FINAL DRAINAGE REPORT

For

TRAILS AT ASPEN RIDGE Filing No. 4

Prepared for:

EL PASO COUNTY

Engineering Development Review Team

2880 International Circle Colorado Springs, CO 80910

On Behalf of:

COLA, LLC.

555 Middle Creek Parkway, Suite 380 Colorado Springs, CO 80921

Prepared by:

Matrix Design Group 2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 fax (719) 572-02f08

December, 2024

Project No. 21.886.038

Engineer's Statement:

Conditions:

This report and plan for the drainage design of Trails at Aspen Ridge Filing No. 4 was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the El Paso County Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Jesse Sullivan Date Registered Professional Engineer State of Colorado No. 55600 Developer's Statement: I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan. COLA, LLC Business Name Title: Director of Land Acquisition and Development Address: 555 Middle Creek Parkway, Suite 380 Colorado Springs, CO 80921 El Paso County: Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended. Joshua Palmer, P.E. Date County Engineer / ECM Administrator

TABLE OF CONTENTS

I.]	INTRODUCTION	1
II.	PURPOSE AND SCOPE OF STUDY	2
III.	GENERAL LOCATION AND DESCRIPTION	2
IV.	SOIL CONDITIONS	4
V.	PROJECT CHARACTERISTICS	4
VI.	DRAINAGE DESIGN CRITERIA	5
VII.	DRAINAGE BASINS AND SUB-BASINS	7
VIII	DRAINAGE FACILITY DESIGN	23
IX.	ENVIRONMENTAL EVALUATIONS	30
X.	EROSION CONTROL PLAN	31
XI.	DRAINAGE FEES	31
XII.	CONSTRUCTION COST OPINION	32
XIII	SUMMARY	33
XIV	. REFERENCES	33
XV.	APPENDICES	34
APP	ENDIX A. Hydrologic and Hydraulic Calculations	
	B. Standard Design Charts and Tables	
	C. Report References	
	D. Maps	

I. Introduction

The Trails at Aspen Ridge Filing No. 4 development is within the Waterview East (Waterview II) Subdivision, which is within El Paso County jurisdiction and is comprised of a total of 17.903 acres of single-family residential, open space, and public right-of-way. The site is located within the 721.8-acre Waterview Development in the 419.8-acre portion of the development east of Powers. The Trails at Aspen Ridge development was referred to as Waterview East or Waterview II in the original Waterview Master Development Drainage Study (MDDP).

Figure 1 - Project Location

II. PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to identify and evaluate the offsite and onsite drainage patterns associated with Filing No. 4 of the Trails at Aspen Ridge development (17.903 acres) and to provide hydrologic and hydraulic analyses of this area to ensure compliance with the El Paso County Drainage Criteria Manual (DCM) and the most recent MDDP Amendment, as well as provide effective, safe routing to downstream outfalls.

III. GENERAL LOCATION AND DESCRIPTION

Trails at Aspen Ridge Filing No. 4 is within the Waterview subdivision, which extends from Grinnell Road on the west to approximately one-half mile east of the north-south portion of Powers Boulevard. The west portion of the subdivision (Waterview I) is bounded on the north by an east-west portion of Powers Boulevard and on the south by Bradley Road. The east portion of the subdivision (Waterview East/Waterview II) is bounded on the north by the Colorado Springs Airport and on the south, approximately 3,260 feet south of the Bradley and Powers intersection by property owned by the State of Colorado. The subject of this report, Trails at Aspen Ridge Filing No. 4, is in the Waterview East portion of the overall Waterview Subdivision and located southeast of the intersection of Powers Boulevard and Bradley Road. More specifically, the study area is located as follows:

A. General Location: The southwest ¼ and the northwest ¼ of Section 9, Township 15 South, Range 65 West of the 6th P.M. in the County of El Paso, State of Colorado.

B. Surrounding Streets and Developments:

- a. North: Bradley Road.
- b. East: Several undeveloped properties. See DR-02 for location and ownership
- c. South: Trails at Aspen Ridge PUDSP, Filing No. 1, and Filing No. 2
- **d.** West: Legacy Hill Drive, commercially zoned property owned at time of report writing by CRP Entitlements, LLC, and portions of Trails at Aspen Ridge PUDSP
- **C.** <u>Drainageway:</u> This site is located within the West Fork Jimmy Camp Creek Drainage Basin and the Marksheffel Tributary to Jimmy Camp Creek basins.
 - a. West Fork Jimmy Camp Creek: There appears to be a broad swale running along the west edge of the project area. Flows are conveyed in a southeasterly direction. Total area of basin considered in this report for the East Pond is approximately 165.2 acres. This includes approximately 52.5 acres in Trails at Aspen Ridge Filing No. 1, 77.3 acres of the Trails at Aspen Ridge PUDSP (Including the 15.730 Acres in Trails at Aspen Ridge Filing No. 2 and 17.903 acres of Filing No. 4), and 35.1 acres of offsite areas.
 - b. Marksheffel Tributary Jimmy Camp Creek: A small portion in the northeast corner of the overall Trails at Aspen Ridge site is within the Marksheffel Tributary sub-basin of the Jimmy Camp Creek Drainage Basin. The total basin area considered in this report is 14.35 acres. Approximately 4.6 acres along Bradley Road are outside of Trails at Aspen Ridge and

the other 9.75 acres are within the proposed development. Note that because of the details of site grading, the area differs somewhat from the 12.2 acres indicated in PDRA-Matrix, however, detention will be designed to over detain and maintain the same level of flows. Also, both basins are within the Jimmy Camp Creek basin and thus the flows remain within the same general stream.

D. Irrigation Facilities

No known functioning irrigation facilities are within the project area.

E. Utilities and Encumbrances

- a) Storm Sewer: A 36" storm sewer is extended out of a bend on the main Filing No. 2 storm sewer to drain an existing low spot just north of Legacy Hill Drive in Trails at Aspen Ridge Filing No. 2. (This storm sewer will be extended across the portion of the PUDSP area not in Filing 6 in order to provide storm sewer to the portion of Filing 6 which is within the West Fork Jimmy Camp Creek basin.
- **b)** Sanitary Sewer: Sanitary sewer associated with Trails at Aspen Ridge Filing No. 1 has been stubbed out along Frontside Drive at the west boundary of this development. Sanitary sewer will also be extended up to the development from Filing No. 2 along Big Johnson Drive.
- **c) Gas:** There is an existing petroleum line running just inside the Powers Boulevard easement west of the proposed development. No known gas encumbrances on the project site.
- **d)** Water: A 12-inch water main associated with Trails at Aspen Ridge Filing No. 1 has been stubbed out along Frontside Drive at the west boundary of this development.
- **e) Electric:** There is an existing overhead electric easement parallel to the east side of this development with two sets of overhead lines.

F. Referenced Drainage Reports

This site is within the Waterview II or Waterview East portion of the Waterview Subdivision. This study looks at Trails at Aspen Ridge Filing No. 2, which takes up the south 15.730 acres of the Waterview East Subdivision. The three reports below were used as references for this report.

"Amendment to Waterview Master Drainage Development Plan", completed by Springs Engineering, dated July 2014 (MDDP-2014)

"MDDP for Waterview East and PDR for Trails at Aspen Ridge", completed by Matrix Design Group, Dated September 2019. (MDDPA-Matrix)

Note: This report supersedes a previously approved PDR "Springs East at Waterview" by Stantec (SP-17-010).

"Final Drainage Report for Trails at Aspen Ridge Filing No. 1", completed by Matrix Design Group, Dated January 2020. (FDR-F1)

"Final Drainage Report for Trails at Aspen Ridge Filing No. 2", completed by Matrix Design Group, Dated February 2021. (FDR-F2) (in review)

"Final Drainage Report for Trails at Aspen Ridge Filing No. 3", completed by Matrix Design Group, Dated March 2021. (FDR-F3) (in review)

"PDR Amendment for Trails at Aspen Ridge", completed by Matrix Design Group, Dated April 2021. (PDRA-Matrix).

G. Land Uses

Land uses for the proposed development will be single family residential, public roads, and open space.

IV. SOIL CONDITIONS

Soils can be classified in four different hydrologic groups, A, B, C, or D to help predict stormwater runoff rates. Hydrologic group "A" is characterized by deep, well-drained coarse-grained soils with a rapid infiltration rate when thoroughly wet and having a low runoff potential. Group "D" typically has a clay layer at or near to the surface, or a very shallow depth to impervious bedrock and has a very slow infiltration rate and a high runoff potential. See Soils Map; Appendix C. Table 3.1 on the following page lists the soil types present in the development area:

<i>Table 3.1 – N</i>	VRCS Soil	l Survey fo	r El Paso	County

SOIL ID NUMBER	SOIL	HYDROLOGIC CLASSIFICATION	PERMEABILITY	PERCENT ON SITE
52	Manzanst clay loam, 0 to 3 percent slopes	С	Well Drained	45.3%
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	Well Drained	54.7%

Predevelopment site conditions are undeveloped and ground cover consists of sparse natural vegetative land cover.

V. Project Characteristics

A. Major Basin Description

West Fork Jimmy Camp Creek:

a. <u>Onsite Flows:</u> 3.55 Acres of Filing No. 4 are within the West Fork Jimmy Camp Creek Basin. Under predevelopment conditions flows in this area generally flow south. After development flows will generally sheet flow to adjacent streets, where they will be conveyed via gutter flow towards sump or at-grade inlets which will capture the flows. Flows will then be conveyed to the proposed East Pond via storm sewer.

b. Offsite Flows:

1. A portion of offsite flows to the East Pond are upstream of the Trails at Aspen Ridge PUDSP. There are two offsite areas. The first is approximately 14.5 acres of

commercially zoned area in two lots just north of the PUDSP and south of Bradley Road. (Legacy Hill Drive runs between the two lots). The second, on the north side of Bradley Road, is approximately 19.6 acres (12.3 acres of the West Fork Jimmy Camp Creek Basin plus an additional 7.3 acres of Big Johnson Reservoir drainage area diverted into the West Fork Jimmy Camp Creek by CDOT construction of Powers Boulevard). Runoff south of Bradley Road under predevelopment conditions generally sheet flows to the south and slightly east within the West Fork Jimmy Camp Creek Drainage Basin (DBPS-WFJCC) at slopes ranging from 2 to 9 percent. There appears to be a broad swale running along the middle of this basin in a southeasterly direction. These offsite areas are analyzed in more detail in MDDP-Matrix and FDR-F1.

Marksheffel Tributary to Jimmy Camp Creek:

1. This portion of the project is located at the most northwestern extent of the Marksheffel Tributary to Jimmy Camp Creek. Runoff from the approximately 14.35 acres of this basin within the project area sheet flow to the northeast towards Bradley Road at slopes between 7 and 8 percent and flows channelized in the road ditch then run to the east at a slope of approximately 3 percent. The other 4.6 acres of this basin analyzed by MDDPA-Matrix are along Bradley Road. Flows from this portion of the basin sheet flow off Bradley Road and into the road ditch to be carried east at slopes of approximately 3 percent.

B. Regulatory Floodplain

Per the *Flood Insurance Rate Map (FIRM)* 08041C0768-G, effective date December 7, 2018, published by the Federal Emergency Management Agency (FEMA), no portion of Trails at Aspen Ridge (Waterview East) lies within any designated 100-year floodplain. This map can be found in Appendix C.

VI. Drainage Design Criteria

B. Design References

As required by El Paso County, Colorado, this report has been prepared in accordance to the criteria set forth in the *City of Colorado Springs and El Paso County Drainage Criteria Manual Volume 1 & 2* (Drainage Criteria Manual or DCM), the El Paso County Engineering Criteria Manual (ECM), and El Paso County Resolutions 15-042 and 19-245.

In addition to the DCM, the *Urban Storm Drainage Criteria Manuals, Volumes 1-3* (UDFCD), published by the Urban Drainage and Flood Control District, latest update, have been used to supplement the Drainage Criteria Manual for water quality capture volume (WQCV).

C. Design Frequency

Design frequency is based on the DCM. The 100-year storm event was used as the major storm for the project, and the 5-year storm event was used as the minor storm.

D. Design Discharge

a. Method of Analysis

The hydrology for this project uses the Rational Method as recommended by the Drainage Criteria Manual for the minor and major storms for drainage basins less than 100-acres in size. The Rational Method uses the following equation: Q=C*i*A

Where:

Q = Maximum runoff rate in cubic feet per second (cfs)

C = Runoff coefficient

i = Average rainfall intensity (inches per hour)

A = Area of drainage sub-basin (acres)

b. Runoff Coefficient

Rational Method coefficients from Table 6-6 of the Drainage Criteria Manual for developed land were utilized in the Rational Method calculations. See Appendix B for more information.

c. Time of Concentration

The time of concentration consists of the initial time of overland flow and the travel time in a channel to the inlet or point of interest. A minimum time of concentrations of 5 minutes is utilized for urban areas.

d. Rainfall Intensity

The hypothetical rainfall depths for the 1-hour storm duration were taken from Table 6-2 of the Drainage Criteria Manual. Table 5.1, below, lists the rainfall depth for the Major and Minor 1-hour storm events.

Table 5.1 – Project Area 1-Hour Rainfall Depth

Storm Recurrence	Rainfall Depth
Interval	(inches)
5-year	1.50
100-year	2.52

The rainfall intensity equation for the Rational Method was taken from Drainage Criteria Manual Volume 1 Figure 6-5.

Table 9-4. STORMCAD Standard Method Coefficients

e. StormCAD Analysis

1. Routing

Storm CAD was utilized to analyze the routing of runoff through the proposed storm sewer system. Catchments were created in the model and calibrated to match the values calculated in the Rational Method spreadsheet.

2. HGL Profiles

StormCAD was also used to determine the Hydraulic Grade Profiles for the major and

	Bend Loss			
Bend Angle K Coefficient				
0°	0.0	5		
22.5°	0.1	0		
45°	0.4	0		
60°	0.6	4		
90°	1.3	2		
	LATERAL LOSS			
(One Lateral K Coeffic	ient		
Bend Angle	Non-surcharged	Surcharged		
45°	0.27	0.47		
60°	0.52	0.90		
90°	1.02	1.77		
T	wo Laterals K Coeffic	eient		
45° 0.96				
60° 1.16				
90° 1.52				

Page 6

minor storms. The standard method was used to calculate head loss in the system with K coefficients taken from Table 9-4 of the DCM.

VII. Drainage Basins and Sub-basins

A. The *predevelopment conditions* for the site have been analyzed and are presented by design points (Table 6.2) and are described as follows:

a. West Fork Jimmy Camp Creek:

The south portion of the studied area is within the West Fork tributary to Jimmy Camp Creek. A portion of this basin is upstream of Bradley Road. Flows in that sub-basin (OS-1: $Q_5 = 11.8$ cfs, $Q_{100} = 47.4$ cfs) sheet flow to the road ditch and are conveyed to two 42-inch CMP crossroad pipes which direct the water across Bradley Road and on to the proposed development area.

The next downstream sub-basin is WF-1 ($Q_5 = 33.2$ cfs, $Q_{100} = 139.1$ cfs) which includes 14.5 Acres of commercially zoned offsite area, 66.10 acres of offsite Trails at Aspen Ridge PUD (Originally 8.99), 32.09 Acres of Trails at Aspen Ridge Filing No. 1, 15.89 Acres of Trails at Aspen Ridge Filing No. 2 (PUD area reduced), and 5.00 Acres which are in both Filing No. 1 and the PUD. Flows in this sub-basin sheet flow towards the middle of the sub-basins where they join flows from OS-1 and are conveyed via a broad swale in a southeasterly direction and out of the study area.

The third sub-basin within the West Fork basin is sub-basin WF-2 ($Q_5 = 5.5$ cfs, $Q_{100} = 31.1$ cfs) which includes 15.77 Acres of Filing No. 1 and 5.38 Acres of the PUD. Flows in this basin sheet flow in an easterly direction where they are captured by another broad swale at the south limit of the study area and conveyed in a southeasterly direction.

Total discharge to the West Fork Jimmy Camp Creek basin is approximately 37.0 cfs for the Q5 event and 170.0 cfs for the Q100 event. (* Below indicates SWMM Values)

Trails at Aspen Ridge Existing Conditions Sub-basin Summary Table				
Area ID	Area (Acres)	Q5 (cfs)	Q100 (cfs)	
West Fork Jimmy Camp Creek / OS - 1	19.60	11.8*	47.4*	
West Fork Jimmy Camp Creek / WF-1	119.08	33.2*	139.1*	
West Fork Jimmy Camp Creek / WF-2	21.15	5.5*	31.1*	

<u>Trails at Aspen Ridge</u> Existing Design Point Summary					
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)	
OS-1	OS-1 (7.3 Acres diverted by CDOT from Big Johnson)	19.60	11.8*	47.4*	
WF-1	WF-1 & OS-1	138.69	33.2*	139.1*	
WF-2	WF-2	21.15	5.5*	31.1*	
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel, so this is a sum of WF-1 & WF-2.)	159.84	37.0*	170.0*	

b. Marksheffel Tributary to Jimmy Camp Creek:

The eastern portion of the studied area is within the Marksheffel Tributary to Jimmy Camp Creek. This basin is represented by Sub-basin MKT-1 ($Q_5 = 5.4$ cfs, $Q_{100} = 36.5$ cfs). Flows in this sub basin sheet flow to the northeast to the Bradley Road ditch where they are conveyed eastward. The total discharge from the studied area under predevelopment conditions is approximately 5.4 cfs for the Q_5 event and 36.5 cfs for the Q_{100} event.

<u>Trails at Aspen Ridge, Filing No. 1</u> FDR Existing Conditions Sub-basin Summary Table			
Area ID	Area (Acres)	Q5 (cfs)	Q100 (cfs)
Marksheffel Tributary to Jimmy Camp Creek / MKT-1	7.21	1.6	10.9

<u>Trails at Aspen Ridge, Filing No. 1</u> FDR Existing Design Point Summary					
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)	
MKT-1 TO MARKSHEFFEL TRIBUTARY TO JIMMY CAMP CREEK	MKT-1	7.21	1.63	10.95	

B. The fully developed conditions for the site are as follows:

a. West Fork – Jimmy Camp Creek:

Under proposed conditions, flows for this basin will be directed to a proposed detention pond (East Pond) near the southeast corner of the proposed Trails at Aspen Ridge development. Sub-basins and Design Points for this major basin are summarized in hydrology tables below and on the following pages. (Note that grey shading indicates sub-basins within the West Fork Jimmy Camp Creek basin that are covered in previous drainage reports. Sub-basins C-7 and C-8 were covered in *MDDP-Matrix*, but, as the HGLs for the inlets serving these two sub-basins are included in this report, they are not shaded gray.)

Trails at Aspen Ridge West Fork - Jimmy Camp Creek Proposed Conditions - Sub-basin Summary (Gray shading: Covered in previous drainage report)			
Basin	Area	Q5	Q100
Dasiii	acres	cfs	cfs
OS-1	19.67	4.0	26.8
A-1	12.34	4.4	18.9
A-2	1.09	2.7	5.2
A-3	4.98	2.2	9.0
A-4	0.12	0.6	1.0
B-1	1.06	1.8	4.1
C-1	3.27	5.9	12.9
C-2	1.19	2.4	5.3

Trails at Aspen Ridge West Fork - Jimmy Camp Creek Proposed Conditions - Sub-basin Summary (Gray shading: Covered in previous drainage report)			
	Area	Q5	Q100
Basin	acres	cfs	cfs
C-3	4.60	8.4	18.5
C-4	0.36	1.6	3.0
C-5	3.13	5.7	12.5
C-6	0.07	0.3	0.6
C-7+8	2.26	4.0	0.2
(MDDP Sub-basins C7 and C8 combined)	2.26	4.2	9.2
D-1	2.21	1.6	5.2
E-1	6.43	3.9	12.2
E-2	2.14	3.9	8.7
F-1	1.49	2.7	6.0
F-2	0.58	1.1	2.5
F-3	1.25	2.3	5.0
F-4	0.58	1.1	2.5
F-5	2.27	3.5	7.8
F-6	1.00	1.7	3.9
F-7	5.06	7.5	16.5
F-8	0.84	1.5	3.3
G-1	1.11	2.1	4.6
H-1	3.60	5.6	12.3
H-2	1.16	1.9	4.2
H-3	2.97	4.7	10.3
H-4	0.92	1.6	3.6
H-5	2.42	4.0	8.9
H-6	2.46	4.1	9.1
H-7	2.03	3.0	6.6
H-8	0.97	1.7	3.8
H-9a	1.95	2.3	5.8
H-9b	0.38	0.6	1.3
H-10	1.33	2.5	5.5
H-11	3.42	5.0	11.0
I-3	4.18	7.1	15.6
K-1+2	2.37	3.2	7.9
K-3+4	1.23	2.9	6.3
K-5	0.95	2.0	4.4
K-6	0.72	1.5	3.3
K-7	3.26	2.9	7.9
K-8	0.15	0.5	0.9
K-9	1.16	2.1	4.7
K-10	1.10	2.2	4.7
K-11	1.39	2.6	5.8
K-12	0.67	1.4	3.0
K-13	0.09	0.3	0.6
K-14	2.78	5.0	11.0
OS-East Side	4.15	0.6	4.0
J1	5.89	10.2	23.5
J2	0.90	1.7	3.8
J3	1.81	3.7	8.1
J4	0.56	1.2	2.6
K15	1.65	3.0	6.6

Trails at Aspen Ridge West Fork - Jimmy Camp Creek Proposed Conditions - Sub-basin Summary (Gray shading: Covered in previous drainage report)				
Basin	Area	Q5	Q100	
Dasin	acres	cfs	cfs	
K16	1.20	2.4	5.4	
K17	0.41	0.9	1.9	
K18	1.90	3.5	7.8	
K19	0.93	1.8	4.0	
K20	2.78	5.4	11.8	
K21	0.44	0.9	2.0	
K22	2.18	3.7	9.2	

Design Point Summary - StormCAD (Gray shading: Covered in previous drainage report)						
		_	revious ara face		Sewer	
Design Point	Total Drainage					Downstream Design
Design Fount	Area	Q5 (cfs)	Q100 (cfs)	Q5 (cfs)	Q100 (cfs)	Point
1-OS	19.67	4.0	26.8	-	-	A
1-A	12.34	3.5	17.6	-	-	A
2-A	1.09	2.7	5.2	-	-	A
3-A	4.98	2.2	8.9	-	-	A
4-A	0.12	0.6	1.0	-	-	A
A	38.20	-	-	12.0	55.6	В
1-B	1.06	1.8	4.1	-	-	В
В	39.26	-	-	12.7	57.1	С
1-C	3.27	5.9	12.9	-	-	С
2-C	1.19	2.4	5.3	1	-	С
3-C	4.60	8.4	18.5	1	-	С
4-C	0.36	1.6	3.0	1	-	С
5-C	3.13	5.7	12.5	1	-	С
6-C	0.07	0.3	0.6	1	-	С
7+8-C	2.26	4.2	9.2	-	-	С
С	54.13	-	-	27.6	90.2	D
1-D	2.21	1.6	5.2	-	-	D
D	56.34	0.0	0.0	28.1	92.1	E
1-E	6.43	2.6	11.4	1	-	Е
2-E	2.14	3.9	8.7	-	-	E
E	64.91	-	-	33.7	108.8	F
1-F	2.07	2.7	6.0	2.7	6.0	3-F
2-F	0.58	1.1	2.5	1.6	3.6	3-F
3-F	3.32	2.3	5.0	3.8	8.4	4-F
4-F	3.89	1.1	2.5	5.0	11.1	5-F
5-F	6.16	3.5	7.8	6.6	14.6	6-F
6-F	7.16	1.7	3.9	7.9	17.5	8-F

Design Point Summary - StormCAD (Gray shading: Covered in previous drainage report)							
	Total	Sur	face	Storm Sewer		Downstream	
Design Point	Drainage Area	Q5 (cfs)	Q100 (cfs)	Q5 (cfs)	Q100 (cfs)	Design Point	
7-F	5.06	7.5	16.5	7.5	16.5	8-F	
8-F	13.07	1.5	3.3	16.2	35.8	F	
F	77.97	-	-	43.5	131.0	G	
1-G	1.11	2.1	4.6	-	-	G	
G	79.08	1	1	44.2	132.7	M	
1-H	3.60	5.9	13.1	-	-	1-2 H	
2-H	1.16	1.9	4.2	-	-	1-2 H	
1-2 H	4.76	-	-	9.0	19.8	1-4 H	
3-H	2.97	4.7	10.3	-	-	1-4 H	
4-H	0.92	1.6	3.6	-	-	1-4 H	
1-4 H	8.65	-	-	16.4	36.1	1-6 H	
5-H	2.42	4.0	8.9	-	-	1-6 H	
6-H	2.46	3.9	8.6	-	-	1-6 H	
1-6 H	13.53	-	-	20.2	44.9	1-8 H	
7-H	2.03	2.9	6.4	-	-	1-8 H	
8-H	0.97	1.7	3.7	-	-	1-8 H	
1-8 H	16.52	-	-	23.3	49.3	1-10 H	
9a-H	1.95	2.3	5.7	-	-	9b-H	
9b-H	0.38	0.6	1.4	2.8	6.5	10-H	
10-H	1.33	2.4	5.2	-	-	1-10 H	
1-10 H	20.17	-	-	29.6	66.5	11-H	
11-H	3.42	5.0	11.0	-	-	Н	
Н	23.59			37.4	83.0	M	
1-J	5.89	10.2	23.5	-	-	1-2-J	
2-J	0.90	1.7	3.8	-	-	1-2-J	
1-2-J	6.79			5.6	13.6	1-4-J	
3-J	1.81	3.7	8.1	-	-	1-4-J	
4-J	0.56	1.2	2.6	-	-	1-4-J	
1-4-J	9.16			14.8	36.0	5-J	
15-K	1.65	3.0	6.6	-	-	15-16-K	
16-K	1.20	2.4	5.4	-	-	15-16-K	
15-16-K	2.85			4.1	9.6	15-18-K	
17-K	0.41	0.9	1.9	-	-	15-18-K	
18-K	1.90	3.5	7.8	-	-	15-18-K	
15-18-K	5.17			8.2	19.1	6-J	
19-K	0.93	1.8	4.0	-	-	19-20-K	
20-K	2.78	5.4	11.8	-	-	19-20-K	
19-20-K	3.71			6.7	15.6	5-J	

Design Point Summary - StormCAD (Gray shading: Covered in previous drainage report)							
	Total	Sur	face	Storm	Sewer	Downstream	
Design Point	Drainage Area	Q5 (cfs)	Q100 (cfs)	Q5 (cfs)	Q100 (cfs)	Design Point	
21-K	0.44	0.9	2.0	-	=	7-J	
22-K	2.18	3.7	9.2	-	-	7-J	
5-J	12.87	-	-	23.8	58.6	6-J	
6-J	18.04	ı	-	30.2	72.6	7-J	
7-J	20.66	1	-	30.8	73.9	OS-2-K	
1-K	0.78	0.8	2.3	-	-	OS-2-K	
2-K	1.58	2.7	5.9	-	-	OS-2-K	
OS-2-K	23.02	-	-	33.3	81.2	OS-12-K	
3+4-K	1.23	2.9	6.3	-	-	3-4-K	
OS-4-K	24.25	-	-	35.2	85.4	OS-12-K	
5-K	0.95	2.0	4.4	-	-	6-K	
6-K	0.72	1.5	3.3	3.4	7.6	5-8-K	
7-K	3.26	2.9	7.9	-	-	5-8-K	
8-K	0.15	0.5	0.9	-	-	5-8-K	
5-8-K	5.08	-	-	5.2	12.0	5-10-K	
9-K	1.16	2.1	4.7	-	-	9-10-K	
10-K	1.10	2.2	4.7	-	-	9-10-K	
9-10-K	2.26	-	-	4.0	8.8	5-10-K	
5-10-K	7.34	-	-	7.8	18.0	5-12-K	
11-K	1.39	2.6	5.8	-	-	5-12-K	
12-K	0.67	1.4	3.0	-	-	5-12-K	
5-12-K	9.40	-	-	10.3	23.6	OS-12-K	
OS-12-K	33.65	-	-	36.9	89.9	OS-14-K	
13-K	0.09	0.3	0.6	-	-	OS-14-K	
OS-E	4.15	3.1	3.4	-	-	14-K	
14-K	2.78	5.0	11.0	5.1	11.0	OS-14-K	
OS-14-K	36.52	-	-	43.6	100.9	K	
K	40.23		-	48.0	110.6	3-I	
1-I	3.13	6.9	12.3	-	-	K	
2-I	0.59	2.3	4.1	-	-	K	
3-I	4.18	9.3	16.5	8.7	15.5	M	
I	44.42	-	-	52.0	120.3	M	
M	158.79	-	-	154.5	383.7	East Pond Discharge	
East Pond Discharge (Filing 1 & 2 Buildout)	158.79	-	-	6.7	120.0	Existing Swale	

	DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report)	
Design Point	Description	Downstream Design Point
1-08	- This design point is at the downstream end of the offsite sub-basin (OS-1) north of Bradley Road. Flows in Sub-basin OS-1 will sheet flow to the road ditch running along Bradley and Powers Boulevard. Once channelized in the ditch flows will be directed to a proposed 24-inch RCP storm pipe sleeved into one of the existing 42-inch CMP crossroad pipes to minimize disturbance to Bradley Road and avoid conflicts with existing utilities along the north side of Bradley Road. From there flows will be conveyed on to design point A. The second existing 42" CMP will be plugged. - Please note that approximately 7.3 acres of the area tributary to this design point have been diverted from the Big Johnson Reservoir by CDOT construction of Powers Boulevard. Future development of that portion of the tributary sub-basin must redirect these flows to the Big Johnson Reservoir to maintain compliance with the two relevant DBPS reports. - Development of the OS-1 Sub-basin will require onsite detention and an FDR.	A
1-A	-This design point is located at a sump inlet on the north side of Frontside Drive and just west of the Legacy Hill Drive RoundaboutPlease note that the commercial lot to within Sub-basin A-1 will be treated as undeveloped for the purposes of this report. Per MDDPA-Matrix, future development of this lot will require on-site detention as described in the referenced MDDPDevelopment of this basin will require onsite detention and an FDR.	Α
2-A	-This design point is located at a sump inlet on the south side of Frontside Drive and just west of the Legacy Hill Drive RoundaboutFlow to This design point is primarily from street drainage along Frontside Drive.	A
3-A	-This design point is located at a sump inlet on the north side of Frontside Drive and just east of the Legacy Hill Drive RoundaboutPlease note that the commercial lot to within Sub-basin A-3 will be treated as undeveloped for the purposes of this report. Per MDDPA-Matrix, future development of this lot will require on-site detention as described in the referenced MDDPDevelopment of this basin will require onsite detention and an FDR.	A
4-A	-This design point is located at a sump inlet on the south side of Frontside Drive and just east of the Legacy Hill Drive RoundaboutFlow to This design point is almost exclusively from street drainage along Frontside Drive.	A
A	-This design point represents the manhole combining drainage from Design points OS-1 and 1-A through 4-A.	В
1-B	-This design point represents the on-grade inlet south of Frontside Drive.	В

