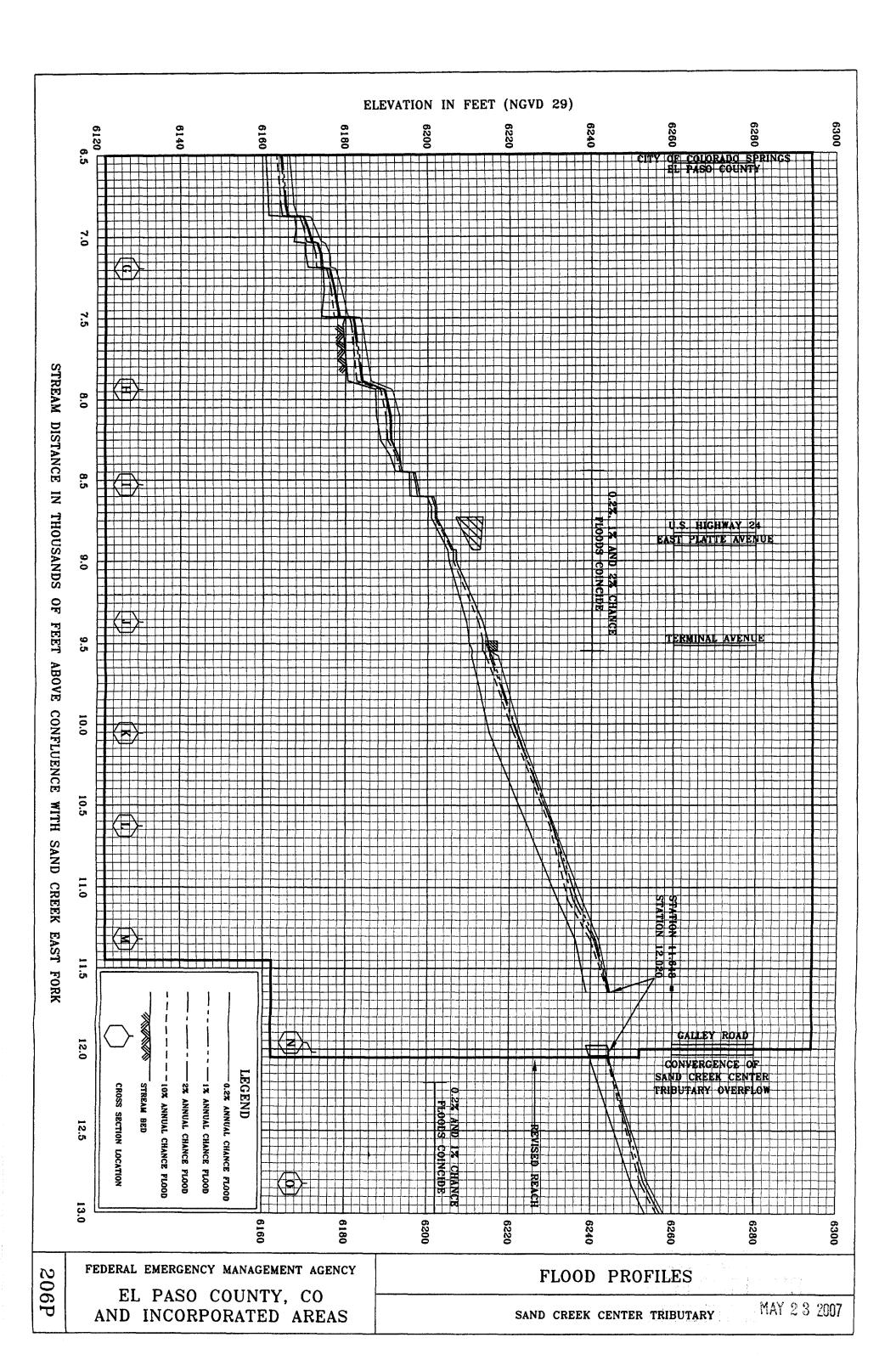
Any person having knowledge or wishing to comment on these changes should immediately notify:

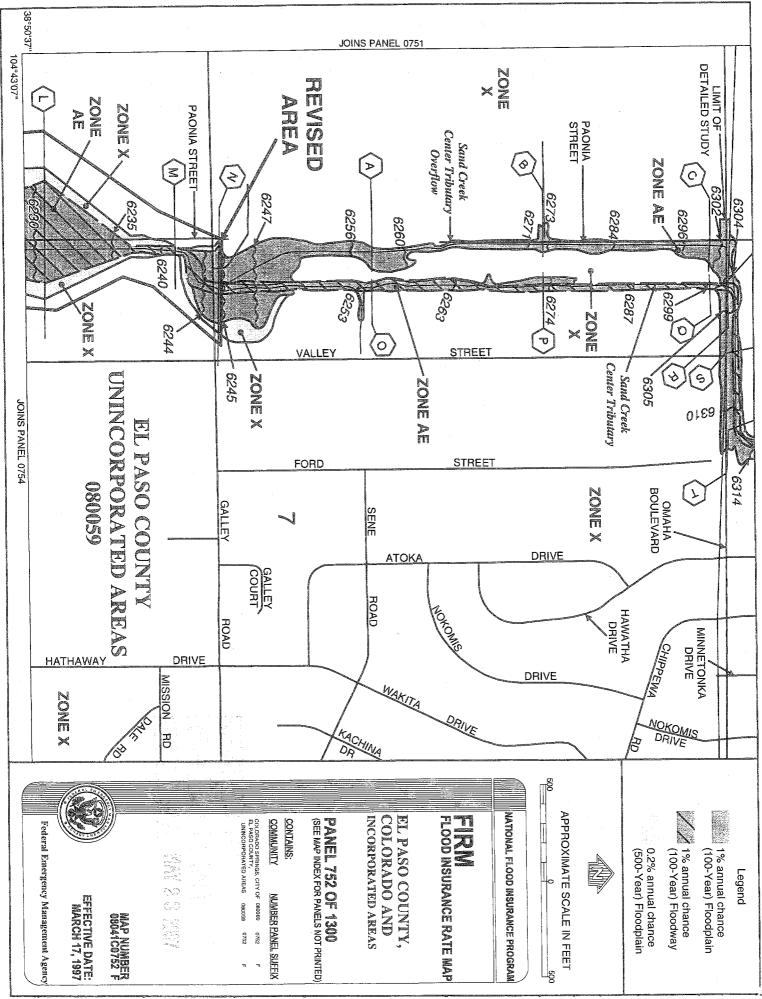
The Honorable Sallie Clark Chair, El Paso County Board of Commissioners 27 East Vermijo Avenue Colorado Springs, CO 80903

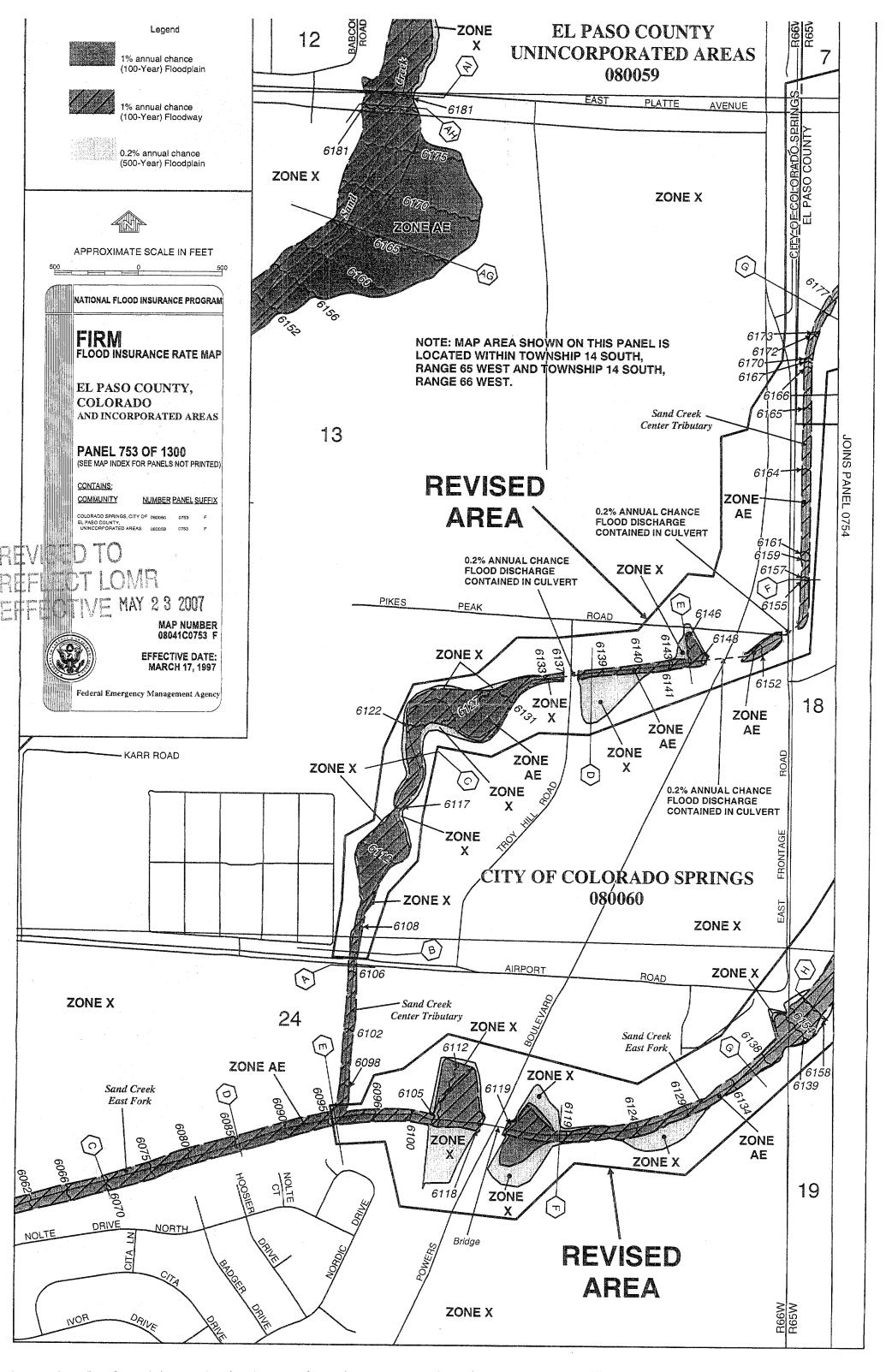
OR

.

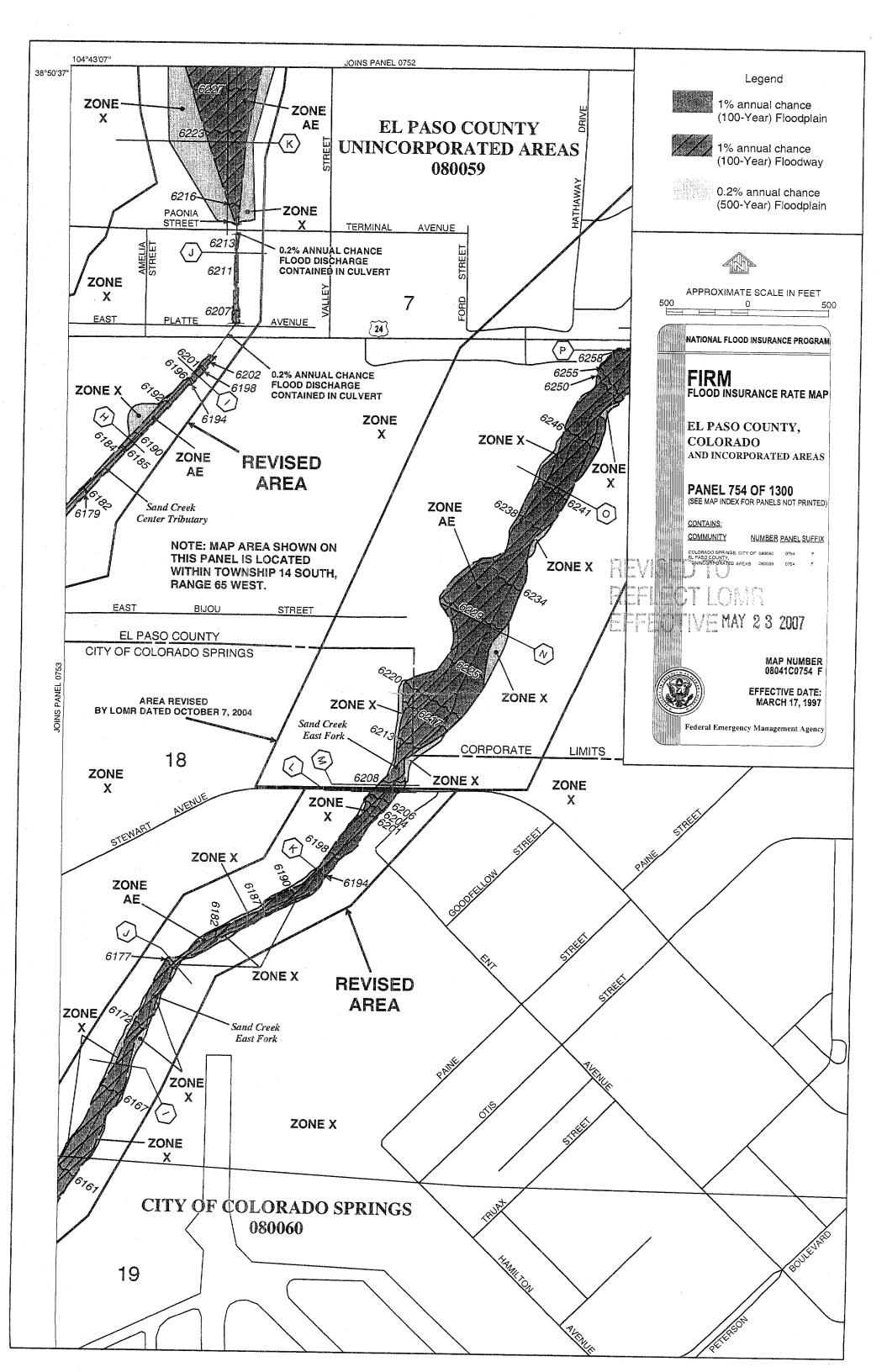
The Honorable Lionel Rivera Mayor, City of Colorado Springs P.O. Box 1575 Colorado Springs, CO 80901


•


2


٠

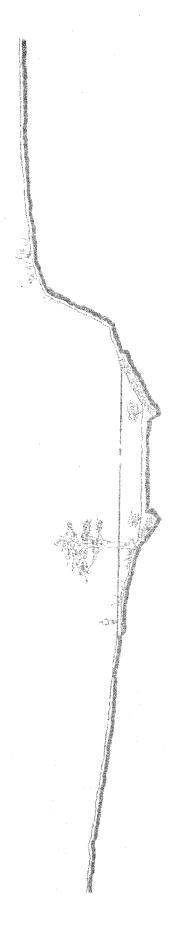
|                                 |                                       |                      | Doning  | Revised            | Data<br>/ | -<br>-  |         |         |         |         |         |         |         |         | -        |         | _       |         |         |             | Revised | by LOMR | dated   | OCT 07 2004 |         |         |         |         |         |         |                                       |                                     | 1                                            |        |
|---------------------------------|---------------------------------------|----------------------|---------|--------------------|-----------|---------|---------|---------|---------|---------|---------|---------|---------|---------|----------|---------|---------|---------|---------|-------------|---------|---------|---------|-------------|---------|---------|---------|---------|---------|---------|---------------------------------------|-------------------------------------|----------------------------------------------|--------|
|                                 | INCREASE                              |                      | 0.0     |                    | 0.0       | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0     | 0.0      | 0.1     | 0.0     | 0.0     | 1.0     | 0.0         | 0.2     | 0.6     | 0.7     | 0.6         | 0.4     | 0.7     | 0.1     | 0.0     | 0.0     | 0.5     |                                       |                                     |                                              |        |
|                                 | WITH FLOODWAY<br>(NGVD)               | 6 038 7              | 0,000.1 | 0,004.3<br>0,000,0 | 6,069.9   | 6,085.1 | 6,095.1 | 6,118.5 | 6,136.0 | 6,158.8 | 6,169.0 | 6,177.0 | 6,193.3 | 6,207.3 | 6,207.9  | 6,228.9 | 6,241.7 | 6,257.9 | 6,259.9 | 6,268.7     | 6,277.5 | 6,292.0 | 6,292.1 | 6,294.0     | 6,307.6 | 6,327.1 | 6,348.8 | 6,359.9 | 6,383.7 | 6,401.5 |                                       | AY DATA                             | SAND CREFK FAST FORK                         |        |
| BASE FLOOD<br>WATER SURFACE ELI | WITHOUT FLOODWAY<br>FEET (            | 6 030 7              | 0,000.1 | 6,054.3<br>0,000,0 | 6,069.9   | 6,085.1 | 6,095.1 | 6,118.5 | 6,136.0 | 6,158.8 | 6,169.0 | 6,177.0 | 6,193.3 | 6,207.3 | 6,207.9  | 6,228.8 | 6,241.7 | 6,257.9 | 6,259.9 | 6,268.7     | 6,277.3 | 6,291.4 | 6,291.4 | 6,293.4     | 6,307.2 | 6,326.4 | 6,348.7 | 6,359.9 | 6,383.7 | 6,401.0 |                                       | FLOODWAY DATA                       | ND CREFK                                     |        |
|                                 | REGULATORY                            | 7 900 9              | 0,020.7 | 6,054.3            | 6,069.9   | 6,085.1 | 6,095.1 | 6,118.5 | 6,136.0 | 6,158.8 | 6,169.0 | 6,177.0 | 6,193.3 | 6,207.3 | 6,207.9  | 6,228.8 | 6,241.7 | 6,257.9 | 6,259.9 | 6,268.7     | 6,277.3 | 6,291.4 | 6,291.4 | 6,293.4     | 6,307.2 | 6,326.4 | 6,348.7 | 6,359.9 | 6,383.7 | 6,401.0 |                                       |                                     | <b>∀</b> S                                   | C<br>2 |
|                                 | MEAN VELOCITY<br>(FEET PER<br>SECOND) |                      | 6.<br>  | 12.2               | 12.0      | 12.1    | 12.0    | 10.9    | 13.5    | 10.5    | 12.0    | 12.6    | 12.8    | 10.1    | 8.4      | 7.6     | 10.0    | 11.1    | 8.9     | <u>9.</u> 2 | 7.9     | 7.7     | 8.0     | 3.3         | 7.8     | 7.5     | 8.6     | 7.6     | 7.4     | 7.8     |                                       |                                     |                                              |        |
| FLOODWAY                        | SECTION AREA<br>(SQUARE FEET)         |                      | CC4     | 446                | 450       | 449     | 946     | 489     | 396     | 507     | 444     | 423     | 415     | 526     | 632      | 669     | 570     | 479     | 601     | 582         | 678     | 069     | 667     | 1,598       | 683     | 206     | 620     | 206     | 705     | 667     |                                       |                                     |                                              |        |
|                                 | WIDTH (FEET)                          |                      | 001     | 100                | 100       | 100     | 102     | 20      | 71      | 148     | 98      | 86      | 81      | 166     | 173      | 367     | 188     | 125     | 125     | 228         | 300     | 321     | 326     | 388         | 367     | 413     | 255     | 397     | 431     | 353     |                                       | MENT AGENCY                         | Y, CU<br>AREAS                               |        |
| JRCE                            | DISTANCE                              |                      | 1,100   | 2,400              | 3,330     | 4,240   | 4,870   | 6,188   | 7,403   | 7,931   | 8,943   | 9,666   | 10,721  | 11,347  | 11,375   | 12,610  | 13,720  | 14.805  | 14,885  | 15,850      | 16,325  | 16,995  | 17,065  | 17,915      | 18,995  | 20,525  | 22,125  | 23,105  | 24,835  | 26,505  |                                       | ENCY MANAGE                         | EL PASO COUNIY, CO<br>AND INCORPORATED AREAS |        |
| FLOODING SOURCE                 | CROSS SECTION                         | Sand Creek East Fork | A (     | ß                  | U         | ۵       | ш       | u.      | U       | Т       | _       | 7       | ×       |         | <u>۲</u> | z       | 0       | ٩       | σ       | £           | S       | F       | Э       | >           | ×       | ×       | ≻       | Z       | A       | AB      | Feet above confluence with Sand Creek | FEDERAL EMERGENCY MANAGEMENT AGENCY | AND INCO                                     |        |
|                                 |                                       |                      |         |                    |           |         |         |         |         |         |         |         |         |         |          |         |         |         |         |             |         |         |         |             |         |         |         |         |         |         | 1                                     | та                                  | BLE 5                                        | <br>5  |


| FLOODING SO                                     | SOURCE                 |              | FLOODWAY                      |                                       |            | BASE I<br>WATER SURFAC<br>WITHOUT FLOODWAY | BASE FLOOD<br>SURFACE ELEVATION<br>LOODMAY WITH FLOODWAY |          |   |
|-------------------------------------------------|------------------------|--------------|-------------------------------|---------------------------------------|------------|--------------------------------------------|----------------------------------------------------------|----------|---|
| CROSS SECTION                                   | DISTANCE <sup>1</sup>  | WIDTH (FEET) | SECTION AREA<br>(SQUARE FEET) | MEAN VELOCITY<br>(FEET PER<br>SECOND) | REGULATORY | FEET                                       | (NGVD)                                                   | INCREASE |   |
| Sand Creek<br>Center Tributary                  |                        |              |                               | Revised Data                          |            |                                            |                                                          |          |   |
| A                                               | 940                    | 40           | 92                            | 8.6                                   | 6,106.5    | 6,106.5                                    | 6,106.5                                                  | 0.0      |   |
| ۵                                               | 066                    | 40           | 118                           | 6.7                                   | 6,107.2    | 6,107.2                                    | 6,107.2                                                  | 0.0      |   |
| ပ                                               | 2,238                  | 9            | 120                           | 6.6                                   | 6,120.2    | 6,120.2                                    | 6,120.2                                                  | 0.0      |   |
| D                                               | 3,948                  | 46           | 95                            | 8.0                                   | 6,138.3    | 6,138.3                                    | 6,138.3                                                  | 0.0      |   |
| щ                                               | 4,547                  | 170          | 159                           | 4.8                                   | 6,147.4    | 6,147.4                                    | 6,147.4                                                  | 0.0      |   |
| LL.                                             | 5,539                  | 52           | 97                            | 7.8                                   | 6,156.8    | 6,156.8                                    | 6,156.8                                                  | 0.0      |   |
| თ                                               | 7,191                  | 63           | 104                           | 7.3                                   | 6,176.2    | 6,176.2                                    | 6,176.2                                                  | 0.0      |   |
| Т                                               | 7,940                  | 52           |                               | α <u>C</u><br>2 COL                   | 6,189.6    | 6,189.6                                    | 6,189.6                                                  | 0.0      |   |
|                                                 | 8,527                  | 40           |                               |                                       | 6,197.6    | 6,197.6                                    | 6,197.6                                                  | 0.0      |   |
| -7                                              | 9,366                  | 17           | 42                            | 0.0                                   | 6,213.4    | 6,213.4                                    | 6,213.4                                                  | 0.0      |   |
| ¥                                               | 10,055                 | 232          | 278                           | 4.0                                   | 6,221.9    | 6,221.9                                    | 6,221.9                                                  | 0.0      |   |
|                                                 | 10,627                 | 539          | 469                           | 2.4                                   | 6,230.6    | 6,230.6                                    | 6,230.6                                                  | 0.0      |   |
| M                                               | 11,321                 | 31           | 62                            | 9.1                                   | 6,241.1    | 6,241.1                                    | 6,241.1                                                  | 0.0      |   |
| z                                               | 11,648                 | 60           | 66                            | 7.3                                   | 6,244.6    | 6,244.6                                    | 6,245.4                                                  | 0.8      |   |
| 0                                               | 12.840                 | 29           | 85                            | 9.6                                   | 6,253.8    | 6,253.8                                    | 6,253.8                                                  | 0.0      |   |
| ٩                                               | 13,730                 | 27           | 83                            | 9.9                                   | 6,273.6    | 6,273.6                                    | 6,273.6                                                  | 0.0      |   |
| a                                               | 14,592                 | 26           | 68                            | 9.3                                   | 6,299.7    | 6,299.7                                    | 6,299.7                                                  | 0.0      |   |
| æ                                               | 14,670                 | 40           | 61                            | 6.9                                   | 6,304.2    | 6,304.2                                    | 6,305.2                                                  | 1.0      |   |
| S                                               | 15,050                 | 20           | 63                            | <b>†</b> 10.1                         | 6,307.6    | 6,307.6                                    | 6,308.1                                                  | 0.5      |   |
| ⊢                                               | 15,460                 | 25           | 68                            | 9.5                                   | 6,310.8    | 6,310.8                                    | 6,311.4                                                  | 0.6      |   |
| D                                               | 15,750                 | 20           | 41                            | 7.8                                   | 6,319.6    | 6,319.6                                    | 6,319.6                                                  | 0.0      |   |
| >                                               | 16,670                 | 20           | 39                            | 8.1                                   | 6,346.0    | 6,346.0                                    | 6,346.0                                                  | 0.0      |   |
|                                                 |                        |              | Flow rate                     | e = 822 cfs                           |            |                                            |                                                          |          |   |
|                                                 |                        |              |                               |                                       |            |                                            |                                                          |          |   |
| Feet Above confluence with Sand Creek East Fork | Creek East Fork        |              |                               |                                       |            |                                            |                                                          |          |   |
| FEDERAL EMERGENCY MANAGEMENT AGENCY             | SENCY MANAGE           |              |                               |                                       |            | FLOODWAY DATA                              | Y DATA                                                   |          |   |
| AND INCC                                        | AND INCORPORATED AREAS | AREAS        |                               |                                       | Sanc       | i Creek Cer                                | Sand Creek Center Tributary                              | Ŋ        | - |
|                                                 |                        |              |                               |                                       |            |                                            |                                                          |          |   |








Ň.



# SAND CREEK DRAINAGE BASIN PLANNING STUDY

# **PRELIMINARY DESIGN REPORT**

# CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO



# PREPARED FOR:

City of Colorado Springs Department of Comprehensive Planning, Development and Finance Engineering Division 30 S. Nevada Colorado Springs, Colorado 80903

# PREPARED BY:

Kowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

# SAND CREEK DRAINAGE BASIN PLANNING STUDY PRELIMINARY DESIGN REPORT

# Prepared for:

## City of Colorado Springs Department of Comprehensive Planning, Development And Finance Engineering Division - MAIL CODE 435 P.O. Box 1575 Colorado Springs, CO 80901-1575

Kiowa Engineering Corporation 1001 North Weber #200 Colorado Springs, CO 80903

Prepared by:

KIOWA Project No. 90.04.09 R185 JANUARY 1993 Revised APRIL 1993 Revised FEBRUARY 1995 Revised OCTOBER 1995 Revised OCTOBER 1995 Revised March 1996

|        |                                                                                                                                                                                                                                                                                             | Page            |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|
| LIST ( | LIST OF TABLES                                                                                                                                                                                                                                                                              | ii              |
| LIST ( | LIST OF FIGURES                                                                                                                                                                                                                                                                             | ij              |
| RESO   | RESOLUTION OF ADOPTION AND ENGINEER'S STATEMENT                                                                                                                                                                                                                                             | iv              |
| I.     | INTRODUCTION                                                                                                                                                                                                                                                                                |                 |
|        | Authorization<br>Purpose and Scope<br>Summary of Data Obtained<br>Mapping and Surveying<br>Project Coordination<br>Acknowledgements                                                                                                                                                         | 00m             |
| П.     | STUDY AREA DESCRIPTION                                                                                                                                                                                                                                                                      |                 |
|        | Basin Description<br>Climate<br>Soils and Geology<br>Property Ownership and Impervious Land Densities<br>Park Land and Open Space                                                                                                                                                           | 4444N           |
| Ш.     | HYDROLOGIC ANALYSIS                                                                                                                                                                                                                                                                         |                 |
|        | Runoff Model<br>Basin Characteristics<br>Previous Studies<br>Impervious Land Density<br>Losign Rainfall<br>Hydrologic Modeling<br>Results                                                                                                                                                   | × × × × × × × × |
| IV.    | HYDRAULIC ANALYSIS AND FLOOD PLAIN DESCRIPTION                                                                                                                                                                                                                                              |                 |
|        | Reach Delineation<br>Flood History<br>Hydraulic Structure Inventory<br>Flood Plains                                                                                                                                                                                                         | 18<br>19<br>19  |
|        | EVALUATION OF CONCEPTUAL ALTERNATIVES                                                                                                                                                                                                                                                       |                 |
|        | Introduction<br>Evaluation Parameters<br>Environmental Review of Mainstern Sand Creek Basin<br>Environmental Review for the East Fork Sand Creek Drainage Basin<br>Summary of Drainageway Habitat Zones<br>Preliminary Matrix of Conceptual Alternatives<br>Drainageway System Alternatives | 33333333        |

| 34<br>AN                                                            | 38<br>39<br>40                                                                                                   |                         | 55555555555555555555555555555555555555                                                                                                                                                                                                                      |                           | 58<br>58<br>59<br>59                                                                                       |                                    |  |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|------------------------------------------------------------------------------------------------------------|------------------------------------|--|
| Conclusions<br>VI. DEVELOPMENT OF ALTERNATIVES AND RECOMMENDED PLAN | Channel Alternatives<br>Impact Upon Habitat<br>Development of Recommended Plan<br>Discussion of Recommended Plan | VII. PRELIMINARY DESIGN | Criteria<br>Hydrology<br>Channels<br>Drop Structures and Check Structures<br>Detention<br>Water Quality<br>Trails<br>Maintenance and Revegetation<br>Right-of-Way<br>Roadway Bhage and Culvert Replacements<br>Erosion and Sedimentation Control<br>General | VIII. PLAN IMPLEMENTATION | <u>General</u><br><u>Cost Estimate</u><br><u>Unplatted Acreage</u><br>Drainage and Bridge Fee Calculations | APPENDIX A: Project Correspondence |  |

PRELIMINARY DESIGN DRAWINGS, PLAN, PROFILES AND DETAILS

| 3   |
|-----|
| ES  |
|     |
| щ   |
|     |
| H   |
| LT. |
| 0   |
| Ē   |
| 5   |

|                      | Page | 10                        | 10                                                                          | 20-25                                       | 26-29                                      | 35                                   | 43                             | 44                                                                       | 45                                                              | 46                                                                                  | 47                                                                    | 48                                                                           | 49                                         | 55                                                           | 56                                                             | 60                      | 61-71                                | 72-75                                          | 76-79                                  |
|----------------------|------|---------------------------|-----------------------------------------------------------------------------|---------------------------------------------|--------------------------------------------|--------------------------------------|--------------------------------|--------------------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------|----------------------------------------------------------------|-------------------------|--------------------------------------|------------------------------------------------|----------------------------------------|
| ii<br>LIST OF TABLES |      | Percent Impervious Values | Summary of Peak Discharges - 24-Hour Duration<br>Storm, Baseline Conditions | Summary of Hydraulic Structures - Crossings | Summary of Hydraulic Structures - Channels | Summary of Wildlife Habitat Acreages | Matrix of Channel Alternatives | Evaluation of Conceptual Channel Alternatives<br>Floodplain Preservation | Evaluation of Conceptual Channel Alternatives<br>Channelization | Evaluation of Conceptual Channel Alternatives<br>Selective Drainageway Improvements | Evaluation of Conceptual Channel Alternatives<br>West Fork Sand Creek | Evaluation of Conceptual Channel Alternatives<br>Center Tributary Sand Creek | Matrix of Recommended Channel Alternatives | Summary of Peak Discharges Selected Detention<br>Alternative | Regional Detention Basin Water Quality Storage<br>Requirements | Unit Construction Costs | Drainageway Conveyance Cost Estimate | Tributary Drainageway Conveyance Cost Estimate | Roadway Culvert Crossing Cost Estimate |
|                      |      | Table III-1               | Table III-2                                                                 | Table IV-1                                  | Table IV-2                                 | Table V-1                            | Table VI-1                     | Table VI-2                                                               | Table VI-3                                                      | Table VI-4                                                                          | Table VI-5                                                            | Table VI-6                                                                   | Table VI-7                                 | Table VII-1                                                  | Table VII-2                                                    | Table VIII-1            | Table VIII-2                         | Table VIII-3                                   | Table VIII-4                           |

| Page | 80-81                                      | 82                                                   | 83-84                                      | 85                                         | 86                                       | 86                                          | 87                                                          | 87                                                                  |  |
|------|--------------------------------------------|------------------------------------------------------|--------------------------------------------|--------------------------------------------|------------------------------------------|---------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|--|
|      | Table VIII-5 Detention Basin Cost Estimate | Table VIII-6 Miscellaneous Drainageway Cost Estimate | Table VIII-7 Bridge Crossing Cost Estimate | Table VIII-8 Drainage Basin Fee Estimation | Table VIII-9 City Bridge Fee Calculation | Table VIII-10 County Bridge Fee Calculation | Table VIII-11 Regional Detention Basin Land Fee Calculation | Table VIII-12 Regional Detention Basin Capital Cost Fee Calculation |  |

# LIST OF FIGURES

| Channel Alternauves, East Fork Sand Creek<br>Water Quality Pond Capture Volumes 57 |
|------------------------------------------------------------------------------------|
|                                                                                    |

# Resolution No. 189-95

۲

A RESOLUTION ADCPTING THE SAND CREEK DRAINAGE BASIN PLANNING STUDY AND ESTABLISHING A DRAINAGE FEE, A DETENTION POND CAPITAL FEE, A DETENTION POND LAND FEE, AND AN ARTERIAL BRIDGE FEE FOR THE BASIN. WHEREAS, the City Engineering Division of the City of Colorado Springs Department of Planning and Development has reviewed the Sand Creek Drainage Basin Planning Study as prepared by Kiowa Engineering Corporation, Colorado Springs, Colorado dated November 2, 1995, and WHEREAS, the City/County Drainage Board has recommended approval of the above study at their November 2, 1995, meeting;

WHEREAS, the Sand Creek Drainage Basin includes unplatted land within the City limits;

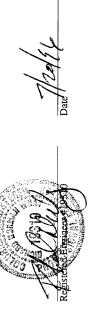
NOW THEREFORE, BE IT RESOLVED by the City Council of the City of Colorado Springs:

Section 1. That the Sand Creek Drainage Basin Planning Study, dated November 1995, by Kiowa Engineering Corporation is adopted for use. City Engineering will utilize that study to assist in evaluating subdivision drainage reports.

