

Final Drainage Report Grazing Yak Solar

El Paso County, Colorado April 2019

Prepared For:

Final Drainage Report for Grazing Yak Solar

Include signature Sheet, Page 2. See conceptual Core Consultants report, for an example.

> **Prepared for:** Mortenson Construction 700 Meadow Lane North Minneapolis, MN 55422

Prepared by:

Brendan Miller, PE Westwood Professional Services 10170 Church Ranch Way, Suite 100 Westminster, CO 80021

Project Number: 0021201.00 Date: 4/24/2019

CONTENTS

List of A	ppendices		ii
I. GENE	ERAL LOCATION AND DESCRIPTION	DN	1
A.	Site Location		1
B.	Description of Property		1
II. DRA	INAGE BASINS AND SUB-BASINS.		1
A.	Major Drainage Basins		1
B.	Minor Drainage Basins		1
III. DRA	AINAGE DESIGN CRITERIA		
A.	Regulations		
B.	Drainage Studies, Master Plans, and	Site Constrain	ts
C.	Hydrology		
D.	Hydraulics		
E.	Water Ouality Enhancement		
IV. STO	RMWATER MANAGEMENT FACIL	ITY DESIGN	
A.	Stormwater Conveyance Facilities		
B.	Stormwater Storage Facilities		4
C.	Water Quality Enhancement Best Mar	agement Practi	ices4
D.	Floodplain Modification		4
E.	Additional Permitting Requirements		4
F.	General		4
REFERE	ENCES		5
	שרת ג	NDTCEC	
Annondi	x A: Hydrologic Calculations	NDICES	Include a section "Four Step
Appendi	Vicinity Map		Process" in the Report contents
	FIRM Map		Section.
	SCS Soils Map		
	Runoff Coefficient Calculations	5	
	Reference Material		
	Rational Method Calculations fo	r Determining 5	5-year and 100-Year Runoff Rates
	Detention Pond Calculations		
	Diamagerian		
Appendi	x B: Hydrologic Calculations		
	HydroCAD CulvertMaster	The drainag	ge plan needs to be at the end
	Ourvertividater	of the repor	t.
		Include an I plan.	Existing conditions drainage

I. GENERAL LOCATION AND DESCRIPTION

A. Site Location

This Final Drainage Report has been prepared on behalf of Grazing Yak Solar, LLC for the development of the proposed Grazing Yak Solar Project, referred to as "The Project". The Project would consist of a 35 megawatt (MW) utility scale photovoltaic solar facility and underground collection line that would encompass approximately 317 acres in El Paso County (EPC), Colorado. The solar array site, referred to as "The Site", is located to the east of the intersection of McQueen Road and Washington Road, approximately 4 miles southeast of the Town of Calhan on private, agricultural land. Rural residences and agricultural land surround the Site, as well as the Golden West Wind Energy Center located to the north, west, and south. The Site is located on 272-acres in Section 29, Township 12 South, Range 61 West of the 6th Principal Meridian, El Paso County, Colorado. A vicinity map for the site can be found in Appendix A.

B. Description of Property

The Site is flat to gently rolling, at elevations ranging from approximately 6,830 to 6,735 feet. The site has naturally occurring slopes ranging from 2 to 10 percent and is currently agricultural land. Surface runoff is to the north, south and east. Runoff from the northern portion of the site flows north overland through multiple conveyances. These flows continue north under Washington through a culvert and eventually into Horse Creek. Flows from the central portion of the site flow toward the drainage that bisects the site. Runoff travels east of the project through an unnamed drainage and eventually into Horse Creek. Flows from the site flow southeast into an unnamed drainage and eventually into Horse Creek. The proposed improvements to the site consist of a 35 megawatt (MW) photovoltaic solar array, inverters, dirt and gravel access paths, and other necessary ancillary features. The soils vary throughout the site and include mainly Trackton sandy loam, (Hydrologic soil group A), Truckton-Bresser complex (Hydrologic soil group A), Bresser sandy loam (Hydrologic soil group B) and Ascalon sandy loam (Hydrologic soil group B). A soils map has been provided and can be found in Appendix A.

II. DRAINAGE BASINS AND SUB-BASINS

A. Major Drainage Basins

The existing drainage patterns for the major basin will follow the historic patterns. Grazing Yak will drain north, east and south through drainage ways and culverts and eventually discharging into Horse Creek. Horse Creek flows to the east and is part of the Arkansas River basin. The site falls within Zone X, as shown on the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) panels 08041C0650 F and 0841C0625 F. A copy of the FIRM maps can be found in Appendix A. Add: The Horse Creek drainage basin in FL

B. Minor Drainage Basins

Add: The Horse Creek drainage basin in El Paso County is unstudied, with no fees.

Minor Drainage Basins for Grazing Yak Solar Project have been delineated per the layout of the solar arrays. The developed minor basins will include pole mounted solar arrays with native ground beneath and dirt and gravel access roads constructed of 12" re-compacted soil and Class 5 Gravel respectively. An Extended Detention Basin for the site will be designed to mitigate the increase in runoff. The EDB will be privately owned and maintained. Overall, the proposed drainage patterns for the sub-basins will follow the historic patterns prior to development. For sub-basins within the site, runoff will drain to the north, south and east.

Basin (A1) consists of dirt access paths, a portion of the solar array and offsite undeveloped land. Runoff generated in this basin will flow northeast toward the western property line of the project site. The runoff flows northeast, into the unnamed drainage bisecting the site. This runoff is conveyed through the site and eventually into Horse Creek. The improvements have negligible impact on runoff rates.

Basin (A2) consists of dirt access paths, a portion of the solar array and offsite

1

Undeveloped land. Runoff generated in this basin will flow northeast toward the southern property line of the project site. The runoff flows east and northeast, into the unnamed drainage bisecting the site. This runoff is conveyed through the site and eventually into Horse Creek. The improvements have negligible impact on runoff rates.

Basin (A3) consists of dirt access paths, a portion of the solar array and offsite undeveloped land. Runoff generated in this basin will flow north and east toward and existing stock pond located in the unnamed drainage within the project site. The runoff exits the stock pond into the unnamed drainage bisecting the site and travels northeast. This runoff leaves the site at the eastern boundary and eventually into Horse Creek. The improvements have negligible impact on runoff rates.

Basin (A4) consists of gravel access paths, dirt access paths, and a portion of the solar array. Runoff generated in this basin will flow north and south into the unnamed drainage and an extended detention basin (EDB) respectively within the project site. The EDB will be sized to provide a 10% reduction in predevelopment flows generated by the increase in imperviousness for the total site. Runoff is discharged from the EDB into the unnamed drainage and conveyed to the eastern property line. This runoff leaves the site at the eastern boundary and eventually into Horse Creek as described below in Section III. As shown in the rational spreadsheet, without the basin in place, this results in an increase of 1.4cfs. However the addition of the detention facility reduces this discharge by greater than 2.1cfs, which is the total increase from the site when including both basins A4 and D1. Utilizing HydroCAD modeling, the combination of culverts will restrict peak flows to 27cfs (see UD-Detention Worksheet), a decrease of 8cfs from the 35cfs existing condition, which is greater than the 2.1cfs reduction needed to maintain existing runoff rates (1.4cfs increase in basin A4 and 0.7cfs increase in basin D1).

Basin (B1) consists of dirt access paths and a portion of the solar array. Runoff generated in this basin will flow to the south east and eventually into Horse Creek. Flowrates or flow patterns within this basin will not be affected by this development. The improvements have negligible impact on runoff rates.

Basin (B2) consists of dirt access paths and a portion of the solar array. Runoff generated in this basin will flow to the south east and eventually into Horse Creek. Flowrates or flow patterns within this basin will not be affected by this development. The improvements have negligible impact on runoff rates.

Basin (C1) consists of dirt access paths and a portion of the solar array. Runoff generated in this basin flows will travel north through multiple conveyances towards the northern property line, under Washington road through a culvert and eventually into Horse Creek. Flowrates or flow patterns within this basin will not be affected by this development. The improvements have negligible impact on runoff rates.

Basin (D1) consists of gravel access paths, a portion of the solar array and undeveloped land. The increase in imperviousness is being mitigated in the EDB located in basing A4. Runoff generated in this basin flows will travel north along the proposed site access road towards Washington Rd. Flows are conveyed under Washington road through a culvert and eventually into Horse Creek. Though this area is included in the EDB sizing, the improvements increase runoff by 0.7cfs, which is mitigated in basin A4.

III. DRAINAGE DESIGN CRITERIA

A. Regulations

This Conceptual Drainage Report is in accordance with El Paso County Drainage Criteria Manual and the Urban Drainage and Flood Control District (UDFCD) Storm Drainage Criteria Manual. These manuals were used as a basis of design for the site. All applicable tables, figures, and charts from the

referenced reports and criteria manuals used in the drainage design of the site can be found in Appendix B. The report will analyze the minor (5-year) and major (100-year) storm events.

B. Drainage Studies, Master Plans, and Site Constraints

A previous drainage study (Conceptual Drainage Report for Grazing Yak Solar Project) was completed for the project on October 23, 2018 and revised on January 16, 2019. There are no master plans or site constraints for this development.

C. Hydrology

All the basins within the site were less than 160 acres thus the Rational Method was used to determine the flow rates for various basins within the site. The sub-basins were delineated based on the existing topography for the project. Flow rates for each basin can be found in Appendix A. The impervious panels are going to be pole mounted with the ground underneath them to remain vegetated. The main access from Washington Road to just south of the unnamed drainage will be constructed with Class 5 Gravel. The remaining site access paths will be constructed as recompacted dirt to promote infiltration back into the ground. The intensity-frequency curves used in the Rational Method calculations were taken from the El Paso County Drainage Criteria Manual. All drainage facilities were analyzed and designed for both the minor (5-year) and major (100-year) storm events. Time of concentration calculations were used to determine the rainfall intensity. These calculations also can be found in Appendix A. There are three different locations of where offsite water will flow onto the project boundary. All three of these locations will continue to follow existing drainage patterns and will be allowed onsite.