(Gray shading: Covered in previous drainage report)				
Design Point	Description	Downstream Design Point		
В	-This design point represents the manhole on Legacy Hill Drive combining the flows from design point A with design point 1-B.	С		
1-C	-This is an offsite design point in a future filing. This is located at a sump inlet on the west side of Drinking Horse DriveFuture filing	С		
2-C	-This is an offsite design point in a future filing. This is located at a sump inlet on the east side of Drinking Horse DriveFuture filing	С		
3-C	-This design point is at a sump inlet just west of Legacy Hill Drive on the north side of Moose Meadow Street.	С		
4-C	-This design point is at a sump inlet just west of Legacy Hill Drive on the south side of Moose Meadow Street.	С		
5-C	-This design point is at a sump inlet just east of Legacy Hill Drive on the north side of Moose Meadow Street.	С		
6-C	-This design point is at a sump inlet just east of Legacy Hill Drive on the south side of Moose Meadow Street.	С		
7+8-C	- This design point is located at a sump inlet on the south side of Moose Meadow Street between Roundhouse Drive and Beartrack Point. Sub-basins C-7+8 is tributary to this location. This sub-basin will not be developed in this filing excepting the extension of Moose Meadow Drive from its Filing No. 1 termination point just east of Legacy Hill Drive over to its intersection with Bear Track Point.	С		
С	-This design point is at a manhole in Legacy Hill Drive at its intersection with Moose Meadow Street. It reflects the combination of flows from design points 1-C through 8-C with flows from design point B.	D		
1-D	-This design point is an on-grade inlet on Legacy Hill Drive northwest of its intersection with Sunday Gulch.	D		
D	-This design point combines flows from design point 1-D with flows from design point C at a manhole in Legacy Hill Drive northwest of its intersection with Sunday Gulch Drive.	E		
1-E	-This design point is located at a sump inlet on Falling Rock Drive just west of Sunday Gulch Drive which captures flows from Sub-basin E-1 and flow bypass from design point 1-D.	E		
2-E	-This is a sump inlet across the street from design point 1-EDuring lower probability events flows to design point 1-E may equalize across the street to this design point.	E		

(Gray shading: Covered in previous drainage report)				
Design Point	Description	Downstream Design Point		
E	This design point is at a manhole at the intersection of Sunday Gulch Drive and Falling Rock Drive. Flows from Design points 1-E, 2-E, and D are combined at this design point.	F		
1-F	-This design point is at an at-grade inlet on the west side of future Lazy Ridge Drive. (Future filing)	3-F		
2-F	-This design point is at an at-grade inlet on the east side of future Lazy Ridge Drive. (Future filing)	3-F		
3-F	-This design point is at an at-grade inlet on the west side of future Lazy Ridge DriveFlows from Sub-basin F-3 are combined with storm sewer flows from design points 1-F and 2-F (Future filing)	4-F		
4-F	-This design point is at an at-grade inlet on the east side of future Lazy Ridge DriveFlows from sub-basin F-4 are combined with flows from 1-F, 2-F and 3-F. (Future filing)	5-F		
5-F	-This design point is at an at-grade inlet on the west side of Wagon Hammer DriveFlows from Sub-basin F-5 are combined with storm sewer flows from design points 1-F, 2-F, 3-F, and 4-F	6-F		
6-F	-This design point is at an at-grade inlet on the east side of Wagon Hammer DriveFlows from Sub-basin F-6 are combined with storm sewer flows from design points 1-F, 2-F, 3-F, 4-F, and 5-F	8-F		
7-F	-This design point is at a sump inlet located on the north side of Lookout Court just west of its intersection with Sunday Gulch DriveThis inlet captures flows from Sub-basin F-7	8-F		
8-F	-This design point is at a sump inlet and manhole on the south side of Lookout Court just west of its intersection with Sunday Gulch DriveFlows from Sub-basin F-8 are combined with flows from design points 1-F, 2-F, 3-F, 4-F, 5-F, 6-F, and 7-F.	F		
F	-This design point combines flows from design points 1-F through 8-F with flows from design point EVariance Drop Manhole	G		
1-G	-This design point is at an at-grade inlet capturing flows from Sub-basin G.	G		
G	-This design point reflects the combination of surface flows from design point 1-G with storm sewer flows from design point F	M		
1-H	-This design point is at a sump inlet on the west side of Lazy Ridge Drive capturing flows from Sub-basin H-1.	1-2 H		

(Gray shading: Covered in previous drainage report)				
Design Point	Description	Downstream Design Point		
2-H	-This design point is at a sump inlet on the east side of Lazy Ridge Drive capturing flows from Sub-basin H-2.	1-2 H		
1-2 H	-Flows from design points 1-H and 2-H are combined at this manhole on the south side of Buffalo Horn Drive at its intersection with Lazy Ridge Drive.	1-4 H		
3-H	-This design point is at a sump inlet on the west side of Wagon Hammer Drive capturing flows from Sub-basin H-3	1-4 H		
4-H	-This design point is at a sump inlet on the east side of Wagon Hammer Drive capturing flows from Sub-basin H-5	1-4 H		
1-4 H	-Flows from design point 1-2 H are combined with flows from 3-H and 4-H at this manhole on the south side of Buffalo Horn Drive at its intersection with Wagon Hammer Drive.	1-6 H		
5-H	-This is an at-grade inlet on the north side of Buffalo Horn Drive just west of its intersection with Windy Pass Court.	1-6 H		
6-H	-This is an at-grade inlet on the south side of Buffalo Horn Drive just west of its intersection with Windy Pass Court.	1-6 H		
1-6 H	-Flows from design point 1-4 H are combined with flows from 5-H and 6-H at this manhole on the south side of Buffalo Horn Drive west of its intersection with Windy Pass Court.	1-8 H		
7-H	-This design point is at an on-grade inlet on the west side of Sunday Gulch Drive just north of its intersection with Buffalo Horn Drive. -This inlet captures flows from Sub-basin H-7	1-8 H		
8-H	-This design point is at an on-grade inlet on the east side of Sunday Gulch Drive just north of its intersection with Buffalo Horn DriveThis inlet captures flows from Sub-basin H-8	1-8 H		
1-8 H	-Flows from design point 1-6 H are combined with flows from 7-H and 8-H at this manhole on the south side of Buffalo Horn Drive west of its intersection with Sunday Gulch Drive.	1-10 H		
9a-H	-This design point is near the south boundary of Filing No. 1 where a flared end section captures flows from a swale running along this southern boundary of the study areaThis design point captures flows from Sub-basin H-9a.	9b-H		
9b-H	-This design point is near the south boundary of Filing No. 1 where a Type C Inlet captures flows within Sub-basin H-9bThis design point combines flows from Sub-basins H-9a and H-9b.	10-Н		

(Gray shading: Covered in previous drainage report)				
Design Point	Description	Downstream Design Point		
10-H	-This design point is at a sump inlet on the south side of the cul-de-sac at the east end of Buffalo Horn Drive. Surface flows from Sub-basin H-10 are combined with storm sewer flows from design point 9-H.	1-10 H		
1-10 H	-Flows from design points 10-H and 1-8 H are combined at a manhole towards the north side of the cul-de-sac at the east end of Buffalo Horn Drive.	11-H		
11-H	-This design point is at a sump inlet on the north side of the cul-de-sac at the east end of Buffalo Horn DriveThis inlet captures flows from Sub-basin H-11	Н		
Н	-This design point combines storm sewer flows from design point 11-H and 1-10 H	M		
1-J	-This is design point is at an at-grade inlet on the north side of Schoonover Drive just east of the intersection of Keyhole Drive and Schoonover Drive. Bypass flows to DP 3-J	1-2-J		
2-J	-This is design point is at an at-grade inlet on the sourth side of Schoonover Drive just east of the intersection of Keyhole Drive and Schoonover Drive. Bypass flows to DP 3-J	1-2-J		
1-2-J	This design point represents a manhole combining flows from design points 1-J and 2-J	1-4-J		
3-J	-This design point is at a 10-foot Type R Sump inlet on the north side of Schoonover Drive and between its intersections with Big Johnson Drive and Fishhook Drive. Q100 equalizes between inlets at 3-J and 4-J.	1-4-J		
4-J	-This design point is at a 10-foot Type R Sump inlet on the sourth side of Schoonover Drive and between its intersections with Big Johnson Drive and Fishhook Drive.	1-4-J		
1-4-J	-This design point represents a manhole combining flows from Design Point 3-J and 4-J with flows from design point 1-2-J.	5-J		
15-K	This is an at-grade inlet in a future filing on the south side of Hazelton Drive just west of its intersection with Bird Ridge Drive.	15-16-K		
16-K	This is an at-grade inlet in a future filing on the north side of Hazelton Drive just west of its intersection with Bird Ridge Drive.	15-16-K		
15-16-K	This design point (future filing) represents the combination of flows from Design Points 15-J and 16-J.	15-18-K		
17-K	This design point represents a sump inlet on the south side of Hazelton Drive just west of its intersection with Big Johnson Drive. This inlet will be constructed as part of a future filing.	15-18-K		
18-K	This design point represents a sump inlet on the north side of Hazelton Drive just west of its intersection with Big Johnson Drive. This inlet will be constructed as part of a future filing.	15-18-K		

DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report) Downstream **Design Point** Design Description Point This design point is a manhole combining flows from inlets 17-K and 18-K with flows from design point 15-16-K. This manhole will be constructed as part of a 15-18-K 6-J future filing. This design point represents a sump inlet on the south side of Lowline Drive 19-K just west of its intersection with Big Johnson Drive. This inlet will be 19-20-K constructed as part of a future filing. This design point represents a sump inlet on the north side of Lowline Drive 20-K just west of its intersection with Big Johnson Drive. This inlet will be 19-20-K constructed as part of a future filing. This design point is at a manhole combining flows from 19-K and 20-K. This 19-20-K 5-J manhole will be constructed as part of a future filing. This design point is at an at-grade inlet on the west side of Big Johnson Drive 21-K south of its intersection with Hazelton Drive and just north of Trails at Aspen 7-J Ridge Filing No. 2. This inlet will be constructed as part of a future filing. This design point represents two at-grade inlets on the east side of Big Johnson Drive. One inlet is located roughly halfway up the basin at the Big Johnson and 22-K 7-J Lowline Drive intersection and the other is located just north of Trails at Aspen Ridge Filing No. 2. This inlet will be constructed as part of a future filing. This design point represents a manhole in Big Johnson Drive combining flows 5-J 6-J from Design Points 19-20-K, 1-4-J, and roughly half of 22-K This design point represents a manhole in Big Johnson Drive at its intersection 6-J 7-J with Hazelton Drive combining flows from Design Points 5-J and 15-18-K This design point represents a manhole in Big Johnson Drive just north of Trails at Aspen Ridge Filing No. 2 which combines the flows from 6-J with flows from 7-J OS-2-K Design Point 21-K and 22-K 1-K - Type C inlet in open space represented by Sub-basin K-1 OS-2 -K - Sump inlet on Nutterbutter Point just west of the intersection of Nutterbutter 2-K OS-2 -K Point and Big Johnson Drive. Captures flows from Sub-basin K-2. This manhole in Big Johnson Drive combines flows from Design Points K-OS OS-2-K OS-4-K and 1+2-K -At-grade inlet on Turtle Lake Way just west of the intersection of Turtle Lake 3+4-K OS-4-K Way and Big Johnson. Captures flows from Sub-basin K-3+4. -Manhole in Big Johnson Drive and Turtle Lake Way intersection combining OS-4-K OS-12-K Design Points 3+4-K and OS-2-K -At-grade inlet west of the intersection of Bear Track Point and Bird Ridge 5-K 5-6-K Drive (north side of Bear Track Point). Captures flows from Sub-basin K-5.

· · · · · · · · · · · · · · · · · · ·		(Gray shading: Covered in previous drainage report)				
Design Point	Description	Downstream Design Point				
6-K	-At-grade inlet west of the intersection of Bear Track Point and Bird Ridge Drive (south side of Bird Ridge Drive). Combines captured flows from Subbasin K-6 with flows from Design Point 5-K.	5-8-K				
/	-At-grade inlet on Bird Ridge Drive north of intersection with Roundhouse Drive (west side of road). Captures flows from Sub-basin K-7.	5-8-K				
X-N	-At-grade inlet on Bird Ridge Drive north of intersection with Roundhouse Drive (east side of road). Captures flows from Sub-basin K-8.	5-8-K				
5-X-K	-Manhole in Bird Ridge Drive combining flows from Design Point 5-6-K with flows from Design Points 7-K and 8-K	5-10-K				
9-K	-At-grade inlet on Roundhouse drive west of intersection with Bird Ridge Drive. Captures flows from Sub-basin K-9.	9-10-K				
100-1	-At-grade inlet on Roundhouse drive west of intersection with Bird Ridge Drive. Captures flows from Sub-basin K-10.	9-10-K				
9-111-8	-Manhole in Roundhouse Drive combining flows from Design Points 9-K and 10-K	5-10-K				
2-111-15	-Manhole in Roundhouse Drive and Bird Ridge Drive intersection combining flows from Design Points 9-10-K and 5-8-K	5-12-K				
	-Sump inlet on Roundhouse Drive just west of intersection with Big Johnson Drive on the south side road. Captures flows from Sub-basins K-11 and K-12.	5-12-K				
5-12-K	-Manhole combining flows from 5-10-K and 11+12-K	OS-12-K				
	-Manhole combining flows from 5-12-K and OS-4-K at intersection of Big Johnson Drive and Roundhouse Drive.	OS-14-K				
	-Sump inlet on the west side of Big Johnson Drive located mid-block between Roundhouse Drive and Legacy Hill Drive. Captures flows from Sub-basin K-13.	OS-14-K				
14-K	-Sump inlet on the east side of Big Johnson Drive located mid-block between Roundhouse Drive and Legacy Hill Drive. This inlet captures flows from sub-basin K-14 and combines them with flows captured from Sub-basin OS-East Side.	OS-14-K				
OS-14-K	-Manhole combining flows from OS-12-K, 13-K, and 14-K	K				
() > _H	-Type C inlet capturing flows from sub-basin OS-East Side. Flows will be conveyed to Design Point 14-K via 18-inch storm pipe.	K				

DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report)				
Design Point	Description	Downstream Design Point		
К	-This design point combines storm sewer flows from design points 1-14-K, 2-I, and 1-I in a manhole located at the intersection of Big Johnson Drive and Legacy Hill Drive.	3-I		
1-I	-This design point is at a sump inlet on the north side of Legacy Hill Drive just west of its intersection with Big Johnson DriveFlows from Sub-basin I-1 are captured at this inlet.	K		
2-I	-This design point is at a sump inlet on the south side of Legacy Hill Drive just west of its intersection with Big Johnson DriveFlows from Sub-basin I-2 are captured at this inlet.	К		
3-I	-This design point is at a sump inlet at the south side of the cul-de-sac at the east end of Falling Rock DriveFlows from Sub-basin I-3 are captured by this inlet	M		
I	-This design point represents the combination of storm sewer flows from design point K with flows captured by the inlet at design point 3-I	M		
M	-This design point represents the combinate of all of the flows directed to the East PondIncluded Sub-basins: OS-1, A-1 to A-4, B-1, C-1 to C-8, D-1, E-1, E-2, F-1 to F-8, H-1 to H-11, I-1 to I-3, K1 to K-14, K15-22, OS-East Side, and M	East Pond Discharge		
East Pond Discharge	-This design point is at the discharge structure from the East PondDeveloped flows from the proposed improvements will be metered out by this structure at predevelopment levels as determined by a combination of UD-Detention and SWMM modeling of the Full Spectrum Extended Detention Basin	Existing Swale		

- Generally, flows will sheet flow off developed lots towards adjacent streets which will capture flows and direct them downstream to the nearest inlets. After capture in inlets the flows will be conveyed onwards towards the downstream detention basin via storm sewer.

b. Marksheffel Tributary to Jimmy Camp Creek:

Under proposed conditions flows for this small basin at the northeast corner of the study area will be directed to a small proposed detention pond near the northeast corner of the proposed Trails at Aspen Ridge development. Sub-basins and Design Points within this major basin are summarized and described in the following tables:

SUB-BASIN SUMMARY TRAILS AT ASPEN RIDGE FILING NO. 4 MARKSHEFFEL TRIBUTARY TO JIMMY CAMP CREEK							
Area Q5 Q100							
	acres	cfs	cfs				
L1	2.23	4.1	9.2				
L2	2.91	5.9	13.0				
L3	1.43	3.0	6.6				
L4	1.70	3.3	7.6				
L5	0.10	0.2	0.5				
L6	0.05	0.1	0.2				
L7	0.68	0.5	2.4				
L8	0.20	0.2	0.9				

PROPOSED DESIGN POINT SUMMARY TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6) Marksheffel Tributary to Jimmy Camp Creek							
Design Point	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)				
SUB-BASIN L5	SUB-BASIN L5	0.10	0.23	0.50			
SUB-BASIN L6	SUB-BASIN L6	0.05	0.11	0.24			
1-L	SUB-BASINS L5 & L6	0.15	0.34	0.74			
SUB-BASIN L2	SUB-BASIN L2	2.91	5.90	12.99			
2-L	SUB-BASINS L2, L5 & L6	3.06	6.19	13.64			
3-L	SUB-BASIN L3	1.43	2.98	6.57			
4-L	SUB-BASINS L2, L3, L5 & L6	4.49	9.08	20.01			
5-L	SUB-BASINS L1-L6	8.42	15.64	34.94			
6-L	NE POND (SUB-BASINS L1-L7)	9.09	15.53	35.92			
7-L	NE POND DISCHARGE	9.09	0.70	7.80			
8-L	SITE DISCHARGE	9.30	0.89	8.67			

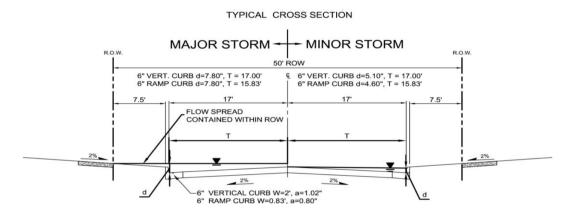
8-L

Total site discharge.

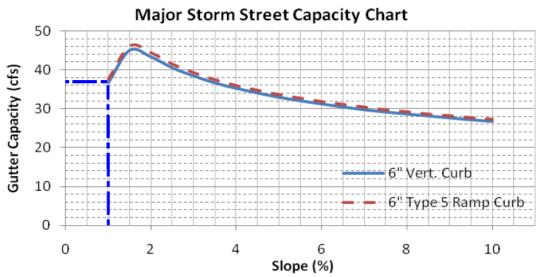
DESIGN POINT DESCRIPTIONS (Gray shading: Covered in previous drainage report) Downstream **Design Point** Description Design **Point** At this point SUB-BASIN L5 is captured by an at-grade inlet on the north boundary of SUB-BASIN L5 1-L the development. At this point SUB-BASIN L6 is captured by an at-grade inlet on the north boundary of SUB-BASIN L6 1-L the development. 1-L This design point represents a manhole combining flows from SUB-BASINS L5 & L6. 2-L At this point flows from SUB-BASIN L2 are captured by an at-grade inlet on the south SUB-BASIN L2 2-L side of Winner Creek Drive at its intersection with Blackmer Street. This design point represents a manhole combining flows from SUB-BASINS L2, L5 & 2-L 4-L At this point flows from SUB-BASIN L3 are captured by an at-grade inlet on the east 3-L 4-L side of Big Johnson Drive just south of its intersection with Winner Creek Drive. This design point represents a manhole combining flows from SUB-BASINS L2, L3, L5 4-L 5-L & L6. This design point represents a pair of sump inlets capturing flows from SUB-BASIN L4 5-L 6-L & L1 and combining these flows with flows from SUB-BASINS L2, L3, L4, L5 & L6. This represents the total flow into the NE POND (SUB-BASINS L1-L7) 6-L 7-L 8-L 7-L NE POND Discharge. Bradley Road

Ditch

VIII. Drainage Facility Design


A. Street Capacity

The width of the typical section for streets within Filing No. 4 will be 35 feet from back of curb to back of curb. Curb heights will be 6-inch. These streets will generally utilize EPC Optional Type C curb and gutter with EPC Type A curb and gutter used for the curb radii through intersections. The following table lists streets and capacities by Design Point:


	Table STREET CAPACITIES TRAILS AT ASPEN RIDGE FILING NO. 4									
Street	Sub- basin	BYPASS SOURCE (Design Point)	Q(5) BYPASS FLOWS RECEIVED (cfs)	Slope %	ROAD CAPACITY MINOR STORM (cfs)	Q(5) TOTAL FLOW	Q(100) BYPASS FLOWS RECEIVED (cfs)	ROAD CAPACITY MAJOR STORM (cfs)	Q(100) TOTAL FLOW (cfs)	
SCHOONOVER DR.	J1	N/A	-	1.0%	10.4	10.2	-	41.7	23.5	
SCHOONOVER DR.	J2	N/A	-	1.0%	10.4	1.7	-	41.7	3.8	
SCHOONOVER DR.	J3	J1	3.4	1.0%	10.4	7.1	13.5	41.7	21.6	
SCHOONOVER DR.	J4	J2	-	1.0%	10.4	1.2	0.1	41.7	2.6	
WINNER CREEK	L1	N/A	-	2.9%	17.8	4.1	-	44.0	9.2	
WINNER CREEK	L2	N/A	-	2.9%	17.8	5.9	-	44.0	13.0	
BIG JOHNSON DRIVE	L3	N/A	-	2.5%	16.5	3.0	-	46.0	6.6	
BIG JOHNSON DRIVE	L4	N/A	-	2.5%	16.5	3.3	-	46.0	7.6	
BLACKMER DR.	L5	N/A	-	3.0%	10.6	0.2	-	45.8	0.5	
BLACKMER DR.	L6	N/A	-	3.0%	10.6	0.1	-	45.8	0.2	
HAZELTON DR. (Future Filing)	K15	N/A	-	2.4%	16.2	3.0	-	46.5	6.6	
HAZELTON DR. (Future Filing)	K16	N/A	-	2.4%	16.2	2.4	-	46.5	5.4	
HAZELTON DR. (Future Filing)	K17	K15	-	2.0%	14.8	0.9	1.2	49.1	3.1	
HAZELTON DR. (Future Filing)	K18	K16	-	2.0%	14.8	3.5	0.6	49.1	8.4	
LOWLINE DR. (Future Filing)	K19	N/A	-	2.0%	14.8	1.8	-	49.1	4.0	
LOWLINE DR. (Future Filing)	K20	N/A	-	2.0%	14.8	5.4	-	49.1	11.8	
BIG JOHNSON DR.	K21	N/A	-	4.0%	20.0	0.9	-	39.9	2.0	
BIG JOHNSON DR.	K22	N/A	-	4.0%	20.0	3.7	-	39.9	9.2	

Nomograph 7-7 from the DCM is shown below:

Figure 7-7. Street Capacity Charts Residential (Detached Sidewalk)

Notes:

- EPC Optional Type C curb and gutter was used for all streets.
- The nomograph (Figure 7-7) above was used to calculate capacities for the EPC Type C (Local/Residential) streets within the project area. Compared to requirements in the El Paso DCM this nomograph is slightly more conservative for the major storm (7.8-inch depth versus 12-inch depth in Table 6-1 of the El Paso County DCM) and identical for the minor/initial storm.

B. Inlet Capacity

In accordance with the DCM, this project will use Type R inlets. On-grade inlet capacities were determined utilizing UD-Inlet. Sump inlet capacities were determined utilizing DCM Nomograph 8-11 shown below. The following Table 6.2 lists inlets by design point and corresponding capacity. Table 6.3 describes overflow routing for each sump inlet.

Figure 2-Inlet Capacity - Sump Conditions (DCM Figure 8-11)

	Table 6.2 PROPOSED INLET SUMMARY											
	TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)											
DESIGN POINT		TOTAL		IN	LET	Q(5)	2.5	Ì	Q(100)	Q(100)		
(#-Letter) or SUB- BASIN (Letter#)	SUB- BASINS	TOTAL AREA (AC)	SIZE (Ft.)	ТҮРЕ	CONDITION	BYPASS FLOWS (cfs)	Q(5) TOTAL INFLOW	Q5 INLET CAPACTIY	BŸPAŚS	TOTÁL INFLOW (cfs)	MAX INLET CAPACITY	NOTES:
5-L	L1, L2 BYPASS	2.23	10	R	SUMP	-	4.13	4.1	-	11.73	19.3	L1 & L4 are paired 10' inlets
3-L	L3	1.43	10	R	AT-GRADE	-	2.98	3.0	1.2	6.57	5.4	
5-L	L4	1.70	10	R	SUMP	-	3.30	3.3	-	8.80	19.3	L1 & L4 are paired 10' inlets
L2	L2	2.91	15	R	AT-GRADE	-	5.90	5.9	2.5	12.99	10.5	
L5	L5	0.10	5	R	AT-GRADE	-	0.23	0.2	-	0.50	0.5	
L6	L6	0.05	5	R	AT-GRADE	-	0.11	0.1	-	0.24	0.2	
1-J	J1	5.89	10	R	AT-GRADE	3.4	10.21	6.8	13.5	23.54	10.0	
2-J	J2	0.90	10	R	AT-GRADE	-	1.72	1.7	0.1	3.78	3.7	
3-J	J3	1.81	10	R	SUMP	-	7.09	7.1	-	21.64	19.3	Bypass from J1 Q100 surcharge equalizes to 4-J
4-J	J4	0.56	10	R	SUMP	-	1.16	1.2	-	2.63	19.3	Bypass from J2
15-K	K15	1.65	10	R	AT-GRADE	-	2.99	3.0	1.2	6.59	5.4	Future Filing
16-K	K16	1.20	10	R	AT-GRADE	-	2.44	2.4	0.6	5.37	4.8	Future Filing
17-K	K17	0.41	5	R	SUMP	-	0.87	0.9	-	3.10	11	Road Construction in Future Filing
18-K	K18	1.90	5	R	SUMP	-	3.54	3.5	-	8.37	11	Road Construction in Future Filing
19-K	K19	0.93	10	R	SUMP	-	1.82	1.8	-	4.02	11	Road Construction in Future Filing
20-K	K20	2.78	10	R	SUMP	-	5.35	7.2	-	11.79	19.3	Road Construction in Future Filing
21-K	K21	0.44	10	R	AT-GRADE	-	0.93	0.9	-	2.04	2.0	Big Johnson Dr.
22-K	K22	2.18	2 X 10	R	AT-GRADE	-	3.67	3.7	-	9.23	9.2	Big Johnson Dr.

Table 6.3 Overflow Routing Trails at Aspen Ridge, Filing No. 4							
Inlet	Overflow Routing Under Inlet Blockage Conditions						
5-L	In case of blockage of this inlet flows will surcharge the curb and gutter and flow directly into the NE Detention pond.						
3-J	In case of blockage flows will surcharge the crown of the road and enter inlet 4-J. If both inlets are blocked flows will back up the curb and gutter to Big Johnson Drive and continue downstream along Big Johnson Drive to the next inlet.						
4-J	In case of blockage flows will surcharge the crown of the road and enter inlet 3-J. If both inlets are blocked flows will back up the curb and gutter to Big Johnson Drive and continue downstream along Big Johnson Drive to the next inlet.						
17-K	In case of blockage flows will continue up the curb and gutter to and along Big Johnson Drive until reaching the next downstream inlet.						
18-K	In case of blockage flows will continue up the curb and gutter to and along Big Johnson Drive until reaching the next downstream inlet.						
19-K	In case of blockage flows will continue up the curb and gutter to and along Big Johnson Drive until reaching the next downstream inlet.						
20-K	In case of blockage flows will continue up the curb and gutter to and along Big Johnson Drive until reaching the next downstream inlet.						

C. Storm Sewer Capacities

Storm sewer capacities and HGL's were analyzed in StormCAD. Summary tables and HGL profiles for the Q5 and Q100 events can be found in Appendix A.

D. Detention

Summary information for the East Pond is listed below. Supporting UD-Detention spreadsheets and SWMM analysis for the East Pond can be found in Appendix A. The East and West Ponds will be privately owned and maintained by the Waterview II Metropolitan District.

	Table 6.5										
	Pond Summary Table										
	Pond ID	Analysis Method	Contributing Basins	Approximate Detention Volumes			EX	Proposed	EX	Proposed	
Major Basin				WQCV	EURV	Q100	5 Year	5 Year	100 Year	100 Year	
				AcFt.	AcFt.	AcFt.	(CFS)	(CFS)	(CFS)	(CFS)	
<u>West Fork</u> Jimmy Camp Creek	East Pond	UD- Detention	OS-1, A, B, C, D, E, F, G, J, K, I, H, M, & OS-East Side		5.835 6.581	17.083 18.001	22.3	6.7 6.0	144.6	120.0 139.6	
Marksheffel Tributary to Jimmy Camp Creek	Northeast Pond	UD- Detention	L1-L7	.162	.505	1.057	0.2	0.7	11.2	7.9	

Trails at Aspen Ridge, Filing No. 4 = **F6**, Trails at Aspen Ridge, Full Buildout = **FB**

Emergency Overflows

	Table 6.6 Emergency Overflow Weirs							
Major Basin	Pond ID	Description of Emergency Overflow Weir						
West Fork - Jimmy Camp Creek	East Pond	The emergency overflow weir for this pond will release emergency overflows to a proposed swale along the edge of the development boundary and direct the flows south to an existing swale flowing to the southeast. Flows will then follow historic patterns.						
Marksheffel Tributary to Jimmy Camp Cree	Northeast Pond	The emergency overflow weir for this pond will release emergency overflows to the existing Bradley Road ditch running along the north side of the proposed development. From this point flows will follow historic paths.						