Section 2. That a Sand Creek Drainage Basin Fee be established as \$4,895/acre, that a Sand Creek Detention Pond Capital Fee be established as \$1,213/acre, that a Sand Creek Detention Pond Land Fee be established as \$167/acre, and that a Sand Creek Arterial Bridge Fee be established as \$323/acre, as part of.

Dated at Colorado Springs, Colorado, this 28th November , 1995.

ď


day

Mayor

ATTEST:

# ENGINEER'S STATEMENT:

The attached SAND CREEK DRAINAGE BASIN PLANNING STUDY report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the City for drainage reports. I accept responsibility for any liability caused by any negligent acts, errors and omissions on my part in preparing this report. Kiowa Engineering Corporation, 1011 North Weber St., Suite 200, Colorado Springs, CO 80903



|                                                                                                                                                                                | 9.                   | Conduct an economic analysis of each alternative.                                                                                                                           |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                | 10.                  | Recommend and prepare a preliminary design for a selected alternative plan.                                                                                                 |
|                                                                                                                                                                                | 11.                  | Develop drainage and bridge fees for the basin.                                                                                                                             |
|                                                                                                                                                                                | 12.                  | Prepare a written report discussing all items examined in the study.                                                                                                        |
| Irainageway and roadway crossing facilities within the<br>orized under the terms of Agreement Number 90-85<br>(City) and Kiowa Engineering Corporation. The                    | 13.                  | Conduct presentations to public and private entities in order to define project goals, and to involve agencies with specific interest to help define feasible alternatives. |
| ō a                                                                                                                                                                            | study                | Summary of Data Obtained<br>Listed below are the technical reports collected for the review as part of preparing this                                                       |
|                                                                                                                                                                                | 1.                   | Soil Survey for El Paso County, Colorado, dated June 1981.                                                                                                                  |
|                                                                                                                                                                                | <b>ci</b>            | "City of Colorado Springs/El Paso County Drainage Criteria Manual", prepared by City of Colorado Springs, El Paso County, and HDR Infrastructure, Inc., dated May 1987.     |
| tentry reastore stormwater management plans to satisfy<br>Sand Creek Drainage Basin. The Sand Creek basin is to                                                                | ι,                   | "Flood Insurance Studies for Colorado Springs, and El Paso County, Colorado", prepared<br>by the Federal Emergency Management Agency (FEMA), revised 1989.                  |
| is inclusive of the band creek manistern and cast rock                                                                                                                         | 4.                   | Flood Insurance Restudy, Hydrology Report and Hydrologic Analyses, prepared by RCI, Inc., 1989.                                                                             |
| information from participating entities, solicit desires of<br>terested agencies or groups in order to develop alternate                                                       | 5.                   | Sand Creek Drainage Basin Planning Study prepared by Simons, Li & Associates, Inc., dated July, 1985.                                                                       |
| on relative to development plans in the basin, procure<br>vay limitations, proposed stormwater projects, potential<br>bid duplication of effort whenever possible by utilizing | 6.                   | Flood Hazard Analysis, Sand Creek, City of Colorado Springs and El Paso County,<br>Colorado, prepared by the Soil Conservation Service, dated December, 1973.               |
| on our engencies.<br>iduals, and other agencies who have knowledge and/or                                                                                                      | 7.                   | Banning-Lewis Ranch Master Drainage Plan, prepared by MSM Consultants, Inc., dated June 1981.                                                                               |
| and applicable information wherever possible.                                                                                                                                  | ×.                   | Sand Creek Drainage Basin Study, prepared by United Planning and Engineering Company, October, 1977.                                                                        |
| c analyses within the study area.                                                                                                                                              | .6                   | Draft East Fork Sand Creek Drainage Basin Planning Study, prepared by Kiowa Engineering Corporation, January, 1989.                                                         |
| basın.<br>ainage and/or flooding problems.                                                                                                                                     | 10.                  | Drainage Basin Inventory, Sand Creek Drainage Basin, prepared by Oliver E. Watts, P.E., June 1990.                                                                          |
| es to reduce existing and potential flooding problems,<br>ormwater runoff upon environmentally significant areas                                                               | 101 6713<br>101 6713 | In addition to the above listed reports there were a number of drainage study reports,                                                                                      |
| ienance aspects of feasible alternatives.                                                                                                                                      | 24444                | seecce pians, preummary and muai design drawings, land use and zoning maps, development                                                                                     |

INTRODUCTION I.

# Authorization

The preliminary design of the di Sand Creek Drainage Basin was autho between the City of Colorado Spring, agreement was approved by the Colorad this agreement, a change order to the con contained in the draft East Fork Sand Cr 1993.

# Purpose and Scope

The purpose of the study is to idd Sand Creek watersheds. The specific sco be referred to throughout this study and the existing and future needs within the

- Meet with the City to: insure compoblain existing data and general inforparticipating entities and other interval plans, procure current information plans, procure to right-of-way hazards due to flooding, and avoid existing information available from
- Contact the City, County, indivi interest in the study area. ci
- Utilize City policies and criteria a e,
- Perform hydraulic and hydrologic 4
- Identify environmental setting of S.
- Identify existing and potential dra ġ.
- Develop improvement alternative and to mitigate the impact of sto: along the drainageway(s). ۲.
- Examine the operation and mainte ×.

| The following general conditions have been placed upon the use of the FIMS to other manying.                   | Use of these products is restricted to the project for which the FIMS products are                                                                                                   | Provided<br>Only the body content found within the neatline of the borrowed maps may appear in any<br>report/publication developed for your study. Also, the labeling that appears on any<br>phonoments envioled for monover in any out, has reported to the labeling that appears on any | All FIMS' products provided to contractors involved in the subject study shall be retrieved by your department upon conclusion of the study and either returned to FIMS or destroyed.                                                                                             | The report(s) developed in which the FIMS' products are used shall include the following disclaimer statement: | "The maps and photographs included in this report were developed for purposes of the Colorado Springs Department of Utilities and are for internal use only. The Colorado Springs Department of Utilities makes no warranty, expressed or implied, as to the completeness, accuracy, or content of such products or any reproductions thereof. Any other use is not recommended and occurs at the risk of the user; such user is solely responsible and/or liable for the use of such products. | Original maps and photographs are the property of the Colorado Springs Department of<br>Utilities. All rights are reserved. These maps and photographs or any associated record<br>may not, wholly or in part, be reproduced, stored, or transmitted in any form or by any<br>means, electronic, mechanical, photocopying, or otherwise, without the express prior<br>written permission of the Colorado Springs Department of Utilities. | Regardless of the existence of purporred copies of these official maps and photographs<br>which may from time to time be made or published, there is only one set of official maps<br>and photographs, which are those kept and maintained by the Colorado Springs<br>Department of Utilities."                                                                                                                                                                            | Project Coordination                                                                                                                             | Throughout the course of the study, meetings were held with representatives of City,<br>County, State, and Federal agencies with an interest in drainageway planning in general. The<br>primary reason for the coordination effort was to obtain technical information and to identify | concerns with regard to the development of drainageway facilities within the basin. During the course of preparing the Development of Alternatives report, the planning constraints and concepts were discussed with the agencies and interested individuals and their input used to refine the feasible alternatives and to eventually identify a recommended drainageway plan for further design evaluation. The complete mailing list and project correspondence is contained in Appendix A of this report. |
|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| plans, and existing drainage facility maps that were collected from the City, County, and other lovel accordes | Reports which were prepared previous to the preliminary design report include the "Sand<br>Creek Drainage Basin Planning Study Hydrology Report," and the "Sand Creek Drainage Basin | Planning Study Development of Alternatives Report." These reports were prepared as part of the<br>overall planning effort and have been referred to throughout this report. The Hydrology Report                                                                                          | improvements in the basin, and established the base line hydrologic conditions from which the<br>alternative planning then proceeded. The Development of Alternatives report evaluated the<br>various combinations of drainageway improvements for the basin, taking into account |                                                                                                                | well as technical addenda for each report. Both of these reports covered only the mainstern of<br>the Sand Creek Basin. The similar information prepared for the draft East Fork Sand Creek<br>Druinage Basin Planning Study has been summarized in this preliminary design report.                                                                                                                                                                                                             | Mapping and Surveying<br>Mapping used in the planning effort for the mainstem of Sand Creek consisted of USGS<br>7-1/2 minute quadrangles, and 2-foot contour interval, 1-inch to 200-foot scale planimetric<br>topographic maps. For the area of the basin north of Woodmen Road, aerial topographic                                                                                                                                     | mapping was complicit in way 1990. For the balance of the bash, the City of Colorado Springs<br>Department of Public Utilities provided topographic mapping compiled from aerial photographs<br>dated 1989. This mapping has been prepared as part of the Facility Inventory Management<br>System (FIMS). The aerial topographic mapping was used in the drainage inventory,<br>hydrologic/hydraulic analyses, and in the alternative planning phases of this project. All | topographic mapping was based upon USGS vertical datum.<br>For the East Fork Sand Creek basin, mapping from the FIMS office and two-foot contour | interval topography prepared in 1987 for the Banning-Lewis Ranch property were used in the preparation of the preliminary design. Where topographic mapping was not available, USGS modernation mans were used                                                                         | producting a map way used.<br>Stream cross-section data was obtained from the aerial mapping described above. These<br>sections were verified against the cross-sections compiled in the 1986 City of Colorado Springs<br>Flood Insurance Study (FIS), wherever possible.<br>Drainageway site inspections were conducted throughout the study area, and photographs<br>were taken documenting the key drainage features.                                                                                       |

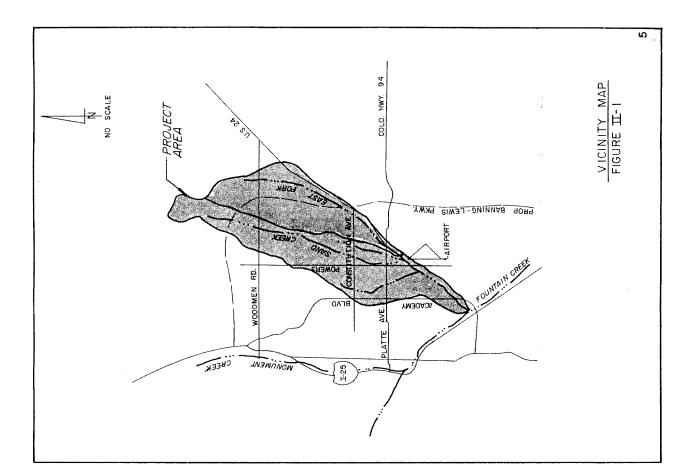
Coordination with a similar list of agencies and individuals was conducted during the preparation of the draft East Fork Sand Creek Drainage Basin Planning study. This study was authorized and conducted for Aries Properties, Inc. Meetings with state and federal agencies, the City and the County were involved in a series of meetings during the development of the alternative planning concepts and the preliminary design for the East Fork Sand Creek basin.

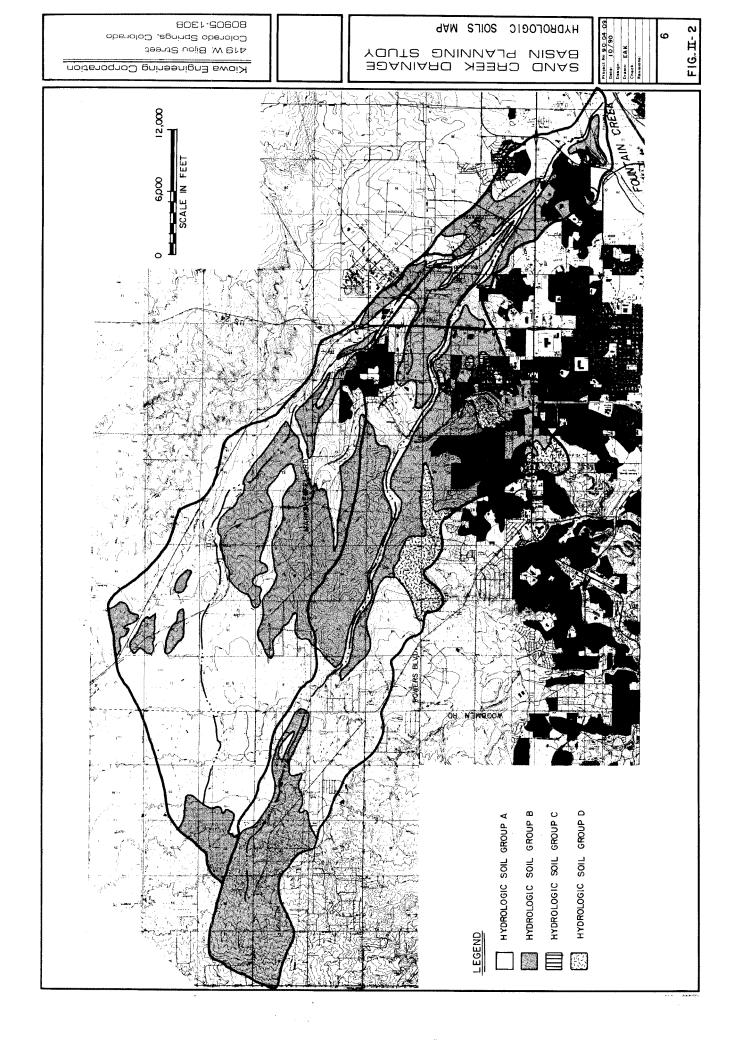
# Acknowledgements

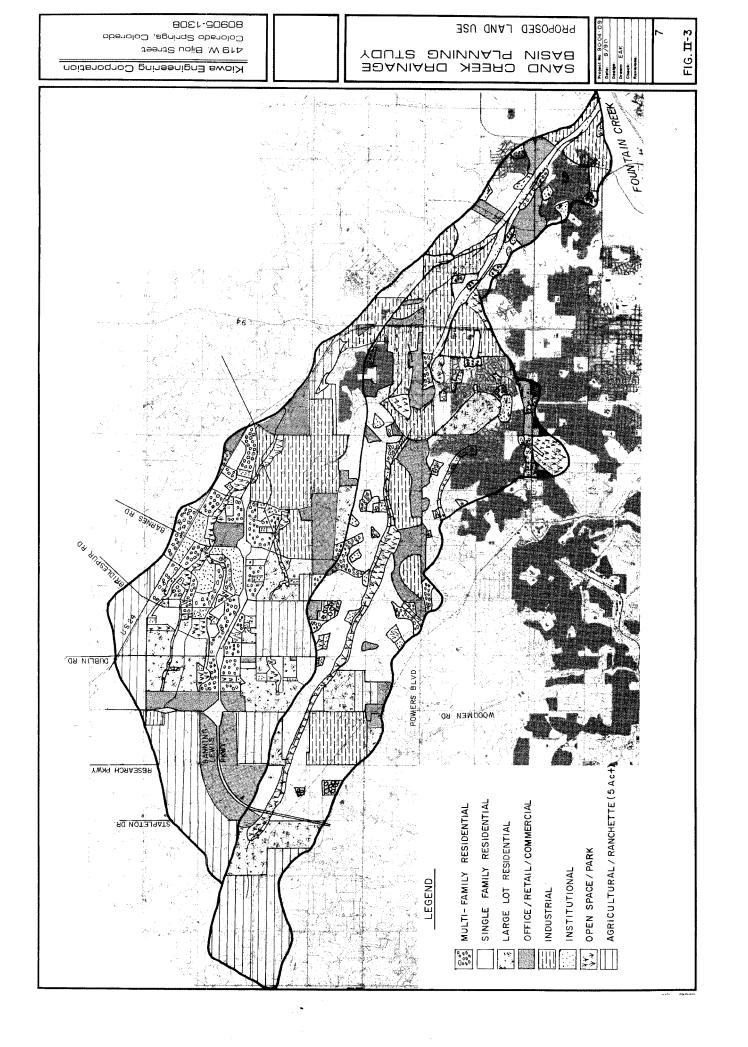
During the preparation of the study, several government agencies and interested individuals were routinely involved in the coordination activities. Representatives from the Colorado Division of Wildlife, U.S. Army Corps of Engineers (COE), and various City Departments provided valuable commentary during the development of the alternative plans. A listing of the individuals and agencies routinely coordinated with during the study has been presented below:

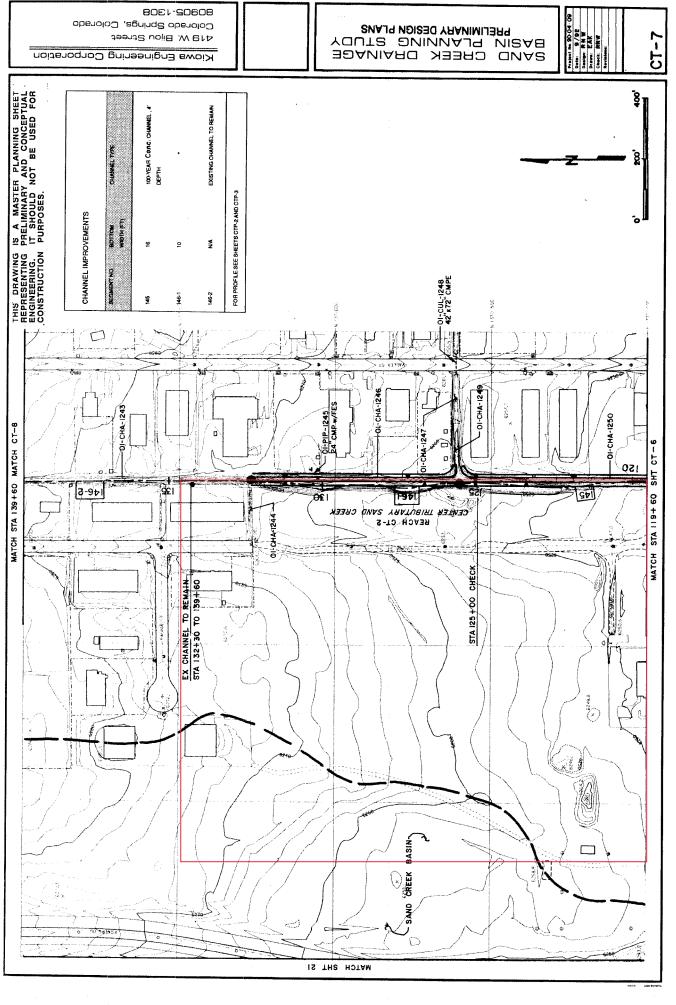
|                  | Agency | El Paso County Department of Public Works<br>El Paso County Jard Use Department<br>El Paso County Planning Department<br>El Paso County Planning Department<br>City of Colorado Springs Street Division<br>City Engineering Division<br>City Parts and Wildlife<br>U.S. Army Corps of Engineers<br>Aiken/Audobon Society<br>Palmer Foundation<br>City Parks and Recreation<br>City Parks and Recreation<br>City Parks and Recreation<br>City of Colorado Springs<br>Department of Public Utilities Wastewater Division<br>City of Colorado Springs<br>Department of Public Utilities Wastewater Division<br>City Attorney's Office |
|------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| presented octow. | Name   | Alan Morrice<br>John Fisher<br>Sue Johnson<br>Rick O'Connor<br>Hugh King<br>Gary Haynes<br>Bruce Thorson<br>Ken Sampley<br>Steve Jacobsen<br>Christine Lytle<br>Bruce Goforth<br>Dawe Frick<br>Bruch Bruting<br>Sarah Fowler<br>John Liou<br>Dawe Frick<br>Bill Noonan<br>Anita Culp<br>John Maynard<br>John Maynard<br>John Maynard<br>John Covert<br>Peter Kernkamp<br>Jim Rees<br>Fred Mais<br>Diana Medina<br>Dan Tippie<br>Russ Nicklin<br>Wes Tyson                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

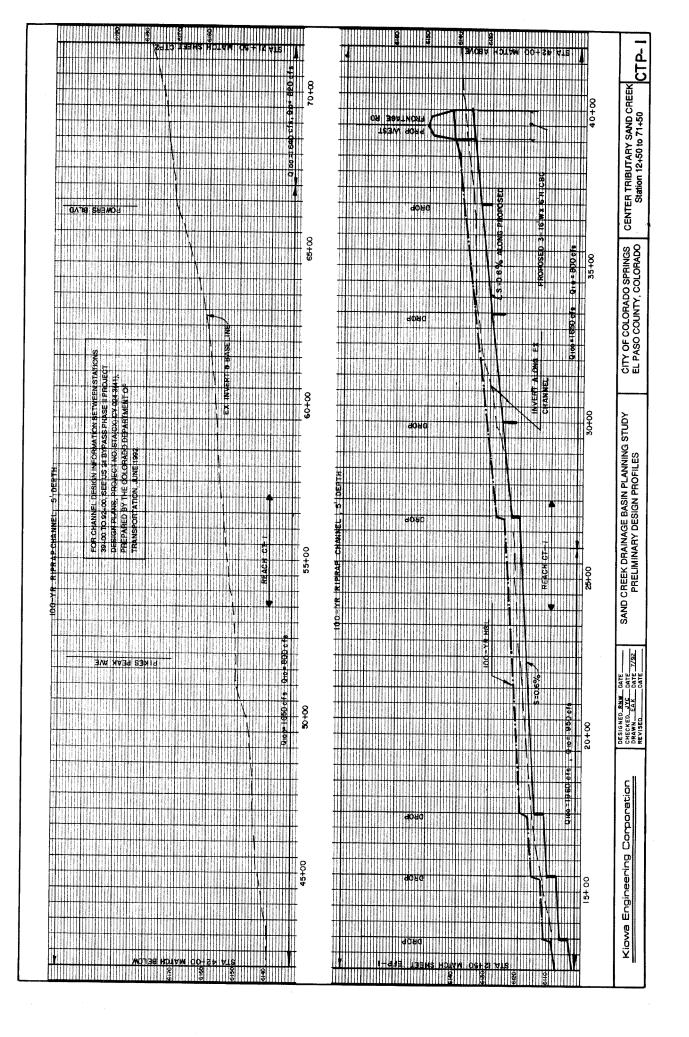
,

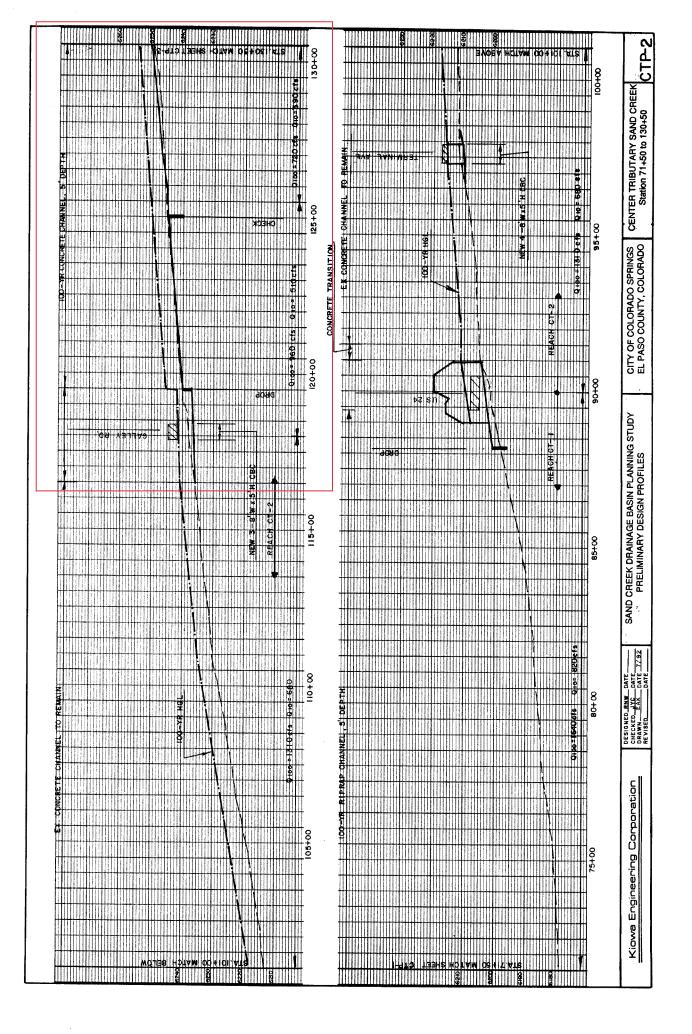

| II. STUDY AREA DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | to $7^{-10}$ in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subributary. Figure II-1 shows the location of the Sand Creek basin.                                                                                                                                 | Soils and Geology<br>Soils within the Sand Creek basin vary between soil types A through D, as identified by<br>the U. S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings<br>are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils<br>that formed in alluvium and residium, derived from sedimentary rock. The soils have high to<br>moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor<br>veretation cover exists. In undeveloped areas the medominance of Twee A and B soils onto the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Basin Description<br>The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County<br>and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed<br>by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin<br>trends in generally a south to southwesterly direction, entering the Fountain Creek approximately<br>two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main<br>tributaries drain the basin, those being the mainstream. At this time, approximately 25<br>percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin | <ul> <li>basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.</li> <li>Property Ownership and Impervious Land Densities</li> <li>Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| only. The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.                                                                                                                                                                                                                                                                                       | delineated drainage nght-of-way or casements. There are several public parks which abut the major mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin. Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek Presented on Figure 1.3 is the proceed bod used used used as used in the creek Presented on Figure 1.3 is the proceed bod used used used in the creek Presented on Figure 1.3 is the proceed bod used used in the creek Presented on Figure 1.3 is the proceed bod used used used in the creek Presented on Figure 1.3 is the proceed bod used used used in the creek Presented on Figure 1.3 is the proceed bod used used used used used used used use |
| Climate<br>This area of El Paso County can be described, in general as high plains, with total<br>precipitation amounts typical of a semi-arid region. Winters are generally cold and dry.<br>Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation<br>occurring in spring and summer in the form of rainfall. Thunderstorms are common during the<br>summer months, and are typified by quick-moving low pressure cells which draw moisture from<br>the Gulf of Mexico into the region. Average temperatures range from about 30°F in the winter                                                                                                           | <ul> <li>relation of impervious land densities discussed in the hydrologic section of this report.</li> <li>Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the County.</li> <li>The land use information within the Banning-Lewis Ranch property was obtained from Aries Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of thuter arterial streets and roadways within</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

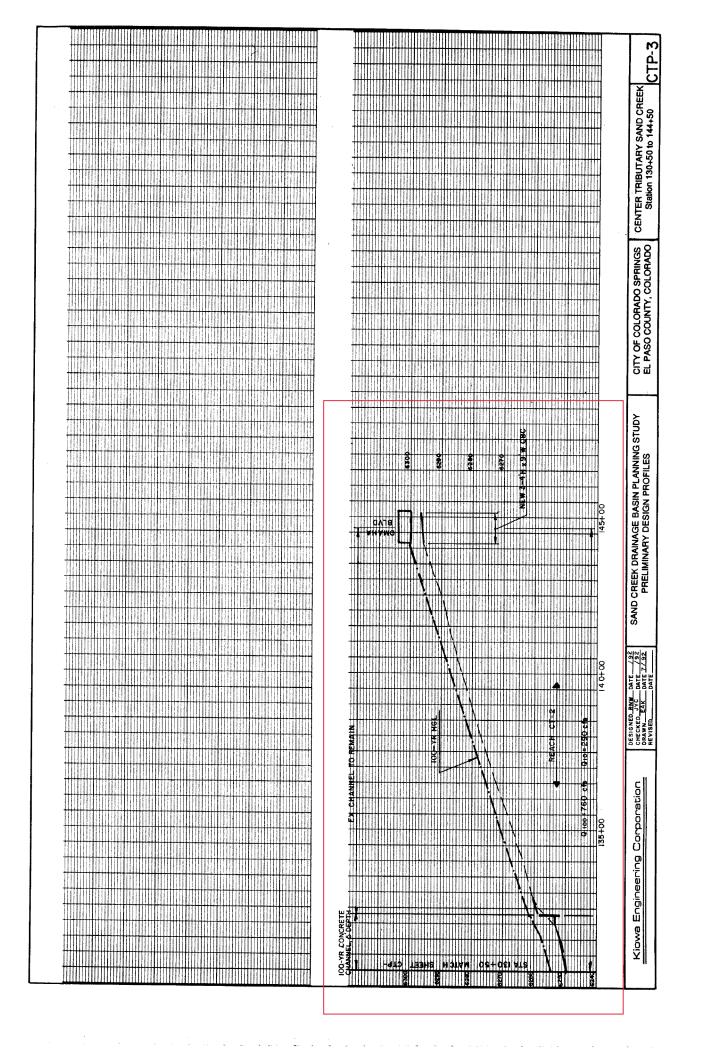

ь


the Banning Lewis property were obtained from the Banning-Lewis Ranch master plan. The location of roadways offsite from the Banning Lewis-Ranch were obtained from the El Paso County Major Transportation Plan dated 1988.


# Park Land and Open Space


An inventory of park land and public open space was prepared. Many times, the combination of the drainageway and adjacent park lands can be used to visually extend the limits of a park or open space. The drainageway can also act to link parks and other land uses within the basin if multiple use trails are incorporated into the channel section(s). The Sand Creek drainageway has been identified as a major trail corridor within the City of Colorado Springs Trails Plan. Park land designated within the Banning-Lewis Ranch master plan were taken into account during the siting of stormwater facilities within the Banning-Lewis property.














| ROADWAY            | REACH  | DRAINAGEWAY          | CROSSING       | HLONET | TINU | TINU         | TOTAL         | TOTAL    |
|--------------------|--------|----------------------|----------------|--------|------|--------------|---------------|----------|
|                    | NUMBER | SEGMENT              | ITPE           |        |      | ism          | ison          | COST     |
| BANNING-LEWIS PRKW | SC-8   | 186                  | 6'Hx10'W CBC   | 120    | Ľ    | <b>S</b> 390 | ,<br>\$46,800 | \$46,800 |
| ARROYO LANE        | SC-9   | 1/1                  | 6'Hx12'W CBC   | 08     | Ц    | <b>S</b> 510 | \$40,800      | \$0      |
| VOLLMER ROAD       | SC-8   | 169                  | 60-INCH CMP    | 80     | LF   | \$120        | 20'9'6\$      | \$0      |
| Ŧ                  | SC-9   | 6/1                  | £              | 80     | Ц    | <b>S</b> 120 | 89,600        | 30       |
| BURGESS ROAD       | SC-9   | 176                  | 42-INCH CMP    | 80     | Ц    | <b>S</b> 75  | \$6,000       | \$0      |
| ŧ                  | SC-9   | 178                  | 2-42-INCH CMP  | 80     | Ц    | \$150        | \$12,000      | 8        |
|                    |        | CENTER TRIBUTARY     |                |        |      |              |               |          |
| TERMINAL A VENUE   | CT-2   | 144                  | 4-5'Hx8'W CBC  | 99     | Ŀ    | \$1,200      | \$72,000      | \$0      |
| OMAHA BOULEVARD    | CT-2   | 146-2                | 3-4'Hx9'W CBC  | 80     | ΓĿ   | <b>2</b> 900 | \$72,000      | <b>9</b> |
|                    |        | WEST FORK SAND CREEK | EX             |        |      |              |               |          |
| WOOTEN ROAD        | WF-1   | 153                  | 2-4'Hx6'W CBC  | 100    | LF   | \$480        | \$48,000      | 05       |
| EDISON AVENUE      | WF-1   | 153                  | 2-4'Hx6'W CBC  | 99     | Ľ    | \$240        | \$14,400      | \$0      |
| PALMER PARK BLVD.  | WF-1   | 154-2                | 2-4'Hx10'W CBC | 80     | LF   | \$540        | \$43,200      | \$0      |
| CHICAGO RI RR      | WF-1   | 165-1                | 4'Hx8'W CBC    | 220    | гъ   | \$270        | \$59,400      | 05       |
| HALF MOON DRIVE    | WF-1   | 165-2                | 4'Hx6'W CBC    | 8      | Ë    | \$240        | \$14,400      | \$0      |

Г

.

٦

77

.

