FINAL DRAINAGE PLAN

LORSON RANCH EAST FILING NO. 2

JUNE 22, 2018

SF-18-00X

019/EGP-18-002

Prepared for:

Lorson, LLC 212 N. Wahsatch Ave, Suite 301 Colorado Springs, Colorado 80903 (719) 635-3200

Prepared by:

Core Engineering Group, LLC 15004 1ST Avenue South Burnsville, MN 55306 (719) 570-1100

Project No. 100.044

TABLE OF CONTENTS

ENGINEER'S STATEMENT	1
OWNER'S STATEMENT	1
FLOODPLAIN STATEMENT	1
1.0 LOCATION and DESCRIPTION	2
2.0 DRAINAGE CRITERIA	2
3.0 EXISTING HYDROLOGICAL CONDITIONS	3
3.1 INTERIM HYDROLOGICAL CONDITIONS	4
4.0 DEVELOPED HYDROLOGICAL CONDITIONS	5
5.0 HYDRAULIC SUMMARY	9
6.0 INTERIM CONDITIONS FOR DETENTION PONDS	
7.0 DRAINAGE and BRIDGE FEES	21
8.0 FOUR STEP PROCESS	22
9.0 CONCLUSIONS	23
10.0 REFERENCES	23

APPENDIX A

VICINITY MAP, SCS SOILS INFORMATION, FEMA FIRM MAP

APPENDIX B

HYDROLOGY CALCULATIONS

APPENDIX C

HYDRAULIC CALCULATIONS

APPENDIX D

POND AND HYDRAFLOW CALCULATIONS

APPENDIX E

STORM SEWER SCHEMATIC and HYDRAFLOW STORM SEWER CALCS

APPENDIX F

INTERIM FLOW CONDITIONS FOR PONDS C5

BACK POCKET

EXISTING CONDITIONS DRAINAGE MAP – from Lorson East MDDP OVERALL DEVELOPED CONDITIONS DRAINAGE MAP – from Lorson East MDDP INTERIM HYDROLOGICAL CONDITIONS MAP DEVELOPED CONDITIONS DRAINAGE MAPS

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Richard L. Schindler, P.E. #33997 For and on Behalf of Core Engineering Group, LLC

OWNER'S STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

Lorson, LLC

By Jeff Mark

Title

Manager

Address

212 N. Wahsatch Avenue, Suite 301, Colorado Springs, CO 80903

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is located within a designated floodplain as shown on Flood Insurance Rate Map Panel No. 08041C0957 F and 08041C1000 F, dated March 17, 1997 and modified by modified per LOMR Case No. 14-08-0534P. (See Appendix A, FEMA FIRM Exhibit)

Richard L. Schindler, #33997

Date

Date

EL PASO COUNTY

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volume 1 and 2, and Engineering Criteria Manual, As Amended.

Jennifer Irvine County Engineer/ECM Administrator

Conditions:

Date

Date

Revise

1.0 LOCATION and DESCRIPTION

Lorson Ranch East Filing No. 2 is located east of the East Tributary of Jimmy Camp Creek and north of Fontaine Boulevard. The site is located on approximately 53.87 acres of vacant land. This project will develop this site into single-family residential developments. The land for the residential lots is currently owned by Lorson LLC or its nominees for Lorson Ranch.

The site is located in the West 1/2 of Sections 14 and the South ½ of Section 13, Township 15 South and Range 65 West of the 6th Principal Meridian. The property is bounded on the south by Fontaine Boulevard, on the east by unplatted land in Lorson Ranch, on the west by The East Tributary of Jimmy Camp Creek, and the north by unplatted land in Banning Lewis Ranch and Rolling Hills Ranch. For reference, a vicinity map is included in Appendix A of this report.

Conformance with applicable Drainage Basin Planning Studies

There is an existing (unapproved) DBPS for Jimmy Camp Creek prepared by Wilson & Company in 1987, and is referenced in this report. The only major drainage improvements for this study area according to the 1987 Wilson study was the reconstruction of the East Tributary of Jimmy Camp Creek (East Tributary). In 2014 a portion of the East Tributary was reconstructed from Fontaine Boulevard south 2,800 feet in accordance with the 1987 study. This section of the East Tributary included a trapezoidal channel section with 6:1 side slopes and a sand bottom. On March 9, 2015 a new DBPS for Jimmy Camp Creek has not been adopted by Kiowa Engineering. The Kiowa Engineering DBPS for Jimmy Camp Creek has not been adopted by El Paso County but is allowed for concept design. The concept design includes the East Tributary armoring concept and the full spectrum detention pond requirements. The Kiowa DBPS did not calculate drainage fees so current El Paso County drainage/bridge fees apply to this development. Channel improvements in the East Tributary north of Fontaine Boulevard were designed by Kiowa Engineering and are currently under construction and must be completed before this final plat is recorded. Channel improvements south of Fontaine Boulevard were designed by Kiowa Engineering and are currently under construction and must be completed before this final plat is recorded. Channel improvements south of Fontaine Boulevard were designed by Kiowa Engineering and are currently under construction and must be completed before this final plat is recorded. Channel improvements south of Fontaine Boulevard were designed by Kiowa Engineering and are currently under construction and must be completed before this final plat is recorded. Channel improvements south of Fontaine Boulevard within this final plat limits were constructed in 2014.

Conformance with Lorson East MDDP and PDR by Core Engineering GroupSense.

Core Engineering Group has an approved MDDP for Lorson East and PDR for Lorson Ranch East which covers this final plat area and the East Tributary. This PDR conforms to the MDDP and PDR for Lorson East and is referenced in this report. The major infrastructure to be constructed in this final plat site includes Detention/WQ Ponds C5 and D2 which have been constructed as part of Lorson Ranch East Filing No. 1. There are also two bridges over the East Tributary that are required to be built for this plat. The bridges are located at Fontaine Boulevard and Lorson Boulevard. Both bridge construction plans were prepared by Kiowa Engineering and have been approved. Construction is currently underway for both bridges and must be complete prior to recordation of this plat.

Lorson Ranch East is located within the "Jimmy Camp Creek Drainage Basin", which is a fee basin in El Paso County.

2.0 DRAINAGE CRITERIA

over main

Stem JCC The supporting drainage design and calculations were performed in accordance with the City of Colorado Springs and El Paso County "Drainage Criteria Manual (DCM)", dated November, 1991, the El Paso County "Engineering Criteria Manual", Chapter 6 and Section 3.2.1 Chapter 13 of the City of Colorado Springs Drainage Criteria Manual dated May 2014, and the UDFCD "Urban Storm Drainage Criteria Manual" Volumes 1, 2 and 3 for inlet sizing. No deviations from these published criteria are requested for this site.

The Rational Method as outlined in Section 6.3.0 of the May 2014 "Drainage Criteria Manual" and in Section 3.2.8.F of the El Paso County "Engineering Criteria Manual" was used for basins less than 130 acres to determine the rainfall and runoff conditions for the proposed development of the site. The runoff rates for the 5-year initial storm and 100-year major design storm were calculated.

Current updates to the Drainage Criteria manual for El Paso County states the if detention is necessary, Full Spectrum Detention will be included in the design, based on this criteria, Full Spectrum Detention will be required for this development. Pond C5 is currently under construction as part of Lorson Ranch East Filing No. 1 and will be complete prior to recordation of this plat.

3.0 EXISTING HYDROLOGICAL CONDITIONS

Prior to the early grading of Lorson Ranch East the site was undeveloped with native vegetation (grass with no shrubs) and moderate to steep slopes in a westerly direction the East Tributary of Jimmy Camp Creek.

The Soil Conservation Service (SCS) classifies the soils within the Lorson Ranch East property as Ascalon Loam, Manzanola clay loam; Midway Clay Loam, Nelson-Tassel fine Sandy loam; Razor clay loam; and Wiley silt loam [3]. The sandy and silty loams are considered hydrologic soil group B soils with moderate to moderately rapid permeability. The Midway and Razor clay loams are considered hydrologic soil group C soils with slow permeability. All of these soils are susceptible to erosion by wind and water, have low bearing strength, moderate shrink-swell potential, and high frost heave potential (see table 3.1 below). The clay loams are difficult to vegetate and comprise of a small portion of the study area. Weathered bedrock will be encountered beneath some of the site but it can be excavated using conventional techniques.

Soil	Hydro. Group	Shrink/Swell Potential	Permeability	Surface Runoff Potential	Erosion Hazard
2-Ascalon Sandy Loam	В	Moderate	Moderate	Slow to Medium	Moderate
3-Ascalon Sandy Loam	В	Moderate	Moderate	Slow to Medium	Moderate
52-Manzanola Clay Loam	С	High	Slow	Medium	Moderate
54-Midway Clay Loam	С	High	Slow	Medium to Rapid	Moderate to High
56-Nelson – Tassel Fine Sandy Loam	В	Moderate	Moderately Rapid	Slow	Moderate
75-Razor Clay Loam	С	High	Slow	Medium	Moderate
108-Wiley Silt Loam	В	Moderate	Moderate	Medium	Moderate

Table 3.1: SCS Soils Survey

Excerpts from the SCS "Soil Survey of El Paso County Area, Colorado" [2] are provided in *Appendix A* for further reference.

For the purpose of preparing hydrologic calculations for this report, the soil of each basin are assumed to be wholly comprised of the majority soil hydrologic group. The majority of this site is to be filled by material from the school site which is Razor Clay Loam which is Hydrologic Group C therefore the hydrologic conditions are assumed to be Group C.

Address LOMR approval necessary prior to recording final plat.

An existing electrical easement, with existing transmission towers, is located east side of this site and will be set aside as open space in the future.

Portions of the site are located within the delineated 100-year floodplain of the East Tributary of Jimmy Camp Creek per the Federal Emergency Management Agency (FEMA) Flood Rate Insurance Map (FIRM) number 08041C0957 F & 08041C1000 F, effective 17 March 1997 [2]. Floodplain along the East Tributary was modified per LOMR Case No. 14-08-0534P (see appendix). Floodplain designations include Zone AE and Zone X within the property boundary. A portion of this map is provided in *Appendix A* for reference. A CLOMR for the creek and bridge construction which includes grading to remove some areas north of Fontaine Boulevard from the current floodplain has been submitted to and approved by FEMA under Case No. 17-08-1043R.

The existing basins for this large site were taken from the Lorson Ranch East MDDP East of the East Tributary and depict conditions prior to any grading in Lorson Ranch East. A map from the MDDP has been included in the appendix.

Overall Basin EX-C flows to Design Point 2

This is the largest existing basin at 452.97 acres which includes approximately the northern half of the site. This basin is an overall existing basin including Basins EX-C1 to EX-C10. There are two offsite basins (OS-C6.1 and OS-C5.1) which flow onto the site from the north and east and are included in the flow at Design Point 2. Under existing conditions, this basin contributes 141.0 cfs and 458.0 cfs for the 5-year and 100-year events respectively at Design Point 2. Design Point 2 is located at the East Tributary and all flow is routed to the East Tributary in an existing swale that is eroded and is not armored.

3.1 INTERIM HYDROLOGICAL CONDITIONS

Interim hydrological conditions have been calculated based on grading that has been completed in accordance with Phase 1 of the Early Grading for Lorson Ranch East (PUDSP 16-003), Fontaine Boulevard/Lamprey Drive construction (CDR 183), and the school site improvements currently under construction. Interim condition existing flows have been calculated to determine interim drainage impacts to this final plat which is located downstream and to make sure runoff is accommodated by the street/storm sewer system constructed as part of this plat and CDR 183. These interim condition calculations are also used to perform hydraulic modeling of Pond C5 to see what effect the existing upstream flows have on the downstream pond outflow rates when compared to pre-developed conditions at the East Tributary. The interim conditions hydraulic modeling will be done by a computer program called Hydraflow (Intellisolve) and is discussed in Interim Conditions for Pond C5 (Section 6.0) of this report.

Interim conditions consist of Fontaine Boulevard construction from Old Glory Drive eastward 3,500 feet to the existing electric transmission lines, Lamprey Drive construction from Fontaine Boulevard northeast 1,800 feet to Yamhill Drive per CDR 183. CDR 183 includes street, storm sewer, sanitary sewer, and watermain construction which provides access to this plat. Interim conditions also include all the interior streets/infrastructure for this final plat and construction of the school site by the school district.

Interim Basin EX3

This interim basin consists of existing flow from undeveloped areas east of Lamprey Drive and the School Site. Runoff flows west overland and in natural drainageways to Design Point 2. The existing runoff is 43cfs and 193cfs for the 5-year and 100-year events. The downstream storm sewer at Design Point 5 is designed for the future flows of 52.5cfs/71.5cfs in the 5-year and 100-year events per the Fontaine/Lamprey construction (CDR 183). Interim Detention Pond EX-3 will be constructed at Design Point 2 to detain existing runoff less than downstream storm sewer capacities. See Interim Pond EX-3 and Design Point 2 for more information.

Address overflow path and conveyance capacity.

Interim Basin EX3.1

This interim basin consists of existing flow from undeveloped residential areas east of Lorson Ranch East Filing No. 2. The contours shown for this basin are taken from the Lorson Ranch East Early Grading Plans and the School Site grading plans. The school site has a large volume of dirt export generated by grading the school site and the material will be used to raise the grade in this basin. The existing flows are calculated based on vacant land that has been revegetated since development in this basin may not occur for several years. Future development will have to design storm sewer extensions and street capacities to handle developed flow when the future final plat is prepared. The existing flow is directed overland to a proposed 24" storm sewer constructed with this final plat. The existing runoff is 5.0cfs and 31.0cfs for the 5-year and 100-year events. See Design Point 6 for analysis of the 24" storm sewer and the temporary sediment basin at this location.

Interim Basin EX3.2

This interim basin consists of existing flow from undeveloped areas east of Lorson Ranch East Filing No. 2 and the future Lamprey Drive and Lorson Boulevard extension. The contours shown for this basin are taken from the Lorson Ranch East Early Grading Plans. The school site has a large volume of dirt export generated by grading the school site and the material will be used to raise the grade in this basin. Lamprey Drive and Lorson Boulevard have been graded as part of the Phase 1 grading in the Lorson Ranch East Early Grading plans. The existing flows are calculated based on vacant land that has been revegetated since development in this basin may not occur for several years. Future development will have to design storm sewer extensions and street capacities to handle developed flow when the future final plat is prepared. The existing flow is directed overland to an existing 24" storm sewer constructed as part of the Fontaine/Lamprey construction (CDR 183) at Design Point 4. The existing runoff is 2.0cfs and 13.0cfs for the 5-year and 100-year events. See Design Point 4 for analysis of the existing 24" storm sewer and the proposed temporary sediment basin at this location.

Basin C13

This basin consists of developed flow from the proposed school site. Runoff flows west in curb/storm sewer constructed by the school to a proposed detention pond at Design Point 9 located on the school site. The school will construct and own/maintain the detention pond. Water Quality for this basin has been provided by Lorson Ranch as part of Pond C5 constructed in Lorson Ranch East Filing No. 1. The developed runoff is 31.5cfs and 70.2cfs for the 5-year and 100-year events entering the school pond. See Design Point 9 for analysis of the proposed School Pond.

4.0 DEVELOPED HYDROLOGICAL CONDITIONS

Hydrology for the Lorson Ranch East Filing No. 2 final drainage report was based on the City of Colorado Springs/El Paso County Drainage Criteria. Sub-basins that lie within this project were determined and the 5-year and 100-year peak discharges for the developed conditions have been presented in this report. Based on these flows, storm inlets will be added when the street capacity is exceeded.

Soil type C/D has been assumed for the hydrologic conditions because most of the site requires fill and the majority of the fill will be from the school site which is Razor Clay Loam (75), Hydrologic Group C. This approach will provide a more conservative approach to designing the storm sewer infrastructure. See Appendix A for SCS Soils Map.

The time of concentration for each basin and sub-basin was developed using an overland, ditch, street and pipe flow components. The maximum overland flow length for developed conditions was limited to 100 feet. Travel time velocities ranged from 2 to 6 feet per second. The travel time calculations are included in the back of this report. Runoff coefficients for the various land uses were obtained from Table 6-6 dated May, 2014 from the updated City of Colorado Springs/El Paso County Drainage Criteria Manual. See Appendix B.

Drainage concepts for each of the basins are briefly discussed as follow:

Basin A1

Basins A1 consists of flow from backyards and the East Tributary of Jimmy Camp Creek. Runoff is directed north to the East Tributary of Jimmy Camp Creek. The peak developed flow from this basin is 4.6cfs and 16.9cfs for the 5/100-year storm event See the appendix for detailed calculations. See Section 6.0 for water quality discussions.

Basin C16.3

Basin C16.3 consists of residential development located NE of Shavers Drive and Lamprey Drive. Runoff is directed southwest in curb/gutter in Mumford Drive and then south to Design Point 6a to a proposed Type "R" inlet in Shavers Drive. The peak developed flow from this basin is 3.6cfs and 7.9cfs for the 5/100-year storm event. See the appendix for detailed calculations. Address interim and

Basin C16.4

ultimate conditions.

Basin C16.4 consists of residential development located east of Shavers Drive on Lamprey Drive. Runoff is directed west in curb/gutter in Lamprey Drive and to Design Point 8 to an existing Type "R" inlet in Shavers Drive. The developed flow from this basin is 1.7cfs and 3.9cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.14

Basin C16.14 consists of residential development located north of Lamprey Drive on the east side of Shavers Drive. Runoff is directed south in curb/gutter to Design Point 7 to existing 5' Type "R" inlet in Shavers Drive constructed per CDR183. The developed flow from this basin is 0.3cfs and 0.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.15

Basin C16.15 consists of residential development located north of Mumford Drive on the east side of Shavers Drive. Runoff is directed south in curb/gutter to Design Point 6a to a proposed Type "R" inlet. The developed flow from this basin is 4.8cfs and 10.1cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.16

Basin C16.16 consists of residential development located NE of Clarion Drive and Lamprey Drive. Runoff is directed southwest in curb/gutter in Lamprey Drive to a proposed Type "R" inlet in Mumford Drive at Design Point 10. The developed flow from this basin is 2.9cfs and 5.4cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.17

Basin C16.17 consist of residential development located NE of Clarion Drive and Lamprey Drive. Runoff is directed southwest in curb/gutter in Mumford Drive to a proposed Type "R" inlet in Mumford Drive at Design Point 10. The developed flow from these basin is 3.0cfs and 6.6cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.18

Basin C16.18 consists of residential development located North of Clarion Drive and Mumford Drive. Runoff is directed south in curb/gutter in Mumford Drive to Design Point 10a to a proposed Type "R" inlet in Mumford Drive. The developed flow from this basin is 5.7cfs and 12.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

Basin C16.19

Basin C16.19 consists of residential development located on Clarion Drive. Runoff is directed southwest in curb/gutter in Clarion Drive to Design Point 16 to a proposed Type "R'\inlet in Wacissa Drive. The developed flow from this basin is 3.1cfs and 6.9cfs for the 5/100-year storm event. See the appendix for detailed calculations. south of Clarion Dr.

Basin C16.20

Basin C16.20 consists of residential development located on Nash and Wacissa Drive. Runoff is directed southwest in curb/gutter in Nash and Wacissa Drive to Design Point 12a to a proposed Type "R" inlet in Nash Drive. The developed flow from this basin is 5.4cfs and 12.0cfs for the 5/100-year storm event. See the appendix for detailed calculations Tarbell?

Basin C16.21

Basin C16.21 consists of residential development located on Nash and Wacissa Drive. Runoff is directed southwest in curb/gutter in Nash and Wacissa Drive to Design Point 12a to a proposed Type "R" inlet in Nash Drive The developed flow from this basin is 3.2cfs and 7.1cfs for the 5/100-year storm event. See the appendix for detailed calculations and DP13?

Basin C16.22

Basin C16.22 consists of residential development located on Nash Drive. Runoff is directed southwest in curb/gutter in Nash Drive to Design Point 12 to a proposed type "R" inlet in Nash Drive. The developed flow from this basin is 5.1cfs and 11.3cfs for the 5/100-year storm event. See the appendix for detailed calculations

Basin C16.23

Basin C16.23 consists of residential development located on Nash Drive. Runoff is directed southwest in curb/gutter in Nash Drive to Design Point 12 to a proposed Type "R" inlet in Nash Drive. The developed flow from this basin is 2.6cfs and 5.8cfs for the 5/100-year storm event. See the appendix for detailed calculations

Basin C16.24

Basin C16.24 consists of residential development located on Wacissa and Tarbell Drive. Runoff is directed southwest in curb/gutter in Wacissa Drive to Design Point 13 to a proposed Type "R" inlet in Wacissa Drive The developed flow from this basin is 4.5cfs and 10.1cfs for the 5/100-year storm event. See the appendix for detailed calculations south of Nash Dr.

Basin C16.25

Basin C16.25 consists of residential development located on Wacissa Drive. Runoff is directed south in curb/gutter in Wacissa Drive to Design Point 17 to a proposed Type "R" inlet in Wacissa Drive. The developed flow from this basin is 0.8cfs and 1.9cfs for the 5/100-year storm event. See the appendix for detailed calculations

Basin C16.26

Basin C16.26 consists of residential development located on Mumford Drive. Runoff is directed north in curb/gutter in Mumford Drive to Design Point 10b to a proposed Type "R" inlet at Mumford/Clarion Drive. The developed flow from this basin is 3.2cfs and 6.9cfs for the 5/100-year storm event. See the appendix for detailed calculations

Basin C16.27

Basin C16.27 consists of residential development located on Mumford Drive. Runoff is directed north in curb/gutter in Mumford Drive to Design Point 10c to a proposed Type "R" inlet at Mumford/Clarion Drive. The developed flow from this basin is 0.6cfs and 1.3cfs for the 5/100-year storm event See the appendix for detailed calculations

10-foot

10-foot

Basin C16.28

Basin C16.28 consists of residential development located on Wacissa, Zealand, Ballona Drive. Runoff is directed northwest in curb/gutter in Wacissa Drive to Design Point 16 to a proposed Type "R" inlet in Wacissa Drive. The developed flow from this basin is 3.9cfs and 8.6cfs for the 5/100-year storm event See the appendix for detailed calculations

Basin C16.29

- west in Clarion and Zealand then north

Basin C16.29 consists of residential development located on Wacissa, Zealand, Clarion Drive. Runoff is directed northwest in curb/gutter in Wacissa Drive to Design Point 16 to a proposed Type "R" inlet in Wacissa Drive. The developed flow from this basin is 3.7cfs and 8.2cfs for the 5/100-year storm event See the appendix for detailed calculations

Basin C16.30

Basin C16.30 consists of residential development located on Wacissa and Tarbell Drive. Runoff is directed south in curb/gutter in Wacissa Drive to Design Point 14 to a proposed Type "R" inlet in Wacissa Drive. The developed flow from this basin is 6.8cfs and 15.2cfs for the 5/100-year storm event. See the appendix for detailed calculations

Basin C16.31

Basin C16.31 consists of backyards of houses on Wacissa Drive, East Tributary, and open space. Runoff is directed overland to the East Tributary. The developed flow from this basin is 6.9cfs and 27.4cfs for the 5/100-year storm event. See Section 6.0 for water quality discussions for backyards. See the appendix for detailed calculations

Basin C16.32

Ballona

Basin C16.32 consists of residential development located on Wacissa and Mumford Drive. Runoff is directed north in curb/gutter in Wacissa Drive to Design Point 17 to a proposed Type "R" inlet. The developed flow from this basin is 1.8cfs and 4.1cfs for the 5/100-year storm event. See the appendix for detailed calculations 30-foot -----

Basin C16.34

Basin C16.34 consists of flow from Lamprey Drive and the adjacent backyards. Runoff is directed south in curb/gutter in to a Type "R" inlet in the NW corner of Fontaine Boulevard and Lamprey Drive at Design Point 34. The developed flow from this basin is 0.9cfs and 1.9cfs for the 5/100-year storm event. See the appendix for detailed calculations

Basin C16.35

Basin C16.35 consists of flow from residential development and Fontaine Boulevard. Runoff is directed south and west in curb/gutter in to a proposed Type "R" inlet in the NE corner of Fontaine Boulevard and Edisto Drive at Design Point 35. The developed flow from this basin is 2.8cfs and 6.2cfs for the 5/100-year storm event. See the appendix for detailed calculations

Basin C16.36

Basin C16.36 consists of flow from residential development and Pond C5. Runoff is directly tributary to Pond C5. The developed flow from this basin is 6.3cfs and 24.7cfs for the 5/100-year storm event. See the appendix for detailed calculations

Basin C17.8

Basin C17.8 consists of residential development and Fontaine Boulevard on the north side. Runoff is directed west in curb/gutter to Design Point 42 to a Type "R" inlet in Fontaine Boulevard. The peak developed flow from this basin is 3.2cfs and 7.2cfs for the 5/100-year storm event. See the appendix for detailed calculations.

See the Developed Conditions Hydrology Calculations in the back of this report and the Developed Conditions Drainage Map (Map Pocket) for the 5-year and 100-year storm event amounts.

5.0 HYDRAULIC SUMMARY

The sizing of the hydraulic structures and detentions ponds were prepared by using the *StormSewers* and *Hydrographs* computer software programs developed by Intellisolve, which conforms to the methods outlined in the "City of Colorado Springs/El Paso County Drainage Criteria Manual". Street capacities and Inlets were sized by Denver Urban Drainage's xcel spreadsheet UD-Inlet.

It is the intent of this drainage report to use the proposed curb/gutter and storm sewer in the streets to convey runoff to detention and water quality ponds then to the East Tributary of Jimmy Camp Creek. Inlet size and location are preliminary only as shown on the storm sewer layout in the appendix. See Appendix C for detailed hydraulic calculations and the storm sewer model.

		tial Local	Residentia	al Collector	Principa	I Arterial
Street Slope	5-year	100-year	5-year	100-year	5-year	100-year
0.5%	6.3	26.4	9.7	29.3	9.5	28.5
0.6%	6.9	28.9	10.6	32.1	10.4	31.2
0.7%	7.5	31.2	11.5	34.6	11.2	33.7
0.8%	8.0	33.4	12.3	37.0	12.0	36.0
0.9%	8.5	35.4	13.0	39.3	12.7	38.2
1.0%	9.0	37.3	13.7	41.4	13.4	40.2
1.4%	10.5	44.1	16.2	49.0	15.9	47.6
1.8%	12.0	45.4	18.4	50.4	18.0	50.4
2.2%	13.3	42.8	19.4	47.5	19.5	47.5
2.6%	14.4	40.7	18.5	45.1	18.5	45.1
3.0%	15.5	39.0	17.7	43.2	17.8	43.2
3.5%	16.7	37.2	16.9	41.3	17.0	41,3
4.0%	17.9	35.7	16.2	39.7	16.3	29.7
4.5%	19.0	34.5	15.7	38.3	15.7	38.3
5.0%	19.9	33.4	15.2	37.1	15.2	37.1

Table 1: Street Capacities (100-year capacity is only ½ of street)

Note: all flows are in cfs (cubic feet per second)

typo?

Design Point 1

Design Point 1 is located at the East Tributary of Jimmy Camp Creek on the north property line. A swale along the north property line will re-direct offsite runoff from Basin OS-C11 westward to the East Tributary so the lots are not burdened with offsite flows. The swale is a "V" swale, 2.5' deep, and at a minimum slope of 1%, and conveys the runoff from the 100-year storm event of 21cfs at a depth of 1.3' deep. The total flow is 9.4cfs and 21cfs in the 5/100-year storm events

Design Point 2

Design Point 2 is located at the south side of the future Lamprey Drive west of the school site where a natural drainageway is located. This design point accepts flow from an existing undeveloped Basin EX-3. In the future, upstream runoff will be diverted south into Pond C3 (see Lorson Ranch East MDDP, approved) resulting in reduced flow rates to this design point. For interim existing flows the downstream storm sewer does not have capacity to handle the flow so an interim detention pond is proposed at this location. Interim Detention Pond EX-3 consists of a 30" pipe outlet structure and is only to reduce runoff to amounts lower than the downstream storm sewer system. The outflow from Pond EX-3 is

future

34cfs and 67cfs in the 5/100-year storm events. The flow is directed north in a 30" temporary CMP pipe under the future Lamprey Drive to Design Point 3. When development in this area (south of Lamprey) is started Pond EX-3 will be removed and Pond C3 will need to be constructed per the Lorson Ranch East MDDP. See Section 6.0 for pond calculations.

Design Point 3

Design Point 3 is located in the NE corner of Lamprey Drive and Yamhill Drive. Flow at this design point is from Pond EX-3 outflow. A temporary 36" CMP will be constructed southwest to an existing manhole in Lamprey Drive at Yamhill Drive constructed as part of the Fontaine improvements (CDR 183). When Lamprey Drive is extended the temporary pipes will be removed. The total flow at this design point is 34cfs and 67cfs in the 5/100-year storm events. The temporary swale from Pond EX-3 is a trapezoid swale, 4' wide bottom, 3' deep, flow depth of 1.59' at 67cfs, velocity of 4fps at flow rate of 67cfs.

Design Point 4

Design Point 4 is located in the north of Lamprey Drive and Yamhill Drive. Flow at this design point is from Basin EX-3.2. A 24" RCP storm sewer was constructed in Yamhill Drive which connects to a manhole in Lamprey Drive at Yamhill Drive constructed as part of the Fontaine improvements (CDR 183). Temporary Sediment Basin EX-3.2 will be constructed over the 24" storm sewer including a 36" standpipe and perforated pipe. The existing interim runoff is 2.0cfs and 13.0cfs for the 5-year and 100-year events. The existing 24" storm sewer in Yamhill Drive is designed for future flows of 18.8cfs and 35.5cfs for the 5-year and 100-year events (see Fontaine CDR 183) and has capacity for the interim flows. Temporary Sediment Basin EX-3.2 is designed as follows: top=5748.00, btm=5746, top 36" standpipe=5747.00, 100-yr WSEL=5747.56, 8" perforated pipe, volume=466cuft, bottom is 5'x5', sideslopes are 4:1. When Yamhill Drive is extended the sediment basin will be removed.

Design Point 5

Design Point 5 is located at Lamprey Drive and Yamhill Drive at an existing manhole in the intersection. Flow at this design point is from Design Point 3 and 4. The total interim flows at this design point are 36cfs and 80cfs in the 5/100-year storm events. The existing 36" storm sewer in Lamprey Drive is designed for future flows of 52.5cfs and 71.5cfs for the 5-year and 100-year events (see Fontaine CDR 183). The interim 100year flow is slightly more than the future flows but the HGL is only slightly above the top of the pipe and the additional flow can be accommodated by the pipe. In the event the pipe does not have capacity the overflow will drain overland in Lamprey Drive west to Shavers Drive where existing inlets will capture the flow at Design Point 8. Design Point 8 will have excess capacity since a large portion of the tributary drainage area isn't developed at this time.

Design Point 6

Design Point 6 is located on Mumford Drive west of Shavers Drive just west of where the street construction for this plat will end. Flow at this design point is from Basin EX-3.1. A 24" RCP storm sewer will be constructed in Mumford Drive to collect this flow. Temporary Sediment Basin EX-3.1 will be constructed over the 24" storm sewer including a 36" standpipe and perforated pipe. The existing interim existing runoff is 5.0cfs and 31.0cfs for the 5-year and 100-year events. The 24" storm sewer in Mumford Drive is designed for future flows of 11.05cfs and 17.9cfs for the 5-year and 100-year events (see Lorson Ranch East PDR). Per the Lorson Ranch East PDR (Design Point 6), 14.75cfs is allowed to flow overland in the street to Design Point 6a which results in capacity for the interim existing runoff. Temporary Sediment Basin EX-3.1 is designed as follows: top=5743.00, btm=5741, top 36" standpipe=5742.00, 100-yr WSEL=5742.69 for 18cfs, 8" perforated pipe, volume=1162cuft, bottom is 10'x10', sideslopes are 4:1. When Mumford Drive is extended the sediment basin will be removed.

east/east?

SE?

Design Point 6a

< **-**

Design Point 6a is located at the SW corner of Shavers Drive and Mumford Drive

(5-year storm) Tributary Basins: C16.15 Upstream flowby: 1.77cfs	Inlet/MH Number: Inlet DP6a Total Street Flow: 6.61cfs
Flow Intercepted: 5.71cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 0.9 cfs to Inlet DP8
Street Capacity: Street slope = 1.0%, c	capacity = 9.0cfs, inlet needed
(100-year storm) Tributary Basins: C16.15 Upstream flowby: 14.75cfs	Inlet/MH Number: Inlet DP6a Total Street Flow: 24.87cfs
Flow Intercepted: 11.17cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 13.7cfs to Inlet DP8
Street Capacity: Street slope = 1.0%, c	capacity = 37.3cfs (half street) is okay

Design Point 6b

Design Point 6b is located at the east side of the intersection of Clarion Drive and Lamprey Drive at a low point in Lamprey Drive. This Design Point was taken from the Fontaine FDR (CDR183)

(5-year storm) Tributary Basins: C13.1 Upstream flowby: 0 cfs

Flow Intercepted: 6.8cfs Inlet Size: 15' type R, sump Inlet/MH Number: Inlet DP6b Total Street Flow: 6.8cfs

Flow Bypassed:

Street Capacity: Street slope = 1.5%, capacity = 11cfs

(100-year storm) Tributary Basins: C13.1 Upstream flowby: 33.0cfs

Flow Intercepted: 20.3cfs Inlet Size: 15' type R, sump Total Street Flow: 40.5cfs Flow Bypassed: 20.2cfs to Inlet DP10b

Inlet/MH Number: Inlet DP6b

Street Capacity: Street slope = 1.5%, capacity = 44.1cfs (half street) is okay

Design Point 6c

This Design Point was taken from the Fontaine FDR (CDR183). Design Point 6c is located at the east side of the intersection of Clarion Drive and Lamprey Drive at a low point. A 30" RCP constructed in the Fontaine construction plans (CDR183) is stubbed to the school site to collect the flows from Basin C13 (school site). The school site will be required to construct on-site storm sewer/inlets and an on-site detention pond to collect/detain runoff. Water quality for Basin C13 is provided in Pond C5. Runoff rates from this basin are required to be reduced to pre-developed flows of 7.6cfs in the 5-year and 40.5cfs in the 100-year storm events to the 30" RCP stub according to the Fontaine FDR (CDR183).

The flow at this design point in the 30" storm sewer from Design Point 9 (school pond outflow) is 0.8cfs in the 5-year and 29cfs in the 100-year storm events which is less than the allowable flow based on hydraulic modeling of the school pond in Hydraflow. See School Pond in Section 6.0.

Design Point 7

This Design Point was taken from the Fontaine FDR (CDR183). Design Point 7 is a small drainage basin (C16.14) that includes a 5' Type R inlet (constructed as part of Fontaine CDR 183) to drain the curb in the NW corner of Shavers Drive and Lamprey Drive. The total flow is 0.3cfs and 0.6cfs in the 5/100 year storm events. There are no bypass flows for this inlet.