Outfall Analysis

East Pond

The outfall for the East Pond was analyzed in *MDDP-Matrix* to confirm that the receiving swale should remain stable after construction of the pond. Hydraflow Express was utilized to check the

velocity of the anticipated Full Buildout Q100 Discharge and calculated a velocity in the 48" outfall pipe of 12.9 feet per second. A second Hydraflow calculation was performed at the narrowest point in the swale receiving the discharge. The results of this calculation indicated that the anticipated velocity of a Q100 discharge from the pond is around 3.7 feet per second which is well below the maximum 100-year velocity and barely above the maximum low flow velocity indicated for erosive soils in Table 12-3 (shown on the following page) of the DCM regarding Hydraulic Design Criteria for natural unlined channels. Additionally, the outfall will discharge to a rip rap lined low tailwater basin designed in accordance with UDFCD criteria.

Table 12-3.	Hydraulic Do	esign Criteria	for Natural	Unlined Channels

Design Parameter	Erosive Soils or Poor Vegetation	Erosion Resistant Soils and Vegetation
Maximum Low-flow Velocity (ft/sec)	3.5 ft/sec	5.0 ft/sec
Maximum 100-year Velocity (ft/sec)	5.0 ft/sec	7.0 ft/sec
Froude No., Low-flow	0.5	0.7
Froude No., 100-year	0.6	0.8
Maximum Tractive Force, 100-year	0.60 lb/sf	1.0 lb/sf

¹ Velocities, Froude numbers and tractive force values listed are average values for the cross section.

The Web Soil Survey for the site indicates that the Soils for the receiving swale are are classified as Stoneham sandy loam which is likely an erosive soil.

After receiving the East Pond Discharge, the existing swale will convey the stormwater to an existing detention feature on an adjacent property. According to the West Fork – Jimmy Camp Creek DBPS (See DPBS plan Sheet 6 in Appendix C of *MDDP-Matrix*) this existing detention feature is expected to receive up to 380 cfs for a Q100 event. The tributary drainage area treated by the East Pond makes up approximately 70 percent of the area tributary to the existing offsite pond. As the anticipated discharge from the East Pond is less than half (Filing No. 4: 120.0 cfs, Full Buildout: 139.6 cfs) of the the flow listed in the DBPS, the existing detention feature should not be adversely affected.

Northeast Pond

Swale capacity calculations for the Bradley Road Ditch receiving the outfall of the Northeast detention pond indicate an anticipated Q100 velocity of 3.0 ft/s for the combined detention discharge and upstream Bradley Road flows. This velocity is considered stable for erosive soils, therefore, this road ditch should be considered a suitable outfall location nor should the ditch and downstream areas be adversely affected by the NE Pond discharge.

SWMM Analysis: West Fork – Jimmy Camp Creek

Please note that the *MDDPA-Matrix* report analyzed the full buildout of the area tributary to the East Pond using pond inflow hydrographs generated in SWMM and input to UD-Detention because full build out of the basin will include detention ponds for the commercial areas along Bradley Road

² "Erosion resistant" soils are those with 30% or greater clay content. Soils with less than 30% clay content shall be considered "erosive soils."

in series with the East Pond. However, as these commercial areas are not anticipated to be developed prior to Trails at Aspen Ridge Filing No. 4, analysis of the East Pond for this filing utilized only the UD-Detention spreadsheet and considered all the upstream areas as undeveloped in order to confirm that the East Pond outlet structure for Filing No. 4 will conform to detention requirements in the DCM.

East Pond Phasing:

The East Pond was constructed as part of Trails at Aspen Ridge Filing No. 1. The pond was built to the size required for full development of the upstream basin, so expansion of the pond volume is not required for this development. (This volume does **not** include developed flows from the commercial areas or OS-East Side. These areas will be required to construct full spectrum detention when developed.) The Filing No. 1 orifice plate for the East Pond outlet structure has been evaluated and found **adequate** to discharge the combined Filing No. 1, Filing No. 2, Filing No. 3 and Filing No. 4 developed flows in compliance with DCM Criteria. Future filings will require additional evaluations and, possibly, redesigns of the orifice plate to ensure compliance with the DCM and **MDDPA-Matrix** criteria.

IX. Environmental Evaluations

A. WETLAND IMPACTS

There are no designated wetland or riparian areas on site, and no anticipated impacts.

B. STORMWATER QUALITY

All on-site detention facilities shall be designed to accommodate water quality requirements. As the development of each parcel progresses, the detention guidelines outlined in this report are to be upheld. Per Chapter 4, Section 4.1, of the El Paso County DCM, Volume 2, the DCM requires a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

Step 1: Employ Runoff Reduction Practices

• Site specific landscaping will be done on each lot to decrease the connectivity of impervious areas. Grass lined swales will be used where possible to allow infiltration.

Step 2: Stabilize Drainageways.

 The site is in the West Fork – Jimmy Camp Creek and Marksheffel tributary to Jimmy Camp Creek basins. Drainage fees, to be paid by the relevant Trails at Aspen Ridge (Waterview East) developers at the time of platting, will help fund future channel improvements. Specific information on future improvements to the Jimmy Camp Creek channel was unavailable for this report.

Step 3: Provide Water Quality Capture Volume

• The East Pond and Northeast Pond both meet the DCM standards for the release rates of Full Spectrum Detention Ponds for Water Quality Capture Volumes.

Step 4: Consider Need for Industrial and Commercial BMPs

 There are no commercial or industrial components of this development, therefore no BMPs of this nature are required. The Full Spectrum Detention BMP is provided for the proposed development by the East and Northeast Ponds.

C. PERMITTING REQUIREMENTS

No additional permitting requirements are expected at this time.

X. Erosion Control Plan

A grading and erosion control plan (GEC) for Trails at Aspen Ridge Filing No. 4 will be completed. The GEC incorporates straw wattles, straw bale check dams, silt fence, vehicle tracking control, inlet & outlet control, sedimentation basins and other best management practices (BMPs) identified in the DCM Volume 2. Please refer to the GEC for phasing and procedural information for adaptations between the Filing No. 4 GEC and the overall GEC.

XI. Drainage Fees

Impervious Area Calculations

Land Use Type	% Impervious	Area (Acres)	Impervious Acres						
West Fork Jimmy Camp Creek									
Residential (1/8 acre or less)	65%	7.518	4.887						
Park	7%	0.634	0.044						
	Total	8.152	4.931						

Marksheffel Tributary to Jimmy Camp Creek								
Residential (1/8 acre or less)	65%	7.831	5.090					
Park/Detention/Open Space	7%	1.919	0.134					
	Total	9.749	5.224					

TRAILS AT ASPEN RIDGE FILING NO. 4									
	2021 Drainage and Bridge Fees								
	Impervious					Drainage			
	Area	Fee/ Imp.		Reimbursable	Fee Due at	Fee			
	(ac.)	Acre	Fee Due	Const. Costs	Platting	Credit			
		Marksheffe	l Tributary to Ji	mmy Camp Creek					
Drainage Fee	5.224	\$19,752.00	\$103,188.66	\$0.00	\$103,188.66	\$0.00			
Bridge Fee	5.224	\$2,551.00	\$13,326.97	\$0.00	\$13,326.97	\$0.00			
Surety Fee	5.224	\$7,285.00	\$38,056.84	\$0.00	\$38,056.84	\$0.00			
Sub-Total				_	\$154,572.47	_			
		West	Fork Jimmy C	amp Creek		_			
Drainage Fee	4.931	\$13,524.00	\$66,685.51	\$0.00	\$66,685.51	\$0.00			
Bridge Fee	4.931	\$4,001.00	\$19,728.54	\$0.00	\$19,728.54	\$0.00			
Surety Fee	4.931	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00			
Sub-Total	Sub-Total \$86,414.05								
Overall Total \$240,986.52									

XII. Construction Cost Opinion

Engineer's Estimate of Probable Construction Costs								
Trails at Aspen Ridge Filing No. 4								
Public Non-	Reimbu	rsable						
Item	Unit	Quantity	Unit Cost	Extension				
18" RCP	LF	404	\$67.00	\$27,068.00				
24" RCP	LF	258	\$81.00	\$20,898.00				
30" RCP	LF	873	\$100.00	\$87,300.00				
36" RCP	LF	160	\$124.00	\$19,840.00				
18" FES	EA	1	\$402.00	\$402.00				
TYPE I MANHOLE	EA	0	\$12,034.00	\$0.00				
TYPE II MANHOLE	EA	9	\$6,619.00	\$59,571.00				
5' TYPE R INLET	EA	2	\$5,736.00	\$11,472.00				
10' TYPE R INLET	EA	7	\$7,894.00	\$55,258.00				
15' TYPE R INLET	EA	1	\$10,265.00	\$10,265.00				
NE DETENTION/WQ POND (Private: Waterview II Metro Dist.)	EA	1	\$85,000.00	\$85,000.00				
	•	Sub	Total	\$377,074.00				
		10% Co	ntingency	\$37,707.40				
		TO	TAL:	\$414,781.40				

Since the engineer has no control over the cost of labor, materials, equipment or services furnished by others, or over the contractor's method of determining prices, or over the competitive bidding or

market conditions, the opinion of probable construction costs provided herein are made on the basis of the engineer's experience and qualifications and represents the best judgment as an experienced and qualified professional familiar with the construction industry. The engineer cannot, and does not guarantee that proposals, bid or actual construction costs will not vary from the opinions of probable cost.

Please note that some inlets, manholes, and pipes described in this report will be constructed under future filings and were not included in the above Construction Cost Estimate. These items are located between Filings No. 2 and No. 4.

XIII. Summary

The above report has demonstrated that the proposed development will comply with the governing DCM, ECM, previous drainage reports, and the El Paso County MS4 permit. No adverse effect on downstream infrastructure is anticipated. Therefore, we recommend approval of the proposed development.

XIV. References

- 1. El Paso County Drainage Criteria Manual, Volume 1 & 2, El Paso County, May 2014
- 2. *El Paso County Engineering Criteria Manual*, El Paso County, Rev. December 2016
- 3. Web Soil Survey of El Paso County Area, Colorado. Unites States Department of Agriculture Soil Conservation Service.
- 4. Flood Insurance Rate Maps for El Paso County, Colorado and Incorporated Areas, Panel 768 of 1300, Federal Emergency Management Agency, Effective Date December 7, 2018.
- 5. *Urban Storm Drainage Criteria Manual, Vol. 1-3* by Urban Drainage and Flood Control District (UDFCD), January 2016
- 6. West Fork Jimmy Camp Creek Drainage Basin Planning Study by Kiowa Engineering, revised October 2003
- 7. Jimmy Camp Creek Drainage Basin Planning Study, Development of Alternatives & Design of Selected Plan, Report by Kiowa Engineering, March 2015
- 8. **Big Johnson Reservoir/Crews Gulch Drainage Basin Planning Study,** by Kiowa Engineering, September 1991.
- 9. **"Amendment to Waterview Master Drainage Development Plan"**, completed by Springs Engineering, dated July 2014 (MDDP-2014)
- 10. "Master Drainage Development Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge", Completed by Matrix Design Group, Dated August 2019 (MDDPA-Matrix)
- 11. "Final Drainage Report for Trails at Aspen Ridge Filing No. 1", completed by Matrix Design Group, Dated January 2020. (FDR-F1)
- 12. "Final Drainage Report for Trails at Aspen Ridge Filing No. 2", completed by Matrix Design Group, Dated March 2021. (FDR-F2)
- 13. "Final Drainage Report for Trails at Aspen Ridge Filing No. 3", completed by Matrix Design Group, Dated March 2021. (FDR-F3) (Approval Pending)
- 14. **"PDR Amendment for Trails at Aspen Ridge",** completed by Matrix Design Group, Dated April 2021. (PDRA-Matrix) (Approval Pending)

XV. Appendices

APPENDIX A HYDROLOGIC AND HYDRAULIC CALCULATIONS

Project Name:
Project Location:
Project Location:
Designer
State of the project Location of the projec

Average Channel Velocity Average Slope for Initial Flow 5 ft/s 0.04 ft/ft (If specific channel vel is used, this will be ignored) (If Elevations are used, this will be ignored)

Channel Flow Type Key

Heavy Meadow 2

Tillage/Field 3

Short Pasture and Lawns 4

Nearly Bare Ground 5

Grassed Waterway 6

Paved Areas 7

		Are	а				Rationa	l 'C' Values	3				Flow L	engths		Initia	Flow		Channel F	low		Tc	Rainfall	Intensity &	Rational F	low Rate	SWMN	l Values
Major Basin / Sub-basin					urface Type Impervious			Surface Typ (Undevelop		Com	posite	Initial	True Initial	Channel	True Channel	Average	Initial	Average (%)	Channel Flow Type (See Key above)	Velocity	Channel	Total	i5	Q5	i100	Q100	Q5	Q100
	Comments	sf	acres	C5	C100	Area (SF)	C5	C100	Area	C5	C100	ft	Length ft	ft	Length ft	Slope	Tc (min)	Slope	Ground Type	(ft/s)	Tc (min)	(min)	in/hr	cfs	in/hr	cfs	cfs	cfs
West Fork Jimmy Camp Creek / OS - 1	- The most northwestern portion of this basin (7.268 Acres) outside of the proposed Trails at Aspen Ridge development was rerouted out of the Big Johnson Reservoir basin by CDOT construction of Powers Boulevard and Bradley Road. Future development of the rerouted area will require routing the flows back to the Big Johnson Reservoir to return the area to compliance with the relevant DBPS studies.	853,953.7	19.60	0.90	0.96	42,031.0	0.09	0.36	811,922.7	0.13	0.39	621.00	300.00	2146.00	2467.00	0.106	19.79	2.470	5.000	1.5	26.5	46.3	1.9	4.8	3.1	24.1	11.8	47.4
West Fork Jimmy Camp Creek / WF-1	The small area just outside the east boundary of Trails at Aspen Ridge will be kept off of the proposed project by raising the elevation of the proposed trail along this side of the development.	5,187,332.2	119.08	0.90	0.96		0.09	0.36	5,187,332.2	0.09	0.36	530.00	300.00	3811.00	4041.00	0.089	20.22	2.940	5.000	1.7	39.5	59.8	1.6	17.1	2.7	115.2	21.4	97.6
West Fork Jimmy Camp Creek / WF-2	Located at south end of study area.	921,440.7	21.15	0.90	0.96		0.09	0.36	921,440.7	0.09	0.36	300.00	300.00	1014.00	1014.00	0.080	15.74	6.114	5.000	2.5	6.8	22.6	2.8	5.4	4.8	36.5	5.5	31.1
Marksheffel Tributary to Jimmy Camp Creek / MKT-1	Located at northeast corner of Trails at Aspen Ridge PUD	314,083.1	7.21	0.90	0.96		0.09	0.36	314,083.1	0.09	0.36	300.00	300.00	1125.00	1125.00	0.056	17.74	3.000	5.000	1.7	10.8	28.6	2.5	1.6	4.2	10.9		
EXISTING CONDITIONS - DESIGN POINTS OS-1	INCLUDED SUB-BASINS OS-1 (Note: 7.3 Acres diverted by CDOT from Big Johnson)	853,953.7	19.60	0.90	0.96	42,031.0	0.09	0.36	811,922.7	0.13	0.39	621.00	300.00	2146.00	2467.00	0.106	19.79	2.470	5.000	1.5	26.5	46.3	1.9	4.8	3.1	24.1	11.8	47.4
WF-1 (SWMM WF-East)	WF-1 & OS-1	6,041,285.9	138.69	0.90	0.96	42,031.0	0.09	0.36	5,999,254.9	0.10	0.36	621.00	300.00	5957.00	6278.00	0.106	20.49	2.771	5.000	1.6	63.7	84.2	1.3	16.9	2.1	108.1	33.2	139.1
WF-2	WF-2	921,440.7	21.15	0.90	0.96	0.0	0.09	0.36	921,440.7	0.09	0.36	300.00	300.00	1014.00	1014.00	0.080	15.74	6.114	5.000	2.5	6.8	22.6	2.8	5.4	4.8	36.5	5.5	31.1
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel so this is a sum of WF- 1 & WF-2.)	6,962,726.5	159.84	0.90	0.96	42,031.0	0.09	0.36	6,920,695.5	0.09	0.36		0.00		0.00		#DIV/0!		5.000					22.3		144.6	37.0	170.0
MKT-1 TO MARKSHEFFEL TRIBUTARY TO JIMMY CAMP CREEK	MKT-1	314,083.1	7.21	0.90	0.96	0.0	0.09	0.36	314,083.1	0.09	0.36	300.00	300.00	1125.00	1125.00	0.056	17.74	3.000	5.000	1.7	10.8	28.6	2.5	1.6	4.2	10.9		

Note: -SWMM values are listed for the West Fork Jimmy Camp Creek Basin due to the required analysis of pond in series for that basin. SWMM Analysis can be found in the approved PDR for Trails at Aspen Ridge

TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

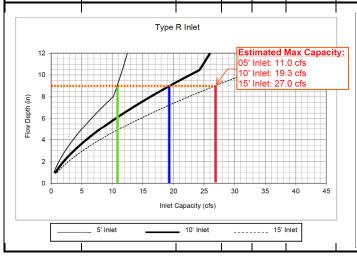
FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

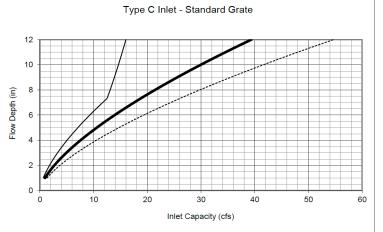
FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

FINAL STATE OF TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

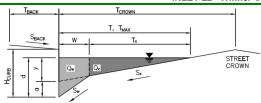
FINAL STATE OF TRAILS AT ASPEN


Average Channel Velocity

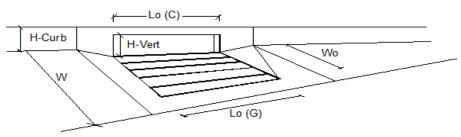

(If specific channel vel is used, this will be ignored)
(If Elevations are used, this will be ignored)

Channel Flow Type Key
Heavy Meadow 2
Tillage/freld 3
Short Pasture and Lawns 4
Nearly Bare Ground 5
Grassed Waterway 6

		Aı	rea									Ratio	nal 'C' Values											Flow Leng	hs						Tc	Rainfall I	ntensity & Ratior	onal Flow Rate
					Surface Type 1			Surface Type 2	,		Surface Type 3	3	5	Surface Type 4		Sur	ırface Type 5		Surface Typ	ve 6														
	_				Commercial Area		I I	Residential (1/8 or			Streets - Paved			rhoods/Multi-			and Cemetari			Flow Analysis	Composite	Percent	Initial .	rue Char	nel True Channe	Average Initia	d Average (%	Channel Flow Type	Velocity	Channel	Total	i5	Q5 i10	100 Q100
Sub-basin	Comments				(95% Impervious	s)		(65% Imperviou	18)	(100% Impervio	us)	(70	0% Impervious	3)	(7%	6 Impervious)		(2% Impervi	ous)		Impervious		itial		(decimal)		(See Key above)	,					1
		of.	0.0000	C5	C100	Arms	C5	C100	Area (SF)	C5	C100	Area (SE)	C5	C100	Aron	C5	C100	Area C5	C100	Area	C5 C100		6 1	orb fr fr	Length ft	Slone Tc (m	in) Slone	Ground Type	(ft/e)	Te (min)	(min)	in/he	ofo in/	/he of
11	WEST FORK JCC	256681	5.89	0.5	0.89	Attea	0.45	0.100	231803.00	00		ritea (SF)	0.53		Area	0.5		24878.00 0.09		rtica	0.42 0.58	59.38	11 12	50 64		0.05 5.03	- cope	7	(11/3)	re (mm)	10.37	4.05	10.2 6.8	.80 23.5
12		39240			0.89		0.45							0.68		0.19			0.36		0.45 0.59			50 54		0.05 4.84		7						.05 3.8
J3	WEST FORK JCC	78909	1.81	0.82	0.89		0.45	0.59	78909.00	0.90	0.96		0.53	0.68		0.19	0.52	0.09	0.36		0.45 0.59	65.00	50	50 36	360	0.05 4.84	1.00	7	2.00	3.00	7.83	4.48	3.7 7.5	.52 8.1
J4	WEST FORK JCC	24208	0.56	0.82	0.89		0.45	0.59	24208.00		0.96		0.53	0.68			0.52		0.36		0.45 0.59	00100		50 28	201	0.05 4.8		7	2.00	2.37				.73 2.6
L1	MARKSHEFFEL TRIB TO JCC		2.23		0.89		0.45	0.59			0.96			0.68				3430.00 0.09			0.44 0.59		50	50 95		0.05 4.9		7		4.68				.00 9.2
L2	MARKSHEFFEL TRIB TO JCC	126973	2.91	0.82			0.45	0.59	126973.30		0.96		0.53	0.68			0.52		0.36		0.45 0.59		50	50 63		0.05 4.8		7	3.41	3.09	7.92			.49 13.0
L3	MARKSHEFFEL TRIB TO JCC MARKSHEFFEL TRIB TO JCC	62303 73882	1.43	0.82			0.45	0.59	62302.80 66260.50		0.96		0.53	0.68			0.52	7621.00 0.09	0.36		0.45 0.59 0.42 0.58			50 45		0.05 4.8		7	3.16 3.16	2.38			3.0 7.7: 3.3 7.6	.73 6.6
1.5	MARKSHEFFEL TRIB TO JCC	4306	0.10	0.82			0.45	0.59	4305.60				0.53	0.68			0.52		0.36		0.42 0.50			15 73		0.05 2.6		7	3.46				0.2 8.5	
L6	MARKSHEFFEL TRIB TO ICC	2039	0.05	0.82			0.45	0.59	2039.00		0.96		0.53	0.68			0.52		0.36		0.45 0.59			15 73		0.05 2.6		7	3.46	0.35			0.1 8.5	
L7	MARKSHEFFEL TRIB TO JCC	29562	0.68	0.82	0.89		0.45	0.59		0.90	0.96		0.53	0.68		0.19	0.52	29561.80 0.09	0.36		0.19 0.52	7.00	20	20 19	193	0.05 4.23	0.50	4	0.49	6.50	10.78	3.98	0.5 6.69	.69 2.4
L8	MARKSHEFFEL TRIB TO JCC	8837	0.20	0.82	0.89		0.45	0.59		0.90	0.96		0.53	0.68		0.19	0.52	8837.30 0.09	0.36		0.19 0.52	7.00	10	10 22	221	0.05 3.03	3.00	4	1.21	3.04	6.06	4.85	0.2 8.1	.14 0.9
K15	WFJCC, FUTURE FILING	72066			0.89		0.45		72066.00					0.68		0.19			0.36		0.45 0.59		100	00 73	100	0.05 6.84		7	3.10		10.76			.70 6.6
K16	WFJCC, FUTURE FILING	52256	1.20	0.82			0.45	0.59			0.96		0.53	0.68			0.52		0.36		0.45 0.59		50	50 55		0.05 4.8		7	3.10				2.4 7.5	
KI/	WFJCC, FUTURE FILING	17888 82852			0.89		0.45				0.96		0.53	0.68		0.19			0.36		0.45 0.59			50 35		0.05 4.8		-/	2.83	2.07			0.9 7.8	.90 7.8
K10	WFJCC, FUTURE FILING WFJCC, FUTURE FILING	82852 40516	0.93	0.02	0.89		0.45	0.59					0.53	0.68		0.19			0.36		0.45 0.59			00 53 50 64	333	0.05 6.8	2.00	7	2.83					.26 4.0
K20	WFJCC, FUTURE FILING	121070		0.82			0.45	0.59	121070.00				0.53	0.68			0.52		0.36		0.45 0.59			50 72	725	0.05 4.8		7	2.83	4.27				.13 11.8
K21		19297	0.44				0.45	0.59	19297.00				0.53	0.68		0.19	0.52	0.09	0.36		0.45 0.59	65.00	50	50 56	564	0.05 4.84	4.00	7	4.00	2.35				.74 2.0
K22	BIG JOHNSON ROAD, WFJCC	95154	2.18	0.82			0.45	0.59	70375.00		0.96		0.53	0.68			0.52	24779.00 0.09			0.38 0.57			50 74		0.05 5.3		7	4.00				3.7 7.3	
DESIGN POINTS	arin naant t	1207	0.40	0.02	0.00		0.45	0.50	1207	0.00	0.06		0.50	0.60		0.40	0.50	0 000	0.24		0.45	65.00	45		70	0.05	2.0		2.16	0.45	5.00	5.40	0.2	50 0.5
SUB-BASIN L5 SUB-BASIN L6	SUB-BASIN L5 SUB-BASIN L6	4306 2039	0.10	0.82	0.89	0	0.45	0.59	4306 2039	0.90	0.96	0	0.53	0.68	0		0.52	0 0.09	0.36		0.45 0.59		15 15	15 73	73	0.05 2.6		7	3.46				0.2 8.5	.58 0.5 .58 0.2
1.I	SUB-BASINS L5 & L6	6345	0.05	0.82	0.89	0	0.45	0.59	6345	0.90	0.96	0	0.53	0.68	0		0.52	0 0.09			0.45 0.59		15	15 73	73	0.05 2.6	0.00	7	3.46		0.00		0.3 8.5	
SUB-BASIN L2	SUB-BASIN L2	126973	2.91	0.82	0.89	0	0.45	0.59	126973	0.90	0.96	0	0.53	0.68	0	0.19	0.52	0 0.09	0.36	0	0.45 0.59	65.00	50	50 63	631	0.05 4.8		7	3.41	3.09	7.92			.49 13.0
2-L	SUB-BASINS L2, L5 & L6	133318	3.06	0.82	0.89	0	0.45	0.59	133318	0.90	0.96	0	0.53	0.68	0	0.19	0.52	0 0.09	0.36	0	0.45 0.59	65.00	50	50 63	631	0.05 4.84	2.9	7	3.41	3.09	7.92	4.46	6.2 7.4	
3-L	SUB-BASIN L3	62303	1.43	0.82	0.89	0	0.45	0.59	62303	0.90	0.96	0	0.53	0.68	0		0.52	0 0.09			0.45 0.59		50	50 45		0.05 4.8		7		22.50				.73 6.6
4-L		195621		0.82		0	0.45		195621				0.53	0.68		0.19					0.45 0.59			50 63		0.05 4.8		7	3.41		7.92	4.46	9.1 7.4	.49 20.0
5-L	SUB-BASINS L1-L6 NE POND (SUB-BASINS L1-L7)	366611		0.82	0.89	0	0.45	0.59	355560 355560	0.00	0.96	0	0.53	0.68	0		0.52	11051 0.09 40613 0.09			0.44 0.59 0.42 0.58	00140		50 95		0.05 4.90 0.05 5.0-		7	0.111	4.68			15.6 7.0	.01 34.9 .72 35.9
7-I.	NE POND DISCHARGE	396173		0.82		0	0.45	0.59	333300	0.90			0.53	0.68	0		0.52	0.09		396173				50 115		0.05 7.5		2					0.2 2.9	
8-L	SITE DISCHARGE	405010	9.30	0.82	0.89	0	0.45	0.59	0	0.90	0.96	0	0.53	0.68	0	0.19	0.52	8837 0.09	0.36	396173	0.09 0.36	2.11	50	50 115	1150	0.05 7.50	2.9	4	1.19		23.58		0.4 4.6.	
1-J	SUB-BASIN J1	256681			0.89	0	0.45	0.59	231803	0.90	0.96	0	0.53	0.68	0		0.52	24878 0.09	0.36		0.42 0.58		50	50 64		0.05 5.03	130	7	2.00				10.2 6.80	
2-J	SUB-BASIN J2	39240	0.90	0.82		0	0.45	0.59	39240	0.90	0.96	0	0.53	0.68	0		0.52	0 0.09	0.36		0.45 0.59	00100	50	50 54		0.05 4.8		7	2.00	4.57				.05 3.8
1-2-5	SUB-BASINS J1 & J2 SUB-BASIN J3	295921 78909	6.79	0.82	0.89	0	0.45	0.59	271043 78909	0.90	0.96	0	0.53	0.68	0		0.52	24878 0.09 0 0.09			0.43 0.58	0.0112		50 64		0.05 5.00		7	2.00	5.35 3.00			11.9 6.80	.80 27.2 .52 8.1
3-J	SUB-BASIN J3 SUB-BASIN J4	78909 24208	0.56	0.82		0	0.45	0.59	78909 24208	0.90	0.96	0	0.53	0.68	0		0.52	0 0.09		Ü	0.45 0.59	05.00	50	50 28		0.05 4.8		7	2.00				1.2 7.7:	
1-4-1	SUB-BASINS J1 TO J4	399038		0.82		0	0.45		374160		0.96	0	0.53	0.68	0		0.52	24878 0.09			0.43 0.59		50	50 100		0.05 4.9		7	2.00	8.35				.14 33.2
									0.1100									3.07						- 100		4.2					,,,,,			-
15-K	SUB-BASIN K15	72066	1.65	0.82	0.89	0	0.45	0.59	72066	0.90	0.96	0	0.53	0.68	0	0.19	0.52	0 0.09	0.36	0	0.45 0.59	65.00	100	00 73	730	0.05 6.8	2.40	7	3.10	3.93	10.76	3.99	3.0 6.70	.70 6.6
16-K	SUB-BASIN K16	52256			0.89	0	0.45		52256		0.96	0		0.68	0			0 0.09			0.45 0.59			50 55		0.05 4.8		7	3.10	3.00				.52 5.4
15-16-K		124322		0.82	0.89	0	0.45	0.59	124322	0.90	0.96	0	0.53	0.68	0		0.52	0 0.09			0.45 0.59			50 55		0.05 4.8		7	3.10				5.8 7.5:	
17-K	SUB-BASIN K17	17888	0.41	0.82	0.89	0	0.45	0.59	17888	0.90	0.96	0	0.53	0.68	0	0.19	0.52	0 0.09			0.45 0.59	00100	50	50 35		0.05 4.8		7	2.83		6.91		0.9 7.8	
18-K 15-18-K	SUB-BASIN K18 SUB-BASINS K15 & K18	82852 225062	1.90 5.17	0.82	0.89	0	0.45	0.59	82852 225062	0.90	0.96	0	0.53	0.68	0	0.19	0.52	0 0.09	0.36		0.45 0.59	00100	100	00 53 50 55	000	0.05 6.8		7	2.83 3.10	0.11	7170		3.5 6.90 10.5 7.53	.90 7.8
10.K	SUB-BASINS KIS & KIS SUB-BASIN KI9	40516	0.93	0.82	0.89	0	0.45	0.59	40516	0.90	0.96	0	0.53	0.68	0	0.19	0.52	0 0.09	0.36		0.45 0.59	65.00	50	50 55		0.05 4.8		7	2.83		7.83 8.66	4.48		.52 23.1
20-K	SUB-BASIN K20	121070	2.78			0	0.45	0.59	121070	0.90	0.96	0	0.53	0.68	0		0.52	0 0.09			0.45 0.59	05.00	50	50 72		0.05 4.8		7	2.83	4.27				.13 11.8
19-20-K		161586	3.71	0.82		0	0.45	0.59	161586	0.90		0	0.53	0.68	0		0.52	0 0.09			0.45 0.59	00100		50 72		0.05 4.8		7		4.27			7.1 7.1	
21-K	SUB-BASIN K21	19297	0.44	0.82	0.89	0	0.45	0.59	19297	0.90	0.96	0	0.53	0.68	0	0.19	0.52	0 0.09	0.36	0	0.45 0.59	65.00	50	50 56	564	0.05 4.8	4.0	7	4.00	2.35	7.18	4.60	0.9 7.7-	
22-K	SUB-BASIN K22	95154		0.82	0.00	0	0.45	0.59	70375	0.90	0.96	0	0.53	0.68	0		0.52	24779 0.09	0.00		0.38 0.57	1317.0	50	50 74		0.05 5.3		7	4.00		8.43		3.7 7.3:	
5-J	SUB-BASINS J1-J4, K19 & K20	560624		0.82	0.89	0	0.45	0.59	535746	0.90	0.96	0	0.53	0.68	0			24878 0.09	0.36		0.44 0.59		50	50 172		0.05 4.93		7	3.90		12.30		21.5 6.3	
6-J	SUB-BASINS J1-J4 & K15-K20	785686	18.04	0.82	0.89	0	0.45	0.59	760808	0.90	0.96	0	0.53	0.68	0		0.52	24878 0.09		Ü	0.44 0.59	05.10		00 228		0.05 6.93	4.00	7		9.52			26.6 5.5	
7-J	SUB-BASINS J1-J4 & K15-K22	900137	20.66	0.82	0.89	0	0.45	0.59	850480	0.90	0.96	0	0.53	0.68	0	0.19	0.52	49657 0.09	0.36	0	0.44 0.59	61.80	100	00 228	5 2285	0.05 6.99	4.00	7	4.00	9.52	16.51	3.31	30.0 5.5	.56 67.9