Table VIII-7:

SAND CREEK DRAINAGE BASIN PLANNING STUDY BRIDGE CROSSING COST ESTIMATE SAND CREEK DRAINAGE BASINS

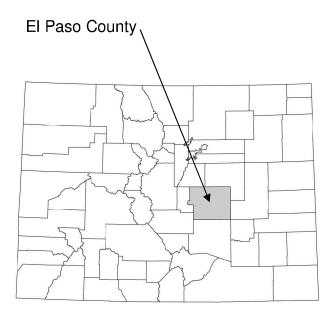
|                       | NUMBER | SEGMENT              | TYPE                                                      | JURISIDICITION<br>CITY COUNTY | SIZE       | UNIT | UNIT    | TOTAL<br>COST COUNTY | TOTAL<br>COST CITY |
|-----------------------|--------|----------------------|-----------------------------------------------------------|-------------------------------|------------|------|---------|----------------------|--------------------|
|                       |        |                      |                                                           |                               |            |      |         |                      |                    |
|                       |        | SAND CREEK           |                                                           |                               |            |      |         |                      |                    |
|                       | SC-1   | 115                  | 210' TWO-SPAN BRIDGE                                      | x                             | 16800      | H3   | 680     | ŝ                    |                    |
| STETSON HILLS BLVD.   | SC-6   | 130                  | 3- 8'Bx10'W CBC                                           | x                             | ж.         |      |         | 3 8                  | 000,444,000        |
| TEDEDIAH SMITH RD.    | SC-6   | 137                  | 3- 8'Hx10'W CBC                                           | X                             |            | 1    | 011,16  | 7                    | 222200             |
|                       | SC-6   | 141                  | 80' CLEAR SPAN BRIDGE                                     |                               | 8 8        | 5 1  | \$1,110 | 8                    | 366,600            |
| DUBLIN BOULEVARD      | SC-7   | 141                  | SO' (T EA P SDAN PERTING                                  | < ;                           | 0000       | SF   | S80     | 8                    | \$512,000          |
| MADE CUREERS DOAD     |        | E                    | BOUTH AND A STATE AND | ×                             | 6400       | SF   | 580     | 8                    | \$512,000          |
|                       |        | 10                   | - IO HAIO W CBC                                           | x                             | 80         | ä    | \$1,260 | \$100,800            | <b>3</b> 0         |
|                       | 30-8   | 163                  | 4- 8'HK10'W CBC                                           | X                             | 80         | ц    | \$1,560 | \$124,800            | 9                  |
| BANNING-LEWIS PRKWY   | SC-8   | 187                  | 4- 8'Hz10'W CBC                                           | x                             | 80         | LF.  | \$1,560 | \$124,800            | 8                  |
|                       |        | CENTER TRIBUTARY     |                                                           |                               |            |      |         |                      |                    |
| W. FRONTAGE ROAD      | មី     | 142                  | 3-6'Hx16'W CBC                                            | ×                             | ş          | 31   | Sint is |                      |                    |
|                       | ij     | 142                  | 3- 6'Hal4'W CBC                                           | X                             | s <u>s</u> | 1 2  | 01/14   | 007 On It            | 20                 |
| E. FRONTAGE RD, US 24 | ÷      | 142                  | 3- 6'Hx14'W CBC                                           | • •                           | 3 6        | 5    | 014'16  | 0051128              | 30                 |
|                       | ī      | 142                  | 3- 6'H+14"W ("BC                                          | 4 7                           | 3          | ÷    | 51,410  | \$84,600             | 8                  |
| PLATTE AVENUE, US 24  | CT-3   | 671                  |                                                           | < :                           | 8          | ä    | \$1,410 | \$84,600             | 8                  |
|                       | ŧ      | 1 3                  |                                                           | x                             | 120        | 5    | \$1,410 | \$169,200            | 80                 |
|                       | t      | 4                    | 3- 5'HX8'W CBC                                            | x                             | 100        | Ľ    | 006\$   | 290,000              | 50                 |
|                       | 1MA    | WEST FORK SAND CREEK | R                                                         |                               |            |      |         |                      |                    |
|                       | WF-2   | 155                  | 54' CLEAR SPAN BRIDGE                                     | ×                             | \$130      | ĥ    | Co.     | ł                    |                    |
| PALMER PARK BLVD.     | WF-2   | 156                  | 54' CLEAR SPAN BRIDGE                                     | x                             | 1212       | 1 H  | 0.00    | 8                    | \$410,400          |
| CONSTITUTION AVE.     | WF-3   | 159                  | 40' CI FAR SPAN RRINGF                                    | *                             |            | 4    | net     | 8                    | \$410,400          |
|                       | WF-3   | 170                  | 30' CLEAR SPAN BRIDGE                                     | • *                           | 0.025      | B    | 88      | 80                   | \$256,000          |
| -                     | WE.3   | 021                  |                                                           | ¢                             | 0047       | SF.  | \$80    | 85                   | \$192,000          |
|                       |        | 1/1                  | 2- 0-HALD W CHIC                                          | X                             | 5          | 21   |         | :                    |                    |

TOTAL BRIDGE CONSTRUCTION COSTS, SAND CREEK

•

\$4,021,400

\$1,096,500


83



# EL PASO COUNTY, COLORADO, AND INCORPORATED AREAS

| COMMUNITY                     | COMM |
|-------------------------------|------|
| NAME                          | NUN  |
| CALHAN, TOWN OF               | 080  |
| COLORADO SPRINGS, CITY OF     | 080  |
| EL PASO COUNTY                |      |
| (UNINCORPORATED AREAS)        | 080  |
| FOUNTAIN, CITY OF             | 080  |
| GREEN MOUNTAIN FALLS, TOWN OF | 080  |
| MANITOU SPRINGS, CITY OF      | 080  |
| MONUMENT, TOWN OF             | 080  |
| PALMER LAKE, TOWN OF          | 080  |
| RAMAH, TOWN OF                | 080  |

#### COMMUNNITY NUMBER 080192 080060 080059 080061 080062 080063 080064 080065 080066



Revised: December 7, 2018

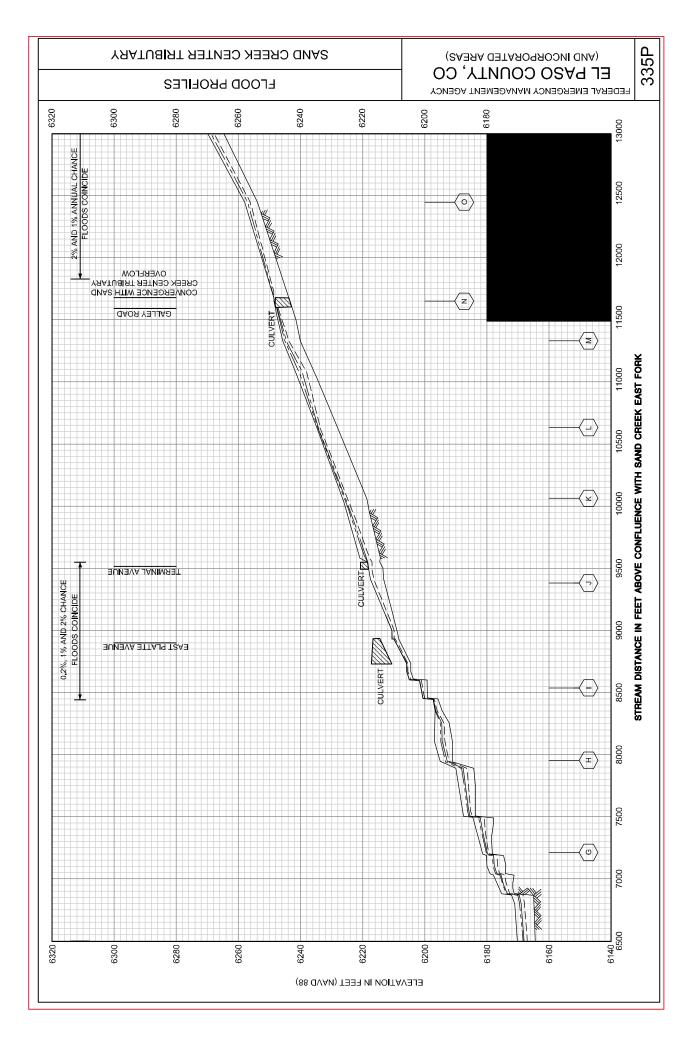


Federal Emergency Management Agency

FLOOD INSURANCE STUDY NUMBER 08041CV007A

#### NOTICE TO FLOOD INSURANCE STUDY USERS

Communities participating in the National Flood Insurance Program have established repositories of flood hazard data for floodplain management and flood insurance purposes. This Flood Insurance Study (FIS) report may not contain all data available within the repository. It is advisable to contact the community repository for any additional data.


Part or all of this FIS report may be revised and republished at any time. In addition, part of this FIS report may be revised by the Letter of Map Revision process, which does not involve republication or redistribution of the FIS report. It is, therefore, the responsibility of the user to consult with community officials and to check the community repository to obtain the most current FIS report components.

This FIS report was revised on December 7, 2018. Users should refer to Section 10.0, Revisions Description, for further information. Section 10.0 is intended to present the most up-to-date information for specific portions of this FIS report. Therefore, users of this report should be aware that the information presented in Section 10.0 superseded information in Sections 1.0 through 9.0 of this FIS report.

Initial Countywide FIS Report Effective Date: March 17, 1997

First Revised Countywide FIS Report Effective Date: August 23, 1999 - to add base flood elevations, to add special flood hazard areas, and to change special flood hazard areas.

Second Revised Countywide FIS Report Effective Date: December 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.



#### SAND CREEK - CENTER TRIBUTARY CHANNEL ANALYSIS REPORT FOR SOLACE APARTMENTS

Prepared For: Jackson Dearborn Partners 404 S. Wells Street, Suite 400 Chicago, IL 60607 (734) 216-2577

> June 30, 2020 Project No. 25174.00

Prepared By: JR Engineering, LLC 5475 Tech Center Drive Colorado Springs, CO 80919 719-593-2593

PCD File NO. SP201

## CONTENTS

| OVERVIEW                         | 3 |
|----------------------------------|---|
| GENERAL LOCATION AND DESCRIPTION | 3 |
| LOCATION                         |   |
| DESCRIPTION OF PROPERTY          | 3 |
| FLOODPLAIN STATEMENT             | 3 |
| PREVIOUS SAND CREEK STUDIES      | 3 |
| DRAINAGE DESIGN CRITERIA         | 7 |
| Development Criteria Reference   | 7 |
| Hydrologic Criteria              |   |
| Hydraulic Criteria               |   |
| SUMMARY                          | 8 |
| REFERENCES:                      | 9 |

#### APPENDICES

- A. Figures and ExhibitsB. Hydraulic CalculationsC. Reference Material

## OVERVIEW

This report was prepared to provide design information for the existing Sand Creek -Center Tributary Drainageway as part of the Solace Apartment development. This document is the Channel Analysis report for the Solace Apartments. The Sand Creek-Center Tributary Drainageway has been studied as part of a Flood Insurance Study (FIS) for El Paso County Colorado, Volume 7 of 8, revised December 7, 2018 and Sand Creek Drainage Basin Planning Study, dated January 1993. Existing flow rates from the Sand Creek Planning Study were used as the basis for the design of the existing channel condition.

### GENERAL LOCATION AND DESCRIPTION

#### Location

The proposed Solace Apartments, known as "Solace" from herein, is a parcel of land located in Section 7, Township 14 South, Range 65 West of the 6<sup>th</sup> Principal Meridian in El Paso County, Colorado. Solace is a 28.99 acre, urban, multifamily-development and is comprised of 16 apartment buildings and associated infrastructure. Solace is bound by existing industrial developments to the North and vacant land to the West. Galley Road bounds the property to the south and existing light industrial businesses to the east. A vicinity map of the area is presented in Appendix A.

### Description of Property

Solace is currently unoccupied and undeveloped. The existing ground cover is sparse vegetation and open space, typical of a Colorado rolling range land condition. In general, Solace slopes from northwest to southeast. The existing conditions of the Sand Creek -Center Tributary Drainageway on the site are heavily wooded for the length of the channel throughout the Solace site.

Per an NRCS web soil survey of the area, Solace is made up of Type B soils with a very small percentage of Type A in the northwest corner of the property. This Type B soil is a blendon sandy loam. This soil type has a moderate infiltration rate when thoroughly wet. It also consists of moderately deep or deep, moderately well drained or well drained soil. A soil survey map has been presented in Appendix A.

### Floodplain Statement

Based on the FEMA FIRM Map numbers 08041C0751G & 08041C0752G, dated December 7, 2018, a portion of the existing drainageway lies within Zone AE and Zone X. Zone AE is defined as area subject to inundation by the 1-percent-annual-chance flood event and is a flood hazard area. Zone X is defined as area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The FIRM Map has been presented in Appendix A. Currently a portion of the Solace site lies within Zone AE at the extension of Paonia Street to Galley Road, as seen in FEMA FIRM Map number 08041C0752G.

Solace lies within Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" prepared by Kiowa Engineering in January 1993.

The Sand Creek Drainage Basin covers approximately 54 square miles in unincorporated El Paso County, CO. The Sand Creek Drainage Basin is tributary to Fountain Creek. In its existing condition, the basin is comprised of developed land with the exception of the Solace Parcel which is comprised of rolling rangeland with fair to good vegetative cover associated with Colorado's semi-arid climate. The natural Drainageway within the site limits is typically deep and narrow with a well-defined flow path in most areas. Anticipated land use for the Solace parcel includes multifamily residential and open space.

As part of its drainage research, JR Engineering reviewed the following drainage studies, reports and LOMRs:

- Sand Creek Drainage Basin Planning Study prepared by Kiowa Engineering Corporation in January 1993.
- Flood Insurance Study– El Paso County, Colorado & Incorporated Areas Vol 7 of 8, December 2018.
- LOMR- Case No. 05-08-0368P Federal Emergency Management Agency, May 23, 2007.

The Sand Creek Drainage Basin Planning Study was used to establish a stormwater management plan for the existing and future stormwater infrastructure needs within the Sand Creek Drainage Basin. The Sand Creek Drainage Basin Planning Study conducted a hydrologic analysis using a runoff model named the Soil Conservation Service (SCS) Computer Program for the Project Formulation Hydrology (TR20). Based on provided drainage maps and analysis, in its existing condition, the Sand Creek-Center Tributary Drainageway contains a 100-year flow of 720 cfs at upstream station 1053 then jumps to 960 cfs at station 1030 in Sand Creek along Solace's east property line. The flow then changes again at station 1014, to a value of 956 cfs, where the flow from the secondary drainageway on Paonia Street converges with the Sand Creek Drainageway, this flow was based on JR Engineering analysis. These flows were used in the model as they were depicted as being the flows present in the project section of the Sand Creek Tributary Drainageway as called out in Sand Creek Drainage Basin Planning Study. The major Sand Creek-Center Tributary Drainageway conveys the stormwater south along the eastern property line where it ultimately outfalls into the Fountain Creek. JR Engineering also performed a hydrologic analysis to determine the flows in the Sand Creek-Center Tributary Drainageway and arrived at similar results to those shown in the Sand Creek Drainage Basin Planning Study, thus verifying the validity of these flows. These basin calculations show that the 720-960 cfs, based on the Sand Creek Drainage Basin *Planning Study*, are still valid for this existing condition, a summary table of the flows in the Sand Creek Drainageway based on various studies can be found below.

| SOLACE A                                                            | APARTMENTS                   |            |
|---------------------------------------------------------------------|------------------------------|------------|
| Sand Creek Center Trib                                              | outary Flow Summary Table    |            |
| Report/Study                                                        | Location                     | Flow (cfs) |
| Sand Creek DBPS, Kiowa Engineering,<br>Rev. March 1996, Table III-2 | DP 45, @ Galley Rd. Crossing | 1,340      |
| Sand Creek DBPS, Kiowa Engineering,<br>Rev. March 1996, CTP-2       | @ STA 125+00                 | 960        |
| Sand Creek DBPS, Kiowa Engineering,<br>Rev. March 1996, CTP-2       | @ STA 132+30                 | 720        |
| Flood Insurance Study, El Paso County,<br>Rev. December 7, 2018     | Section N, @ Galley Road     | 723        |
| JR Engineering October 2019                                         | @ Galley Road                | 956        |

FEMA prepared a revised FIS for El Paso County Colorado, Volume 7 of 8, dated December 7, 2018. The effective floodplain for the site is shown on the FIRM 08041C0752G, revised to reflect LOMR, dated May 23, 2007. The study area of the FIS where the Sand Creek Drainageway crosses Galley Road, was found to overtop the culverts and flow onto the road. According to the FIS, this crossing has a 10% annual chance of flooding and is located in Zone AE of the FIRM. This location is a Special Flood Hazard Area (SFHA) inundated by the 100-year flood, Zone AE (base flood elevations determined). The *Sand Creek Drainage Basin LOMR* was executed on May 23, 2007. The LOMR revised the flood zone or the area south of Galley Road. See FIRM Map Panel 08041C0752G for limits of LOMR study and revised flood zones, presented in Appendix C.

To the west of the Sand Creek-Center Tributary Drainageway is a secondary Drainageway that captures the flow coming from the west side of Paonia Street. This drainage way is located at the proposed extension of Paonia Street to meet Galley Road. The flows created by the secondary drainageway and the development north of the site will be captured on the Solace site, and transported to the Sand Creek-Center Tributary Drainageway. According to Sand Creek Drainage Basin LOMR, the flow present in this secondary drainageway in a 1-percent-annual-chance flood event is 213 cfs. This was calculated by use of the LOMR maps, and evaluating the difference in flow as the Sand Creek Center Tributary Drainageway splits as it crosses Omaha Boulevard. Section R of the FEMA Map Panel 08041C0752G, shows the split as the flow present in the channel drops to 421 cfs from 634 cfs at section S just upstream. The difference in these flows is 213 cfs this flow is assumed to overtop the road at Omaha Boulevard crossing structure, and travel west to Paonia Street and is routed south in the Sand Creek Center Tributary onto the Solace site. A calculation of the flows present in Paonia was also conducted by Galloway Engineering in the Preliminary Drainage Report and Floodplain Certification for Powers Center Point, dated October 1<sup>st</sup>, 2007. This report used a similar methodology in calculating the flows; however this analysis was made using LOMR data from 1997 with higher flows thus resulting in a calculated flow of 500 cfs. To be conservative, JR Engineering's design will be based on the 500 cfs specified, rather than the 213 cfs calculated. Additional information has been requested via FEMA FIS data request. When this additional data

can be obtained, a proposed channel improvements report including both main channel and overflow improvements will be updated to reflect the latest available information. At the current point in time, all available published data has been exhausted to prove a reduced flow rate in the overflow channel (Paonia Street).

Just north of the Solace site on Paonia Street a concrete channel exists that diverts a portion of the flows present in Paonia Street back into the Sand Creek-Center Tributary Drainageway. However the size of this channel will not convey all flows present in Paonia, therefore improvements are necessary to mitigate the offsite flows. Potential options to mitigate these flows are discussed below. Each possible alternative has been preliminarily evaluated to ensure feasibility in mitigating the secondary drainageway currently existing in Paonia Street.

The first conceptual option would be to have future Paonia Street continue to maintain an existing super elevation that will direct all flows present on Paonia towards the east side of the road. GIS contours indicate this super elevation exists, as well as confirmation stated by the Galloway Engineering Preliminary Drainage Report. The curb and gutter along the east side of Paonia will be omitted to create a 110 ft weir that will route flows back to the existing Sand Creek-Center Tributary Drainageway. The 110 ft weir would reduce into a 40 ft wide channel as it approaches the existing channel at a 45 degree angle. Flow calculations for this overflow design can be found in Appendix B, along with flow capacity calculations for existing Paonia Street & existing concrete channel north of the site.

A second conceptual option would be to create a low point in Paonia shortly after crossing south onto the subject property, thus creating a sump condition. The sump inlets would capture minor runoff and pipe it to the main channel, while a larger event would behave in a similar manner to the above scenario, routing via the same overflow weir and channel back to the main Sand Creek-Center Tributary Channel. The alternative profile for this scenario can be found in Appendix B, as well as on the preliminary Paonia Street Improvement plans.

Finally, a third option would be to widen the existing concrete channel at the property line to increase capacity enough to accept all flows from the overflow channel.

The first option has been presented in the drainage maps and preliminary plans associated with this report; however no alternative has been definitively selected at this time. One alternative or a combination of these alternatives may be utilized at time of final design to safely and efficiently route the Paonia Street overflow channel back to the main channel near the northern site boundary.

#### **Channel Deficiencies**

The *Sand Creek Drainage Basin Planning Study* performed a hydraulic analysis of the Sand Creek-Center Tributary Drainageway between Galley Road and Paonia Street, and an analysis of the crossing structure for Sand Creek at Galley Road. For the crossing structure at Galley Road they determined that the existing crossing structures were inadequate for the demands of the Drainageway and would require improvements to expand the capacity of these structures. These results can be seen in Table IV-1 Summary of Hydraulic Structures – Crossings: Sand Creek Drainage Basin Planning Study shown below. The Study proposed improvements to the existing crossing structures by replacing them with 3-8'Wx 5'H Concrete Box Culverts.

| TABLE IV-1: SUMMARY O<br>SAND CRE |            | LIC STRUCTURE<br>GE BASIN PLAN |                 |                      |                           |                                                                               |
|-----------------------------------|------------|--------------------------------|-----------------|----------------------|---------------------------|-------------------------------------------------------------------------------|
| LOCATION                          | REACH<br># | SIZE                           | ТҮРЕ            | CAPACITY<br>EXISTING | CAPACITY<br>FUTURE<br>(1) | COMMENTS                                                                      |
| Airport Road                      | CT-1       | 5-6'x8'                        | BOX CULVERT     | ADEQUATE             | ADEQUATE                  |                                                                               |
| Pikes Peak Ave.                   | CT-1       | NONE                           |                 | INADEQUATE           |                           | POWERS BLVD, OVERTOPPED FREQUENTLY BE-<br>TWEEN BIJOU ST. AND PIKES PEAK AVE. |
| Powers Blvd.                      | CT-1       | VARIOUS                        | METAL PIPE      | INADEQUATE           | INADEQUATE                |                                                                               |
| Platte Ave (US 24)                | CT-1       | 8'x4'                          | BOX CULVERT     | INADEQUATE           | INADEQUATE                | APPROACH CHANNEL IN NEED OF REALIGNMENT                                       |
| Terminal Avenue                   | CT-2       | 2-4'x8'                        | BOX CULVERT     | INADEQUATE           | INADEQUATE                |                                                                               |
| Galley Road                       | CT-2       | 3-42"x72"                      | METAL ARCH PIPE | INADEQUATE           | INADEQUATE                |                                                                               |
| Omaha Boulevard                   | CT-2       | 2-36"x57"                      | METAL ARCH PIPE | INADEQUATE           | INADEQUATE                |                                                                               |

The study also found the existing channel for the Sand Creek-Center Tributary Drainageway between Galley Road and Paonia Street to be inadequate for the given flow rate. The report says that the existing channel has limited maintenance access, leading to the channel degrading and being filled with obstructions. Those findings can be seen in Table IV-2 Summary of Hydraulic Structures – Channels: Sand Creek Drainage Basin Planning Study. The *Sand Creek Drainage Basin Planning Study* recommended improvements to the existing channel by lining the channel with concrete.

| TABLE IV-2: S                           | UMMAI<br>SAND C | RY OF I | HYDR/<br>DRAIN | AULIC<br>AGE B | STRUCTURES - CHANNELS<br>ASIN PLANNING STUDY |       |       |                                                                                                                 |
|-----------------------------------------|-----------------|---------|----------------|----------------|----------------------------------------------|-------|-------|-----------------------------------------------------------------------------------------------------------------|
| LOCATION                                | REACH           |         | DIMENS         | IONS           | TYPE                                         | CAPAG |       | COMMENTS                                                                                                        |
|                                         | #               | TW      | SS             | DEPTH          |                                              | ADO   | INADQ |                                                                                                                 |
| FROM / TO                               | -025 - 007      | (ft)    |                | (ft)           |                                              | AD Q  | 2.100 |                                                                                                                 |
| CENTER TRIBUTARY                        |                 |         |                |                |                                              | æ.,   |       |                                                                                                                 |
| East Fork Sand Creek<br>to Airport Road | CT-1            | 45      | 2:1            | 6              | Riprap lined trapezoidal channel             | x     | х     | Riprap has failed or is non-existent along some<br>portions of this segment of the Center Tributary             |
| Pikes Peak to<br>Bijou St.              | CT-1            |         |                | N/A            | Rubble lined disches along Povers Blvd.      |       |       | Flow passes over and along Powers Blvd. street section<br>on a frequent basis. Road closures common.            |
| Bijou St. to<br>Platte Ave.             | CT-1            |         |                | N/A            | Unlined, natural.                            |       |       | Overbanks vegetated, channel dry with sand invert, no.<br>vegetation. Channel eroded at outlet of US24 culvert. |
| Platte Ave. to<br>Terminal Ave.         | CT-2            | 15-25   | 1:1            | 4-6            | Trapezoidal concrete lined.                  | x     |       | Channel has adequate capacity.                                                                                  |
| Terminal Avenue to<br>Galley Road       | CT-2            | 21      | 1:1            | 5              | Trapezoidal concrete lined.                  | x     |       | Channel has adequate capacity.                                                                                  |
| Galley Road to<br>Paonia Ct. (ext)      | CT-2            | 30-40   | varies         | 4-5            | Unimproved segment.                          |       | x     | Channel is degraded and filled with debris. Poor<br>maintainance access.                                        |
| Paonia Ct. to<br>Omaha Bivd.            | CT-2            | 21      | 1:1            | 5              | Trapezoidal concrete lined channel.          | x     |       | Maintainence access poor. Debris and trash in channel.                                                          |

The GeoHecRas model results completed with this report contain similar findings to those in the drainage basin planning study. This model was based on the existing channel conditions; a model will be created for the sites proposed conditions in the final drainage report. Average velocities of 10-12 fps for a majority of the channel reach exceed allowable limits for an unprotected channel. The current Galley road crossing structures lack of capacity also leads to overtopping of the road during these events. This report confirms that both this Sand Creek channel reach and Galley Road crossing structures are inadequate for the 100-yr storm event.

#### **Channel Improvement Recommendations**

The Sand Creek Drainage Basin Planning Study (DBPS) concluded that the Sand Creek-Center Tributary Drainageway channel, in its current state, is inadequate to handle the historical flows tributary to the channel. This report falls in line, indicating that improvements shall be made to the channel in order to provide adequate capacity and prevent erosion. In the DBPS improvements are also designated for the crossing structures at Galley Road to provide adequate capacity and prevent overtopping of the

road. Upon further investigation, this report found that overtopping of Galley Road

appears to be addressed via the overflow structure and associate downstream bank protections shown in Figure 1. This weir was analyzed to determine the

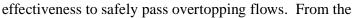





Figure 1: Existing Drainage Structures at Galley Road (Viewed from South)

HEC-RAS model, it was determined that approximately 581 cfs overtops the roadway during a 100year event. The weir in its current configuration could only adequately pass approximately 40 cfs of this flow. On the north side of the Galley road crossing, there is a section of roadway without curb & gutter; this allows the water transported along the north half of galley road to directly flow into the Sand Creek Center Tributary Drainageway. A picture of this curb opening is shown below in figure 2.



Figure 2: Curb Opening on North Half of the Galley Road Crossing (Looking to the North)

This analysis notes existing overtopping, further discussion with the county engineer to discuss potential solutions is recommended. One possible solution is that the existing culverts be replaced to prevent overtopping at Galley Road by upsizing to a larger culvert(s). Ultimately, culvert

improvements will be necessary when the County deems the historic overtopping of Galley Road above acceptable tolerance. Currently, no adjacent structures are impacted by this overtopping. Weir calculations can be found in the appendix.

Based upon the findings to the *Sand Creek Drainage Basin Planning Study* and the conforming GeoHecRas modeling contained in this report, potential recommended channel improvements include:

- Widening of the channel west bank to reduce flow depth, thus corresponding velocities
- Lining portions of the channel with riprap or other protective surfaces
- Adding check structures and potentially drop structures to reduce channel grade, a conceptual profile can be seen in Appendix A.
- Replacing existing culverts at Galley Road to prevent roadway overtopping

Stable slopes of 1% were chosen for the channel based on stable slope specified by The Sand Creek Drainage Basin Planning Study (DBPS.)

## CONCEPT COST ESTIMATE

Below is Conceptual Cost Estimate for the proposed channel improvements to the Sand Creek-Center Tributary Drainageway.

| PUBLIC DRAINAGE FACILITIES       |          |            |                |                  |
|----------------------------------|----------|------------|----------------|------------------|
| Item                             | Quantity | Unit       | Unit Price     | Extended<br>Cost |
| Clearing & Grubbing              | 2        | AC         | \$5,000.00     | \$10,000.00      |
| Channel Widening Earthwork (Cut) | 7000     | CY         | \$3.00         | \$21,000.00      |
| Riprap Lining (Type M)           | 5100     | CY         | \$85.00        | \$433,500.00     |
| Drop Structures                  | 2        | EA         | \$20,000.00    | \$40,000.00      |
|                                  |          |            | Sub-Total      | \$504,500.00     |
|                                  | 10       | 0% Eng. Ar | nd Contingency | \$50,450.00      |
|                                  |          |            | Grand Total    | \$554,950.00     |

 Table 3: Cost Opinion-Public Reimbursable

## DRAINAGE DESIGN CRITERIA

#### Development Criteria Reference

Storm drainage analysis techniques were taken from the "*City of Colorado Spring/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM), dated May 2014, as adopted by El Paso County.

### Hydrologic Criteria

The hydrologic analysis for this project is based on the *Sand Creek Drainage Basin Planning Study*. The flow rates for the 100-yr storm event were taken from sheets CTP-2 & CTP-3 of this study. The Baseline Flows from the *Sand Creek Drainage Basin Planning Study* are included in Appendix C.

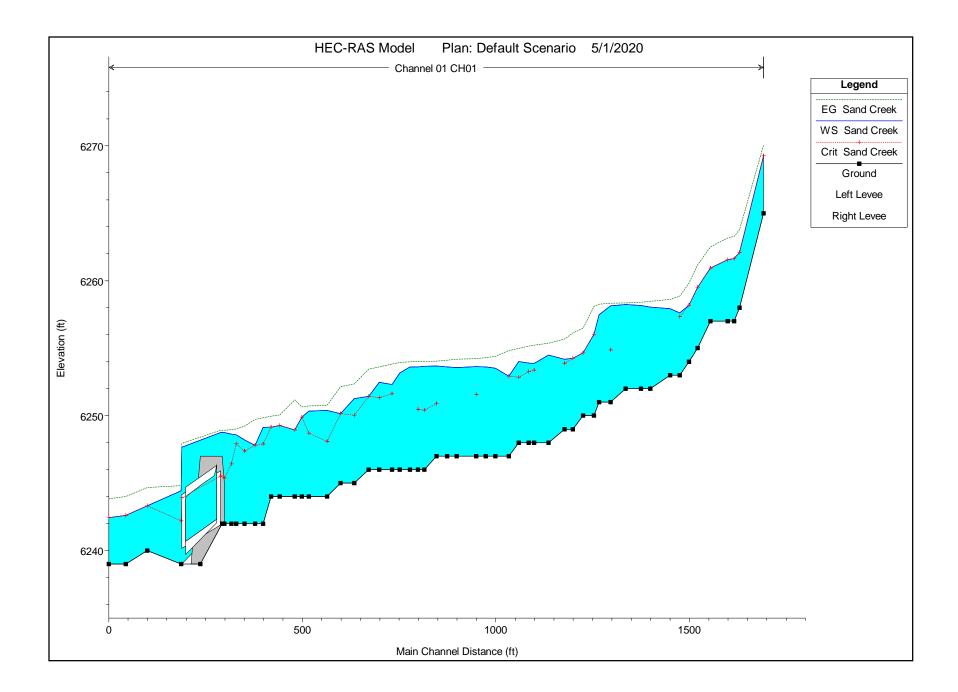
### Hydraulic Criteria

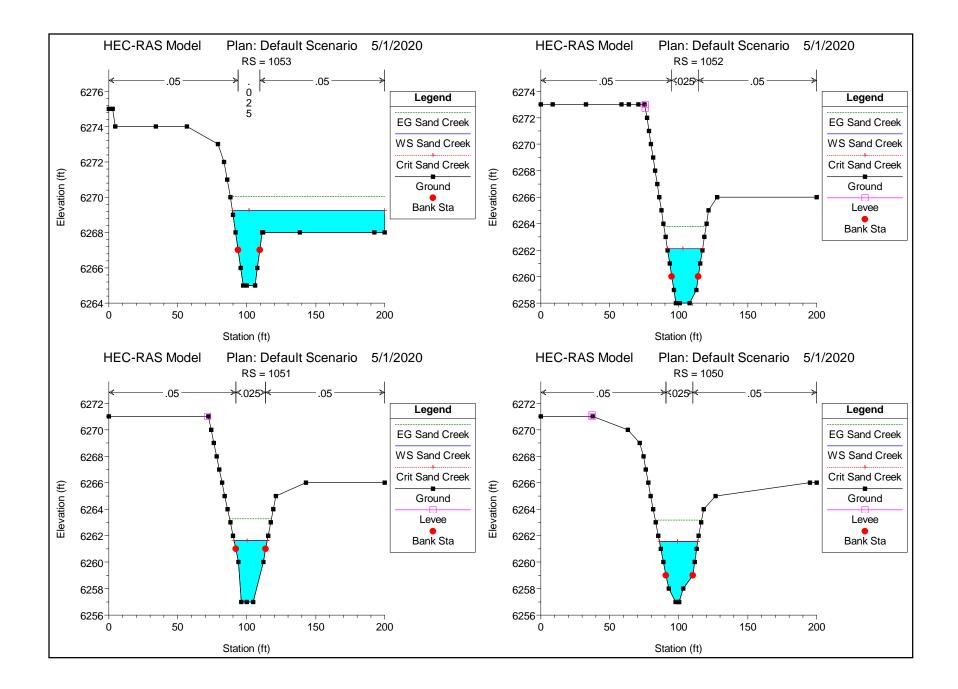
GeoHecRas was used as the primary analysis method for the site. GeoHecRas was used to model existing flows within the Sand Creek-Center Tributary Drainageway. This model was used to verify flood plains and analyze any overtopping that may occur within the project site. The 100-year water surface profiles for the model were analyzed form the north property line of the site to the area 100 feet south of the Galley Road Crossing. Hydraulic computations for the models are contained in Appendix B. In the model the value for the roughness coefficient (n) were based upon those shown in Table 12-2 of the City of Colorado Springs Drainage Criteria Manual, Volume 1. The manning's roughness coefficient for the sides of the channel was evaluated as n = 0.05, as the channel sides are most closely categorized as sluggish reaches with weeds, the minimum value of n was taken. For the bottom of the channel a manning's roughness coefficient value of n = 0.025, as the existing channel bottom being very clear and free of plants or other debris, the minimum value of n was taken. Table 12-2 highlights the manning values used for the model. The channel was analyzed as a winding channel in the GeoHecRas model.