D. Hydraulics

Hydraulic calculations for the EDB sizing were based on UDFCD design spreadsheets. Street and inlet capacity will not be necessary for this development. Two access road crossings were required for the project. The calculations for these can be seen in Appendix B. Include a section "4 step process", list the

E. Water Quality Enhancement

steps, and use similar language as used

The Project will require gravel access paths to a small portion of the site for access year-round. The remaining access paths will be constructed of recompacted dirt. The Project will employ runoff reduction practices such as allowing sheet flow across grass buffers and minimizing the increased imperviousness to 2% total for the site post construction. The site consists of Type A & B soils, allowing for optimal infiltration throughout the site. The proposed water quality facility for the site was designed as an EDB which incorporates a structure that release flows for the water quality capture volume (WQCV), Excess Urban Runoff Volume (EURV), and the 100-year storm event. The design of this structure can be found in the Appendix. The EDB is located in an area with a NRCS Type A soil designation. The EDB is located to receive the sheet flow runoff from the basin with the increased imperviousness. The total area of increased imperviousness (approximately 4 acres of 272 acres) will create a minimal impact to the natural drainage way that stabilization beyond protection at the EDB outlet will not be necessary. The natural drainage way will be protected from sediment discharge, introduction of contaminants and other site operations during construction activities in conformance with El Paso County GEC requirements and MS4 permit.

IV. STORMWATER MANAGEMENT FACILITY DESIGN

A. Stormwater Conveyance Facilities

The general concept for the drainage design is to maintain the historic drainage patterns and release rates. This approach reduces the impacts to existing wash and ultimately Horse Creek. No public infrastructure is proposed within this site. Culvert crossings will be added near the outfall of the site to allow for a dry road crossing. A basin will be constructed near this outfall location and will utilize a

combination of culverts to provide flow bypass under the road and as a method of metering output from the proposed basin described in more detail below.

B. Stormwater Storage Facilities

Basin A4 EDB pond sizing calculations can be found in the Appendix. The EDB mitigates the increase of runoff generated by the gravel access roads and small electrical equipment pads throughout the site. Runoff generated by the access roads will flow into the EDB through a combination of sheet flow from the south and flows entering from the adjacent channelized bypass to the north. The EDB will have an approximate EURV volume of 1.54 acre-feet and release below historic runoff rates. The EDB will have a two stage discharge due to the relatively small volume being captured from a large site. The 1.54 acre-foot volume will be discharged through a 12" orifice plate with five 1.25" orifices. Flows above this will be discharged through a pair of 18" pipes. Since the UD-Detention spreadsheet does not allow for this configuration, a proxy using a weir and 21" pipe was used to approximate this discharge. Calculations done outside of the sheet have been included below showing a matching 27cfs discharge through a pair of 18" CMP pipes.

At the outlets of the pond riprap of will be placed with a D50 of a minimum of 6" and a minimum depth of 9" in order to reduce erosion from the outlet. The riprap has been sized based on an exit velocity of approximately 5.4 feet per second for the pair of 18" outlets. Flows will be slower at the 12" outlet, but riprap has been kept the same size for ease of construction. Any flows that exceed the capacity of the basin outfall, allowing for a 2' pool elevation for the basin. This arrangement takes advantage of natural topography in the area where the wash becomes braided and currently exits the site at two locations; the lower braid being used as the water quality pool with the upper braid, sitting at an elevation 2' higher, being utilized as a bypass once the water quality pool is filled. The entire 100 year event can be accepted and released by the basin without overtopping the road and leaving approximately 15-inches of freeboard. In an extreme event larger than this, overtopping of the road could occur. This basin has not been designed for this "Act-of-God" type event and road damage is anticipated in such an event.

The detention pond accepts flows from the north that include a large percentage of the impervious area and are bounded by an existing berm.

C. Water Quality Enhancement Best Management Practices

Water quality measures have been included in the design of the proposed EDBs. The basin will be designed to incorporate a structure that release flows for the water quality capture volume (WQCV) and the 100-year storm event.

D. Floodplain Modification

There will be no modification to the floodplain

E. Additional Permitting Requirements

No additional permitting will be required for this site.

F. General

All applicable tables, figures, and charts from the referenced reports and criteria manuals used in the drainage design of the site can be found in the Appendix. The site is not going to be platted at this time therefore no drainage fees are due.

Provide a Full Spectrum Detention Facility that meets criteria, Look at UDFCD "Sand Filter combined with Full Spectrum detention" Figure 12-9. The outlet structure, detention calculations etc., can then be designed to meet UDFCD details. It appears existing soils here a as indicated by the Terracon study, can be used as the media for the sand filter.

4

Final Drainage Report

REFERENCES

- A. El Paso County Drainage Criteria Manual, Volumes 1 and 2.
- B. Drainage Criteria Manual, Volumes 1, 2, & 3, Urban Drainage and Flood Control District, June 2001, Revised June 2004. 2017

El Paso County Engineering Criteria Manual.

Appendix A *Hydrologic Calculations*

Grazing Yak Solar El Paso County, Colorado

Exhibit 1: Location Map

March 21, 2019

National Cooperative Soil Survey

Conservation Service

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
2	Ascalon sandy loam, 1 to 3 percent slopes	В	22.1	7.9%
12	Bresser sandy loam, cool, 3 to 5 percent slopes	В	82.9	29.6%
97	Truckton sandy loam, 3 to 9 percent slopes	A	158.5	56.5%
100	Truckton-Bresser complex, eroded	A	16.9	6.0%
Totals for Area of Intere	est		280.4	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

<u>Grazing Yak Solar</u>

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

COMPOSITE BASIN - WEIGHTED "C" CALCULATIONS - Existing Conditions

-REFERENCE UDFCD Vol.1 RUNOFF Table 6-3

		Resi	dential		1			Lawr	าร	1		
		Single Fami	ly	Multi-Unit				Clay S	soil		_	
	0.25 acres	2.5 acres or larger	5 DU's/Ac 3,000 sf 2 story	(attached)	Roof	Streets: Paved	Gravel	2-7% Slope	>7% Slope	Historic		
% Imperv.	45.00%	12.00%	63.00%	75.00%	90.00%	100.00%	80.00%	2.00%	2.00%	2.00%		
											Total	Percent
BASIN	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Impervious
Al										86.97	86.97	2.0%
A2										120.45	120.45	2.0%
A3										86.92	86.92	2.0%
A4										78.97	80.33	2.0%
Total A							0.00			373.31	374.67	1.99%
B1										3.82	3.82	2.0%
B2										5.60	5.60	2.0%
Total B										9.42	9.42	2.0%
Cl										46.03	46.03	2.0%
Total C				1						46.03	46.03	2.0%
DI				1						5.12	5.68	1.8%
Total D					1		0.00			5.12	5.68	1.80%

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

<u>COMPOSITE DEVELOPED BASIN - WEIGHTED "C" CALCULATIONS - Existing Conditions</u> <u>-REFERENCE UDFCD Vol.1 RUNOFF Table 6-4</u>

i = % imperviousness/100 expressed as a decimal

- C_A = Runoff coefficient for NRCS HSG A soils
- C_B = Runoff coefficient for NRCS HSG B soils

 C_{CD} = Runoff coefficient for NRCS HSG C and D soils.

Natural Resource Conservation Service (NRCS)

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

NRCS			Storm Return Period											
Soil Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year							
А	C _A =	$C_A =$	$C_A =$	$C_A =$	$C_A =$	$C_A =$	$C_A =$							
	$0.84i^{1.302}$	0.86 <i>i</i> ^{1.276}	$0.87i^{1.232}$	$0.84i^{1.124}$	0.85 <i>i</i> +0.025	0.78 <i>i</i> +0.110	0.65 <i>i</i> +0.254							
В	C _B =	$C_B =$	C _B =											
	$0.84i^{1.169}$	0.86 <i>i</i> ^{1.088}	0.81 <i>i</i> +0.057	0.63 <i>i</i> +0.249	0.56 <i>i</i> +0.328	0.47 <i>i</i> +0.426	0.37 <i>i</i> +0.536							
C/D	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =							
	0.83 <i>i</i> ^{1.122}	0.82 <i>i</i> +0.035	0.74 <i>i</i> +0.132	0.56 <i>i</i> +0.319	0.49 <i>i</i> +0.393	0.41 <i>i</i> +0.484	0.32 <i>i</i> +0.588							

Basin ID	% Imperv.	i	Sail Turne		Runoff Coe	efficients, C		Basin	Total	N	eighted Runol	f Coefficients,	с
Basin ID			son type	2-Year	5-Year	10-Year	100-Year	Area	Area	2-Year	5-Year	10-Year	100-Year
			А	0.01	0.01	0.01	0.13	50.70					
A1	2.0%	0.02	В	0.01	0.01	0.07	0.44	36.27	86.97	0.01	0.01	0.03	0.25
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	72.11					
A2	2.0%	0.02	В	0.01	0.01	0.07	0.56	48.34	120.45	0.01	0.01	0.03	0.30
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	53.99					
A3	2.0%	0.02	В	0.01	0.01	0.07	0.44	32.88	86.92	0.01	0.01	0.03	0.24
			C or D	0.01	0.05	0.15	0.49	0.05					
			А	0.01	0.01	0.01	0.13	52.23					
A4	2.0%	0.02	В	0.01	0.01	0.07	0.44	28.10	80.33	0.01	0.01	0.03	0.23
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	2.04					
B1	2.0%	0.02	В	0.01	0.01	0.07	0.44	1.78	3.82	0.01	0.01	0.04	0.27
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	4.66					
B2	2.0%	0.02	В	0.01	0.01	0.07	0.44	0.94	5.60	0.01	0.01	0.02	0.18
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	25.62					
C1	2.0%	0.02	В	0.01	0.01	0.07	0.44	20.41	46.03	0.01	0.01	0.04	0.26
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.00	0.01	0.01	0.12	1.24					
D1	1.8%	0.02	В	0.01	0.01	0.07	0.43	4.32	5.68	0.01	0.01	0.06	0.37
			C or D	0.01	0.05	0.15	0.49	0.12					