	PROPOSED INLET SUMMARY													
	TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)													
DESIGN POINT (#-Letter)		TOTAL		INLE	т	Q(5) BYPASS	Q(5) TOTAL	Q5 INLET	Q(100) BYPASS	Q(100) TOTAL	MAX INLET			
or SUB-BASIN (Letter#)	SUB-BASINS	AREA (AC)	SIZE (Ft.)	TYPE	CONDITION	FLOWS (cfs)	INFLOW	CAPACTIY	FLOWS (cfs)	INFLOW (cfs)	CAPACITY	NOTES:		
L1	L1, L2 BYPASS	2.23	10	R	SUMP	0.0	4.13	4.1	0.0	11.73	19.3	L1 & L4 are paired 10' inlets		
3-L	L3	1.43	10	R	AT-GRADE	0.0	2.98	3.0	1.2	6.57	5.4			
L4	L4	1.70	10	R	SUMP	0.0	3.30	3.3	0.0	8.80	19.3	L1 & L4 are paired 10' inlets		
L2	L2	2.91	15	R	AT-GRADE	0.0	5.90	5.9	2.5	12.99	10.5			
L5	L5	0.10	5	R	AT-GRADE	0.0	0.23	0.2	0.0	0.50	0.5			
L6	L6	0.05	5	R	AT-GRADE	0.0	0.11	0.1	0.0	0.24	0.2			
1-J	J1	5.89	10	R	AT-GRADE	3.4	10.21	6.8	13.5	23.54	10.0			
2-J	J2	0.90	10	R	AT-GRADE	0.0	1.72	1.7	0.1	3.78	3.7			
3-J	J3	1.81	10	R	SUMP	0.0	7.09	7.1	0.0	21.64	19.3	Bypass from J1 Q100 surcharge equalizes to 4-J		
4-J	J4	0.56	10	R	SUMP	0.0	1.16	1.2	0.0	2.63	19.3	Bypass from J2		
15-K	K15	1.65	10	R	AT-GRADE	0.0	2.99	3.0	1.2	6.59	5.4			
16-K	K16	1.20	10	R	AT-GRADE	0.0	2.44	2.4	0.6	5.37	4.8			
17-K	K17	0.41	5	R	SUMP	0.0	0.87	0.9	0.0	3.10	11			
18-K	K18	1.90	5	R	SUMP	0.0	3.54	3.5	0.0	8.37	11			
19-K	K19	0.93	10	R	SUMP	0.0	1.82	1.8	0.0	4.02	11			
20-K	K20	2.78	10	R	SUMP	0.0	5.35	7.2	0.0	11.79	19.3			
21-K	K21	0.44	10	R	AT-GRADE	0.0	0.93	0.9	0.0	2.04	2.0			
22-K	K22	2.18	2 X 10	R	AT-GRADE	0.0	3.67	3.7	0.0	9.23	9.2			

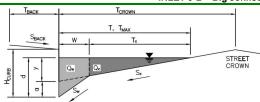
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Trails at Aspen Ridge Filing No. 4 INLET L2 - Winner Creek

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ $\mathsf{S}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope S_v 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.029 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} 5.2 8.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 17.8 44.0 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

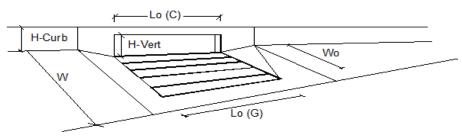
Version 4.05 Released March 2017


Design Information (Input)	CDOT Type R Curb Opening	•	_	MINOR	MAJOR	
Type of Inlet	CDO1 Type K Curb Opening		Type =	CDOT Type F	Curb Opening	
Local Depression (additional to co	ntinuous gutter depression 'a')		a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)		No =	1	1	
Length of a Single Unit Inlet (Grate	or Curb Opening)		L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be g	reater than W, Gutter Width)		W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit (Grate (typical min. value = 0.5)		C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit C	Curb Opening (typical min. value = 0.1)		C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allo	wable Street Capacity'		_	MINOR	MAJOR	
Total Inlet Interception Capacity			Q =	5.9	10.5	cfs
Total Inlet Carry-Over Flow (flov	v bypassing inlet)		Q _b =	0.0	2.5	cfs
Capture Percentage = Q _a /Q _o =			C% =	100	81	%

UD-Inlet_v4.05 (1), INLET L2 6/8/2021, 4:17 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

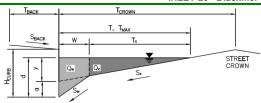
Trails at Aspen Ridge Filing No. 4


INLET 3-L - Big Johnson Drive

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ $\mathsf{S}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope S_v ft/ft 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.025 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.2 8.0 inches d_{MAX} Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 16.5 46.0 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

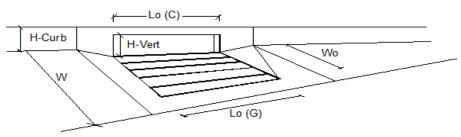
Version 4.05 Released March 2017


Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	3.0	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.2	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	82	%

UD-Inlet_v4.05 (1), INLET 3-L 6/8/2021, 4:19 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

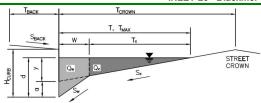
Trails at Aspen Ridge Filing No. 4


INLET L5 - Blackmer Drive

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 10.0 $\mathsf{T}_{\mathsf{BACK}}$ $\mathsf{S}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.50 Street Transverse Slope S_v 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.015 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} 5.2 8.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.6 45.8 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

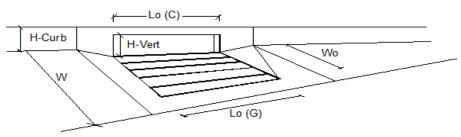
Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q=	0.2	0.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%

UD-Inlet_v4.05 (1), INLET L5 6/8/2021, 4:23 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

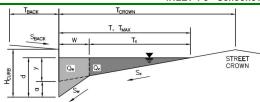
Trails at Aspen Ridge Filing No. 4


INLET L6 - Blackmer Drive

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb 10.0 $\mathsf{T}_{\mathsf{BACK}}$ $\mathsf{S}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.50 Street Transverse Slope S_v 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.053 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} 5.2 8.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 15.6 32.9 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

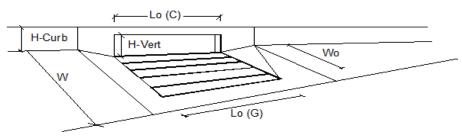
Version 4.05 Released March 2017


Design Information (Input) CDOT Type R Curb Opening ▼	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q=	0.1	0.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%

UD-Inlet_v4.05 (1), INLET L6 6/8/2021, 4:24 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

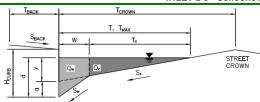
Trails at Aspen Ridge Filing No. 4


INLET 1-J - Schoonover Dr.

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ $\mathsf{S}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope S_v 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.010 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} 5.2 8.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.4 41.7 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

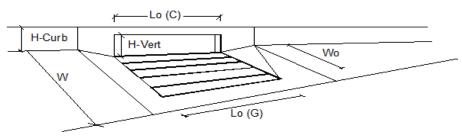
Version 4.05 Released March 2017


Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.8	10.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	3.4	13.5	cfs
Capture Percentage = Q _a /Q _o =	C% =	66	42	%

UD-Inlet_v4.05 (1), INLET 1-J 6/8/2021, 4:28 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Trails at Aspen Ridge Filing No. 4


INLET 2-J - Schoonover Dr.

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ $\mathsf{S}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope S_v 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.010 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} 5.2 8.0 inches Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 10.4 41.7 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

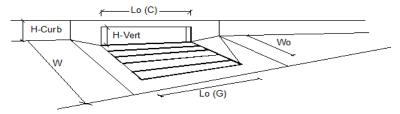
INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.7	3.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	98	%

UD-Inlet_v4.05 (1), INLET 2-J 6/8/2021, 4:29 PM

Version 4.05 Released March 2017


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Trails at Aspen Ridge Filing No. 4 Schoonover Dr. UPHILL OF INLET 3-J Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 10.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 S_X Street Transverse Slope 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.010 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.013 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.2 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 41.7 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

UD-Inlet_v4.05 (1), INLET 3-J 6/8/2021, 4:30 PM

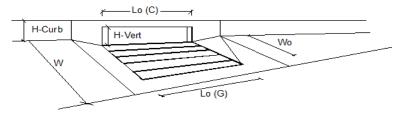
INLET ON A CONTINUOUS GRADE

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	·		cfs
Capture Percentage = Q _a /Q _o =	C% =			%

UD-Inlet_v4.05 (1), INLET 3-J 6/8/2021, 4:30 PM

Version 4.05 Released March 2017

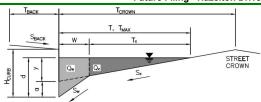

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Trails at Aspen Ridge Filing No. 4 Schoonover Dr. UPHILL OF INLET 4-J Project: Inlet ID: STREET Gutter Geometry (Enter data in the blue cells) T_{BACK} Maximum Allowable Width for Spread Behind Curb 10.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) S_{BACK} 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 Distance from Curb Face to Street Crown 17.0 $\mathsf{T}_{\mathsf{CROWN}}$ Gutter Width w: 2.00 S_X Street Transverse Slope 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_w 0.083 ft/ft S_o : Street Longitudinal Slope - Enter 0 for sump condition 0.010 Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.013 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 17.0 17.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.2 Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 41.7 inor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Manage

ajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Managem

UD-Inlet_v4.05 (1), INLET 4-J 6/8/2021, 4:30 PM

INLET ON A CONTINUOUS GRADE

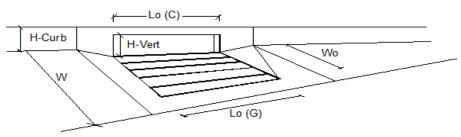
Version 4.05 Released March 2017


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =			
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =			inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =			
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =			ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =			ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =			
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =			
	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =			cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	·		cfs
Capture Percentage = Q _a /Q _o =	C% =			%

UD-Inlet_v4.05 (1), INLET 4-J 6/8/2021, 4:30 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

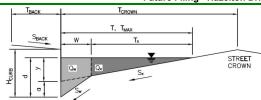
Trails at Aspen Ridge Filing No. 4


Future Filing - Hazelton Drive - INLET 15-K

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $\mathsf{S}_{\mathsf{BACK}}$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope ft/ft S_v 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.024 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.2 8.0 inches d_{MAX} Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 16.2 46.5 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

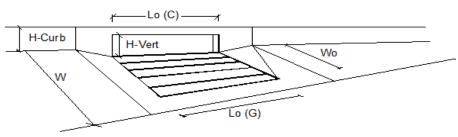
Version 4.05 Released March 2017


Design Information (Input) Type of Inlet CDOT Type R Curb Opening ▼	Type =	MINOR CDOT Type F	MAJOR R Curb Opening	7
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	1
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	3.0	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	1.2	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	82	%

UD-Inlet_v4.05 (1), INLET 15-K 6/8/2021, 4:34 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

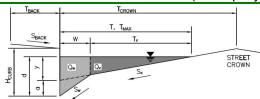
Trails at Aspen Ridge Filing No. 4

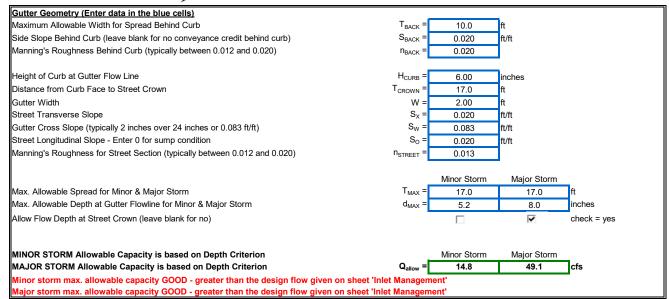

Future Filing - Hazelton Dr. INLET 16-K

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $\mathsf{S}_{\mathsf{BACK}}$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope ft/ft S_v 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.024 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.2 8.0 inches d_{MAX} Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 16.2 46.5 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

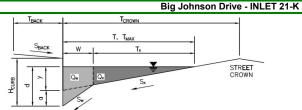
Version 4.05 Released March 2017


Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening ▼	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.4	4.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	89	%

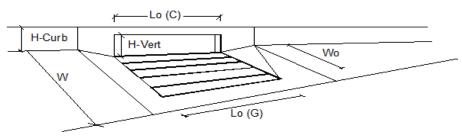

UD-Inlet_v4.05 (1), INLET 16-K 6/8/2021, 4:35 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Trails at Aspen Ridge Filing No. 4


Hazelton Dr (Road Capacity only) K17-20

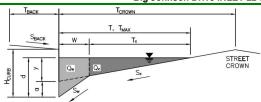
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)


Trails at Aspen Ridge Filing No. 4

Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ $\mathsf{S}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope S_v ft/ft 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.040 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.2 8.0 inches d_{MAX} Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 20.0 39.9 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

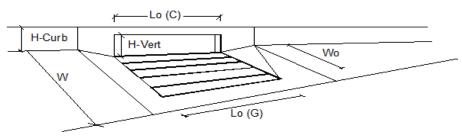
Version 4.05 Released March 2017


Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.9	2.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%

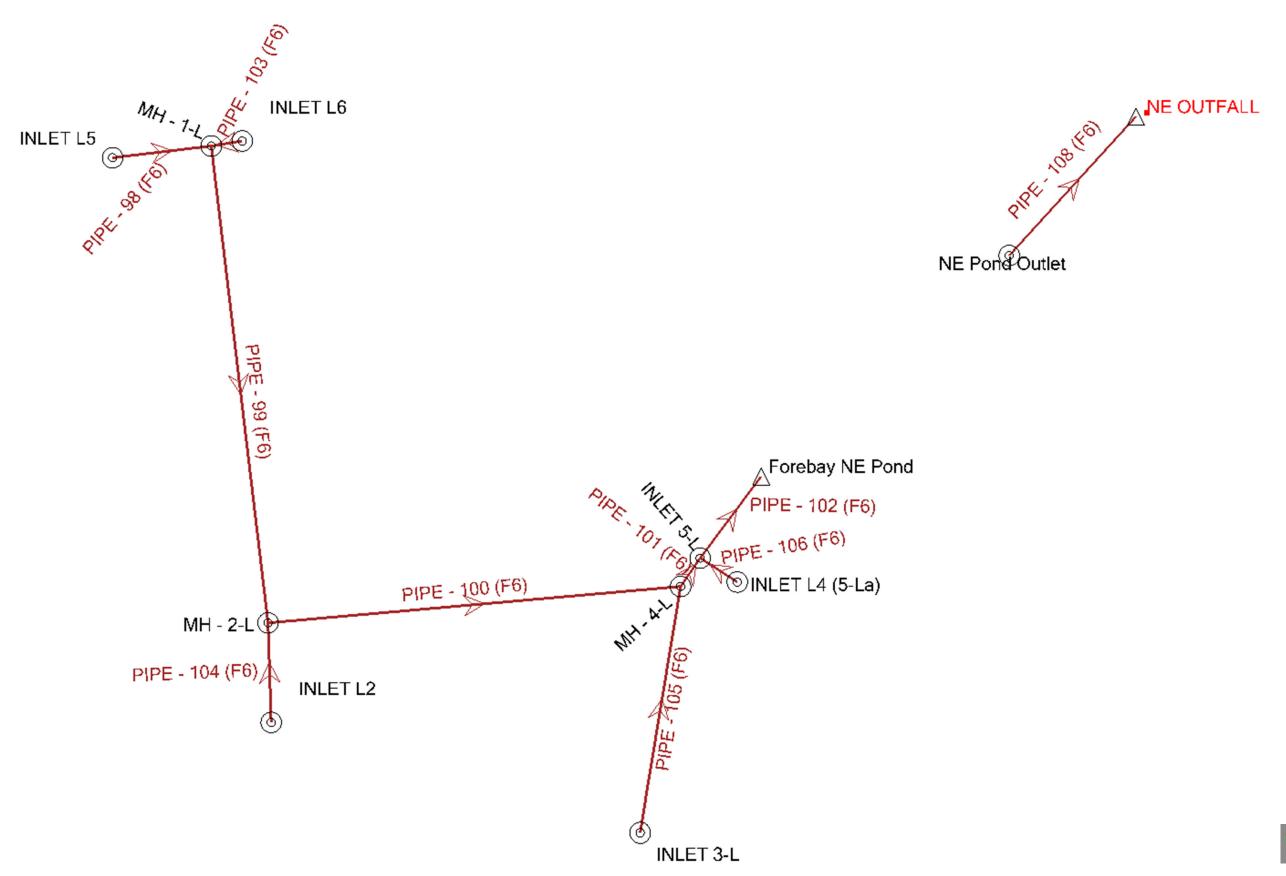
UD-Inlet_v4.05 (1), INLET 21-K 6/8/2021, 4:41 PM

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Trails at Aspen Ridge Filing No. 4


Big Johnson Drive INLET 22-Ka and 22-Kb

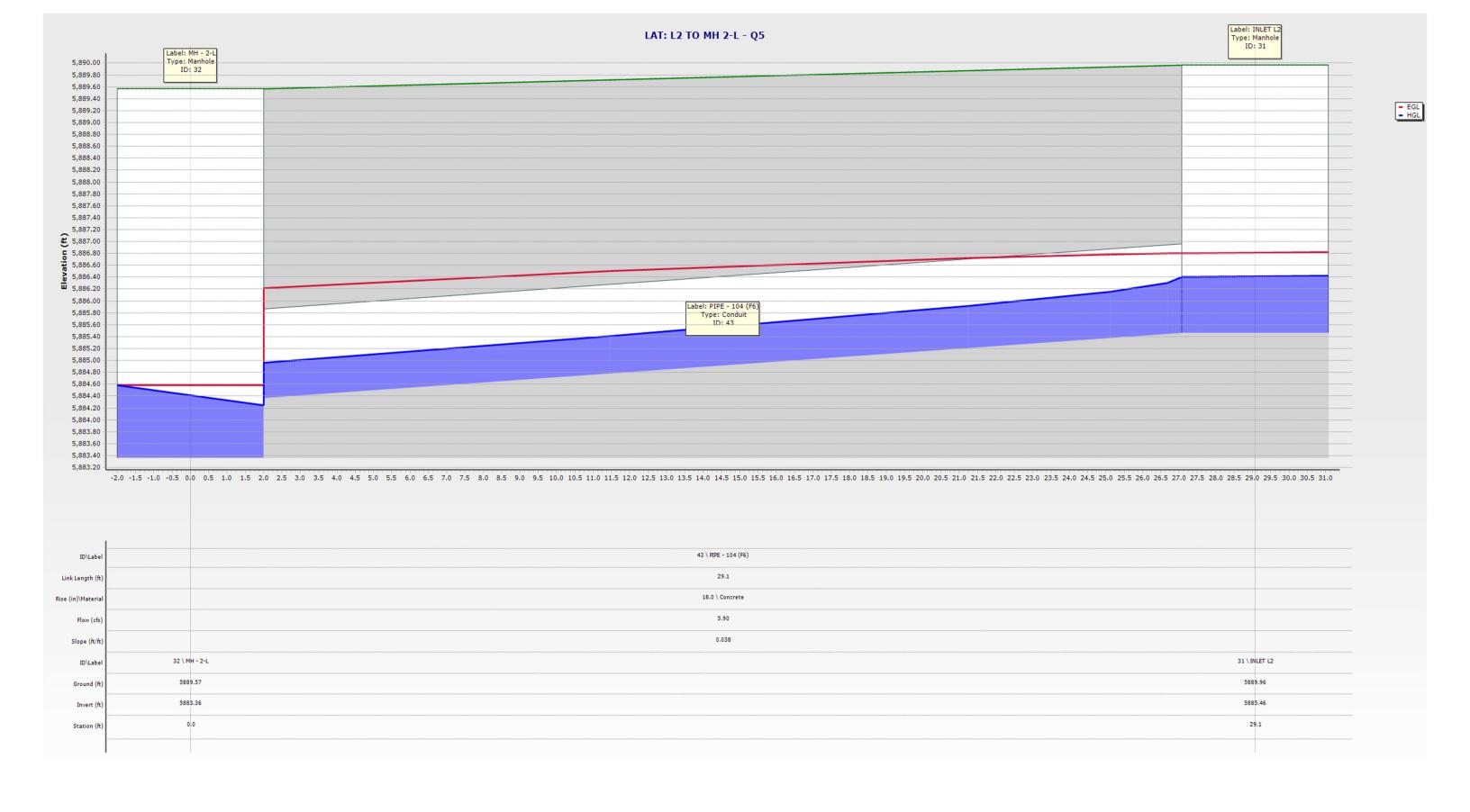
Gutter Geometry (Enter data in the blue cells) Maximum Allowable Width for Spread Behind Curb $\mathsf{T}_{\mathsf{BACK}}$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) $\mathsf{S}_{\mathsf{BACK}}$ 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line 6.00 inches Distance from Curb Face to Street Crown T_{CROWN} 17.0 Gutter Width W = 2.00 Street Transverse Slope S_v ft/ft 0.020 Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_W ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_{0} 0.040 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.013 n_{STREET} Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm T_{MAX} : 17.0 17 0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.2 8.0 inches d_{MAX} Allow Flow Depth at Street Crown (leave blank for no) check = yes MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 20.0 39.9 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' lajor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