Design Point 8

This Design Point was taken from the Fontaine FDR (CDR183). This inlet was constructed as part of the Fontaine CDR183 project. Design Point 8 is located at the NE corner of Shavers Drive and Lamprey Drive

(5-year storm) Tributary Basins: C16.3-C16.4 Upstream flowby: 0.9cfs	Inlet/MH Number: Inlet DP8 Total Street Flow: 6.2cfs	
Flow Intercepted: 6.20cfs Inlet Size: 10' type R, sump (existing)	Flow Bypassed: 0	
Street Capacity: Street slope = 1.0%, cap	pacity = 9.0cfs, inlet needed	
(100-year storm) Tributary Basins: C16.3-C16.4 Upstream flowby: 13.7cfs	Inlet/MH Number: Inlet DP8 Total Street Flow: 25.2cfs	
Flow Intercepted: 16.3cfs Flow Bypassed: 8.9cfs to Inlet DP10 Inlet Size: 10' type R, sump, (existing)		
Street Capacity: Street slope = 1.0%, capacity = 37.3cfs (half street) is okay		

Design Point 9

Design Point 9 is located on the school site and is the detention pond the school will be constructing. The tributary basin for the Pond is Basin C13 and the total inflow is 31.5cfs and 71.2cfs in the 5/100 year storm events. The outflow from the School Pond is 0.8cfs and 29cfs in the 5/100 year storm events and is conveyed to Design Point 6c in a 24" storm sewer. See School Pond in Section 6.0 for more information. A full hydraulic analysis for this pond will be completed by the school.

Design Point 10 Design Point 10 is located at the NE corner of Clarion Drive and Mumford Drive

(5-year storm) Tributary Basins: C16.16-C16.17 Upstream flowby: 0 cfs	Inlet/MH Number: Inlet DP10 Total Street Flow: 6.0cfs
Flow Intercepted: 6.0cfs Inlet Size: 10' type R, sump	Flow Bypassed: 0 cfs
Street Capacity: Street slope = 1.0%, of	capacity = 9.0cfs
(100-year storm) Tributary Basins: C16.16-C16.17 Upstream flowby: 8.9cfs	Inlet/MH Number: Inlet DP10 Total Street Flow: 20.9cfs
Flow Intercepted:16.3cfsFlowInlet Size:10' type R, sump	w Bypassed: 4.6cfs to Inlet DP10a
Street Capacity: Street slope = 1.0%, o	capacity = 37.3cfs (half street) is okay

Design Point 10a Design Point 10a is located at the NW corner of Clarion Drive and Mumford Drive

<u>(5-year storm)</u> Tributary Basins: C16.18 Upstream flowby:	Inlet/MH Number: Inlet DP10a Total Street Flow: 5.7cfs
Flow Intercepted: 5.7cfs Inlet Size: 15' type R, sump	Flow Bypassed: 0 cfs
Street Capacity: Street slope = 1.0%, c	apacity = 9.0cfs
(100-year storm) Tributary Basins: C16.18 Upstream flowby: 4.6cfs	Inlet/MH Number: Inlet DP10a Total Street Flow: 16.8cfs
Flow Intercepted: 16.8cfs Flo Inlet Size: 15' type R, sump	w Bypassed: Ocfs
Street Capacity: Street slope = 1.0%, c	apacity = 37.3cfs (half street) is okay

Design Point 10b

Design Point 10b is located at the SE corner of Clarion Drive and Mumford Drive

<u>(5-year storm)</u> Tributary Basins: C16.26 Upstream flowby:	Inlet/MH Number: Inlet DP10b Total Street Flow: 3.2cfs
Flow Intercepted: 3.2cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Street slope = 0.7%, ca	pacity = 7.5cfs
(100-year storm) Tributary Basins: C16.26 Upstream flowby: 20.2cfs from Lampre (Des.Pt 6b)	Inlet/MH Number: Inlet DP10b ey Total Street Flow: 27.1cfs (6.9+20.2)
Flow Intercepted:5.4cfsFlowInlet Size:5' type R, sump	Bypassed: 21.7cfs to Des. Pt 10c
Street Capacity: Street slope = 0.7%, ca	pacity = 31.2cfs (half street) is okay

Design Point 10c

Design Point 10c is located at the SW corner of Clarion Drive and Mumford Drive

<u>(5-year storm)</u> Tributary Basins: C16.27 Upstream flowby:	Inlet/MH Number: Inlet DP10c Total Street Flow: 0.6cfs	
Flow Intercepted: 0.6cfs Inlet Size: 5' type R, sump	Flow Bypassed:	
Street Capacity: Street slope = 0.7%, cap	pacity = 7.5cfs	
(100-year storm) Tributary Basins: C16.27 Upstream flowby: 21.7cfs	Inlet/MH Number: Inlet DP10c Total Street Flow: 23.0cfs	
Flow Intercepted: 2.2cfs Inlet Size: 5' type R, sump	Flow Bypassed: 20.8cfs to DesPt. 16	
Street Capacity: Street slope = 0.7%, capacity = 31.2cfs (half street) is okay		

Design Point 11 Design Point 11 is located at the east side of Clarion Drive and Mumford Drive and is the flow in the storm sewer. The total flow in the storm sewer is 105.6cfs/154.8cfs in the 5/100 year storm events.

-west?

Design Point 12 Design Point 12 is located east of Wacissa Drive on the north side of Nash Drive.

<u>(5-year storm)</u> Tributary Basins: C16.22-C16.23 Upstream flowby:	Inlet/MH Number: Inlet DP12 Total Street Flow: 7.7cfs	
Flow Intercepted: 6.28cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.4cfs to Inlet DP13	
Street Capacity: Street slope = 1.0%, cap	pacity = 9.0cfs	
<u>(100-year storm)</u> Tributary Basins: C16.22-C16.23 Upstream flowby:	Inlet/MH Number: Inlet DP12 Total Street Flow: 17.1cfs	
Flow Intercepted: 9.48cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 7.6cfs to Inlet DP13	
Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street) is okay		

Design Point 12a Design Point 12a is located east of Wacissa Drive on the south side of Nash Drive.

<u>(5-year storm)</u> Tributary Basins: C16.20-C16.21 Upstream flowby:	Inlet/MH Number: Inlet DP12a Total Street Flow: 8.6cfs	
Flow Intercepted: 6.68cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.9cfs to Inlet DP13	
Street Capacity: Street slope = 1.0%, cap	pacity = 9.0cfs	
(100-year storm) Tributary Basins: C16.20-C16.21 Upstream flowby:	Inlet/MH Number: Inlet DP12a Total Street Flow: 19.1cfs	
Flow Intercepted: 9.97cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 9.1cfs to Inlet DP13	
Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street) is okay		

Design Point 13 Design Point 13 is located in the SE corner of Wacissa Drive and Nash Drive.

(5-year storm) Tributary Basins: C16.24 Upstream flowby: 3.3cfs	Inlet/MH Number: Inlet DP13 Total Street Flow: 7.8cfs	
Flow Intercepted: 6.31cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.5cfs to Inlet DP16	
Street Capacity: Street slope = 1.0%, cap	pacity = 9.0cfs	
(100-year storm) Tributary Basins: C16.24 Upstream flowby: 16.7cfs	Inlet/MH Number: Inlet DP13 Total Street Flow: 26.8cfs	
Flow Intercepted: 11.52cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 15.3cfs to Inlet DP16	
Street Capacity: Street slope = 1.0%, capacity = 35.4cfs (half street) is okay		

Design Point 14

Design Point 14 is located in the NW of Wacissa Drive and Nash Drive.

(<u>5-year storm</u>) Tributary Basins: C16.30 Upstream flowby: 0cfs	Inlet/MH Number: Inlet DP14 Total Street Flow: 6.8cfs
Flow Intercepted: 5.82cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 1.0cfs to Inlet DP17
Street Capacity: Street slope = 1.0%, c	apacity = 9.0cfs
<u>(100-year storm)</u> Tributary Basins: C16.30 Upstream flowby: 0cfs	Inlet/MH Number: Inlet DP14 Total Street Flow: 15.2cfs
Flow Intercepted: 8.95cfs Inlet Size: 10' type R, on-grade	Flow Bypassed: 6.3cfs to Inlet DP17
Street Capacity: Street slope = 1.0%, c	apacity = 35.4cfs (half street) is okay

Design Point 15

Design Point 15 is located in the SW of Wacissa Drive and Nash Drive and is the flow in the storm sewer. The total flow in the storm sewer is 25.09cfs/39.92cfs in the 5/100 year storm events.

<u>Design Point 16</u> Design Point 16 is located in the SE corner of Wacissa Drive and Clarion Drive.

(5-year storm) Tributary Basins: C16.19, C16.28, C16.29 Upstream flowby: 1.5cfs	9 Inlet/MH Number: Inlet DP16 Total Street Flow: 12.2cfs
Flow Intercepted: 12.2cfs Inlet Size: 30' type R, sump	Flow Bypassed: 0
Street Capacity: Street slope = 1.0%, ca south. Capacity okay.	pacity = 9.0cfs, almost half of street flow is from the
(100-year storm) Tributary Basins: C16.19, C16.28, C16.29 Upstream flowby: 36.1cfs	9 Inlet/MH Number: Inlet DP16 Total Street Flow: 59.8cfs
Flow Intercepted: 37.4cfs Inlet Size: 25' type R, sump	Flow Bypassed: 22.4cfs to Inlet DP17
Street Capacity: Street slope = 1.0%, cap	pacity = 35.4cfs (half street)

Design Point 17

Design Point 17 is located in the SW corner of Wacissa Drive and Clarion Drive.

(5-year storm) Tributary Basins: C16.25+C16.32 Upstream flowby: 1.0cfs	Inlet/MH Number: Inlet DP17 Total Street Flow: 3.6cfs								
Flow Intercepted: 3.6cfs Inlet Size: 30' type R, sump	Flow Bypassed:								
Street Capacity: Street slope = 1.0%, cap	pacity = 9.0cfs is okay								
(100-year storm) Tributary Basins: C16.25+C16.32 Upstream flowby: 28.7cfs	Inlet/MH Number: Inlet DP17 Total Street Flow: 34.7cfs								
Flow Intercepted: 34.7cfs Inlet Size: 30' type R, sump	Flow Bypassed: 0								
Street Capacity: Street slope = 1.0%, cap	pacity = 35.4cfs (half street) is okay								

Design Point 18

Design Point 18 is located west of Clarion Drive and Wacissa Drive and is the total flow in the pipe into Pond C5. The total pipe flow is 146.5cfs in the 5-year and 230.8cfs in the 100-year. The trapezoidal emergency overflow swale from Wacissa Drive to Pond C5 is 1.0' deep, 27' wide bottom, 4:1 side slopes, 2% slope, velocity of 7.59cfs, and has a flow depth of 0.98 feet, Q100=230cfs.

Design Point 34

This design point is copied from the Fontaine final drainage report for CDR 183. Design Point 34 is located northwest corner of Lamprey Drive and Fontaine Boulevard.

<u>(5-year storm)</u> Tributary Basins: C16.34 Upstream flowby:	Inlet/MH Number: Inlet DP34 Total Street Flow: 0.9cfs
Flow Intercepted: 0.9cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Lamprey Drive street slo	ppe = 0.8%, capacity = 12.0cfs, okay
(100-year storm) Tributary Basins: C16.34 Upstream flowby: 6.0cfs	Inlet/MH Number: Inlet DP34 Total Street Flow: 8.0cfs
Flow Intercepted: 8.0cfs Inlet Size: 5' type R, sump	Flow Bypassed:
Street Capacity: Lamprey Drive street slo	ope = 0.8%, capacity = 37.0cfs (half street) is okay

Design Point 35

This design point is copied from the Fontaine final drainage report for CDR 183. Design Point 35 is located in the NE corner of Edisto Drive and Fontaine Boulevard.

(5-year storm) Tributary Basins: C16.35 Upstream flowby:

Flow Intercepted: 2.8cfs Inlet Size: 5' type R, sump Inlet/MH Number: Inlet DP35 Total Street Flow: 2.8cfs

Flow Bypassed:

Street Capacity: Fontaine Boulevard street slope = 1.0 %, capacity = 13.5cfs, okay

(100-year storm) Tributary Basins: C16.35 Upstream flowby:

Inlet/MH Number: Inlet DP35 Total Street Flow: 6.1cfs

Flow Intercepted: 6.1cfs Inlet Size: 5' type R, sump Flow Bypassed:

Street Capacity: Fontaine Boulevard street slope = 1.0%, capacity = 40.0cfs (half street) is okay

Design Point 36

This design point is copied from the Fontaine final drainage report for CDR 183. Design Point 36 is a small drainage basin that needs a 5' Type R inlet to drain the curb in the NW corner of Edisto Drive and Fontaine Boulevard. The total flow is 0.3cfs and 0.6cfs in the 5/100 year storm events. There are no bypass flows for this inlet.

6.0 DETENTION AND WATER QUALITY PONDS & INTERIM DETENTION POND CALCULATIONS

Detention and Storm Water Quality for Lorson Ranch East Filing No. 2 is required per El Paso County criteria. We have implemented the Full Spectrum approach for detention per the Denver Urban Drainage Districts specifications. Pond C5 is a permanent full spectrum pond to serve this filing and incorporates storm water quality features and complies with the Lorson Ranch East MDDP. Pond C5 has been sized, graded, access roads, outlet pipes, overflow structures are provided with the Lorson Ranch East Filing No. 1 development. This final drainage report provides design information on the ultimate inflow/outflow from Pond C5 and also includes an analysis of interim condition inflows and the resultant flows from Pond C5. This data will be used to compare interim flow rates from Pond C5 to pre-development flow rates. See Appendix F for interim hydraulic calculations.

Detention Pond C5 (Ultimate Conditions, from Fontaine FDR, CDR183)

This is a permanent full spectrum detention pond that includes water quality and discharges directly into the East Tributary. Pond C5 is designed in the UDCF Full Spectrum spreadsheets for Water Quality and EURV volumes only. The 5-year and 100-year flow rates are taken from the Lorson East MDDP and have been modeled in a hydraulic modeling software. The outlet structure is a five cell CDOT type D outlet in parallel and the overflow spillway is a wier set slightly above the outlet structure so it releases the 5yr/100yr storm events quickly to match pre-developed rates.

- Watershed Ares: 171 acres (Ultimate Area)
- Watershed Imperviousness: 63%
- Hydrologic Soils Group C/D
- Forebay: 3.51ac-ft (see spreadsheet in appendix) divided between two forebays
- Zone 1 WQCV: 3.298ac-ft, WSEL: 5709.92
- Zone 2 EURV: 9.524ac-ft, WSEL: 5712.27, Top outlet structure set at 5712.60, 3'x18' triple CDOT Type D outlets in parallel.
- (5-yr): 13.06ac-ft, WSEL: 5713.49, 126.3cfs (hydraflow)
- Zone 3 (100-yr): 15.86ac-ft, WSEL: 5714.42, 453.2cfs (hydraflow)
- Pipe Outlet: 48" RCP at 0.5%
- Overflow Spillway: 52' wide bottom, elevation=5713, 4:1 side slopes, flow depth=2.0' at 519cfs inflow, 1' freeboard
- Pre-development release rate into East Tributary=141cfs/458cfs in the 5yr/100 yr storm at this pond outfall (Design Pt. 2, Table 6.2 in MDDP). See Design Point 46 for discussion on flows in creek from this pond
- Pond Bottom Elevation: 5706.00

Design: Composite, WQ/EURV by Full Spectrum Excel Worksheets, 5/100yr by Hydraflow

	WQ	EURV	5-yr	100-yr						
Peak Inflow	63.1cfs	181.4cfs	167.5cfs	519.1cfs						
Peak Outflow	1.4cfs	7.3cfs	126.3cfs	453.2cfs						
Ponding Depth	3.92ft	6.27ft	7.49ft	8.42ft						
Stored Volume	3.29ac-ft	9.52ac-ft	13.01ac-ft	15.86ac-ft						
Spillway Stage	7.00ft, 52' wide	Э								
Structure Type:	5'x18' flat top outlet structure (cdot type d) with top at stage 6.60ft									

Interim Pond EX-3

Interim Pond EX-3 is located south of Lamprey Drive at Design Point 2. This pond is designed to reduce existing runoff so the capacity of the downstream storm sewer is not exceeded. Interim Detention Pond EX-3 consists of a 30" pipe outlet, 4:1 pond slopes, and an emergency overflow. The outflow is directed north in a 30" temporary CMP pipe under the future Lamprey Drive to Design Point 3. When development in this area (south of Lamprey) is started Pond EX-3 will be removed and future Pond C3 will need to be constructed per the Lorson Ranch East MDDP.

- Inflow is 43cfs and 193cfs in the 5/100-year storm events.
- Outflow is 34cfs and 67cfs in the 5/100-year storm events.
- 5-year WSEL=5752.67, 100-year WSEL=5758.21
- Emergency Overflow: 30' btm width, weir btm= 5758.21, wier top=5760, 4:1 side slopes, flow depth of 1.48' at 193cfs flow

School Pond (for analysis only)

The School Pond is located on the school site east of Design Point 6c and is only included in this report to see what impact the pond has on the downstream storm sewer and the inflow rates to Pond C5. This pond is required by the Lorson Ranch East MDDP to be built on the school site to reduce downstream runoff so the storm system has capacity. Final drainage calculations and design will be provided by the school when the school site is designed. This report assumed a generic outlet structure (CDOT Type C outlet) with a 4"x4" vertical orifice for the 5-year storm and the 100-year storm controlled by stormwater flowing into the top of a Type C outlet structure. A 24" RCP is shown to connect the outlet structure to storm sewer stubbed out at Design Point 6c. The allowable outflow rates are 7.6cfs in the 5-year and 40.5cfs in the 100-year storm events according to the Fontaine FDR (CDR183) and Lorson Ranch East MDDP.

- Inflow is 31.5cfs and 71.2cfs in the 5/100-year storm events.
- Outflow is 0.8cfs and 29cfs in the 5/100-year storm events per Hydraflow.
- 5-year WSEL=5738.44, 100-year WSEL=5739.91
- Top of pond = 5742.00, btm pond =5735.00

Pond C5 for Interim Flow Conditions (for analysis only)

This analysis is only for an interim condition for Pond C5 when a portion of the upstream tributary area has been developed. The upstream developed areas include Lorson Ranch East Filing No. 1, Lorson Ranch East Filing No. 2, Fontaine Boulevard, and Lamprey Drive north of Fontaine Boulevard to Yamhill Drive. All other tributary areas have been assumed to be vacant land. The only interim detention pond modeled is Interim Pond EX-3 which will be constructed as part of this plat. The remaining existing flows have been modeled as undetained flows.

These interim calculations for this pond include routing the interim existing/developed flows to Pond C5 in Hydraflow modeling software (See Appendix F). Pond C5 has been constructed to the ultimate buildout design as shown in the FDR for Lorson Ranch East Filing No. 1 including the forebays, trickle channels, and the outlet structure. The following is a discussion on the inflow hydrographs used for the analysis:

Hydrograph 1 – school site basin to school pond, fully developed

Hydrograph 2 – existing flow to east end of Fontaine. See Fontaine FDR, CDR183 for basin limits

Hydrograph 3– C17 basins from Lorson Ranch East, fully developed

Hydrograph 4 – basin tributary to Interim Detention Pond EX-3, vacant land

Hydrograph 5 – school pond outflow hydrograph

- Hydrograph 6 school site basin flowing to Fontaine Bouelvard, fully developed
- Hydrograph 7 C16 Basins from Lorson Ranch East Filing No. 2, fully developed
- Hydrograph 8 Existing Basin EX-3.1, vacant land
- Hydrograph 9 Outflow from Interim Detention Pond EX-3

Hydrograph 10 – Interim inflow at Design Point 18 to Pond C5 Hydrograph 11 – Total interim inflow to Pond C5 Hydrograph 12 – Total interim outflow from Pond C5

The interim conditions outflow for Pond C5 is 115cfs and 374cfs for the 5/100 year storm events at Design Point 46. The pre-developed flow conditions at Design Point 46 (Etrib) are 141cfs and 458cfs for the 5/100 year storm events. The interim flows are lower than pre-developed conditions and will not cause negative downstream impacts. The outlet structure does not need modification at this time to accommodate interim flows.

Water Quality Design

Water quality for this final plat will be provided by Pond C5 for 96.8% of the 53.87 acre site. Approximately 1.75 acres (3.2%) of the total 53.87 acre final plat area consists of backyards that drain directly to the East Tributary over a grass buffer constructed and maintained in accordance with DCM Volume 2. Final platting of these areas includes a deviation from county criteria for a grass buffer bmp. Water Quality for the "C" is provided by full spectrum pond Pond C5.

7.0 DRAINAGE AND BRIDGE FEES

Lorson Ranch East Filing No. 2 is located within the Jimmy Camp Creek drainage basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land as part of the plat recordation process.

Lorson Ranch Metro District will compile and submit to the county on a yearly basis the Drainage and bridge fees for the approved plats, and shall show all credits they have received for the same yearly time frame.

Lorson East Filing No. 2 contains 53.87 acres. The 53.87 acres will be assessed Drainage, Bridge and Surety fees. The 2018 drainage fees are \$17,197, bridge fees are \$804 and Drainage Surety fees are \$7,285 per impervious acre per Resolution 17-348. The drainage and bridge fees are calculated when the final plat is submitted. The fees are due at plat recordation. The following table details the drainage fees for the platted area.

Type of Land Use	Total Area (ac)	Imperviousness	Drainage Fee	Bridge Fee	Surety Fee						
Residential Area	35.79	52%	\$320,049	\$14,963	\$135,579						
Open Space, Landscape Tracts, Detention Ponds, E. Trib Jimmy Camp Creek	18.08	2%	\$6,218	\$290	\$2,634						
		Total	\$326,267	\$15,253	\$138,213						

Table 1: Drainage/Bridge Fees

Item	Quantity	Unit	Unit Cost	Item Total
Rip Rap	100	CY	\$50/CY	\$5,000
Inlets/Manholes	23	EA	\$3000/EA	\$69,000
18" Storm	160	LF	\$35	\$5,600
24" Storm	385	LF	\$40	\$15,400
30" Storm	400	LF	\$45	\$18,000
36" Storm	42	LF	\$55	\$2,310
48" Storm	175	LF	\$85	\$14,875
54" Storm	460	LF	\$115	\$52,900
			Subtotal	\$183,085
			Eng/Cont (15%)	\$27,462
			Total Est. Cost	\$210,547

 Table 7.1: Public Drainage Facility Costs (non-reimbursable)

Table 7.2: Lorson Ranch Metro District Drainage Facility Costs (non-reimbursable)

Item	Quantity	Unit	Item Total	
Interim Pond and Outlet	1	LS	\$10,000	\$10,000
			Subtotal	\$220,547
			Eng/Cont (15%)	\$31,582
		Total Est. Cost	\$242,129	

8.0 FOUR STEP PROCESS

The site has been developed to minimize wherever possible the rate of developed runoff that will leave the site and to provide water quality management for the runoff produced by the site as proposed on the development plan. The following four step process should be considered and incorporated into the storm water collection system and storage facilities where applicable.

Step 1: Employ Runoff Reduction Practices

Lorson Ranch East Filing No. 2 has employed several methods of reducing runoff.

- The street configuration was laid out to minimize the length of streets. Many streets are straight and perpendicular resulting in lots with less wasted space.
- East Tributary of Jimmy Camp Creek with a natural sand bottom and vegetated slopes has been preserved through this site
- Lots on the west side of the site discharge runoff westward over an open space buffer prior to discharge into the creek
- A buffer tract has been added along the SDS watermain easement which reduces impervious areas
- Full Spectrum Detention Pond C5 has been constructed. The full spectrum detention mimics existing storm discharges

Are there any covenants regarding lot maintenance, impervious coverage limits...?

Step 2: Implement BMP's that Slowly Release the Water Quality Capture Volume

Treatment and slow release of the water quality capture volume (WQCV) is required. Lorson Ranch East Filing No. 2 will utilize Pond C5, a fullspectrum stormwater detention pond which includes Water Quality Volumes and WQ outlet structures.

Step 3: Stabilize Drainageways

East Tributary of Jimmy Camp Creek is a major drainageway located within this site. In 2018 the East Tributary of JCC was reconstructed and stabilized per county criteria. The design included a low flow channel bottom and selectively armored sides.

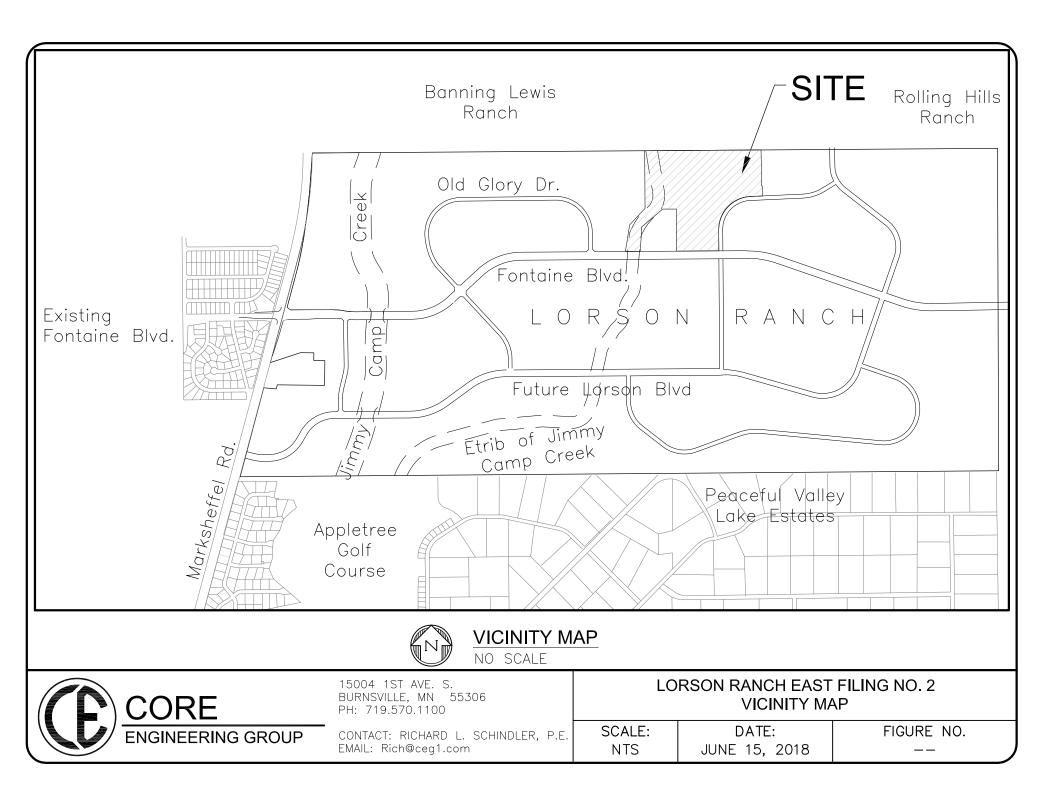
Step 4: Implement Site Specific & Source Control BMP's

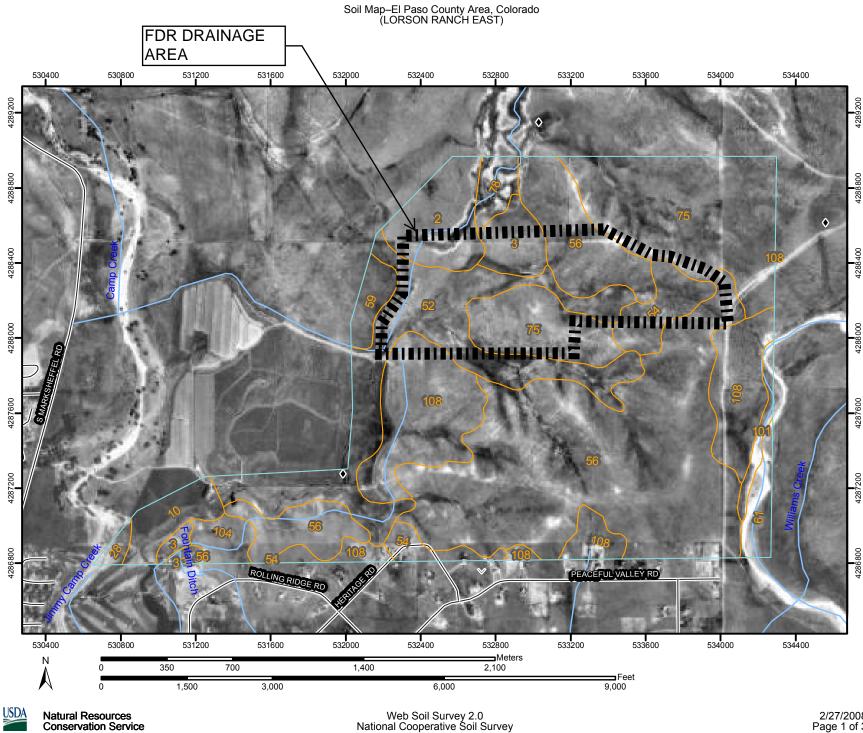
There are no potential sources of contaminants that could be introduced to the County's MS4. During construction source control will be provided with the proper installation of erosion control BMPs to limit erosion and transport of sediment. Area disturbed by construction will be seeded and mulched. Cut and fill slopes will be reseeded, and the slopes equal to or greater than three-to-one will be protected with erosion control fabric. Silt fences will be placed at the bottom of re-vegetated and rough graded slopes. Inlet protection will be used around proposed inlets. In addition, temporary sediment basins will be constructed so runoff will be treated prior to discharge. Construction BMPs in the form of vehicle tracking control, sediment basins, concrete washout area, rock socks, buffers, and silt fences will be utilized to protect receiving waters.

9.0 CONCLUSIONS

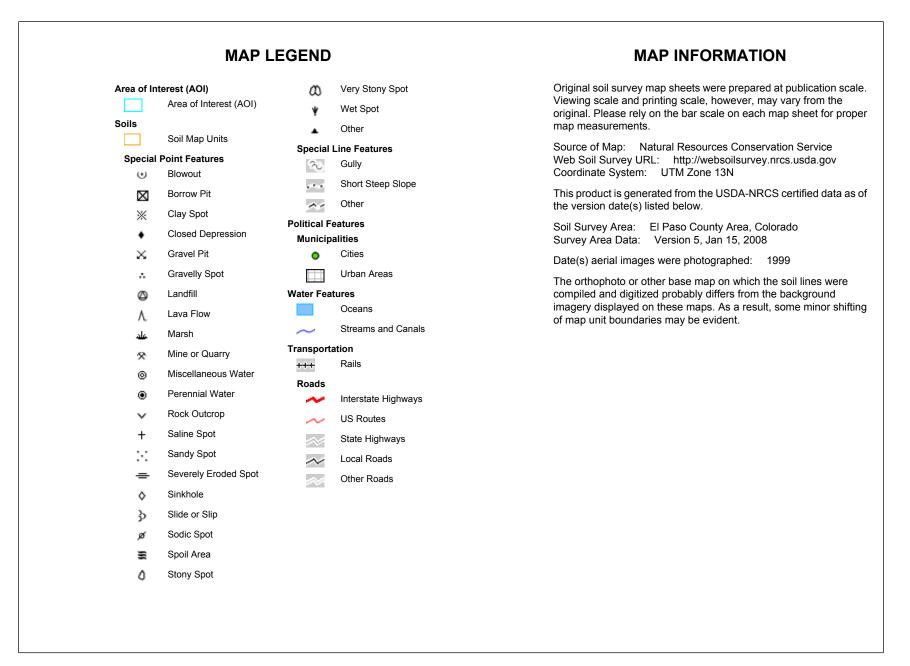
This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:

- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- The East Tributary of Jimmy Camp Creek has been reconstructed within this study area
- Bridges over the East Tributary will be required at Lorson Boulevard and Fontaine Boulevard and have been previously designed by Kiowa Engineering providing access to this site.
- Detention and water quality for this site area will be provided in a permanent pond
- Access to existing maintenance trails for the East Tributary of Jimmy Camp Creek will be provided on the west side from Tract E and from Fontaine Boulevard.
- Access to existing maintenance trails for the East Tributary of Jimmy Camp Creek will be provided on the east side from Fontaine Boulevard and from Wacissa Drive.