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

TIME OF CONCENTRATION CALCULATIONS - Existing Conditions

-REFERENCE UDFCD Vol.1 Sec	FERENCE UDFCD Vol.1 Section 2.4													
SF-2			Heav	y Meadow	2.50	Short	Grass Pastu	re & Lawns	7.00		Grassed	Waterway	15.00	
			T	illage/field	5.00		Nearly Bc	are Ground	10.00	Paved	Area & Sha	llow Gutter 20.00		
SUB-BASI	N		INITIA	l / Overla	ND		TF	RAVEL TIME				T(c) CHECK		FINAL
DATA				TIME				T(†)				(URBANIZE	ed basins)	T(c)
DRAIN	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(†)	COMP.	% IMPER-	USDCM	
BASIN	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	VIOUS	Eq . 6-5	min.
A1	86.97	0.01	148	1.3	21.7	2623	2.4	5.00	0.8	54.7	76.4	2.0%		76.4
A2	120.45	0.01	300	1.7	28.8	3149	1.7	5.00	0.7	75.0	103.8	2.0%		103.8
A3	86.92	0.01	300	3.3	22.9	3203	2.4	5.00	0.8	66.7	89.6	2.0%		89.6
A4	80.33	0.01	300	3.7	22.2	3023	2.0	5.00	0.7	72.0	94.2	2.0%		94.2
B1	3.82	0.01	240	1.0	30.1	357	1.4	5.00	0.6	9.9	40.0	2.0%		40.0
B2	5.60	0.01	300	1.5	29.9	466	3.0	5.00	0.9	8.6	38.5	2.0%		38.5
C1	46.03	0.01	300	5.2	19.8	1517	1.6	5.00	0.6	42.1	61.9	2.0%		61.9
DI	5.68	0.01	529	0.9	47.7	1189	2.5	5.00	0.8	24.8	72.5	1.8%		72.5

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

RATIONAL METHOD PEAK RUNOFF - Existing Conditions

5-YR STORM

SF-3

Include this table (with both design storms) on the existing conditions Plan/Map.

Rainfall Depth-Duration-Frequency (1-hr) = 1.5

BASI									TOTAL RU	JNOFF		
DESIGN	DRAIN	AREA	5yr RUNOFF	T(c)	СхА	I	Q	T(C)	SUM	I	Q	
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min	СхА	in/hr	cfs	REMARKS
1	Al	86.97	0.01	76.4	0.74	1.28	0.9					
2	A2	120.45	0.01	103.8	1.01	1.03	1.0					
3	A3	86.92	0.01	89.6	0.72	1.15	0.8					
4	A4	80.33	0.01	94.2	0.63	1.11	0.7					
5	B1	3.82	0.01	40.0	0.03	1.97	1.4					
6	B2	5.60	0.01	38.5	0.04	2.02	0.1					
7	C1	46.03	0.01	61.9	0.40	1.48	0.6					
8	D1	5.68	0.01	72.5	0.06	1.33	0.1					

-REFERENCE UDFCD Vol.1 EQ 5-1 & EQ 6-1

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

<u>RATIONAL METHOD PEAK RUNOFF - Existing Conditions</u>

<u>100-YR STORM</u>

SF-3

Rainfall Depth-Duration-Frequency (1-hr) = 2.52

See comment previous

page.

|--|

BASI	BASIN INFORMATON								TOTAL R	JNOFF		
DESIGN	DRAIN	AREA	100yr RUNOFF	T(C)	СхА	I	Q	T(c)	SUM	Ι	Q	
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min	СхА	in/hr	cfs	REMARKS
1	Al	86.97	0.25	76.4	22.16	2.16	47.8					
2	A2	120.45	0.30	103.8	36.13	1.74	62.8					
3	A3	86.92	0.24	89.6	21.12	1.93	40.8					
4	A4	80.33	0.23	94.2	18.78	1.86	35.0					
5	B1	3.82	0.27	40.0	1.03	3.32	1.4					
6	B2	5.60	0.18	38.5	0.99	3.40	3.4					
7	C1	46.03	0.26	61.9	12.10	2.49	30.2					
8	D1	5.68	0.37	72.5	2.09	2.24	4.7					

<u>Grazing Yak Solar</u>

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

COMPOSITE BASIN - WEIGHTED "C" CALCULATIONS

-REFERENCE UDFCD Vol.1 RUNOFF Table 6-3

		Resi	dential					Lawr	ıs			
		Single Fami	ly	Multi-Unit				Clay S	Soil		_	
	0.25 acres	2.5 acres or larger	5 DU's/Ac 3,000 sf 2 story	(attached)	Roof	Streets: Paved	Gravel	2-7% Slope	>7% Slope	Historic		
% Imperv.	45.00%	12.00%	63.00%	75.00%	90.00%	100.00%	80.00%	2.00%	2.00%	2.00%		
											Total	Percent
BASIN	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Area	Impervious
Al										86.97	86.97	2.0%
A2										120.45	120.45	2.0%
A3										86.92	86.92	2.0%
A4							1.36			78.97	80.33	3.3%
Total A							1.36			373.31	374.67	2.28%
B1										3.82	3.82	2.0%
B2										5.60	5.60	2.0%
Total B										9.42	9.42	2.0%
C1										46.03	46.03	2.0%
Total C										46.03	46.03	2.0%
D1							0.56			5.12	5.68	9.7%
Total D							0.56			5.12	5.68	9.69%

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

COMPOSITE DEVELOPED BASIN -WEIGHTED "C" CALCULATIONS

-REFERENCE UDFCD Vol.1 RUNOFF Table 6-4

i = % imperviousness/100 expressed as a decimal

- C_A = Runoff coefficient for NRCS HSG A soils
- C_B = Runoff coefficient for NRCS HSG B soils

 $C_{\rm CD}$ = Runoff coefficient for NRCS HSG C and D soils.

Natural Resource Conservation Service (NRCS)

Table 6-4. Runoff coefficient equations based on NRCS soil group and storm return period

NRCS				Storm Ret	urn Period				
Soil Group	2-Year	5-Year	10-Year	25-Year	50-Year	100-Year	500-Year		
А	$C_A =$	$C_A =$	$C_A =$	$C_A =$	$C_A =$	$C_A =$	$C_A =$		
	$0.84i^{1.302}$	0.86 <i>i</i> ^{1.276}	$0.87i^{1.232}$	$0.84i^{1.124}$	0.85 <i>i</i> +0.025	0.78 <i>i</i> +0.110	0.65 <i>i</i> +0.254		
В	$C_B =$	$C_B =$	$C_B =$	$C_B =$	C _B =	$C_B =$	$C_B =$		
	$0.84i^{1.169}$	0.86 <i>i</i> ^{1.088}	0.81 <i>i</i> +0.057	0.63 <i>i</i> +0.249	0.56 <i>i</i> +0.328	0.47 <i>i</i> +0.426	0.37 <i>i</i> +0.536		
C/D	$C_{C/D}=$	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =	C _{C/D} =		
	$0.83i^{1.122}$	0.82 <i>i</i> +0.035	0.74 <i>i</i> +0.132	0.56 <i>i</i> +0.319	0.49 <i>i</i> +0.393	0.41 <i>i</i> +0.484	0.32 <i>i</i> +0.588		
	1.0	0							

Basin ID	% Imperv.	i	Sail Turne	Runoff Coefficients, C			Basin	Total	Weighted Runoff Coefficients, C			с	
Basin ID			son type	2-Year	5-Year	10-Year	100-Year	Area	Area	2-Year	5-Year	10-Year	100-Year
			А	0.01	0.01	0.01	0.13	50.70					
Al	2.0%	0.02	В	0.01	0.01	0.07	0.44	36.27	86.97	0.01	0.01	0.03	0.25
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	72.11					
A2	2.0%	0.02	В	0.01	0.01	0.07	0.56	48.34	120.45	0.01	0.01	0.03	0.30
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	53.99					
A3	2.0%	0.02	В	0.01	0.01	0.07	0.44	32.88	86.92	0.01	0.01	0.03	0.24
			C or D	0.01	0.05	0.15	0.49	0.05					
			А	0.01	0.01	0.01	0.14	52.23					
A4	3.3%	0.03	В	0.02	0.02	0.08	0.44	28.10	80.33	0.01	0.01	0.04	0.24
			C or D	0.02	0.06	0.16	0.50	0.00					
			А	0.01	0.01	0.01	0.13	2.04					
B1	2.0%	0.02	В	0.01	0.01	0.07	0.44	1.78	3.82	0.01	0.01	0.04	0.27
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	4.66					
B2	2.0%	0.02	В	0.01	0.01	0.07	0.44	0.94	5.60	0.01	0.01	0.02	0.18
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.01	0.01	0.01	0.13	25.62					
C1	2.0%	0.02	В	0.01	0.01	0.07	0.44	20.41	46.03	0.01	0.01	0.04	0.26
			C or D	0.01	0.05	0.15	0.49	0.00					
			А	0.04	0.04	0.05	0.19	1.24					
DI	9.7%	0.10	В	0.05	0.07	0.14	0.47	4.32	5.68	0.05	0.06	0.12	0.41
			C or D	0.06	0.11	0.20	0.52	0.12					

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

TIME OF CONCENTRATION CALCULATIONS

-REFERENCE UDFCD Vol.1 Section 2.4

NRCS Conveyance factors, K -REFERENCE UDFCD Vol.1 RUNOFF Table 6-2 2.50 Short Grass Pasture & Lawns 7.00 Grassed W

Grassed Waterway

15.00

			T	ïllage/field	5.00		Nearly Bo	are Ground	10.00	Paved	Area & Sha	llow Gutter	20.00	
SUB-BASI	Ν		INITIA	l / Overla	ND		TF	RAVEL TIME				T(c) C	CHECK	FINAL
DATA				TIME			Т(†)					(URBANIZ	ed basins)	T(C)
DRAIN	AREA	C(5)	Length	Slope	T(i)	Length	Slope	Coeff.	Velocity	T(†)	COMP.	% IMPER-	USDCM	
BASIN	ac.		ft.	%	min	ft.	%		fps	min.	T(c)	VIOUS	Eq . 6-5	min.
A1	86.97	0.01	148	1.3	21.7	2623	2.4	5.00	0.8	54.7	76.4	2.0%		76.4
A2	120.45	0.01	300	1.7	28.8	3149	1.7	5.00	0.7	75.0	103.8	2.0%		103.8
A3	86.92	0.01	300	3.3	22.9	3203	2.4	5.00	0.8	66.7	89.6	2.0%		89.6
A4	80.33	0.01	300	3.7	22.1	3023	2.0	5.00	0.7	72.0	94.1	3.3%		94.1
B1	3.82	0.01	240	1.0	30.1	357	1.4	5.00	0.6	9.9	40.0	2.0%		40.0
B2	5.60	0.01	300	1.5	29.9	466	3.0	5.00	0.9	8.6	38.5	2.0%		38.5
C1	46.03	0.01	300	5.2	19.8	1517	1.6	5.00	0.6	42.1	61.9	2.0%		61.9
DI	5.68	0.06	529	0.9	45.4	1189	2.5	5.00	0.8	24.8	70.2	9.7%		70.2

Heavy Meadow

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

RATIONAL METHOD PEAK RUNOFF

5-YR STORM

SF-3

-REFERENCE UDFCD Vol.1 EQ 5-1 & EQ 6-1

Include this table (with both design storms) on the Proposed drainage Plan/Map.