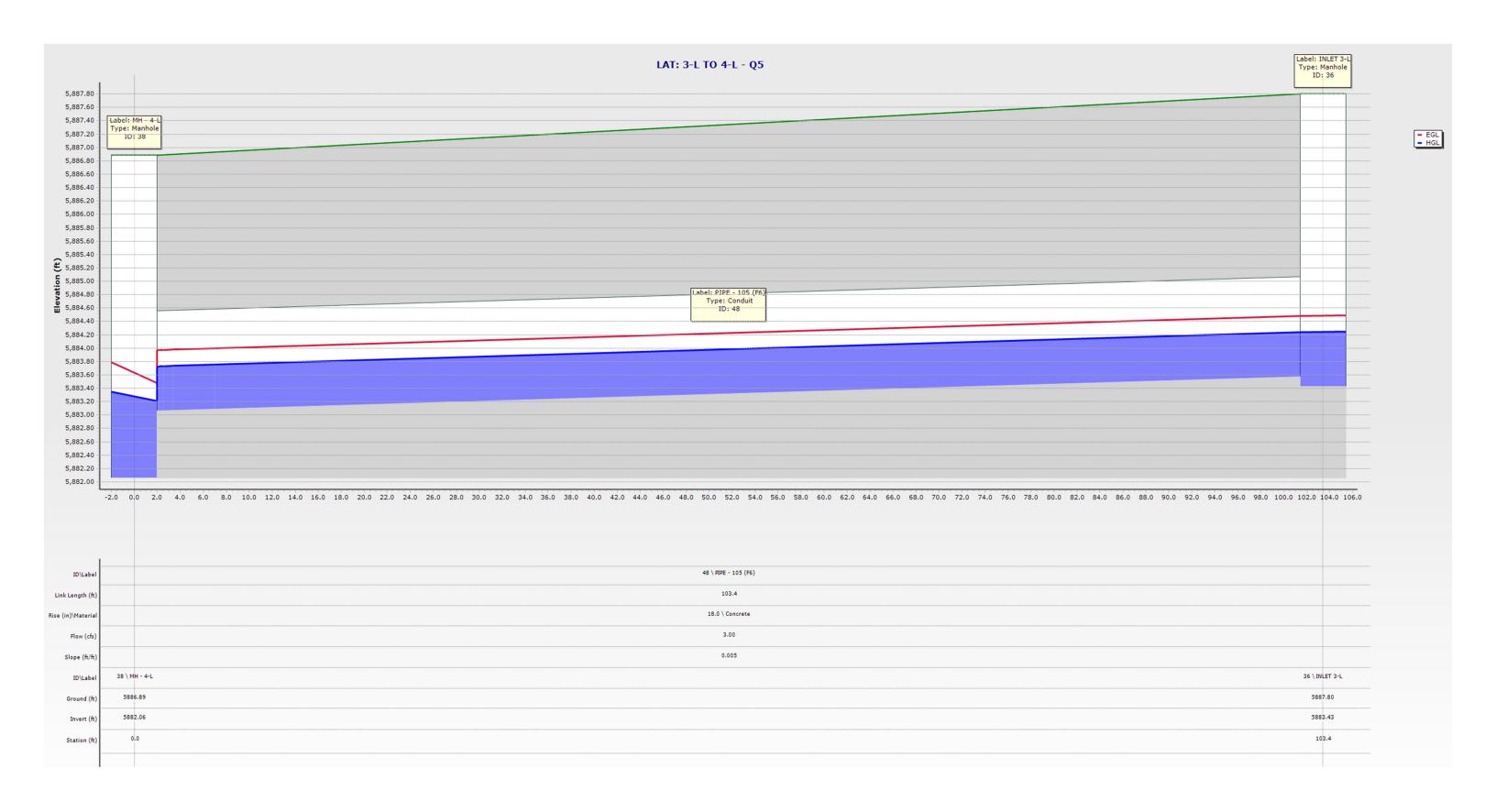

INLET ON A CONTINUOUS GRADE

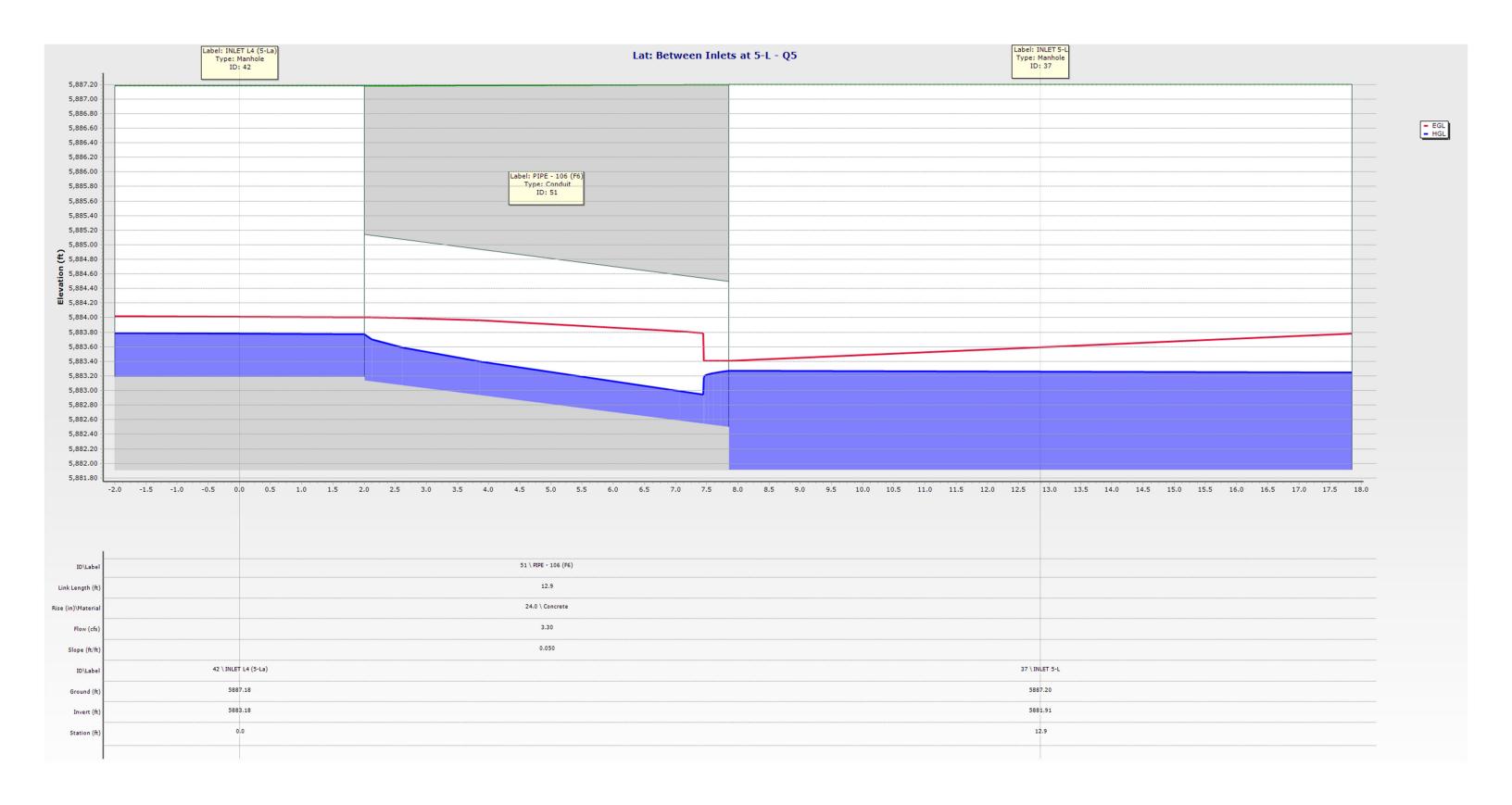
Version 4.05 Released March 2017

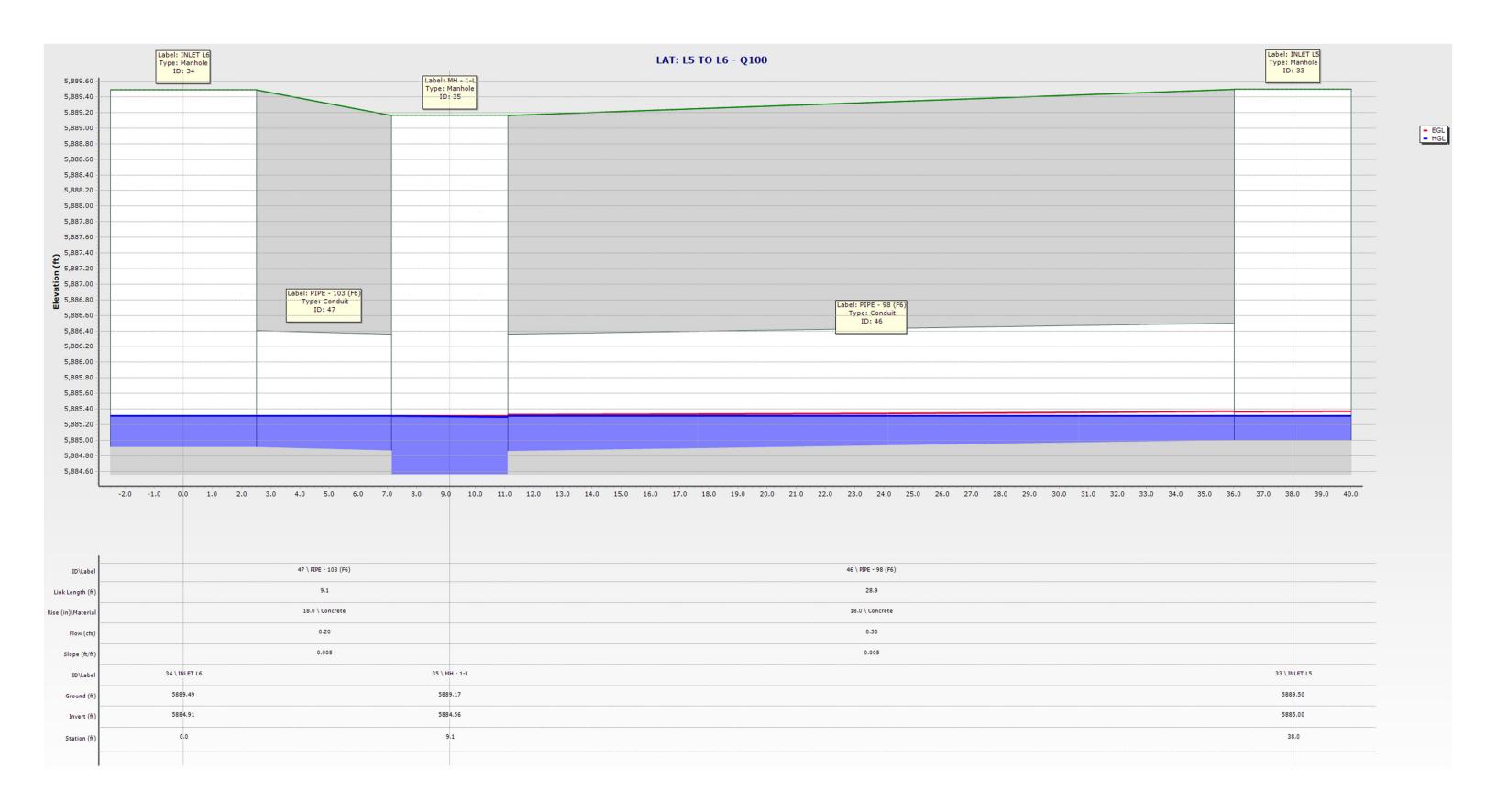
Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity	_	MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	3.7	9.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%

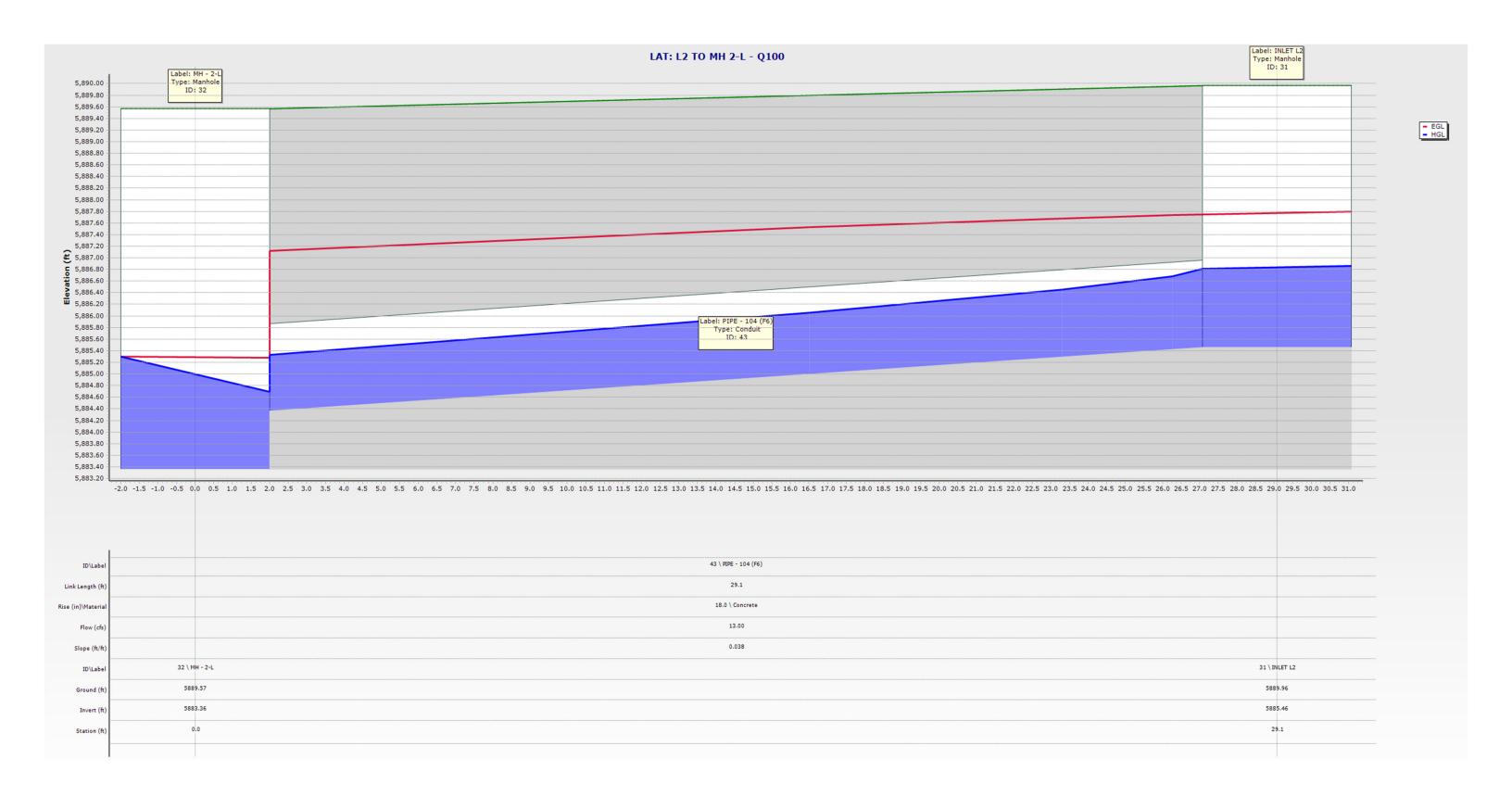

UD-Inlet_v4.05 (1), INLET 22-K 6/8/2021, 4:42 PM

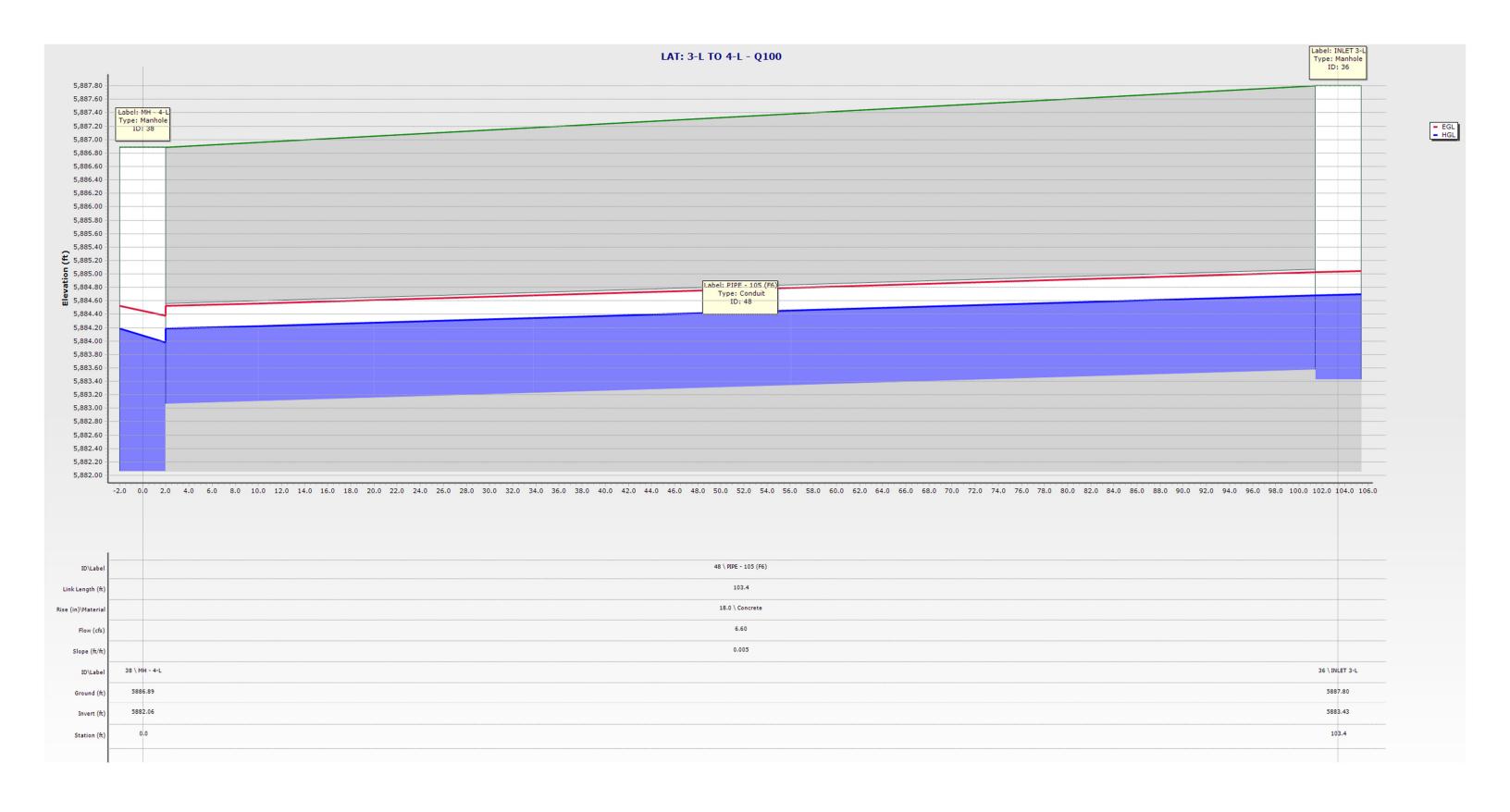


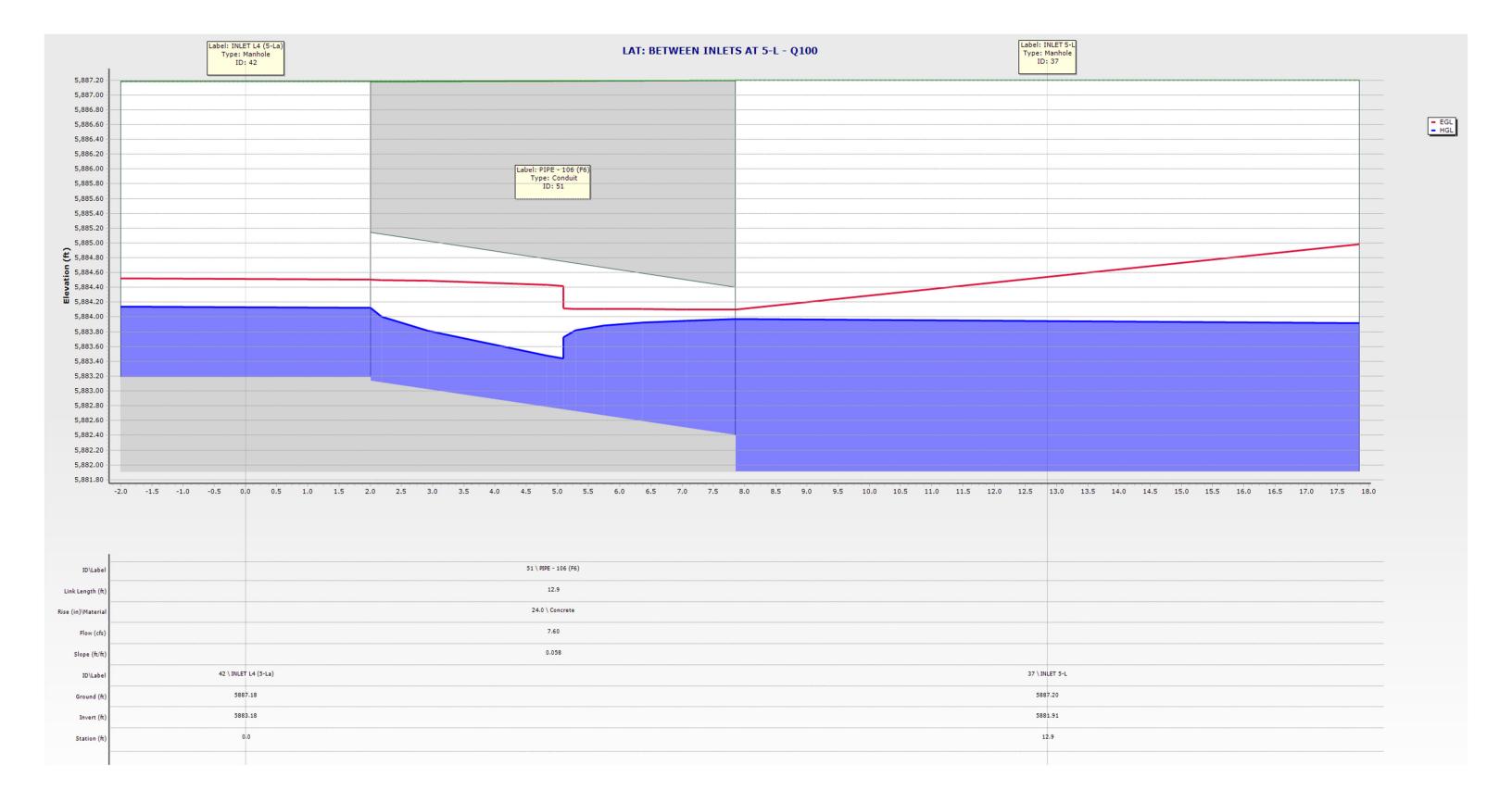

STORMCAD LAYOUT-TAR F4 (INTERNAL F6) DEVELOPMENT

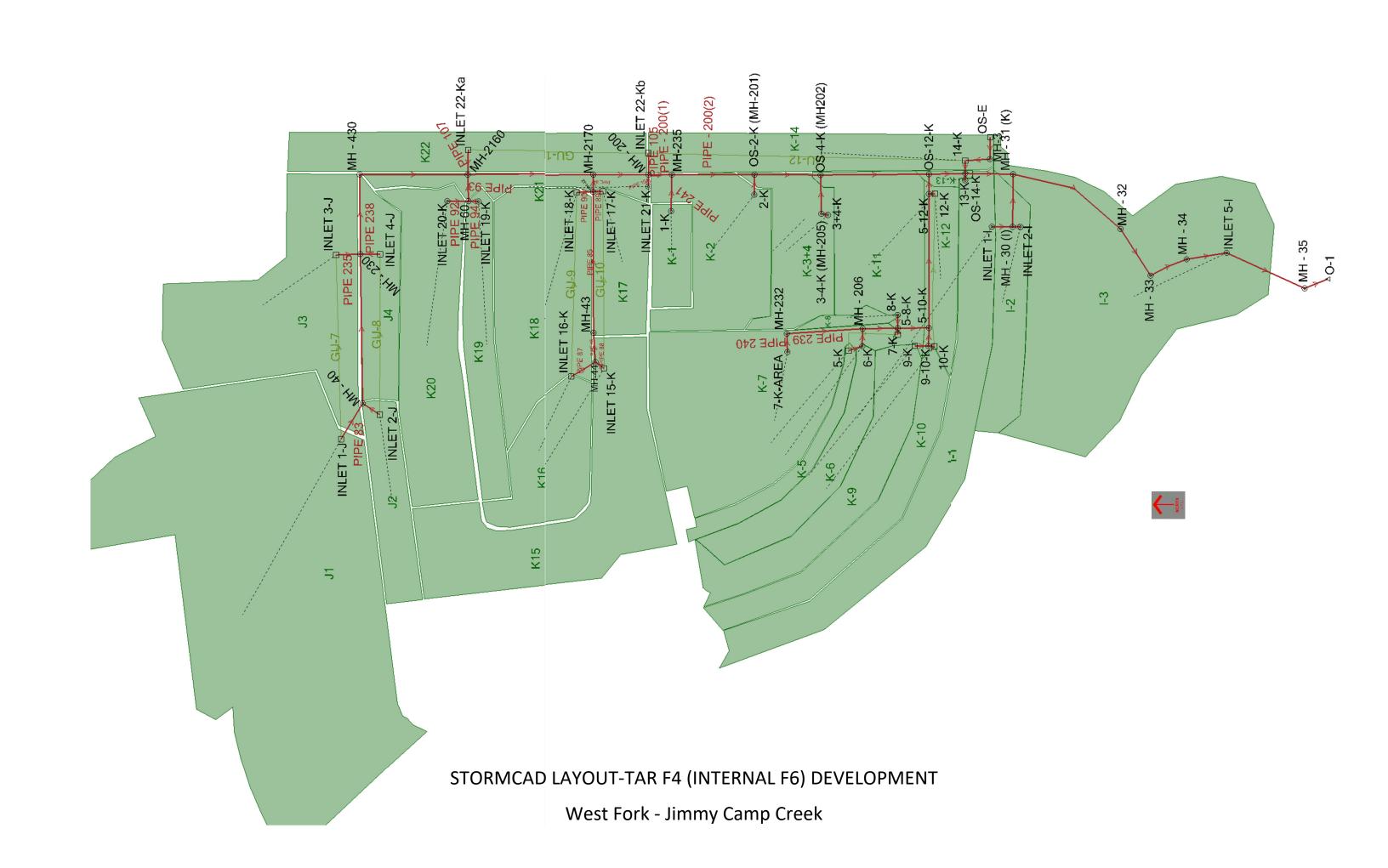

Marksheffel Tributary to Jimmy Camp Creek

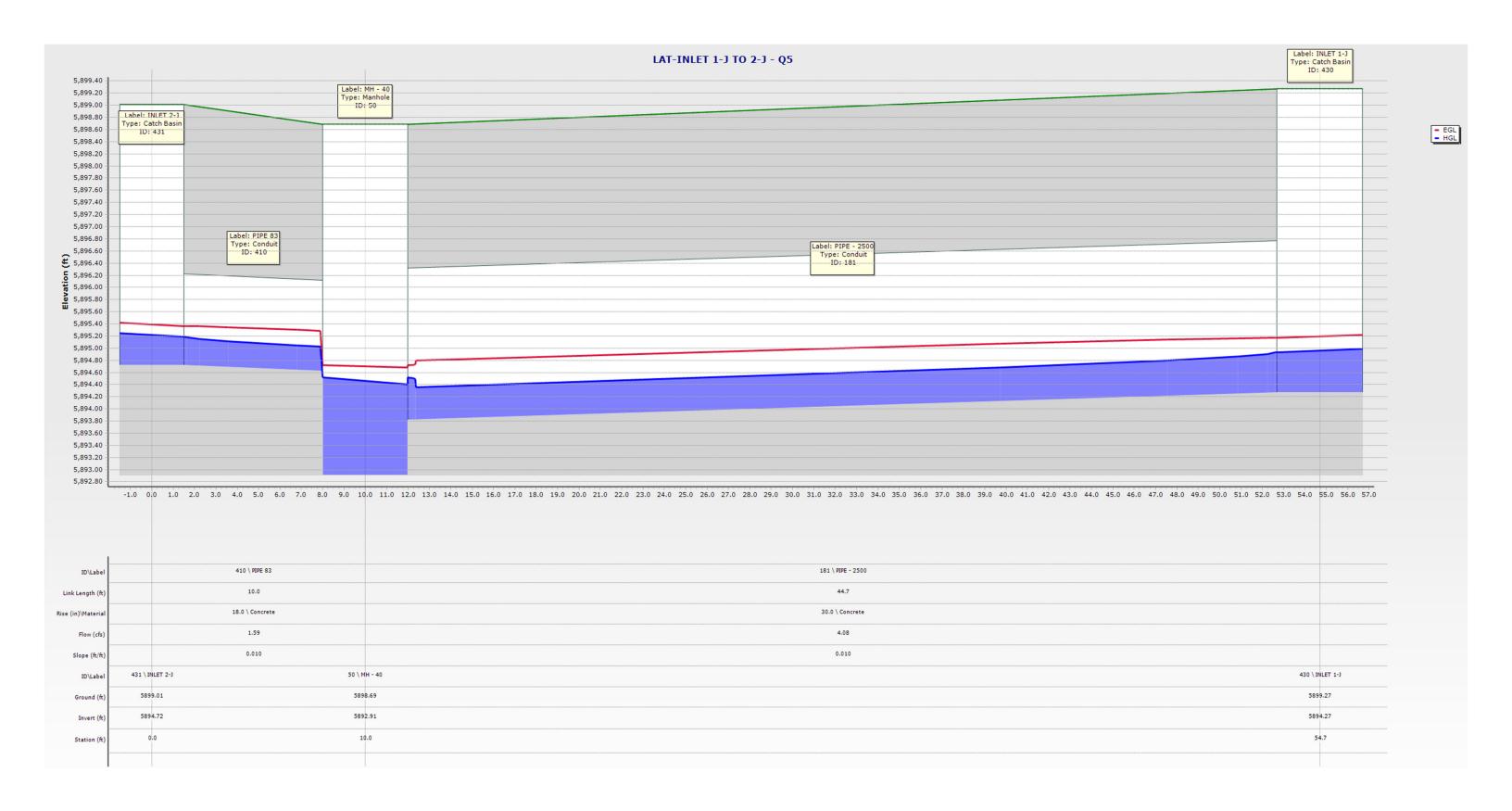

Pipe Report (5yr)

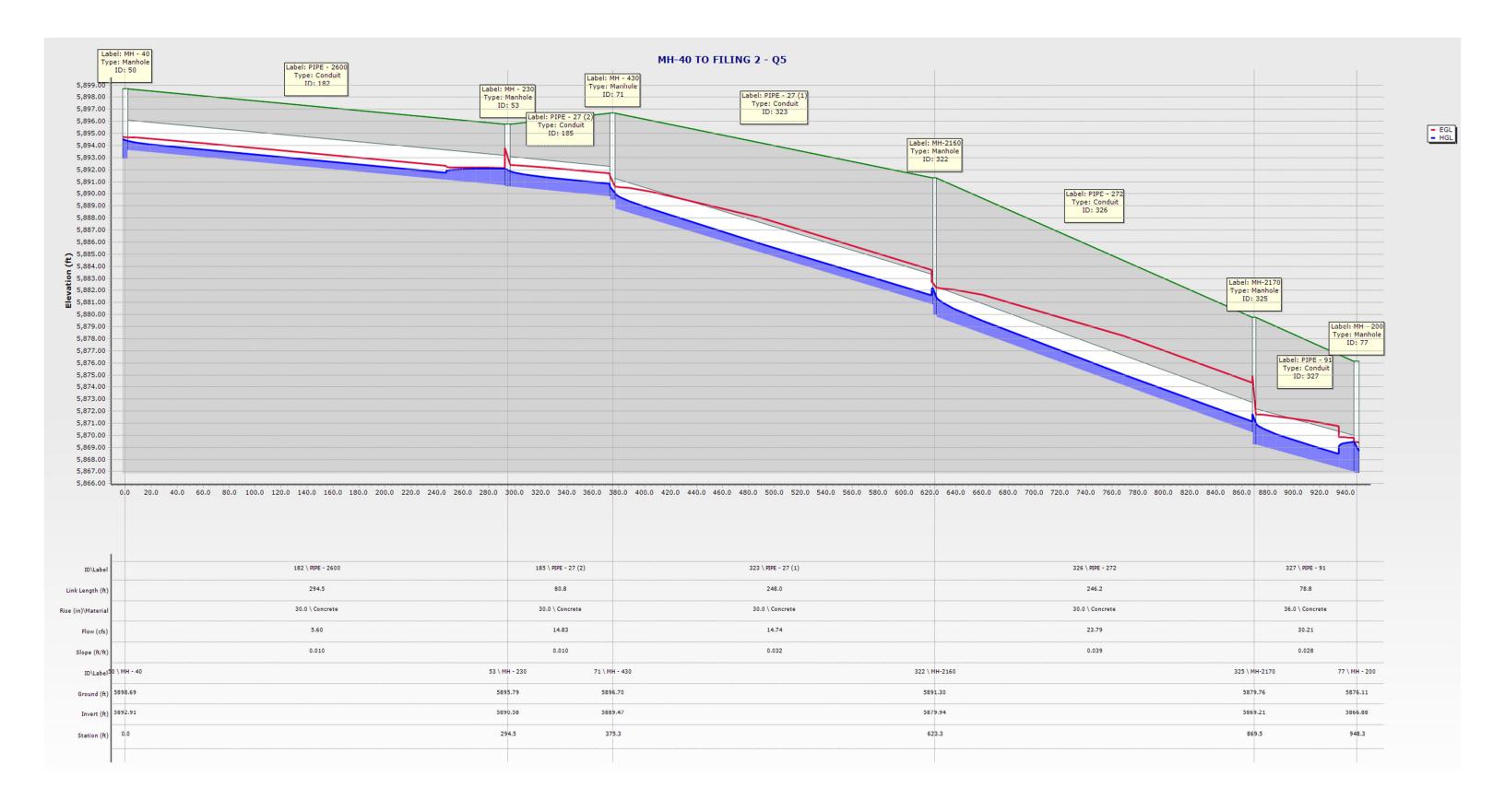

	ID	Label 📤	Start Node	Invert (Start) (ft)	Invert (Stop) (ft)	Stop Node	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)
46: PIPE - 98 (F6)	46	PIPE - 98 (F6)	INLET L5	5,885.00	5,884.86	MH - 1-L	28.9	0.005	18.0	0.013	0.20	1.82	7.43	2.7	11.3
44: PIPE - 99 (F6)	44	PIPE - 99 (F6)	MH - 1-L	5,884.56	5,883.86	MH - 2-L	140.1	0.005	18.0	0.013	0.30	2.06	7.43	4.0	13.7
45: PIPE - 100 (F6)	45	PIPE - 100 (F6)	MH - 2-L	5,883.36	5,882.56	MH - 4-L	120.5	0.007	24.0	0.013	6.20	5.29	18.43	33.6	40.0
49: PIPE - 101 (F6)	49	PIPE - 101 (F6)	MH - 4-L	5,882.06	5,882.01	INLET 5-L	10.0	0.005	30.0	0.013	9.20	5.24	29.00	31.7	38.7
50: PIPE - 102 (F6)	50	PIPE - 102 (F6)	INLET 5-L	5,881.01	5,879.99	Forebay NE Pond	29.8	0.034	30.0	0.013	15.60	12.17	75.94	20.5	30.8
47: PIPE - 103 (F6)	47	PIPE - 103 (F6)	INLET L6	5,884.91	5,884.86	MH - 1-L	9.1	0.005	18.0	0.013	0.10	1.48	7.43	1.3	8.1
43: PIPE - 104 (F6)	43	PIPE - 104 (F6)	INLET L2	5,885.46	5,884.36	MH - 2-L	29.1	0.038	18.0	0.013	5.90	10.00	20.43	28.9	36.8
48: PIPE - 105 (F6)	48	PIPE - 105 (F6)	INLET 3-L	5,883.57	5,883.06	MH - 4-L	103.4	0.005	18.0	0.013	3.00	3.95	7.36	40.8	44.5
51: PIPE - 106 (F6)	51	PIPE - 106 (F6)	INLET L4 (5-La)	5,883.14	5,882.50	INLET 5-L	12.9	0.050	24.0	0.013	3.30	9.07	50.48	6.5	17.3
52: PIPE - 108 (F6)	52	PIPE - 108 (F6)	NE Pond Outlet	5,878.44	5,878.17	NE OUTFALL	54.8	0.005	18.0	0.013	0.70	2.63	7.37	9.5	20.8