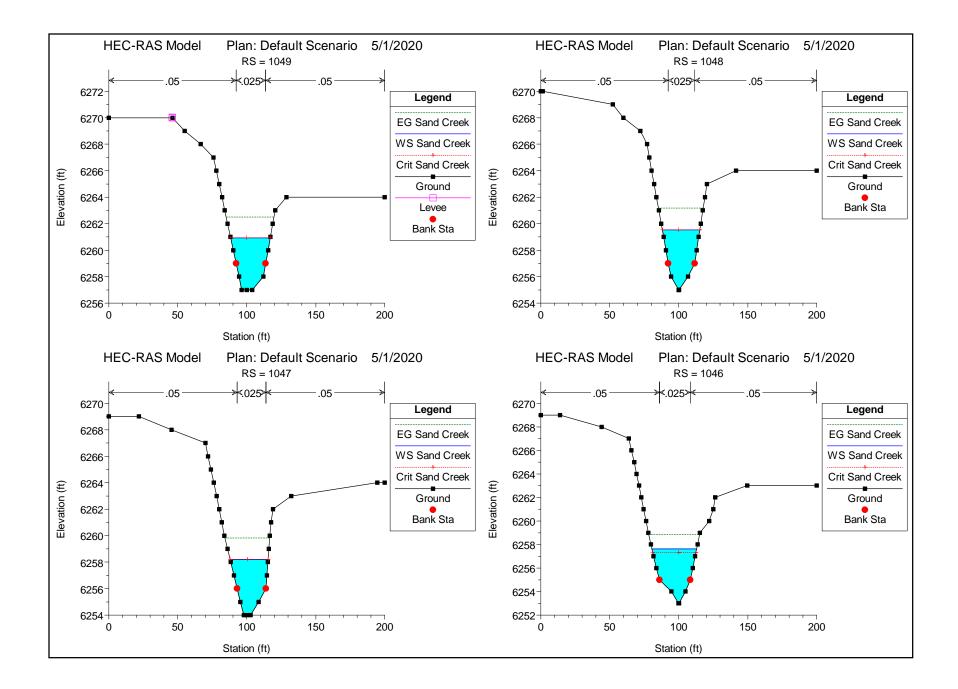
| Channel Description                                               | Roughn        | ess Coeffici | ient (n) |
|-------------------------------------------------------------------|---------------|--------------|----------|
| Channel Description                                               | Minimum       | Typical      | Maximum  |
| Natural Streams (top width at flood stage <100 feet               |               |              |          |
| <ol> <li>Streams on Plain</li> </ol>                              |               |              |          |
| <ul> <li>Clean, straight, full stage, no rifts or deep</li> </ul> | 0.025         | 0.030        | 0.033    |
| pools                                                             |               |              |          |
| b. Same as above, but more stones and weeds                       | 0.030         | 0.035        | 0.040    |
| c. Clean, winding, some pools and shoals                          | 0.033         | 0.040        | 0.045    |
| d. Same as above, but some weeds and stones                       | 0.035         | 0.045        | 0.050    |
| <ul> <li>Same as above, lower stages, more</li> </ul>             | 0.040         | 0.048        | 0.055    |
| ineffective slopes and sections                                   |               |              |          |
| <ol> <li>Same as c, but more stones</li> </ol>                    | 0.045         | 0.050        | 0.060    |
| <ul> <li>g. Sluggish reaches, weedy, deep pools</li> </ul>        | 0.050         | 0.070        | 0.080    |
| <ul> <li>h. Very weedy reaches, deep pools, or</li> </ul>         | 0.075         | 0.100        | 0.150    |
| floodways with heavy stand of timber and                          |               |              |          |
| underbrush                                                        |               |              |          |
| 2. Mountain Streams, no vegetation in channel, banks              |               |              |          |
| usually steep, trees and brush along banks                        |               |              |          |
| submerged at high stages                                          |               |              |          |
| a. Bottom: gravels, cobbles, and few boulders                     | See Jarrett's |              |          |
| <li>b. Bottom: cobbles with large boulders</li>                   | equation*     |              |          |

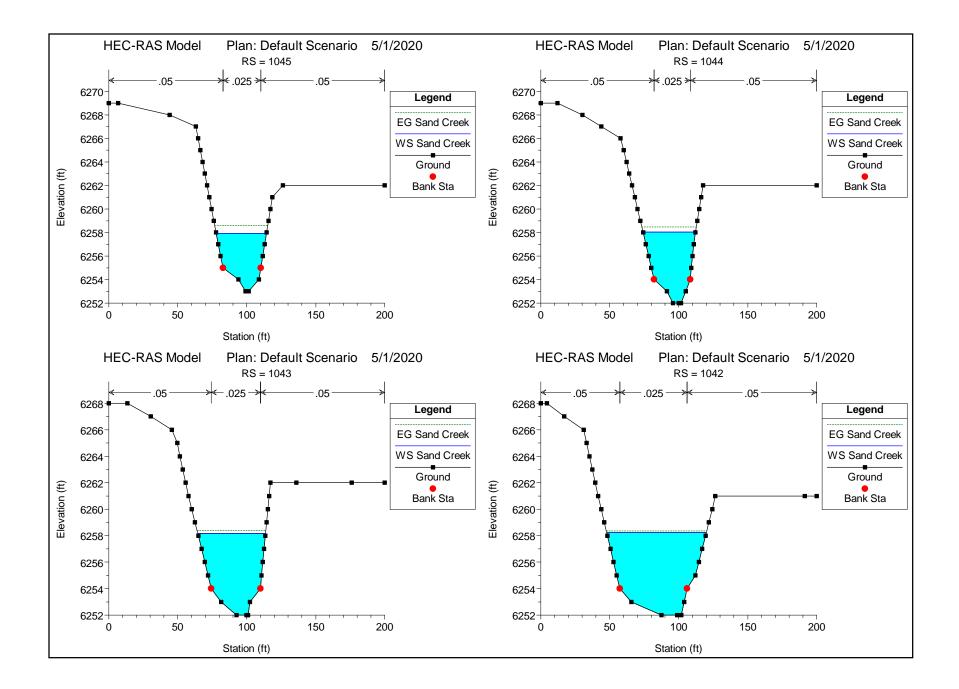
| Table 12-2. Roughness Coefficie | nts |
|---------------------------------|-----|
|---------------------------------|-----|

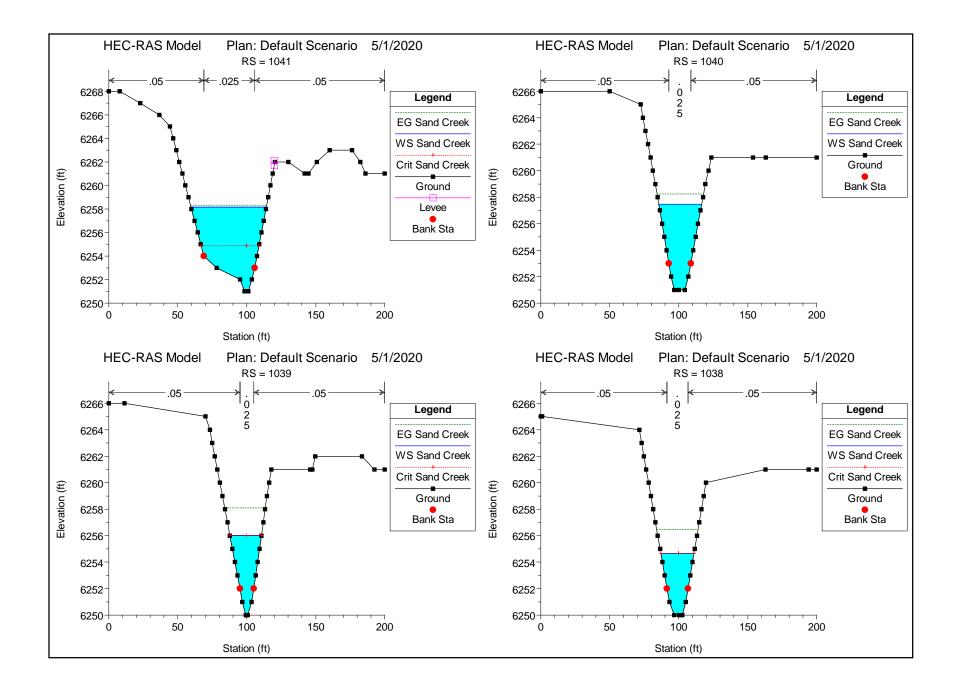
The flows in the channel, upstream and downstream of the Solace site, were determined using the sheet CTP-2 of the *Sand Creek Drainage Basin Planning Study*, with the flow 720 cfs being used at the upstream end of the channel till river station 1031 where the flow changes to 960 cfs, and once again at the Galley Road crossing to 1340 cfs. These can be seen in the GeoHecRas output table. Geometry of the channel and the crossing structure at Galley Road was determined from survey

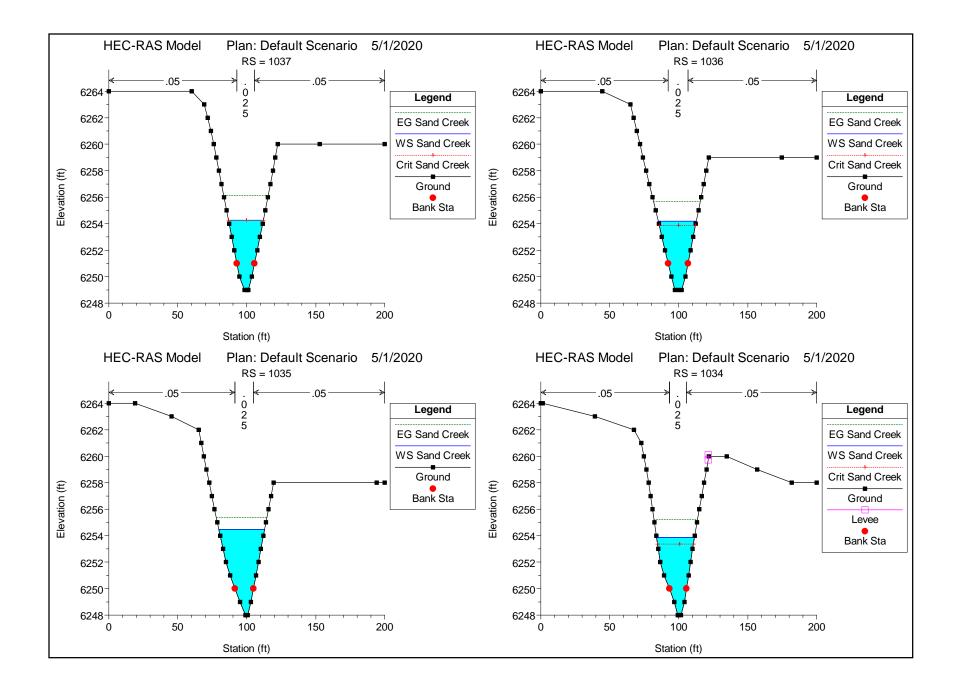

conducted by JR Engineering's internal survey department. The Galley road crossing structure was modeled in the GeoHecRas model; its geometric parameters were determined using survey obtained data to the crossing. The sizes of the 48" CMP culverts in the crossing were also determined from survey data.

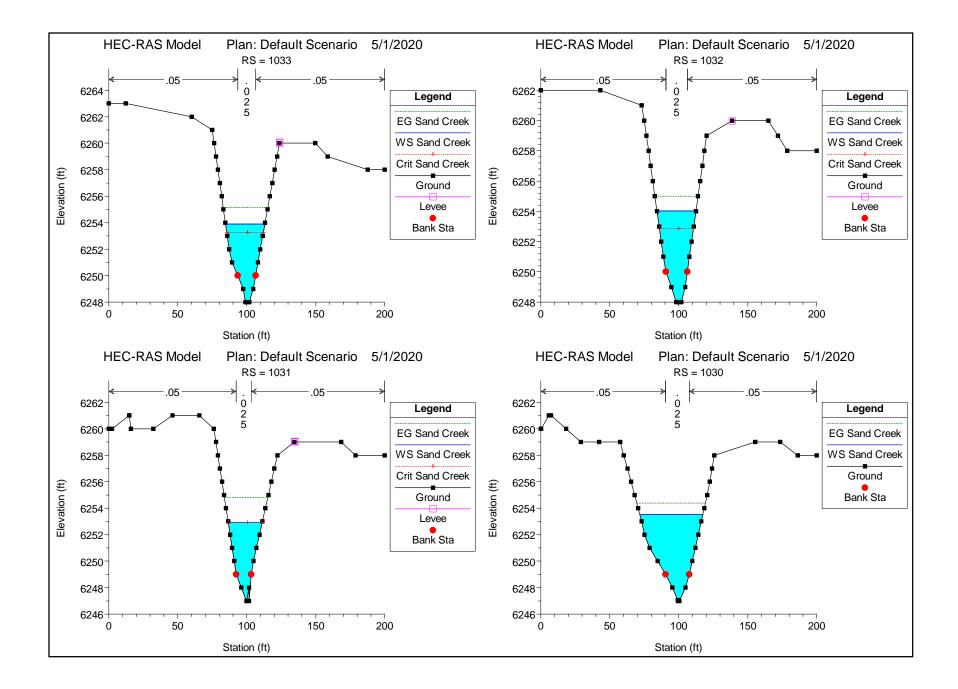

### SUMMARY

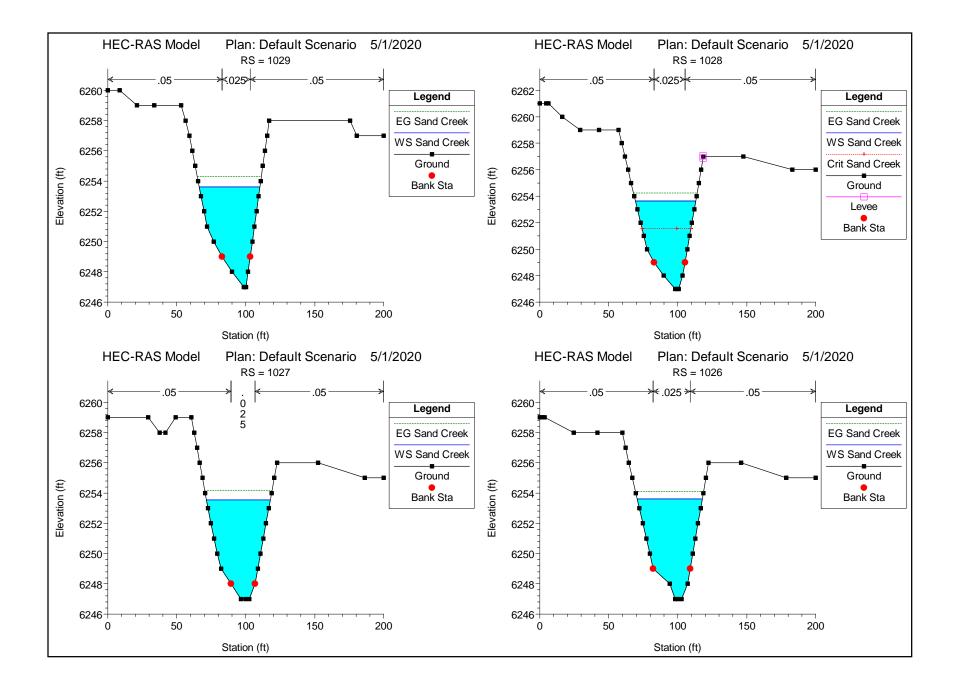

This analysis of the Sand Creek-Center Tributary Drainageway remains consistent with previous studies. Velocities in the drainageway are of concern and require channel improvements, such as widening and riprap lining to ensure the Sand Creek Drainageway remains stable during a 100-yr event. This report meets the latest El Paso County Drainage Criteria requirements for this site. The results of JR Engineering's GeoHecRas model for the channel appear accurate as the water surface elevations of the channel matchup very closely to the elevations called out in the FEMA FIS along the channel. The overtopping elevation at Galley Road shown in the model matches the elevation shown in the FEMA floodplain map of 6249, showing that the GeoHecRas model results are valid. **REFERENCES:** 

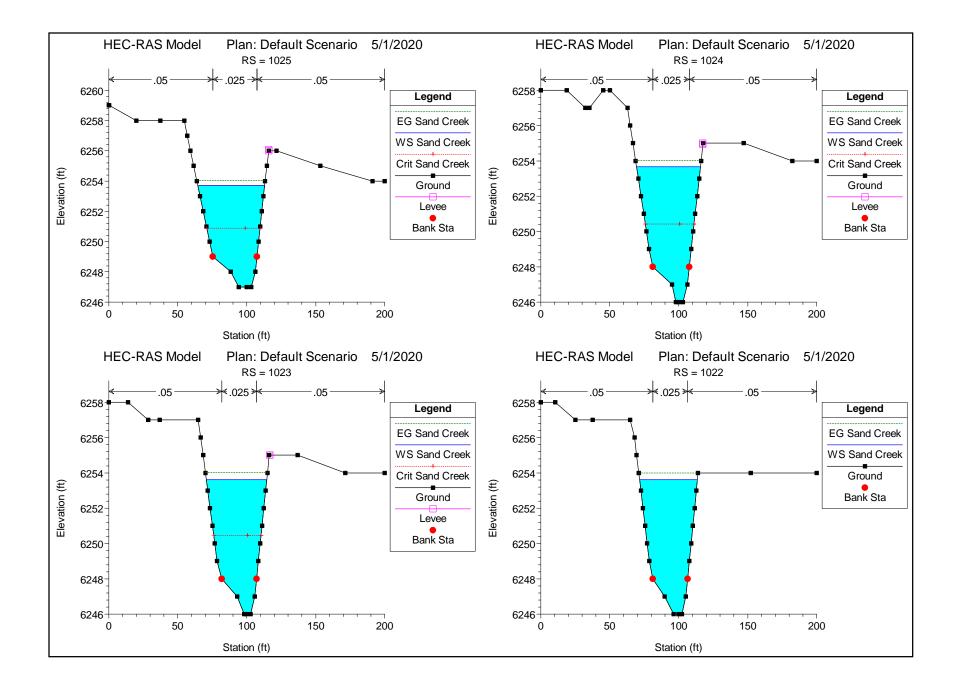

- 1. <u>El Paso County Drainage Criteria Manual Volume 1</u>, El Paso County, CO, 1994.
- 2. <u>Urban Storm Drainage Criteria Manual</u>, Urban Drainage and Flood Control District, Latest Revision.
- 3. <u>Flood Insurance Study- El Paso County, Colorado & Incorporated Areas Vol 7 of 8</u>, Federal Emergency Management Agency, December 7, 2018.
- 4. <u>Sand Creek Drainage Basin Planning Study</u>, Kiowa Engineering, January 1993.
- Sand Creek Drainage Basin LOMR, Federal Emergency Management Agency, May 23, 2007.
- 6. <u>Preliminary Drainage Report and Floodplain Certification for Powers Center Point</u>, Galloway Engineering, October 2007.

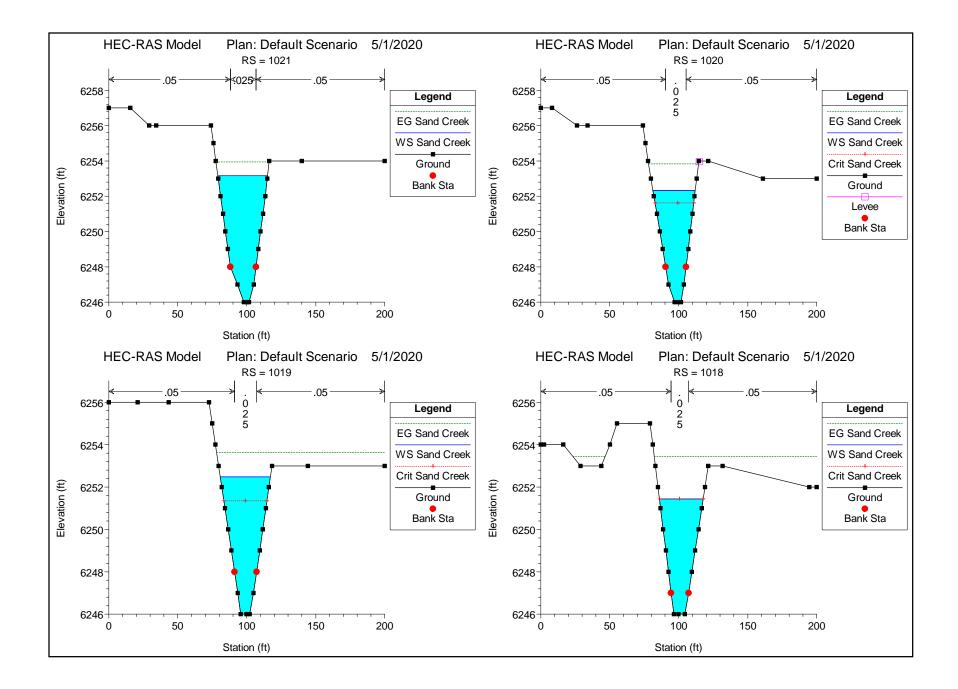

| Reach        | River Sta | Profile    | Q Total          | Min Ch El | W.S. Elev          | Crit W.S. | E.G. Elev | E.G. Slope | Vel Chnl     | Flow Area     | Top Width | Froude # Chl |
|--------------|-----------|------------|------------------|-----------|--------------------|-----------|-----------|------------|--------------|---------------|-----------|--------------|
|              |           |            | (cfs)            | (ft)      | (ft)               | (ft)      | (ft)      | (ft/ft)    | (ft/s)       | (sq ft)       | (ft)      |              |
| CH01         | 1053      | Sand Creek | 760.00           | 6265.00   | 6269.26            | 6269.26   | 6270.04   | 0.003762   | 8.51         | 179.27        | 110.42    | 0.77         |
| CH01         | 1052      | Sand Creek | 760.00           | 6258.00   | 6262.11            | 6262.11   | 6263.78   | 0.005804   | 10.49        | 77.83         | 25.50     | 0.96         |
| CH01         | 1051      | Sand Creek | 760.00           | 6257.00   | 6261.64            | 6261.64   | 6263.29   | 0.006883   | 10.30        | 74.47         | 24.12     | 0.98         |
| CH01         | 1050      | Sand Creek | 760.00           | 6257.00   | 6261.55            | 6261.55   | 6263.17   | 0.005614   | 10.36        | 81.50         | 27.77     | 0.96         |
| CH01         | 1049      | Sand Creek | 760.00           | 6257.00   | 6260.93            | 6260.93   | 6262.50   | 0.005917   | 10.15        | 80.51         | 28.71     | 0.97         |
| CH01         | 1048      | Sand Creek | 760.00           | 6255.00   | 6259.52            | 6259.52   | 6261.19   | 0.005730   | 10.51        | 80.21         | 27.19     | 0.97         |
| CH01         | 1047      | Sand Creek | 760.00           | 6254.00   | 6258.20            | 6258.20   | 6259.83   | 0.006013   | 10.34        | 79.30         | 27.50     | 0.98         |
| CH01         | 1046      | Sand Creek | 760.00           | 6253.00   | 6257.62            | 6257.33   | 6258.86   | 0.004369   | 9.10         | 93.85         | 32.59     | 0.85         |
| CH01         | 1045      | Sand Creek | 760.00           | 6253.00   | 6257.94            |           | 6258.62   | 0.002044   | 6.71         | 123.65        | 36.54     | 0.59         |
| CH01         | 1044      | Sand Creek | 760.00           | 6252.00   | 6258.04            |           | 6258.47   | 0.000942   | 5.39         | 158.77        | 38.15     | 0.42         |
| CH01         | 1043      | Sand Creek | 760.00           | 6252.00   | 6258.17            |           | 6258.40   | 0.000450   | 3.84         | 219.34        | 49.10     | 0.29         |
| CH01         | 1042      | Sand Creek | 760.00           | 6252.00   | 6258.25            |           | 6258.35   | 0.000192   | 2.60         | 333.13        | 72.33     | 0.19         |
| CH01         | 1041      | Sand Creek | 760.00           | 6251.00   | 6258.15            | 6254.86   | 6258.33   | 0.000342   | 3.46         | 250.00        | 54.53     | 0.26         |
| CH01         | 1040      | Sand Creek | 760.00           | 6251.00   | 6257.48            |           | 6258.25   | 0.001509   | 7.34         | 129.48        | 31.17     | 0.53         |
| CH01         | 1039      | Sand Creek | 720.00           | 6250.00   | 6256.03            | 6256.03   | 6258.09   | 0.005145   | 12.17        | 78.63         | 22.88     | 0.93         |
| CH01         | 1038      | Sand Creek | 720.00           | 6250.00   | 6254.65            | 6254.65   | 6256.48   | 0.005632   | 11.04        | 74.30         | 23.99     | 0.96         |
| CH01         | 1037      | Sand Creek | 720.00           | 6249.00   | 6254.26            | 6254.26   | 6256.12   | 0.005266   | 11.39        | 78.61         | 25.24     | 0.94         |
| CH01         | 1036      | Sand Creek | 720.00           | 6249.00   | 6254.18            | 6253.87   | 6255.67   | 0.004153   | 10.16        | 86.85         | 27.64     | 0.84         |
| CH01         | 1035      | Sand Creek | 720.00           | 6248.00   | 6254.49            |           | 6255.37   | 0.001997   | 8.12         | 123.42        | 33.33     | 0.60         |
| CH01         | 1034      | Sand Creek | 720.00           | 6248.00   | 6253.87            | 6253.37   | 6255.23   | 0.003530   | 9.97         | 96.29         | 27.50     | 0.78         |
| CH01         | 1033      | Sand Creek | 720.00           | 6248.00   | 6253.90            | 6253.27   | 6255.15   | 0.003218   | 9.54         | 100.27        | 28.48     | 0.75         |
| CH01         | 1032      | Sand Creek | 720.00           | 6248.00   | 6254.02            | 6252.85   | 6254.99   | 0.002212   | 8.21         | 107.83        | 28.30     | 0.63         |
| CH01         | 1031      | Sand Creek | 720.00           | 6247.00   | 6252.93            | 6252.93   | 6254.82   | 0.005902   | 11.67        | 81.05         | 24.65     | 0.92         |
| CH01         | 1030      | Sand Creek | 960.00           | 6247.00   | 6253.53            | 0202.00   | 6254.38   | 0.001956   | 8.14         | 169.51        | 45.64     | 0.61         |
| CH01         | 1029      | Sand Creek | 960.00           | 6247.00   | 6253.61            |           | 6254.29   | 0.001452   | 7.08         | 180.40        | 43.93     | 0.52         |
| CH01         | 1028      | Sand Creek | 960.00           | 6247.00   | 6253.63            | 6251.57   | 6254.24   | 0.001217   | 6.58         | 184.56        | 43.62     | 0.48         |
| CH01         | 1020      | Sand Creek | 960.00           | 6247.00   | 6253.56            | 0231.37   | 6254.17   | 0.001232   | 7.01         | 201.11        | 46.32     | 0.40         |
| CH01         | 1027      | Sand Creek | 960.00           | 6247.00   | 6253.62            |           | 6254.11   | 0.000969   | 5.82         | 199.63        | 47.17     | 0.30         |
| CH01         | 1025      | Sand Creek | 960.00           | 6247.00   | 6253.70            | 6250.88   | 6254.05   | 0.000644   | 4.85         | 227.01        | 48.43     | 0.45         |
| CH01         | 1023      | Sand Creek | 960.00           | 6246.00   | 6253.67            | 6250.42   | 6254.02   | 0.000576   | 4.98         | 235.21        | 46.35     | 0.34         |
| CH01         | 1024      | Sand Creek | 960.00           | 6246.00   | 6253.62            | 6250.47   | 6254.01   | 0.000626   | 5.21         | 235.21        | 43.80     | 0.35         |
| CH01         | 1023      | Sand Creek | 960.00           | 6246.00   | 6253.62            | 0230.47   | 6254.00   | 0.000620   | 5.19         | 223.03        | 43.80     | 0.35         |
| CH01         | 1022      | Sand Creek | 960.00           | 6246.00   | 6253.17            |           | 6253.94   | 0.001350   | 7.37         | 164.92        | 36.16     | 0.51         |
| CH01         | 1021      | Sand Creek | 960.00           | 6246.00   | 6252.32            | 6251.61   | 6253.84   | 0.001350   | 10.30        | 118.91        | 30.63     | 0.31         |
| CH01         | 1020      | Sand Creek | 960.00           | 6246.00   | 6252.32            | 6251.34   | 6253.62   | 0.002313   | 9.03         | 140.23        | 36.35     | 0.66         |
| CH01         | 1019      | Sand Creek | 960.00           | 6246.00   | 6251.44            | 6251.34   | 6253.62   | 0.002313   | 12.21        | 140.23        | 30.33     | 0.00         |
| CH01         | 1018      | Sand Creek | 960.00           | 6245.00   | 6251.44            | 6250.03   | 6252.37   | 0.002324   | 8.73         | 133.16        | 31.03     | 0.65         |
| CH01         | 1017      | Sand Creek | 960.00           | 6245.00   | 6250.14            | 6250.03   | 6252.37   | 0.002324   | 11.66        | 96.28         | 28.21     | 0.05         |
| CH01<br>CH01 | 1015      |            | 960.00           | 6245.00   | 6250.14            | 6248.09   | 6252.15   | 0.005299   | 5.11         | 215.92        | 53.82     | 0.39         |
| CH01<br>CH01 | 1015      | Sand Creek |                  | 6244.00   |                    |           |           |            |              |               |           | 0.39         |
| CH01<br>CH01 | 1014      | Sand Creek | 956.00<br>956.00 | 6244.00   | 6250.35<br>6249.89 | 6248.71   | 6250.72   | 0.000950   | 5.78<br>8.21 | 370.06 274.84 | 207.76    | 0.42         |
| CH01<br>CH01 | 1013      | Sand Creek |                  | 6244.00   |                    | 6249.89   | 6250.66   |            |              | 104.90        | 196.01    | 1.02         |
|              |           | Sand Creek | 956.00           |           | 6248.95            | 6248.95   | 6251.16   | 0.005865   | 12.67        |               | 38.16     |              |
| CH01         | 1011      | Sand Creek | 956.00           | 6244.00   | 6249.28            | 6249.28   | 6250.05   | 0.002387   | 8.46         | 279.17        | 203.66    | 0.66         |
| CH01         | 1010      | Sand Creek | 956.00           | 6244.00   | 6249.16            | 6249.16   | 6249.97   | 0.002504   | 8.54         | 254.79        | 169.44    | 0.67         |
| CH01         | 1009      | Sand Creek | 956.00           | 6242.00   | 6249.14            | 6247.90   | 6249.85   | 0.001612   | 7.93         | 276.71        | 166.57    | 0.55         |
| CH01         | 1008      | Sand Creek | 956.00           | 6242.00   | 6247.80            | 6247.80   | 6249.73   | 0.004748   | 11.73        | 106.54        | 31.47     | 0.91         |
| CH01         | 1007      | Sand Creek | 956.00           | 6242.00   | 6248.22            | 6247.39   | 6249.22   | 0.002263   | 9.17         | 222.13        | 127.82    | 0.66         |
| CH01         | 1006      | Sand Creek | 956.00           | 6242.00   | 6248.59            | 6247.92   | 6249.01   | 0.001105   | 6.67         | 368.21        | 181.76    | 0.46         |
| CH01         | 1005      | Sand Creek | 956.00           | 6242.00   | 6248.64            | 6246.43   | 6248.97   | 0.000738   | 5.28         | 352.19        | 168.51    | 0.38         |
| CH01         | 1004      | Sand Creek | 956.00           | 6242.00   | 6248.76            | 6245.39   | 6248.91   | 0.000242   | 3.31         | 399.38        | 160.30    | 0.22         |
| CH01         | 1003.56   |            | Culvert          |           |                    |           |           |            |              |               |           |              |
| CH01         | 1003      | Sand Creek | 956.00           | 6239.00   | 6244.43            | 6242.22   | 6244.82   | 0.000233   | 4.99         | 191.73        | 160.51    | 0.40         |
| CH01         | 1002      | Sand Creek | 956.00           | 6240.00   | 6243.32            | 6243.32   | 6244.68   | 0.001891   | 9.35         | 102.20        | 38.15     | 1.01         |
| CH01         | 1001      | Sand Creek | 956.00           | 6239.00   | 6242.61            | 6242.61   | 6244.01   | 0.001806   | 9.51         | 100.52        | 34.95     | 0.99         |
| CH01         | 1000      | Sand Creek | 956.00           | 6239.00   | 6242.44            | 6242.44   | 6243.85   | 0.001879   | 9.55         | 100.10        | 35.71     | 1.01         |