Rainfall Depth-Duration-Frequency (1-hr) = 1.5

BASI	n informa	TON		DIR	ECT RUN	OFF			TOTAL RU	JNOFF		
DESIGN	DRAIN	AREA	5yr RUNOFF	T(c)	СхА	I	Q	T(C)	SUM	Ι	Q	
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min	СхА	in/hr	cfs	REMARKS
1	A1	86.97	0.01	76.4	0.74	1.28	0.9					
2	A2	120.45	0.01	103.8	1.01	1.03	1.0					
3	A3	86.92	0.01	89.6	0.72	1.15	0.8					
4	A4	80.33	0.01	94.1	1.18	1.11	1.3					
5	B1	3.82	0.01	40.0	0.03	1.97	1.4					
6	B2	5.60	0.01	38.5	0.04	2.02	0.1					
7	C1	46.03	0.01	61.9	0.40	1.48	0.6					
8	D1	5.68	0.06	70.2	0.36	1.36	0.5					

 Westwood Project #:21201
 18-082

 Prepared By:
 MSH

RATIONAL METHOD PEAK RUNOFF

<u>100-YR STORM</u>

SF-3

-REFERENCE UDFCD Vol.1 EQ 5-1 & EQ 6-1

Rainfall Depth-Duration-Frequency (1-hr) = **2.52**

BASI	BASIN INFORMATON				DIRECT RUNOFF				TOTAL R	JNOFF		
DESIGN	DRAIN	AREA	100yr RUNOFF	T(C)	СхА		Q	T(C)	SUM		Q	
POINT	BASIN	ac.	COEFF	min		in/hr	cfs	min	СхА	in/hr	cfs	REMARKS
1	A1	86.97	0.25	76.4	22.16	2.16	47.8					
2	A2	120.45	0.30	103.8	36.13	1.74	62.8					
3	A3	86.92	0.24	89.6	21.12	1.93	40.8					
4	A4	80.33	0.24	94.1	19.51	1.86	36.4					
5	B1	3.82	0.27	40.0	1.03	3.32	1.4					
6	B2	5.60	0.18	38.5	0.99	3.40	3.4					
7	C1	46.03	0.26	61.9	12.10	2.49	30.2					
8	D1	5.68	0.41	70.2	2.33	2.29	5.3					

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Return Period	1-Hour Depth	6-Hour Depth	24-Hour Depth
2	1.19	1.70	2.10
5	1.50	2.10	2.70
10	1.75	2.40	3.20
25	2.00	2.90	3.60
50	2.25	3.20	4.20
100	2.52	3.50	4.60

 Table 6-2. Rainfall Depths for Colorado Springs

Where Z= 6,840 ft/100

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves² and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either short-duration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lower-intensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

• **Thunderstorms**: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Land Llas on Cunfass	Downant		Runoff Coefficients												
Characteristics	Impervious	2-y	ear	5-y	ear	10-y	/ear	25-1	/ear	50-year		100-	year		
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D		
Business															
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89		
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68		
Residential															
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65		
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58		
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57		
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56		
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55		
Industrial															
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74		
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83		
Parks and Cometories	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52		
Playgrounds	13	0.05	0.05	0.12	0.13	0.20	0.31	0.30	0.42	0.37	0.48	0.35	0.52		
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58		
Undeveloped Areas															
Historic Flow Analysis	2														
Greenbelts, Agriculture	-	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51		
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50		
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50		
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96		
Offsite Flow Analysis (when	45														
landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59		
Sture a tra															
Streets	100	0.00	0.00	0.00	0.00	0.02	0.02	0.04	0.04	0.05	0.05	0.00	0.00		
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96		
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74		
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96		
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83		
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50		

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

DETENTION BASIN DESIGN WORKBOOK

UD-Detention, Version 3.07 (February 2017) **Urban Drainage and Flood Control District** Denver, Colorado www.udfcd.org Purpose: This workbook aids in the estimation of stormwater detention basin sizing and outlet routing based on the modified puls routing method for urban watersheds. Several different BMP types and various outlet configurations can be sized. **Function:** 1. Approximates the stage-area-volume relationship for a detention basin based on watershed parameters and basin geometry parameters. Also evaluates existing user-defined basin stage-area relationships. 2. Sizes filtration media orifice, outlet orifices, elliptical slots, weirs, trash racks, and develops stage-discharge relationships. Uses the Modified Puls method to route a series of hydrographs (i.e., 2-, 5-, 10-, 25-, 50-, 100- and 500-year) and calibrates the peak discharge out of the basin to match the pre-development peak discharges for the watershed. Content: This workbook consists of the following sheets: Basin Tabulates stage-area-volume relationship estimates based on watershed parameters **Outlet Structure** Tabulates a stage-discharge relationship for the user-defined outlet structure (inlet control). Reference Provides reference equations and figures. User Tips and Tools Provides instructions and video links to assist in using this workbook. Includes a stage-area calculator. **BMP Zone Images** Provides images of typical BMP zone confirgurations corresponding with Zone pulldown selections. Acknowledgements: Spreadsheet Development Team: Ken MacKenzie, P.E., Holly Piza, P.E.

Urban Drainage and Flood Control District Derek N. Rapp, P.E. Peak Stormwater Engineering, LLC

Dr. James C.Y. Guo, Ph.D., P.E.

Professor, Department of Civil Engineering, University of Colorado at Denver

 Comments?
 Direct all comments regarding this spreadsheet workbook to:
 UDFCD email

 Revisions?
 Check for revised versions of this or any other workbook at:
 Downloads

DETENTION	BASIN STAC	GE-STORAGE	TABLE	BUII DER
	DAJIN JIA	JE-JI OKAOL	TADLL	DOILDLIN

UD-Detention, Version 3.07 (February 2017)

PERMANENT-		ZONE 1 ORIFIC	AND 2	ORIFICE			
POOL	Example	Zone	Configuration	(Retention Pond)			

POOL Example Zone	Configurat	ion (Reten	ntion Pond)	
Required Volume Calculation				
Selected BMP Type =	EDB	1		
Watershed Area =	86.01	acres		
Watershed Length =	3,300	ft		
Watershed Slope =	0.024	ft/ft		
Watershed Imperviousness =	3.74%	percent		
Percentage Hydrologic Soil Group A =	60.0%	percent		
Percentage Hydrologic Soil Group B =	39.0%	percent		
Percentage Hydrologic Soil Groups C/D =	1.0%	percent		
Desired WQCV Drain Time =	40.0	hours		
Location for 1-hr Rainfall Depths =	User Input			
Water Quality Capture Volume (WQCV) =	0.198	acre-feet	Optional User	Overri
Excess Urban Runoff Volume (EURV) =	0.219	acre-feet	1-hr Precipita	tion
2-yr Runoff Volume (P1 = 1.19 in.) =	0.138	acre-feet	1.19	inches
5-yr Runoff Volume (P1 = 1.5 in.) =	0.218	acre-feet	1.50	inches
10-yr Runoff Volume (P1 = 1.75 in.) =	0.625	acre-feet	1.75	inches
25-yr Runoff Volume (P1 = 2 in.) =	2.040	acre-feet	2.00	inches
50-yr Runoff Volume (P1 = 2.25 in.) =	3.242	acre-feet	2.25	inches
100-yr Runoff Volume (P1 = 2.52 in.) =	5.391	acre-feet	2.52	inches
500-yr Runoff Volume (P1 = 0 in.) =	0.000	acre-feet		inches
Approximate 2-yr Detention Volume =	0.126	acre-feet		
Approximate 5-yr Detention Volume =	0.202	acre-feet		
Approximate 10-yr Detention Volume =	0.517	acre-feet		
Approximate 25-yr Detention Volume =	0.784	acre-feet		
Approximate 50-yr Detention Volume =	0.925	acre-feet		
Approximate 100-yr Detention Volume =	1.541	acre-feet		

Stage-Storage	Calculation

Stage-Storage Calculation		
Zone 1 Volume (WQCV) =	0.198	acre-feet
Zone 2 Volume (100-year - Zone 1) =	1.343	acre-feet
Zone 3 Volume (User Defined - Zones 1 & 2) =	8.020	acre-feet
Total Detention Basin Volume =	9.561	acre-feet
Initial Surcharge Volume (ISV) =	user	ft/3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

Initial Surcharge Area (A₁₀) = user Initial Surcharge Area (A₁₀) = user Surcharge Volume Length (L₁₀) = user ft Surcharge Volume Withh (W₁₀) = user ft Length of Basin Floor (H₁₀₀₀) = user ft Width of Basin Floor (M₁₀₀₀) = user ft Width of Basin Floor (M₁₀₀₀) = user ft Area of Basin Floor (M₁₀₀₀) = user ft Volume of Basin Floor (M₁₀₀₀) = user ft User ft Length of Main Basin (H_{MM0}) = user ft Midth of Main Basin (M_{MM0}) = user ft Area of Main Basin (M_{M0}) = user ft Area of Main Basin (M_{M0})