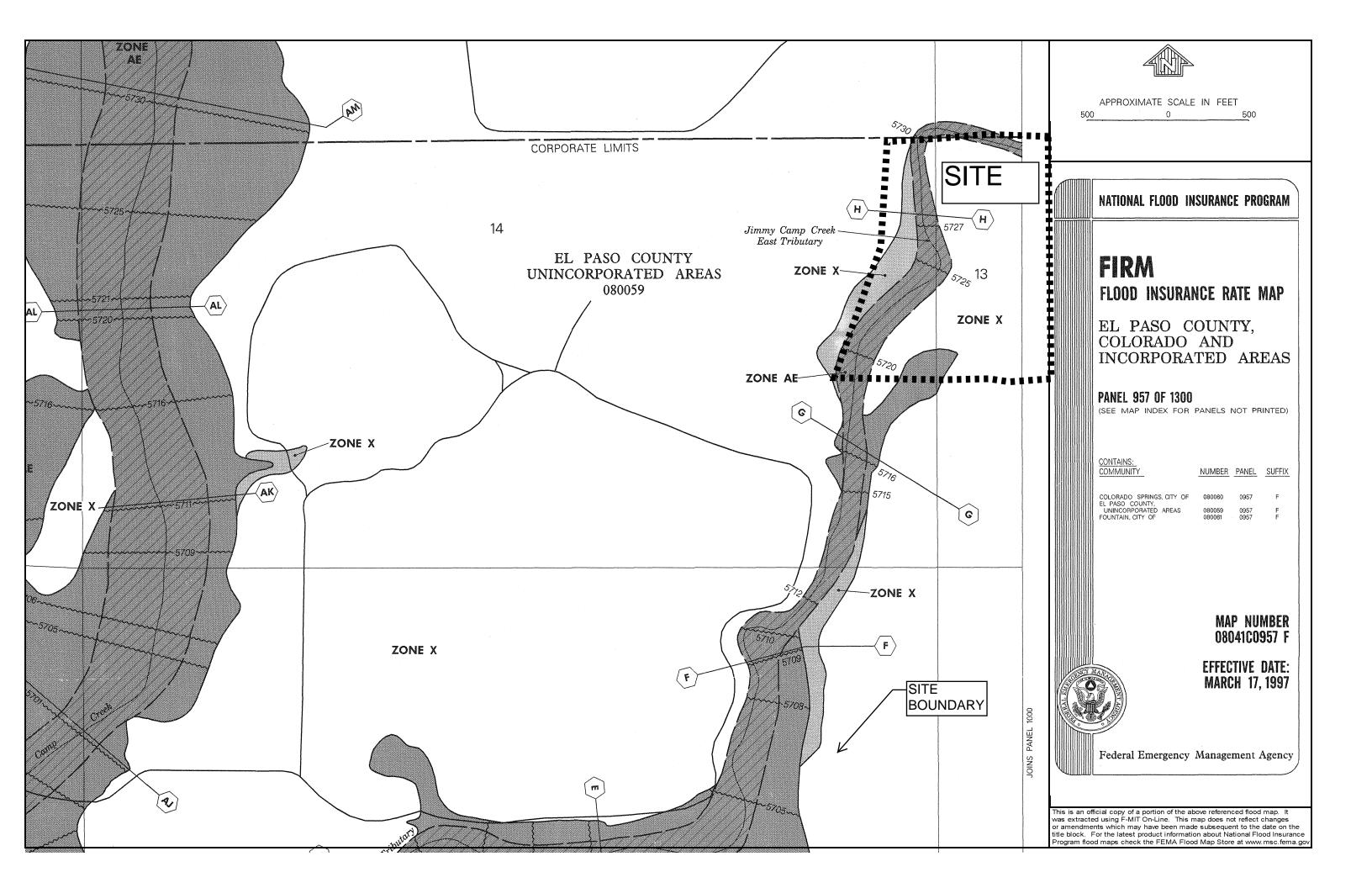

10.0 REFERENCES

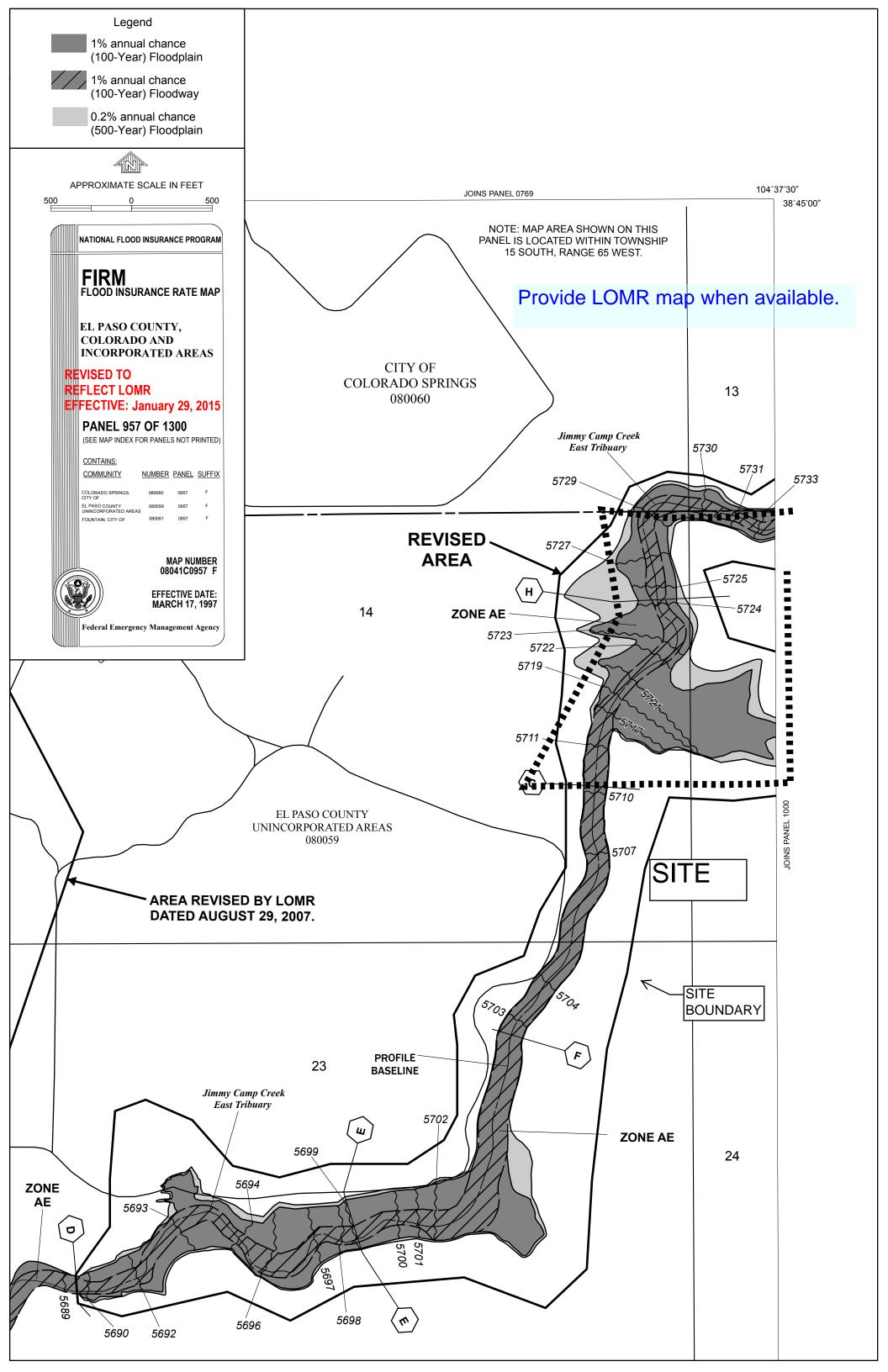

- 1. City of Colorado Springs/El Paso County Drainage Criteria Manual DCM, dated November, 1991
- 2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
- 3. Jimmy Camp Creek Drainage Basin Planning Study, Dated March 9, 2015, by Kiowa Engineering Corporation
- 4. City of Colorado Springs "Drainage Criteria Manual, Volume 2
- 5. El Paso County "Engineering Criteria Manual"
- 6. Lorson Ranch East MDDP, June 30, 2017 by Core Engineering.
- 7. Final Drainage Report for Fontaine Boulevard, Old Glory Drive, and Marksheffel Road Phase 1 Improvements, Dated February 6, 2006, Revised September 7, 2006, by Pentacor Engineering.

Address maintenance of channels and ponds by the metro district²³


- 8. Final construction plans "Fontaine Boulevard and East Fork Jimmy Camp Creek Channel Design", Dated March 10, 2017, by Kiowa Engineering Corporation
- 9. El Paso County Resolution #15-042, El Paso County adoption of Chapter 6 and Section 3.2.1 of the City of Colorado Springs Drainage Criteria Manual dated May, 2014.
- 10. Kiowa Engineering Corporation "Final Bridge and Channel Design Report, CDR 16-009" revised August 24, 2017
- 11. Lorson Ranch East MDDP prepared by Core Engineering Group, dated November 27, 2017
- 12. Lorson Ranch East PDR prepared by Core Engineering Group, dated December 18, 2017
- 13. Final Drainage Report for Fontaine Boulevard prepared by Core Engineering Group, Reference CDR183, dated December 20, 2017

APPENDIX A – VICINTIY MAP, SOILS MAP, FEMA MAP




Web Soil Survey 2.0 National Cooperative Soil Survey

Map Unit Legend

El Paso County Area, Colorado (CO625)									
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI						
2	Ascalon sandy loam, 1 to 3 percent slopes	54.4	4.2%						
3	Ascalon sandy loam, 3 to 9 percent slopes	32.6	2.5%						
10	Blendon sandy loam, 0 to 3 percent slopes	29.0	2.2%						
28	Ellicott loamy coarse sand, 0 to 5 percent slopes	5.5	0.4%						
52	Manzanola clay loam, 1 to 3 percent slopes	180.3	14.0%						
54	Midway clay loam, 3 to 25 percent slopes	46.2	3.6%						
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	476.6	37.0%						
59	Nunn clay loam, 0 to 3 percent slopes	16.8	1.3%						
61	Olney sandy loam, 3 to 5 percent slopes	18.8	1.5%						
75	Razor-Midway complex	213.9	16.6%						
78	Sampson loam, 0 to 3 percent slopes	16.4	1.3%						
101	Ustic Torrifluvents, loamy	11.3	0.9%						
104	Vona sandy loam, 1 to 3 percent slopes	17.4	1.4%						
108	Wiley silt loam, 3 to 9 percent slopes	170.2	13.2%						
Totals for Area of Interest (A	OI)	1,289.3	100.0%						

Land Use or Surface	Percent	Runoff Coefficients											
Characteristics	Impervious	2-year		5-y	5-year		/ear	25-1	year	50-year		100-year	
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial								-					
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

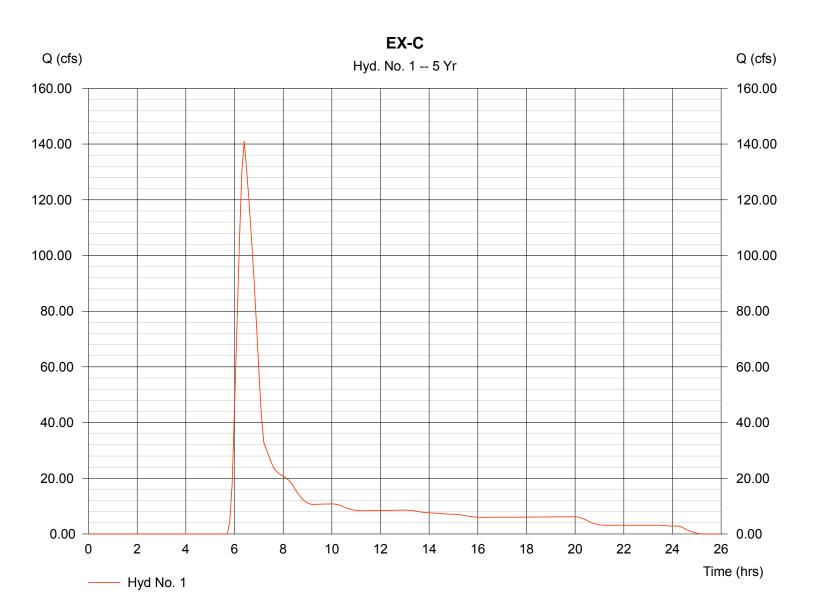
One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Standard Form SF-2. Storm Standard Form SF-2. Storm Calculated By: Leonard Beasley Date: June, 2017 Checked By: Leonard Beasley													Job No Projec Desigr	o: <u>100.0</u> t: <u>Lorsc</u> i Storm:	<u>13</u> on Rar	<u>nch Ea</u> ear Ev	st MDD	isting (Conditic		
	Point				ect Run	off					Runoff		St	reet		Pipe			ravel Tin	ne	6
Street or Basin	Design Po	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA	.–	Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
		Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-A1			4.28	0.08	18.6	0.34	3.20	1.1													
EX-C	DP-2		452.97	CN	= 67					SC	:S =	141.0									
EX-D	DP-3		109.55	0.12	34.7	13.15	2.26	29.7													
EX-E	DP-4		187.30	CN	=73					SC	:S =	100.0									

		IG GRO		Date: <u>A</u> Checke	ated By: April 28, ed By: <u>L</u>	<u>Leonar</u> 2016 eonard	d Beasl	ey	Draina				Job Nc Project Design	: <u>100.0</u> :: <u>Lorsc</u> Storm:	<u>13</u> on Rar	<u>ich Ea</u> Year	st MDD	Existin	g Condi		
	÷			Dir	ect Run	off				Total I	Runoff		Str	reet		Pipe	;	Т	ravel Tin	ne	
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	СА		Ø	tc	Σ (CA)		Ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	Remarks
	_	Ar	ac.		min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in	ft	ft/sec	min	
EX-A1			4.28	0.35	18.6	1.50	5.37	8.0													
EX-C	DP-2		452.97	CN	= 67					SC	S =	458.0									
																					$\left - \right $
EX-D	DP-3		109.55	0.40	34.7	43.82	3.80	166.5													
EX-E	DP-4		187.30	CN	= 73					SC	S =	280.0									

Hydrograph Plot


Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

EX-C

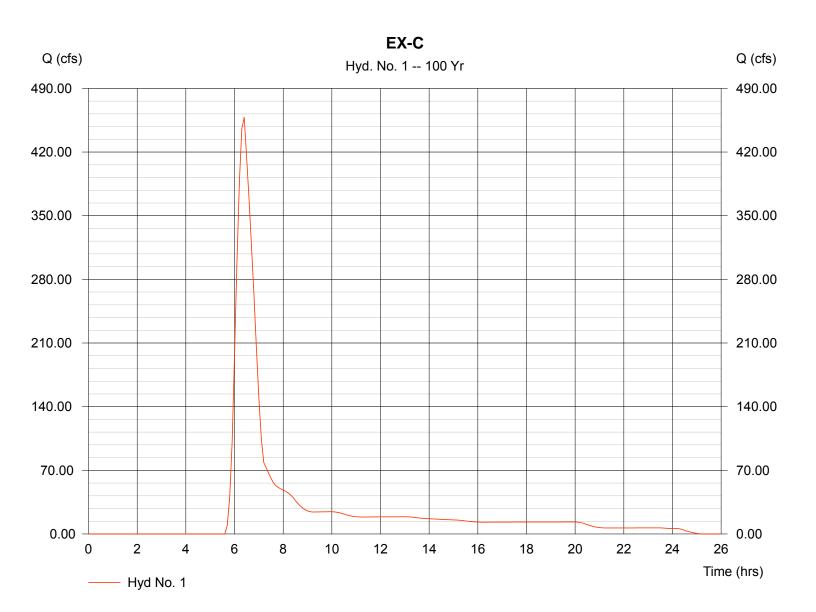
Hydrograph type	 SCS Runoff 5 yrs 452.970 ac 0.0 % USER 2.80 in 	Peak discharge	= 140.99 cfs
Storm frequency		Time interval	= 6 min
Drainage area		Curve number	= 69
Basin Slope		Hydraulic length	= 7400 ft
Tc method		Time of conc. (Tc)	= 49.50 min
Total precip.		Distribution	= Custom
Total precip.	= 2.80 in= CSpring_IIA-6min.cds	Distribution	= Custom
Storm duration		Shape factor	= 484

Hydrograph Volume = 905,484 cuft

1

Monday, Jun 5 2017, 4:1 PM

Hydrograph Plot


Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

EX-C

Hydrograph type	= SCS Runoff	Peak discharge	= 458.13 cfs
Storm frequency	= 100 yrs	Time interval	= 6 min
Drainage area	= 452.970 ac	Curve number	= 69
Basin Slope	= 0.0 %	Hydraulic length	= 7400 ft
Tc method	= USER	Time of conc. (Tc)	= 49.50 min
Total precip.	= 4.40 in	Distribution	= Custom
Storm duration	= CSpring_IIA-6min.cds	Shape factor	= 484

Hydrograph Volume = 2,456,980 cuft

3

Monday, Jun 5 2017, 4:1 PM

		NG GROI	9L	Date: J	ated By: <u>June 22,</u> ed By: <u>R</u>	, 2018							Projec	o: <u>100.04</u> :t: <u>Lorso</u> :storm:	on Rancl	<u>h East í</u>	Filing 2	FDR	ondition	20	
	It		<u> </u>	Dire	ect Rund	off	SCHILLION	<u>31</u>		Total	Runoff			reet	5-100	Pipe			Fravel Tir		T
Street or Basin	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc d	CA		ø	tc	Σ (CA)		ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	tt	
Basin	Des	Area	لة ac.	ш ~	min.		in/hr	cfs	min		in/hr	cfs	%	cfs	cfs	%	in U	ft	⊃ ft/sec	: min	1
A1]	4.17	0.30	13.17	1.25	3.72	4.6]	[<u> </u>	Ī	┣—	- T			1	 	-		+
OS-C11		T	6.48	0.49	21.69	3.18	2.97	9.4	Γ	Γ	Γ		 					<u> </u>			+
C13		Ť	17.20	0.49	12.94	8.43	3.74	31.5	Γ	<u> </u>	<u> </u>	<u> </u>	 			<u> </u>	+	<u> </u>		+	+
C16.3		<u> </u>	1.78	0.49	10.35	0.87	4.08	3.6	<u> </u>	<u> </u>	<u> </u>	<u> </u>	 			<u> </u>		<u> </u>	+		+
C16.4			0.81	0.49	8.40	0.40	4.39	1.7	\Box				<u>]</u>	+				<u> </u>			+
C16.14			0.10	0.49	5.01	0.05	5.17	0.3					<u> </u>	+		<u> </u>		+		+	+
C16.15			2.36	0.49	9.77	1.16	4.16	4.8								<u> </u>				+	+
C16.16			1.30	0.49	13.31	0.64	3.70	2.9						+				+		+	+
C16.17			1.64	0.49	12.39	0.80	3.81	3.0					<u> </u>	+				+		+	+
C16.18			2.96	0.49	12.69	1.45	3.77	5.7						+				+		+	+
C16.19			1.65	0.49	11.98	0.81	3.86	3.1				<u> </u>	<u> </u>			<u> </u>				+	+
C16.20			2.84	0.49	11.88	1.39	3.87	5.4				<u> </u>	<u> </u>	+				\vdash	+	+	+
C16.21			1.78	0.49	13.73	0.87	3.65	3.2				<u> </u>	<u> </u>	+				\vdash	+	+	+
C16.22			2.88	0.49	14.17	1.41	3.61	5.1		ļ		ļ		+				+	+	-	+
C16.23			1.46	0.49	14.05	0.72	3.62	2.6			ļ			+				<u> </u>		+	+
C16.24			2.79	0.49	17.10	1.37	3.32	4.5			ļ							<u> </u>		+	+
C16.25			0.43	0.49	11.04	0.21	3.98	0.8			ļ					<u> </u>		\vdash		<u> </u>	╞
C16.26			1.42	0.49	11.66	0.70	3.90	3.2												T	+
C16.27			0.23	0.49	5.95	0.11	4.91	0.6					-					+		+	+
C16.28			2.09	0.49	12.65		3.78	3.9					-					+		+	+
C16.29			2.01	0.49	12.98	0.98	3.74	3.7												+	+
C16.30			4.54	0.49	20.36		3.06	6.8					-					+		+	+
C16.31			9.90	0.23	20.56	2.28	3.05	6.9					-					+		+	+
C16.32			0.97	0.49	12.20	0.48	3.83	1.8		<u> </u>	<u> </u>									+	+
		<u> </u>	<u> </u>		 	ļ			 	<u> </u>	<u> </u>	 	-					+			+
C16.34			0.38	0.49	6.95	0.19	4.67	0.9		+	<u> </u>	 								+	t
C16.35			1.46	0.49	11.60		3.91	2.8				 	-							+	t
C16.36			7.70	0.23	14.79	1.77	3.54	6.3											_		╞
C17.8			1.52	0.55	12.41	0.84	3.81	3.2								<u> </u>				-	╞
EX-3			116	0.15	29.70	17.42	2.50	43			ļ			+				+	+	+	+
EX-3.1			11	0.15	17.30	1.65	3.31	5						+				+		+	+
EX-3.2			5	0.15	16.10	0.68	3.41	2						+				+			+
																L		<u> </u>			+

				Date:	ated By: June 22,	2018							Projec	o: <u>100.0</u> 4 t: <u>Lorso</u>	n Rancl	n East M	No 2 FD	R			
				Check	ed By: <u>F</u> ect Run	<u>Richard S</u> off	Schindle	<u>er</u>		Total	Runoff			<u>Storm:</u> reet	<u> 100 - Y</u>	ear Eve Pipe	ent, Pro		Condition ravel Tin		<u> </u>
Street or	Design Point	Area Design	Area (A)	Runoff Coeff. (C)	tc	CA CA		a	tc	Σ (CA)		ø	Slope	Street Flow	Design Flow	Slope	Pipe Size	Length	Velocity	#	Remarks
Basin	Des	Area	Ā ac.	шö	min.		in/hr	cfs	min	Σ	in/hr	cfs	%	cfs	cfs	%	in.	 ft	> ft/sec	min	Å
A1			4.17	0.65	13.17	2.71	6.24	16.9													
OS-C11			6.48	0.65	21.69	4.21	4.98	21.0													
C13			17.20	0.65	12.94	11.18	6.28	70.2					_								
C16.3			1.78	0.65	10.35	1.16	6.85	7.9					_								
C16.4			0.81	0.65	8.40	0.53	7.37	3.9					-								
C16.14			0.10	0.65	5.01	0.07	8.67	0.6					-								
C16.15			2.28	0.65	9.77	1.48	6.99	10.1					_								
C16.16			1.30	0.65	13.31	0.85	6.21	5.2													<u> </u>
C16.17			1.64	0.65	12.39	1.07	6.39	6.6					-								
C16.18			2.96	0.65	12.69	1.92	6.33	12.2					_								
C16.19			1.65	0.65	11.98	1.07	6.48	6.9					_								<u> </u>
C16.20			2.84	0.65	11.88	1.85	6.50	12.0					_								
C16.21			1.78	0.65	13.73	1.16	6.13	7.1					_								
C16.22			2.88	0.65	14.17	1.87	6.05	11.3					_								-
C16.23			1.46	0.65	14.05	0.95	6.08	5.8					_								<u> </u>
C16.24			2.79	0.65	17.10	1.81	5.58	10.1													
C16.25			0.43	0.65	11.04	0.28	6.68	1.9													<u> </u>
C16.26			1.42	0.65	11.66	0.92	6.55	6.9													1
C16.27			0.23	0.65	5.95	0.15	8.24	1.3					_								-
C16.28			2.09	0.65	12.65	1.36	6.34	8.6					_								-
C16.29			2.01	0.65	12.98	1.31	6.28	8.2													
C16.30			4.54	0.65	20.36	2.95	5.14	15.2					-								-
C16.31			9.90	0.54	20.56	5.35	5.12	27.4													╞
C16.32			0.97	0.65	12.20	0.63	6.43	4.1					 								<u> </u>
																					-
C16.34			0.38	0.65	6.95	0.25	7.85	1.9													-
C16.35			1.46	0.65	11.60	0.95	6.56	6.2													
C16.36			7.70	0.54	14.79	4.16	5.95	24.7					 								-
													 								-
C17.8			1.52	0.74	12.41	1.12	6.39	7.2					 								-
EX-3			116.1	0.40	29.80	46.09	4.18	193					 								-
EX-3.1			11.0	0.50	17.30	5.50	5.55	31					 								-
EX-3.2			4.5	0.50	16.10	2.25	5.73	13					-								

Standard Form SF-1. Time of Concentration-Proposed

Calculated By: <u>Leonard Beasley</u> Date: <u>June 22, 2018</u> Checked By: <u>Richard Schindler</u> Job No: <u>100.044</u> Project: <u>Lorson Ranch East No. 2 FDR</u>

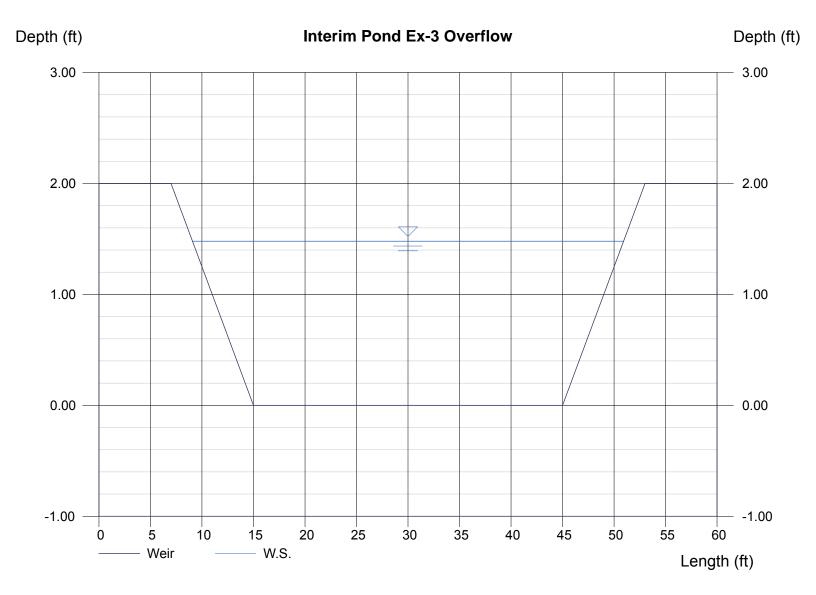
					Checked	By: <u>Richar</u>	a Schindi	<u>er</u>					t _c Check	(urbanized	Final t.
	Sub-Ba	sin Data			tial Overla	•				avel Time (tt)		Ba	sins)	Final tc
BASIN or	C₅	AREA (A)	NRCS Convey.	LENGTH (L)	SLOPE (S)	VELOCITY (V)	ti	LENGTH (L)	SLOPE (S)	VELOCITY (V)	t t	Computed tC	TOTAL LENGTH	Regional tc tc=(L/180)+10	USDCM Recommended
DESIGN		acres		feet	%	ft/sec	minutes	feet	%	ft/sec	minutes	Minutes	(L) feet	minutes	tc=ti+tt (min)
EX-A1	0.30	4.17	15.0	70.00	2.50%	0.13	8.93	500.0	1.00%	1.50	5.56	14.49	570.00	13.17	13.17
OS-C11	0.49	6.48	15.0	100.00	3.00%	0.22	7.66	2005.0	2.51%	2.38	14.06	21.73	2105.00	21.69	21.69
C13	0.49	17.20	20.0	100.00	25.00%	0.44	3.81	1550.0	2.00%	2.83	9.13	12.94	1650.00	19.17	12.94
C16.3	0.49	1.78	20.0	89.00	3.37%	0.21	6.96	530.0	1.70%	2.61	3.39	10.35	619.00	13.44	10.35
C16.4	0.49	0.81	20.0	45.00	3.33%	0.15	4.97	563.0	1.87%	2.73	3.43	8.40	608.00	13.38	8.40
C16.14	0.49	0.10	20.0	33.00	2.84%	0.12	4.48	71.0	1.28%	2.26	0.52	5.01	104.00	10.58	5.01
C16.15	0.49	2.28	15.0	100.00	7.30%	0.29	5.72	183.0	4.48%	3.17	0.96				
			20.0					443.0	1.42%	2.38	3.10	9.77	726.00	14.03	9.77
C16.16	0.49	1.29	20.0	90.00	2.22%	0.19	8.03	731.0	1.33%	2.31	5.28	13.31	821.00	14.56	13.31
C16.17	0.49	1.64	20.0	84.00	2.50%	0.19	7.46	703.0	1.41%	2.37	4.93	12.39	787.00	14.37	12.39
C16.18	0.49	2.96	15.0	70.00	2.71%	0.18	6.63	112.0	2.14%	2.19	0.85				
			20.0					724.0	1.34%	2.32	5.21	12.69	906.00	15.03	12.69
C16.19	0.49	1.65	15.0	100.00	2.37%	0.20	8.28	98.0	2.37%	2.31	0.71				
			20.0					358.0	1.00%	2.00	2.98	11.98	556.00	13.09	11.98
C16.20	0.49	2.84	20.0	37.00	2.00%	0.12	5.33	786.0	1.00%	2.00	6.55	11.88	823.00	14.57	11.88
C16.21	0.49	1.78	15.0	100.00	2.43%	0.20	8.22	48.0	2.43%	2.34	0.34				
			20.0					621.0	1.00%	2.00	5.18	13.73	769.00	14.27	13.73
C16.22	0.49	2.88	15.0	100.00	2.50%	0.20	8.14	138.0	2.55%	1.41	1.63				
			20.0					512.0	0.88%	1.88	4.55	14.32	750.00	14.17	14.17
C16.23	0.49	1.46	15.0	91.00	2.09%	0.18	8.24	153.0	1.76%	1.41	1.81	11.02	, 50.00		
010.25	0.15	1.10	20.0	01.00	2.0070	0.10	0.21	526.0	1.20%	2.19	4.00	14.05	770.00	14.28	14.05
C16.24	0.49	2.79	20.0	89.00	2.00%	0.18	8.27	1189.0	1.14%	2.19	9.28	14.05	1278.00	17.10	17.10
C16.25	0.49	0.43	20.0	100.00	2.00%	0.19	8.76	269.0	0.97%	1.97	2.28	11.04	369.00	12.05	11.04
C16.26	0.49	1.42	20.0	84.00	2.00%	0.17	8.03	380.0	0.76%	1.74	3.63	11.66	464.00	12.58	11.66
C16.27	0.49	0.23	20.0	28.00	2.00%	0.10	4.64	132.0	0.70%	1.67	1.31	5.95	160.00	10.89	5.95
C16.28	0.49	2.09	20.0	100.00	2.30%	0.20	8.37	485.0	0.89%	1.89	4.28	12.65	585.00	13.25	12.65
C16.29	0.49	2.01	20.0	100.00	2.00%	0.19	8.76	480.0	0.90%	1.90	4.22	12.98	580.00	13.22	12.98
C16.30	0.49	4.54	15.0	100.00	8.00%	0.30	5.55	168.0	2.86%	1.41	1.99				
			20.0					1658.0	1.16%	2.15	12.83	20.36	1926.00	20.70	20.36
C16.31	0.23	9.90	10.0	100.00	3.30%	0.16	10.59	334.0	3.80%	1.41	3.95				
			15.0					1467.0	1.16%	1.62	15.13	29.67	1901.00	20.56	20.56
C16.32	0.49	0.97	20.0	60.00	2.00%	0.15	6.79	570.0	0.77%	1.75	5.41	12.20	630.00	13.50	12.20
C16.34	0.49	0.38	20.0	32.00	2.00%	0.11	4.96	200.0	0.70%	1.67	1.99	6.95	232.00	11.29	6.95

Standard Form SF-1. Time of Concentration-Proposed

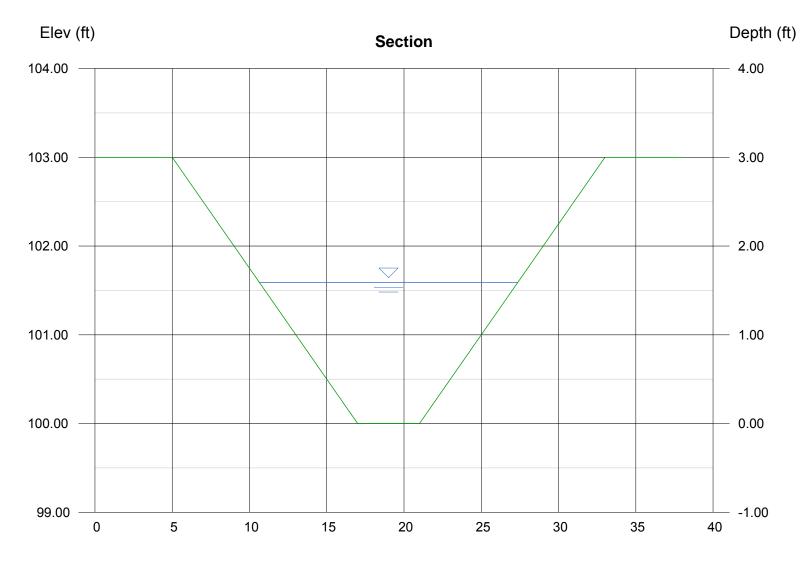
Calculated By: <u>Leonard Beasley</u> Date: <u>June 22, 2018</u> Checked By: Richard Schindler Job No: <u>100.044</u> Project: <u>Lorson Ranch East No. 2 FDR</u>

					Checked	By: <u>Richar</u>	a Schinai	er							
:	Sub-Ba	sin Data		Ini	tial Overla	nd Time (†	ti)	Travel Time (tt)					tc Check Ba	Final tc	
BASIN or DESIGN	C₅	AREA (A) acres	NRCS Convey.	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t i minutes	LENGTH (L) feet	SLOPE (S) %	VELOCITY (V) ft/sec	t t minutes	Computed tC Minutes	TOTAL LENGTH (L) feet	Regional tc tc=(L/180)+10 minutes	USDCM Recommended tc=ti+tt (min)
C16.35	0.49	1.46	15.0	100.00	2.00%	0.19	8.76	30.0	2.00%	2.12	0.24				
			20.0					337.0	1.16%	2.15	2.61	11.60	467.00	12.59	11.60
C16.36	0.23	7.70	10.0	100.00	2.30%	0.14	11.93	111.0	0.72%	0.85	2.18				
			10.0					34.0	32.35%	5.69	0.10				
			15.0					617.0	0.50%	1.06	9.70	23.91	862.00	14.79	14.79
C17.8	0.55	1.52	20.0	100.00	3.00%	0.24	6.91	643.0	0.95%	1.95	5.50	12.41	743.00	14.13	12.41
EX-3	0.15	116.1	7.0	300.00	4.00%	0.27	18.80	3250.0	3.30%	1.27	42.60	61.40	3550.00	29.72	29.72
EX-3.1	0.15	11	7.0	120.00	2.00%	0.13	14.95	1200.0	3.00%	1.21	16.50	31.44	1320.00	17.33	17.33
EX-3.2	0.15	5	7.0	120.00	2.00%	0.13	14.95	980.0	3.00%	1.21	13.47	28.42	1100.00	16.11	16.11

Overflow on Wacissa Drive to Pond C5 at Design Pt. 18

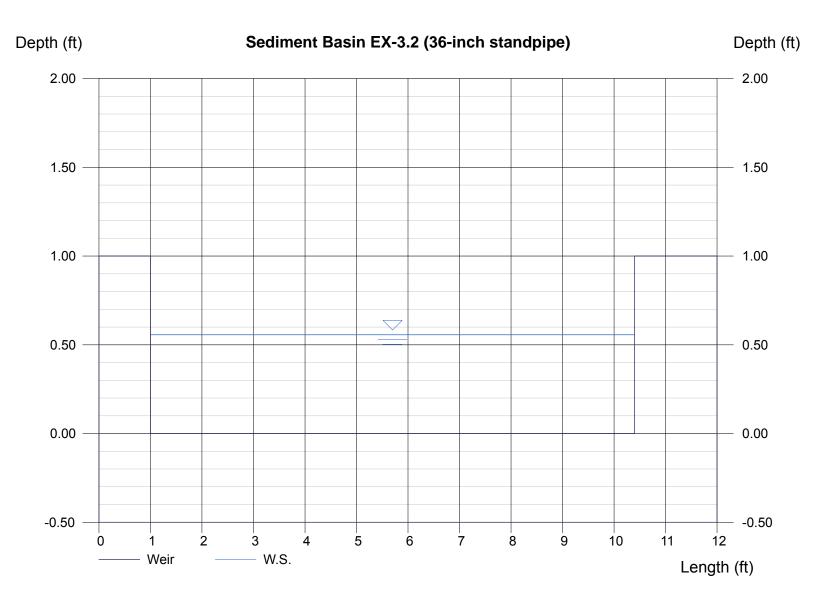

Trapezoidal		Highlighted	
Botom Width (ft)	= 27.00	Depth (ft)	= 0.98
Side Slope (z:1)	= 4.00	Q (cfs)	= 230.00
Total Depth (ft)	= 1.00	Area (sqft)	= 30.30
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.59
Slope (%)	= 2.00	Wetted Perim (ft)	= 35.08
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.00
		Top Width (ft)	= 34.84
Calculations		EGL (ft)	= 1.88
Compute by:	Known Q		
Known Q (cfs)	= 230.00		