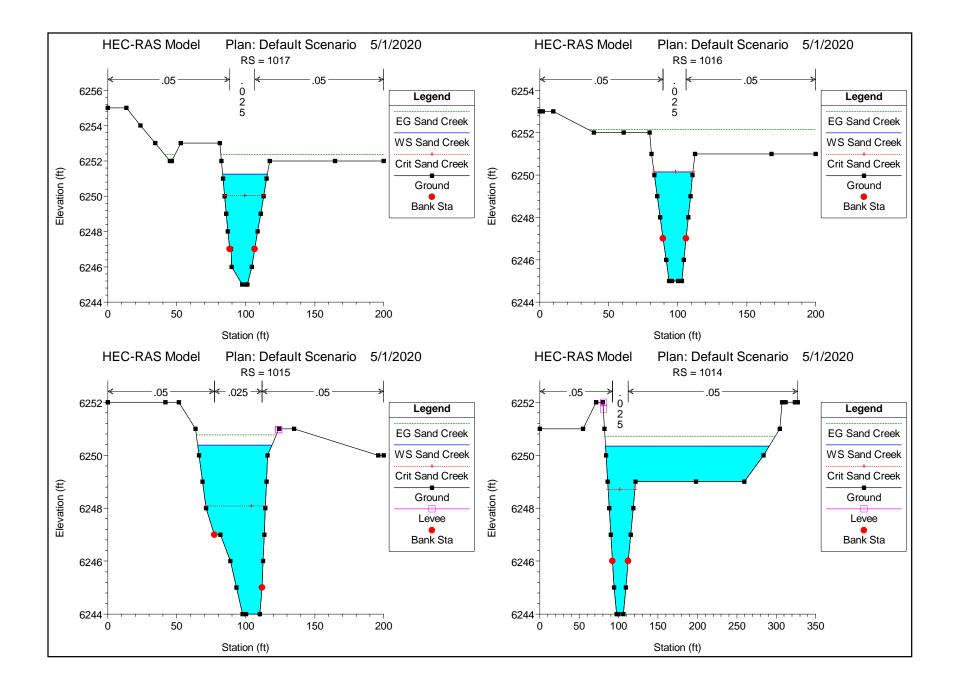


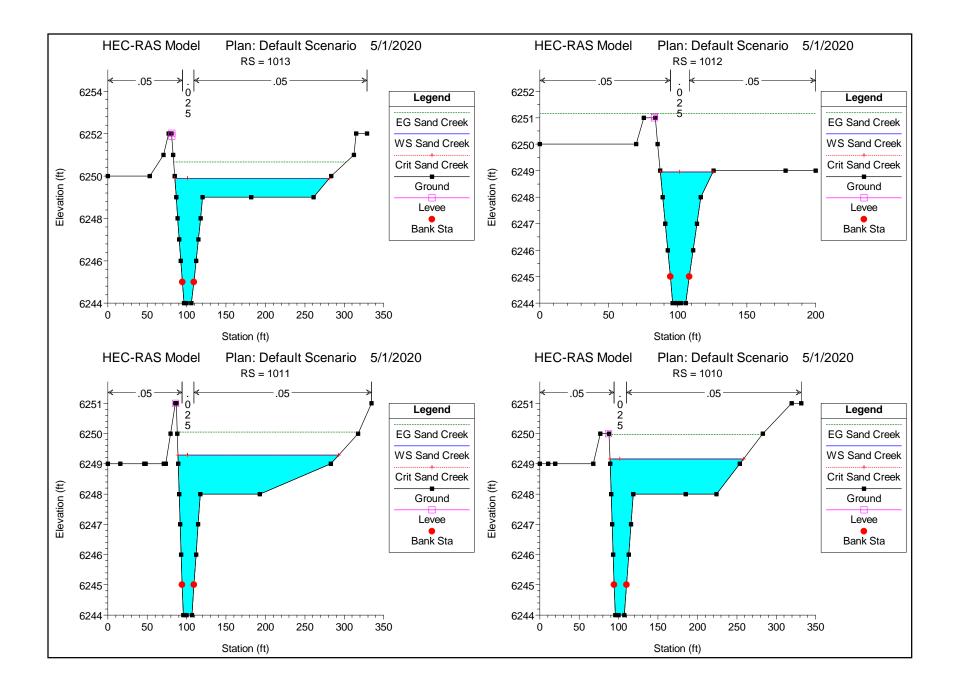



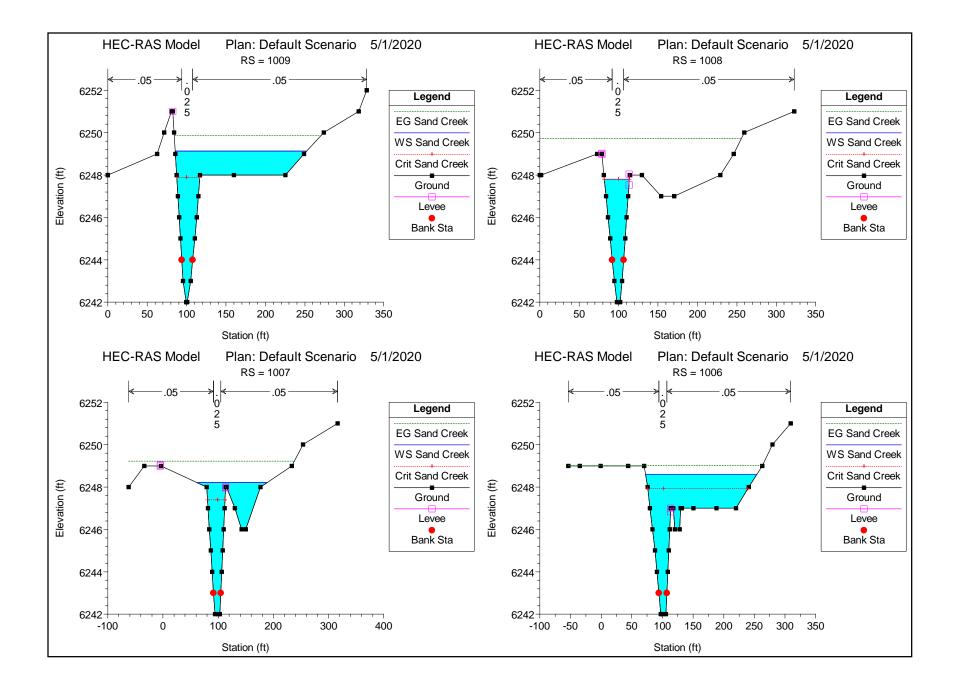



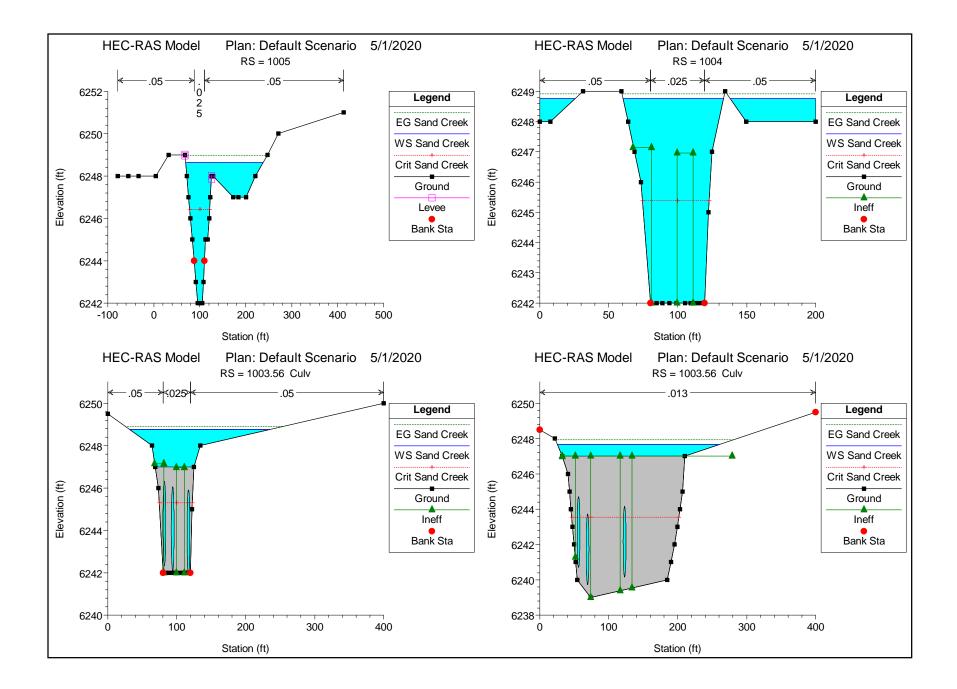



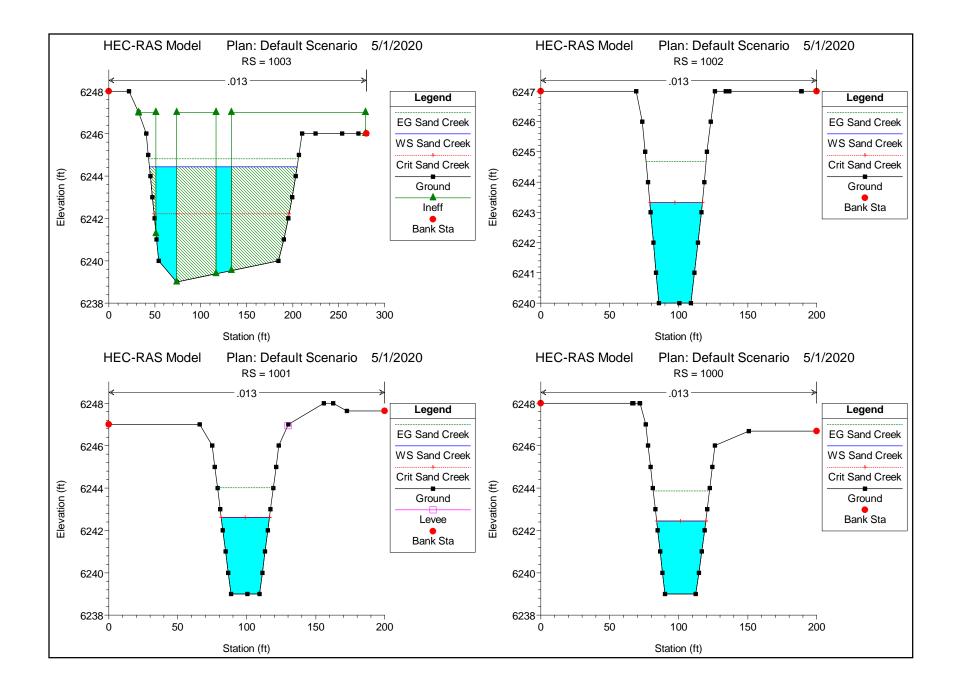



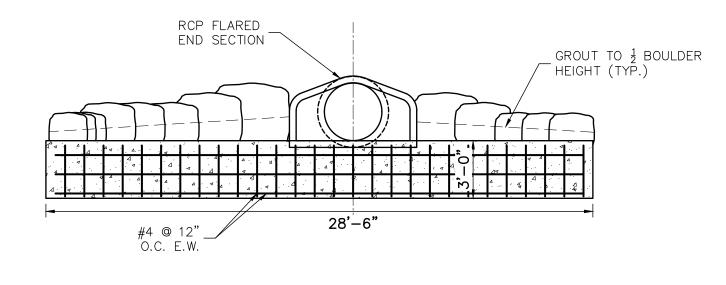



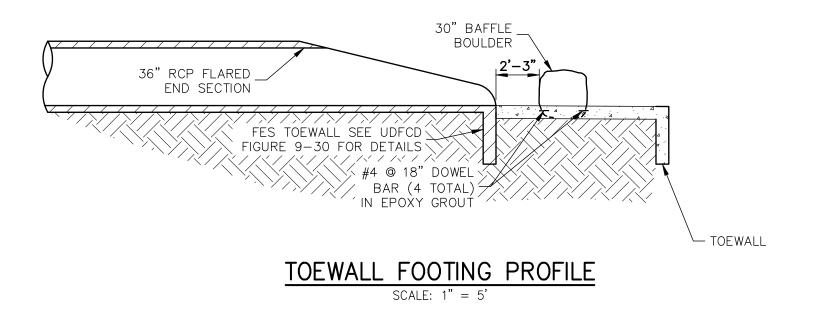





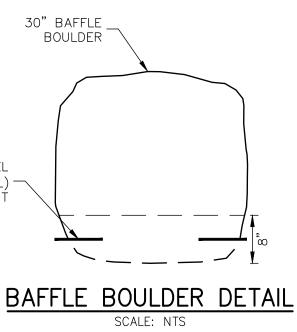





#### Worksheet for Rectangular Weir - 4' Openings (10)


| Project Description          |           |      |                 |
|------------------------------|-----------|------|-----------------|
| Solve For                    | Discharge |      |                 |
| Input Data                   |           |      |                 |
| Headwater Elevation          |           | 0.50 | ft              |
| Crest Elevation              |           | 0.00 | ft              |
| Tailwater Elevation          |           | 0.00 | ft              |
| Weir Coefficient             |           | 3.10 | US              |
| Crest Length                 |           | 4.00 | ft              |
| Number Of Contractions       | 0         |      |                 |
| Results                      |           |      |                 |
| Discharge                    |           | 4.38 | ft³/s           |
| Headwater Height Above Crest |           | 0.50 | ft              |
| Tailwater Height Above Crest |           | 0.00 | ft              |
| Flow Area                    |           | 2.00 | ft <sup>2</sup> |
| Velocity                     |           | 2.19 | ft/s            |
| Wetted Perimeter             |           | 5.00 | ft              |
| Top Width                    |           | 4.00 | ft              |
|                              |           |      |                 |







#4 @ 18" DOWEL BAR (4 TOTAL) IN EPOXY GROUT



ENERGY DISSIPATION STRUCTURE SOLACE APARTMENTS JOB NO. 25174.00 5/1/20 SHEET 1 OF 1



J·R ENGINEERING

A Westrian Company

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

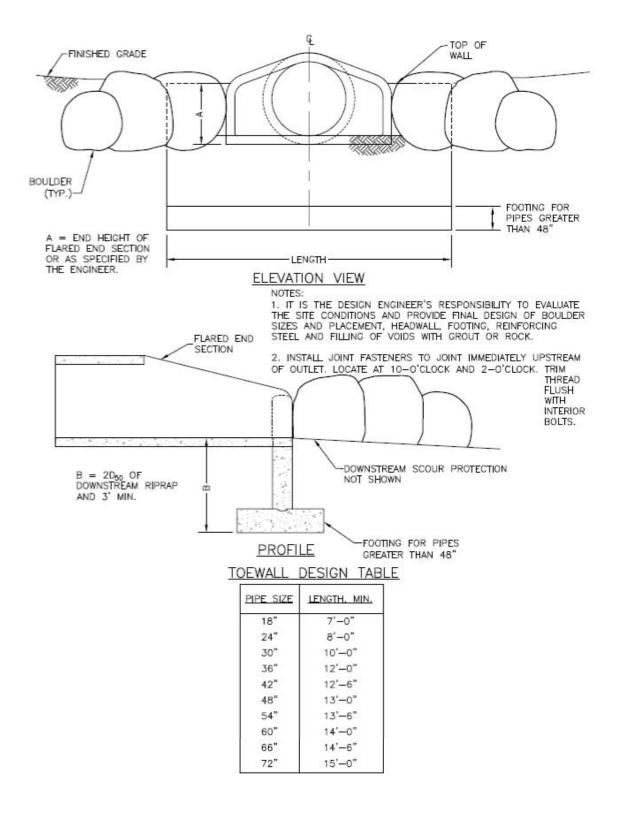
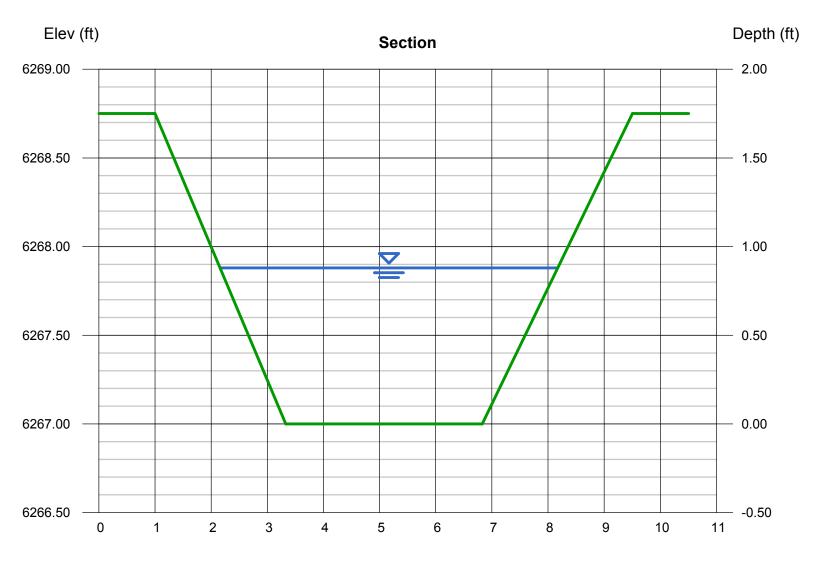



Figure 9-30. Flared end section (FES) headwall concept



# **Channel Report**


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Jun 25 2020

#### **Ex. Concrete Channel**

| Trapezoidal |  |
|-------------|--|
|-------------|--|

| Trapezoidal       |              | Highlighted         |         |
|-------------------|--------------|---------------------|---------|
| Bottom Width (ft) | = 3.50       | Depth (ft)          | = 0.88  |
| Side Slopes (z:1) | = 1.33, 1.53 | Q (cfs)             | = 42.08 |
| Total Depth (ft)  | = 1.75       | Area (sqft)         | = 4.19  |
| Invert Elev (ft)  | = 6267.00    | Velocity (ft/s)     | = 10.05 |
| Slope (%)         | = 1.41       | Wetted Perim (ft)   | = 6.57  |
| N-Value           | = 0.013      | Crit Depth, Yc (ft) | = 1.37  |
|                   |              | Top Width (ft)      | = 6.02  |
| Calculations      |              | EGL (ft)            | = 2.45  |
| Compute by:       | Known Depth  |                     |         |
| Known Depth (ft)  | = 0.88       |                     |         |



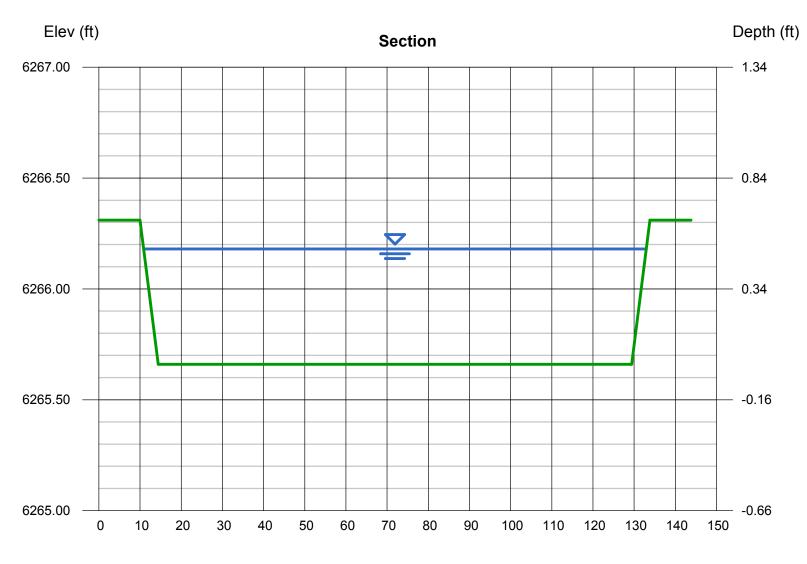
# Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

#### **Paonia Street Weir**

| Compound Weir      |          | Highlighted     |          |
|--------------------|----------|-----------------|----------|
| Crest              | = Sharp  | Depth (ft)      | = 1.24   |
| Bottom Length (ft) | = 115.00 | Q (cfs)         | = 439.00 |
| Total Depth (ft)   | = 1.25   | Area (sqft)     | = 125.10 |
| Length, x (ft)     | = 80.00  | Velocity (ft/s) | = 3.51   |
| Depth, a (ft)      | = 0.50   | Top Width (ft)  | = 115.00 |
| Calculations       |          |                 |          |
| Weir Coeff. Cw     | = 3.33   |                 |          |
| Compute by:        | Known Q  |                 |          |
| Known Q (cfs)      | = 439.00 |                 |          |




# **Channel Report**

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 26 2020

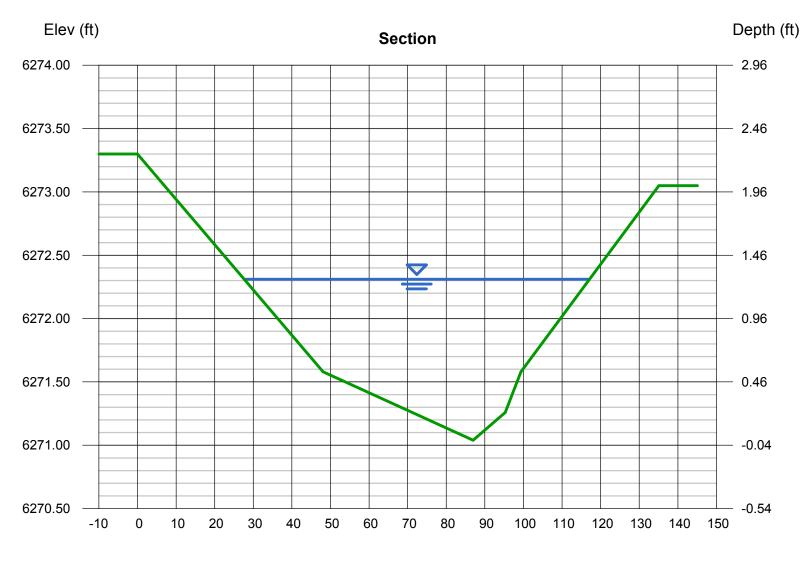
#### **Overflow Channel**

| Trapezoidal       |              | Highlighted         |          |
|-------------------|--------------|---------------------|----------|
| Bottom Width (ft) | = 115.00     | Depth (ft)          | = 0.52   |
| Side Slopes (z:1) | = 6.80, 6.80 | Q (cfs)             | = 439.00 |
| Total Depth (ft)  | = 0.65       | Area (sqft)         | = 61.64  |
| Invert Elev (ft)  | = 6265.66    | Velocity (ft/s)     | = 7.12   |
| Slope (%)         | = 1.68       | Wetted Perim (ft)   | = 122.15 |
| N-Value           | = 0.017      | Crit Depth, Yc (ft) | = 0.65   |
|                   |              | Top Width (ft)      | = 122.07 |
| Calculations      |              | EGL (ft)            | = 1.31   |
| Compute by:       | Known Q      |                     |          |
| Known Q (cfs)     | = 439.00     |                     |          |
|                   |              |                     |          |



Reach (ft)

# **Channel Report**


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 26 2020

#### Paonia Street Ex.

| User-defined     |           | Highlighted         |          |
|------------------|-----------|---------------------|----------|
| Invert Elev (ft) | = 6271.04 | Depth (ft)          | = 1.27   |
| Slope (%)        | = 1.00    | Q (cfs)             | = 500.00 |
| N-Value          | = 0.016   | Area (sqft)         | = 66.09  |
|                  |           | Velocity (ft/s)     | = 7.57   |
| Calculations     |           | Wetted Perim (ft)   | = 89.48  |
| Compute by:      | Known Q   | Crit Depth, Yc (ft) | = 1.56   |
| Known Q (cfs)    | = 500.00  | Top Width (ft)      | = 89.43  |
|                  |           | EGL (ft)            | = 2.16   |
|                  |           |                     |          |

(Sta, El, n)-(Sta, El, n)... ( 0.00, 6273.30)-(48.06, 6271.58, 0.016)-(86.95, 6271.04, 0.016)-(95.27, 6271.26, 0.016)-(99.33, 6271.58, 0.016)-(135.09, 6273.05, 0.016)





To: El Paso County Engineering Division

From: Mike Bramlett, PE

Date: August 27, 2021

Subject: Sand Creek Center Tributary Channel Improvements

The purpose of this letter is to provide design information for the existing conditions of the Sand Creek Center Tributary Drainageway, located east of the Solace Apartments site. This letter will also discuss the proposed improvements for the channel, design methodology, and the modeling results. For further information on the previous evaluation of the channel in its existing conditions and conceptual design, see the *Sand Creek – Center Tributary Channel Analyses Report for Solace Apartments* by JR Engineering. For further information concerning drainage for the Solace Apartments Site, see the *Final Drainage Report for Solace Apartments*, by JR Engineering.

#### **Project General Discussion**

The Sand Creek Center Tributary Channel is located in Section 7, Township 14 South, Range 65 West of the 6<sup>th</sup> Principal Meridian in El Paso County, Colorado. The site is part of the Solace Apartments project and is located on the eastern edge of the project. As part of the proposed improvements for the Solace Apartments Project, this reach of the Sand Creek Center Tributary will also be improved. The sections upstream and downstream of the site have already undergone improvements, and the channel in its current state shows extensive flooding in a 100 year event. In addition to improvements to the Sand Creek Center Tributary Channel, the channels secondary drainageway located to the west of the channel in Paonia Street will also be improved with an overflow channel that will direct flow present in the secondary drainageway into the main channel and avoid further flooding of the Paonia Street extension into the Solace Apartments site.

#### **Channel Flows**

Evaluation of the flows present in the Sand Creek Center Tributary and its secondary drainageway were discussed in detail in the *Sand Creek – Center Tributary Channel Analysis for Solace Apartments* by JR Engineering. Since the initial analysis of the channel took place, JR Engineering was able to acquire the modeling data used by FEMA for determination of flood plain modeling shown in FEMA FIRM 08041C0752G. JR Engineering assumes FEMA's flows to be accurate, and thus utilized these as the basis for our model. The main channel contains 820 cfs of flow and the secondary channel contains 217 cfs. The flow in the main channel then jumps up to 1,037 cfs at the convergence of the secondary drainageway. The convergence of these flows occurs just upstream of the Galley Road crossing, where existing topography directs the secondary drainageway into the main channel. Downstream an existing channel coming from nearby Valley Road (east)

converges with the main channel; we then utilized FEMA's 1,100 cfs to model the remaining portion of the channel.

#### **Existing Channel Conditions**

In its existing conditions the Sand Creek Center Tributary Channel along the Solace site consists of a natural channel overgrown with trees and bushes along the sides of the channel with the bottom being relatively clean and free of obstacles. The 1,350 LF reach of the Sand Creek Center Tributary Channel located incorporated with the Solace site is undeveloped, as compared to the majority of channels in the basin which have had some improvement. Downstream and upstream sections of the Sand Creek Center Tributary Channel are concrete lined. The secondary Drainageway located in Paonia Street flows south from Omaha Blvd to the Solace Apartments site where flow splits between an existing concrete channel running east to the main Sand Creek Center Tributary Channel, and a swale flowing south where it eventually rejoins the main channel at the Galley Road crossing. It is anticipated that the concrete channel will divert 42 cfs from the 217cfs present in the secondary drainageway, with 175 cfs flowing south down the existing swale. There is also an existing channel coming from Valley Road to the east. This channel intersects the main channel approximate halfway between the north and south limits of the site, adding 63 cfs to the main channel, as discussed in the Channel Flows section above. In its existing conditions, the Sand Creek Center Tributary Channel FEMA firm panel 08041C0752G, depicts 100 year flooding extending into the adjacent properties to the east and onto Paonia Street improvements to the west. The existing channel currently overtops the Galley Road crossing; primarily due to the capacity of the culverts at the crossing rather than the channel's current conditions.

#### **Proposed Channel Improvements**

As determined by the Sand Creek Drainage Basin Planning Study (DBPS) & and JR Engineering Sand Creek -Center Tributary Channel Analysis for Solace Apartments, this section of the Sand Creek Center Tributary will require improvements to ensure adequate capacity in the channel and protection against erosive velocities. In order to be consistent with improvements already made in the surrounding area and to align with the recommendations made by the DBPS, JR Engineering is proposing concrete lining of the channel along the Solace site, along with widening of the existing channel and modification to the channel alignment in this area. JR Engineering is also proposing the addition of a USBR Type III Stilling Basin and 10 foot sloped concrete drop in the channel, in order to force a hydraulic jump in the channel and reduce velocities present in the channel while still matching existing grades for the majority of channel alignment. The design methodology of the sloped drop and USBR Type III Stilling Basin are based on the design procedure for Stilling Basins presented in the Federal Highway Administrations Hydraulic Engineering Circular No. 14, Chapter 8. Calculation for stilling basin and accessories sizing can be found in the Appendix of this letter. The proposed channel section shall be a trapezoidal channel section with a 10' bottom width, with a minimum channel depth of 6.5' and side slopes varying from 3:1 to 2:1 along the channel's alignment. The channel shall be lined with concrete for a depth of 4.5' to protect the channel from the erosive velocities present in the channel, with an average depth of flow in a 100 year event for the proposed channel being approximately 4' this will provide a minimum freeboard of 2' from the top of the channel to the 100 year water surface, adhering to the DCM Volume 1 for minimum freeboard of 1.4'. The concrete section shall typically be a 6" thick concrete apron for the channel, with sections of the section of channel located within the sloped drop and stilling basin being a 12"

thick concrete apron. In accordance with the DBPS the channel shall be designed with a stable slope of 1% for the majority of the channel. For further details please see the Channel Improvement Plans included in the Appendix of this letter. In order to reduce the velocities present in the channel and avoid excessively steep slopes for extended portions of the channel's alignment, a 100' long sloped drop structure, with a total vertical drop of 10', will be placed at the upstream end of the channel. At the base of the drop will be a USBR Type III Stilling Basin that will include chute blocks, baffle blocks and a sill wall to decrease the velocity of the water coming down the sloped drop and force a hydraulic jump. This basin will also include a low flow channel through the sill wall located at the end of the stilling basin to allow water movement through the structure at lower flows and prevent ponding of water in the structure. Further detail for the sloped drop and stilling basin can be found in the channel improvement plans shown in the Appendix.

#### Paonia Street Secondary Drainageway Improvements

Part of the Sand Creek Center Tributary Improvements also includes the addition of a diversion channel that will direct flows present in the Paonia Street Secondary Drainageway into the main channel. This diversion will be known as the Overflow Channel for the remainder of this letter. Just north of the Overflow Channel, the existing Paonia Street is partially supered in existing conditions routing all flows present in the street to the east side. With major flows present in the existing Paonia Street present on the east side of the road, the Overflow channel will act as a large opening weir and divert flows to the main channel. The Overflow Channel shall be a concrete and riprapped lined channel with varying widths and depths that will convey the flows present in Paonia Street into the main channel. The diversion channel shall be concrete from the edge of Paonia to the right-of-way, after which it will become a riprap trapezoidal channel section with a typical bottom width of 20' and a depth of 2'-3'. The channel will run east from Paonia until it intersects with the proposed Sand Creek Center Tributary Channel alignment, where it will outfall just upstream of the proposed sloped drop in the channel. Just south of the diversion channel opening along Paonia Street will be two 15'type R inlets, that will be used to capture nuisance flows in the curb & gutter and also any flow that may bypass the diversion channel. These inlets are a redundant and not intended to capture any flows present in Paonia as the Overflow Channel is sized and designed to capture all flows present in Paonia; each inlet has a total intercept capacity of 17cfs for a total of 34cfs combined. These inlets will directly outfall into the main channel and will not be detained by any of the onsite detention ponds. For further detail on the diversion channel please see the channel improvement plans, and for detail on the type R inlets see the exert of the Solace Construction Drawings, both shown in the Appendix of this letter.