0		Depth Increment =	1	ft				Ontional			
tion Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft/2)	Override Area (ft/2)	Area (acre)	Volume (ft*3)	Volume (ac-ft)
		T op of Micropool		0.00				1	0.000	4.005	0.020
		Bottom of Eoky		1.33			-	0,353 36 703	0.845	23 584	0.030
		Top of EURV		2.33				39,378	0.904	62,036	1.424
			-	3.33			-	55,423	1.272	109,436	2.512
				4.33				62,524	1.435	168,410	3.866
		Top of Basin	-	5.33				74,355	1.707	236,849	5.437
							-				
							-				
							-				
Optional Use	er Override						-				
1-hr Precipit	ation										
1.19	inches										
1.75	inches		-				-				
2.00	inches										
2.25	inches										
2.52	inches		-								
	inches										
							-				
							-				
							-				
							-				
							-				
			-				-				-
			-								
							-				
			-								
			-				-				
			-								
			-								
							-				
							-				
			-								
							-				
			-								
							-				
											-
			-				-				
							-				
							-				
			-								
							-				
			-								
							-				
							-				
			-								
							-				
				1				1		1	1

DETENTION BASIN STAGE-STORAGE TABLE BUILDER UD-Detention, Version 3.07 (February 2017)

Detention Basin Outlet Structure Design															
UD-Detention, Version 3.07 (February 2017) Project: Grazing Yak Solar															
Basin ID: A4															
	ZONE 2 ZONE 2														
			7000 1 (MOCV)	0.81	2011e VOlume (ac-rt)	Orifice Plate	1								
± ± ••••				2.44	1.242	Woir& Pipe (Circular)									
ZONE 1 AND 2 ODIEICES	ORIFICI	E	Jone 2 (100-year)	2.40	9.020	weir appe (circular)									
POOL Example Zone	Configuration (R	etention Pond)	ZUTIE 3 (USEL)		9.561	Total	J								
User Input: Orifice at Underdrain Outlet (typically u	ed to drain WQCV i	n a Filtration BMP)			7.501	Calculate	ed Parameters for Ur	nderdrain							
Underdrain Orifice Invert Depth =	N/A	ft (distance below th	ne filtration media su	irface)	Unde	rdrain Orifice Area =	N/A	ft ²							
Underdrain Orifice Diameter =	N/A	inches			Underdra	in Orifice Centroid =	N/A	feet							
User Input: Orifice Plate with one or more orifice -	or Elliptical Slot Weir	typically used to dra	ain WQCV and/or EU	RV in a sedimentatio	on BMP)	Calcu	lated Parameters for	Plate							
Depth at top of Zone using Orifice Plate =	0.81	ft (relative to basin t	bottom at Stage = 0 fi	t)	WQ OI	lliptical Half-Width =	8.342E-03	feet							
Orifice Plate: Orifice Vertical Spacing =	2.00	inches		•,	Elli	ptical Slot Centroid =	N/A	feet							
Orifice Plate: Orifice Area per Row =	1.23	sq. inches (diameter	r = 1-1/4 inches)			Elliptical Slot Area =	N/A	ft ²							
		_						-							
User Input: Stage and Total Area of Each Orifice I	Row (numbered fror	n lowest to highest)							_						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	l						
Stage of Orifice Centroid (ft)	0.00	0.20	0.40	0.60	0.80										
Orifice Area (sq. inches)	1.23	1.23	1.23	1.23	1.23				I						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1						
Stage of Orifice Centroid (ft)			(c) · · · //	(c)	(c) · · · //	(1) (1) (1)			1						
Orifice Area (sq. inches)															
Licar Input: Vartical Orifica (Circ	ular or Bostongular)					Calculated	Daramators for Vort	tical Orifica							
User input. Vertical Office (Circ	Not Selected	Not Selected	1			Calculated	Not Selected	Not Selected	1						
Invert of Vertical Orifice =			ft (relative to basin b	bottom at Stage = 0 f	t) V	ertical Orifice Area =			ft ²						
Depth at top of Zone using Vertical Orifice =			ft (relative to basin b	bottom at Stage = 0 f	t) Vertio	al Orifice Centroid =			feet						
Vertical Orifice Diameter =			inches												
User Input: Overflow Weir (Dropbox) and G	rate (Flat or Sloped)	1				Calculated	Parameters for Ove	rflow Weir							
User Input: Overflow Weir (Dropbox) and G	rate (Flat or Sloped) Zone 2 Weir	Not Selected]			Calculated	Parameters for Ove Zone 2 Weir	rflow Weir Not Selected	 						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho =	rate (Flat or Sloped) Zone 2 Weir 2.33	Not Selected	ft (relative to basin bo	ottom at Stage = 0 ft)	Height of Gr	Calculated ate Upper Edge, H _t =	Parameters for Ove Zone 2 Weir 2.33	rflow Weir Not Selected	feet						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00	Not Selected	ft (relative to basin bo feet	ottom at Stage = 0 ft)	Height of Gr Over Flow	Calculated ate Upper Edge, H _t = Weir Slope Length =	Parameters for Ove Zone 2 Weir 2.33 100.00	rflow Weir Not Selected	feet feet						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz Length of Weir Sides	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00	Not Selected	ft (relative to basin bo feet H:V (enter zero for f	ottom at Stage = 0 ft) Tat grate)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = m Area w/o Debris -	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00	rflow Weir Not Selected	feet feet should be ≥ 4						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80%	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet % grate open area/	ottom at Stage = 0 ft) Tat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated ate Upper Edge, H _t = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00	rflow Weir Not Selected	feet feet should be ≥ 4 ft ² ft ²						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50%	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ %	ottom at Stage = 0 ft) Tat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated ate Upper Edge, H ₁ = Weir Slope Length 100-yr Orifice Area = in Area w/o Debris = een Area w/ Debris =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00	rflow Weir Not Selected	feet feet should be ≥ 4 ft ² ft ²						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50%	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ %	ottom at Stage = 0 ft) 1at grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated ate Upper Edge, H ₁ = Weir Slope Length 100-yr Orifice Area = in Area w/o Debris = een Area w/ Debris =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00	rflow Weir Not Selected	feet feet should be ≥ 4 ft ² ft ²						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice)	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op	Calculated ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = In Area w/o Debris = een Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 *s for Outlet Pipe w/	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.32	Not Selected	ft (relative to basin bu feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (dictagen balow basi	ottom at Stage = 0 ft) lat grate) total area	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op ()	Calculated ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = wen Area w/ Debris = Calculated Parameter	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00	Not Selected	ft (relative to basin bu feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Oterflow Grate Op Oterflow Grate Op	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = wen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 's for Outlet Pipe w/ Zone 2 Circular 2.41 0.88	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00	Not Selected	ft (relative to basin bu feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-1	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (0 ft) Outt Central Angle of Rests	Calculated ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = wen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 *s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Siope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orlfice Diameter =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00	Not Selected	ft (relative to basin bu feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-(Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op (0 ft) Out Central Angle of Restu	Calculated ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = wen Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² ft ² feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Oterflow Grate Op Oterflow Grate Op Oterflow Grate Open Oterflow Grate Open Open Oterflow Grate Open Open Open Open Open Open Open Open	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calculated Declar El w Devris	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 's for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Slobes = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage=	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00	Not Selected	ft (relative to basin bu feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Ott Oft) Out Central Angle of Rest Spillway Staro a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = eaculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth=	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 's for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Sides = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Enest Length = Spillway Enest Length =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00	Not Selected	ft (relative to basin bu feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-(Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Ott Ott Central Angle of Rest Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stores = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectand Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Kater Surface =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal)	Not Selected	ft (relative to basin bu feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Open Overflow Grate	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 's for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stores = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectand Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal)	Not Selected	ft (relative to basin bu feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Open Overflow Grate	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stores = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal)	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches bottom at Stage = 0 fi	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-(t)	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Ott Off) Out Central Angle of Rest Spillway Stage a Basin Area a	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ 0 Debris = en Area w/ 0 Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard =	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stores = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orlfice Diameter = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal)	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches bottom at Stage = 0 ff	ottom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-(t) 1.50	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Op Overflow Grate Open Overflow Grate Open State Open Basin Area a 100 Year	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ 0 Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 4000.00 2 one 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25	rflow Weir Not Selected	feet feet should be \geq 4 ft ² e ft ² feet radians						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stores = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restrii Zone 2 Circular 2.33 21.00 ular or Trapezoidal)	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches bottom at Stage = 0 ff 2 Year 1.19 0.138	ottom at Stage = 0 ft) Tat grate) total area sin bottom at Stage = 0 Half-(t) <u>5 Year</u> 1.50 0.218	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Ot O ft) Out Central Angle of Rest Spillway Stage a Basin Area a 10 Year 1.75 0.625	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = en Area w/ 0 Debris = en Area w/ 0 Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.040	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e feet radians 500 Year 0.00 0.000						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ti) = OPTIONAL Override Runoff Volume (acre-ti) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) Ular or Trapezoidal)	Not Selected	ft (relative to basin be feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches bottom at Stage = 0 ft 2 Year 1.19 0.138	ottom at Stage = 0 ft) Tat grate) total area sin bottom at Stage = 0 Half-(t) 5 Year 1.50 0.218 0.217	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Op Ot Ot Ot Central Angle of Restr Spillway Stage a Basin Area a	Calculated ate Upper Edge, H ₁ = Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/o Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.040	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 