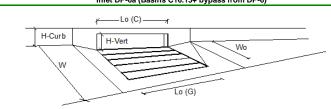
Reach (ft)


Interim Pond Ex-3 Overflow

Trapezoidal Weir		Highlighted
Crest	= Sharp	Depth (ft) = 1.48
Bottom Length (ft)	= 30.00	Q(cfs) = 193.00
Total Depth (ft)	= 2.00	Area (sqft) = 53.16
Side Slope (z:1)	= 4.00	Velocity $(ft/s) = 3.63$
		Top Width (ft) = 41.84
Calculations		
Weir Coeff. Cw	= 3.10	
Compute by:	Known Q	
Known Q (cfs)	= 193.00	

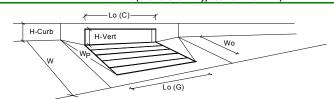
Interim Pond EX-3 outflow swale


Trapezoidal		Highlighted	
Botom Width (ft)	= 4.00	Depth (ft)	= 1.59
Side Slope (z:1)	= 4.00	Q (cfs)	= 67.00
Total Depth (ft)	= 3.00	Area (sqft)	= 16.47
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.07
Slope (%)	= 0.50	Wetted Perim (ft)	= 17.11
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.36
		Top Width (ft)	= 16.72
Calculations		EGL (ft)	= 1.85
Compute by:	Known Q		
Known Q (cfs)	= 67.00		


Reach (ft)

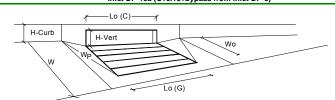
Sediment Basin EX-3.2 (36-inch standpipe)

Rectangular Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.56
Bottom Length (ft)	= 9.40	Q (cfs)	= 13.00
Total Depth (ft)	= 1.00	Area (sqft)	= 5.23
		Velocity (ft/s)	= 2.49
Calculations		Top Width (ft)	= 9.40
Weir Coeff. Cw	= 3.33		
Compute by:	Known Q		
Known Q (cfs)	= 13.00		

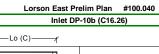

Lorson East Prelim Plan #100.040 Inlet DP-6a (Basins C16.15+ bypass from DP-6)

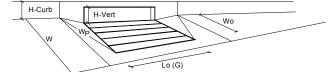
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	-
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'	•	MINOR	MAJOR	•
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	6.6	24.9	cfs
Water Spread Width	Т =	14.6	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.0	7.5	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.9	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.409	0.247	-
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	3.9	18.2	cfs
Discharge within the Gutter Section W	Q_ =	2.7	6.0	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.7	cfs
Flow Area within the Gutter Section W	A _w =	2.25	5.70	sq ft
Velocity within the Gutter Section W	V _w =	2.9	4.2	fps
Water Depth for Design Condition	d _{LOCAL} =	8.0	10.5	inches
Grate Analysis (Calculated)	-100112	MINOR	MAJOR	
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{e-grate} =	N/A	N/A	-1
Under No-Clogging Condition	0 GIVILE	MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V., =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition	٦ L	MINOR	MAJOR	010
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	-
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = Q_0-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	~B -	MINOR	MAJOR	013
Equivalent Slope S _e (based on grate carry-over)	S _e =	0.097	0.066	ft/ft
Required Length L _T to Have 100% Interception	L _T =	14.16	32.65	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	10.00	ft
Interception Capacity	Q; =	5.9	11.7	cfs
Under Clogging Condition	-1	MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.25	1.25	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	5.7	11.2	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	Q _a =	0.9	13.7	cfs
Summary	α _b =	MINOR	MAJOR	010
<u>Summary</u> Total Inlet Interception Capacity	Q =	5.71	11.17	cfs
	Q = Q _b =	0.9	11.17	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Capture Percentage = Q _a /Q _o =	w _b =	0.9	13.7	us

Project = Inlet ID =


Lorson East Prelim Plan #100.040 Inlet DP-10 (C16.16+C16.17+bypass from Inlet DP-8)

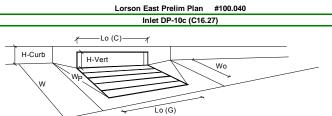
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 2.5-0.7)	C ₀ (C) =	0.67	0.67	-
Grate Flow Analysis (Calculated)	0,00	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
	H	N/A	N/A	-
Clogging Factor for Multiple Units	Clog =			_
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	o - F	MINOR	MAJOR	٦.
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	٦.
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	10.72	17.34	cfs
nterception with Clogging	Q _{wa} =	10.05	16.26	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
nterception without Clogging	Q _{oi} =	20.22	22.38	cfs
Interception with Clogging	Q _{oa} =	18.96	20.98	cfs
Curb Opening Capacity as Mixed Flow	_	MINOR	MAJOR	_
interception without Clogging	Q _{mi} =	13.69	18.32	cfs
Interception with Clogging	Q _{ma} =	12.84	17.18	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	10.05	16.26	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	L =	10.00	10.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	т =	39.3	52.1	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	2.7	4.2	inches
	-	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	10.1	16.3	cfs
WARNING: Inlet Capacity less than Q Peak for MAJOR Storm	Q PEAK REQUIRED =	6.0	20.9	cfs


Project = Inlet ID =


Lorson East Prelim Plan #100.040 Inlet DP-10a (C16.18+bypass from Inlet DP-8)

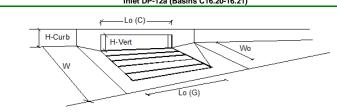
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inches
Grate Information		MINOR	MAJOR	 Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C ₀ (G) =	N/A	N/A	
Curb Opening Information	-0(-)	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet
	H _{vert} =	6.00	6.00	inches
Height of Vertical Curb Opening in Inches		6.00	6.00	_
Height of Curb Orifice Throat in Inches	H _{throat} =			inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C ₀ (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	_	MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	_	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	7
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	12.45	21.18	cfs
Interception with Clogging	Q _{wa} =	11.90	20.25	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	10	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	30.33	33.57	cfs
Interception with Clogging	Q _{oa} =	29.00	32.11	cfs
	-08	MINOR	MAJOR	
Curb Opening Capacity as Mixed Flow Interception without Clogging	Q _{mi} =	18.07	24.80	cfs
Interception with Clogging	Q _{mi} = Q _{ma} =	17.28	24.80	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	11.90	20.25	cfs
Resultant Street Conditions	. г	MINOR	MAJOR	1 6
Total Inlet Length	L =	15.00	15.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	39.3	52.1	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	2.7	4.2	inches
		MINOR	MAJOR	7.4
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	11.9	20.3	cfs
nlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	5.7	16.8	cfs

Project = Inlet ID =



r

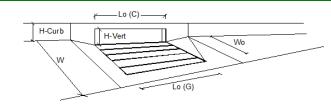
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.0	inches
Grate Information	• · _	MINOR	MAJOR	Override Depti
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	1
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	1
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	1
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	-
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	4
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	-
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{0}(C) =$	0.67	0.67	-
Grate Flow Analysis (Calculated)	-0(-)	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7
Clogging Factor for Multiple Units	Clog =	N/A	N/A	-
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	Clog -	MINOR	MAJOR	
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	Q _{wa} –	MINOR	MAJOR	CIS
	Q _{oi} =	N/A	N/A	cfs
Interception without Clogging		N/A N/A	N/A N/A	
Interception with Clogging	Q _{oa} =			cfs
Grate Capacity as Mixed Flow	o -	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-	MINOR	MAJOR	-
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	4
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	٦.
Interception without Clogging	Q _{wi} =	5.98	5.98	cfs
Interception with Clogging	Q _{wa} =	5.38	5.38	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	9.75	9.75	cfs
Interception with Clogging	Q _{oa} =	8.78	8.78	cfs
Curb Opening Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	7.10	7.10	cfs
Interception with Clogging	Q _{ma} =	6.39	6.39	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	5.38	5.38	cfs
Resultant Street Conditions		MINOR	MAJOR	_
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	35.4	35.4	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	2.2	2.2	inches
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	5.4	cfs
WARNING: Inlet Capacity less than Q Peak for MAJOR Storm	Q PEAK REQUIRED =	3.2	27.1	cfs


Project = Inlet ID =

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.2	4.2	inches
Grate Information		MINOR	MAJOR	Override Depth
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	1
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	-	MINOR	MAJOR	_
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.00	1.00	
Clogging Factor for Multiple Units	Clog =	0.10	0.10	
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study)		MINOR	MAJOR	_
Interception without Clogging	Q _{wi} =	2.44	2.44	cfs
Interception with Clogging	Q _{wa} =	2.20	2.20	cfs
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	-	MINOR	MAJOR	
Interception without Clogging	Q _{oi} =	8.25	8.25	cfs
Interception with Clogging	Q _{oa} =	7.42	7.42	cfs
Curb Opening Capacity as Mixed Flow	-	MINOR	MAJOR	_
Interception without Clogging	Q _{mi} =	4.17	4.17	cfs
Interception with Clogging	Q _{ma} =	3.76	3.76	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	2.20	2.20	cfs
Resultant Street Conditions	•	MINOR	MAJOR	
Total Inlet Length	L =	5.00	5.00	feet
Resultant Street Flow Spread (based on sheet <i>Q-Allow</i> geometry)	т =	20.4	20.4	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.4	0.4	inches
	L	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	2.2	2.2	cfs
WARNING: Inlet Capacity less than Q Peak for MAJOR Storm	Q PEAK REQUIRED =	0.6	23.0	cfs

Project: Inlet ID:

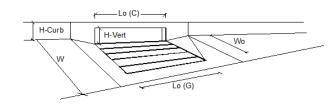
Lorson East Prelim Plan #100.040 Inlet DP-12a (Basins C16.20-16.21)



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q., =	8.6	19.1	cfs
Water Spread Width	т =	15.6	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.3	6.7	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.1	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.381	0.278	-
Discharge outside the Gutter Section W, carried in Section T_x	 Q _x =	5.3	13.7	cfs
Discharge within the Gutter Section W	Q _w =	3.3	5.3	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.1	cfs
Flow Area within the Gutter Section W	A _W =	2.57	4.59	sq ft
Velocity within the Gutter Section W	V _W =	3.3	4.1	fps
Water Depth for Design Condition	d _{LOCAL} =	8.3	9.7	inches
Grate Analysis (Calculated)	GLOCAL -	MINOR	MAJOR	mones
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	
Under No-Clogging Condition	Co-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	v _o = R _f =	N/A N/A	N/A N/A	ips
Interception Rate of Side Flow	R _x =	N/A N/A	N/A N/A	-
Interception Capacity	Q; =	N/A	N/A	cfs
Under Clogging Condition	Q _i -	MINOR	MAJOR	CIS
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Eactor for Multiple-unit Grate Inlet	GrateClog =	N/A N/A	N/A N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A N/A	N/A	ft
	L _e = V _o =	N/A N/A	N/A N/A	fps
Minimum Velocity Where Grate Splash-Over Begins	v _o = R _f =	N/A N/A	N/A N/A	ips
Interception Rate of Frontal Flow				_
Interception Rate of Side Flow	R _x =	N/A N/A	N/A N/A	cfs
Actual Interception Capacity	Q _a =			
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A MINOR	N/A MAJOR	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	S _e =	0.092	0.072	ft/ft
Equivalent Slope S _e (based on grate carry-over) Required Length L _T to Have 100% Interception		16.79	28.05	ft
	L _T =	MINOR	Z6.05 MAJOR	IL I
Under No-Clogging Condition Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.00	MAJOR 10.00	ft
	L = Q; =	6.9	10.00	rt cfs
Interception Capacity	Q _i =			cis
Under Clogging Condition	CurbCoef =	MINOR	MAJOR	7
Clogging Coefficient		1.25	1.25	-
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	6.7	10.0	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	1.9	9.1	cfs
Summary	<u>.</u> Г	MINOR	MAJOR	٦
Total Inlet Interception Capacity	Q =	6.68	9.97	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.9	9.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	78	52	%

Project: Inlet ID:

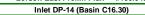
Lorson East Prelim Plan #100.040 Inlet DP-12 (Basins C16.22-C16.23)

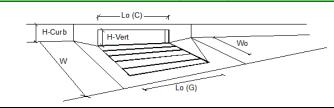


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W_ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _r -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	7.7	17.1	cfs
Water Spread Width	Т =	15.0	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.1	6.5	inches
Water Depth at Street Crown (or at T_{Max})	d _{CROWN} =	0.0	0.9	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.399	0.289	
Discharge outside the Gutter Section W, carried in Section T _x	Q _x =	4.6	12.1	cfs
Discharge within the Gutter Section W	Q _w =	3.1	4.9	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	4.9	cfs
Flow Area within the Gutter Section W	A _W =	2.36	4.26	sq ft
Velocity within the Gutter Section W	V _w =	3.3	4.20	fps
Water Depth for Design Condition	d _{LOCAL} =	8.1	9.5	inches
Grate Analysis (Calculated)	ULUCAL -	MINOR	MAJOR	Inches
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	-	N/A	N/A	
Under No-Clogging Condition	E _{0-GRATE} =	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	v₀ = R _f =	N/A N/A	N/A N/A	ips
Interception Rate of Side Flow	R _x =	N/A N/A	N/A	-
Interception Capacity	$P_x = Q_i =$	N/A N/A	N/A N/A	cfs
Under Clogging Condition	Q; -	MINOR	MAJOR	CIS
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	7
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	-
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins		N/A N/A	N/A	fps
Interception Rate of Frontal Flow	V _o = R _f =	N/A N/A	N/A	ips
Interception Rate of Side Flow	R ₁ =	N/A N/A	N/A	_
	· · · · · · · · · · · · · · · · · · ·	N/A N/A	N/A	cfs
Actual Interception Capacity	Q _a =			cfs
Carry-Over Flow = \mathbf{Q}_0 - \mathbf{Q}_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	CIS
Curb or Slotted Inlet Opening Analysis (Calculated) Equivalent Slope S _e (based on grate carry-over)	с - Г	0.095	0.074	ft/ft
Required Length L_T to Have 100% Interception	S _e =		26.20	ft
	L _T =	15.61 MINOR	Z6.20 MAJOR	n.
Under No-Clogging Condition	F	-		4
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L = Q; =	10.00	10.00	ft
Interception Capacity	Q _i =	6.5 MINOR	9.9	cfs
Under Clogging Condition	CurbCoef =	MINOR	MAJOR	7
Clogging Coefficient		1.25	1.25	-1
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	-
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	6.3	9.5	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	1.4	7.6	cfs
Summary		MINOR	MAJOR	٦.
Total Inlet Interception Capacity	Q =	6.28	9.48	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.4	7.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	82	55	%

Project: Inlet ID:

Lorson East Prelim Plan #100.040 Inlet DP-13 (Basins C16.24 + bypass from Inlet DP-12 & Inlet DP12a)

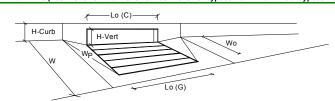




Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W., =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	Cr-C =	0.10	0.10	
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet Q-Peak)	Q ₀ =	7.8	26.8	cfs
Water Spread Width	т =	15.6	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.3	7.7	inches
Water Depth at Street Crown (or at T_{Max})	d _{CROWN} =	0.0	2.1	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.382	0.242	
Discharge outside the Gutter Section W, carried in Section T _x	Q, =	4.8	19.6	cfs
Discharge within the Gutter Section W	Q _w =	3.0	6.2	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	1.0	cfs
Flow Area within the Gutter Section W	A _W =	2.56	5.95	sq ft
Velocity within the Gutter Section W	V _w =	3.1	4.3	fps
Water Depth for Design Condition	d _{LOCAL} =	8.3	4.3	inches
Grate Analysis (Calculated)	ULOCAL -	MINOR	MAJOR	inches
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E =	N/A	N/A	
Under No-Clogging Condition	C-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V., =	N/A	N/A	fps
· · · ·	v₀ = R _f =	N/A N/A	N/A	ips
Interception Rate of Frontal Flow	R _x =	N/A N/A	N/A N/A	_
Interception Rate of Side Flow Interception Capacity	R _x = Q _i =	N/A N/A	N/A N/A	cfs
Under Clogging Condition	Q _i -	MINOR	MAJOR	CIS
	GrateCoef =	N/A	N/A	
Clogging Coefficient for Multiple-unit Grate Inlet				_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	-
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = \mathbf{Q}_0 - \mathbf{Q}_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	а _ Г	0.092	0.065	ft/ft
Equivalent Slope Se (based on grate carry-over)	S _e =			
Required Length L _T to Have 100% Interception	L _T =	15.79	33.99	ft
Under No-Clogging Condition		MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L = Q; =	10.00	10.00 12.0	ft cfs
Interception Capacity	ц _і =	6.5		CIS
Under Clogging Condition		MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	-
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	6.3	11.5	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	1.5	15.3	cfs
Summary		MINOR	MAJOR	٦.
Total Inlet Interception Capacity	Q =	6.31	11.52	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.5	15.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	81	43	%

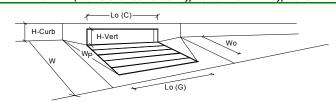
Project: Inlet ID:

Lorson East Prelim Plan #100.040



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W from Q-Allow)	W ₀ =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	-
Street Hydraulics: OK - Q < maximum allowable from sheet 'Q-Allow'		MINOR	MAJOR	
Design Discharge for Half of Street (from Sheet <i>Q-Peak</i>)	Q ₀ =	6.8	15.2	cfs
Water Spread Width	Τ=	14.8	17.0	ft
Water Depth at Flowline (outside of local depression)	d =	5.1	6.4	inches
Water Depth at Street Crown (or at T_{MAX})	d _{CROWN} =	0.0	0.8	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.404	0.292	
Discharge outside the Gutter Section W, carried in Section T_x	 Q_ =	4.1	10.7	cfs
Discharge within the Gutter Section W	x Q_w =	2.7	4.4	cfs
Discharge Behind the Curb Face	Q _{BACK} =	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	2.30	4.19	sq ft
Velocity within the Gutter Section W	V _w =	3.0	3.6	fps
Water Depth for Design Condition	d _{LOCAL} =	8.1	9.4	inches
	ULOCAL -	MINOR	MAJOR	Inches
Grate Analysis (Calculated) Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	E _{o-GRATE} =	N/A	N/A	- "
Under No-Clogging Condition	C-GRATE	MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	V., =	N/A	N/A	fps
Interception Rate of Frontal Flow	v _o = R _f =	N/A N/A	N/A	ips
•	R _x =	N/A N/A	N/A	_
Interception Rate of Side Flow	R _x = Q _i =	N/A N/A	N/A	cfs
Interception Capacity	Q _i -	MINOR	MAJOR	cis
Under Clogging Condition Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	MAJOR N/A	
				_
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	_
Interception Rate of Side Flow	R _x =	N/A	N/A	
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_o-Q_a (to be applied to curb opening or next d/s inlet)	Q _b =	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)	- -	MINOR	MAJOR	
Equivalent Slope Se (based on grate carry-over)	S _e =	0.096	0.075	ft/ft
Required Length L_T to Have 100% Interception	L _T =	14.43	24.34	ft
Under No-Clogging Condition		MINOR	MAJOR	4
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L=	10.00	10.00	ft
Interception Capacity	Q _i =	6.0	9.3	cfs
Under Clogging Condition	.	MINOR	MAJOR	-
Clogging Coefficient	CurbCoef =	1.25	1.25	-1
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	- .
Effective (Unclogged) Length	L _e =	8.75	8.75	ft
Actual Interception Capacity	Q _a =	5.8	8.9	cfs
Carry-Over Flow = Q _{b(GRATE)} -Q _a	Q _b =	1.0	6.3	cfs
Summary	-	MINOR	MAJOR	٦.
Total Inlet Interception Capacity	Q =	5.82	8.95	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	1.0	6.3	cfs
Capture Percentage = Q _a /Q _o =	C% =	86	59	%

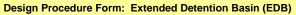
Project = Inlet ID =


Lorson East Prelim Plan #100.040 Inlet DP-16 (Basin C16.19+Basin C16.28+Basin C16.29+bypass from Inlet DP-6b+bypass from Inlet 13)

$\label{eq:constraints} \begin{array}{l} \text{Inlet Type =} \\ a_{\text{local}} = \\ No = \\ No = \\ Ponding Depth = \\ \\ U_o \left(G\right) = \\ W_o = \\ A_{\text{ratio}} = \\ C_f \left(G\right) = \\ C_w \left(G\right) = \\ C_o \left(G\right) = \\ \end{array}$	MINOR CDOT Type R 3.00 1 6.5 MINOR N/A N/A N/A N/A N/A N/A	MAJOR Curb Opening 3.00 1 8.0 MAJOR N/A N/A N/A N/A	inches inches Override Depths
$\label{eq:response} \begin{split} No &= \\ Ponding Depth &= \\ L_{o}\left(G\right) &= \\ W_{o} &= \\ A_{rabio} &= \\ C_{f}\left(G\right) &= \\ C_{w}\left(G\right) &= \\ C_{w}\left(G\right) &= \\ \end{split}$	1 6.5 MINOR N/A N/A N/A	1 8.0 MAJOR N/A N/A N/A	inches Override Depths
$\label{eq:response} \begin{split} No &= \\ Ponding Depth &= \\ L_{o}\left(G\right) &= \\ W_{o} &= \\ A_{rabio} &= \\ C_{f}\left(G\right) &= \\ C_{w}\left(G\right) &= \\ C_{w}\left(G\right) &= \\ \end{split}$	6.5 MINOR N/A N/A N/A N/A	1 8.0 MAJOR N/A N/A N/A	inches Override Depths
Ponding Depth = $L_o (G) =$ $W_o =$ $A_{ratio} =$ $C_f (G) =$ $C_w (G) =$	MINOR N/A N/A N/A N/A	MAJOR N/A N/A N/A	 Override Depth feet
L _o (G) = W _o = A _{ratio} = C _f (G) = C _w (G) =	MINOR N/A N/A N/A N/A	MAJOR N/A N/A N/A	 Override Depth feet
$W_o =$ $A_{ratio} =$ $C_f (G) =$ $C_w (G) =$	N/A N/A N/A N/A	N/A N/A	-
A _{ratio} = C _f (G) = C _w (G) =	N/A N/A N/A	N/A N/A	-
A _{ratio} = C _f (G) = C _w (G) =	N/A N/A	N/A	feet
C _f (G) = C _w (G) =		N/A	-
C _w (G) =			1
		N/A	-
	N/A	N/A	4
	MINOR	MAJOR	1
$L_{o}(C) =$	30.00	30.00	feet
H _{vert} =	6.00	6.00	inches
			inches
			degrees feet
· · ·			ICEL
			4
· · · · •			-
$C_0(C) =$			
			7
L. L.			4
Clog =			
			-
-			cfs
Q _{wa} =			cfs
			-
			cfs
Q _{oa} =	N/A	N/A	cfs
-	MINOR	MAJOR	-
	N/A	N/A	cfs
Q _{ma} =	N/A	N/A	cfs
Q _{Grate} =	N/A	N/A	cfs
_	MINOR	MAJOR	
Coef =	1.33	1.33	
Clog =	0.02	0.02	
	MINOR	MAJOR	_
Q _{wi} =	22.48	38.26	cfs
Q _{wa} =	21.98	37.41	cfs
	MINOR	MAJOR	_
Q _{oi} =	60.66	67.15	cfs
Q _{oa} =	59.31	65.66	cfs
-	MINOR	MAJOR	_
Q _{mi} =	34.34	47.14	cfs
Q _{ma} =	33.58	46.09	cfs
Q _{Curb} =	21.98	37.41	cfs
	MINOR	MAJOR	
L =	30.00	30.00	feet
			ft.>T-Crown
	2.7	4.2	inches
ono m			
Q _a =	22.0	37.4	cfs
			cfs
	$H_{throat} =$ $W_{p} =$ $C_{f}(C) =$ $C_{w}(C) =$ $C_{o}(C) =$ $Coef =$ $Clog =$ $Q_{wa} =$ $Q_{wa} =$ $Q_{ca} =$ $Q_{ma} =$ Q_{m	$ \begin{array}{c} { H_{throat} = & 6.00 \\ \hline { Theta = } & 63.40 \\ W_p = & 2.00 \\ C_l (C) = & 0.10 \\ C_w (C) = & 3.60 \\ C_o (C) = & 0.67 \\ \hline { MINOR } \\ Clog = & N/A \\ Clog = & N/A \\ \hline { MINOR } \\ Q_{wi} = & N/A \\ Q_{wa} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & N/A \\ Q_{ci} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & N/A \\ \hline { MINOR } \\ Q_{ci} = & 0.02 \\ \hline { MINOR } \\ Q_{ci} = & 0.02 \\ \hline { MINOR } \\ Q_{ci} = & 0.666 \\ Q_{ci} = & 0.33.58 \\ \hline { Q_{curb} = & 21.98 \\ \hline { MINOR } \\ Q_{ci} = & 39.3 \\ d_{CROWN} = & 2.7 \\ \hline \\ MINOR \\ \hline Q_{a} = & 22.0 \\ \hline \end{array} $	$\begin{array}{c c c c c c c } \mbox{Hurval} & 6.00 & 6.00 \\ \mbox{Theta} & 63.40 & 63.40 \\ \mbox{W}_p & 2.00 & 2.00 \\ \mbox{Cr}(C) & 0.10 & 0.10 \\ \mbox{Cw}(C) & 3.60 & 3.60 \\ \mbox{C}_o(C) & 0.67 & 0.67 \\ \mbox{MINOR} & MAJOR \\ \mbox{Coef} & N/A & N/A \\ \mbox{Clog} & N/A & N/A \\ \mbox{Clog} & N/A & N/A \\ \mbox{MINOR} & MAJOR \\ \mbox{Qwi} & N/A & N/A \\ \mbox{Qwi} & 22.48 & 38.26 \\ \mbox{Qwi} & 33.58 & 46.09 \\ \mbox{Qwi} & 33.58 & 46.09 \\ \mbox{Qwi} & 2.7 & 4.2 \\ \mbox{MINOR} & MAJOR \\ \mbox{Qwi} & 2.7 & 4.2 \\ \mbox{MINOR} & MAJOR \\ \mbox{Qwi} & 22.0 & 37.4 \\ \mbox{MINOR} & MAJOR \\ \mbox{Qwi} & 22.0 & 37.4 \\ \mbox{MINOR} & MAJOR \\ \mbox{Qwi} & 22.0 & 37.4 \\ \mbox{MINOR} & MAJOR \\ \mbox{Qwi} & 22.0 & 37.4 \\ \mbox{MINOR} & MAJOR \\ \mbox{MAJOR} \\ \mbox{MiNOR} & MAJOR \\ \mbox{MiNOR} & MAJOR \\ \mbox{MAJOR} \\ \mbox{MA} \\ \mbox{MiNOR} & MAJOR \\ \mbox{MAJOR} \\ \mbox{MA} \\ $

Project = Inlet ID =

Lorson East Prelim Plan #100.040 Inlet DP-17 (Basin C16.25+Basin C16.32+bypass from Inlet DP-14+bypass from Inlet 16)

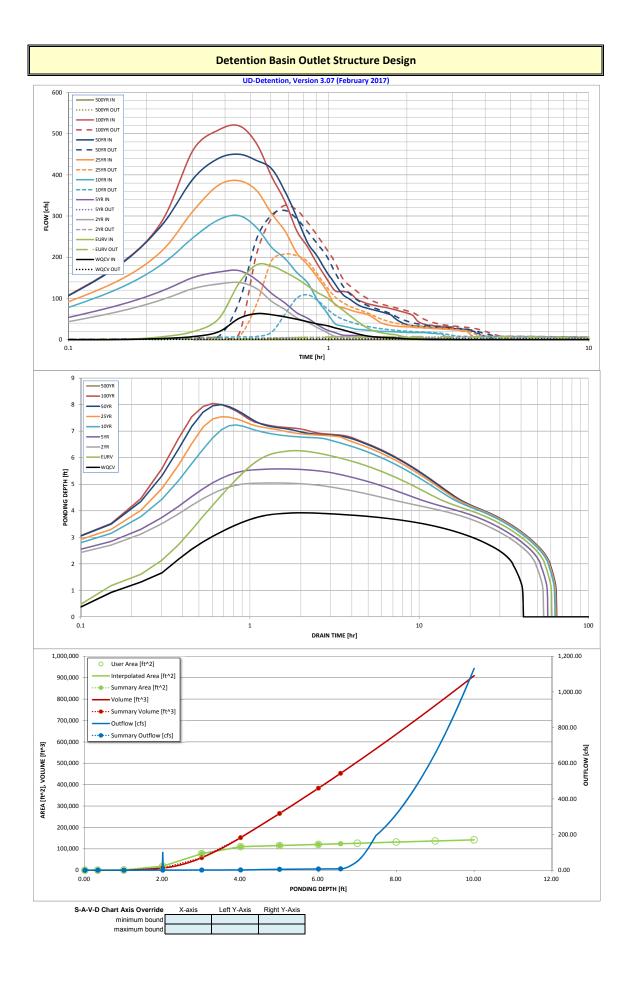


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Inlet Type =		R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from 'Q-Allow')	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	indited
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.5	8.0	inches
Grate Information	Ponding Depth =	MINOR	0.0 MAJOR	Override Depth
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Nidth of a Unit Grate	W _o =	N/A	N/A	feet
	A _{ratio} =	N/A	N/A	icet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$C_{f}(G) =$	N/A	N/A	-
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _w (G) =	N/A	N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)				4
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information	L (0) -	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	30.00	30.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Grate Flow Analysis (Calculated)	_	MINOR	MAJOR	_
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	1
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1
Grate Capacity as a Weir (based on UDFCD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs
Grate Capacity as a Orifice (based on UDFCD - CSU 2010 Study)	-	MINOR	MAJOR	-
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs
Grate Capacity as Mixed Flow	-	MINOR	MAJOR	-
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)	-orado	MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.33	1.33	7
Clogging Factor for Multiple Units	Clog =	0.02	0.02	-
	olog -	MINOR	MAJOR	1
Curb Opening as a Weir (based on UDFCD - CSU 2010 Study) Interception without Clogging	Q _{wi} =	22.48	38.26	cfs
Interception with Clogging	Q _{wa} =	22.48	37.41	cfs
	⊲ _{wa} –			013
Curb Opening as an Orifice (based on UDFCD - CSU 2010 Study)	Q _{ni} =	MINOR 60.66	MAJOR 67.15	cfs
Interception without Clogging				-
Interception with Clogging	Q _{oa} =	59.31	65.66	cfs
Curb Opening Capacity as Mixed Flow	~ •	MINOR	MAJOR	٦.
Interception without Clogging	Q _{mi} =	34.34	47.14	cfs
Interception with Clogging	Q _{ma} =	33.58	46.09	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	21.98	37.41	cfs
Resultant Street Conditions	-	MINOR	MAJOR	-
Total Inlet Length	L =	30.00	30.00	feet
Resultant Street Flow Spread (based on sheet Q-Allow geometry)	T =	39.3	52.1	ft.>T-Crown
Resultant Flow Depth at Street Crown	d _{CROWN} =	2.7	4.2	inches
	-	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	22.0	37.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q PEAK)	Q PEAK REQUIRED =	3.6	34.7	cfs

APPENDIX D – POND AND ROUTING CALCULATIONS

	UD-BMP (Vers	ion 3.06, November 2016) Shee
Designer:	· ·	
Company:	Core Engineering Group	
Date:	June 15, 2018	
Project:	Lorson Ranch East Filing No. 2	
Location:	Lorson Ranch	
1. Design D	ischarge	
 A) 2 Voor 	Peak Flow Rate of the Area Draining to the Grass Buffer	$\Omega_{\rm r} = -1.2$ of $\Omega_{\rm r}$
A) 2-Teal	reak riow Rate of the Area Draining to the Grass buller	Q ₂ = <u>1.3</u> cfs
2. Minimum	Width of Grass Buffer	$W_G = 26$ ft
3. Length of	f Grass Buffer (14' or greater recommended)	$L_G = 60$ ft
4. Buffer Slo	ope (in the direction of flow, not to exceed 0.1 ft / ft)	$S_{G} = 0.020$ ft / ft
5. Flow Cha	racteristics (sheet or concentrated)	
	runoff flow into the grass buffer across the width of the buffer?	Choose One Yes ONO
	wath of the buffer?	
	ace Slope (normal to flow)	S _I = 0.010 ft / ft
D) Type	of Flow	SHEET FLOW
Shee	t Flow: $F_L * S_l \le 1$ entrated Flow: $F_L * S_l > 1$	
6. Flow Dist	ribution for Concentrated Flows	Choose One None (sheet flow) Slotted Curbing Level Spreader Other (Explain):
7 Soil Prep (Describe	aration 9 soil amendment)	4" topsoil
8 Vegetatio	on (Check the type used or describe "Other")	Choose One Existing Xeric Turf Grass Irrigated Turf Grass Other (Explain):
9. Irrigation		Choose One
(*Select N	None if existing buffer area has 80% vegetation not be disturbed during construction.)	Temporary Permanent None*
10. Outflow C	Collection (Check the type used or describe "Other")	Choose One Grass Swale Street Gutter Storm Sewer Inlet Other (Explain): Etrib of Jimmy Camp Creek
Notes:		

	Design Procedure Forr	n: Extended Detention Basin (EDB)	
	UD-BM	P (Version 3.06, November 2016)	heet 1 of 4
Designer:	Richard Schindler		
Company:	Core Engineering Group		
Date:	February 13, 2018		
Project:	Lorson Ranch East PDR - Pond c5 forebay design		
Location:	Pond C5 forebay design (split forebay in two parts)		
1. Basin Storage \	/olume		
A) Effective Imp	perviousness of Tributary Area, I _a	I _a = <u>63.0</u> %	
	ea's Imperviousness Ratio (i = $I_a/100$)	i =0.630	
,	y Watershed Area	Area = <u>171.000</u> ac	
	neds Outside of the Denver Region, Depth of Average Jucing Storm	d ₆ = in	
E) Design Con	cept	Choose One	
	V when also designing for flood control)	S Water Quality Capture Volume (WQCV)	
		C Excess Urban Runoff Volume (EURV)	
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = <u>3.515</u> ac-ft	
Water Qual	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{\rm IR}$ = (de*(V $_{\rm DESIGN}/0.43))$	V _{DESIGN OTHER} = ac-ft	
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} = <u>3.300</u> ac-ft	
I) Predominant	Watershed NRCS Soil Group	Choose One A B C / D WQCV selected. Soil group not required.	
· ·	an Runoff Volume (EURV) Design Volume :: EURV _A = 1.68 * i ^{1.28}	EURV = ac-ft	
	$EURV_{B} = 1.36 * i^{1.08}$		
For HSG C	//D: EURV _{C/D} = 1.20 * i ^{1.08}		
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L:W= <u>2.0</u> :1	
3. Basin Side Slop	bes		
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = <u>0.33</u> ft / ft TOO STEEP (< 3)	
4. Inlet			
A) Describe me	eans of providing energy dissipation at concentrated		
inflow locati			