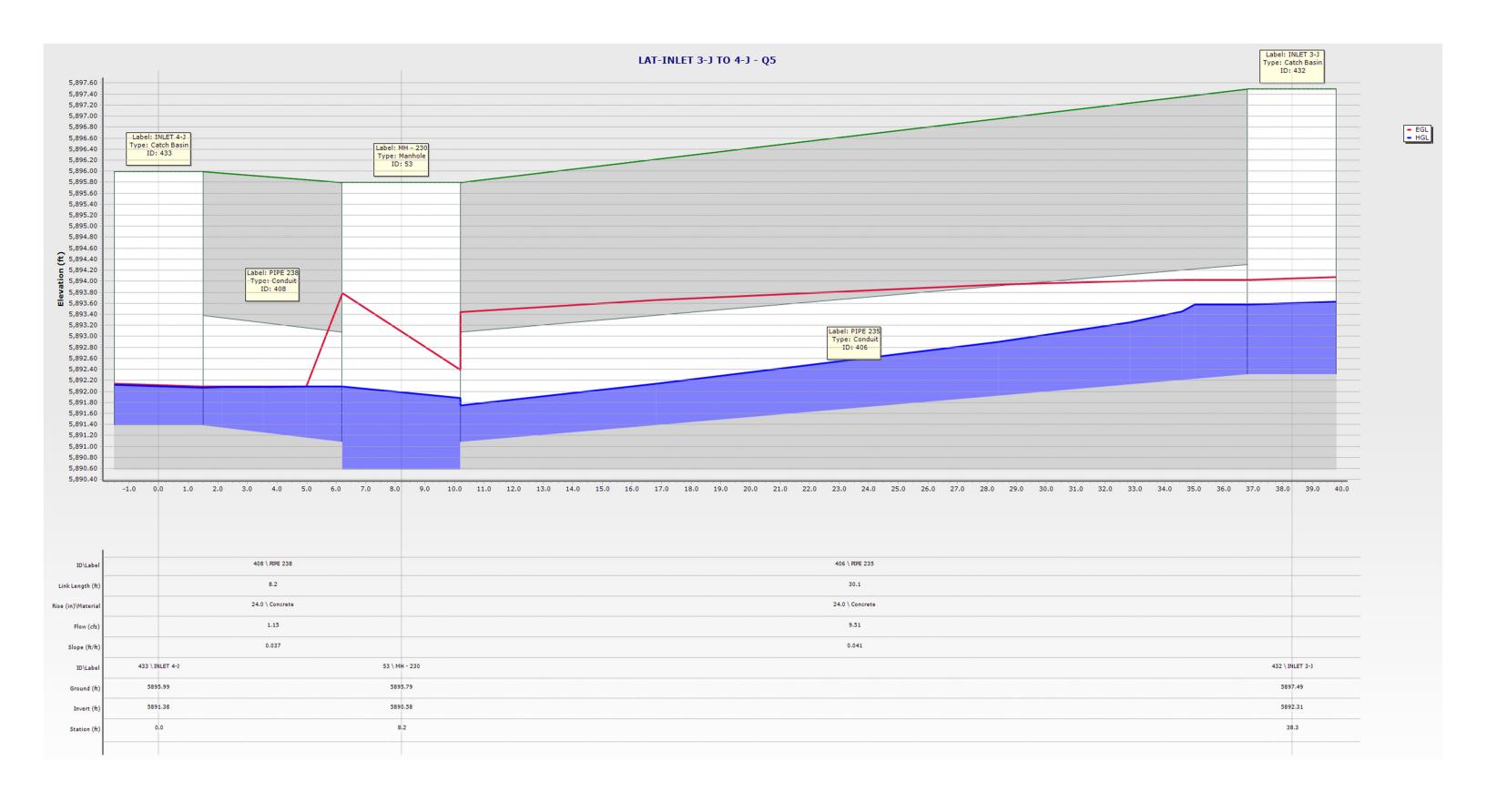

Manhole Report (5yr)

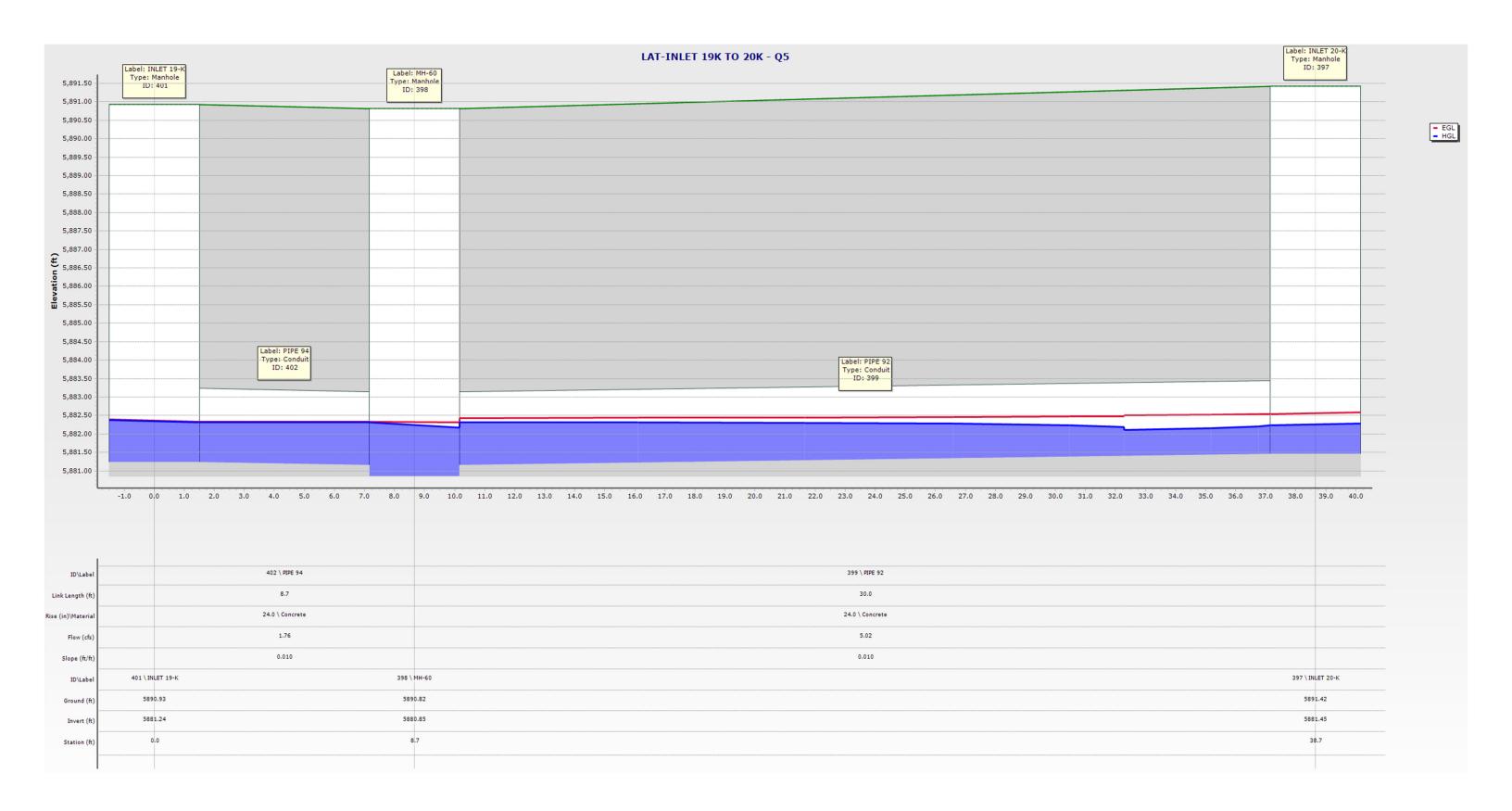

	ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Depth (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Headloss Coefficient (Standard)	Flow (Total Out) (cfs)		
31: INLET L2	31	INLET L2	5,889.96	5,889.96	0.94	5,886.42	5,886.40	Standard	0.050	5.90		
32: MH - 2-L	32	MH - 2-L	5,889.57	5,889.57	0.88	5,884.59	5,884.24	Standard	1.020	6.20		
33: INLET L5	33	INLET L5	5,889.50	5,889.50	0.17	5,885.17	5,885.17	Standard	0.050	0.20		
34: INLET L6	34	INLET L6	5,889.49	5,889.49	0.12	5,885.03	5,885.03	Standard	0.050	0.10		
35: MH - 1-L	35	MH - 1-L	5,889.17	5,889.17	0.21	5,884.83	5,884.77	Standard	1.020	0.30		
36: INLET 3-L	36	INLET 3-L	5,887.80	5,887.80	0.81	5,884.25	5,884.24	Standard	0.050	3.00		
37: INLET 5-L	37	INLET 5-L	5,887.20	5,887.20	0.43	5,882.37	5,882.34	Standard	0.050	15.60		
38: MH - 4-L	38	MH - 4-L	5,886.89	5,886.89	1.01	5,883.27	5,883.07	Standard	0.520	9.20		
42: INLET L4 (5-La)	42	INLET L4 (5-La)	5,887.18	5,887.18	0.60	5,883.79	5,883.77	Standard	0.050	3.30		
54: NE Pond Outlet	54	NE Pond Outlet	5,884.25	5,884.25	0.31	5,878.76	5,878.75	Standard	0.050	0.70		

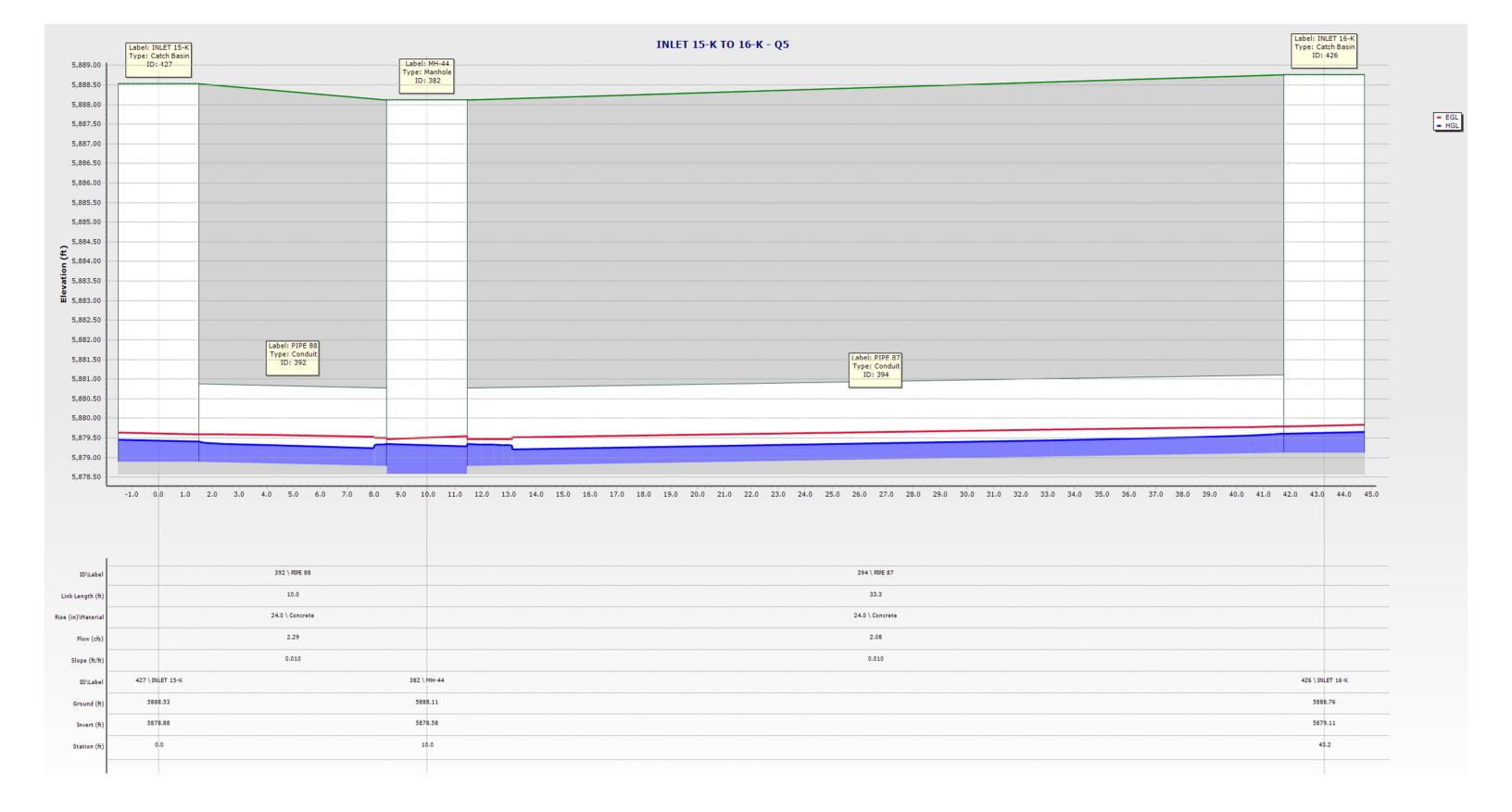


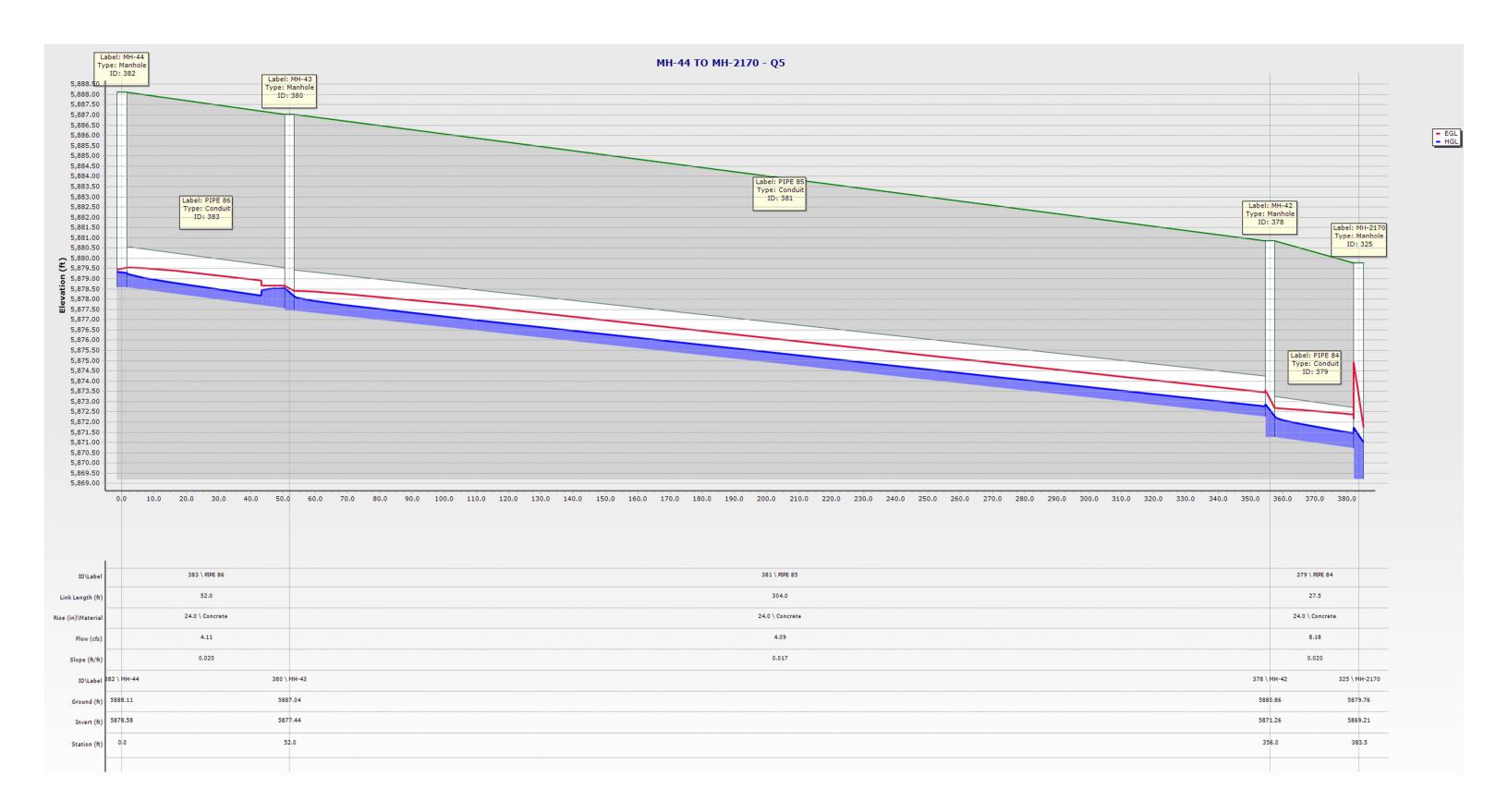

Pipe Report (100yr)

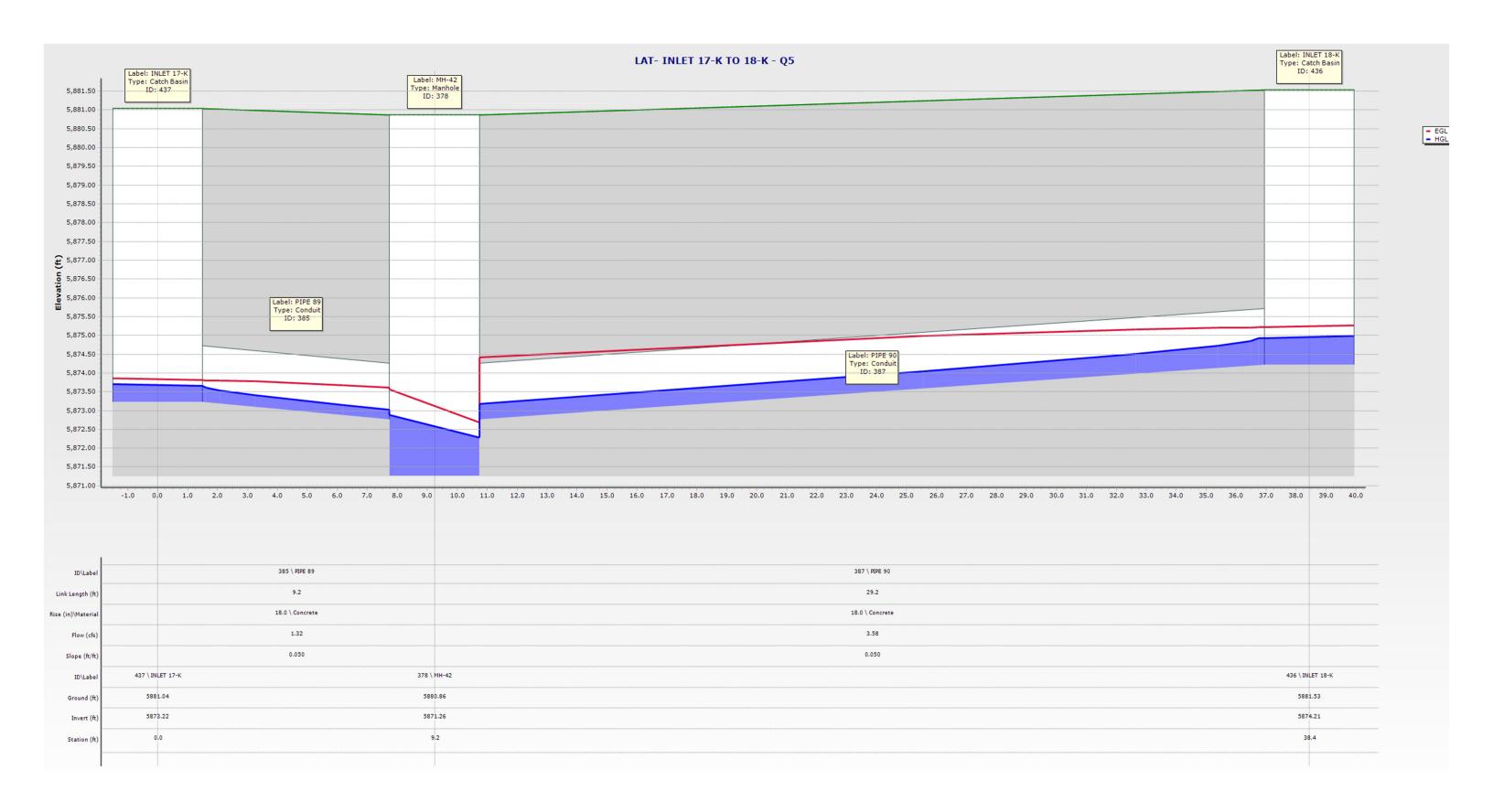

	ID	Label 📤	Start Node	Invert (Start) (ft)	Invert (Stop) (ft)	Stop Node	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)
46: PIPE - 98 (F6)	46	PIPE - 98 (F6)	INLET L5	5,885.00	5,884.86	MH - 1-L	28.9	0.005	18.0	0.013	0.50	2.39	7.43	6.7	17.6
44: PIPE - 99 (F6)	44	PIPE - 99 (F6)	MH - 1-L	5,884.56	5,883.86	MH - 2-L	140.1	0.005	18.0	0.013	0.70	2.64	7.43	9.4	20.7
45: PIPE - 100 (F6)	45	PIPE - 100 (F6)	MH - 2-L	5,883.36	5,882.56	MH - 4-L	120.5	0.007	24.0	0.013	13.70	6.43	18.43	74.3	64.2
49: PIPE - 101 (F6)	49	PIPE - 101 (F6)	MH - 4-L	5,882.06	5,882.01	INLET 5-L	10.0	0.005	30.0	0.013	20.30	6.39	29.00	70.0	61.7
50: PIPE - 102 (F6)	50	PIPE - 102 (F6)	INLET 5-L	5,881.01	5,879.99	Forebay NE	29.8	0.034	30.0	0.013	34.90	15.15	75.94	46.0	47.6
47: PIPE - 103 (F6)	47	PIPE - 103 (F6)	INLET L6	5,884.91	5,884.86	MH - 1-L	9.1	0.005	18.0	0.013	0.20	1.82	7.43	2.7	11.3
43: PIPE - 104 (F6)	43	PIPE - 104 (F6)	INLET L2	5,885.46	5,884.36	MH - 2-L	29.1	0.038	18.0	0.013	13.00	12.25	20.43	63.6	57.9
48: PIPE - 105 (F6)	48	PIPE - 105 (F6)	INLET 3-L	5,883.57	5,883.06	MH - 4-L	103.4	0.005	18.0	0.013	6.60	4.71	7.36	89.7	74.0
51: PIPE - 106 (F6)	51	PIPE - 106 (F6)	INLET L4 (5-La)	5,883.14	5,882.40	INLET 5-L	12.9	0.058	24.0	0.013	7.60	12.18	54.28	14.0	25.3
52: PIPE - 108 (F6)	52	PIPE - 108 (F6)	NE Pond Outlet	5,878.44	5,878.17	NE OUTFALL	54.8	0.005	18.0	0.013	7.90	4.67	7.37	107.1	91.3

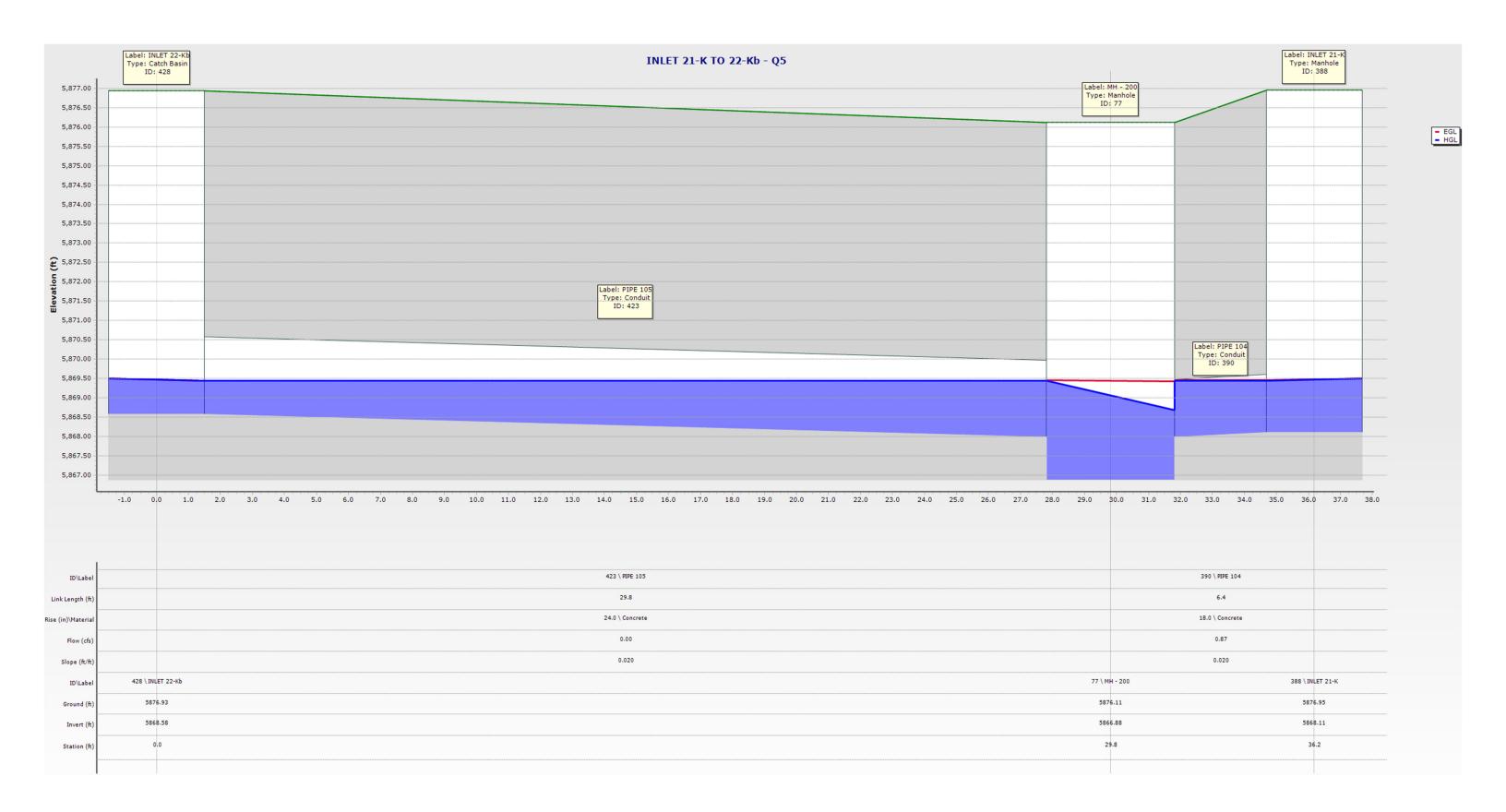

Manhole Report (100yr)