rs for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 2.320	rflow Weir Not Selected	feet feet should be \geq 4 ft ² e ff ² feet radians 500 Year 0.00 0.000						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, a (cfs/acre) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) Ular or Trapezoidal) Ular or Trapezoidal)	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ff 2 Year 1.19 0.138 0.137 0.00	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overfl	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = een Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.040 2.038 0.25	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 3.239 0.44	rflow Weir Not Selected	feet feet should be \geq 4 ft ² fe feet radians 500 Year 0.00 0.000 = #N/A 0.00						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) Ular or Trapezoidal) Ular or Trapezoidal) Ular or Trapezoidal) 0.198 0.198	Not Selected Image: Constraint of the selected Image: Conselected Image: Cons	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches) inches bottom at Stage = 0 ft 1.19 0.138 0.137 0.00	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Ope Spillway Stage a Basin Area a Overflow Grate Ope Overflow Grate Ope O	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = een Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 2.040 2.038 0.25 21.8	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 3.239 0.44 37.5	rflow Weir Not Selected	feet feet should be \geq 4 ft ² fe fet radians 500 Year 0.00 0.000 #N/A 0.00 0.00						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectant Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = Oner-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) WOCV 0.53 0.198 0.197 0.00 0.0 3.0	Not Selected Image: Constraint of the second seco	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basi inches bottom at Stage = 0 ff 2 Year 1.19 0.138 0.00 0.4 2.1	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9 3.3 0.1	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Overflow Overfl	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = een Area w/ Debris = Calculated Parameter Outlet Orifice Area = let Orifice Centroid = icitor Plate on Pipe = Calcula Design Flow Depth = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.040 2.038 0.25 21.8 30.6 16 2	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 3.239 0.44 37.5 48.4 22 5	rflow Weir Not Selected	feet feet should be \geq 4 ft ² fe fet radians 500 Year 0.00 0.000 0.000 $\frac{\#N/A}{0.0}$						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectand Spillway Invert Stage Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculate Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow Q (cfs) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) wocv 0.53 0.198 0.197 0.00 0.0 3.0 0.1 N/A	Not Selected Image: Constraint of the selected Image: Consele	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ff 2 Year 1.19 0.138 0.137 0.00 0.4 2.1 0.1 0.1	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9 3.3 0.1	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Grate Overflow Grate Overflow Overflow Grate Overflow Grate O	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = een Area w/ Debris = Calculated Parameter Outlet Orifice Area = tet Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = 25 Year 2.00 2.040 2.038 0.25 21.8 30.6 16.3 0.7	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 3.239 0.44 37.5 48.4 23.5 0.6	rflow Weir Not Selected Flow Restriction Plat Not Selected N/A Spillway feet feet acres 100 Year 2.52 5.391 5.378 0.70 60.3 79.5 26.3 0.4	feet feet should be \geq 4 ft ² fe fet radians $\frac{500 \text{ Year}}{0.00}$ 0.000 $\frac{1}{1000}$ $\frac{1}{10000}$ $\frac{1}{1000}$ \frac						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-tt) = Inflow Hydrograph Volume (acre-tt) = Inflow Hydrograph Volume (acre-tt) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outlow to Predevelopment Q = Ratio Peak Outlow to Predevelopment Q = Structure Controlling Flow =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orlifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) WOCV 0.53 0.198 0.197 0.00 0.0 3.0 0.1 N/A Plate	Not Selected	ft (relative to basin bo feet H-V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches bottom at Stage = 0 ft 2 Year 1.19 0.138 0.137 0.00 0.4 2.1 0.1 N/A Plate	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9 3.3 0.1 Plate	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Overflow Grate Op Overflow Grate Ope Overflow Grate Overflow Overflow Grate Overflow Grate Overflow Overflow G	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = een Area w/ o Debris = calculated Parameter Outlet Orifice Area = et Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.040 2.040 2.038 0.25 21.8 30.6 16.3 0.7 Overflow Grate 1	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for 5 3.242 3.239 0.44 3.7.5 48.4 2.3.5 0.6 Outlet Piate 1	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² fee radians $\frac{500 \text{ Year}}{0.00}$ 0.000 $\frac{1}{1000}$ $\frac{1}{1000}$ 0.00 0.000 $\frac{1}{1000}$ $\frac{1}{1000$						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Front Edge Length = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectang Spillway Invert Stage Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-tt) = Inflow Hydrograph Volume (acre-tt) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) WOCV 0.53 0.198 0.197 0.00 0.0 3.0 0.1 N/A Plate N/A	Not Selected Image: Constraint of the selected Image: Conselected Image: Cons	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % ft (distance below basinches inches bottom at Stage = 0 ft 0.137 0.138 0.137 0.00 0.4 2.1 0.1 N/A Plate N/A	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9 3.3 0.1 Plate N/A N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Otri) Outi Central Angle of Restu Spillway Stage a Basin Area a 10 Year 1.75 0.625 0.624 0.624 0.624 0.62 6.7 9.5 0.2 0.0 Plate N/A	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = een Area w/ o Debris = Calculated Parameter Outlet Orifice Centroid = cictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 2.040 2.040 2.040 2.038 0.25 2.1.8 30.6 16.3 0.7 Overflow Grate 1 0.0	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 3.242 3.249 0.44 3.5 48.4 23.5 0.6 Outlet Plate 1 0.0 N/A	rflow Weir Not Selected	feet feet should be \geq 4 ft ² e ft ² feet radians $\frac{500 \text{ Year}}{0.00}$ 0.000 0.000 $\frac{1}{1000}$ 1						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectand Spillway Invert Stage Spillway Crest Length = Spillway End Stopes = Freeboard above Max Water Surface = Caclulated Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Inflow Q (cfs) = Ratio Peak Outflow to (reds) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Unitme (houres)	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) WOCV 0.53 0.198 0.197 0.00 0.0 3.0 0.197 0.00 0.0 3.0 0.1 N/A Plate N/A N/A 40	Not Selected	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below bas inches bottom at Stage = 0 ff 0.137 0.138 0.137 0.00 0.4 2.1 0.1 N/A Plate N/A N/A Plate N/A 34	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9 3.3 0.1 Plate N/A N/A N/A	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Otri) Outi Central Angle of Restu Spillway Stage a Basin Area a 10 Year 1.75 0.625 0.625 0.624 0.08 6.7 9.5 0.2 0.0 Plate N/A N/A N/A	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/o Debris = een Area w/ Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.000 2.040 2.038 0.25 21.8 30.6 16.3 0.7 0.0verflow Grate 1 0.0 N/A 92	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for 5 50 Year 2.25 3.242 3.239 0.44 3.239 0.45 0.6 0.6 0.0 N/A 86	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectand Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Volume (acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) Ular or Trapezoidal) 0.197 0.00 0.197 0.00 0.0 0.197 0.00 0.0 0.1 N/A Plate N/A N/A 40 43	Not Selected Image: Constraint of the selected Image: Conselected Image: Cons	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ff 2 Year 1.19 0.138 0.137 0.00 0.4 2.1 0.1 N/A N/A N/A N/A N/A 34 37	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9 3.3 0.1 Plate N/A N/A N/A 41 45	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Oth Oth Central Angle of Restu Spillway Stage a Basin Area a 0.625 0.625 0.625 0.624 0.08 6.7 9.5 0.2 0.0 Plate N/A N/A N/A N/A 70	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/ 0 Debris = een Area w/ 0 Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 2.000 2.040 2.038 0.25 21.8 30.6 116.3 0.7 Overflow Grate 1 0.0 N/KA 92 104	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 3.239 0.44 37.5 48.4 223.5 0.6 0.0 Wither Plate 1 0.0 N/A	rflow Weir Not Selected	feet feet should be \geq 4 ft ² ft ² e ft ² feet radians $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$ $\frac{1}{N/A}$						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Stores = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectand Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Preeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Maximum Ponding Depth (ft) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) ular or Trapezoidal) 0.197 0.00 0.197 0.00 0.0 0.197 0.00 0.0 0.197 0.00 0.0 0.1 N/A N/A N/A N/A N/A N/A 0.77 0.00	Not Selected Image: Constraint of the selected Image: Consele	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ft 0.137 0.00 0.4 2.1 0.137 0.00 0.4 2.1 0.1 N/A Plate N/A N/A 34 37 0.65	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9 3.3 0.1 Plate N/A N/A N/A N/A 41 45 0.81 0 f	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Oth Oth Central Angle of Restu Spillway Stage a Basin Area a 0.625 0.625 0.625 0.624 0.08 6.7 9.5 0.2 0.0 Plate N/A N/A N/A N/A N/A 0.3 70 1.38	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/ 0 Debris = een Area w/ 0 Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.000 2.040 2.038 0.25 21.8 30.6 116.3 0.7 0.0verflow Grate 1 0.0 N/KA 92 104 2.39	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 3.239 0.44 37.5 48.4 23.5 0.6 0.0 Wither Plate 1 0.0 N/A 86 100 2.65	rflow Weir Not Selected	feet feet feet should be \geq 4 ft ² ft ² e feet radians $\frac{1}{2}$						
User Input: Overflow Weir (Dropbox) and G Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Store = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Circular Orifice Diameter = User Input: Emergency Spillway (Rectand Spillway Invert Stage Spillway Crest Length = Spillway Crest Length = Created Runoff Volume (acre-th) = Inflow Hydrograph Volume (acre-th) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (h) = Area at Maximum Ponding Depth (acres) = Maximum Ponding Depth (acres) =	rate (Flat or Sloped) Zone 2 Weir 2.33 100.00 0.00 100.00 80% 50% rcular Orifice, Restri Zone 2 Circular 2.33 21.00 ular or Trapezoidal) ular or Trapezoidal) 0.197 0.00 0.197 0.00 0.0 0.197 0.00 0.0 0.1 N/A Plate N/A N/A 40 43 0.77 0.48 0.179	Not Selected Image: Constraint of the selected Image: Consele	ft (relative to basin bo feet H:V (enter zero for f feet %, grate open area/ % gular Orifice) ft (distance below basi inches bottom at Stage = 0 ff 0.137 0.00 0.4 2.1 0.137 0.00 0.4 2.1 0.1 N/A N/A N/A N/A 34 37 0.65 0.39 0.122	bitom at Stage = 0 ft) lat grate) total area sin bottom at Stage = 0 Half-0 Half-0 t) 5 Year 1.50 0.218 0.217 0.01 0.9 3.3 0.1 Plate N/A N/A N/A N/A 41 45 0.81 0.51 0.199	Height of Gr Over Flow Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op Otri) Out Central Angle of Restu Spillway Stage a Basin Area a Basin Area a 0.625 0.625 0.625 0.625 0.624 0.08 6.7 9.5 0.2 0.0 Plate N/A N/A N/A N/A N/A N/A 0.85 0.854	Calculated ate Upper Edge, H, = Weir Slope Length = 100-yr Orifice Area = in Area w/ 0 Debris = een Area w/ 0 Debris = calculated Parameter Outlet Orifice Area = let Orifice Centroid = rictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.000 2.040 2.038 0.25 21.8 30.6 116.3 0.7 0.0verflow Grate 1 0.0 N/KA 92 104 2.39 0.93	Parameters for Ove Zone 2 Weir 2.33 100.00 3326.01 8000.00 4000.00 s for Outlet Pipe w/ Zone 2 Circular 2.41 0.88 N/A ted Parameters for S 50 Year 2.25 3.242 3.239 0.44 37.5 48.4 23.5 0.6 0.0 Wither Plate 1 0.0 N/A 86 100 2.65 1.02 1.722	rflow Weir Not Selected Flow Restriction Plat Not Selected N/A Spillway feet feet acres 100 Year 2.52 5.391 5.378 0.70 60.3 79.5 26.3 0.4 Outlet Plate 1 0.0 N/A	feet feet feet should be \geq 4 ft ² ft ² e ft feet radians $\frac{1}{N/A}$ 1						