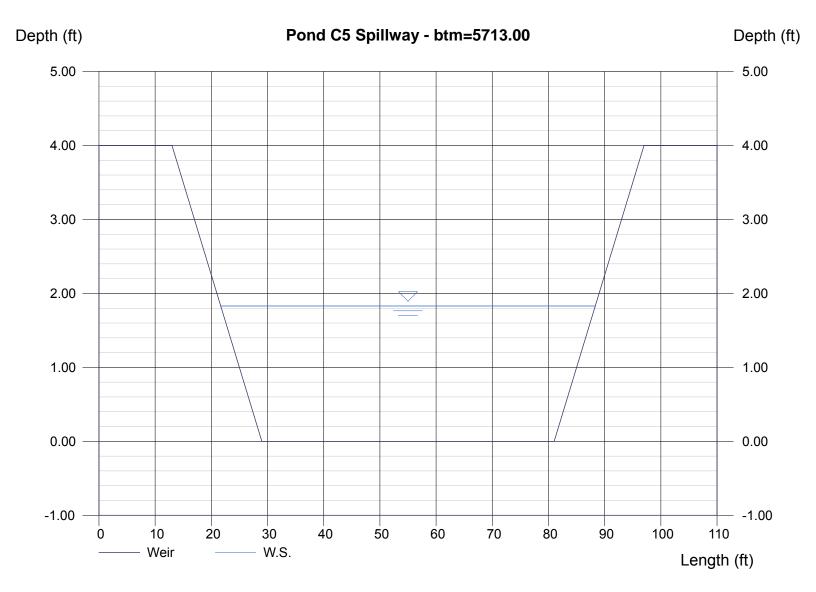


	Design i rosedure i offi	Extended Detention Basin (EDB)	. <u>.</u>
Designer:	Richard Schindler	Sheet	t 2 of 4
Company:	Core Engineering Group		
Date:	February 13, 2018		
Project:	Lorson Ranch East PDR - Pond c5 forebay design		
Location:	Pond C5 forebay design (split forebay in two parts)		
5. Forebay			
A) Minimum For (V _{FMIN} =	ebay Volume =	V _{FMIN} = <u>0.099</u> ac-ft	
B) Actual Foreba	ay Volume	$V_{F} = 0.150$ ac-ft	
C) Forebay Dept (D _F =	h = <u>30</u> inch maximum)	D _F = <u>30.0</u> in	
D) Forebay Disch	narge		
	i) Undetained 100-year Peak Discharge	Q ₁₀₀ = <u>484.00</u> cfs	
	ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	Q _F = <u>9.68</u> cfs	
E) Forebay Disch	narge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	
F) Discharge Pip	e Size (minimum 8-inches)	Calculated $D_P = $ in	
G) Rectangular N	Jotch Width	Calculated $W_N = 14.8$ in	
6. Trickle Channel		Choose One	
A) Type of Trick	le Channel	O Soft Bottom	
F) Slope of Trick	de Channel	S = <u>0.0040</u> ft / ft	
7. Micropool and O	utlet Structure		
A) Depth of Micr	ropool (2.5-feet minimum)	D _M = ft	
B) Surface Area	of Micropool (10 ft ² minimum)	A _M = sq ft	
C) Outlet Type			
.,		Choose One Orifice Plate Other (Describe):	
D) Smallest Dim (Use UD-Deter	ension of Orifice Opening Based on Hydrograph Routing ntion)	D _{orifice} = <u>3.03</u> inches	
E) Total Outlet A	rea	A _{ot} = <u>27.63</u> square inches	

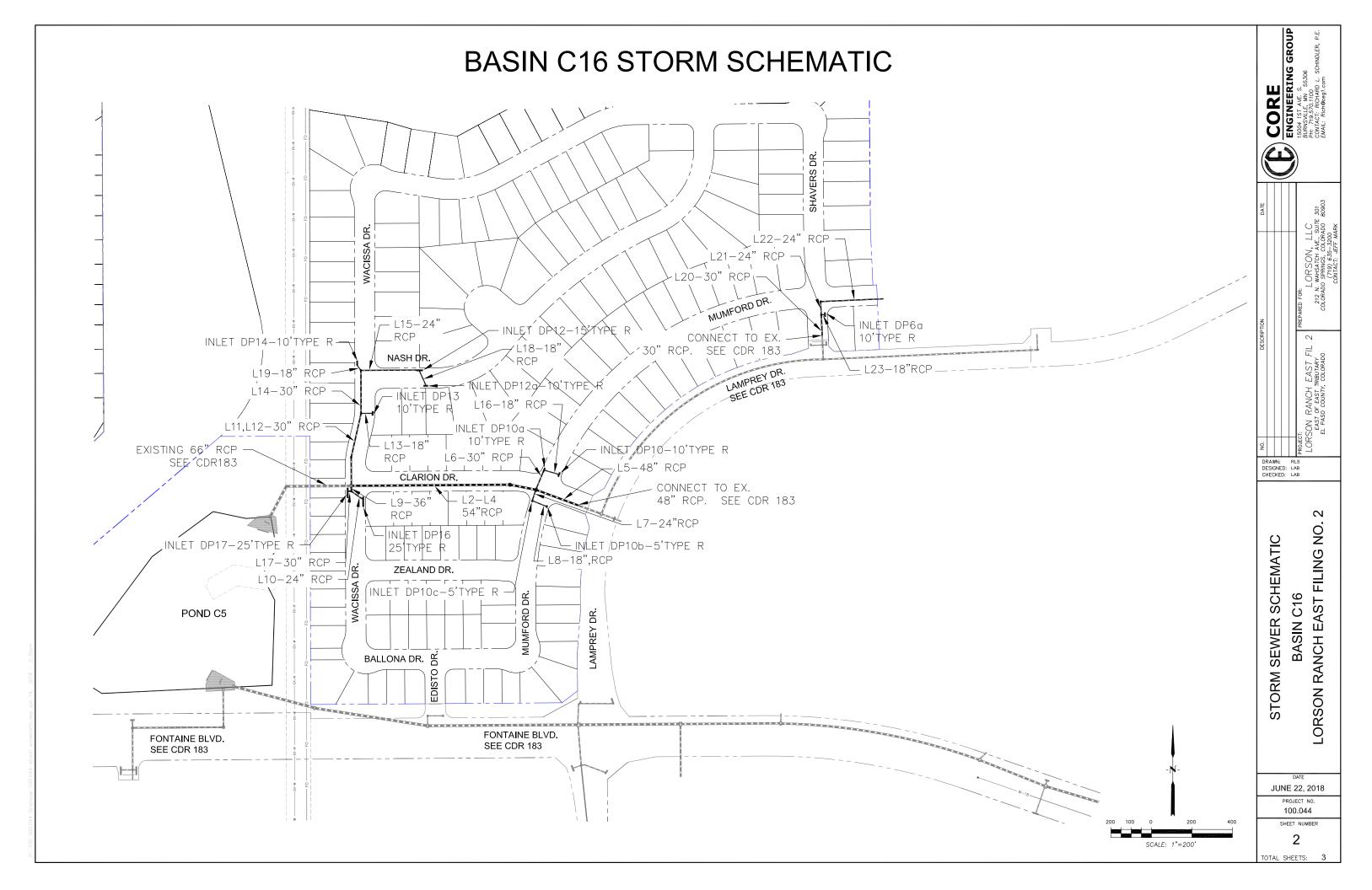
	Design Procedure Form	n: Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	Richard Schindler Core Engineering Group February 13, 2018 Lorson Ranch East PDR - Pond c5 forebay design Pond C5 forebay design (split forebay in two parts)	Sheet	t 3 of 4
8. Initial Surcharge	Volume		
	al Surcharge Volume ommended depth is 4 inches)	D _{IS} = in	
	I Surcharge Volume me of 0.3% of the WQCV)	$V_{IS} = $ 431.2 cu ft	
C) Initial Surcharg	ge Provided Above Micropool	V _s = 29.3 cu ft	
9. Trash Rack			
A) Water Quality	v Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = <u>798</u> square inches	
in the USDCM, in	n (If specifying an alternative to the materials recommended dicate "other" and enter the ratio of the total open are to the or the material specified.)	Other (Please describe below) stainless steel wellscreen	
	Other (Y/N): Y		
C) Ratio of Total	Open Area to Total Area (only for type 'Other')	User Ratio =0.6	
D) Total Water Q	uality Screen Area (based on screen type)	A _{total} = <u>1329</u> sq. in. Based on type 'Other' screen ratio	
	gn Volume (EURV or WQCV) ign concept chosen under 1E)	H= <u> 3 </u> feet	
F) Height of Wate	er Quality Screen (H _{TR})	H _{TR} = 64 inches	
	er Quality Screen Opening (W _{opening}) 2 inches is recommended)	W _{opening} = 20.8 inches	

			DETEN		SIN STAGE-S	TORAG	E TABLE	BUILDI	ER					
Project:	Lorson East	MDDP (100	1.013)	UD-Det	ention, Version 3	3.07 (Febr	uary 2017	7)						
Basin ID:														
(20ME) (20ME) (20ME)	2 ONE 1	_												
VOLUME EUNY WOOV		F												
1	TANDE	100-11	ian .		Depth Increment =	0.2	ft							
POOL Example Zone	265	tion (Pete	ntion Rond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
	comgara		indon i ond)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft'2)	Area (ft/2)	(acre)	(ft'3)	(ac-ft)
Required Volume Calculation Selected BMP Type =	EDB	1			Top of Micropool 5706.33	-	0.00			-	50 100	0.001	24	0.001
Watershed Area =	171.00	acres			5707		1.00	-	-	-	1,000	0.002	383	0.009
Watershed Length =	3,200	ft			5708		2.00			-	18,898	0.434	10,154	0.233
Watershed Slope =	0.018	ft/ft			5709		3.00	-		-	77,432	1.778	58,507	1.343
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	63.00% 0.0%	percent percent			5710 5711		4.00 5.00	-	-	-	110,270 115,455	2.531 2.650	152,358 265,220	3.498 6.089
Percentage Hydrologic Soil Group R =	0.0%	percent			5712	-	6.00	-	-	-	120,720	2.000	383,308	8.800
Percentage Hydrologic Soil Groups C/D =	100.0%	percent			5713		7.00	-	-	-	126,045	2.894	506,690	11.632
Desired WQCV Drain Time = Location for 1-hr Rainfall Depths =	40.0	hours			5714 5715		8.00 9.00	-	-	-	131,696 136,745	3.023 3.139	635,561 769,781	14.590 17.672
Water Quality Capture Volume (WQCV) =	3.515	acre-feet	Optional Use	er Override	5716	-	10.00	-		-	136,745	3.257	909,082	20.870
Excess Urban Runoff Volume (EURV) =	10.382	acre-feet	1-hr Precipita					-		-				
2-yr Runoff Volume (P1 = 1.19 in.) =	9.890	acre-feet	1.19	inches				-	-					
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =	14.020 17.354	acre-feet acre-feet	1.50	inches inches										
25-yr Runoff Volume (P1 = 2 in.) =	22.326	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	26.255	acre-feet	2.25	inches					-					
100-yr Runoff Volume (P1 = 2.52 in.) = 500-yr Runoff Volume (P1 = 0 in.) =	31.112 0.000	acre-feet acre-feet	2.52	inches inches										
Approximate 2-yr Detention Volume =	9.279	acre-feet												
Approximate 5-yr Detention Volume =	13.206	acre-feet				-			-				-	
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	15.090 16.122	acre-feet acre-feet				-		-						
Approximate 25-yr Detention Volume = Approximate 50-yr Detention Volume =	16.122	acre-teet acre-feet				-		-	-	-				
Approximate 100-yr Detention Volume =	18.232	acre-feet												
Stage-Storage Calculation										-				
Zone 1 Volume (WQCV) =	3.515	acre-feet				-		-		-				
Zone 2 Volume (EURV - Zone 1) =	6.868	acre-feet	Total deten	tion volume				-	-	-				
Zone 3 Volume (User Defined - Zones 1 & 2) =	0.100	acre-feet	is less than volume.	100-year						-				
Total Detention Basin Volume = Initial Surcharge Volume (ISV) =	10.482 user	acre-feet ft/3						-	-	-				
Initial Surcharge Depth (ISD) =	user	ft								-				
Total Available Detention Depth (H _{total}) =	user	ft						-	-	-				
Depth of Trickle Channel (H_{TC}) = Slope of Trickle Channel (S_{TC}) =	user	ft								-				
Slopes of Main Basin Sides (S _{main}) =	user	ft/ft H:V				-		-		-				
Basin Length-to-Width Ratio (R _{L/W}) =	user							-	1	-				
Initial Surcharge Area (A _{SV}) =	user	л .								-				
Surcharge Volume Length (L _{ISV}) =	user	ft*2 ft				-		-		-				
Surcharge Volume Width (W _{ISV}) =	user	ft						-	-	-				
Depth of Basin Floor (H _{FLOOR}) =	user	ft								-				
Length of Basin Floor (L _{FLOOR}) = Width of Basin Floor (W _{FLOOR}) =	user	ft ft						-	-	-				
Area of Basin Floor (A _{FLOOR}) =	user	ft*2								-				
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3						-	-	-				
Depth of Main Basin (H _{MAIN}) = Length of Main Basin (L _{MAIN}) =	user	ft						-	-	-				
Width of Main Basin (W _{MAIN}) =	user	ft ft				-		-	-	-				
Area of Main Basin (A _{MAIN}) =	user	ft*2						-		-				
Volume of Main Basin (V _{MAIN}) = Calculated Total Basin Volume (V _{stotal}) =	user	ft*3						-	-	-				
Calculated I otal Basin Volume (V _{total}) =	user	acre-feet				-				_				
								-	-	-				
					-			-	-	-				
						-		-	-	-				
						-			-	-				
										-				
					-				-	-				
					-			-	-	-				
						-		-	-	-				
						-			-	-				
						-								
							_	-		-			-	
					-			-	-	-				
						-		-	-	-			1	
								-	-	-				
					-	-		-		-				
					-				-	-				
						-		-	-	-				
						-			-	-				
										-				
								-	-					
					-			-		-				
						-		-	-	-				
						-		-	-	-				
						-								
								-	-	-				

Detention Basin Outlet Structure Design										
		2010		rsion 3.07 (Februar						
	Lorson East MDDP									
ZONE 3	Pond C5 (only used	I for WQCV and EUR	V) Do not use for 2-	-100-yr Storm Event	11111					
ZONE 2 ZONE 1				Stage (ft)	Zone Volume (ac-ft)	Outlet Type				
			Zone 1 (WQCV)	4.01	3.515	Orifice Plate]			
ZONE 1 AND 2	100-YEA ORIFICE	R	Zone 2 (EURV)	6.57	6.868	Rectangular Orifice				
PERMANENT ORIFICES	Configuration (Po	tontion Bond)	Zone 3 (User)	6.60	0.100	Weir&Pipe (Restrict)				
POOL Example Zone Configuration (Retention Pond) 10.482 Total User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain										
Underdrain Orifice Invert Depth =	N/A	- · ·	e filtration media sur	face)	Unde	erdrain Orifice Area =	N/A	ft ²		
Underdrain Orifice Diameter =	N/A	inches			Underdra	ain Orifice Centroid =	N/A	feet		
User Input: Orifice Plate with one or more orifices of	ar Elliptical Clat Wair	(tunically used to dr	in WOCV and for EU	P)/ in a codimontatio	PMD)	Color	lated Parameters for	Plata		
Invert of Lowest Orifice =	-	ft (relative to basin b				rifice Area per Row =	6.396E-02	ft ²		
Depth at top of Zone using Orifice Plate =	4.01	•	ottom at Stage = 0 ft		E	lliptical Half-Width =	N/A	feet		
Orifice Plate: Orifice Vertical Spacing =	16.00 9.21	inches			Elli	ptical Slot Centroid =	N/A	feet ft ²		
Orifice Plate: Orifice Area per Row =	9.21	sq. inches (use recta	ngulai operinigs)			Elliptical Slot Area =	N/A	π		
User Input: Stage and Total Area of Each Orifice F	Row (numbered fron Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]	
Stage of Orifice Centroid (ft)	0.00	1.34	2.67	. (-p)	(-p)	(. ()	(1	
Orifice Area (sq. inches)	9.21	9.21	9.21						J	
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1	
Stage of Orifice Centroid (ft)	(optional)			(optional)			on ro (optional)	. ion ro (optional)	j	
Orifice Area (sq. inches)									J	
User Input: Vertical Orifice (Circ	cular or Rectangular)					Calculated	Parameters for Vert	ical Orifice		
	Zone 2 Rectangular	Not Selected					Zone 2 Rectangular	Not Selected]	
Invert of Vertical Orifice =	4.01	N/A	-	oottom at Stage = 0 fi		ertical Orifice Area =	0.78	N/A	ft²	
Depth at top of Zone using Vertical Orifice =	6.57	N/A N/A	-	ottom at Stage = 0 fl	:) Verti	cal Orifice Centroid =	0.25	N/A	feet	
Vertical Orifice Height = Vertical Orifice Width =		N/A	inches inches							
vertical Ornice Width = 18.68 incres										
User Input: Overflow Weir (Dropbox) and G		Not Selected				Calculated	Parameters for Ove		1	
User Input: Overflow Weir (Dropbox) and C	Grate (Flat or Sloped) Zone 3 Weir 6.60	Not Selected	ft (relative to basin bot	ttom at Stage = 0 ft)	Height of Gr	Calculated Tate Upper Edge, $H_t =$	Parameters for Ove Zone 3 Weir 6.60	rflow Weir Not Selected N/A	feet	
	Zone 3 Weir		ft (relative to basin bot feet	ttom at Stage = 0 ft)			Zone 3 Weir	Not Selected	feet feet	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	Zone 3 Weir 6.60 3.00 0.00	N/A N/A N/A	feet H:V (enter zero for fl		Over Flow Grate Open Area /	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.60 30.00 5.73	Not Selected N/A N/A N/A	feet should be <u>></u> 4	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 6.60 3.00 0.00 30.00	N/A N/A N/A N/A	feet H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	Zone 3 Weir 6.60 30.00 5.73 72.00	Not Selected N/A N/A N/A N/A	feet should be <u>></u> 4 ft ²	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope =	Zone 3 Weir 6.60 3.00 0.00	N/A N/A N/A	feet H:V (enter zero for fl	at grate)	Over Flow Grate Open Area / Overflow Grate Ope	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area =	Zone 3 Weir 6.60 30.00 5.73	Not Selected N/A N/A N/A	feet should be <u>></u> 4	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, Η, = Weir Slope Length = 100-γr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobe = Overflow Grate Open Area % =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri	N/A N/A N/A N/A N/A Ctor Plate, or Rectan	feet H:V (enter zero for fl feet %, grate open area/t %	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, Η, = Weir Slope Length = 100-γr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 rs for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction Pla	feet should be ≥ 4 ft ² ft ²	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50%	N/A N/A N/A N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	at grate)	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op	ate Upper Edge, Η, = Weir Slope Length = 100-γr Orifice Area = en Area w/o Debris = pen Area w/ Debris =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00	Not Selected N/A N/A N/A N/A N/A	feet should be ≥ 4 ft ² ft ²	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t)	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A	feet should be \geq 4 ft ² ft ² te ft ² feet	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A	feet should be \geq 4 ft ² ft ² te ft ²	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches	at grate) otal area n bottom at Stage = 0 f	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t)	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A	feet should be \geq 4 ft ² ft ² te ft ² feet	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectanj Spillway Invert Stage=	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) 7.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A t (relative to basin t	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A	feet should be \geq 4 ft ² ft ² te ft ² feet	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Sildes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) 7.00 52.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05	Not Selected N/A Field	feet should be \geq 4 ft ² ft ² te ft ² feet	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectanj Spillway Invert Stage=	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) 7.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A t (relative to basin t	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05	Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A	feet should be \geq 4 ft ² ft ² te ft ² feet	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) 7.00 52.00 4.00 3.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A tf (relative to basin t feet H:V	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 S for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05	Not Selected N/A Field	feet should be \geq 4 ft ² ft ² te ft ² feet	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) 7.00 52.00 4.00 3.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A tf (relative to basin t feet H:V	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches	at grate) iotal area n bottom at Stage = 0 f Half-i	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op t) t) Central Angle of Rest Spillway Stage a	rate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 S for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05	Not Selected N/A Field	feet should be \geq 4 ft ² ft ² te ft ² feet	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slope = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 200 48.00 200 48.00 200 48.00 200 48.00 200 48.00 200 48.00 200 48.00 200 48.00 200 200 200 200 200 200 200	N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A N/A It (relative to basin the feet H:V feet EURV 1.07	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19	at grate) iotal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate O (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calculated Parameter Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 5 for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A spillway feet feet acres 100 Year 2.52	feet should be ≥ 4 ft ² ft ² feet radians <u>500 Year</u> 0.00	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restor Plate Hour Rainfall Depth (in) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acret.) =	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 gular or Trapezoidal) 7.00 52.00 4.00 3.00	N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A tf (relative to basin t feet H:V feet H:V	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches ottom at Stage = 0 ft 2 Year	at grate) iotal area n bottom at Stage = 0 f Half-1) 5 Year	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A spillway feet feet acres 100 Year	feet should be ≥ 4 ft ² ft ² feet radians	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) =	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 9 gular or Trapezoidal) 7.00 52.00 4.00 3.00 WQCV 0.53 3.515 3.517	N/A N/A N/A N/A N/A Ctor Plate, or Rectan N/A N/A N/A It (relative to basin the feet H:V feet EURV 1.07	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19	at grate) iotal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 17.354 17.689	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/ Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calculated Parameter Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 5 for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 31.112 37.807	feet should be ≥ 4 ft ² ft ² feet radians <u>500 Year</u> 0.00	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 48.00 3.00 52.00 4.00 3.00 WQCV 0.53 3.515 3.517 0.00	N/A N/A N/A N/A N/A Ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin t feet H:V feet H:V feet URV 1.07 10.382	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 9.890 6.877 0.02	at grate) iotal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 14.020 8.575 0.14	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 17.354 17.689 0.39	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 22.326 26.716 0.89	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 S0 Year 2.25 26.255 34.728 1.17	Not Selected N/A Spillway feet acres 100 Year 2.52 31.112 37.807 1.52	feet should be \geq 4 ft ² ft ² te ft ² feet radians 500 Year 0.00 0.000 #N/A 0.00	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 9 gular or Trapezoidal) 7.00 52.00 4.00 3.00 WQCV 0.53 3.515 3.517	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan N/A N/A ft (relative to basin t feet H:V feet H:V feet H:V feet 1.07 1.0382 10.386	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches outtom at Stage = 0 ft <u>2 Year</u> 1.19 9.890 <u>6.877</u>	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year 1.50 14.020 8.575</u>	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 17.354 17.689	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 22.326 26.716	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25 26.255 34.728	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Pla Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 31.112 37.807	feet should be \geq 4 ft ² ft ² feet radians 500 Year 0.00 0.000 0.000 0.000 0.000	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Outme (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Toume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Linit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 200 3.00 52.00 4.00 3.00 WQCV 0.53 3.515 	N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectan Not Selected N/A Invariant ft (relative to basin the feet H:V feet H:V 10.382 10.386 0.00 0.181.4 7.3	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 9.890 6.877 0.02 2.9 138.8 5.1	at grate) total area n bottom at Stage = 0 f Half-1) 5 Year 1.50 14.020 8.575 0.14 24.2 167.5 6.2	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 17.354 17.689 0.39 65.9 301.0 108.7	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 22.326 26.716 0.89 151.4 385.7 207.6	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25 26.255 34.728 1.17 199.8 450.0 313.7	Not Selected N/A Sipillway feet feet acres 100 Year 2.52 31.112 37.807 1.52 259.3 519.1 326.0	feet should be ≥ 4 ft ² ft ² feet radians #N/A #N/A #N/A	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Max Water Surface = Design Storm Return Period = One-Hour Rainfall Depth (n) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (drs/acre) = Peak Inflow Q (drs) = Peak Outflow to Predevelopment Q	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 48.00 3.00 52.00 4.00 3.00 WQCV 0.53 3.515 3.517 0.00 0.00 63.1 2.5 N/A	N/A N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A ft (relative to basin t feet H:V feet 1.07 10.382 10.386 0.00 0.0 181.4 7.3 N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 9.890 <u>6.877</u> 0.02 2.9 138.8 5.1 N/A	at grate) otal area n bottom at Stage = 0 f Half-1) <u>5 Year</u> 1.50 14.020 <u>8.575</u> 0.14 24.2 167.5 6.2 0.3	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Grate Ov	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.326 2.36	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 S0 Year 2.25 2.6.255 3.26 3.17 1.99.8 4.50.0 313.7 1.6	Not Selected N/A Spillway feet 6et 31.112 37.807 1.52 259.3 519.1 326.0 1.3	feet should be ≥ 4 ft ² ft ² te ft ² feet radians	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Okarona Design Storm Return Period = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 200 3.00 52.00 4.00 3.00 WQCV 0.53 3.515 	N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectan Not Selected N/A Invariant ft (relative to basin the feet H:V feet H:V 10.382 10.386 0.00 0.181.4 7.3	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 2 Year 1.19 9.890 6.877 0.02 2.9 138.8 5.1	at grate) total area n bottom at Stage = 0 f Half-1) 5 Year 1.50 14.020 8.575 0.14 24.2 167.5 6.2	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 17.354 17.689 0.39 65.9 301.0 108.7	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 22.326 26.716 0.89 151.4 385.7 207.6	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25 26.255 34.728 1.17 199.8 450.0 313.7	Not Selected N/A Sipillway feet feet acres 100 Year 2.52 31.112 37.807 1.52 259.3 519.1 326.0	feet should be ≥ 4 ft ² ft ² feet radians #N/A #N/A #N/A	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Calculated Runoff Volume (acre-ft) = One-Hour Rainfall Depth (in) Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (drs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 48.00 3.00 52.00 4.00 3.00 WQCV 0.53 3.515 3.517 0.00 0.00 63.1 2.5 N/A User Defined N/A N/A	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A h/A N/A it (relative to basin the feet H:V feet H:V feet 1.07 10.382 10.386 0.00 0.181.4 7.3 N/A User Defined N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft <u>2 Year</u> 1.19 9.890 <u></u>	at grate) otal area n bottom at Stage = 0 f Half-1)) 5 Year 1.50 1.4.020 	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 22.326 26.716 0.89 151.4 385.7 207.6 1.4 User Defined 1.9 N/A	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25 2.6.255 34.728 1.17 1.99.8 450.0 313.7 1.6 User Defined 1.9 N/A	Not Selected N/A Spillway feet feet acres 100 Year 2.52 31.112 37.807 1.52 259.3 519.1 326.0 1.3 User Defined N/A	feet should be ≥ 4 ft ² ft ² feet radians #N/A #N/A #N/A #N/A #N/A #N/A	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectant Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = Cleared Reuter Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Cutflow to Predevelopment Paak Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 90 90 90 90 90 90 90 90 90	N/A N/A N/A N/A N/A N/A N/A N/A N/A tor Plate, or Rectan N/A N/A N/A It (relative to basin the feet H:V feet 1.07 10.382 0.00 0.386 0.00 181.4 7.3 N/A User Defined N/A N/A	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft 2 Year 1.19 9.890 6.877 0.02 2.9 138.8 5.1 N/A User Defined N/A 49	at grate) otal area n bottom at Stage = 0 f Half-1) 5 Year 1.50 14.020 8.575 0.14 24.2 167.5 6.2 0.3 User Defined N/A 52	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Overflow Grate	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 22.326 26.716 0.89 151.4 385.7 207.6 1.4 User Defined 1.9 N/A 50	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25 2.6.255 3.26 50 Year 1.17 199.8 450.0 313.7 1.6 User Defined 1.9 N/A 48	Not Selected N/A Spillway feet feet feet 31.112 37.807 1.52 259.3 519.1 326.0 1.3 User Defined 1.9 N/A	feet should be ≥ 4 ft ² ft ² feet radians	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sloge = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan Spillway Invert Stage Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Rester Surface Above Max Water Surface = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (drs/acre) = Peak Unflow Q (drs) = Peak Outflow (Cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 6.60 3.00 0.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 48.00 3.00 52.00 4.00 3.00 WQCV 0.53 3.515 3.517 0.00 0.00 63.1 2.5 N/A User Defined N/A N/A	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A h/A N/A it (relative to basin the feet H:V feet H:V feet 1.07 10.382 10.386 0.00 0.181.4 7.3 N/A User Defined N/A N/A	feet H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft <u>2 Year</u> 1.19 9.890 <u></u>	at grate) otal area n bottom at Stage = 0 f Half-1)) 5 Year 1.50 1.4.020 	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 22.326 26.716 0.89 151.4 385.7 207.6 1.4 User Defined 1.9 N/A	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 s for Outlet Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25 2.6.255 34.728 1.17 1.99.8 450.0 313.7 1.6 User Defined 1.9 N/A	Not Selected N/A Spillway feet feet acres 100 Year 2.52 31.112 37.807 1.52 259.3 519.1 326.0 1.3 User Defined N/A	feet should be ≥ 4 ft ² ft ² feet radians #N/A #N/A #N/A #N/A #N/A #N/A	
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz, Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectan, Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Max Water Surface = Restrict Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Volume (acre-ft) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fts) = Max Velocity through Grate 2 (fts) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 6.60 3.00 0.00 30.00 80% 50% ircular Orifice, Restri Zone 3 Restrictor 0.00 48.00 48.00 48.00 200 52.00 4.00 3.00 0.53 3.515 3.517 0.00 0.0 63.1 2.5 N/A Variable State N/A N/A N/A N/A N/A 40	N/A N/A N/A N/A N/A N/A ctor Plate, or Rectan Not Selected N/A N/A ft (relative to basin the feet H:V feet H:V 1.0.7 10.386 0.00 181.4 7.3 N/A User Defined N/A YA S4 54	feet H:V (enter zero for fi feet %, grate open area/t % gular Orifice) ft (distance below basi inches inches oottom at Stage = 0 ft 2 Year 1.19 9.890 6.877 0.02 1.38.8 5.1 N/A User Defined N/A N/A 49 52	at grate) otal area n bottom at Stage = 0 f Half-1)) 5 Year 1.50 14.020 8.575 0.14 24.2 167.5 6.2 0.3 User Defined N/A N/A N/A N/A S2 55	Over Flow Grate Open Area / Overflow Grate Op Overflow Grate Op Overflow Grate Op (t) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 17.354 17.689 0.39 65.9 301.0 108.7 1.7 User Defined 1.1 N/A S3 59	ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = pen Area w/o Debris = Calculated Parameter Outlet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 22.326 10 26.716 0.89 151.4 385.7 207.6 1.4 User Defined 1.9 N/A 50 58	Zone 3 Weir 6.60 30.00 5.73 72.00 36.00 36.00 36.00 36.00 2004 Pipe w/ Zone 3 Restrictor 12.57 2.00 3.14 ted Parameters for S 2.05 12.05 3.26 50 Year 2.25 2.6.255 3.26 34.728 1.17 1.99.8 450.0 313.7 1.6 User Defined 1.9 N/A 48 58	Not Selected N/A Solution 37.807 1.52 259.3 519.1 326.0 1.3 User Defined 1.9 N/A 47 57	feet should be ≥ 4 ft ² ft ² ft ² feet radians	


Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:


	The user can o	verride the calcu	lated inflow hydi	rographs from th	nis workbook wit	h inflow hydrogr	aphs developed	in a separate pro	gram.	
	SOURCE	WORKBOOK	WORKBOOK	USER	USER	USER	USER	USER	USER	#N/A
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.53 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	0:04:32	0.00	0.00	29.00	36.00	51.00	62.00	64.00	65.00	#N/A
Hydrograph	0:09:04	0.00	0.00	66.00	81.00	120.00	139.00	173.00	175.00	#N/A
Constant 1.105	0:13:35 0:18:07	2.65	6.62 19.57	96.00 124.00	117.00 151.00	181.00 248.00	213.00 313.00	275.00 391.00	283.00 461.00	0.00
1.105	0:22:39	18.80	50.29	124.00	151.00	248.00	313.00	440.00	509.00	0.00
	0:27:11	51.57	137.40	138.80	167.50	301.00	385.70	450.00	519.10	0.00
	0:31:43	63.09	181.40	124.00	145.00	272.00	362.00	435.00	476.00	0.00
	0:36:14	60.59	178.56	93.00	112.00	224.00	306.00	415.00	396.00	0.00
	0:40:46	55.14 49.64	164.07 148.07	73.00 53.00	89.00 65.00	197.00 163.00	264.00 210.00	360.00 297.00	336.00 264.00	0.00
	0:49:50	49.64	148.07	42.00	52.00	138.00	182.00	235.00	284.00	0.00
	0:54:22	37.83	114.23	29.00	36.00	96.00	151.00	202.00	183.00	0.00
	0:58:53	34.19	102.31	18.00	24.00	67.00	120.00	165.00	149.00	0.00
	1:03:25	28.61	86.89	8.00	17.00	39.00	85.00	136.00	119.00	0.00
	1:07:57 1:12:29	23.68 18.72	72.31 58.12	7.40 6.90	11.00	33.00 29.00	78.00 72.00	109.80 98.00	117.00 113.00	0.00
	1:17:01	18.72	45.40	6.30	10.00	29.00	67.00	98.00	98.00	0.00
	1:21:32	10.74	34.41	5.70	8.40	24.00	64.00	79.00	91.00	0.00
	1:26:04	8.07	25.42	5.40	7.50	22.00	59.00	75.00	86.00	0.00
	1:30:36	6.51	20.14	4.70	6.80	21.00	50.00	71.00	83.00	0.00
	1:35:08 1:39:40	5.48 4.77	16.87 14.58	4.50 4.00	6.10 5.60	20.00	41.00 37.00	68.00 64.00	80.00 78.00	0.00
	1:39:40	4.77	14.58	3.60	5.80	19.00	34.00	60.00	75.00	0.00
	1:48:43	3.92	11.84	3.10	4.80	19.00	33.00	50.00	72.00	0.00
	1:53:15	2.91	9.12	3.00	4.40	18.00	32.00	42.90	69.00	0.00
	1:57:47	2.11	6.57	2.50	4.10	18.00	31.00	38.00	66.00	0.00
	2:02:19	1.56	4.88	2.40	3.80	17.00	31.00	35.00	63.00	0.00
	2:06:50 2:11:22	1.16 0.85	3.62 2.68	2.30	3.50 3.20	17.00 17.00	30.00 29.00	34.00 33.00	58.00 46.00	0.00
	2:15:54	0.61	1.94	1.90	3.00	17.00	29.00	32.00	40.00	0.00
	2:20:26	0.44	1.40	1.70	3.00	17.00	28.00	31.00	37.00	0.00
	2:24:58	0.31	1.00	1.50	3.00	16.00	28.00	30.00	35.00	0.00
	2:29:29	0.20	0.66	1.30	3.00	15.00	27.00	30.00	35.00	0.00
	2:34:01 2:38:33	0.11	0.40	1.00	2.30	15.00 14.00	27.00 26.00	29.00 29.00	33.00 33.00	0.00
	2:43:05	0.03	0.20	0.80	1.80	14.00	26.00	28.00	32.00	0.00
	2:47:37	0.00	0.00	0.20	1.70	9.00	25.00	28.00	32.00	0.00
	2:52:08	0.00	0.00	0.00	1.60	5.00	25.00	27.00	31.00	0.00
	2:56:40	0.00	0.00	0.00	1.00	3.00	24.00	27.00	31.00	0.00
	3:01:12 3:05:44	0.00	0.00		0.90	2.00	24.00 23.00	27.00 26.00	31.00 30.00	0.00
	3:10:16	0.00	0.00		0.00	0.00	23.00	26.00	30.00	0.00
	3:14:47	0.00	0.00		0.00	0.00	20.00	25.00	28.00	0.00
	3:19:19	0.00	0.00			0.00	20.00	25.00	28.00	0.00
	3:23:51	0.00	0.00			0.00	20.00	25.00	28.00	0.00
	3:28:23 3:32:55	0.00	0.00			0.00	15.00 10.00	20.00	25.00 25.00	0.00
	3:37:26	0.00	0.00				5.00	20.00	25.00	0.00
	3:41:58	0.00	0.00				1.00	15.00	20.00	0.00
	3:46:30	0.00	0.00				0.00	15.00	20.00	0.00
	3:51:02 3:55:34	0.00	0.00				0.00	10.00 10.00	16.00 16.00	0.00
	4:00:05	0.00	0.00					8.00	11.00	0.00
	4:04:37	0.00	0.00					8.00	11.00	0.00
	4:09:09 4:13:41	0.00	0.00					6.00 4.00	8.00 6.00	0.00
	4:18:13	0.00	0.00					2.00	4.00	#N/A
	4:22:44	0.00	0.00					1.00	2.00	#N/A
	4:27:16 4:31:48	0.00	0.00					0.00	1.00	#N/A #N/A
	4:36:20	0.00	0.00					0.00	0.00	#N/A #N/A
	4:40:52	0.00	0.00						0.00	#N/A
	4:45:23 4:49:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:54:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:58:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:03:31 5:08:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:08:02	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:17:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:21:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A