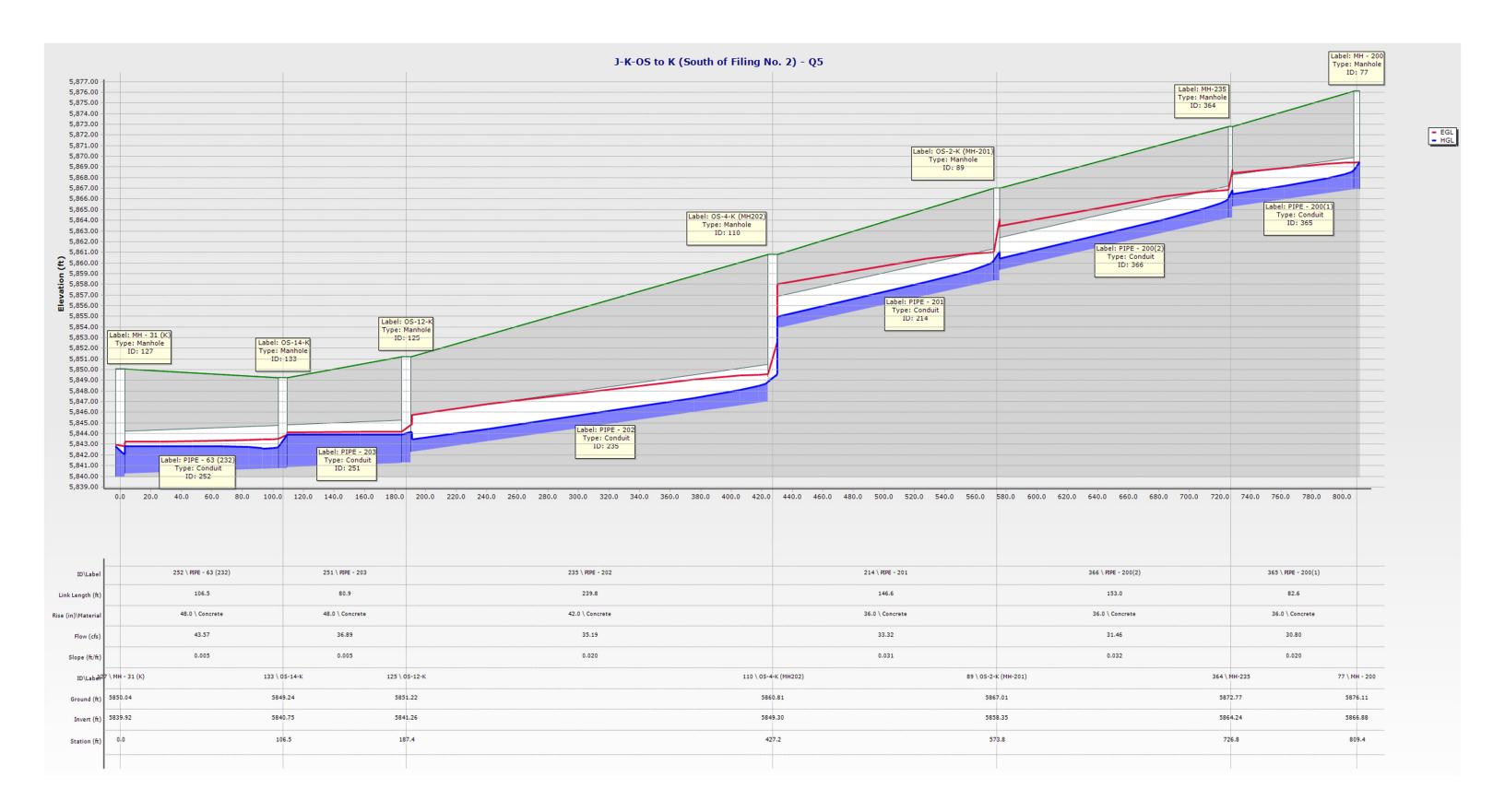

	ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Depth (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Headloss Coefficient (Standard)	Flow (Total Out) (cfs)
31: INLET L2	31	INLET L2	5,889.96	5,889.96	1.35	5,886.86	5,886.81	Standard	0.050	13.00
32: MH - 2-L	32	MH - 2-L	5,889.57	5,889.57	1.33	5,885.30	5,884.69	Standard	1.020	13.70
33: INLET L5	33	INLET L5	5,889.50	5,889.50	0.31	5,885.31	5,885.31	Standard	0.050	0.50
34: INLET L6	34	INLET L6	5,889.49	5,889.49	0.40	5,885.31	5,885.31	Standard	0.050	0.20
35: MH - 1-L	35	MH - 1-L	5,889.17	5,889.17	0.74	5,885.31	5,885.30	Standard	1.020	0.70
36: INLET 3-L	36	INLET 3-L	5,887.80	5,887.80	1.25	5,884.70	5,884.68	Standard	0.050	6.60
37: INLET 5-L	37	INLET 5-L	5,887.20	5,887.20	1.11	5,883.07	5,883.02	Standard	0.050	34.90
38: MH - 4-L	38	MH - 4-L	5,886.89	5,886.89	1.54	5,883.93	5,883.60	Standard	0.520	20.30
42: INLET L4 (5-La)	42	INLET L4 (5-La)	5,887.18	5,887.18	0.94	5,884.14	5,884.12	Standard	0.050	7.60
54: NE Pond Outlet	54	NE Pond Outlet	5,884.25	5,884.25	1.27	5,879.73	5,879.71	Standard	0.050	7.90

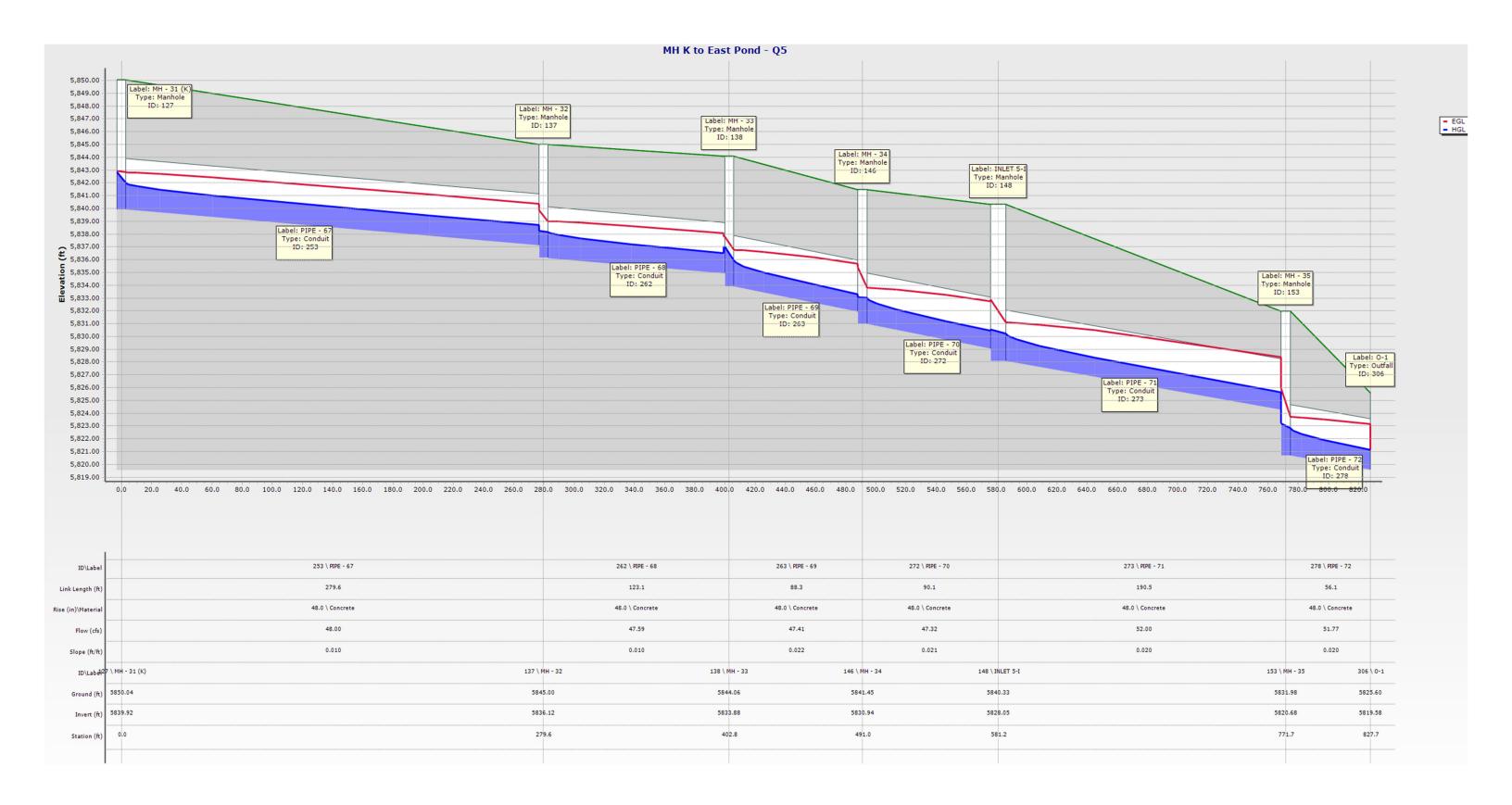






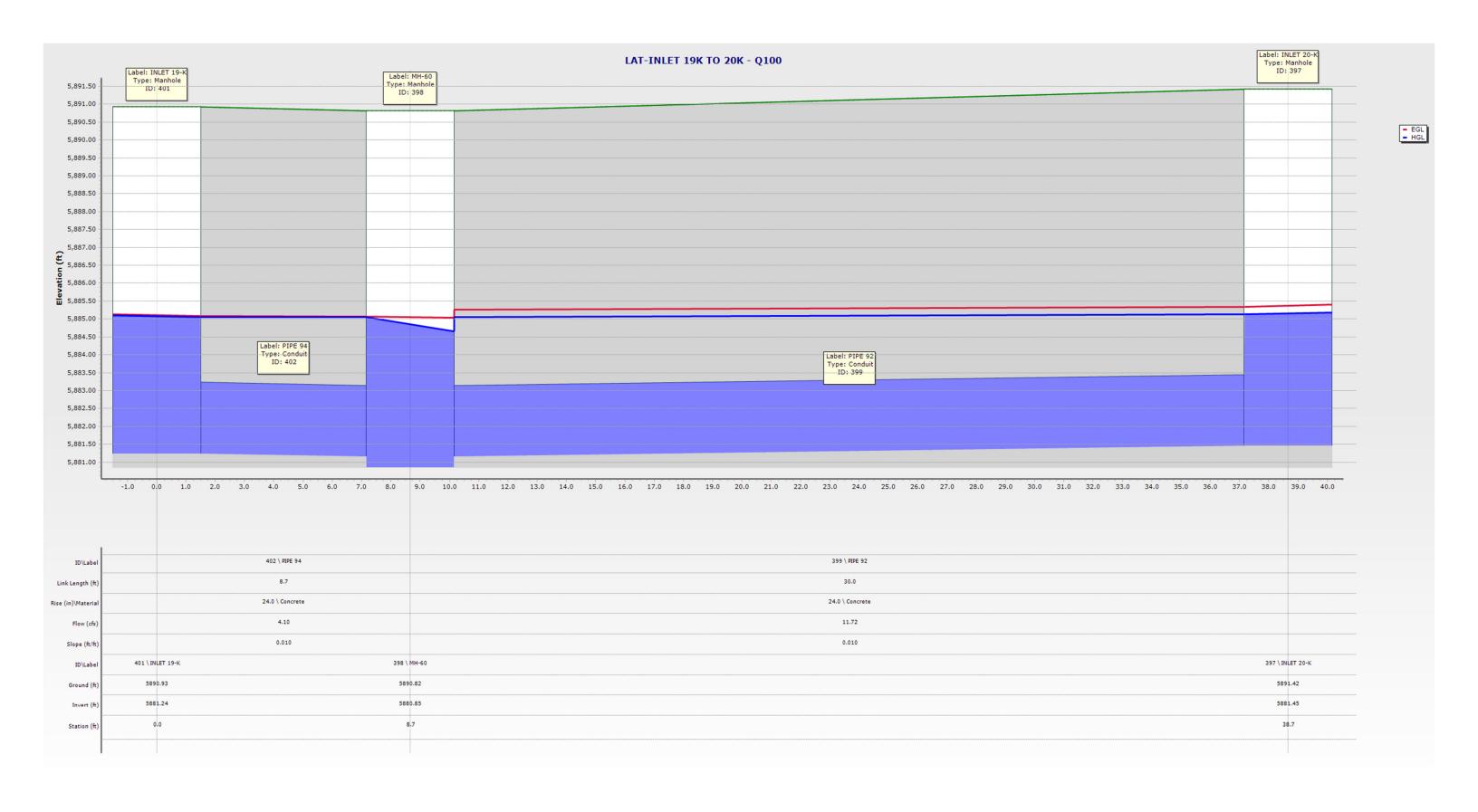




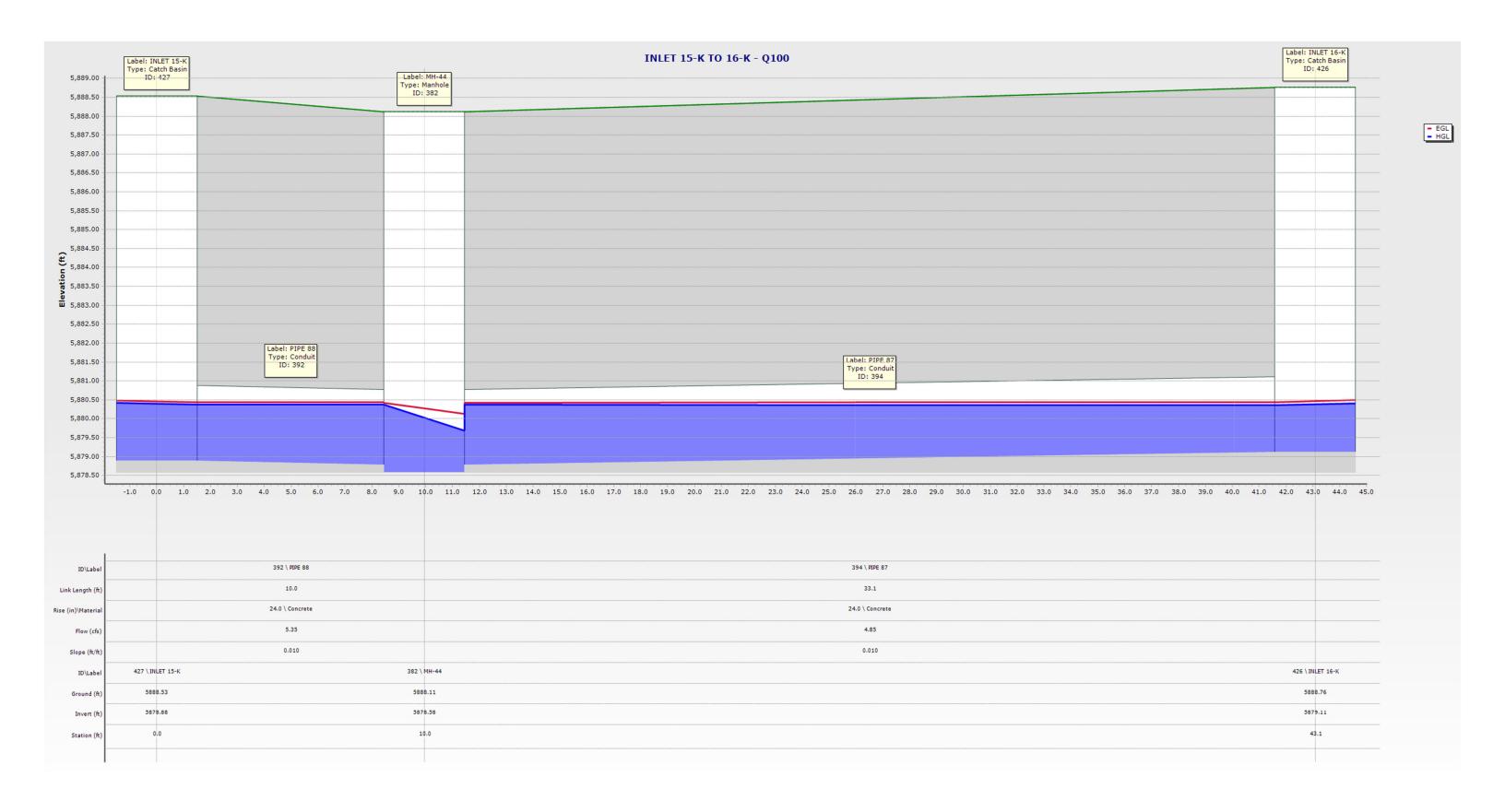


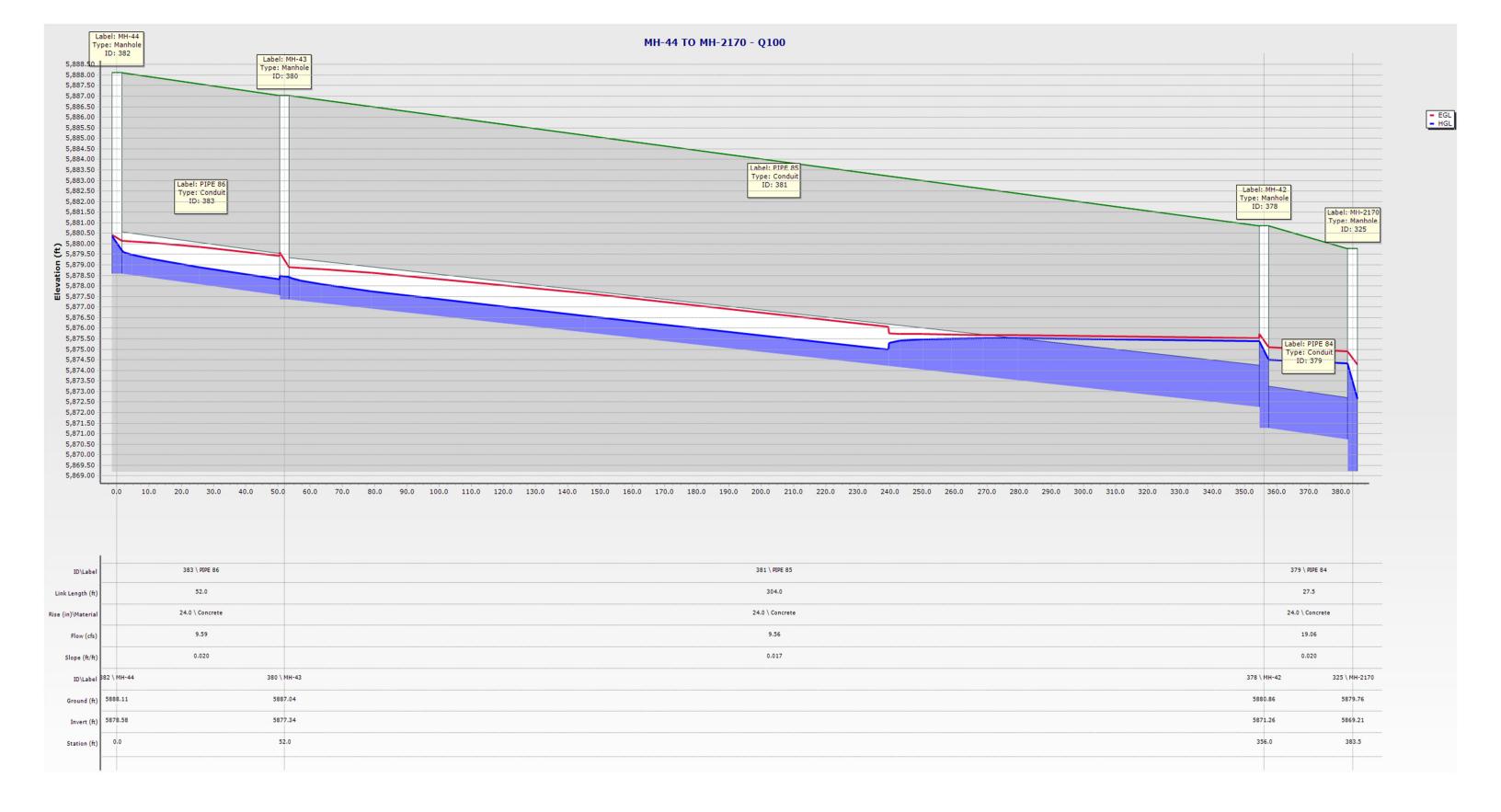
Pipe Report (5yr)

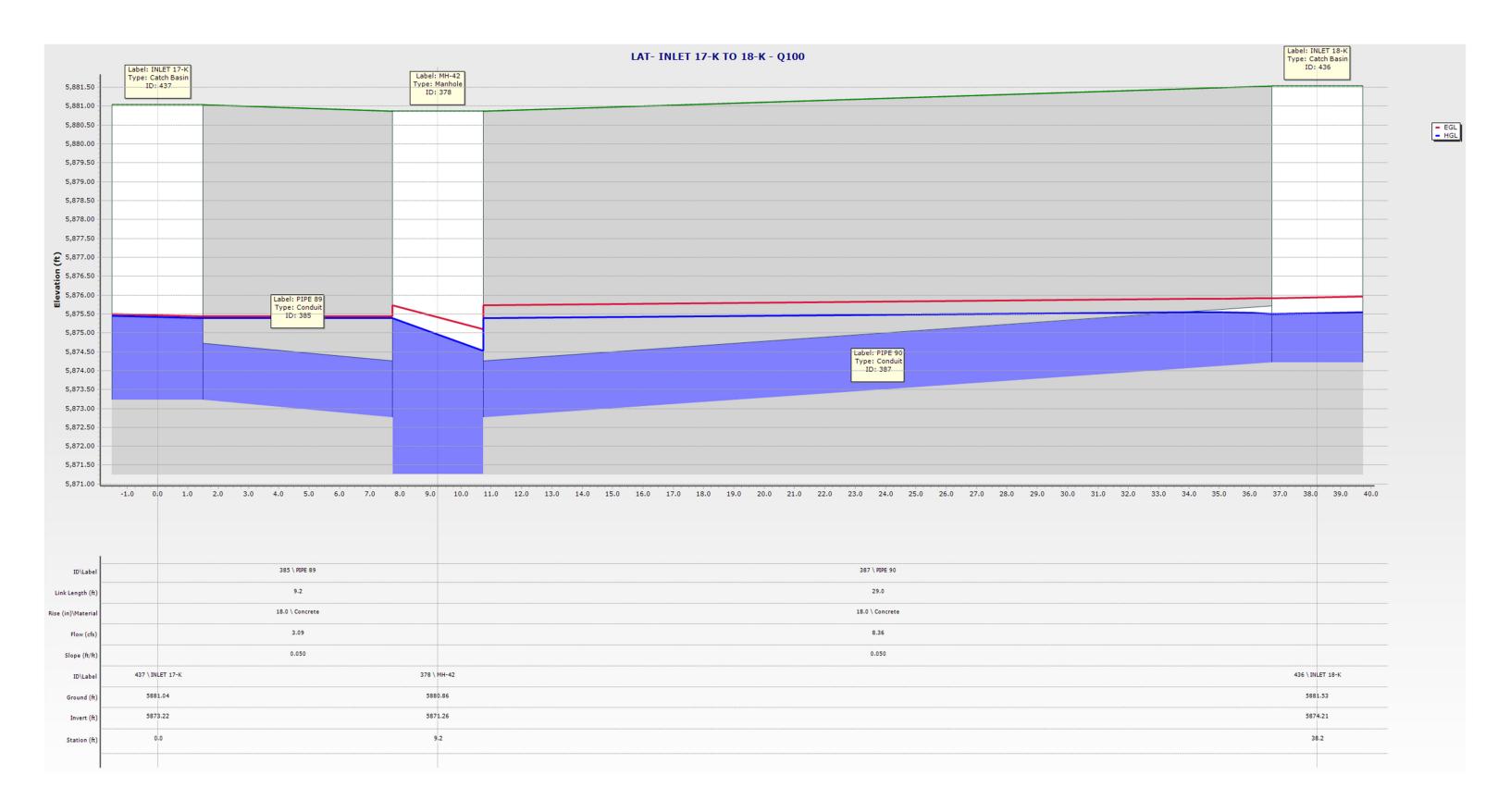
	Tipe Report																
	Label	Start Node	Stop Node	Length (User Defined) (ft)	Diameter (in)	Notes	Manning's n	Flow (cfs)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Slope (Calculated) (ft/ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
326: PIPE - 272	PIPE - 272	MH-2160	MH-2170	246.2	30.0	30" RCP	0.013	23.79	80.95	29.4	37.1	14.33	5,879.80	5,870.21	0.039	5,881.46	5,871.14
214: PIPE - 201	PIPE - 201	OS-2-K (MH-201)	OS-4-K (MH202)	146.6	36.0	36" RCP	0.013	33.32	116.84	28.5	36.5	14.25	5,858.35	5,853.85	0.031	5,860.22	5,854.96
366: PIPE - 200(2)	PIPE - 200(2)	MH-235	OS-2-K (MH-201)	153.0	36.0	36" RCP	0.013	31.46	119.23	26.4	35.1	14.23	5,864.24	5,859.35	0.032	5,866.06	5,860.41
263: PIPE - 69	PIPE - 69	MH - 33	MH - 34	88.3	48.0	48" RCP	0.013	47.41	213.02	22.3	32.1	13.64	5,833.88	5,831.94	0.022	5,835.95	5,833.32
273: PIPE - 71	PIPE - 71	INLET 5-I	MH - 35	190.5	48.0	48" RCP	0.013	52.00	203.11	25.6	34.5	13.52	5,828.05	5,824.24	0.020	5,830.22	5,825.64
327: PIPE - 91	PIPE - 91	MH-2170	MH - 200	78.8	36.0	36" RCP	0.013	30.21	112.17	26.9	35.4	13.47	5,869.21	5,866.98	0.028	5,870.99	5,869.45
278: PIPE - 72	PIPE - 72	MH - 35	0-1	56.1	48.0	48" RCP	0.013	51.77	201.16	25.7	34.6	13.41	5,820.68	5,819.58	0.020	5,822.84	5,821.14
272: PIPE - 70	PIPE - 70	MH - 34	INLET 5-I	90.1	48.0	48" RCP	0.013	47.32	208.12	22.7	32.4	13.41	5,830.94	5,829.05	0.021	5,833.00	5,830.44
406: PIPE 235	PIPE 235	INLET 3-J	MH - 230	28.1	24.0	24" RCP	0.013	9.51	50.50	18.8	29.4	12.34	5,892.48	5,891.08	0.050	5,893.58	5,891.74
235: PIPE - 202	PIPE - 202	OS-4-K (MH202)	OS-12-K	239.8	42.0	42" RCP	0.013	35.19	141.73	24.8	34.0	12.22	5,847.00	5,842.24	0.020	5,848.84	5,844.18
365: PIPE - 200(1)	PIPE - 200(1)	MH - 200	MH-235	82.6	36.0	36" RCP	0.013	30.80	93.98	32.8	39.4	11.90	5,866.88	5,865.24	0.020	5,868.68	5,866.48
	PIPE - 208	OS-4-K (MH202)	3-4-K (MH-205)	22.0		18" RCP	0.013	2.92	34.18	8.5	19.8	11.81	5,855.35	-	-0.106	5,858.33	5,855.67
	PIPE - 27 (1)	MH - 430	MH-2160	248.0		30" RCP	0.013	14.74	73.52	20.0	30.4	11.70	5,888.77	5,880.80	0.032	5,890.06	5,882.21
231: PIPE - 217	PIPE - 217	5-10-K	9-10-K	40.0		18" RCP	0.013	3.77	26.53	14.2	25.5	10.63	5,854.51	5,857.06	-0.064	5,857.80	5,855.34
248: PIPE - 220	PIPE - 220	5-12-K	12-K	8.5		18" RCP	0.013	3.78	25.77	14.7	25.9	10.42	5,845.50	5,846.01	-0.060	5,846.75	5,845.98
	PIPE - 67	MH - 31 (K)	MH - 32	279.6		48" RCP	0.013	48.00	143.63	33.4	39.8	10.29	5,839.92		0.010	5,841.99	5,838.71
262: PIPE - 68	PIPE - 68	MH - 32	MH - 33	123.1		48" RCP	0.013	47.59	143.63	33.1	39.6	10.26	5,836.12		0.010	5,838.18	5,837.02
238: PIPE - 218	PIPE - 218	5-12-K	5-10-K	271.8		24" RCP	0.013	7.23	41.19	17.6	28.4	9.86	5,845.00		-0.033	5,854.96	5,845.57
	PIPE 90	INLET 18-K	MH-42	29.0		18" RCP	0.013	3.58	23.49	15.2	26.4	9.61	5,874.21		0.050	5,874.93	5,873.18
254: PIPE - 64	PIPE - 64	MH - 31 (K)	MH - 30 (I)	118.8		24" RCP	0.013	7.08	35.83	19.8	30.1	8.87	5,841.32		-0.025	5,845.24	5,842.84
	PIPE - 211	5-8-K	MH - 206	80.2		18" RCP	0.013	4.43	19.24	23.0	32.6	8.85	5,856.55		-0.034	5,860.05	5,857.04
	PIPE 84	MH-42	MH-2170	27.5		24" RCP	0.013	8.18	31.97	25.6	34.5	8.51	5,871.26		0.020	5,872.28	5,871.75
250: PIPE - 221	PIPE - 221	OS-12-K	5-12-K	69.8		36" RCP	0.013	9.64	89.60	10.8	22.1	8.28	5,842.74	5,844.00	-0.018	5,844.98	5,844.18
256: PIPE - 223	PIPE - 223	OS-14-K	14-K	28.5	18.0	_	0.013	8.11	13.49	60.1	55.9	7.98	5,843.34	5,843.81	-0.016	5,844.91	5,844.22
	PIPE - 63 (232)	OS-14-K	MH - 31 (K)	106.5		48" RCP	0.013	43.57	101.57	42.9	45.8	7.77	5,840.75		0.005	5,842.73	5,842.84
185: PIPE - 27 (2)	PIPE - 27 (2)	MH - 230	MH - 430	80.8		30" RCP	0.013	14.83	41.06	36.1	41.5	7.69	5,890.58	5,889.77	0.010	5,891.88	5,890.82
251: PIPE - 203	PIPE - 203	OS-12-K	OS-14-K	80.9	48.0		0.013	36.89	101.00	36.5	41.8	7.41	5,841.24	5,840.84	0.005	5,843.91	5,843.90
234: PIPE - 214	PIPE - 214	5-10-K	5-8-K	69.0		18" RCP	0.013	4.67	14.64	31.9	38.8	7.36	5,854.51	-	-0.019	5,856.68	5,855.34
385: PIPE 89	PIPE 89	INLET 17-K	MH-42	9.2		18" RCP	0.013	1.32	23.44	5.6	16.1	7.17	5,873.22		0.050	5,873.65	5,873.03
400: PIPE 93	PIPE 93	MH-60	MH-2160	29.5		24" RCP	0.013	6.68	26.69	25.0	34.1	7.06	5,880.85		0.014	5,882.18	5,882.21
383: PIPE 86	PIPE 86	MH-44	MH-43	52.0		24" RCP	0.013	4.11	31.99	12.8	24.2	7.00	5,878.58	5,877.54	0.020	5,879.29	5,878.55
361: PIPE 240	PIPE 240	7-K-AREA	MH-232	17.1		18" RCP	0.013	2.48	17.41	14.2	25.5	6.98	5,864.11	-	0.027	5,864.71	5,864.05
354: 233	233	OS-E	MH-3	123.0		18" RCP	0.013	3.40	14.85	22.9	32.5	6.82	5,847.22	-	0.020	5,847.92	5,845.52
362: PIPE 239	PIPE 239	MH-232	MH - 206	155.0		18" RCP	0.013	2.48	16.45	15.1	26.2	6.70	5,863.34	-	0.025	5,863.94	5,860.38
222: PIPE - 210	PIPE - 210	MH - 206	6-K	60.2		18" RCP	0.013	3.23	14.51	22.3	32.1	6.61	5,859.54		-0.019	5,861.38	5,860.38
381: PIPE 85	PIPE 85	MH-43	MH-42	304.0		24" RCP	0.013	4.09	29.53	13.9	25.1	6.61	5,877.44		0.017	5,878.15	5,872.76
	PIPE - 216	9-10-K	10-K	9.1		18" RCP	0.013	1.95	17.73			6.59		5,857.62	-0.028	5,858.15	
	PIPE 238	INLET 4-J	MH - 230	6.1		24" RCP	0.013	1.15	50.25	2.3		6.59		5,891.08	0.049	5,892.07	5,892.08
	PIPE - 205	OS-2-K (MH-201)	2-K	49.9		18" RCP	0.013	2.13	16.23	13.2		6.36		5,862.04	-0.024	5,862.59	5,861.22
		accounts surrous and	Control of the Contro	46.2			100 000000	5.25	10.48	100000 100		300, 300, 30				200 700 700 700 70 700	5,845.80
	PIPE - 65	MH - 30 (I)	INLET 1-I	294.5		18" RCP	0.013	5.60	40.98	50.1		5.94		5,845.26 5,890.68	-0.010	5,846.14	5,892.08
	PIPE - 2600	MH - 40	MH - 230			30" RCP	0.013					5.84			0.010	5,894.40	-
	PIPE 92	INLET 20-K	MH-60	30.0		24" RCP	0.013	5.02	22.62			5.79		5,881.15	0.010	5,882.24	5,882.32
	PIPE - 209	6-K	5-K	33.2		18" RCP	0.013	1.83	14.47	12.6		5.60		5,861.62	-0.019	5,862.13	5,861.35
	PIPE - 2500	INLET 1-J	MH - 40	44.6		30" RCP	0.013	4.08	41.20	9.9		5.35	No. of the second	5,893.82	0.010	5,894.93	5,894.52
355: 234	234	MH-3	14-K	34.9		18" RCP	0.013	3.40	10.52			5.31		5,844.11	0.010	5,845.16	5,844.96
	PIPE - 66	MH - 30 (I)	INLET 2-I	10.2		18" RCP	0.013	2.27	10.41			4.71		5,844.90	-0.010	5,845.79	5,845.80
	PIPE 88	INLET 15-K	MH-44	10.0		24" RCP	0.013	2.29	22.68	10.1		4.63		5,878.78	0.010	5,879.41	5,879.34
	PIPE 104	INLET 21-K	MH - 200	6.4		18" RCP	0.013	0.87	15.02		73777.00	4.63	100 100 100 100 100 100 100	5,867.98	0.020	5,869.45	5,869.45
	PIPE 87	INLET 16-K	MH-44	33.1		24" RCP	0.013	2.08	22.58			4.48	Pag 1000000000000000000000000000000000000	5,878.78	0.010	5,879.61	5,879.34
	PIPE 94	INLET 19-K	MH-60	8.7		24" RCP	0.013	1.76	23.06			4.34		5,881.15	0.010	5,882.32	5,882.32
	PIPE 83	INLET 2-J	MH - 40	9.8		18" RCP	0.013	1.59	10.59			4.31		5,894.62	0.010	5,895.19	5,895.03
	PIPE 107	INLET 22-Ka	MH-2160	29.5		24" RCP	0.013	3.32	16.12			4.04		5,880.44	0.005	5,882.21	5,882.21
	PIPE - 207	3-4-K (MH-205)	3+4-K	7.3		18" RCP	0.013	2.92	6.74		100000000000	3.68		5,858.01	-0.004	5,858.72	5,858.70
	PIPE - 215	9-10-K	9-K	30.7		18" RCP	0.013	1.94	7.34			3.51		5,857.51	-0.005	5,858.25	5,858.24
	PIPE 241	1-K	MH-235	22.8		18" RCP	0.013	0.78	10.55			3.49		5,865.84	0.010	5,866.84	5,866.84
	PIPE - 222	OS-14-K	13-K	8.2		18" RCP	0.013	0.34	9.00	3.8	13.3	2.45		5,843.40	-0.007	5,843.90	5,843.90
	PIPE - 213	5-8-K	8-K	29.4	18.0	18" RCP	0.013	0.46	7.51	6.2	16.8	2.36	5,856.55	5,856.70	-0.005	5,857.19	5,857.19
233: PIPE - 212	PIPE - 212	5-8-K	7-K	7.3	18.0	18" RCP	0.013	0.04	10.27	0.4		1.40	5,856.55	5,856.62	-0.010	5,857.19	5,857.19
423: PIPE 105	PIPE 105	INLET 22-Kb	MH - 200	29.8		24" RCP	0.013	0.00	32.09	0.0	(N/A)	0.00	E 969 E9	5,867.98	0.020	5,869.45	5,869.45