Detention Basin Outlet Structure Design

	The user can o	verride the calcu	lated inflow hydi	rographs from th	nis workbook wit	h inflow hydrogra	aphs developed	in a separate pro	gram.	-
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	#N/A
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.45 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	0:05:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
Hydrograph	0:10:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
0 917	0:10.21	0.14	0.15	0.10	0.15	0.42	3.59	2.04	9.05	#N/A #N/A
0.011	0:27:15	0.95	1.05	0.67	1.04	2.92	9.23	14.44	23.23	#N/A
	0:32:42	2.60	2.88	1.83	2.86	8.02	25.34	39.62	63.64	#N/A
	0:38:09	3.04	3.38	2.14	3.35	9.52	30.62	48.36	79.50	#N/A
	0:43:36	2.89	3.21	2.03	3.18	9.08	29.33	46.41	76.83	#N/A
	0:54:30	2.83	2.92	1.64	2.69	7.38	23.97	42.23	63.20	#N/A #N/A
	0:59:57	2.00	2.22	1.39	2.20	6.37	20.84	33.18	55.39	#N/A
	1:05:24	1.75	1.94	1.22	1.92	5.55	18.12	28.93	48.41	#N/A
	1:10:51	1.58	1.76	1.10	1.74	5.03	16.42	26.16	43.61	#N/A
	1:16:18	1.29	1.43	0.90	1.42	4.15	13.69	21.88	36.66	#N/A
	1:27:12	0.78	0.88	0.72	0.87	2.61	8.86	14.29	24.20	#N/A #N/A
	1:32:39	0.57	0.64	0.39	0.63	1.94	6.75	10.99	18.76	#N/A
	1:38:06	0.42	0.47	0.29	0.46	1.41	4.97	8.17	14.08	#N/A
	1:43:33	0.33	0.37	0.23	0.36	1.09	3.77	6.15	10.51	#N/A
	1:49:00	0.27	0.30	0.19	0.30	0.90	3.07	4.97 4 10	8.42	#N/A #N/A
	1:59:54	0.23	0.20	0.16	0.20	0.76	2.39	4.18	6.15	#N/A #N/A
	2:05:21	0.18	0.21	0.13	0.20	0.60	2.03	3.26	5.49	#N/A
	2:10:48	0.17	0.19	0.12	0.19	0.56	1.86	2.99	5.02	#N/A
	2:16:15	0.13	0.14	0.09	0.14	0.41	1.37	2.22	3.77	#N/A
	2:21:42	0.09	0.10	0.06	0.10	0.30	1.00	1.61	2.73	#N/A #N/A
	2:32:36	0.07	0.05	0.03	0.07	0.16	0.74	0.88	1.50	#N/A
	2:38:03	0.03	0.04	0.02	0.04	0.12	0.40	0.64	1.10	#N/A
	2:43:30	0.02	0.03	0.02	0.03	0.08	0.28	0.46	0.79	#N/A
	2:48:57	0.02	0.02	0.01	0.02	0.06	0.21	0.34	0.58	#N/A
	2:54:24	0.01	0.01	0.01	0.01	0.04	0.14	0.23	0.40	#N/A #N/A
	3:05:18	0.00	0.00	0.00	0.00	0.02	0.05	0.08	0.15	#N/A
	3:10:45	0.00	0.00	0.00	0.00	0.00	0.02	0.04	0.07	#N/A
	3:16:12	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.02	#N/A
	3:21:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:32:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/Δ
	3:38:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:43:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:48:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	3:54:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:05:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/Δ
	4:10:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:16:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:21:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:27:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	4:37:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:43:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:48:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	4:54:18 4:59:45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:05:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:10:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:21:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	5:27:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:32:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:43:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:48:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	5:54:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	6:05:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:10:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	6:16:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A
	6:26:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A #N/A
	6:32:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	#N/A

Outflow Hydrograph Workbook Filename:

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points. Total Outflow Stage Area Area Volume Volume Stage - Storage Description [ft] [ft^2] [acres] [ft^3] [ac-ft] [cfs] For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'. Also include the inverts of all outlets (e.g. vertical orifice, overflow grate, and spillway, where applicable).

April 23, 2019

Appendix B *Hydraulic Calculations*

Area Listing (selected nodes)

Area (acres)	CN	Description (subcatchment-numbers)
502.500	62	(1S, 2S)
502.500	62	TOTAL AREA

2019-03-21_GrazingYak_Culverts

Soil Listing (selected nodes)

Area	Soil	Subcatchment
(acres)	Group	Numbers
0.000	HSG A	
0.000	HSG B	
0.000	HSG C	
0.000	HSG D	
502.500	Other	1S, 2S
502.500		TOTAL AREA

2019-03-21_GrazingYak_Culverts Prepared by Westwood Professional Services, Inc. HydroCAD® 10.00-19 s/n 10449 © 2016 HydroCAD Software Solutions LLC

Ground Covers (selected nodes)

HSG-A	HSG-B	HSG-C	HSG-D	Other	Total	Ground	Subcatchment
(acres)	(acres)	(acres)	(acres)	(acres)	(acres)	Cover	Numbers
0.000	0.000	0.000	0.000	502.500	502.500		1S, 2S
0.000	0.000	0.000	0.000	502.500	502.500	TOTAL	
						AREA	

2019-03-21_GrazingYak_Culverts	Grazing_Yak 24-hr S1 10-yr Rainfall=2.72"
Prepared by Westwood Professional Services, Inc.	Printed 3/21/2019
HydroCAD® 10.00-19 s/n 10449 © 2016 HydroCAD Software	Solutions LLC Page 5

Time span=5.00-20.00 hrs, dt=0.05 hrs, 301 points Runoff by SCS TR-20 method, UH=SCS, Weighted-CN Reach routing by Stor-Ind+Trans method - Pond routing by Stor-Ind method

Subcatchment 1S: Culvert 1 Drainage
Flow Length=5,400'Runoff Area=374.000 ac
Slope=0.0206 '/' Tc=140.4 min
CN=62Runoff Depth>0.24"
Runoff=27.01 cfs
7.473 afSubcatchment 2S: Culvert 2 Drainage
Flow Length=3,000'Runoff Area=128.500 ac
Slope=0.0230 '/' Tc=83.0 min
CN=62Runoff Depth>0.25"
Runoff=13.71 cfs
2.677 af

Total Runoff Area = 502.500 ac Runoff Volume = 10.150 af Average Runoff Depth = 0.24" 100.00% Pervious = 502.500 ac 0.00% Impervious = 0.000 ac

Summary for Subcatchment 1S: Culvert 1 Drainage

Runoff = 27.01 cfs @ 14.18 hrs, Volume= 7.473 af, Depth> 0.24"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Grazing_Yak 24-hr S1 10-yr Rainfall=2.72"

	Area	(ac)	CN	Desc	cription		
*	374.	000	62				
	374.	000		100.0	00% Pervi	ous Area	
	Tc (min)	Lengt (fee	h t)	Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	140.4	5,40	0 0	.0206	0.64		Lag/CN Method,

Subcatchment 1S: Culvert 1 Drainage

Summary for Subcatchment 2S: Culvert 2 Drainage

Runoff = 13.71 cfs @ 13.34 hrs, Volume= 2.677 af, Depth> 0.25"

Runoff by SCS TR-20 method, UH=SCS, Weighted-CN, Time Span= 5.00-20.00 hrs, dt= 0.05 hrs Grazing_Yak 24-hr S1 10-yr Rainfall=2.72"

	Area	(ac)	CN	Desc	ription		
*	128.	500	62				
	128.	500		100.0	00% Pervi	ous Area	
	Tc (min)	Length (feet)		Slope (ft/ft)	Velocity (ft/sec)	Capacity (cfs)	Description
	83.0	3,000	0.	0230	0.60		Lag/CN Method,

Subcatchment 2S: Culvert 2 Drainage

Peak Discharge	e Method: User-Specifie	ed					
Design Discha	rge	27.01 cfs	Check Disc	harge	0.00	cfs	
Grades Model:	Inverts						
Invert Upstrear	n	6,734.00 ft	Invert Dowr	nstream	6,733.75	ft	
Length		50.00 ft	Slope		0.005000	ft/ft	
Drop		0.25 ft					
Headwater Mod	lel: Unspecified						
Tailwater Condi	tions: Constant Tailwate	r					
Tailwater Eleva	ation	N/A ft					
Name	Description	Discharge	HW Elev.	Velocity			
x Trial-1	1-30 inch Circular	27.01 cfs	6,737.47 ft	7.26 ft/s			
Trial-2	2-24 inch Circular	27.01 cfs	6,736.50 ft	6.12 ft/s			
Trial-3	4-18 inch Circular	27.01 cfs	6,736.10 ft	5.36 ft/s			