Pond C5 Spillway - btm=5713.00

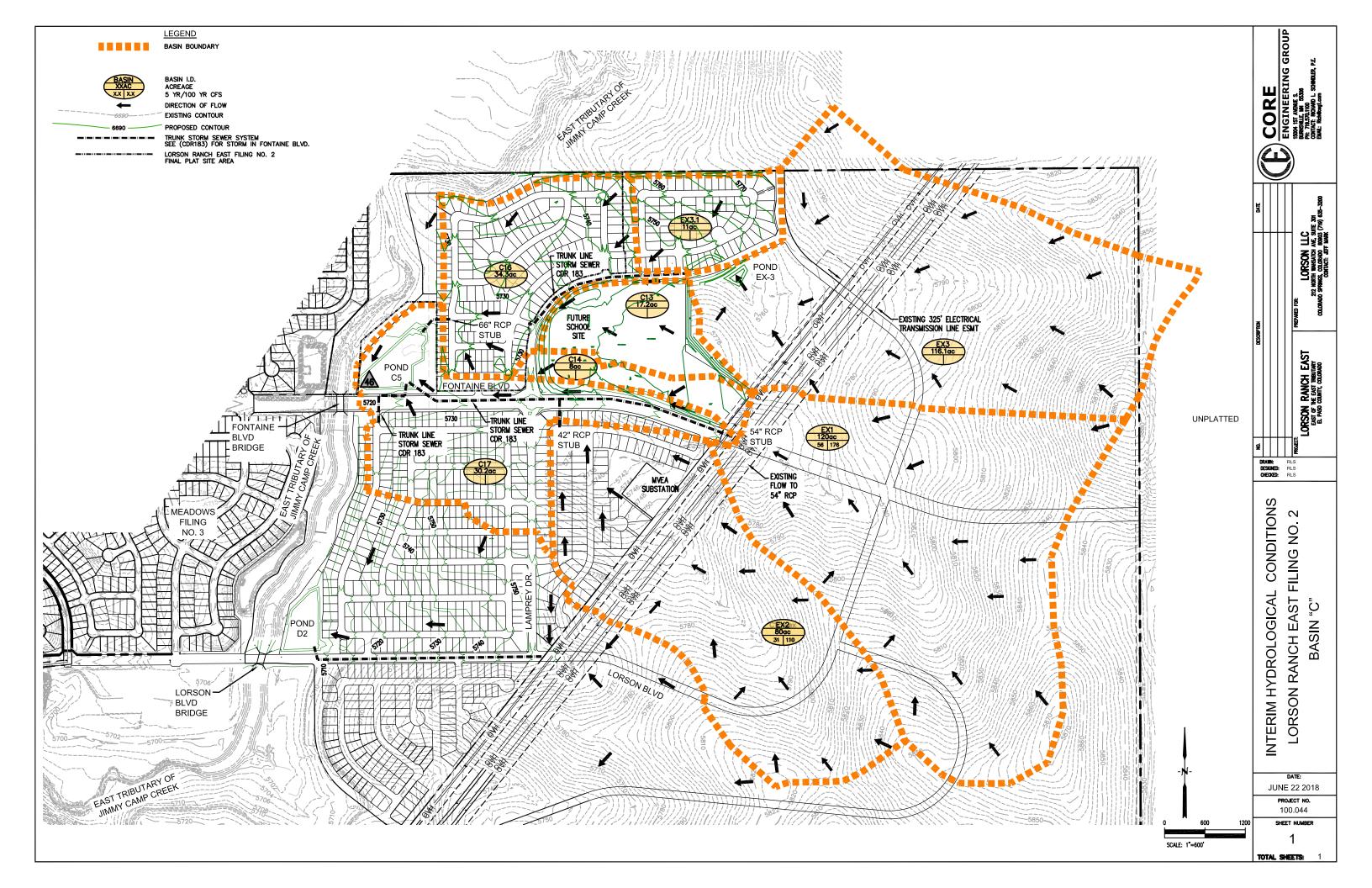
Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft) = 1.83	
Bottom Length (ft)	= 52.00	Q(cfs) = 443.0	0
Total Depth (ft)	= 4.00	Area (sqft) = 108.5	6
Side Slope (z:1)	= 4.00	Velocity (ft/s) = 4.08	
		Top Width (ft) = 66.64	
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 443.00		

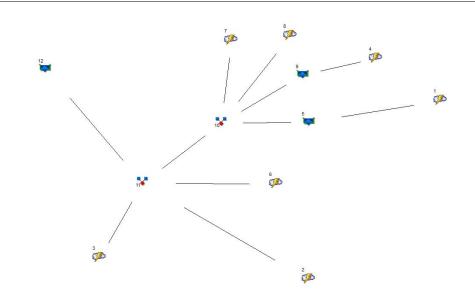
APPENDIX E- STORM SEWER SCHEMATIC AND HYDRAFLOW STORM SEWER CALCS

Storm Sewer Summary Report

Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor loss (ft)	HGL Junct (ft)	Dns line No.
1	1	146.5	66 c	249.0	5710.51	5713.01	1.004	5715.50	5716.94	0.50	5717.45	End
2	2	105.6	54 c	380.6	5714.10	5717.91	1.001	5717.77	5720.86	0.21	5720.86	1
3	3	105.6	54 c	42.5	5717.91	5718.34	1.011	5721.60	5721.29	0.50	5721.29	2
4	4	105.6	54 c	37.8	5718.54	5718.92	1.005	5722.02	5721.87	0.57	5721.87	3
5	5	90.12	48 c	172.0	5720.30	5722.04	1.012	5722.59	5724.86	0.71	5725.56	4
6	6	11.70	30 c	50.5	5720.92	5721.42	0.991	5723.11	5723.09	0.09	5723.17	4
7	7	3.80	24 c	29.2	5721.42	5721.71	0.992	5723.25	5723.25	0.02	5723.27	4
8	8	3.21	18 c	35.8	5722.21	5722.57	1.004	5723.27	5723.26	n/a	5723.39 j	7
9	9	15.80	36 c	15.3	5715.75	5716.21	3.013	5718.31	5718.27	0.06	5718.33	1
10	10	12.20	24 c	33.7	5717.21	5717.55	1.007	5718.33	5718.79	0.28	5718.79	9
11	11	25.09	30 c	69.5	5716.10	5716.80	1.007	5718.05	5718.47	0.16	5718.47	1
12	12	25.09	30 c	103.6	5717.00	5718.04	1.004	5718.87	5719.71	0.32	5719.71	11
13	13	6.31	18 c	25.1	5719.54	5719.79	0.995	5720.38	5720.76	0.21	5720.97	12
14	14	18.78	30 c	112.8	5718.04	5719.17	1.002	5720.29	5720.62	n/a	5720.62 j	12
15	15	12.96	24 c	135.3	5719.97	5721.19	0.901	5721.09	5722.47	n/a	5722.47	14
16	16	6.00	18 c	36.2	5722.42	5722.75	0.911	5723.26	5723.69	0.21	5723.90	6
17	17	3.60	30 c	8.3	5717.21	5717.34	1.568	5718.42	5718.40	0.05	5718.45	9
18	18	6.68	18 c	31.4	5721.69	5722.00	0.989	5722.83	5722.99	n/a	5722.99	15
19	19	5.82	18 c	20.9	5720.88	5721.09	1.003	5721.68	5722.05	0.11	5722.16	14
20	20	16.76	30 c	51.0	5733.47	5733.88	0.803	5735.45	5735.38	0.00	5735.38	Enc
21	21	11.05	24 c	32.0	5734.38	5734.64	0.813	5735.65	5735.82	n/a	5735.82	20
22	22	11.05	24 c	155.0	5734.74	5737.53	1.800	5736.14	5738.71	n/a	5738.71 j	21
23	23	5.71	18 c	8.0	5734.88	5734.96	1.001	5735.68	5735.98	0.00	5735.98	20
Lorso	n East 2 FDR -5yr						Nun	nber of line	s: 23	Run I	Date: 06-15	-2018

NOTES: c = cir; e = ellip; b = box; Return period = 5 Yrs. ; j - Line contains hyd. jump.


Storm Sewer Summary Report


Line No.	Line ID	Flow rate (cfs)	Line size (in)	Line length (ft)	Invert EL Dn (ft)	Invert EL Up (ft)	Line slope (%)	HGL down (ft)	HGL up (ft)	Minor Ioss (ft)	HGL Junct (ft)	Dns line No.
1	1	230.8	66 c	249.0	5710.51	5713.00	1.000	5714.95*	5719.51*	0.73	5720.24	End
2	2	154.8	54 c	380.6	5714.10	5717.91	1.001	5720.24*	5722.60*	0.22	5722.82	1
3	3	154.8	54 c	42.5	5717.91	5718.34	1.011	5722.82*	5723.09*	0.52	5723.60	2
4	4	154.8	54 c	37.8	5718.54	5718.92	1.005	5723.60*	5723.84*	0.59	5724.42	3
5	5	136.5	48 c	174.0	5720.30	5722.04	1.000	5724.42	5725.79	0.97	5726.76	4
6	6	33.10	30 c	50.5	5720.92	5721.42	0.991	5725.19*	5725.52*	0.35	5725.87	4
7	7	7.60	24 c	29.2	5721.42	5721.71	0.992	5725.81*	5725.84*	0.05	5725.88	4
8	8	5.40	18 c	35.8	5722.21	5722.57	1.004	5725.88*	5725.98*	0.07	5726.05	7
9	9	72.10	36 c	15.3	5715.75	5716.21	3.013	5720.24*	5720.42*	0.65	5721.07	1
10	10	37.40	24 c	33.7	5717.31	5717.95	1.897	5721.07*	5721.99*	1.10	5723.09	9
11	11	39.93	30 c	69.5	5716.10	5716.80	1.007	5720.68*	5721.34*	0.21	5721.55	1
12	12	39.92	30 c	103.6	5717.00	5718.04	1.004	5721.55*	5722.53*	0.41	5722.94	11
13	13	11.52	18 c	25.1	5719.54	5719.79	0.995	5723.31*	5723.61*	0.33	5723.94	12
14	14	28.40	30 c	112.8	5718.04	5719.17	1.002	5723.45*	5723.99*	0.16	5724.15	12
15	15	19.45	24 c	135.3	5719.68	5721.19	1.116	5724.15*	5725.15*	0.89	5726.04	14
16	16	16.30	18 c	36.2	5722.62	5723.05	1.186	5725.87*	5726.75*	0.66	5727.41	6
17	17	34.70	30 c	8.3	5717.21	5717.34	1.568	5721.91*	5721.97*	0.78	5722.75	9
18	18	9.97	18 c	31.4	5721.69	5722.10	1.308	5726.14*	5726.42*	0.49	5726.92	15
19	19	8.95	18 c	16.0	5720.18	5720.34	0.998	5724.27*	5724.38*	0.12	5724.50	14
20	20	34.17	30 c	51.0	5733.47	5733.88	0.803	5736.50*	5736.85*	0.23	5737.08	En
21	21	17.87	24 c	32.0	5734.38	5734.64	0.813	5737.33*	5737.53*	0.15	5737.68	20
22	22	17.87	24 c	155.0	5734.74	5737.53	1.800	5737.68	5739.03	n/a	5739.03 j	21
23	23	11.17	18 c	8.0	5734.88	5734.96	1.001	5737.21*	5737.30*	0.19	5737.49	20
Lorso	n East 2 FDR- 100yr						Nun	nber of line:	s: 23	Run	Date: 06-15	-2018

NOTES: c = cir; e = ellip; b = box; Return period = 100 Yrs. ; *Surcharged (HGL above crown). ; j - Line contains hyd. jump.

APPENDIX F -INTERIM POND CALCULATIONS

Provide Pond EX-3 calculations. Provide headwater/capacity modeling calculations for DP3.

Legend

<u>Hyd.</u>	<u>Origin</u>	Description
1	Rational	School to School Pond
2	Rational	Basin Ex-1&2
3	Rational	C17
4	Rational	Basins Ex-3
5	Reservoir	flow from school pond
6	Rational	School Site to Fontaine
7	Rational	Bason C16
8	Rational	Basin Ex3.1
9	Reservoir	Pond Ex-3
10	Combine	Des.Pt.6c to Pond C5
11	Combine	Inflow Pond C5
12	Reservoir	Pond C5 outflow

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description
1	Rational	32.84	1	13	25,612				School to School Pond
2	Rational	99.20	1	30	178,560				Basin Ex-1&2
3	Rational	64.40	1	16	61,822				C17
4	Rational	43.19	1	30	77,741				Basins Ex-3
5	Reservoir	0.761	1	26	25,600	1	5738.44	24,803	flow from school pond
6	Rational	10.32	1	10	6,193				School Site to Lamprey
7	Rational	81.64	1	15	73,479				Bason C16
8	Rational	5.695	1	17	5,809				Basin Ex3.1
9	Reservoir	33.52	1	37	77,737	4	5752.67	20,652	Pond Ex-3
10	Combine	97.48	1	15	182,625	5, 7, 8, 9			Des.Pt.6c to Pond C5
11	Combine	214.73	1	16	429,201	2, 3, 6, 10			Inflow Pond C5
12	Reservoir	114.95	1	36	331,553	11	5713.52	573,261	Pond C5 outflow
5vr r	oonds C5 ir	nterim 1	00 044	anw	Return	Period: 5	Year	Friday Ju	n 15 2018, 5:42 AM

1

Hydrograph Summary Report

Hyd. No.	Hydrograph type (origin)	Peak flow (cfs)	Time interval (min)	Time to peak (min)	Volume (cuft)	Inflow hyd(s)	Maximum elevation (ft)	Maximum storage (cuft)	Hydrograph description	
1	Rational	73.06	1	13	56,987				School to School Pond	
2	Rational	291.20	1	30	524,160				Basin Ex-1&2	
3	Rational	108.00	1	16	103,681				C17	
4	Rational	193.36	1	30	348,042				Basins Ex-3	
5	Reservoir	29.12	1	21	56,974	1	5739.91	43,203	flow from school pond	
6	Rational	37.52	1	10	22,512				School Site to Fontaine	
7	Rational	136.93	1	15	123,234				Bason C16	
8	Rational	30.40	1	15	27,361				Basin Ex3.1	
9	Reservoir	66.95	1	50	348,038	4	5758.21	186,380	Pond Ex-3	
10	Combine	218.92	1	15	555,606	5, 7, 8, 9			Des.Pt.6c to Pond C5	
11	Combine	496.47	1	16	1,205,963	2, 3, 6, 10			Inflow Pond C5	
12	Reservoir	374.29	1	30	1,108,314	11	5714.48	699,059	Pond C5 outflow	
100y	r ponds C؛	5 interim	n.100.04	14.gpw	Return Period: 100 Year			Friday, Jun 15 2018, 5:39 AM		

Pond Report

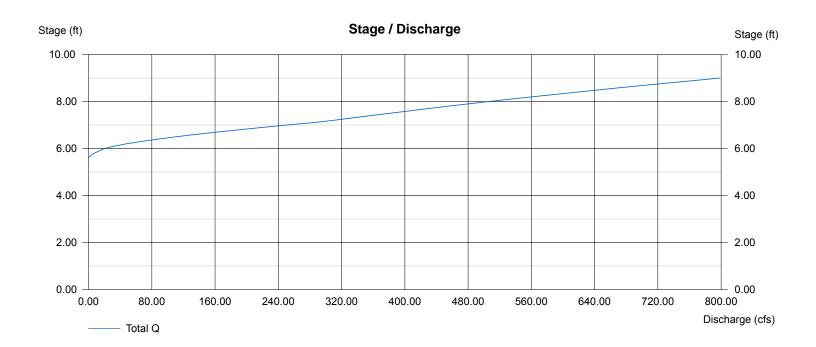
Hydraflow Hydrographs by Intelisolve

Pond No. 5 - Pond C5

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	5707.00	1,000	0	0	
1.00	5708.00	18,898	9,949	9,949	
2.00	5709.00	77,432	48,165	58,114	
3.00	5710.00	110,270	93,851	151,965	
4.00	5711.00	115,455	112,863	264,828	
5.00	5712.00	120,720	118,088	382,915	
6.00	5713.00	126,045	123,383	506,298	
7.00	5714.00	131,696	128,871	635,168	
8.00	5715.00	136,745	134,221	769,389	
9.00	5716.00	141,857	139,301	908,690	

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 48.00	0.00	0.00	0.00	Crest Len (ft)	= 24.00	35.45	0.00	0.00
Span (in)	= 48.00	0.00	0.00	0.00	Crest El. (ft)	= 5712.60	5713.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5704.50	0.00	0.00	0.00	Weir Type	= Riser	Ciplti		
Length (ft)	= 120.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 0.50	0.00	0.00	0.00	-				
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	000 in/hr (Conto	our) Tailwat	er Elev. =	= 0.00 ft

Weir Structures

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Pond Report

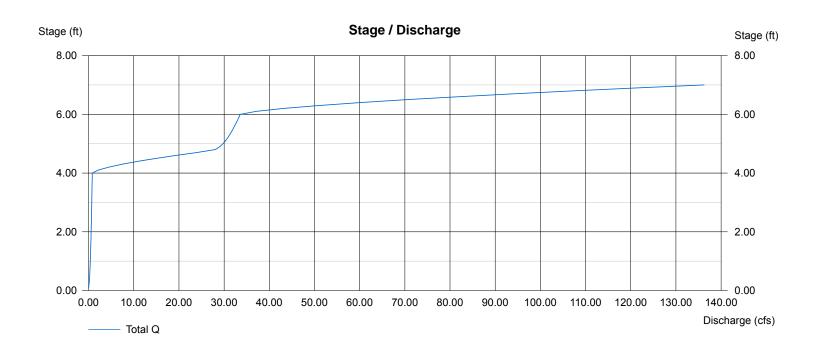
Hydraflow Hydrographs by Intelisolve

Pond No. 1 - School Pond

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)	
0.00	5735.00	00	0	0	
1.00	5736.00	6,000	3,000	3,000	
2.00	5737.00	8,561	7,281	10,281	
3.00	5738.00	10,390	9,476	19,756	
4.00	5739.00	12,319	11,355	31,111	
5.00	5740.00	14,348	13,334	44,444	
6.00	5741.00	16,478	15,413	59,857	
7.00	5742.00	18,708	17,593	77,450	

Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 24.00	4.00	0.00	0.00	Crest Len (ft)	= 12.00	30.00	0.00	0.00
Span (in)	= 24.00	4.00	0.00	0.00	Crest El. (ft)	= 5739.00	5741.00	0.00	0.00
No. Barrels	= 1	1	0	0	Weir Coeff.	= 3.33	3.33	0.00	0.00
Invert El. (ft)	= 5734.50	5735.00	0.00	0.00	Weir Type	= Ciplti	Ciplti		
Length (ft)	= 150.00	0.00	0.00	0.00	Multi-Stage	= Yes	No	No	No
Slope (%)	= 1.00	0.00	0.00	0.00	-				
N-Value	= .013	.013	.000	.000					
Orif. Coeff.	= 0.60	0.60	0.00	0.00					
Multi-Stage	= n/a	Yes	No	No	Exfiltration = 0	.000 in/hr (Conte	our) Tailwat	er Elev. =	= 0.00 ft

Weir Structures

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

Pond Report

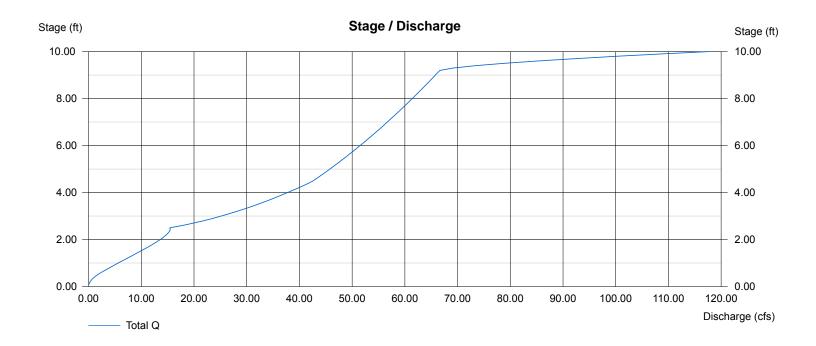
Hydraflow Hydrographs by Intelisolve

Pond No. 2 - Basin Ex-3 Pond

Pond Data

Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table


Stage (ft)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	5749.00	00	0	0
1.00	5750.00	4,868	2,434	2,434
2.00	5751.00	6,223	5,546	7,980
3.00	5752.00	7,718	6,971	14,950
4.00	5753.00	9,353	8,536	23,486
5.00	5754.00	11,129	10,241	33,727
6.00	5755.00	13,049	12,089	45,816
7.00	5756.00	21,184	17,117	62,932
8.00	5757.00	61,171	41,178	104,110
9.00	5758.00	72,114	66,643	170,752
10.00	5759.00	74,861	73,488	244,240

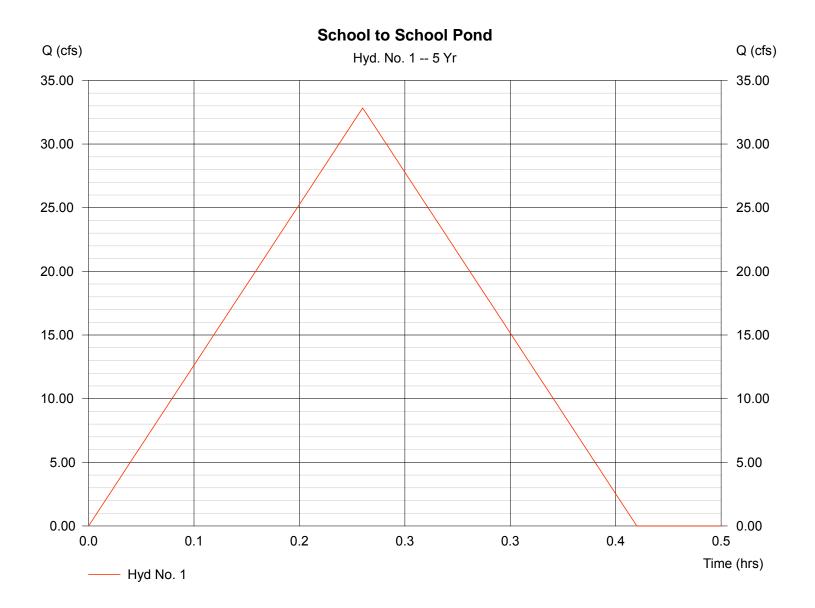
Culvert / Orifice Structures

	[A]	[B]	[C]	[D]		[A]	[B]	[C]	[D]
Rise (in)	= 30.00	0.00	0.00	0.00	Crest Len (ft)	= 20.00	0.00	0.00	0.00
Span (in)	= 30.00	0.00	0.00	0.00	Crest El. (ft)	= 5758.20	0.00	0.00	0.00
No. Barrels	= 1	0	0	0	Weir Coeff.	= 3.33	0.00	0.00	0.00
Invert El. (ft)	= 5749.00	0.00	0.00	0.00	Weir Type	= Ciplti			
Length (ft)	= 50.00	0.00	0.00	0.00	Multi-Stage	= No	No	No	No
Slope (%)	= 0.60	0.00	0.00	0.00					
N-Value	= .013	.000	.000	.000					
Orif. Coeff.	= 0.60	0.00	0.00	0.00					
Multi-Stage	= n/a	No	No	No	Exfiltration = 0	.000 in/hr (Conto	our) Tailw	ater Elev. =	• 0.00 ft

Weir Structures

Note: Culvert/Orifice outflows have been analyzed under inlet and outlet control.

12

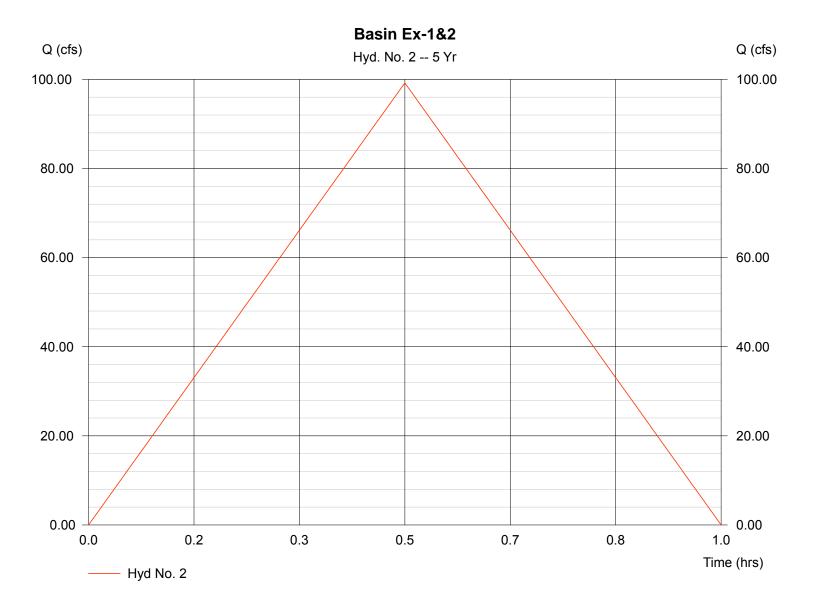

Hydraflow Hydrographs by Intelisolve

Hyd. No. 1

School to School Pond

Hydrograph type	= Rational	Peak discharge	= 32.84 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 17.200 ac	Runoff coeff.	= 0.49
Intensity	= 3.896 in/hr	Tc by User	= 13.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 25,612 cuft

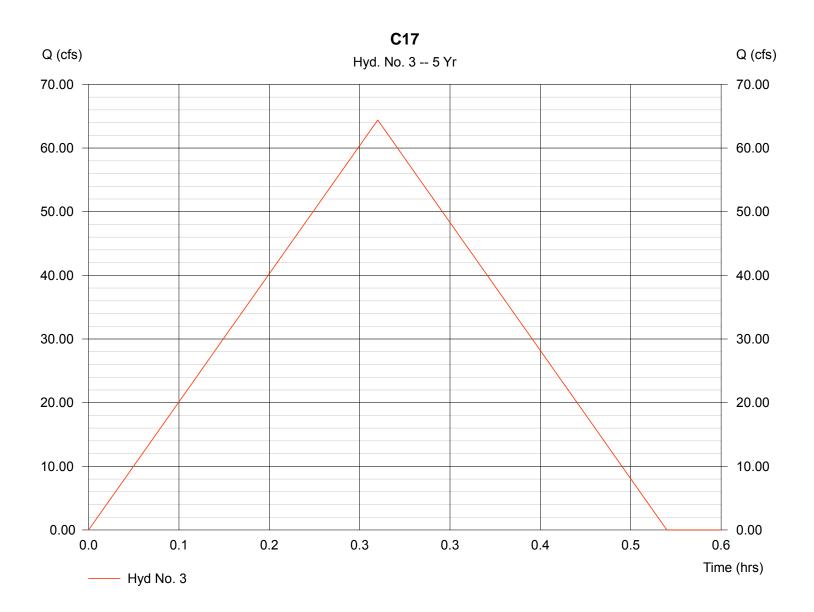

Hydraflow Hydrographs by Intelisolve

Hyd. No. 2

Basin Ex-1&2

Hydrograph type	= Rational	Peak discharge	= 99.20 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 200.000 ac	Runoff coeff.	= 0.2
Intensity	= 2.480 in/hr	Tc by User	= 30.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 178,560 cuft


Hydraflow Hydrographs by Intelisolve

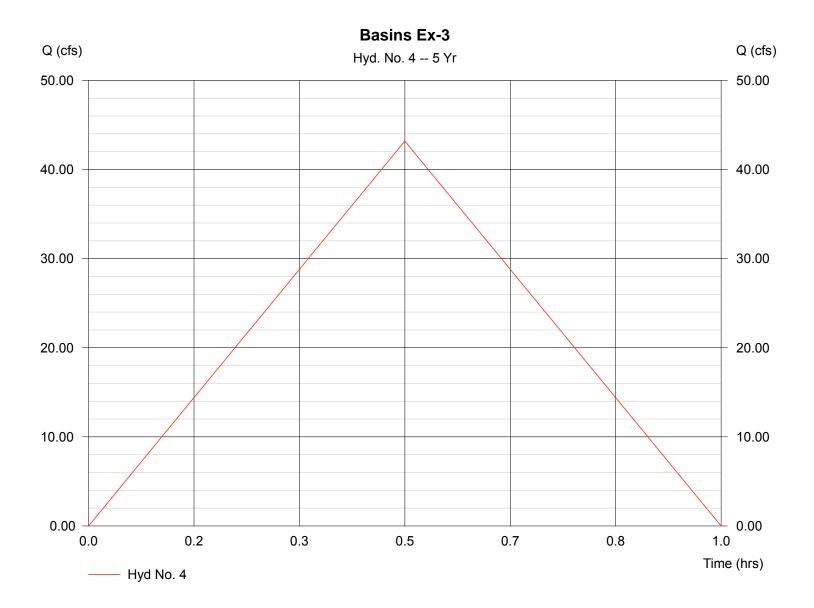
Hyd. No. 3

C17

Hydrograph type	= Rational	Peak discharge	= 64.40 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 30.200 ac	Runoff coeff.	= 0.6
Intensity	= 3.554 in/hr	Tc by User	= 16.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1
	,		

Hydrograph Volume = 61,822 cuft

4


Hydraflow Hydrographs by Intelisolve

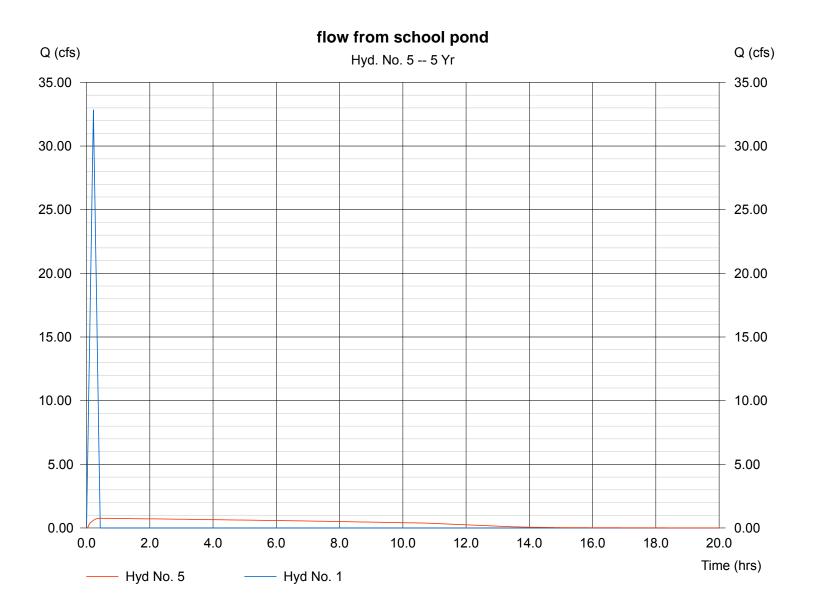
Hyd. No. 4

Basins Ex-3

Hydrograph type	= Rational	Peak discharge	= 43.19 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 116.100 ac	Runoff coeff.	= 0.15
Intensity	= 2.480 in/hr	Tc by User	= 30.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 77,741 cuft

Hydraflow Hydrographs by Intelisolve

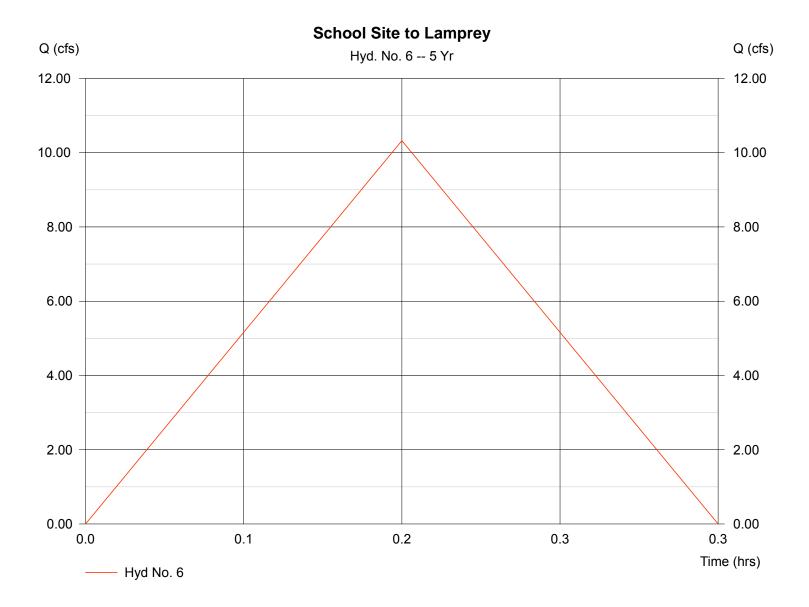

Hyd. No. 5

flow from school pond

= Reservoir	Peak discharge	= 0.761 cfs
= 5 yrs	Time interval	= 1 min
= 1	Max. Elevation	= 5738.44 ft
= School Pond	Max. Storage	= 24,803 cuft
	= 5 yrs = 1	= 5 yrsTime interval= 1Max. Elevation

Storage Indication method used.