#### **Modeling Results**

The proposed conditions of the channel and its second Drainageway were modeled using GeoHecRas to determine the extents of the 100 year floodplain for the site. Flow rates from the model were used based on those discussed in the Channel Flows section and Existing Conditions section of this letter. The model was run with downstream boundary conditions for each reach using critical depths, and the entirety of the model was ran using steady flow conditions. The model was contains four separate reaches, with the main reach modeling the proposed alignment and conditions for the Sand Creek Center Tributary Channel. The other reaches modeling the Paonia Street Overflow Channel, the existing concrete overflow channel at Paonia and an existing channel that runs east to west from Valley Street and intersects the Sand Creek Center Tributary Channel, each reach

5475 Tech Center Drive, Ste 235 Colorado Springs, CO 80909 303-740-9393 • Fax: 303-721-9019 www.jrengineering.com intersection were modeled using the energy equation. The model used manning's values (n) of 0.013 for the concrete lining, 0.033 for the riprap of the overflow channel, and 0.03 for the any location outside of the concrete or riprap extents as they were determined to be most similar to a grassed area with some weeds. The results of the GeoHecRas model show that the proposed improvements to the channel substantially reduce the extents of the flood plain in the channel and contain the 100 year flood plain within the concrete extents of the channel. The results also show a maximum velocity in the channel of 10.32 ft/s in a 100 year event, showing that the concrete lining of the channel will provide sufficient protection from erosive velocities present in the channel. The GeoHecRas model for the proposed conditions also shows overtopping of the channel crossing at Galley Road, which is consistent with the flood data presented by the FEMA FIRM 08041C0752G. Flooding of the roadway is due to the insufficient capacity of the culvert crossing in this area, with the current configuration of three 48" CMP culverts only providing 365 cfs of capacity of the 1,100 cfs flow at the crossing. Flooding of the Galley Road Crossing could be alleviated by upsizing of the culvert(s), these improvements will be necessary when the County deems the historic overtopping of Galley Road to be above acceptable tolerance. The channel improvements did not results in any change to existing overtopping of Galley Road as this is due to insufficient capacity of the culverts at this crossing, which will ultimately be addressed at a later date. Further details on the model results can be found in the Appendix.

#### Summary

The analysis of the proposed improvements of the Sand Creek Center Tributary Drainageway and its secondary drainageway located in Paonia Street show significant reduction of the flood plain extents, with it now being contained within the channel extents and no longer extensively flooding properties adjacent the proposed Solace Apartment Site. The proposed diversion channel also redirects flow that would otherwise flood the proposed extension of Paonia Street back into the channel, thus alleviating the risk of the roadway flooding in a 100 year event.

Please contact me should you have any questions or concerns regarding this letter at 303-740-9393.

Sincerely, JR ENGINEERING, LLC

Mike Bunlitt

Mike Bramlett, PE JR Engineering

## **ABBREVIATIONS**

| AC<br>AD<br>AH<br>ARCH<br>ASCE                      | ACRE<br>ALGEBRAIC DIFFERENCE<br>AHEAD<br>ARCHITECT<br>AMERICAN SOCIETY OF CIVIL                                                                                        | FDF<br>FDF<br>FES<br>FG<br>FH                          |
|-----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| ASS'Y<br>AVE<br>BB<br>BK                            | ENGINEERS<br>ASSEMBLY<br>AVENUE<br>BOX BASE<br>BACK<br>BOUNDARY                                                                                                        | FL<br>FIL<br>GB<br>GE<br>GIS                           |
| BOV<br>BFV<br>BLVD<br>BW<br>C&G<br>CATV             | BLOW OFF VALVE<br>BUTTERFLY VALVE<br>BOULEVARD<br>BOTTOM OF WALL<br>CURB & GUTTER<br>CABLE TELEVISION<br>CATCH BASIN<br>CONCRETE BOX CULVERT<br>COLORADO DEPARTMENT OF | GL<br>GPS<br>GV<br>HC<br>HDC<br>HDC<br>HO<br>HQL<br>HO |
| CDS<br>CFS<br>CL<br>CLOMR                           | TRANSPORTATION<br>CUL-DE-SAC<br>CUBIC FEET PER SECOND<br>CENTER LINE<br>CONDITIONAL LETTER OF MAP<br>REVISION                                                          | I<br>IE<br>INT<br>INV<br>IRR<br>KB                     |
| CLR<br>CMP<br>CO<br>CONC<br>CR<br>CSP<br>CT<br>CTRB | CLEAR<br>CORRUGATED METAL PIPE<br>CLEAN OUT<br>CONCRETE<br>CIRCLE<br>CORRUGATED STEEL PIPE<br>COURT                                                                    | LE<br>LF<br>LN<br>LON<br>LP<br>LS<br>LT<br>MAX         |
| CY<br>DBPS<br>DE<br>DIA                             | CUBIC YARD<br>DRAINAGE BASIN PLANNING<br>STUDY<br>DRAINAGE EASEMENT<br>DIAMETER                                                                                        | MH<br>MIN<br>N                                         |
| DIP<br>DR<br>DRC<br>DU<br>E<br>EA                   | DUCTILE IRON PIPE<br>DRIVE<br>DESIGN REVIEW COMMITTEE<br>DWELLING UNITS<br>EAST<br>EACH                                                                                | ODF<br>OHE<br>OHI<br>PC<br>PCC                         |
| EGL<br>EL<br>ELEC                                   | ENERGY GRADE LINE<br>ELEVATION<br>ELECTRIC                                                                                                                             | PCF<br>PDF                                             |
| EOA<br>ESMT<br>EST<br>EX                            | EDGE OF ASPHALT<br>EASEMENT<br>ESTIMATE<br>EXISTING                                                                                                                    | PE<br>PI<br>PKV                                        |

| FDP<br>FDR<br>FES<br>FG<br>FH<br>FL<br>FIL<br>FO<br>GB<br>GE<br>GIS        | FIRE HYDRANT<br>FLOWLINE<br>FILING<br>FIBER OPTIC CABLE<br>GRADE BREAK<br>GAS EASEMENT<br>GEOGRAPHIC INFORMATION                                                                                             |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| HOA<br>HP                                                                  | SYSTEM<br>GAS LINE<br>GLOBAL POSITIONING SYSTEM<br>GATE VALVE<br>HANDICAP<br>HIGH DEFLECTION COUPLING<br>HIGH DENSITY POLYETHYLENE<br>HYDRAULIC GRADE LINE<br>HOME OWNERS ASSOCIATION<br>HIGH POINT<br>INLET |
| IE<br>INT<br>INV<br>IRR<br>LE<br>LF<br>LN<br>LOMR<br>LP<br>LS<br>LT<br>MAX | IRRIGATION EASEMENT<br>INTERSECTION<br>INVERT<br>IRRIGATION<br>KICK (THRUST) BLOCK<br>LANDSCAPE EASEMENT<br>LINEAR FEET                                                                                      |
| MH<br>MIN                                                                  | DRAINAGE PLAN<br>MANHOLE<br>MINIMUM<br>NORTH<br>NON-REINFORCED CONCRETE                                                                                                                                      |
| ODP<br>OHE<br>OHU<br>PC<br>PCC                                             | PIPE<br>OFFICIAL DEVELOPMENT PLAN<br>OVERHEAD ELECTRIC<br>OVERHEAD UTILITY<br>POINT OF CURVATURE<br>POINT OF COMPOUND<br>CURVATURE                                                                           |
| PCR<br>PDP                                                                 | POINT OF CURB RETURN<br>PRELIMINARY DEVELOPMENT<br>PLAN                                                                                                                                                      |
| PE<br>PI<br>PKWY                                                           | PROFESSIONAL ENGINEER<br>POINT OF INTERSECTION<br>PARKWAY                                                                                                                                                    |

|                 | PROPERTY LINE                                                           |
|-----------------|-------------------------------------------------------------------------|
| rR<br>rRC<br>rT | PROPOSED<br>POINT OF REVERSE CURVATURE<br>POINT OF TANGENCY             |
| v               | PLUG VALVE<br>POLYVINYL CHLORIDE                                        |
| R               | RADIUS                                                                  |
| RCP<br>RD       | REINFORCED CONCRETE PIPE<br>ROAD                                        |
| NOX<br>NOX      | RIGHT OF WAY<br>RIGHT                                                   |
| STE             | SOUTH<br>STEEL                                                          |
| SAN             | STEEL<br>SANITARY SEWER<br>SQUARE FEET                                  |
| 51              | STREET                                                                  |
| TA<br>TM        | STATION<br>STORM SEWER                                                  |
| ïΥ              | SQUARE YARD<br>SQUARE YARD INCH                                         |
| B               | THRUST BLOCK                                                            |
| BC<br>BW        | TOP BACK OF CURB<br>TOP BACK OF WALK                                    |
| EL<br>OA        | TELEPHONE<br>TOP OF ASPHALT                                             |
| OB<br>OC        | TOP OF BOX                                                              |
| OF              | TOP OF CURB OR CONCRETE<br>TOP OF FOUNDATION<br>TOP OF PIPE             |
| OP<br>W         | TOP OF WALL                                                             |
| YP<br>IDFCD     | TYPICAL<br>URBAN DRAINAGE AND FLOOD                                     |
| ΙE              | CONTROL DISTRICT<br>UTILITY EASEMENT                                    |
| &DE             | UTILITY & DRAINAGE EASEMENT                                             |
| IGE<br>′CP      | UNDERGROUND ELECTRIC<br>VITRIFIED CLAY PIPE                             |
| ′ΡC<br>′ΡΙ      | VITRIFIED CLAY PIPE<br>VERTICAL POINT OF CURVATURE<br>VERTICAL POINT OF |
| ΈT              | INTERSECTION<br>VERTICAL POINT OF TANGENCY                              |
| ν<br>ν<br>ν     | VEHICLE TRACKING CONTROL<br>WEST                                        |
| ٧L              | WATER LINE                                                              |
| VM<br>VRD       | WATER MAIN<br>WATER RESOURCES                                           |
| ٧S              | DEPARTMENT<br>WATER SURFACE                                             |
| VSE<br>VTR      | WATER SURFACE ELEVATION<br>WATER                                        |
| ик<br>́R        | YEAR                                                                    |
| К               | TEAR                                                                    |
|                 |                                                                         |

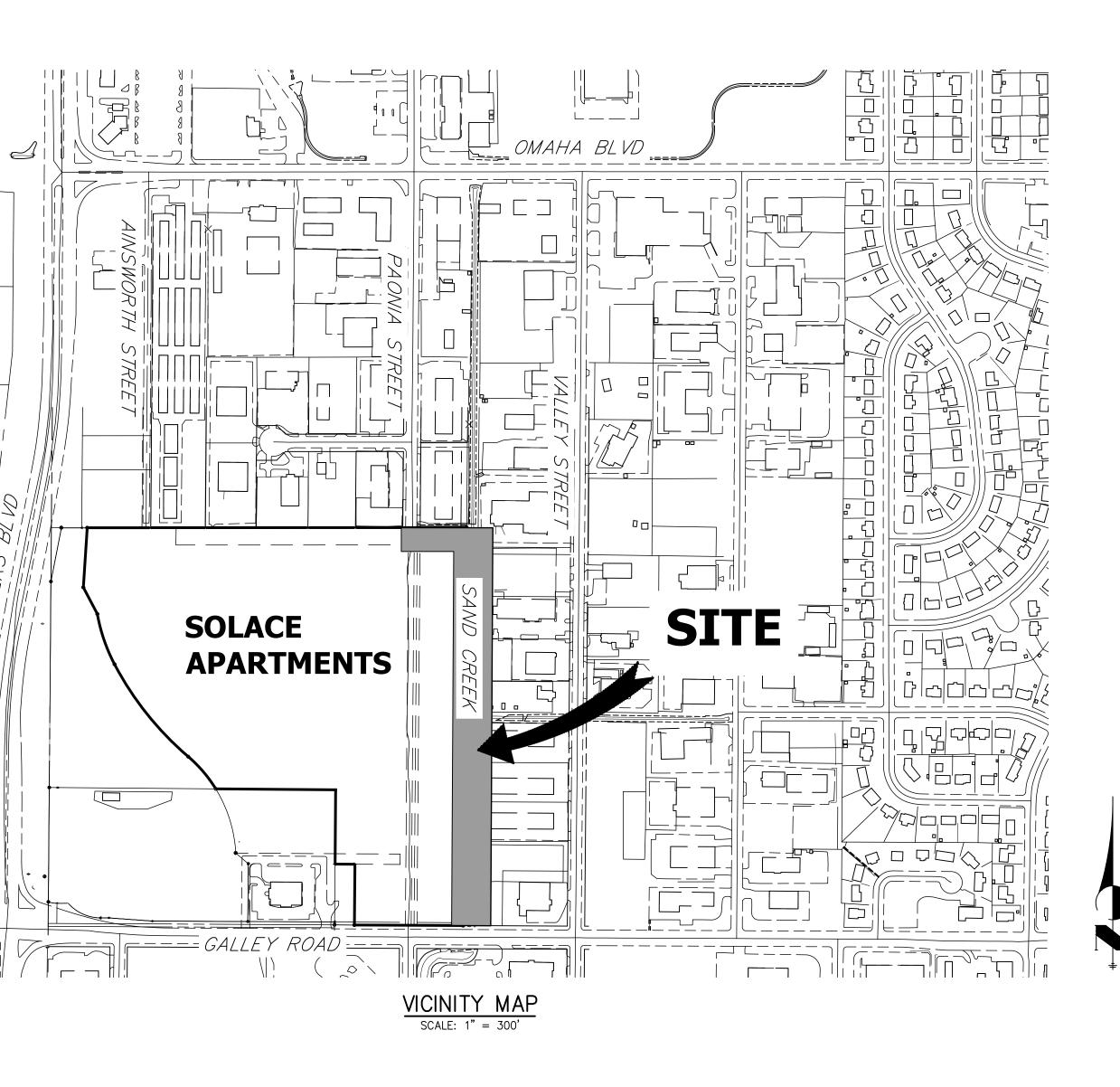
-

 $\overline{\bigcirc}$ 

# **BASIS OF BEARINGS**

THE EASTERLY LINE OF LOT 2, POWERS & GALLEY PLAZA FILING NO. 1 RECORDED IN PLAT BOOK A-4 AT PAGE 30, SAID LINE BEING MONUMENTED BY A 1-1/4" YELLOW PLASTIC CAP STAMPED "LS 22106" AT THE SOUTH END AND A 1" O.D. PIPE AT THE NORTH END, SAID LINE BEARING N00°27'47"E AS SHOWN ON SAID PLAT.

#### BENCHMARK


FIMS MONUMENT F81, BEING MONUMENTED BY A 3-1/4" ALUMINUM CAP IN RANGE BOX WITH NO TOP, LOCATED 900 FEET EAST OF THE INTERSECTION OF E. PLATTE AVENUE AND VALLEY STREET, APPROXIMATLEY 80 FEET NORTH OF THE CENTERLINE OF E PLATTE AVENUE. SAID MONUMENT HAVING A PUBLISHED ELEVATION OF 6275.86 FEET, NAVD88.

THE LOCATIONS OF EXISTING ABOVE GROUND AND UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK. THE CONTRACTOR SHALL BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE CAUSED BY HIS FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL ABOVE GROUND AND UNDERGROUND UTILITIES.

# **SOLACE APARTMENTS - SAND CREEK CENTER TRIBUTARY**

A PORTION OF SECTION 7, TOWNSHIP 14 SOUTH, RANGE 65 WEST OF THE 6TH P.M. **EL PASO COUNTY, COLORADO** 

**CHANNEL IMPROVEMENTS** 



# SHEET INDEX

| 1     | COVER SHEET                      |
|-------|----------------------------------|
| 2     | GENERAL NOTES                    |
| 3     | SITE AND DEMO PLAN               |
| 4-6   | CHANNEL PLAN AND PROFILES        |
| 7     | CHANNEL DETAILS                  |
| 8     | DROP STRUCTURES PLAN AND PROFILE |
| 9     | DROP STRUCTURE DETAIL SHEETS     |
| 10    | PAONIA STREET OVERFLOW PLAN      |
| TOTAL | 10                               |

## **OWNER/DEVELOPER STATE**

, THE OWNER/DEVELOPER HAVE READ AND WIL THE REQUIREMENTS SPECIFIED IN THESE DETAIL SPECIFICATIONS.

DANE OLMSTEAD

JACKSON DEARBORN PARTNERS 404 S. WELLS STREET, SUITE 400 CHICAGO, IL 60607

# **APPLICANT/OWNER**

JACKSON DEARBORN PARTNERS 404 S. WELLS ST. SUITE 400 CHICAGO, IL 60607 P~734.216.2577

# **CIVIL ENGINEER**

JR ENGINEERING 5475 TECH CENTER DR SUITE 235 COLORADO SPRINGS, CO 80919 CONTACT: MIKE BRAMLETT C~719.659.7679

# **PLANNER**

N.E.S. INC. 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS, CO 80903 CONTACT: TAMARA BAXTER P~719.471.0073

# **GEOTECHNICAL ENGINEER**

CTL THOMPSON, INC 5170 MARK DABLING BLVD COLORADO SPRINGS, CO 80918 P~719.528.8300



CTL THOMPSON

INCORPORATED

Ċ US EERI ENGINI J·R COUNTY PLAN REVIEW IS PROVIDED ONLY FOR GENERAL CONFORMANCE WITH COUNTY DESIGN CRITERIA. THE COUNTY IS NOT RESPONSIBLE FOR THE ACCURACY AND ADEQUACY OF THE DESIGN, DIMENSIONS, AND/OR VOLUMES 1 AND 2, AND ENGINEERING CRITERIA MANUAL AS AMENDED. Ľ ш K CEN<sup>-</sup> ARY SHEET YEARS FROM THE DATE SIGNED BY THE EL PASO COUNTY ENGINEER. CONSTRUCTION HAS NOT STARTED WITHIN THOSE 2 YEARS, THE PLANS WILL NEED TO BE RESUBMITTED FOR APPROVAL, INCLUDING PAYMENT OF

| Know what's <b>below.</b><br><b>Call</b> before you dig. | REVIEW FEES AT THE PLANNING AND COMMUNITY DEVELOPMENT<br>DIRECTORS DISCRETION.       | CREEK<br>RIBUT⊅ | VER SI      |     |
|----------------------------------------------------------|--------------------------------------------------------------------------------------|-----------------|-------------|-----|
| TEMENT                                                   | JENNIFER IRVINE, P.E. DATE                                                           |                 | CO<br>CO    |     |
| ID WILL COMPLY WITH ALL OF                               | COUNTY ENGINEER/ECM ADMINISTRATOR                                                    | AND             |             |     |
| DETAILED PLANS AND                                       | ENGINEER'S STATEMENT                                                                 | S/              |             |     |
|                                                          | STANDARD DETAILS SHOWN WERE REVIEWED ON FGAS TO THEIR<br>APPLICATION ON THIS PROJECT |                 |             |     |
| DATE                                                     | MIKE A. BRAMLETT, P.E.                                                               | SHEET           | <b>1</b> OF | 10  |
|                                                          | COLORADO P.E. 32314<br>FOR AND ON BEHALF OF JR ENGINEERING, 100 AL ENGINEERING       | JOB NO.         | 25174.      | .00 |
|                                                          |                                                                                      |                 |             |     |

EL PASO COUNTY STATEMENT

DOCUMENT.

ELEVATIONS WHICH SHALL BE CONFIRMED AT THE JOB SITE. THE COUNTY THROUGH THE APPROVAL OF THIS DOCUMENT ASSUMES NO RESPONSIBILITY FOR COMPLETENESS AND/OR ACCURACY OF THIS

FILED IN ACCORDANCE WITH THE REQUIREMENTS OF THE EL PASO COUNTY LAND DEVELOPMENT CODE, DRAINAGE CRITERIA MANUAL,

IN ACCORDANCE WITH ECM SECTION 1.12, THESE CONSTRUCTION

DOCUMENTS WILL BE VALID FOR CONSTRUCTION FOR A PERIOD OF 2

# LAYER LINETYPE LEGEND

|                         |          | EXISTING           |                                                    |           | PROPOS         | ÎED          |
|-------------------------|----------|--------------------|----------------------------------------------------|-----------|----------------|--------------|
| MATCH LINE              |          |                    |                                                    |           |                |              |
| SECTION LINE            |          |                    |                                                    |           |                |              |
| BOUNDARY LINE           |          |                    |                                                    |           |                |              |
| PROPERTY LINE           |          |                    |                                                    |           |                |              |
| EASEMENT LINE           |          |                    |                                                    |           | · — — — —      |              |
| RIGHT OF WAY            |          |                    |                                                    |           |                | ·            |
| CENTERLINE              |          |                    |                                                    |           |                |              |
| FENCE                   |          | - ×                | ×                                                  |           | – × ——         | — × ———      |
| GUARDRAIL               | <u> </u> | <u> </u>           |                                                    |           |                |              |
| CABLE TV                |          | — <i>TV</i> — — —  | — — TV — — —                                       |           | — TV ———       | — TV ———     |
| ELECTRIC                |          | — <i>E</i> — — —   | —— E ———                                           |           | — E ———        | — E ———      |
| FIBER OPTIC             |          | — F0 — — —         | — — FO ———                                         |           | — FO ———       | — FO ———     |
| GAS MAIN                |          | — G — — —          | —— G ———                                           |           | — G ———        | — G ———      |
| IRRIGATION MAIN         |          | — <i>IRR</i> — — — | — — <i>IRR</i> — — — — — — — — — — — — — — — — — — |           | -IRR           | —-IRR        |
| OVERHEAD UTILITY        |          | -0HU               | — — <i>OHU</i> ———                                 |           | -0HU           | OHU          |
| SANITARY SEWER          |          | — <i>s</i> — — —   | —— <i>S</i> ———                                    |           | •              |              |
| STORM DRAIN             |          |                    |                                                    |           |                |              |
| TELEPHONE               |          | — <i>T</i> — — —   | — — <i>T</i> — — —                                 |           | — т ———        | — T ———      |
| WATER MAIN              |          | — <i>w</i> — — —   | — — <i>W</i> — — —                                 |           | •              |              |
| SWALE/WATERWAY FLOWLINE |          |                    |                                                    |           |                |              |
| DIVERSION DITCH         |          |                    |                                                    |           |                |              |
| TOP OF SLOPE            |          |                    |                                                    |           |                |              |
| TOE OF SLOPE            | <u></u>  |                    |                                                    |           | <u> </u>       | i            |
| 100 YEAR FLOODPLAIN     |          |                    | — 100YR ——                                         |           | 100YR          |              |
| 5 YEAR HGL              |          |                    |                                                    | · · · · · | · · · <u> </u> | · · <u> </u> |
| 100 YEAR HGL            |          |                    |                                                    |           |                | <u></u>      |
|                         |          |                    |                                                    |           |                |              |

### STANDARD NOTES FOR EL PASO COUNTY CONSTRUCTION PLANS

- 1. ALL DRAINAGE AND ROADWAY CONSTRUCTION SHALL MEET THE STANDARDS AND SPECIFICATIONS OF THE CITY OF COLORADO SPRINGS/EL PASO COUNTY DRAINAGE CRITERIA MANUAL, VOLUMES 1 AND 2, AND THE EL PASO COUNTY ENGINEERING CRITERIA MANUAL.
- 2. CONTRACTOR SHALL BE RESPONSIBLE FOR THE NOTIFICATION AND FIELD NOTIFICATION OF ALL EXISTING UTILITIES. WHETHER SHOWN ON THE PLANS OR NOT, BEFORE BEGINNING CONSTRUCTION. LOCATION OF EXISTING UTILITIES SHALL BE VERIFIED BY THE CONTRACTOR PRIOR TO CONSTRUCTION. CALL 811 TO CONTACT THE UTILITY NOTIFICATION CENTER OF COLORADO (UNCC).
- 3. CONTRACTOR SHALL KEEP A COPY OF THESE APPROVED PLANS, THE GRADING AND EROSION CONTROL PLAN, THE STORMWATER MANAGEMENT PLAN (SWMP), THE SOIL AND GEOTECHNICAL REPORT, AND THE APPROPRIATE DESIGN AND CONSTRUCTION STANDARDS AND SPECIFICATIONS AT THE JOB SITE AT ALL TIMES, INCLUDING THE FOLLOWING: 3.1. EL PASO COUNTY ENGINEERING CRITERIA MANUAL (ECM)
- 3.2. CITY OF COLORADO SPRINGS/ EL PASO COUNTY DRAINÁGE CRITERIA MANUAL, VOLUMES 1 AND 2 3.3. COLORADO DEPARTMENT OF TRANSPORTATION (CDOT) STANDARD SPECIFICATIONS AND BRIDGE CONSTRUCTION

3.4. CDOT M&S STANDARDS

- 4. NOTWITHSTANDING ANYTHING DEPICTED IN THESE PLANS IN WORDS OR GRAPHIC REPRESENTATION, ALL DESIGN AND CONSTRUCTION RELATED TO ROADS, STORM DRAINAGE AND EROSION CONTROL SHALL CONFORM TO THE STANDARDS AND REQUIREMENTS OF THE MOST RECENT VERSIONS OF THE RELEVANT ADOPTED EL PASO COUNTY STANDARDS, INCLUDING THE LAND DEVELOPMENT CODE, THE EINGEERIONG CRITERIA MANUAL, THE DRAINAGE CRITERIA MANUAL, AND THE DRAINAGE CRITERIA MANUAL VOLUME 2. ANY DEVIATIONS FROM REGULATIONS AND STANDARDS MUST BE REQUESTED, AND APPROVED, IN WRITING. ANY MODIFICATIONS NECESSARY TO MEET CRITERIA AFTER-THE-FACT WILL BE ENTIRELY THE DEVELOPER'S RESPONSIBILITY TO RECTIFY.
- 5. IT IS THE DESIGN ENGINEER'S RESPONSIBILITY TO ACCURATELY SHOW EXISTING CONDITIONS, BOTH ONSITE AND OFFSITE, ON THE CONSTRUCTION PLANS. ANY MODIFICATIONS NECESSARY DUE TO CONFLICTS, OMISSIONS, OR CHANGED CONDITIONS WILL BE ENTIRELY THE DEVELOPER'S RESPONSIBILITY TO RECTIFY.
- 6. CONTRACTOR SHALL SCHEDULE A PRE-CONSTRUCTION MEETING WITH EL PASO COUNTY PLANNING AND COMMUNITY DEVELOPMENT INSPECTIONS, PRIOR TO STARTING CONSTRUCTION.
- 7. IT IS THE CONTRACTOR'S RESPONSIBILITY TO UNDERSTAND THE REQUIREMENTS OF ALL JURISDICTIONAL AGENCIES TO OBTAIN ALL REQUIRED PERMITS, INCLUDING BUT NOT LIMITED TO EL PASO COUNTY EROSION AND STORMWATER QUALITY CONTROL PERMIT (ESQCP), REGIONAL BUILDING FLOODPLAIN DEVELOPMENT PERMIT, U.S. ARMY CORPS OF ENGINEERS-ISSUED 401 AND/OR 404 PERMITS, AND COUNTY AND STATE FUGITIVE DUST PERMITS.
- 8. CONTRACTOR SHALL NOT DEVIATE FROM THE PLANS WITHOUT FIRST OBTAINING WRITTEN APPROVAL FROM THE DESIGN ENGINEER AND PCD. CONTRACTOR SHALL NOTIFY THE DESIGN ENGINEER IMMEDIATELY UPON DISCOVERY OF ANY ERRORS OR INCONSISTENCIES. 9. ALL STORM DRAIN PIPE SHALL BE CLASS III RCP UNLESS OTHERWISE NOTED AND APPROVED BY PLANNING AND COMMUNITY
- DEVELOPMENT. 10. CONTRACTOR SHALL COORDINATE GEOTECHNICAL TESTING PER ECM STANDARDS. PAVEMENT DESIGN SHALL BE APPROVED BY EL PASO COUNTY PCD PRIOR TO PLACEMENT OF CURB AND GUTTER AND PAVEMENT.
- 11. ALL CONSTRUCTION TRAFFIC MUST ENTER/EXIT THE SITE AT APPROVED CONSTRUCTION ACCESS POINTS.
- 12. SIGHT VISIBILITY TRIANGLES ARE IDENTIFIED IN THE PLANS SHALL BE PROVIDED AT ALL INTERSECTIONS. OBSTRUCTIONS GREATER THAN 18 INCHES ABOVE FLOWLINE ARE NOT ALLOWED IN SIGHT TRIANGLES.
- 13. SIGNING AND STRIPING SHALL COMPLY WITH EL PASO COUNTY DEPARTMENT OF PUBLIC WORKS AND MUTCD CRITERIA.
- 14. CONTRACTOR SHALL OBTAIN ANY PERMITS REQUIRED BY EL PASO COUNTY DEPARTMENT OF PUBLIC WORKS, INCLUDING WORK WITHIN THE RIGHT-OF-WAY AND SPECIAL TRANSPORT PERMITS.
- 15. THE LIMITS OF CONSTRUCTION SHALL REMAIN WITHIN THE PROPERTY LINE UNLESS OTHERWISE NOTED. THE OWENER/DEVELOPER SHALL OBTAIN WRITTEN PERMISSION AND EASEMENTS, WHERE REQUIRED, FROM ADJOINING PROPERTY OWNER(S) PRIOR TO ANY OFF-SITE DISTURBANCE, GRADING, OR CONSTRUCTION.

| UTIL                           | ITIES LE             | <u>GEND</u>      |
|--------------------------------|----------------------|------------------|
|                                | EXISTING             | PROPOSED         |
| STORM SEWER                    |                      |                  |
| MANHOLE                        | D                    | ۲                |
| STORM INLET                    |                      |                  |
| AREA INLET – SQUARE            |                      |                  |
|                                |                      |                  |
| FLARED END SECTION             | D                    |                  |
| RIPRAP                         |                      |                  |
|                                | 10402041             | 640204           |
| SANITARY SEWER                 |                      |                  |
| LINE MARKER                    |                      |                  |
| SERVICE MARKER                 | Mkr San <sup>0</sup> |                  |
| CLEAN-OUT                      | ~                    | •                |
| MANHOLE W/ DIRECTIONAL         | -                    |                  |
| FLOW ARROW                     | SA                   | •4               |
| WATER LINE                     |                      |                  |
| LINE MARKER                    | Mkr W <sup>0</sup>   |                  |
| SERVICE MARKER                 | $\widehat{\black}$   |                  |
| FIRE HYDRANT                   | Q                    | <                |
| MANHOLE                        | W                    | ٠                |
| BEND                           | 0                    | X                |
| BLOW-OFF VALVE                 | ۶c                   | ●_C              |
| WELL                           | O <sub>WELL</sub>    | ●WELL            |
| METER                          | ())                  | ٠                |
| VALVE                          | $\bowtie$            | •                |
| REDUCER                        |                      | <u>→</u>         |
| CROSS                          |                      | - <del>+</del>   |
| PLUG W/ THRUST BLOCK           | ۶                    | ╶╪╾<br>┍╴<br>┢╋╌ |
| TEE                            |                      | ▶‡+              |
| AIR & VACUUM<br>VALVE ASSEMBLY |                      | <b>•</b> •       |
| GAS LINE                       |                      |                  |
| MARKER                         | Mkr G <sup>0</sup>   |                  |
| SERVICE MARKER                 |                      |                  |
| METER                          | ©                    |                  |
| VALVE                          | $\bowtie$            |                  |
| PLUG                           | Γ                    |                  |
| DRY UTILITIES                  |                      |                  |
| CABLE TV MARKER                | Mkr TV <sup>0</sup>  |                  |
| CABLE TELEVISION PEDESTA       |                      |                  |
|                                |                      |                  |

Mkr E<sup>0</sup>

<u>/e</u>\

Ê

(E)