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	6,737.47	ft	Discharge	27.01	cfs
Headwater Depth/Height	1.39		Tailwater Elevation	N/A	ft
Inlet Control HW Elev.	6,737.14	ft	Control Type	Outlet Control	
Outlet Control HW Elev.	6,737.47	ft			
Grades					
Upstream Invert	6,734.00	ft	Downstream Invert	6,733.75	ft
Length	50.00	ft	Constructed Slope	0.005000	ft/ft
Hydraulic Profile					
				4 77	
Profile CompositeM2F	ressureProfile	•	Depth, Downstream	1.77	ft 4
	Mild Outranitiant		Normal Depth	N/A 1	11 4
Flow Regime	Subcritical	ft/o	Critical Depth	0.020412	π ++/++
	7.20	105	Childai Siope	0.020412	1011
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.50	ft
Section Size	30 inch		Rise	2.50	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	6,737.47	ft	Upstream Velocity Head	0.47	ft
Ke	0.90		Entrance Loss	0.42	ft
Inlet Control Properties					
Inlet Control HW Elev.	6,737.14	ft	Flow Control	Unsubmerged	
Inlet Type	Projecting		Area Full	4.9	ft²
К	0.03400		HDS 5 Chart	2	
Μ	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Y	0.54000				

Design:Trial-2

Culvert Summary			
Allowable HW Elevation	N/A ft	t Storm Event	Design
Computed Headwater Elevation	6,736.50 ft	t Discharge	27.01 cfs
Headwater Depth/Height	1.25	Tailwater Elevation	N/A ft
Inlet Control HW Elev.	6,736.26 ft	t Control Type	Outlet Control
Outlet Control HW Elev.	6,736.50 ft	t	
Grades			
Upstream Invert	6,734.00 ft	t Downstream Invert	6,733.75 ft
Length	50.00 ft	t Constructed Slope	0.005000 ft/ft
Hvdraulic Profile			
- Profile	Mo	Depth Downstream	1.32 ft
Slope Type	wi∠ Mild	Normal Depth	1.32 IL N/A ft
Flow Regime	Subcritical	Critical Depth	1 32 ft
Velocity Downstream	6.12 ft/	t/s Critical Slope	0.020208 ft/ft
	0.12 10		
Section			
Section Shape	Circular	Mannings Coefficient	0.024
Section Material	CMP	Span	2.00 ft
Section Size	24 inch	Rise	2.00 ft
Number Sections	2		
Outlet Control Properties			
Outlet Control HW Elev.	6,736.50 ft	t Upstream Velocity Head	0.29 ft
Ke	0.90	Entrance Loss	0.26 ft
Inlet Control Properties			
	0.700.00		
Inlet Control HW Elev.	6,736.26 ft	t Flow Control	Unsubmerged
	Projecting		6.3 ft ²
	0.03400		2
	1.50000	Equation Form	3
v	0.00030	Equation Form	I
I	0.04000		

Design:Trial-3

Culvert Summary			
Allowable HW Elevation	N/A ft	Storm Event	Design
Computed Headwater Elevation	6,736.10 ft	Discharge	27.01 cfs
Headwater Depth/Height	1.40	Tailwater Elevation	N/A ft
Inlet Control HW Elev.	6,735.73 ft	Control Type	Outlet Control
Outlet Control HW Elev.	6,736.10 ft		
Grades			
Upstream Invert	6,734.00 ft	Downstream Invert	6,733.75 ft
Length	50.00 ft	Constructed Slope	0.005000 ft/ft
Profile CompositeM2F	PressureProfile	Depth, Downstream	1.01 ft
Slope Type	Mild	Normal Depth	N/A ft
	Subcritical	Critical Depth	1.01 ft
Velocity Downstream	5.36 ft/s	Critical Slope	0.022567 ft/ft
Section			
Section Shape	Circular	Mannings Coefficient	0.024
Section Material	CMP	Span	1.50 ft
Section Size	18 inch	Rise	1.50 ft
Number Sections	4		
Outlet Control Properties			
Outlet Control HW Elev.	6,736.10 ft	Upstream Velocity Head	0.23 ft
Ke	0.90	Entrance Loss	0.20 ft
Inlet Control Properties			
Inlet Control HW Elev.	6,735.73 ft	Flow Control	Unsubmerged
Inlet Type	Projecting	Area Full	7.1 ft ²
К	0.03400	HDS 5 Chart	2
Μ	1.50000	HDS 5 Scale	3
С	0.05530	Equation Form	1
Y	0.54000		

Peak Discharge	e Method: User-Specifie	ed					
Design Dischar	ge	13.71	cfs	Check Disc	narge	0.00	cfs
Grades Model:	nverts						
Invert Upstrear	n	6,769.00	ft	Invert Downstream 6,768.75 ft		ft	
Length		50.00	ft	Slope		0.005000	ft/ft
Drop		0.25	ft				
Headwater Model: Unspecified							
Tailwater Condit	ions: Constant Tailwate	r					
Tailwater Elevation		N/A	ft				
Name	Description	Disc	charge	HW Elev.	Velocity		
x Trial-1	1-24 inch Circular	13	3.71 cfs	6,771.54 ft	6.16 ft/s		
Trial-2	2-18 inch Circular	13	3.71 cfs	6,771.14 ft	5.40 ft/s		

Design:Trial-1

Culvert Summary					
Allowable HW Elevation	N/A	ft	Storm Event	Design	
Computed Headwater Elevation	6,771.54	ft	Discharge	13.71	cfs
Headwater Depth/Height	1.27		Tailwater Elevation	N/A	ft
Inlet Control HW Elev.	6,771.29	ft	Control Type	Outlet Control	
Outlet Control HW Elev.	6,771.54	ft			
Grades					
Upstream Invert	6,769.00	ft	Downstream Invert	6,768.75	ft
Length	50.00	ft	Constructed Slope	0.005000	ft/ft
Hydraulic Profile					
Profile	M2		Depth, Downstream	1.33	ft
Slope Type	Mild		Normal Depth	N/A	ft
Flow Regime	Subcritical		Critical Depth	1.33	ft
Velocity Downstream	6.16	ft/s	Critical Slope	0.020361	ft/ft
Section					
Section Shape	Circular		Mannings Coefficient	0.024	
Section Material	CMP		Span	2.00	ft
Section Size	24 inch		Rise	2.00	ft
Number Sections	1				
Outlet Control Properties					
Outlet Control HW Elev.	6,771.54	ft	Upstream Velocity Head	0.30	ft
Ке	0.90		Entrance Loss	0.27	ft
Inlet Control Properties					
Inlet Control HW Elev.	6,771.29	ft	Flow Control	Unsubmerged	
Inlet Type	Projecting		Area Full	3.1	ft²
К	0.03400		HDS 5 Chart	2	
М	1.50000		HDS 5 Scale	3	
С	0.05530		Equation Form	1	
Υ	0.54000				

Design:Trial-2

Culvert Summary			
Allowable HW Elevation	N/A ft	Storm Event	Design
Computed Headwater Elevation	6,771.14 ft	Discharge	13.71 cfs
Headwater Depth/Height	1.43	Tailwater Elevation	N/A ft
Inlet Control HW Elev.	6,770.75 ft	Control Type	Outlet Control
Outlet Control HW Elev.	6,771.14 ft		
Grades			
Upstream Invert	6,769.00 ft	Downstream Invert	6,768.75 ft
Length	50.00 ft	Constructed Slope	0.005000 ft/ft
Hydraulic Profile			
Profile CompositeM2F	ressureProfile	Depth, Downstream	1.01 tt
Slope Type	Mild		N/A ft
Flow Regime	Subcritical	Critical Depth	1.01 π
velocity Downstream	5.40 11/5	Chical Slope	0.022772 1011
Section			
Section Shape	Circular	Mannings Coefficient	0.024
Section Material	CMP	Span	1.50 ft
Section Size	18 inch	Rise	1.50 ft
Number Sections	2		
Outlet Control Properties			
Outlet Control HW Elev.	6,771.14 ft	Upstream Velocity Head	0.23 ft
Ke	0.90	Entrance Loss	0.21 ft
Inlet Control Properties			
Inlet Control HW Elev.	6,770.75 ft	Flow Control	Unsubmerged
Inlet Type	Projecting	Area Full	3.5 ft ²
К	0.03400	HDS 5 Chart	2
Μ	1.50000	HDS 5 Scale	3
С	0.05530	Equation Form	1
Y	0.54000		

Markup Summary

See comment previous page.	Subject: text box Page Label: 21 Author: Steve Kuehster Date: 5/23/2019 2:50:12 PM Color:	See comment previous page.
Include this table (with both design storms) on the Proposed drainage Plan/Map.	Subject: text box Page Label: 25 Author: Steve Kuehster Date: 5/23/2019 3:00:13 PM Color:	Include this table (with both design storms) on the Proposed drainage Plan/Map.
Stree fra proba code, com para de la transmiser en la code de la transmiser en la code de la code de la code de la code d	Subject: text box Page Label: 36 Author: Steve Kuehster Date: 5/23/2019 3:16:37 PM Color:	Show the access roads, solar panels, substations, etc.
	Subject: text box Page Label: 36 Author: Steve Kuehster Date: 5/23/2019 3:19:48 PM Color:	See section 4.4 of the Drainage Criteria Manual Vol. 1 for drawing requirements.
	Subject: text box Page Label: 36 Author: Steve Kuehster Date: 5/23/2019 3:19:50 PM Color:	Provide a table that has the Basins, Design points, Areas, 5 year and 100 year runoff rates.
	Subject: Arrow Page Label: 7 Author: Steve Kuehster Date: 5/24/2019 11:48:01 AM Color:	
Martin and an	Subject: text box Page Label: 7 Author: Steve Kuehster Date: 5/24/2019 11:51:12 AM Color:	Provide a Full Spectrum Detention Facility that meets criteria, Look at UDFCD "Sand Filter combined with Full Spectrum detention" Figure 12-9. The outlet structure, detention calculations etc., can then be designed to meet UDFCD details. It appears existing soils here a as indicated by the Terracon study, can be used as the media for the sand filter.
nes 1, 2, & 3 ne <mark>2004.</mark>	Subject: Highlight Page Label: 8 Author: Steve Kuehster Date: 5/24/2019 11:52:13 AM Color:	2004.
& 3, Urban Drain	Subject: text box Page Label: 8 Author: Steve Kuehster Date: 5/24/2019 11:52:35 AM Color:	2017

Subject: arrow & box Page Label: 4 Author: Steve Kuehster Date: 5/24/2019 12:02:28 PM Color:

Add: The Horse Creek drainage basin in El Paso County is unstudied, with no fees.