Hydrograph Volume = 25,600 cuft


Hydraflow Hydrographs by Intelisolve

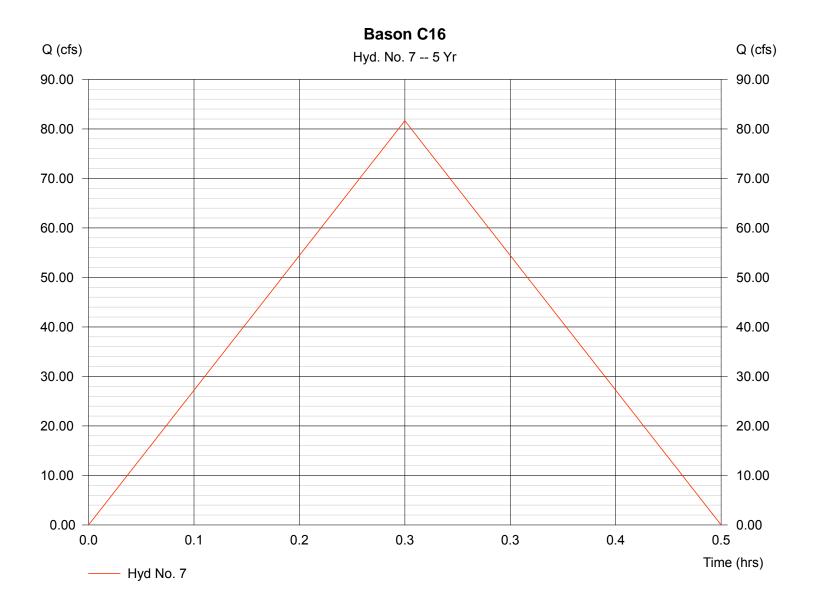
Hyd. No. 6

School Site to Lamprey

Hydrograph type	= Rational	Peak discharge	= 10.32 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 8.000 ac	Runoff coeff.	= 0.3
Intensity	= 4.301 in/hr	Tc by User	= 10.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 6,193 cuft

7


Hydraflow Hydrographs by Intelisolve

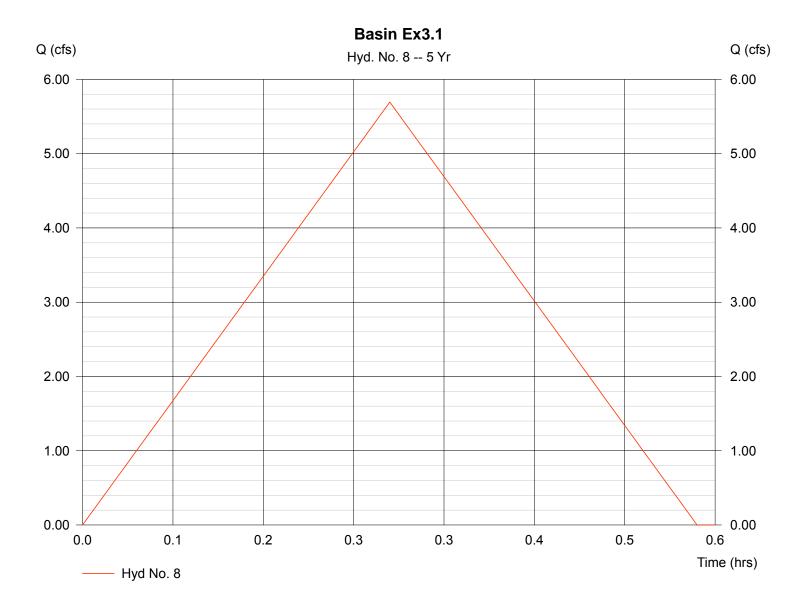
Hyd. No. 7

Bason C16

Hydrograph type	= Rational	Peak discharge	= 81.64 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 34.300 ac	Runoff coeff.	= 0.65
Intensity	= 3.662 in/hr	Tc by User	= 15.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 73,479 cuft

8


Hydraflow Hydrographs by Intelisolve

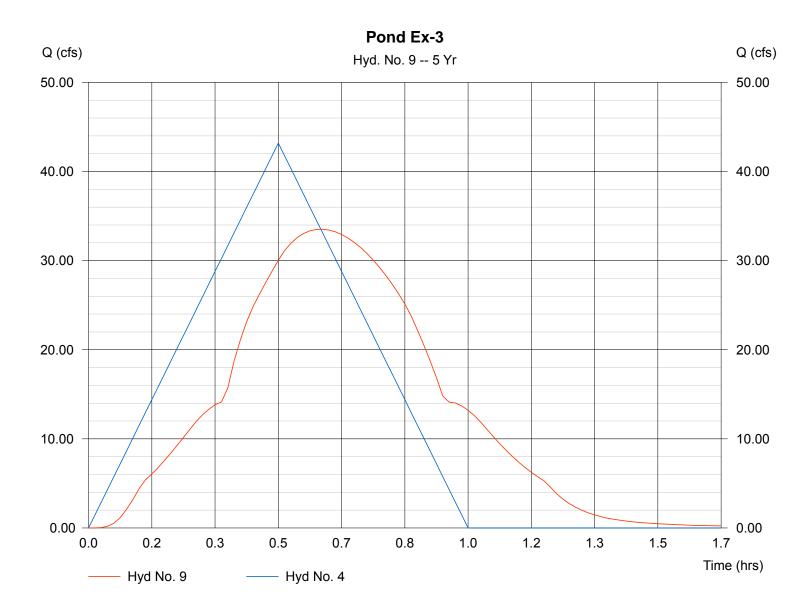
Hyd. No. 8

Basin Ex3.1

Hydrograph type	= Rational	Peak discharge	= 5.695 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Drainage area	= 11.000 ac	Runoff coeff.	= 0.15
Intensity	= 3.452 in/hr	Tc by User	= 17.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 5,809 cuft

Hydraflow Hydrographs by Intelisolve


Hyd. No. 9

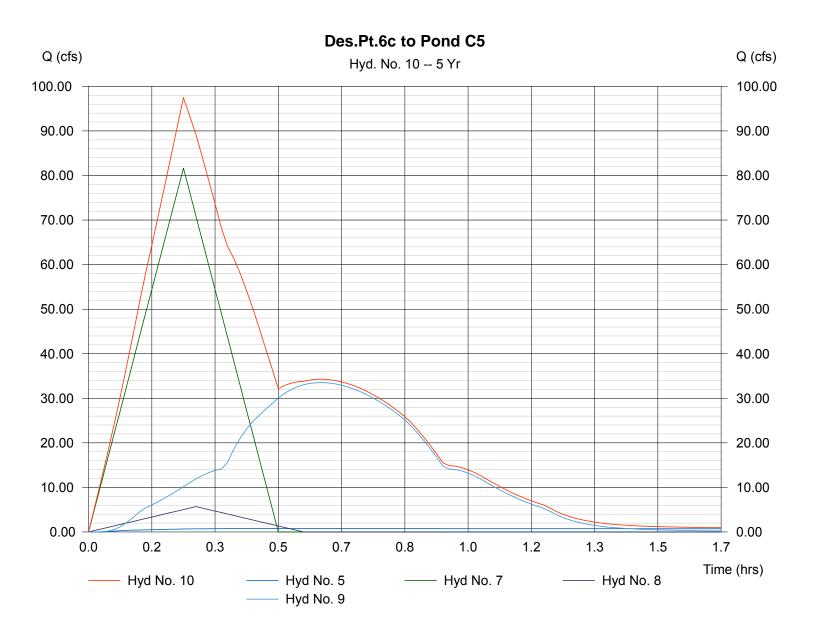
Pond Ex-3

Hydrograph type	= Reservoir	Peak discharge	= 33.52 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Inflow hyd. No.	= 4	Max. Elevation	= 5752.67 ft
Reservoir name	= Basin Ex-3 Pond	Max. Storage	= 20,652 cuft

Storage Indication method used.

Hydrograph Volume = 77,737 cuft

Hydraflow Hydrographs by Intelisolve

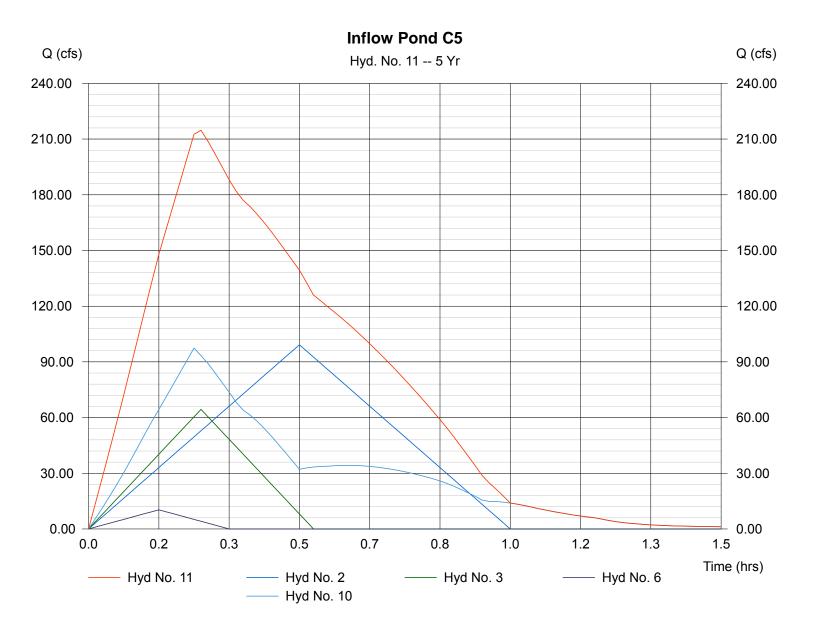

Hyd. No. 10

Des.Pt.6c to Pond C5

Hydrograph type	= Combine
Storm frequency	= 5 yrs
Inflow hyds.	= 5, 7, 8, 9

Peak discharge = 97.48 cfs Time interval = 1 min

Hydrograph Volume = 182,625 cuft


Hydraflow Hydrographs by Intelisolve

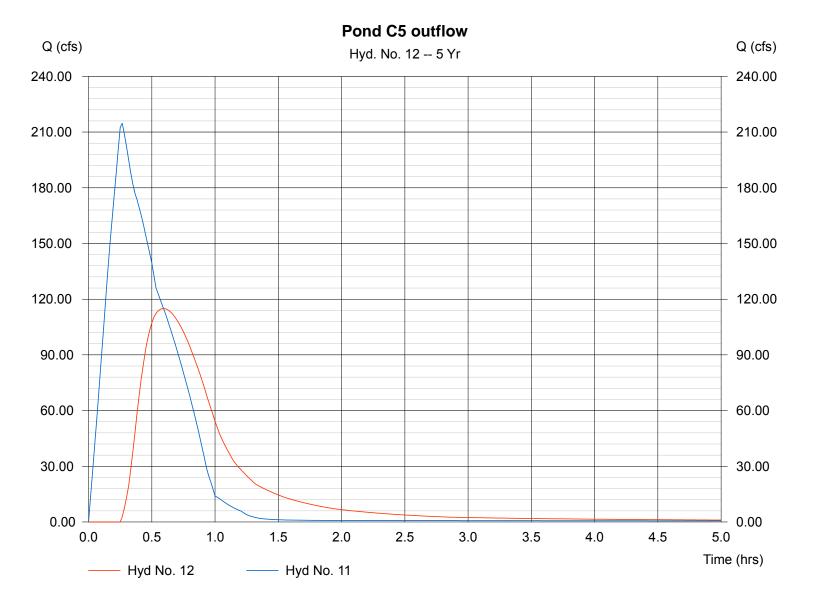
Hyd. No. 11

Inflow Pond C5

Hydrograph type	= Combine	Peak discharge	= 214.73 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Inflow hyds.	= 2, 3, 6, 10		

Hydrograph Volume = 429,201 cuft

Hydraflow Hydrographs by Intelisolve

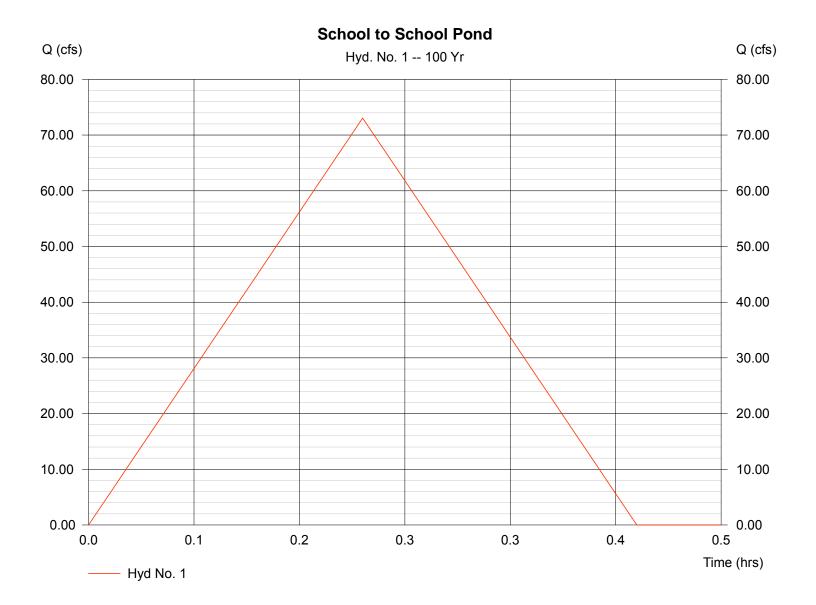

Hyd. No. 12

Pond C5 outflow

Hydrograph type	= Reservoir	Peak discharge	= 114.95 cfs
Storm frequency	= 5 yrs	Time interval	= 1 min
Inflow hyd. No.	= 11	Max. Elevation	= 5713.52 ft
Reservoir name	= Pond C5	Max. Storage	= 573,261 cuft

Storage Indication method used. Wet pond routing start elevation = 5711.80 ft.

Hydrograph Volume = 331,553 cuft


Hydraflow Hydrographs by Intelisolve

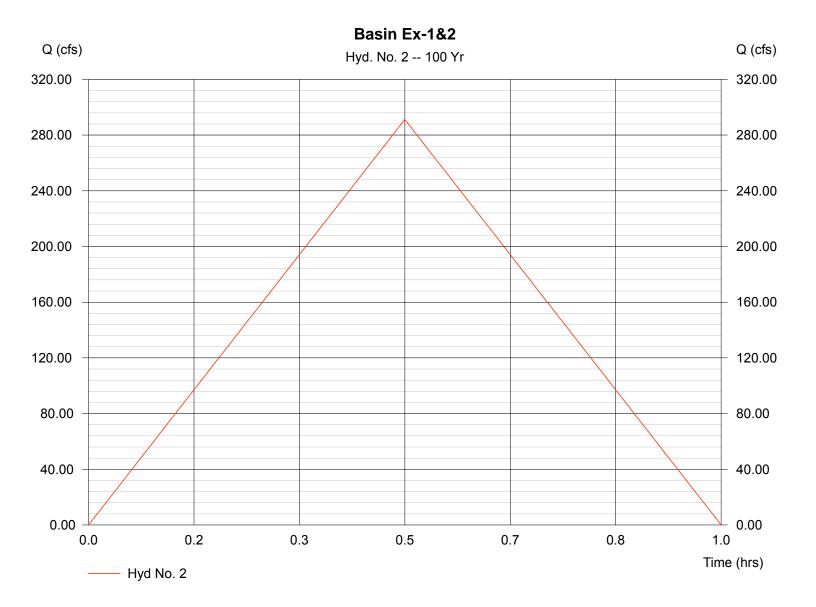
Hyd. No. 1

School to School Pond

Hydrograph type	= Rational	Peak discharge	= 73.06 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 17.200 ac	Runoff coeff.	= 0.65
Intensity	= 6.535 in/hr	Tc by User	= 13.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 56,987 cuft

2


Hydraflow Hydrographs by Intelisolve

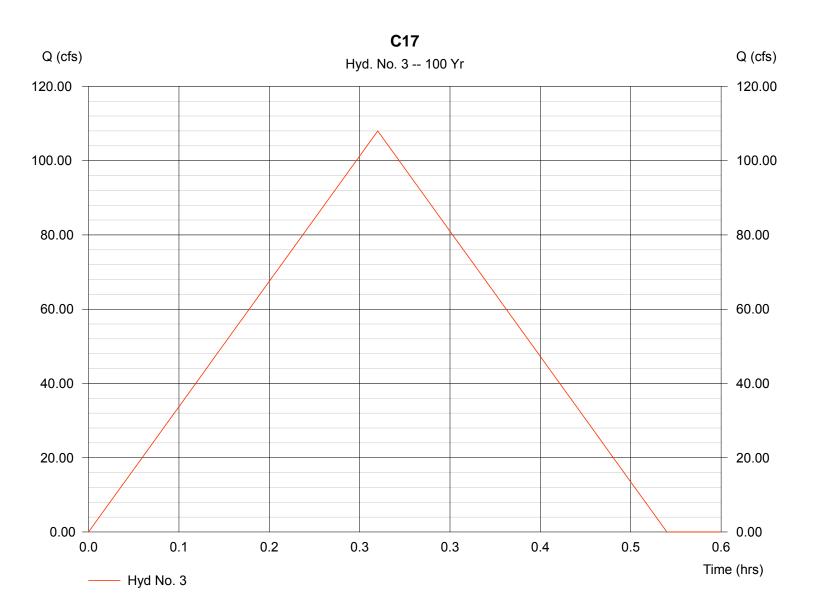
Hyd. No. 2

Basin Ex-1&2

Hydrograph type	= Rational	Peak discharge	= 291.20 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 200.000 ac	Runoff coeff.	= 0.35
Intensity	= 4.160 in/hr	Tc by User	= 30.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 524,160 cuft

3

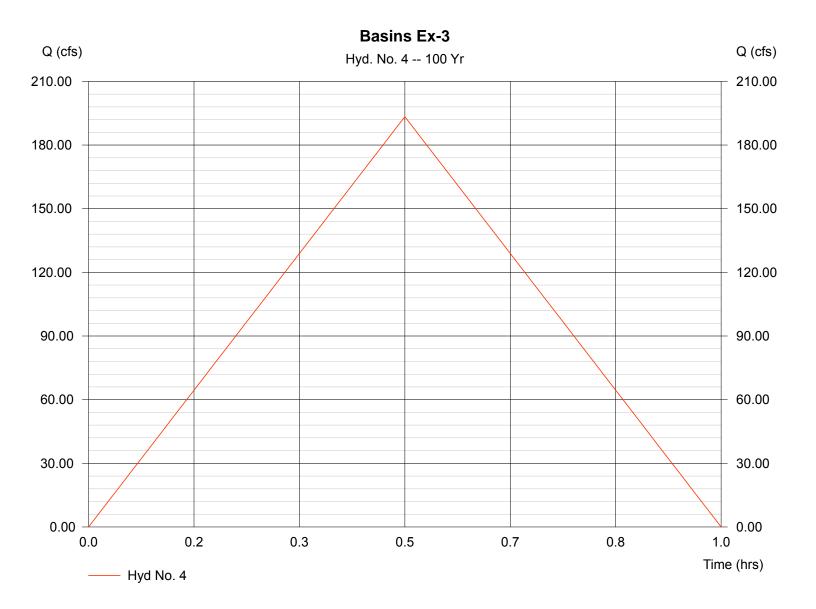

Hydraflow Hydrographs by Intelisolve

Hyd. No. 3

C17

Hydrograph type	= Rational	Peak discharge	= 108.00 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 30.200 ac	Runoff coeff.	= 0.6
Intensity	= 5.960 in/hr	Tc by User	= 16.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 103,681 cuft


Hydraflow Hydrographs by Intelisolve

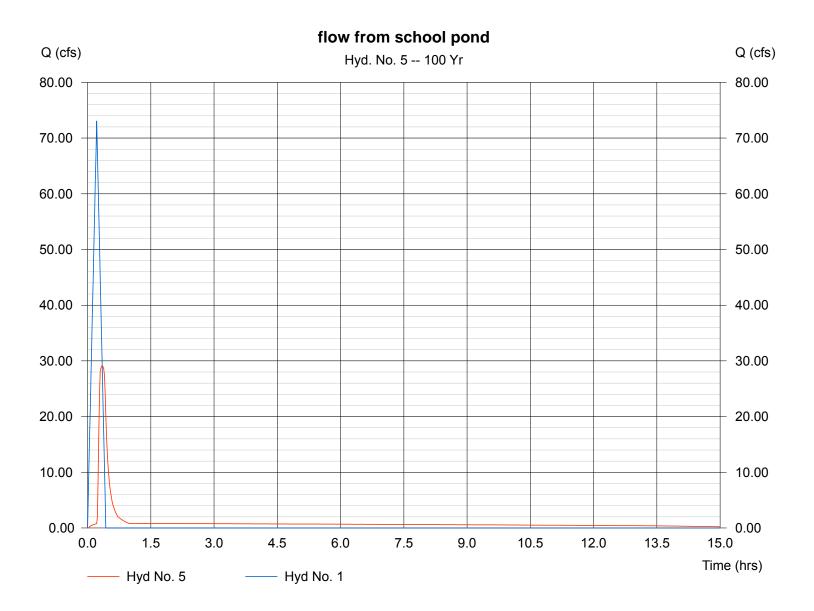
Hyd. No. 4

Basins Ex-3

Hydrograph type	= Rational	Peak discharge	= 193.36 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 116.200 ac	Runoff coeff.	= 0.4
Intensity	= 4.160 in/hr	Tc by User	= 30.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 348,042 cuft

Hydraflow Hydrographs by Intelisolve

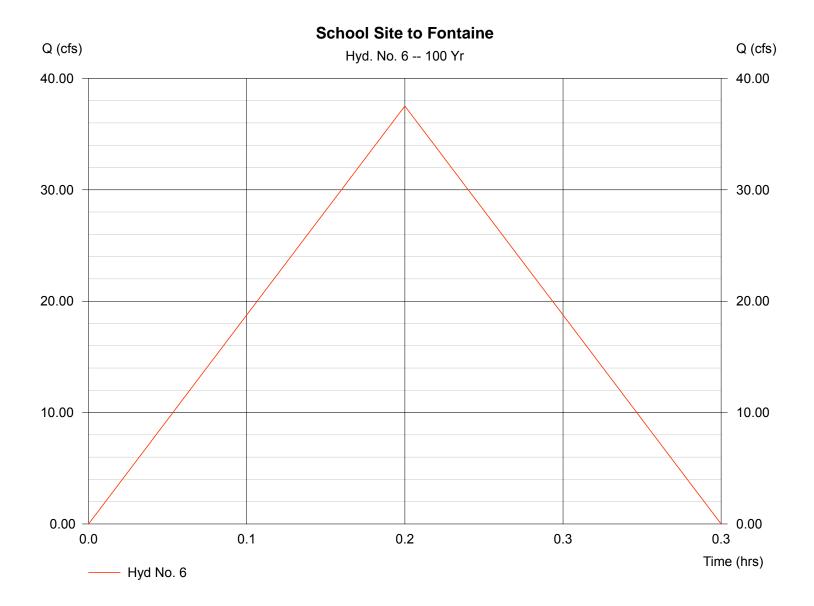

Hyd. No. 5

flow from school pond

Hydrograph type	= Reservoir	Peak discharge	= 29.12 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Inflow hyd. No.	= 1	Max. Elevation	= 5739.91 ft
Reservoir name	= School Pond	Max. Storage	= 43,203 cuft

Storage Indication method used.

Hydrograph Volume = 56,974 cuft

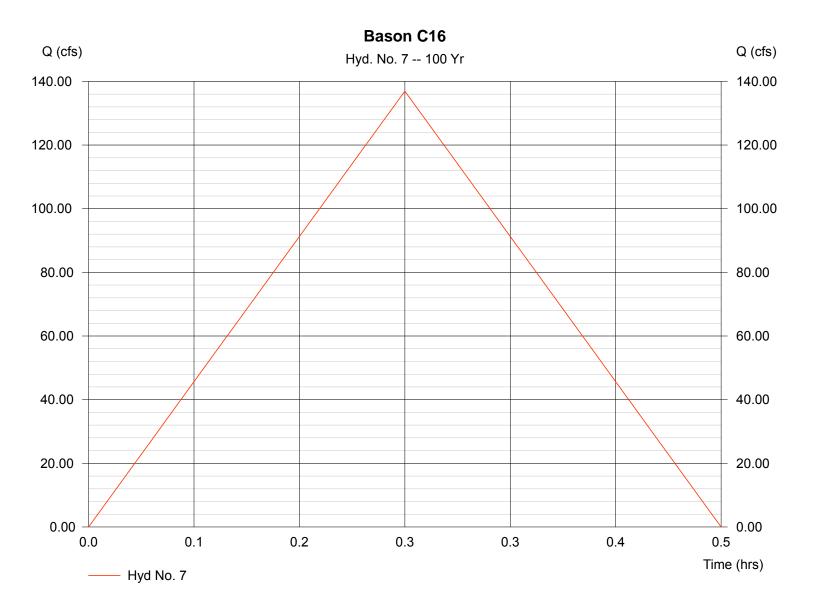

Hydraflow Hydrographs by Intelisolve

Hyd. No. 6

School Site to Fontaine

Hydrograph type	= Rational	Peak discharge	= 37.52 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 8.000 ac	Runoff coeff.	= 0.65
Intensity	= 7.216 in/hr	Tc by User	= 10.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 22,512 cuft

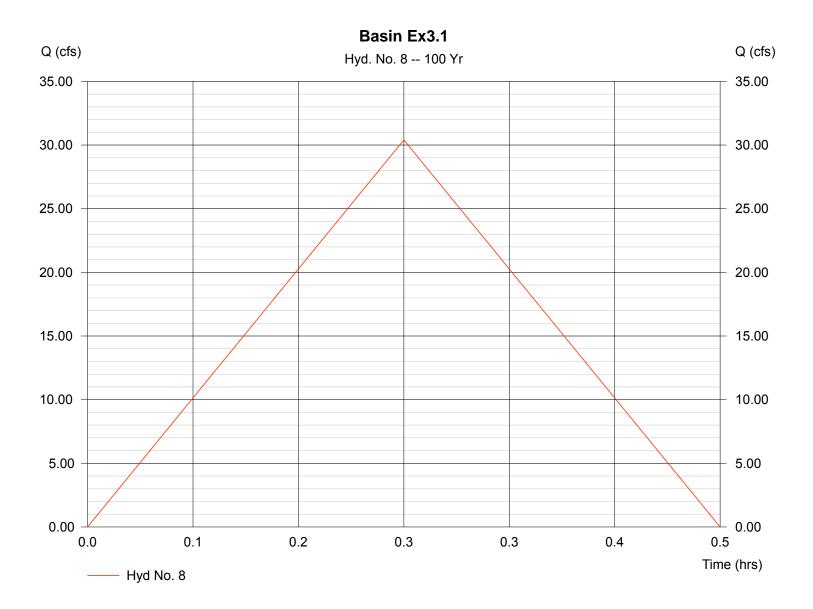

Hydraflow Hydrographs by Intelisolve

Hyd. No. 7

Bason C16

Hydrograph type	= Rational	Peak discharge	= 136.93 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 34.300 ac	Runoff coeff.	= 0.65
Intensity	= 6.142 in/hr	Tc by User	= 15.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1
Drainage area	= 34.300 ac = 6.142 in/hr	Runoff coeff. Tc by User	= 0.65 = 15.00 min

Hydrograph Volume = 123,234 cuft


Hydraflow Hydrographs by Intelisolve

Hyd. No. 8

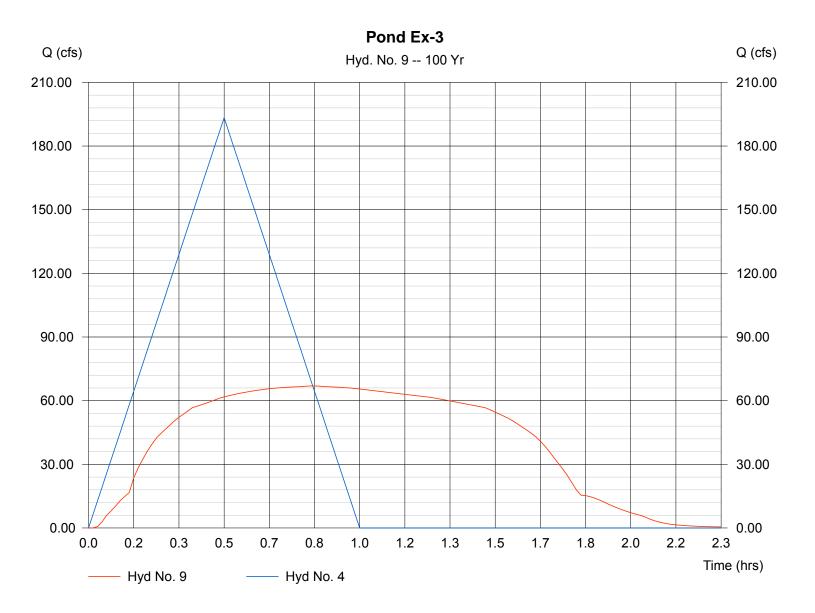
Basin Ex3.1

Hydrograph type	= Rational	Peak discharge	= 30.40 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Drainage area	= 11.000 ac	Runoff coeff.	= 0.45
Intensity	= 6.142 in/hr	Tc by User	= 15.00 min
IDF Curve	= El Paso County-Table.IDF	Asc/Rec limb fact	= 1/1

Hydrograph Volume = 27,361 cuft

10

Hydraflow Hydrographs by Intelisolve


Hyd. No. 9

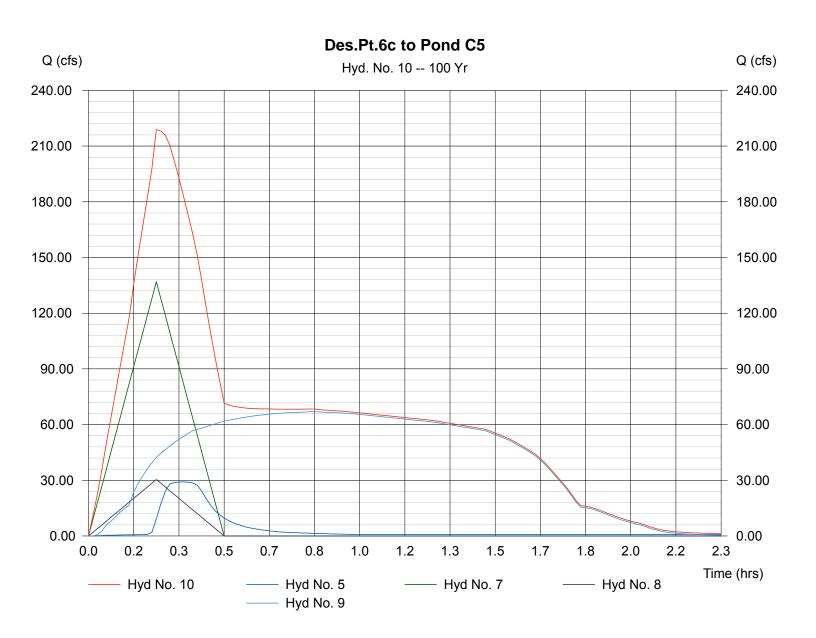
Pond Ex-3

Hydrograph type	= Reservoir	Peak discharge	= 66.95 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Inflow hyd. No.	= 4	Max. Elevation	= 5758.21 ft
Reservoir name	= Basin Ex-3 Pond	Max. Storage	= 186,380 cuft

Storage Indication method used.