Ι

T

 $\bigcirc$ 

-0-

Mkr FO<sup>O</sup>

Mkr T<sup>O</sup>

ELECTRIC MARKER

ELECTRICAL PEDESTAL

ELECTRICAL MANHOLE

FIBER-OPTIC MARKER

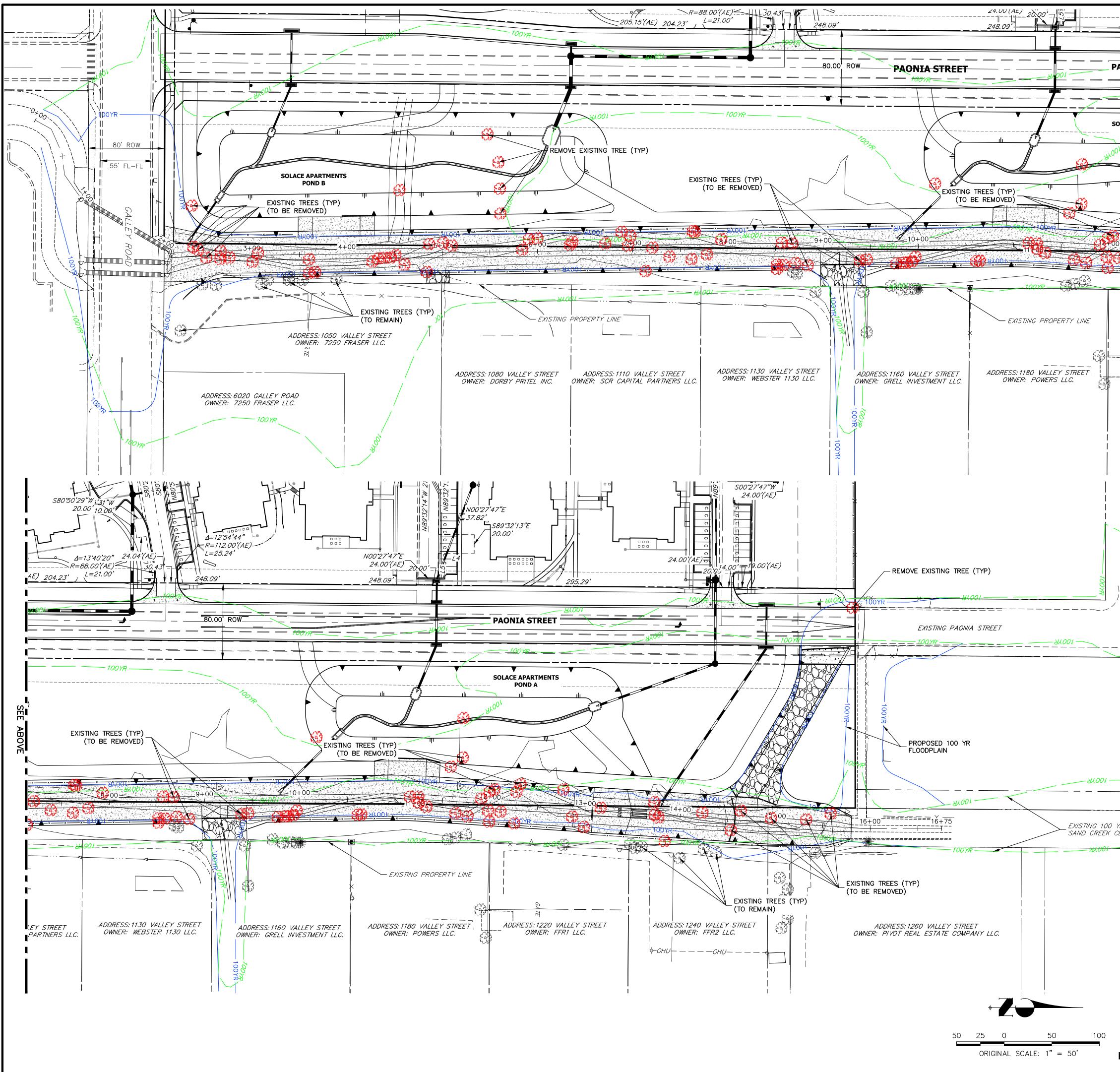
IRRIGATION PEDESTAL

TELEPHONE MARKER

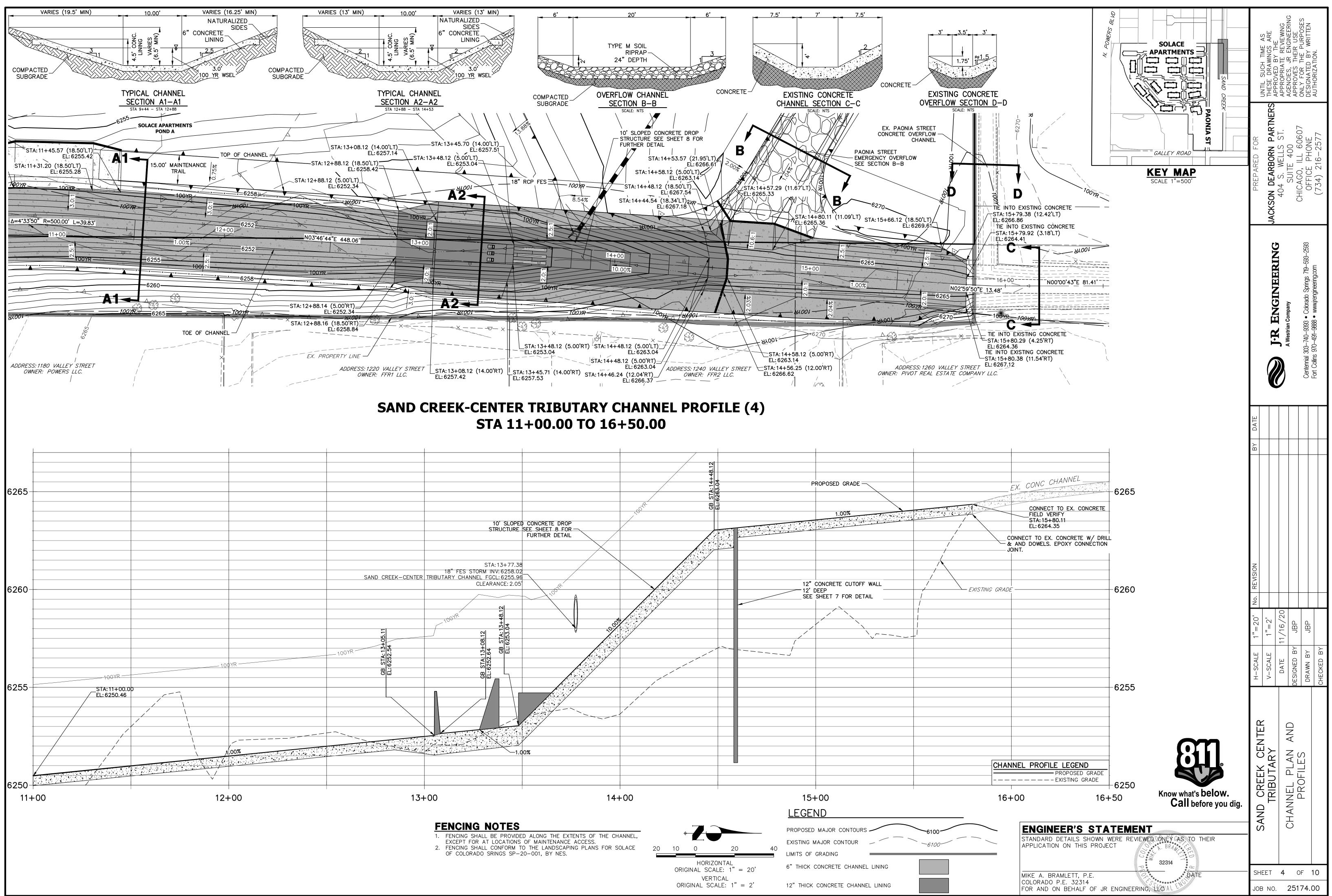
TELEPHONE PEDESTAL

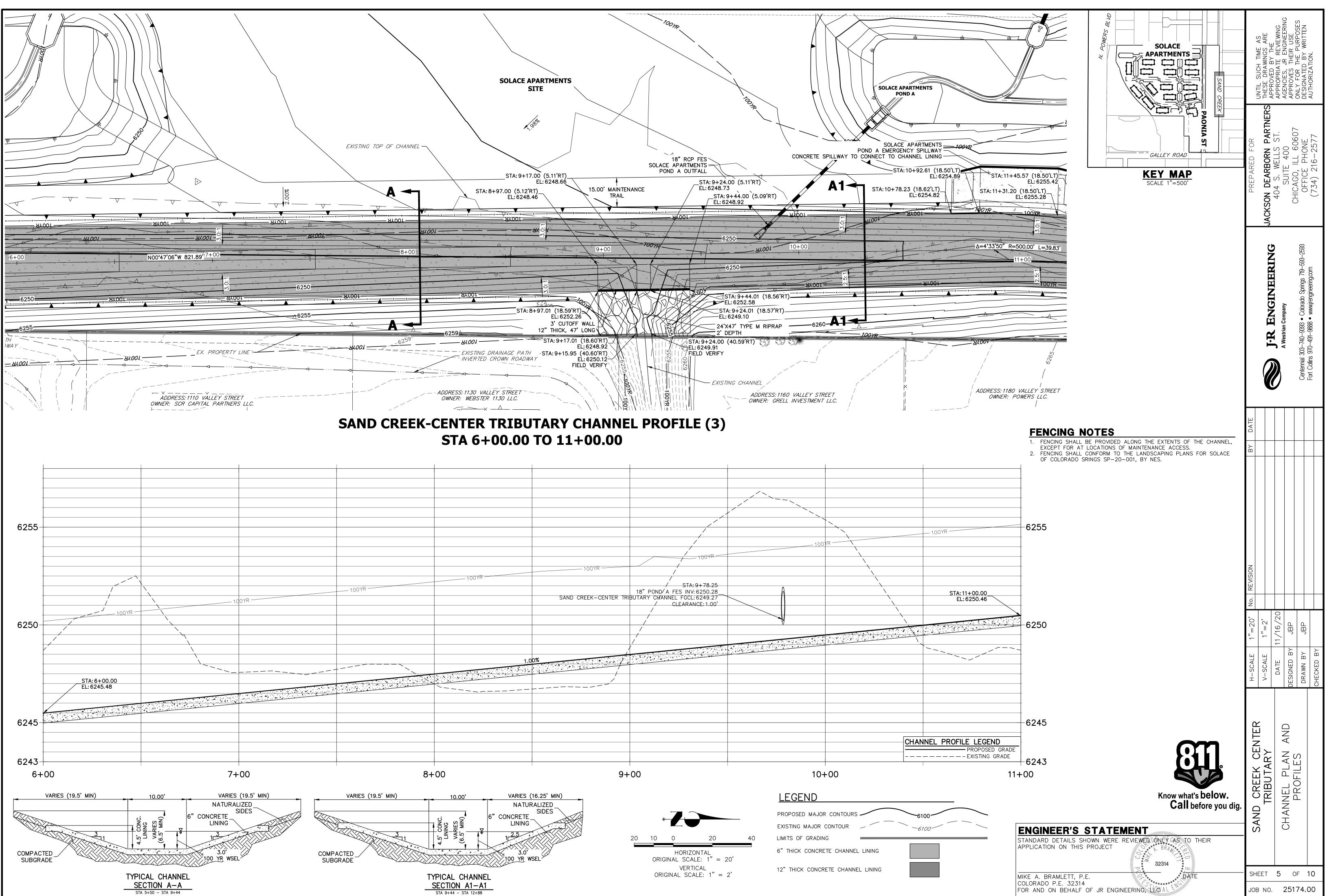
TELEPHONE MANHOLE

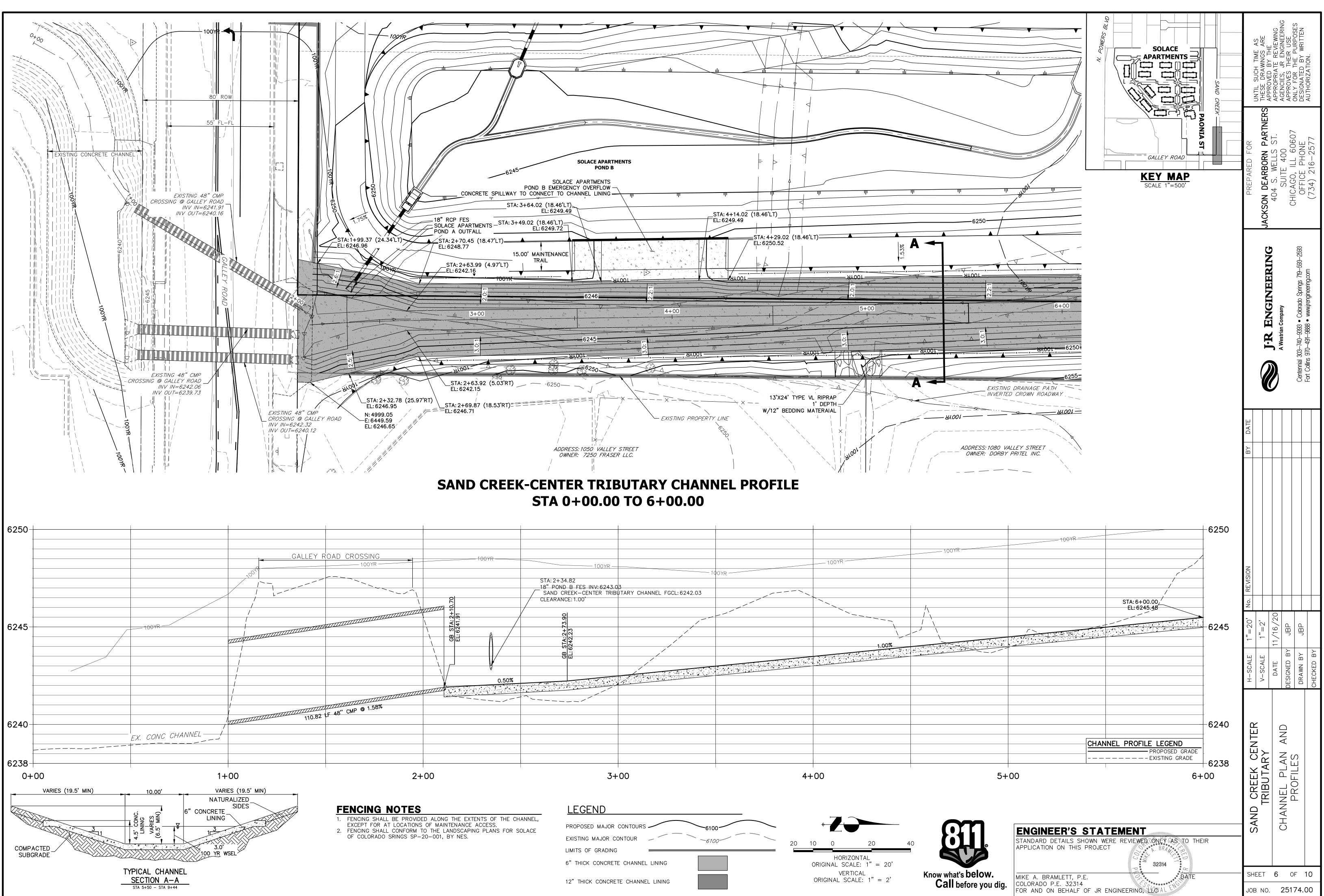
UTILITY POLE

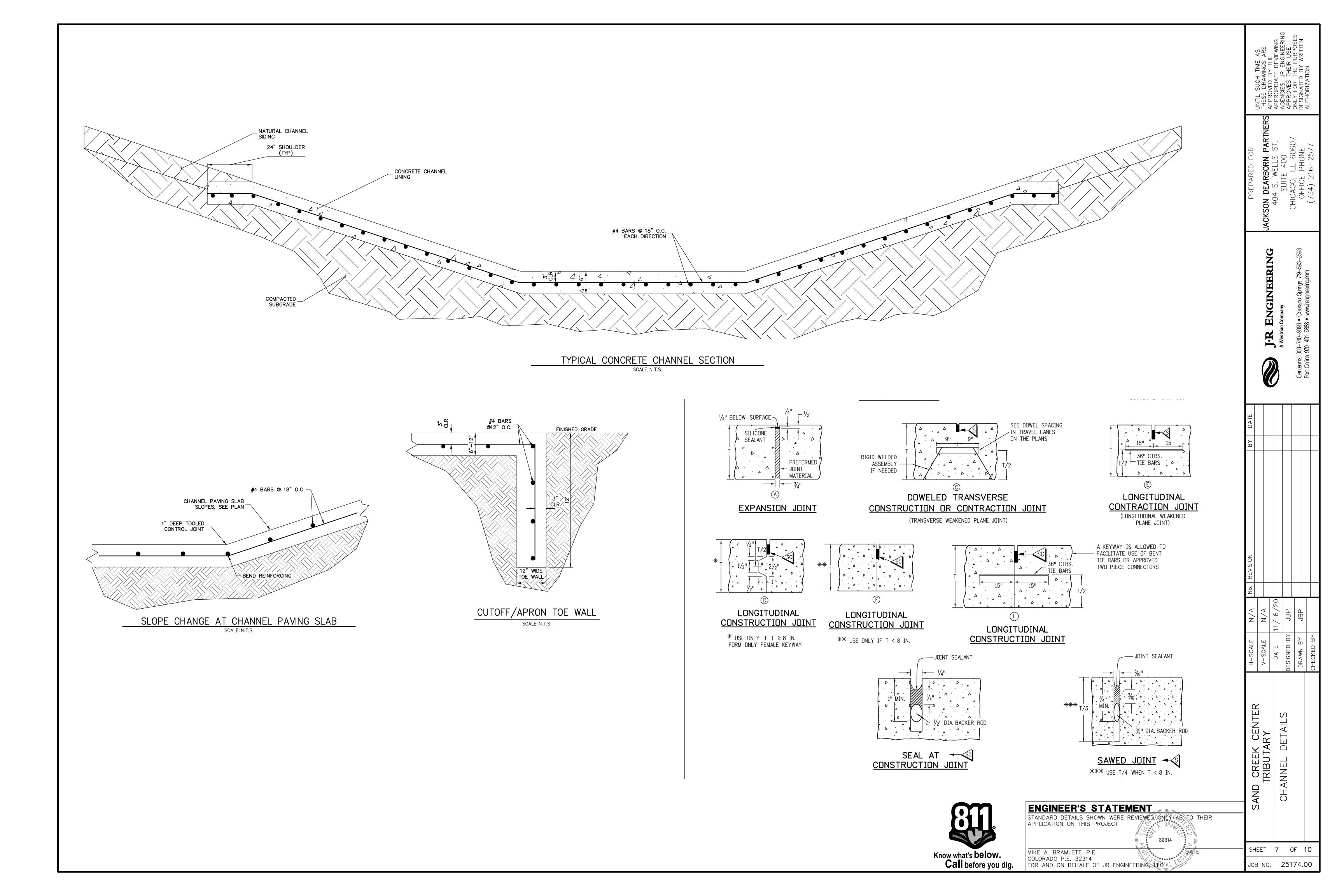

GUY ANCHOR

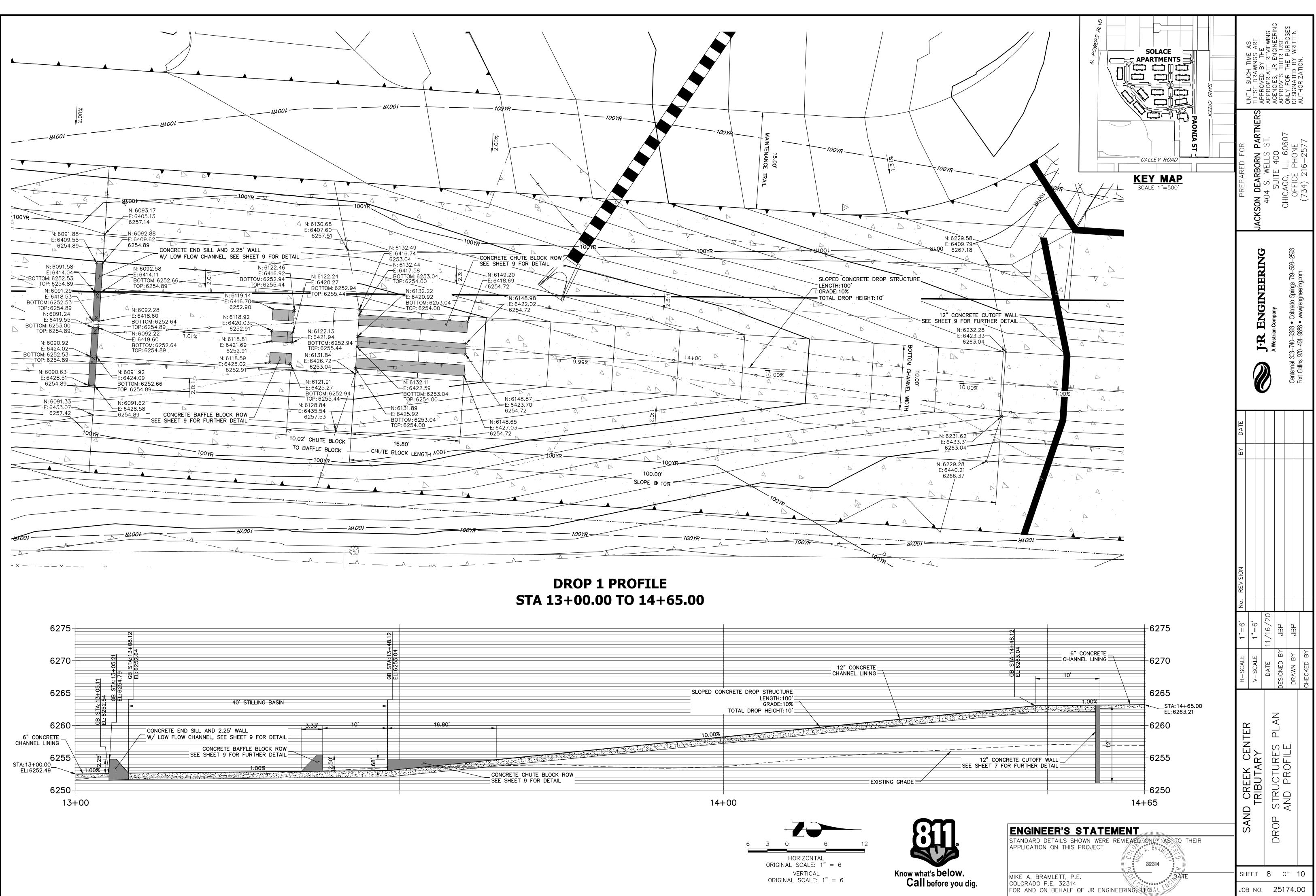
GUY POLE


ELECTRICAL METER

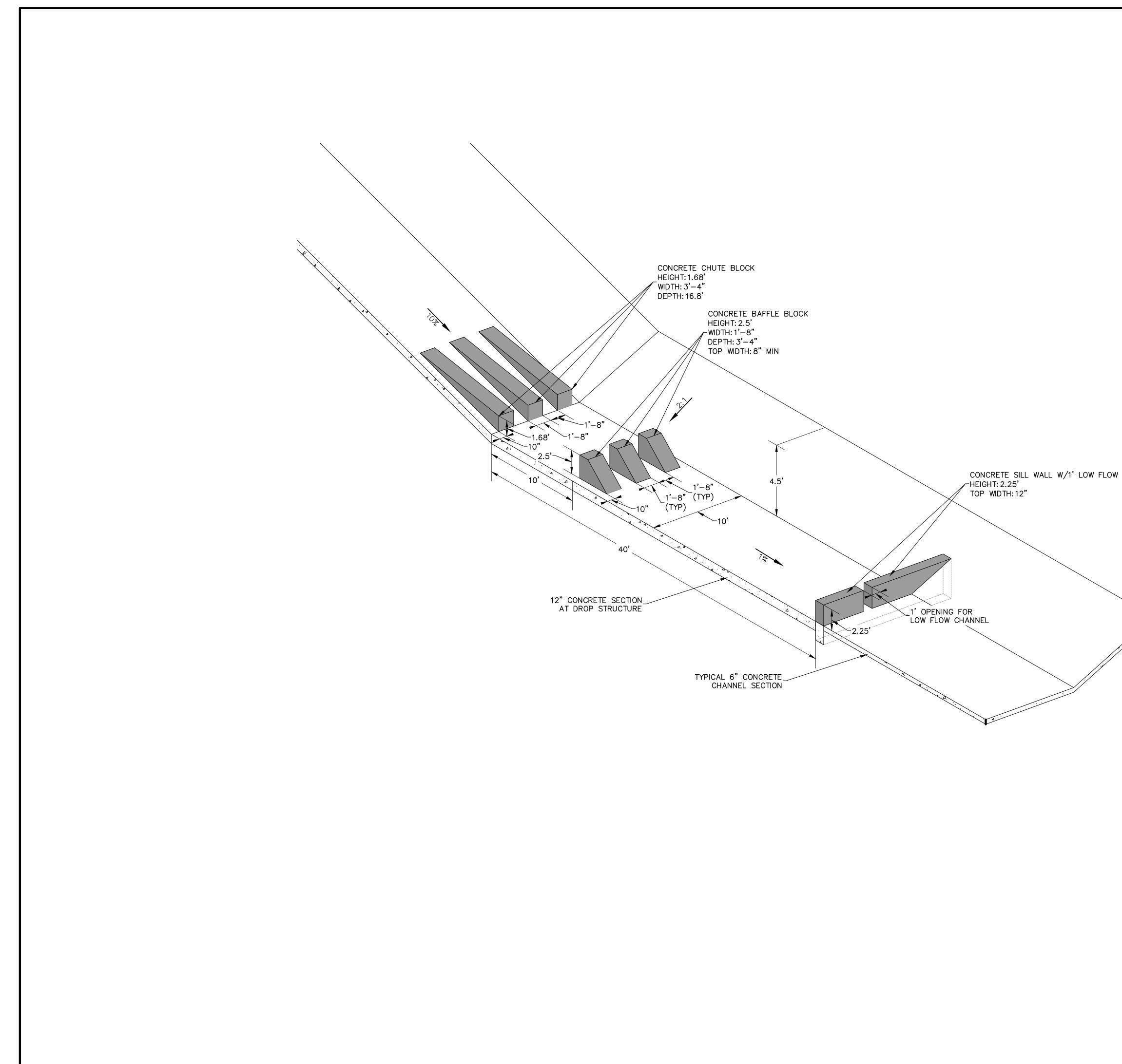

ELECTRIC SERVICE MARKER


| MONUMENTATION L                            | EGEND          | DRAINAGE REPORT PLANS                     | LANDSCAPE LEGEND                                     | E AS<br>S ARE<br>HE<br>EVIEWING<br>VGINEERING<br>NGINEERING<br>PURPOSES<br>WRITTEN                                 |
|--------------------------------------------|----------------|-------------------------------------------|------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| ALUMINUM CAP - FOUND                       | ●AC            | KEY                                       | EXISTING PROPOSED                                    | A WINGS<br>BRY T<br>JR ER<br>THEIF<br>THEIF<br>THEIF<br>TION.                                                      |
| BRASS CAP – FOUND<br>BENCHMARK – FOUND     | ●BC            | BASIN DESIGNATION                         | TREE - CONIFEROUS****TREE - DECIDUOUSEE              | L SUC<br>SE DR,<br>ROVED<br>ROVES,<br>ROVES,<br>FOR<br>FOR<br>FOR<br>FOR<br>FOR<br>FOR<br>FOR<br>FOR<br>FOR<br>FOR |
| CROSS - FOUND                              | +              | (NO COEFFICIENT)                          | SHRUB/BUSH                                           | APPI<br>APPI<br>APPI<br>ADPI<br>AUTH<br>AUTH                                                                       |
| MONUMENT – SET<br>MONUMENT – FOUND         | 0              | BASIN DESIGNATION                         | SHRUBS AND BUSHES                                    | JERS                                                                                                               |
| (DEFAULT)<br>MONUMENT – FOUND              | •              | BASIN DESIGNATION<br>(1 COEFFICIENT)      | IRRIGATION BOX                                       | R<br>PARTNERS<br>ST.<br>5607<br>E<br>Z7                                                                            |
| (ALTERNATE 1)<br>MONUMENT – FOUND          |                | (#                                        | IRRIGATION SPRINKLER   IRRIGATION VALVE              |                                                                                                                    |
| (ALTERNATE 2)<br>MONUMENT – FOUND          |                | BASIN DESIGNATION<br>(2 COEFFICIENTS)     | BOLLARD 🛞                                            | ARBORN<br>ARBORN<br>Inte 400<br>0, ILL 6<br>0, ILL 6<br>CE PHO<br>CE PHO                                           |
| (ALTERNATE 3)                              |                | ANALISYS POINT                            | FLAGPOLE FP                                          | SL S                                                                           |
| MONUMENT – FOUND<br>(ALTERNATE 4)          |                |                                           |                                                      | PF<br>SON 1<br>404<br>404<br>CHIC<br>01<br>01<br>01<br>(73                                                         |
| MONUMENT – FOUND<br>(ALTERNATE 5)          | •              | BASIN DESIGNATION (HISTORIC)              |                                                      | ACKSON<br>40<br>CHI                                                                                                |
| MONUMENT – FOUND<br>(ALTERNATE 6)          | ٢              | $\sim$                                    |                                                      |                                                                                                                    |
| MONUMENT – FOUND<br>(ALTERNATE 7)          | ۲              | BASIN DESIGNATION<br>(DEVELOPED)          |                                                      | 2593                                                                                                               |
| NAIL & WASHER — FOUND<br>PANEL — FOUND     | ●NAIL & WASHER |                                           |                                                      | <b>ENGINEERING</b><br>1 <b>Company</b><br>33 • Colorado Springs 719-593-2593<br>38 • wwwjrengineering.com          |
| PK NAIL – FOUND                            | ●PK NAIL       | SUB-BASIN DESIGNATION<br>(DEVELOPED)      |                                                      | <b>NGINEER</b><br>Mpany<br>Colorado Springs 719–5<br>www.jrengineering.com                                         |
| ROW MONUMENT – FOUND<br>ROW MARKER – FOUND | - <b></b>      | DRAINAGE PIPE                             |                                                      | any<br>Mirengi                                                                                                     |
| SECTION CORNER - FOUND                     | <br>▶ <b>↓</b> |                                           |                                                      | n Company<br>93 • Colora<br>88 • wwwji                                                                             |
| SECTION CORNER - SET                       |                | DRAINAGE POINT<br>IDENTIFIER (HEXAGONAL)  |                                                      | <b>J·R E</b><br>A Westrian Co<br>1 303-740-9393                                                                    |
| QUARTER-SECTION CORNER - FOUND             | ▶              | DRAINAGE POINT<br>IDENTIFIER (TRIANGULAR) |                                                      | ▲ ▲ ■ 303-                                                                                                         |
| QUARTER-SECTION CORNER - SET               | ►○◄            | IDENTIFIER (TRIANGULAR)                   |                                                      | Centennial 3<br>Fort Collins                                                                                       |
| SECTION CENTER - FOUND                     | ۲              | SWMM DESIGNATION 1 #                      |                                                      |                                                                                                                    |
| SECTION CENTER - FOUND                     | ©<br>          |                                           |                                                      |                                                                                                                    |
| CONTROL/TRAVERSE POINT – SET               | <u> </u>       | SWMM DESIGNATION 2                        |                                                      | DATE                                                                                                               |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                | SWMM DESIGNATION 3 $\#$                   |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                | SWMM DESIGNATION 4                        |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      | z                                                                                                                  |
|                                            |                |                                           |                                                      | REVISION                                                                                                           |
|                                            |                |                                           |                                                      | °Z                                                                                                                 |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      | N/A<br>N/A<br>JRM<br>JRM                                                                                           |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      | H-SCALE<br>V-SCALE<br>DATE<br>DESIGNED B<br>DRAWN BY<br>CHECKED B                                                  |
|                                            |                |                                           |                                                      | DESI <                                                                                                             |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      | к<br>Ш                                                                                                             |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                |                                           |                                                      | ARY<br>NOTES                                                                                                       |
|                                            |                |                                           |                                                      | L TAL                                                                                                              |
|                                            |                |                                           | Know what's below.                                   | CREEK<br>RIBUTA<br>ERAL                                                                                            |
|                                            |                |                                           | Call before you dig.                                 |                                                                                                                    |
|                                            |                |                                           | ENGINEER'S STATEMENT                                 | SAND<br>GED                                                                                                        |
|                                            |                |                                           | TANDARD DETAILS SHOWN WERE REVIEWED ON FGAS TO THEIR |                                                                                                                    |
|                                            |                |                                           |                                                      |                                                                                                                    |
|                                            |                | Ň                                         | IIKE A. BRAMLETT, P.E.                               | - SHEET 2 OF 10                                                                                                    |
|                                            |                | F                                         | OR AND ON BEHALF OF JR ENGINEERING                   | JOB NO. 25174.00                                                                                                   |