Hydrograph Volume = 348,038 cuft

11

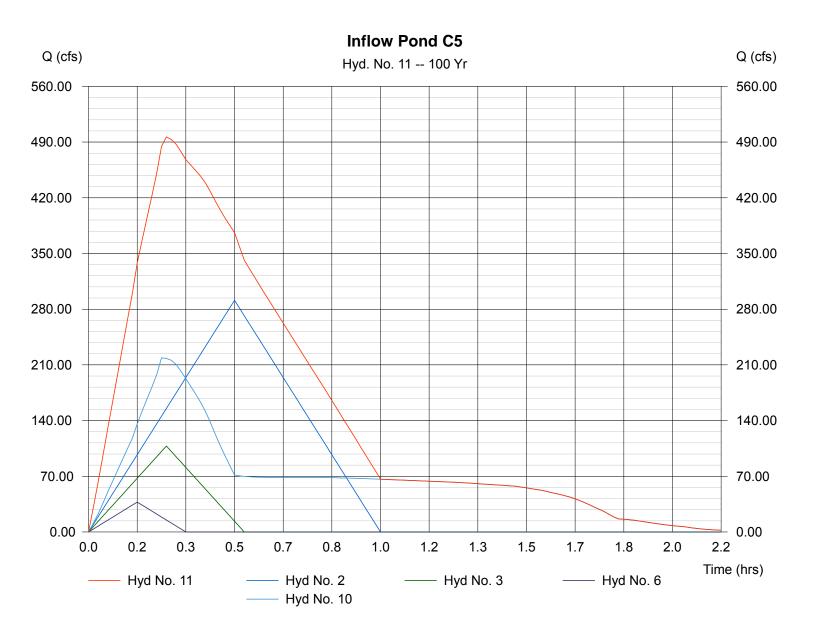

Hydraflow Hydrographs by Intelisolve

Hyd. No. 10

Des.Pt.6c to Pond C5

Hydrograph type	= Combine	Peak discharge	= 218.92 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Inflow hyds.	= 5, 7, 8, 9		

Hydrograph Volume = 555,606 cuft


Hydraflow Hydrographs by Intelisolve

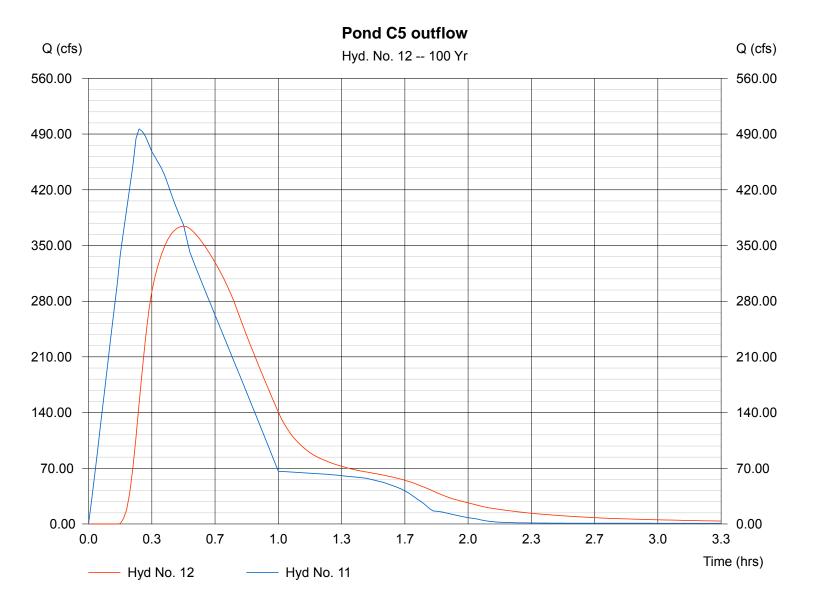
Hyd. No. 11

Inflow Pond C5

, , , ,	= Combine	Peak discharge	= 496.47 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Inflow hyds.	= 2, 3, 6, 10		

Hydrograph Volume = 1,205,963 cuft

Hydraflow Hydrographs by Intelisolve

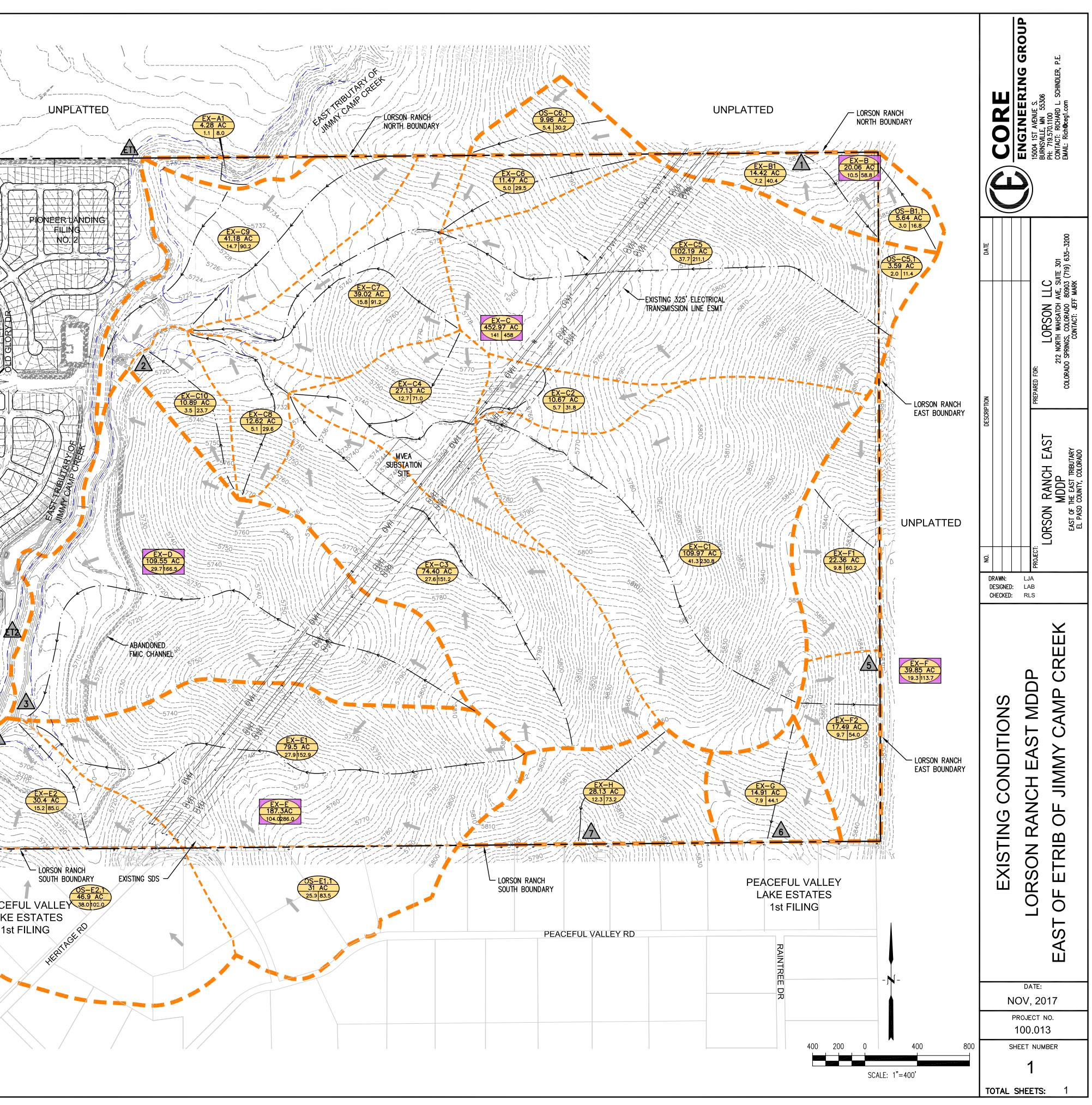

Hyd. No. 12

Pond C5 outflow

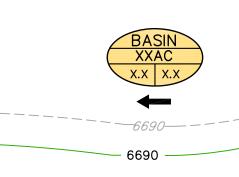
Hydrograph type	= Reservoir	Peak discharge	= 374.29 cfs
Storm frequency	= 100 yrs	Time interval	= 1 min
Inflow hyd. No.	= 11	Max. Elevation	= 5714.48 ft
Reservoir name	= Pond C5	Max. Storage	= 699,059 cuft

Storage Indication method used. Wet pond routing start elevation = 5711.80 ft.

Hydrograph Volume = 1,108,314 cuft



15


MAP POCKET

	POINT SUN									
BASIN	DRAINAGE	E RUNOFF	RUNOFF	RUNOFF	RUNOFF	RUNOFF	RUNOFF			·,
POINT	AREA (AC)	2 YR (CFS)	5 YR (CFS)	10 YR (CFS)	25 YR (CFS)	50 YR (CFS)	100 YR (CFS)			
1 EX-B	20.06		10.5				58.8			
2 EX-C'		17.1	141.0	189.0	263.8	368.7	458.0			
3 EX-D	109.55		29.7				166.5		-	- \
4 EX-E*	187.30	22.4	104.0	135.4	179.3	237.6	286.0		(/
5 EX-F	39.85		19.3				113.7		· · · · · · · · · · · · · · · · · · ·	`
6 EX-G 7 EX-H	14.91		7.9				44.1			
EX-H	28.13		12.3				73.2			
B EX-I	32.92		12.4				74.1			
9 EX-J 0 EX-K	25.78 7.57		9.0 2.1				55.9 15.2			X13
2, 10, 25, 5				E EXISTING		L AT ETRIB	13.2			\times
2, 10, 20, 0	D TEAK STO									
EAST TRIB			TRIBUTA							
FEMA FLOW			FLOW DA	A I A				्रम्यू हार्हराह		
SIGN RUNOF	RUNOFF	RUNOFF	RUNOFF 100 YR							\sim
OINT (CFS)	(CFS)	(CFS)	(CFS)							\sum
T1 2400	4750	100	4220				<u>ل</u>			X.
ET2 2600	5200	110	4530				(T			N. H
ET3 2800	5500	110	4570				┵┽┸			
ET4 2800	5500	120	4600				$\langle \langle \rangle \rangle$			L.
										1 H
							$\sqrt{//}$			
						. \`	ATTT '			
						,X	ITT			FI.
	-	LEGEND								
/ /	[BASIN BOU	NDARY-MA	JOR			- LLL	FONTAINE B		
		BASIN BOU	NDARY-MIN	IOR	Ň	\bigvee		ALITIT		TTT
X	ł	BASIN DES	GN POINT		ر بر	\sim			<u> </u>	
BAS	N	BASIN I.D.			J.	\checkmark				
		ACREAGE					$\langle \rangle \rangle \land$			-+/-,
X.X	×	5 YR/100	YR CFS			-	\mathcal{Y}			
-		DIRECTION	OF FLOW		\checkmark				MEADOWS FILL	NG
6690		EXISTING C	ONTOUR	$\langle \rangle$	1,5108-7		$\mathbf{A} \mathbf{A} \mathbf{A}$		M TNO 3Vet	
		TIME OF CO		ON A	- In KI	FXXX	\V k		571 -571	L'X
						$\langle \chi \rangle$		CHATTER MA	TAXAK	XĽ
— · — · — · —	<i>.</i>	100-YR FL	.00DPLAIN		(H)	XX		XXXXXXXXX		X
				FAI		XXXX			A CONTRACT	5.7.
					THE H		K K K K K K K K K K K K K K K K K K K	XXXXXXX	THE AND	ST.
				目目的	VEEL		\mathcal{X}	ALLEGIANT	MARTHAR	
			17	HR	R-FTTX		<u>AH</u>			K H
					KX IX	XXX	XXJ K			K-ad
				ADXX		\bowtie	X	HE AND FELL		, Mi
		1.		VIANA V		THAT	1-5/11			~ <u>}</u>
				HA H						ster /
				MEADO	WSFILING	YLTT				
				VIIVE	JOA C					N
				JHH.K	TY /				5706-	
	-/-			HH WE	XXX					
				FERRE		568	9		EXISTING 100 YR FLOOD PLAIN	
			MX L							
· · · · · · · · · · · · · · · · · · ·			FIFF	EFFF				5700		
			K-t-t-L-		<i>∭</i> +−	S 221		5700		-7,
			5700	\sim	- 77 1	No Frank			ET3	
		, î			· · · ·					
		56 56			10-145-				5100	
		RELO FMIC	CATED		1015-				5100	
		FMIC							5700	
	The second s	FMIC	X-K1 59 AC						5700	
	IP CREEK	FMIC -5699E 5.1							5700	
	CAMP THE A	FMIC 569 5. 5. EX-K 7.57 AC	X-K1 59 AC 6 11.5			XJ1 5.42 AC		18 EX-II 16.96 AC	5100	
	CAMPCREEK	FMIC -5699E 5.1	X-K1 59 AC 6 11.5						5700 5710 720	
	CAMPCAEL	FMIC 569 5. 5. EX-K 7.57 AC	X-K1 59 AC 6 11.5			X-J1 5.42 AC 4.7 31.5		18 EX-II 18 EX-II 16.96 AC 3.8 49.1 5724 5720 EX	5700	
	CAMPCHER	FMIC 5699 E 5.1 1.1 EX-K 7.57 AC 2.1 15.2	X-K1 59 AC 6 11.5			X-J 5.42 AC 4.7 31.5 EX-J 25.78 AC		B B 18 EX-II 18 EX-II 16.96 AC 3.8 49.1 5724 5720 726 32.93	AC	
		FMIC 569 5. 5. EX-K 7.57 AC	X-K1 59 AC 6 11.5			X-J1 5.42 AC 4.7 31.5		B B D 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	2 AC	
	COMPANY CONTRACT	FMIC 5699 E 5.1 1.1 EX-K 7.57 AC 2.1 15.2	X-K1 59 AC 6 11.5			X-J 5.42 AC 4.7 31.5 EX-J 25.78 AC		B B 18 EX-II 18 EX-II 16.96 AC 3.8 49.1 5724 5720 726 32.93	AC	
		FMIC 569 E 5.9 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	X-K1 59 AC 6 11.5			X-JI 5.42 AC 4.7 31.5 10 EX-J 25.78 AC 90 55.3 90 55.3	OS-J1.1 12.36 AC 5.4 31.1	B B D 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	74.1	
		FMIC 5.5 5.5 5.5 5.5 5.5 7.57 7.57 2.1 15.2 2.1 15.2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	X-K1 59 AC 6 11.5	05-K1.1 1.98 AC		X-JI 5.42 AC 1.7 31.5 25.78 AC 9.0 35.9 LE	OS-J1.1 12.36 AC	B B D 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	2 AC 74.1 757. 0S-11.1 15.96 AC	
		FMIC 56 5. 5. 5. 5. 5. 5. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7. 7.	X-K1 59 AC 6 11.5		APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B B D 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	AC 74.1 05-11.1	PEA
		FMIC 5.5 5.5 5.5 5.5 5.5 7.57 7.57 2.1 15.2 2.1 15.2 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	X-K1 59 AC 6 11.5	05-K1.1 1.98 AC		X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B B D 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	2 AC 74.1 757. 0S-11.1 15.96 AC	
		FMIC 5.9 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
		FMIC 5.9 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5.9 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E 5 E	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B B D 18 EX-II 18 18 EX-II 16.96 AC 20 3.8 49.1 1 5724 5720 EX 726 32.92 12.4 10 12.4 12.4	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PEA
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PE
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	05-K1.1 1.98 AC	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PE
	APPLE	FMIC 5. E 5. E 5. E 5. E 5. E 5. E 5. E 5.	X-K1 59 AC 6 11.5 6 11.5 0 N RANCH H BOUNDARY	OS-K1. 1.98 AC 0.5 4.0	APPIRIDO	X-JI 3.42 AC 4.7 31.5 EX-J 25.78 AC 90 35.9 LE	OS-J1.1 12.36 AC	B DO 18 EX-II 19 5724 19 5720 19 EX 19 10	AC 74.1 757 0S-I1.1 15.96 AC 5.4 35.4	PE

LEGEND

BASIN BOUNDARY-MAJOR

BASIN I.D. ACREAGE 5 YR/100 YR CFS DIRECTION OF FLOW EXISTING CONTOUR PROPOSED CONTOUR

EXISTING VERSUSES DEVELOPED FLOW AT OUTFLOWS TO ETRIB						
DESIGN POINT	EXISTING RUNOFF 5 YR (CFS)	EXISTING RUNOFF 100 YR (CFS)	DEVELOPED RUNOFF 5 YR (CFS)	DEVELOPED RUNOFF 100 YR (CFS)		
46	141	458	121	443		
58a	29.7	166.5	8.8	133.6		
73	100	280	120*	280* `_		

DATA FROM LORSON EAST MDDP AND PDR *INTERIM FLOW RATES FROM PDR

NOTE:

1. OVERALL BASIN "C" FLOWS TO FULL SPECTRUM DETENTION POND C5 AND OVERALL BASIN "D" FLOWS TO FULL SPECTRUM DETENTION POND D2. BASIN "E" IS PARTIALLY DEVELOPED AND FLOWS TO INTERIM POND E2 FOR DETENTION/WQ.

------ PRELIMINARY PLAN SITE AREA

2. EXISTING DRAINAGE BASINS EAST OF THE POWERLINE EASEMENT WILL BE ROUTED TO FUTURE PONDS UNDER THE POWERLINE EASEMENT PER THE LORSON RANCH MDDP FOR AREAS EAST OF THE EAST TRIBUTARY.

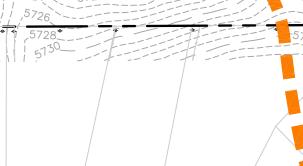
3. OFFSITE PONDS ARE REQUIRED TO BE CONSTRUCTED TO REDUCE EXISTNG FLOW DRAINING WEST UNDER THE ELECTRIC EASEMENT TO RATES THAT CAN BE ACCOMODATED BY THE PROPOSED STORM SEWER/STREETS. INTERIM POND CONSTRUCTION CAN BE PHASED BASED ON DOWNSTREAM DEVELOPMENT.

⁷ ÚNPLÁTTED

APPLETREE GOLF

COURSE

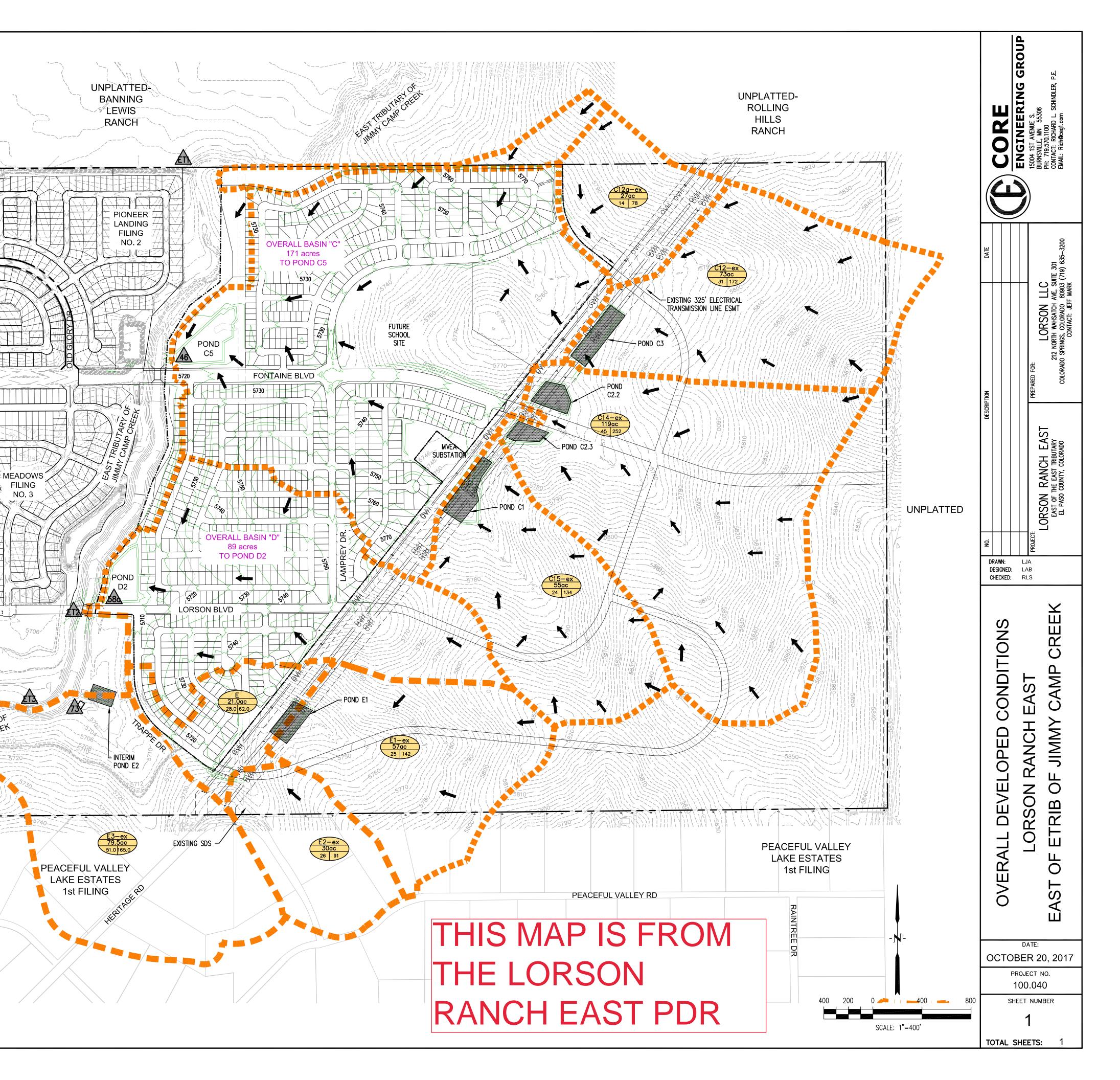
EAST TRIBUTARY			EAST TRIBUTARY	
FEMA FLOW DATA			DBPS FLOW DATA	
DESIGN POINT	RUNOFF 10 YR (CFS)	RUNOFF 100 YR (CFS)	RUNOFF 2 YR (CFS)	RUNOFF 100 YR (CFS)
ET1	2400	4750	100	4220
ET2	2600	5200	110	4530
ET3	2800	5500	110	4570
ET4	2800	5500	120	4600

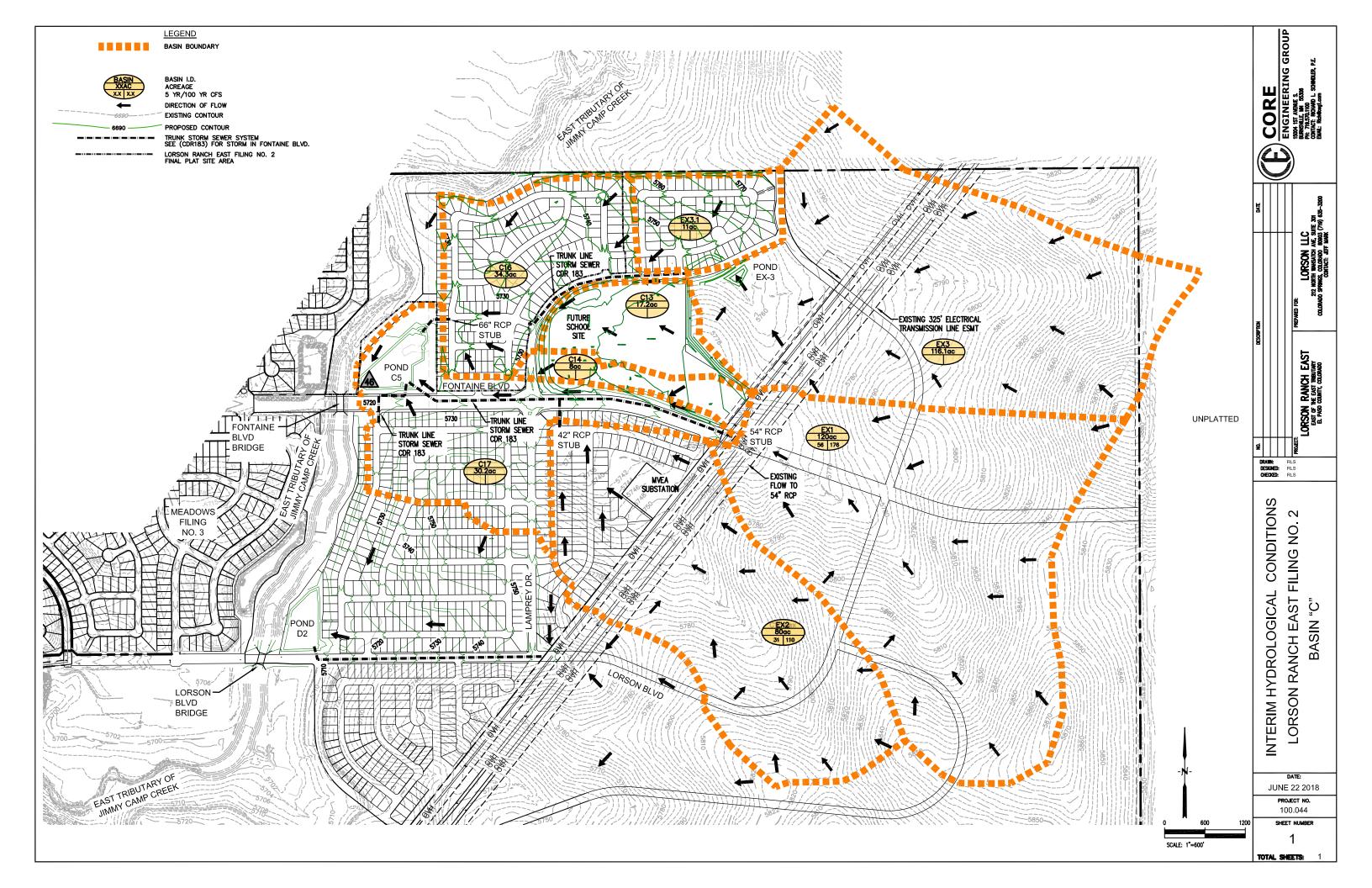

DATA FROM KIOWA REPORT

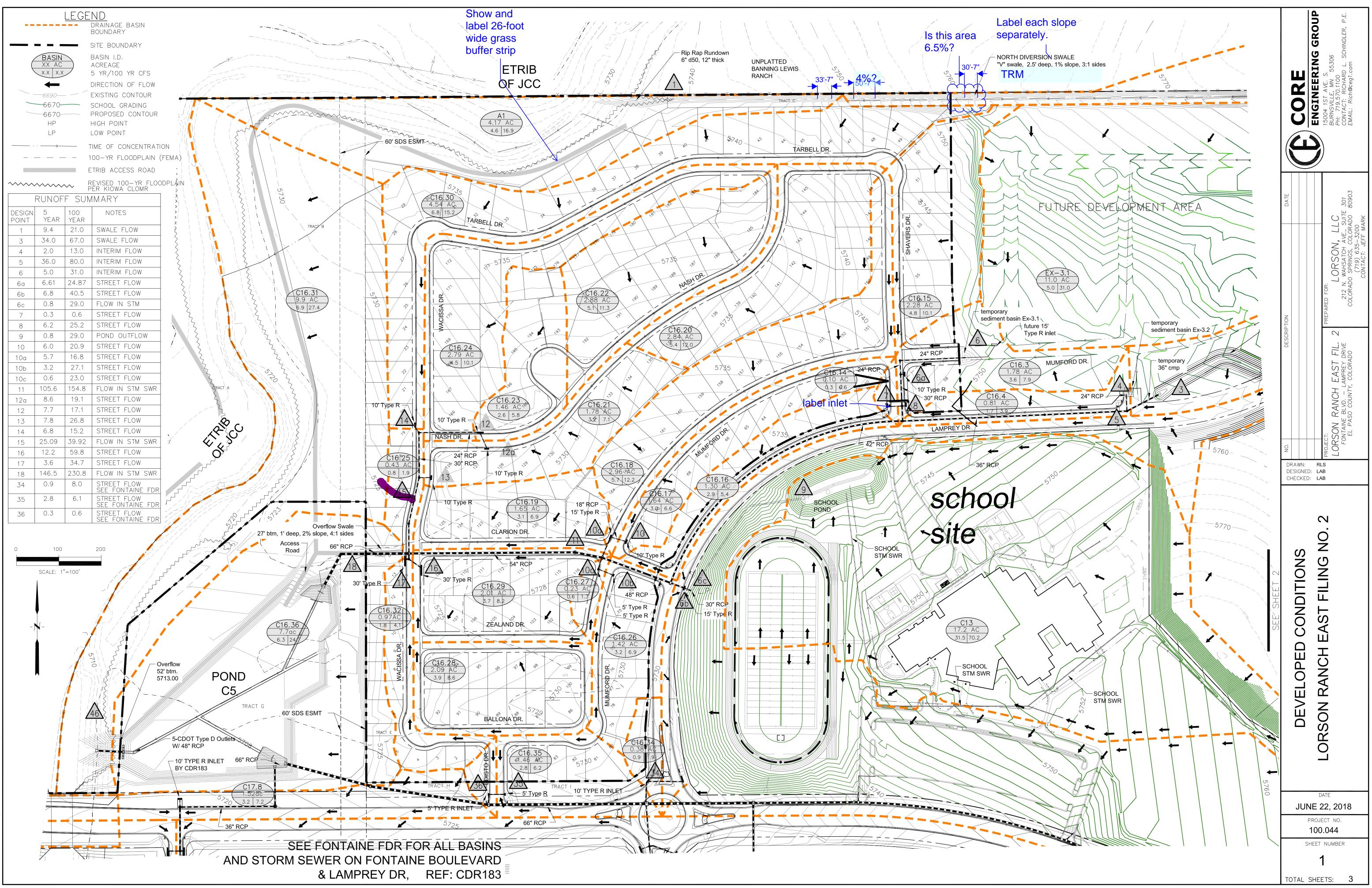
LORSON RANCH

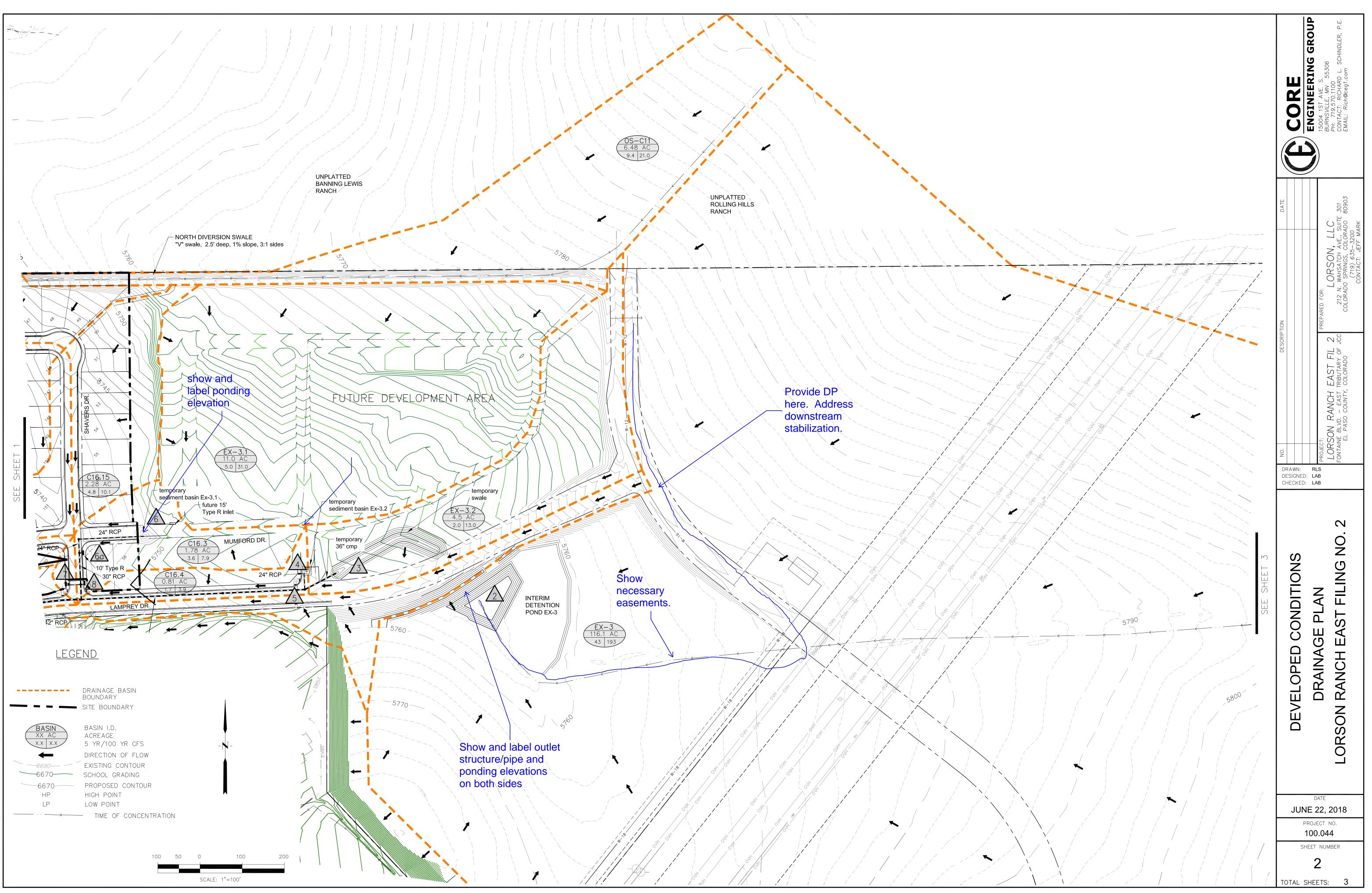
ALLEGIANT

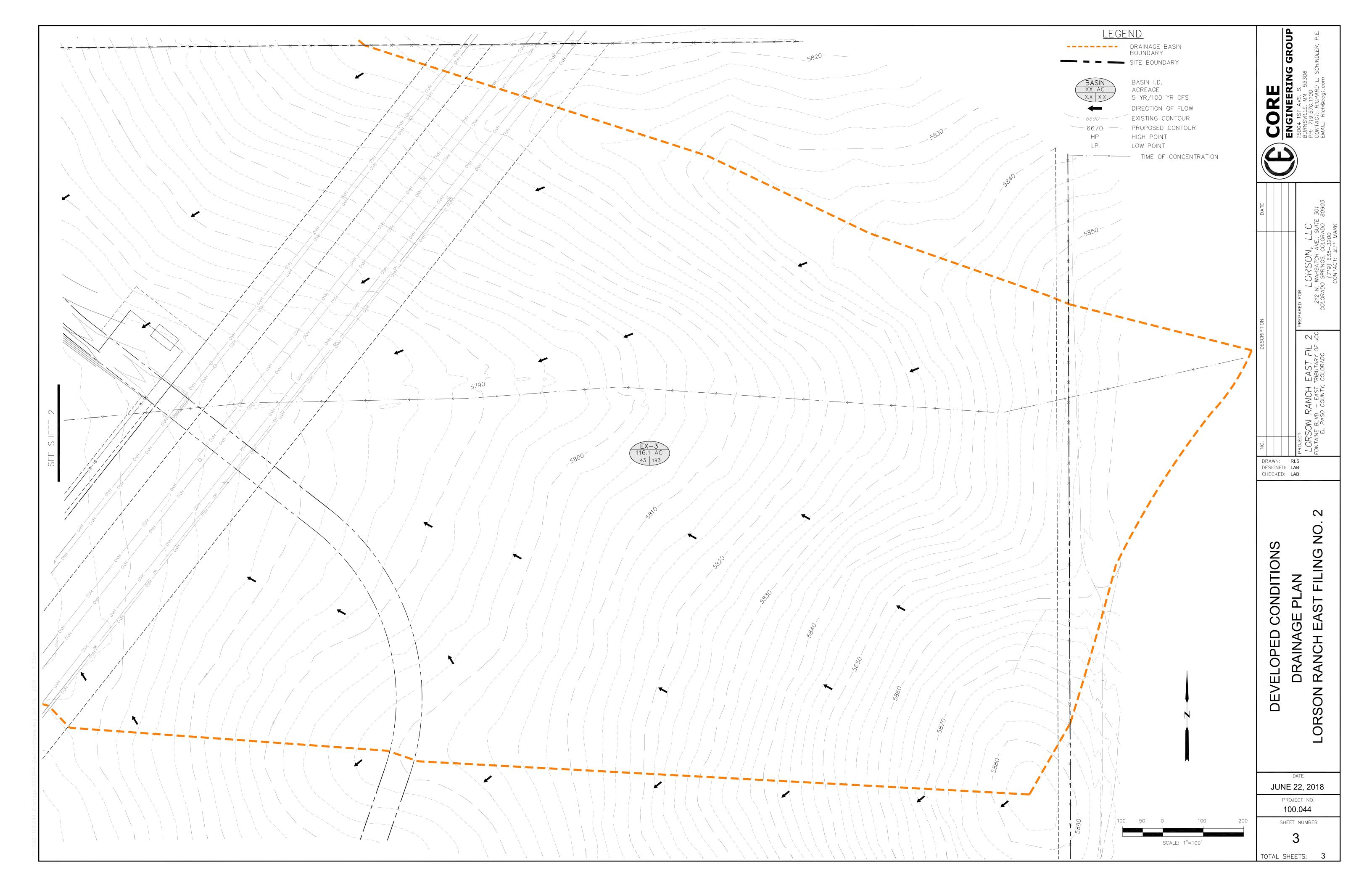
FILING NO. 3




APPLE


RIDGE


SUB.


AREF SUB. NO.3