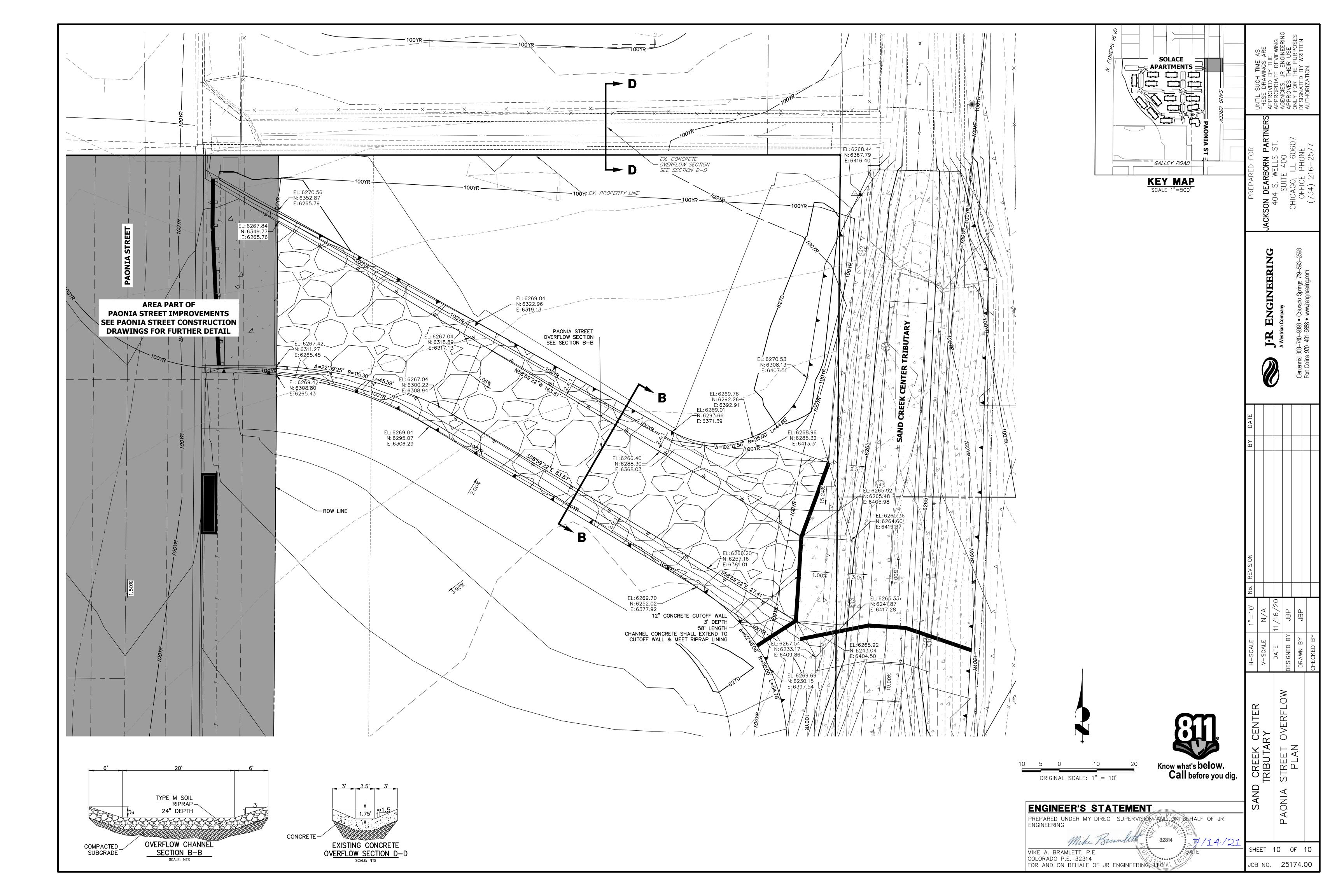




|                                                   |                                                                       |                 | , , , , , ,                                                         |   |                                |                                                             |                                                                                                              |
|---------------------------------------------------|-----------------------------------------------------------------------|-----------------|---------------------------------------------------------------------|---|--------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|
| PAONIA STREET                                     | SEE BELOW                                                             | ON POWERS BY VO | SOLACE<br>APARTMENTS<br>GALLEY ROAD<br>CALLEY ROAD<br>SCALE 1"=500' |   | EPARED FOR<br>EARBORN PARTNERS | WELLS ST.APPROPRIATE RE 400AGENCIES, JR EIIIIAPPROVES THEIR | F PHONE                                                                                                      |
| ADDRESS: 1220 VALLEY STREET<br>OWNER: FFR1 LLC.   |                                                                       |                 |                                                                     |   | I-R ENGINEERING                | A Westrian Company                                          | Centennial 303–740–9393 • Colorado Springs 719–593–2593<br>Fort Collins 970–491–9888 • www.jrengineering.com |
| BX.001                                            |                                                                       |                 |                                                                     |   | BY DATE                        |                                                             |                                                                                                              |
| YR FEMA FLOODPLAIN<br>CENTER TRIBUTARY            |                                                                       |                 |                                                                     |   | E 1"=5                         | DATE 11/16/20 DESIGNED BY JBP                               | DRAWN BY JBP<br>CHECKED BY                                                                                   |
|                                                   | ENGINEER'S STANDARD DETAILS SHOW<br>APPLICATION ON THIS PR            |                 | /IEWED ON L'Y GAS TO                                                |   | SAND CREEK CENTER<br>TRIBUTARY | SITE AND DEMO PLAN                                          |                                                                                                              |
| Know what's <b>below.</b><br>Call before you dig. | MIKE A. BRAMLETT, P.E.<br>COLORADO P.E. 32314<br>FOR AND ON BEHALF OF | JR ENGINEE      | 32314<br>DA<br>RING                                                 | E | SHEET<br>JOB NO.               | 3 0<br>251 <sup>-</sup>                                     | F 10<br>74.00                                                                                                |










|                          | 12" CONCRETE                   |
|--------------------------|--------------------------------|
|                          | CHANNEL LINING                 |
|                          |                                |
|                          |                                |
|                          |                                |
|                          |                                |
|                          | SLOPED CONCRETE DROP STRUCTURE |
|                          | LENGTH: 100'                   |
|                          |                                |
|                          | GRADE: 10%                     |
|                          | TOTAL DROP HEIGHT: 10'         |
|                          |                                |
|                          |                                |
|                          |                                |
| 16.80'                   |                                |
|                          |                                |
|                          | 10.00%                         |
|                          |                                |
|                          |                                |
|                          |                                |
|                          |                                |
|                          |                                |
|                          |                                |
|                          |                                |
|                          | 10.00%                         |
|                          |                                |
| CONCRETE CHUTE BLOCK ROW |                                |
| SEE SHEET 9 FOR DETAIL   |                                |
|                          | EXISTING GRAD                  |
|                          |                                |
|                          |                                |
|                          |                                |



|                                                          |                                                                                                              | PREPARED FOR             | JACKSON DEARBORN PARTNERS THESE DRAWINGS ARE<br>APPROVED BY THE | 404 S. WELLS ST. APPROPRIATE REVIEWING |                 | CÉ PHONE                                                                                                     |            |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------|----------------------------------------|-----------------|--------------------------------------------------------------------------------------------------------------|------------|
| CHANNEL OPENING                                          |                                                                                                              |                          | IFR ENGINEERING                                                 | A Westrian Company                     |                 | Centennial 303-740-9393 • Colorado Springs 719-593-2593<br>Fort Collins 970-491-9888 • www.irengineering.com |            |
|                                                          |                                                                                                              | BY DATE                  |                                                                 |                                        |                 |                                                                                                              |            |
|                                                          |                                                                                                              | H-SCALE N/A No. REVISION | V-SCALE N/A                                                     | 11                                     | DESIGNED BY JBP | DRAWN BY JBP                                                                                                 | CHECKED BY |
|                                                          | ENGINEER'S STATEMENT<br>STANDARD DETAILS SHOWN WERE REVIEWED ONLY AS TO THEIR<br>APPLICATION ON THIS PROJECT | SAND CREFK CENTER        |                                                                 |                                        | SHFFTS          | )                                                                                                            | CHEC       |
| Know what's <b>below.</b><br><b>Call</b> before you dig. | MIKE A. BRAMLETT, P.E.<br>COLORADO P.E. 32314<br>FOR AND ON BEHALF OF JR ENGINEERING, JOO AL                 |                          | EET<br>3 NO.                                                    | 9                                      | OF<br>2517      | - 1(<br>74.0                                                                                                 |            |



#### TABLE VIII-2: SAND CREEK DRAINAGE BASIN PLANNING STUDY CONT'D DRAINAGEWAY CONVEYANCE COST ESTIMATE CENTER TRIBUTARY SAND CREEK

| SEGMENT | REACH  | SEGMENT         | IMPROVEMENT           | IMPROVEMENT     | UNIT    | NUMBER   | LENGTH OF     | TOTAL        | TOTAL     |
|---------|--------|-----------------|-----------------------|-----------------|---------|----------|---------------|--------------|-----------|
| NUMBER  | NUMBER | LENGTH          | TYPE                  | LENGTH          | COST    | OF GRADE | GRADE CONTROL | REIMBURSABLE | COST      |
|         |        | (FT)            |                       | (FT)            | (\$/LF) | CONTROLS | (FT)          | COSTS        |           |
| 141     | CT-1   | 2600            | EX. RIPRAP TO REMAIN  | 1500            | 195     | 5        | 400           | \$338,500    | \$338,500 |
| 142     | •      | 4100            | 100-YR RIPRAP (1)     | 1300            | 195     | 10       | 600           | \$322,500    | \$322,500 |
| 143     | "      | 2300            | 100-YR RIPRAP (1)     | 2300            | 195     | 8        | 480           | \$0          | \$503,700 |
| 144     | CT-2   | 2800            | EX. CHANNEL TO REMAIN | 200             | 195     | 0        | 0             | \$39,000     | \$39,000  |
| 145     | n      | 720             | 100-YEAR CONCRETE     | 720             | 195     | 2        | 100           | \$151,900    | \$151,900 |
| 146-1   | Ħ      | <del>6</del> 80 | 11                    | <del>6</del> 80 | 195     | 0        | 0             | \$132,600    | \$132,600 |
| 146-2   | Π      | 1300            | EX. CHANNEL TO REMAIN | 1200            | 0       | 0        | 0             | \$0          | \$0       |

TOTAL CENTER TRIBUTARY SAND CREEK DRAINAGEWAYS

. .

\$984,500

(1) A PORTION OF THESE IMPROVEMENTS TO BE CONSTRUCTED AS PART OF THE US 24 BYPASS PROJECT, PHASE IL

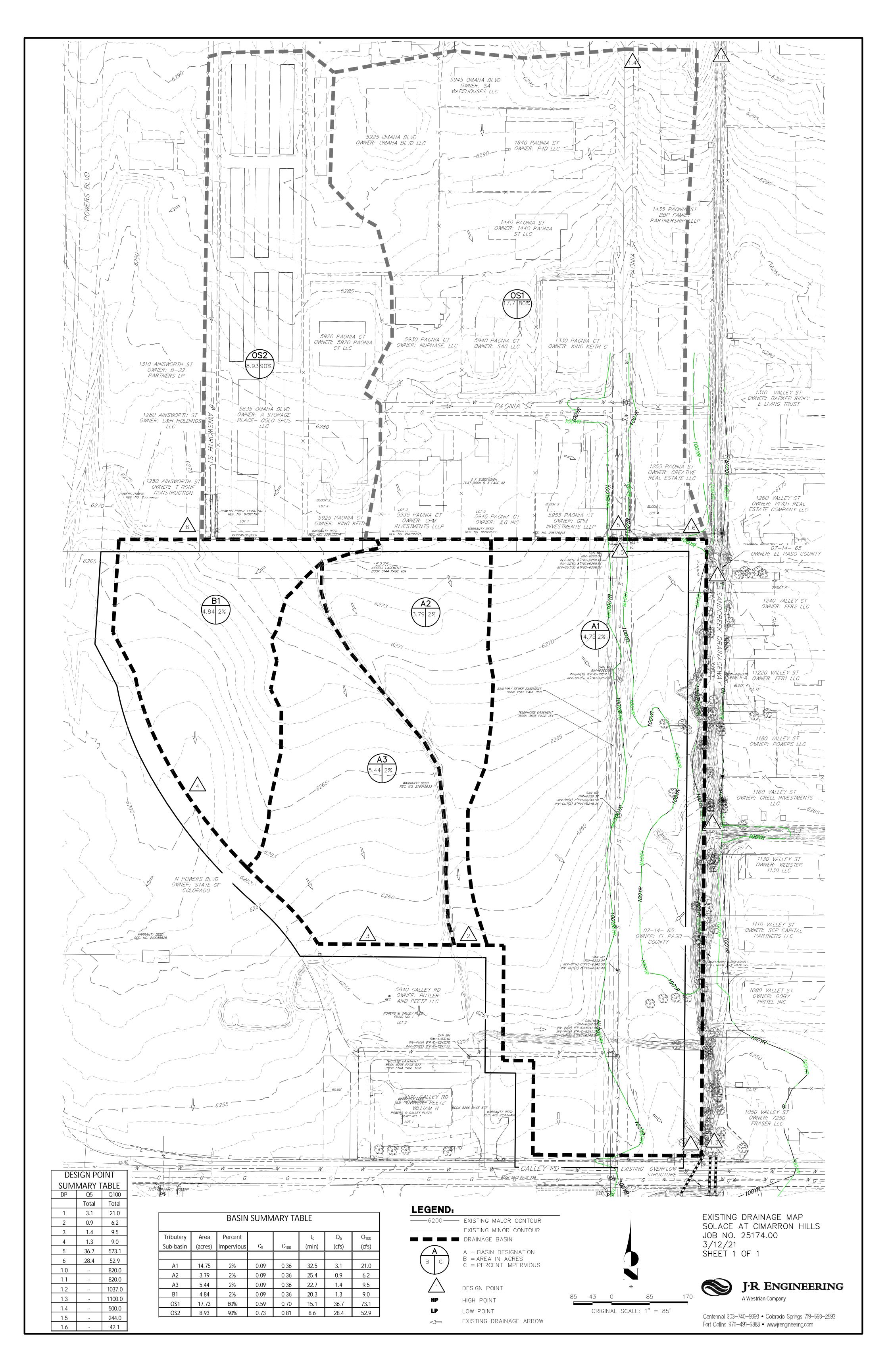
338,500

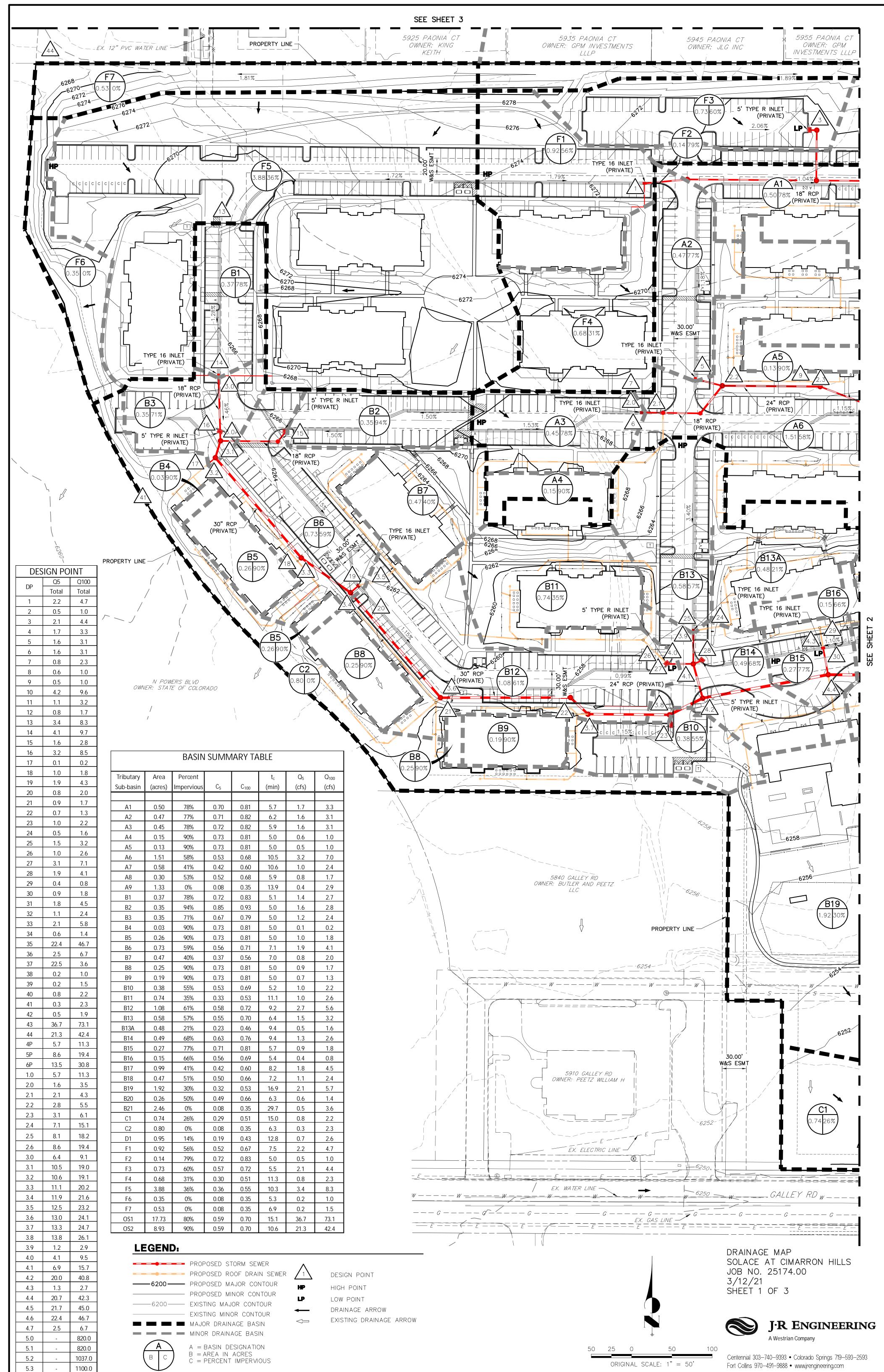
322,500

503,700

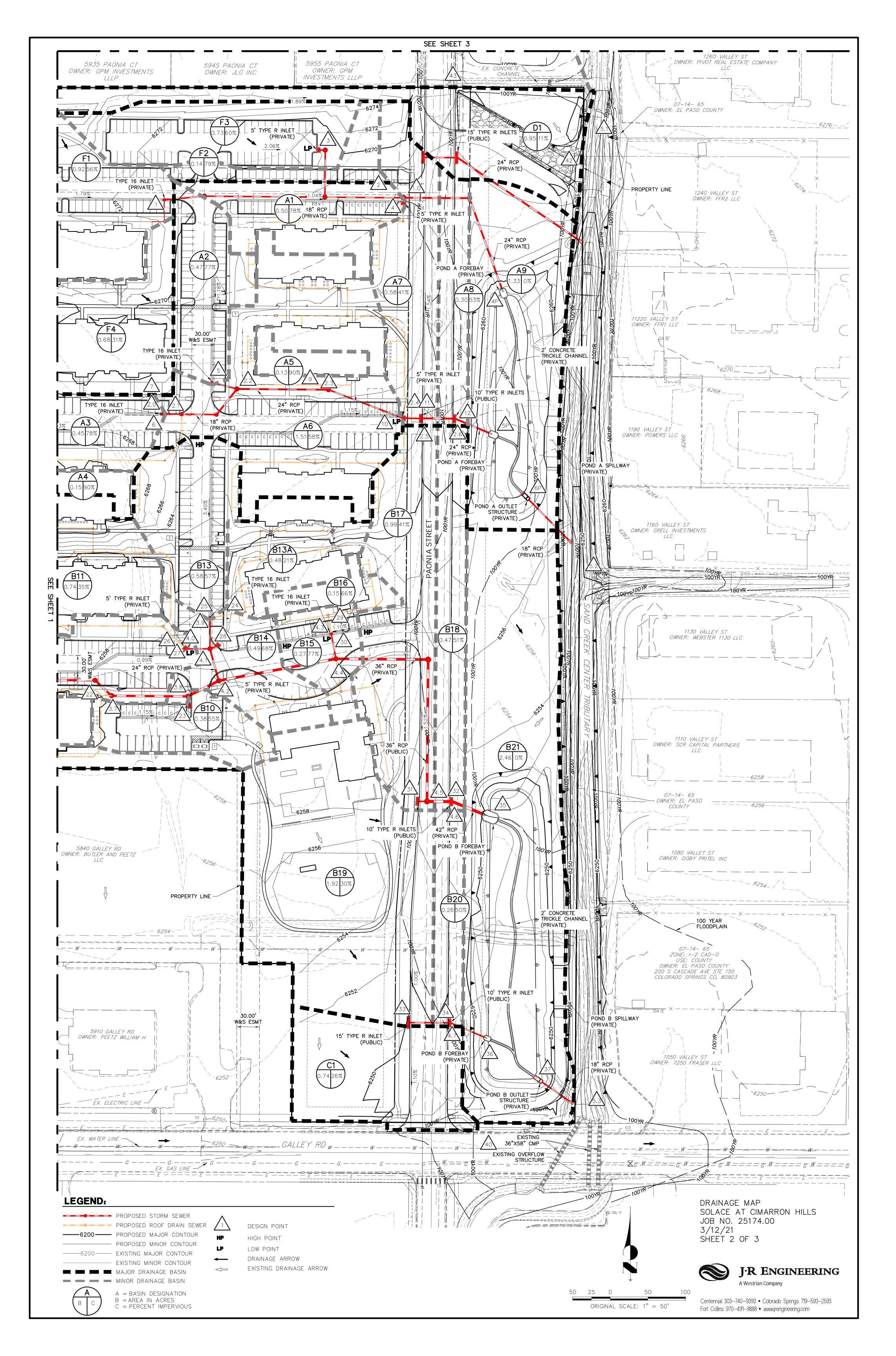
\$39,000

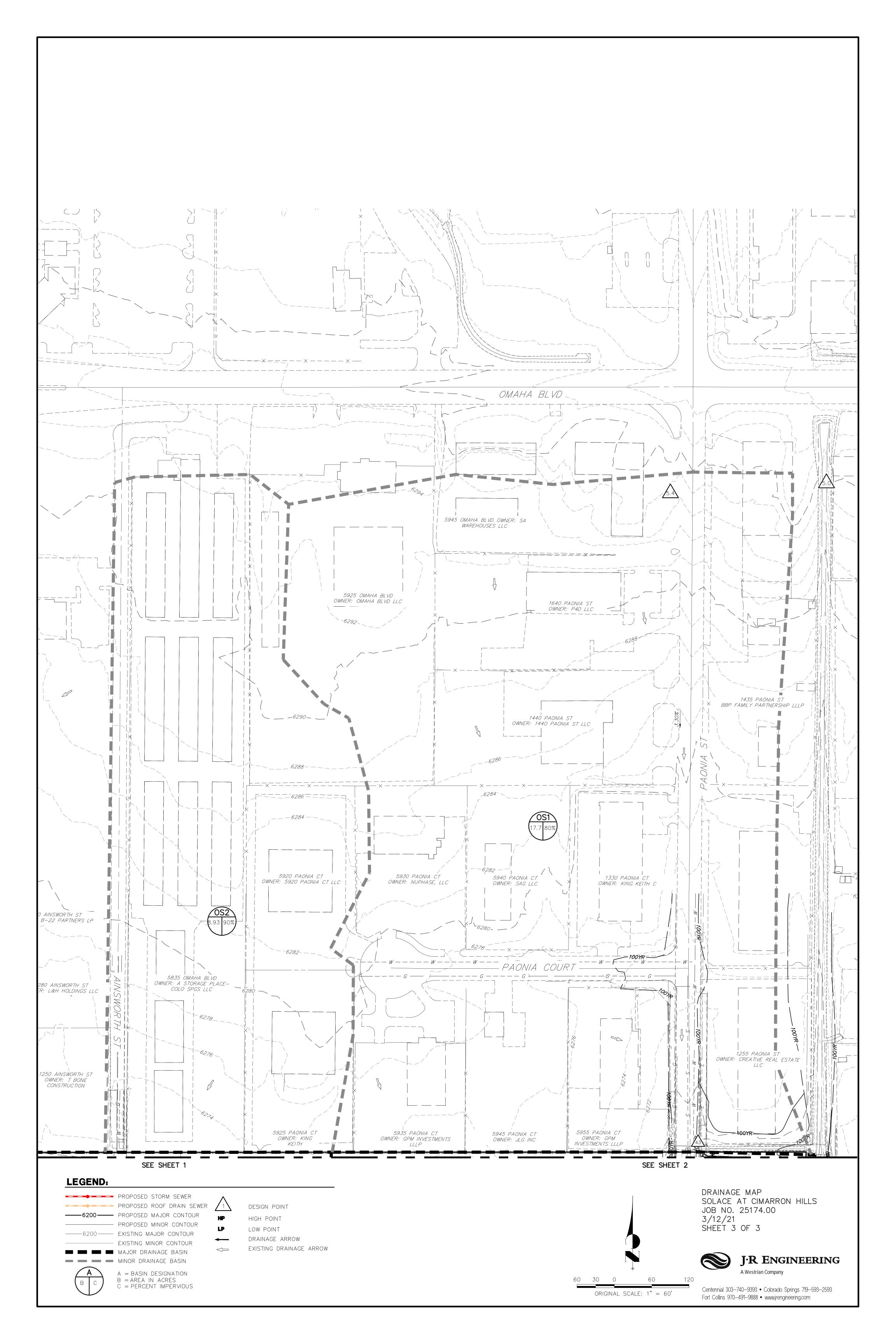
151,900

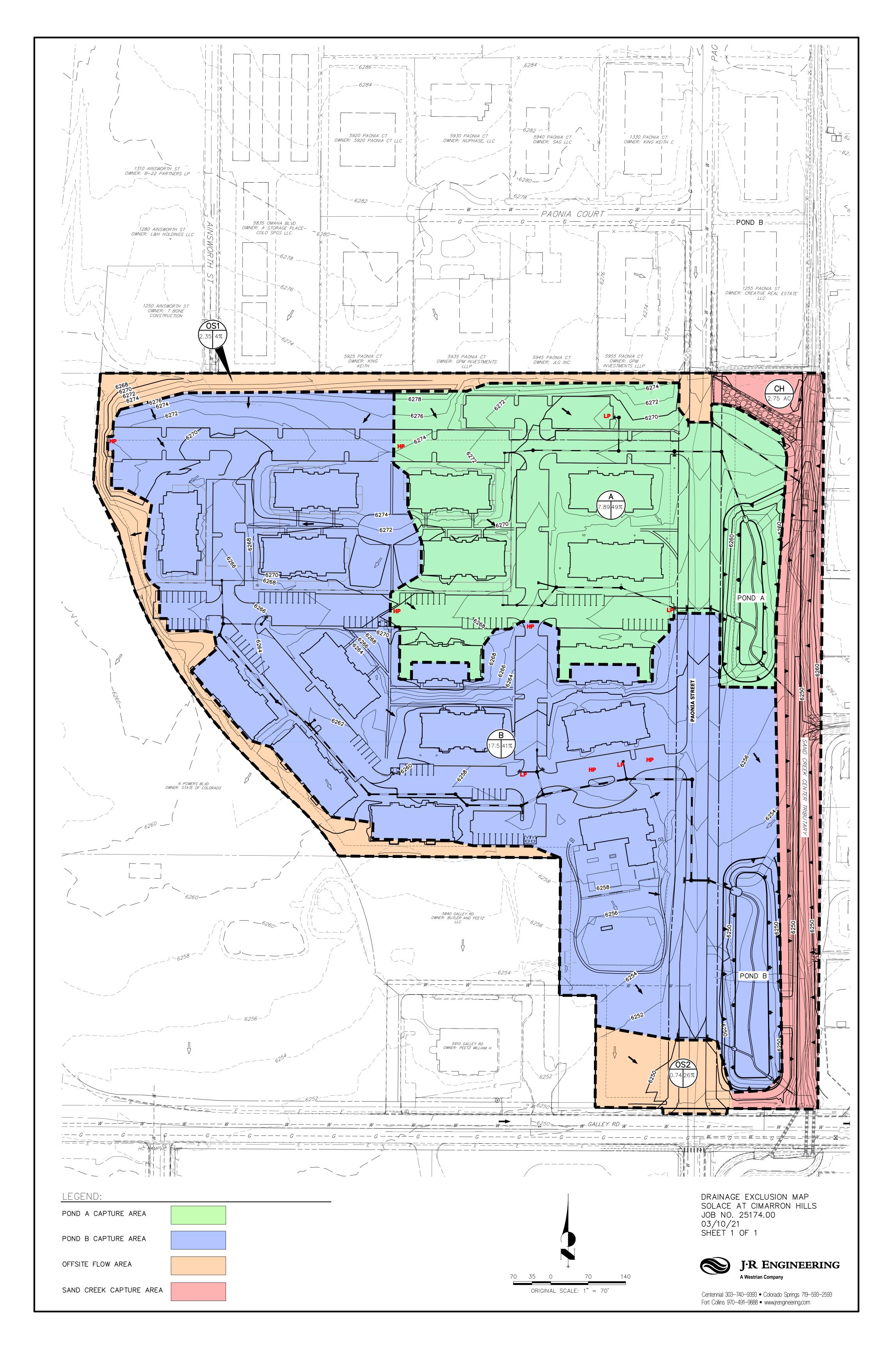

132,600


\$0

\$1,488,200


### APPENDIX E


## **DRAINAGE MAPS & PLANS**






|     |      |       |   | B8   | 0.25               | 90%    | 0.73      | 0.81    | 5.0  | 0.9       | 1. |
|-----|------|-------|---|------|--------------------|--------|-----------|---------|------|-----------|----|
| 38  | 0.2  | 1.0   |   | B9   | 0.19               | 90%    | 0.73      | 0.81    | 5.0  | 0.7       | 1. |
| 39  | 0.2  | 1.5   |   | B10  | 0.38               | 55%    | 0.53      | 0.69    | 5.2  | 1.0       | 2. |
| 40  | 0.8  | 2.2   |   | B11  | 0.74               | 35%    | 0.33      | 0.53    | 11.1 | 1.0       | 2. |
| 41  | 0.3  | 2.3   |   | B12  | 1.08               | 61%    | 0.58      | 0.72    | 9.2  | 2.7       | 5. |
| 42  | 0.5  | 1.9   |   | B13  | 0.58               | 57%    | 0.55      | 0.70    | 6.4  | 1.5       | 3. |
| 43  | 36.7 | 73.1  |   | B13A | 0.48               | 21%    | 0.23      | 0.46    | 9.4  | 0.5       | 1. |
| 44  | 21.3 | 42.4  |   | B14  | 0.49               | 68%    | 0.63      | 0.76    | 9.4  | 1.3       | 2. |
| 4P  | 5.7  | 11.3  |   | B15  | 0.27               | 77%    | 0.71      | 0.81    | 5.7  | 0.9       | 1. |
| 5P  | 8.6  | 19.4  |   | B16  | 0.15               | 66%    | 0.56      | 0.69    | 5.4  | 0.4       | 0. |
| 6P  | 13.5 | 30.8  |   | B17  | 0.99               | 41%    | 0.42      | 0.60    | 8.2  | 1.8       | 4. |
| 1.0 | 5.7  | 11.3  |   | B18  | 0.47               | 51%    | 0.50      | 0.66    | 7.2  | 1.1       | 2. |
| 2.0 | 1.6  | 3.5   |   | B19  | 1.92               | 30%    | 0.32      | 0.53    | 16.9 | 2.1       | 5. |
| 2.1 | 2.1  | 4.3   |   | B20  | 0.26               | 50%    | 0.49      | 0.66    | 6.3  | 0.6       | 1. |
| 2.2 | 2.8  | 5.5   |   | B21  | 2.46               | 0%     | 0.08      | 0.35    | 29.7 | 0.5       | 3. |
| 2.3 | 3.1  | 6.1   |   | C1   | 0.74               | 26%    | 0.29      | 0.51    | 15.0 | 0.8       | 2. |
| 2.4 | 7.1  | 15.1  |   | C2   | 0.80               | 0%     | 0.08      | 0.35    | 6.3  | 0.3       | 2. |
| 2.5 | 8.1  | 18.2  |   | D1   | 0.95               | 14%    | 0.19      | 0.43    | 12.8 | 0.7       | 2. |
| 2.6 | 8.6  | 19.4  |   | F1   | 0.92               | 56%    | 0.52      | 0.67    | 7.5  | 2.2       | 4. |
| 3.0 | 6.4  | 9.1   |   | F2   | 0.14               | 79%    | 0.72      | 0.83    | 5.0  | 0.5       | 1. |
| 3.1 | 10.5 | 19.0  |   | F3   | 0.73               | 60%    | 0.57      | 0.72    | 5.5  | 2.1       | 4. |
| 3.2 | 10.6 | 19.1  |   | F4   | 0.68               | 31%    | 0.30      | 0.51    | 11.3 | 0.8       | 2. |
| 3.3 | 11.1 | 20.2  |   | F5   | 3.88               | 36%    | 0.36      | 0.55    | 10.3 | 3.4       | 8. |
| 3.4 | 11.9 | 21.6  |   | F6   | 0.35               | 0%     | 0.08      | 0.35    | 5.3  | 0.2       | 1. |
| 3.5 | 12.5 | 23.2  |   | F7   | 0.53               | 0%     | 0.08      | 0.35    | 6.9  | 0.2       | 1. |
| 3.6 | 13.0 | 24.1  |   | OS1  | 17.73              | 80%    | 0.59      | 0.70    | 15.1 | 36.7      | 73 |
| 3.7 | 13.3 | 24.7  |   | OS2  | 8.93               | 90%    | 0.59      | 0.70    | 10.6 | 21.3      | 42 |
| 3.8 | 13.8 | 26.1  | - |      |                    |        |           |         |      |           |    |
| 3.9 | 1.2  | 2.9   |   | LE   | EGENI              | ).     |           |         |      |           |    |
| 4.0 | 4.1  | 9.5   |   |      | •                  |        |           |         |      |           |    |
| 4.1 | 6.9  | 15.7  |   |      |                    |        | POSED S   |         |      |           |    |
| 4.2 | 20.0 | 40.8  |   |      | <u> </u>           |        | POSED RO  |         |      |           |    |
| 4.3 | 1.3  | 2.7   |   |      | <u>    6200   </u> |        | POSED M   |         |      | HP        |    |
| 4.4 | 20.7 | 42.3  |   |      |                    |        | POSED MI  |         |      | LP        |    |
| 4.5 | 21.7 | 45.0  |   |      | —6200—             |        | TING MAJ  |         |      | ←         |    |
| 4.6 | 22.4 | 46.7  |   |      |                    |        | TING MIN( |         |      | $\langle$ |    |
| 4.7 | 2.5  | 6.7   |   |      |                    |        | DR DRAIN  |         |      |           |    |
| 5.0 | -    | 820.0 |   |      | $\frown$           | - MINU | R DRAIN   | AGE BAS | IIN  |           |    |