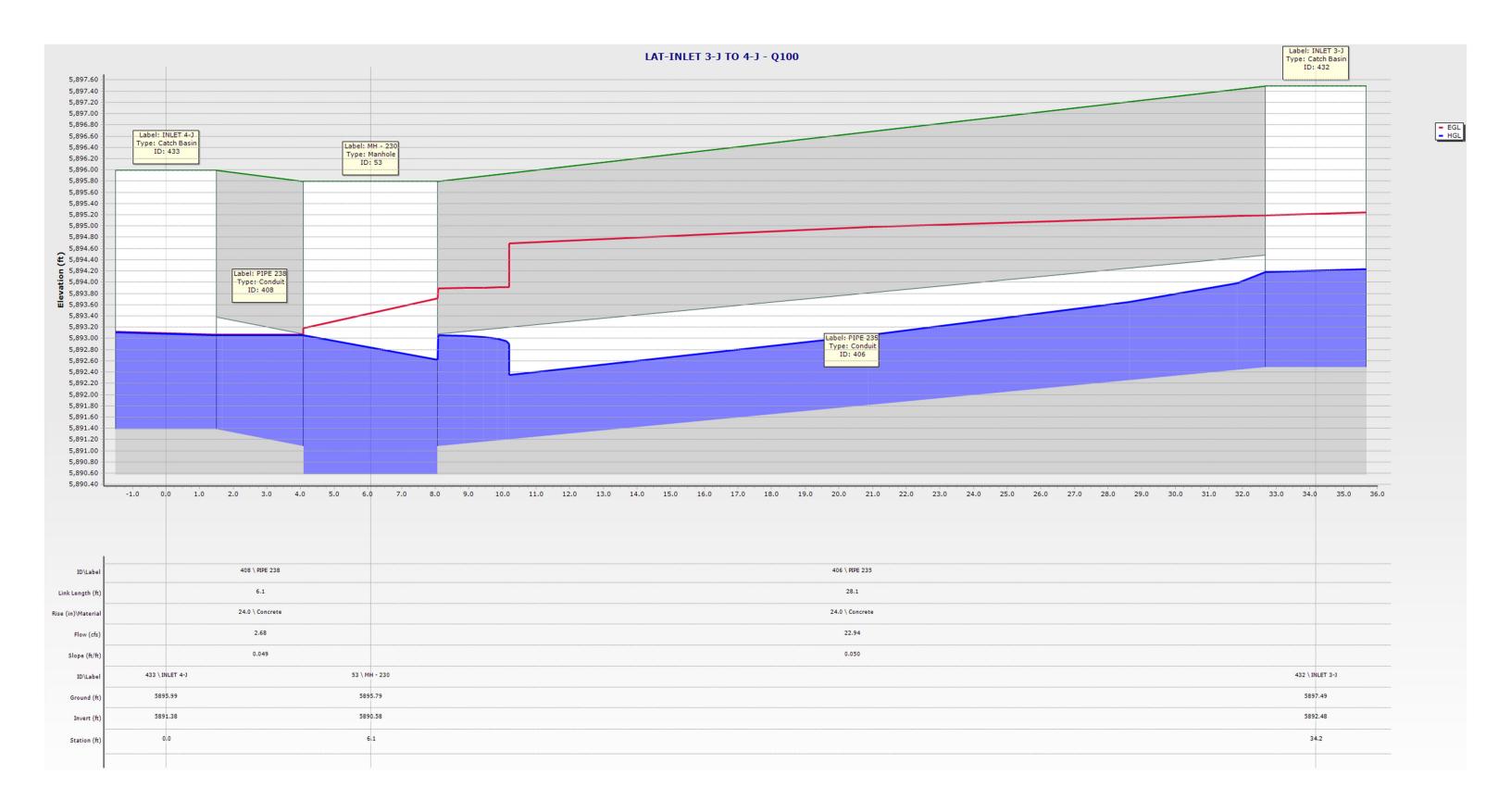

Inlet Report (5yr)

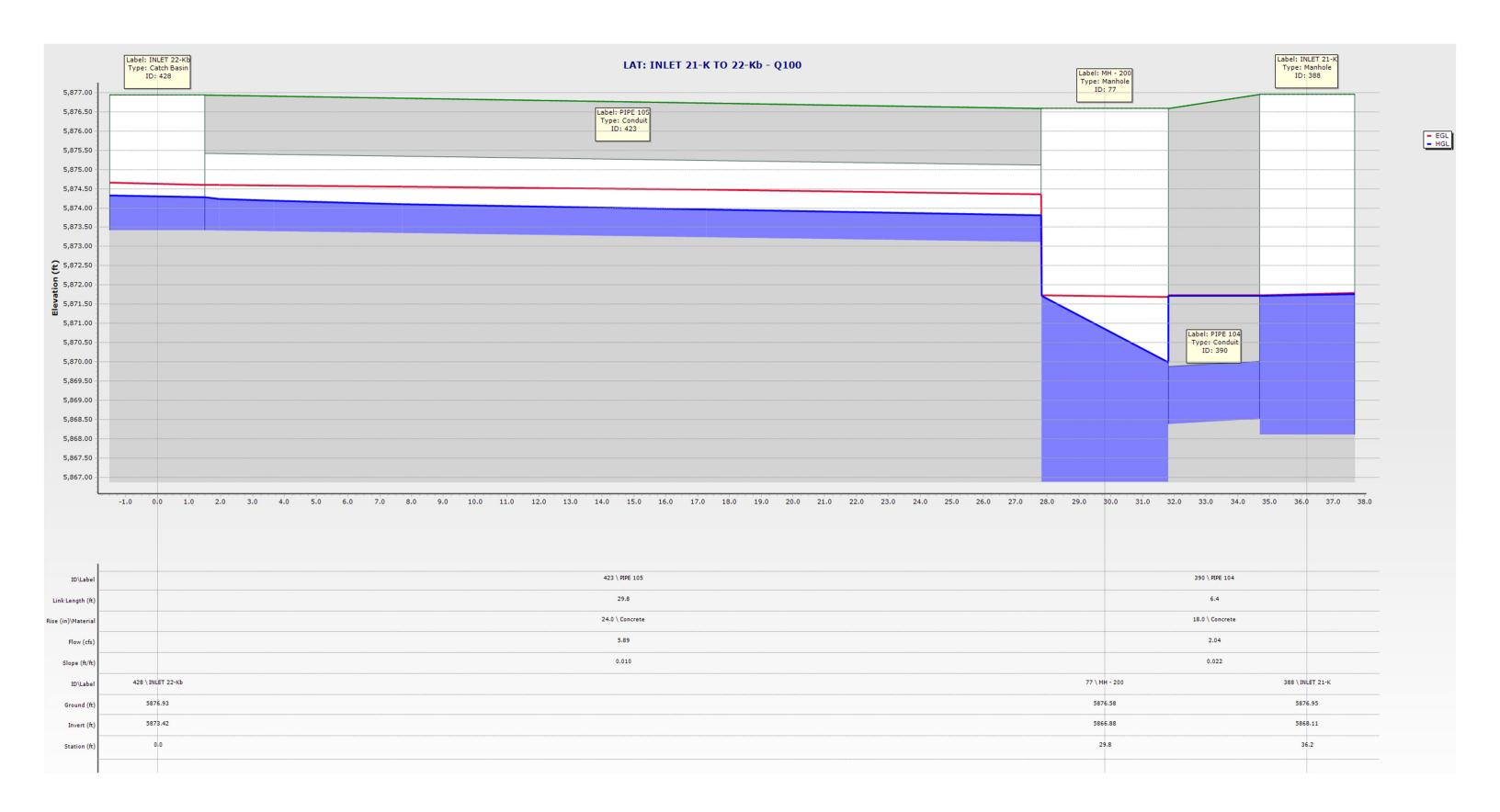
					<u> </u>					
	IC.	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Headloss Method	Headloss Coefficient (Standard)	Hydraulic Grade Line (In) (ft)	Inlet Type	Flow (Total Out) (cfs)
330: 12-K	330	12-K	5,851.33	5,851.33	5,846.16	Standard	0.050	5,846.80	Full Capture	3.78
331: 5-K	331	5-K	5,864.76	5,864.76	5,861.28	Standard	0.050	5,862.18	Percent Capture	1.83
332: 7-K	332	7-K	5,861.19	5,861.19	5,856.62	Standard	0.050	5,857.24	Percent Capture	0.04
333: 9-K	333	9-K	5,862.03	5,862.03	5,857.51	Standard	0.050	5,858.30	Percent Capture	1.94
334: 10-K	334	10-K	5,861.98	5,861.98	5,857.48	Standard	0.050	5,858.20	Percent Capture	1.95
352: OS-E	352	OS-E	5,854.52	5,854.52	5,847.22	Standard	0.050	5,847.97	Full Capture	3.40
424: INLET 22-Ka	424	INLET 22-Ka	5,889.95	5,889.95	5,880.59	Standard	0.050	5,882.26	Full Capture	3.32
426: INLET 16-K	426	INLET 16-K	5,888.76	5,888.76	5,879.11	Standard	0.050	5,879.66	Percent Capture	2.08
427: INLET 15-K	427	INLET 15-K	5,888.53	5,888.53	5,878.88	Standard	0.050	5,879.46	Percent Capture	2.29
428: INLET 22-Kb	428	INLET 22-Kb	5,876.93	5,876.93	5,868.58	Standard	0.050	5,869.50	Percent Capture	0.00
430: INLET 1-J	430	INLET 1-J	5,899.27	5,899.27	5,894.27	Standard	0.050	5,894.98	Percent Capture	4.08
431: INLET 2-J	431	INLET 2-J	5,899.01	5,899.01	5,894.72	Standard	0.050	5,895.24	Percent Capture	1.59
432: INLET 3-J	432	INLET 3-J	5,897.49	5,897.49	5,892.48	Standard	0.050	5,893.63	Percent Capture	9.51
433: INLET 4-J	433	INLET 4-J	5,895.99	5,895.99	5,891.38	Standard	0.050	5,892.12	Percent Capture	1.15
436: INLET 18-K	436	INLET 18-K	5,881.53	5,881.53	5,874.21	Standard	0.050	5,874.98	Percent Capture	3.58
437: INLET 17-K	437	INLET 17-K	5,881.04	5,881.04	5,873.22	Standard	0.050	5,873.70	Percent Capture	1.32
441: 14-K	441	14-K	5,849.56	5,849.56	5,843.81	Standard	0.050	5,844.96	Percent Capture	8.11

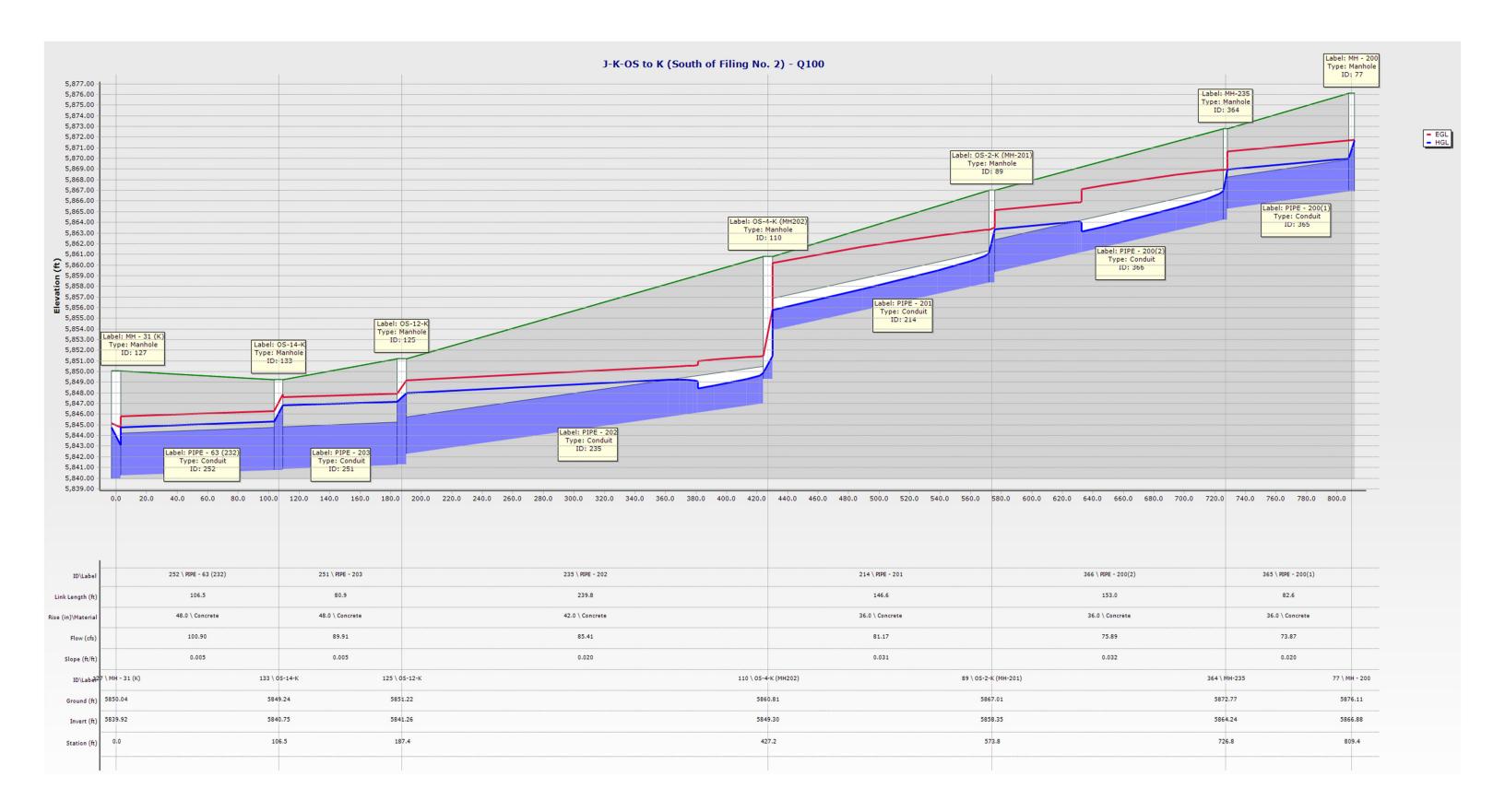

Manhole Report (5yr)


					<u> </u>	- (- 1 - 1					
	ID	Label 📤	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Flow (Total Out) (cfs)	Depth (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Headloss Coefficient (Standard)
367: 1-K	367	1-K	5,869.63	5,869.63	5,866.07	0.78	0.77	5,866.89	5,866.84	Standard	0.050
90: 2-K	90	2-K	5,866.95	5,866.95	5,862.06	2.13	0.53	5,862.64	5,862.59	Standard	0.050
101: 3+4-K	101	3+4-K	5,862.06	5,862.06	5,857.87	2.92	0.85	5,858.77	5,858.72	Standard	0.050
105: 3-4-K (MH-205)	105	3-4-K (MH-205)	5,861.67	5,861.67	5,857.54	2.92	0.79	5,858.70	5,858.33	Standard	1.520
112: 5-10-K	112	5-10-K	5,860.21	5,860.21	5,854.01	7.23	0.95	5,855.34	5,854.96	Standard	1.020
126: 5-12-K	126	5-12-K	5,850.65	5,850.65	5,844.15	9.64	0.83	5,845.52	5,844.98	Standard	1.520
109: 5-8-K	109	5-8-K	5,860.85	5,860.85	5,855.90	4.67	0.78	5,857.19	5,856.68	Standard	1.520
95: 6-K	95	6-K	5,864.76	5,864.76	5,860.63	3.23	0.75	5,861.42	5,861.38	Standard	0.050
360: 7-K-AREA	360	7-K-AREA	5,868.00	5,868.00	5,864.11	2.48	0.60	5,864.76	5,864.71	Standard	0.050
107: 8-K	107	8-K	5,861.19	5,861.19	5,856.70	0.46	0.49	5,857.24	5,857.19	Standard	0.050
106: 9-10-K	106	9-10-K	5,861.60	5,861.60	5,857.06	3.77	0.74	5,858.24	5,857.80	Standard	1.520
128: 13-K	128	13-K	5,849.57	5,849.57	5,843.40	0.34	0.50	5,843.95	5,843.90	Standard	0.000
131: INLET 1-I	131	INLET 1-I	5,849.31	5,849.31	5,845.20	5.25	0.94	5,846.19	5,846.14	Standard	0.050
132: INLET 2-I	132	INLET 2-I	5,849.31	5,849.31	5,844.87	2.27	0.92	5,845.84	5,845.79	Standard	0.050
148: INLET 5-I	148	INLET 5-I	5,840.33	5,840.33	5,828.05	52.00	2.17	5,830.57	5,830.22	Standard	0.400
401: INLET 19-K	401	INLET 19-K	5,890.93	5,890.93	5,881.24	1.76	1.08	5,882.37	5,882.32	Standard	0.050
397: INLET 20-K	397	INLET 20-K	5,891.42	5,891.42	5,881.45	5.02	0.79	5,882.29	5,882.24	Standard	0.050
388: INLET 21-K	388	INLET 21-K	5,876.95	5,876.95	5,868.11	0.87	1.34	5,869.50	5,869.45	Standard	0.050
134: MH - 30 (I)	134	MH - 30 (I)	5,849.07	5,849.07	5,844.30	7.08	0.94	5,845.80	5,845.24	Standard	1.520
127: MH - 31 (K)	127	MH - 31 (K)	5,850.04	5,850.04	5,839.92	48.00	2.08	5,842.84	5,841.99	Standard	1.020
137: MH - 32	137	MH - 32	5,845.00	5,845.00	5,836.12	47.59	2.07	5,838.23	5,838.18	Standard	0.050
138: MH - 33	138	MH - 33	5,844.06	5,844.06	5,833.88	47.41	2.06	5,837.02	5,835.95	Standard	1.320
146: MH - 34	146	MH - 34	5,841.45	5,841.45	5,830.94	47.32	2.06	5,833.05	5,833.00	Standard	0.050
153: MH - 35	153	MH - 35	5,831.98	5,831.98	5,820.68	51.77	2.16	5,823.19	5,822.84	Standard	0.400
50: MH - 40	50	MH - 40	5,900.64	5,900.64	5,892.91	5.60	1.49	5,894.52	5,894.40	Standard	0.400
77: MH - 200	77	MH - 200	5,876.11	5,876.11	5,866.88	30.80	1.80	5,869.45	5,868.68	Standard	1.020
98: MH - 206	98	MH - 206	5,863.81	5,863.81	5,859.24	4.43	0.81	5,860.38	5,860.05	Standard	1.020
53: MH - 230	53	MH - 230	5,895.79	5,895.79	5,890.58	14.83	1.30	5,892.08	5,891.88	Standard	0.400
71: MH - 430	71	MH - 430	5,896.70	5,896.70	5,889.47	14.74	0.59	5,890.59	5,890.06	Standard	1.020
353: MH-3	353	MH-3	5,849.69	5,849.69	5,844.46	3.40	0.70	5,845.52	5,845.16	Standard	1.322
378: MH-42	378	MH-42	5,880.86	5,880.86	5,871.26	8.18	1.02	5,872.89	5,872.28	Standard	1.520
380: MH-43	380	MH-43	5,887.04	5,887.04	5,877.44	4.09	0.71	5,878.55	5,878.15	Standard	1.520
382: MH-44	382	MH-44	5,888.11	5,888.11	5,878.58	4.11	0.71	5,879.34	5,879.29	Standard	0.100
398: MH-60	398	MH-60	5,890.82	5,890.82	5,880.85	6.68	1.33	5,882.32	5,882.18	Standard	1.020
359: MH-232	359	MH-232	5,869.25	5,869.25	5,863.34	2.48	0.60	5,864.23	5,863.94	Standard	1.320
364: MH-235	364	MH-235	5,872.77	5,872.77	5,864.24	31.46	1.82	5,866.84	5,866.06	Standard	1.020
322: MH-2160	322	MH-2160	5,891.30	5,891.30	5,879.94	23.79	1.52	5,882.21		Standard	1.020
325: MH-2170		MH-2170	5,879.76	5,879.76	5,869.21	30.21	1.78	5,871.75		Standard	1.020
89: OS-2-K (MH-201)	89	OS-2-K (MH-201)	5,867.01	5,867.01	5,858.35	33.32	1.87	5,861.04		Standard	1.020
110: OS-4-K (MH202)		OS-4-K (MH202)	5,860.81	5,860.81	5,849.30	35.19	-0.46	5,849.59		Standard	1.020
125: OS-12-K		OS-12-K	5,851.22	5,851.22	5,841.26	36.89	2.65	5,844.18		Standard	1.020
133: OS-14-K		OS-14-K	5,849.24	5,849.24	5,840.75	43.57	1.98	5,843.90		Standard	1.520









Pipe Report (100yr)

	ID	Label 📤	Start Node	Invert (Start) (ft)	Invert (Stop) (ft)	Stop Node	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Depth (Normal) / Rise (%)
354: 233	354	233	OS-E	5,847.22	5,844.76	MH-3	123.0	0.020	18.0	0.013	3.40	6.82	14.85	22.9	32.5
355: 234	355	234	MH-3	5,844.46	5,844.11	14-K	34.9	0.010	18.0	0.013	3.40	1.92	10.52	32.3	39.1
323: PIPE - 27	323	PIPE - 27 (1)	MH - 430	5,888.77	5,880.80	MH-2160	248.0	0.032	30.0	0.013	35.85	14.88	73.52	48.8	49.3
185: PIPE - 27	185	PIPE - 27 (2)	MH - 230	5,890.58	5,889.77	MH - 430	80.8	0.010	30.0	0.013	36.02	9.43	41.06	87.7	72.6
252: PIPE - 63	252	PIPE - 63 (232)	OS-14-K	5,840.75	5,840.22	MH - 31 (K)	106.5	0.005	48.0	0.013	100.90	8.03	101.57	99.3	81.4
254: PIPE - 64	254	PIPE - 64	MH - 31 (K)	5,841.32	5,844.30	MH - 30 (I)	118.8	-0.025	24.0	0.013	15.50	10.99	35.83	43.3	46.0
258: PIPE - 65	258	PIPE - 65	MH - 30 (I)	5,844.80	5,845.26	INLET 1-I	46.2	-0.010	18.0	0.013	12.26	6.94	10.48	117.0	(N/A)
259: PIPE - 66	259	PIPE - 66	MH - 30 (I)	5,844.80	5,844.90	INLET 2-I	10.2	-0.010	18.0	0.013	4.05	2.29	10.41	38.9	43.3
253: PIPE - 67	253	PIPE - 67	MH - 31 (K)	5,839.92	5,837.12	MH - 32	279.6	0.010	48.0	0.013	110.58	12.61	143.63	77.0	65.8
262: PIPE - 68	262	PIPE - 68	MH - 32	5,836.12	5,834.89	MH - 33	123.1	0.010	48.0	0.013	109.77	12.59	143.63	76.4	65.5
263: PIPE - 69	263	PIPE - 69	MH - 33	5,833.88	5,831.94	MH - 34	88.3	0.022	48.0	0.013	109.42	17.06	213.02	51.4	50.8
272: PIPE - 70	272	PIPE - 70	MH - 34	5,830.94	5,829.05	INLET 5-I	90.1	0.021	48.0	0.013	109.24	16.76	208.12	52.5	51.5
273: PIPE - 71	273	PIPE - 71	INLET 5-I	5,828.05	5,824.24	MH - 35	190.5	0.020	48.0	0.013	120.25	16.84	203.11	59.2	55.4
278: PIPE - 72	278	PIPE - 72	MH - 35	5,820.68	5,819.58	0-1	56.1	0.020	48.0	0.013	119.81	16.70	201.16	59.6	55.6
327: PIPE - 91	327	PIPE - 91	MH-2170	5,869.21	5,866.98	MH - 200	78.8	0.028	36.0	0.013	68.67	9.72	112.17	61.2	56.5
365: PIPE - 20	365	PIPE - 200(1)	MH - 200	5,866.88	5,864.44	MH-235	82.6	0.030	36.0	0.013	73.86	10.45	114.63	64.4	58.4
366: PIPE - 20	366	PIPE - 200(2)	MH-235	5,864.24	5,859.35	OS-2-K (MH	153.0	0.032	36.0	0.013	75.88	17.87	119.23	63.6	57.9
		PIPE - 201	OS-2-K (MH-201)	5,858.35	5,853.85	OS-4-K (MH	146.6	0.031	36.0	0.013	81.16	17.85	116.84	69.5	61.3
235: PIPE - 20	235	PIPE - 202	OS-4-K (MH202)	5,847.00	5,842.24	OS-12-K	239.8	0.020	42.0	0.013	85.39	15.41	141.73	60.2	56.0
251: PIPE - 20	251	PIPE - 203	OS-12-K	5,841.24	5,840.84		80.9	0.005	48.0	0.013	89.91	7.15	101.00	89.0	73.5
215: PIPE - 20	215	PIPE - 205	OS-2-K (MH-201)	5,860.85	5,862.04	2-K	49.9	-0.024	18.0	0.013	5.90	8.46	16.23	36.4	41.7
226: PIPE - 20	226	PIPE - 207	3-4-K (MH-205)	5,857.98	5,858.01	3+4-K	7.3	-0.004	18.0	0.013	6.59	4.35	6.74	97.7	80.0
230: PIPE - 20	230	PIPE - 208	OS-4-K (MH202)	5,855.35	5,857.68	3-4-K (MH-2	22.0	-0.106	18.0	0.013	6.58	14.94	34.18	19.2	29.7
221: PIPE - 20	221	PIPE - 209	6-K	5,860.99	5,861.62	5-K	33.2	-0.019	18.0	0.013	4.27	7.13	14.47	29.5	37.2
222: PIPE - 21	222	PIPE - 210	MH - 206	5,859.54	5,860.69	6-K	60.2	-0.019	18.0	0.013	7.55	8.30	14.51	52.0	51.2
223: PIPE - 21	223	PIPE - 211	5-8-K	5,856.55	5,859.24	MH - 206	80.2	-0.034	18.0	0.013	11.46	11.36	19.24	59.6	55.6
233: PIPE - 21	233	PIPE - 212	5-8-K	5,856.55	5,856.62	7-K	7.3	-0.010	18.0	0.013	0.09	0.05	10.27	0.9	6.7
232: PIPE - 21	232	PIPE - 213	5-8-K	5,856.55	5,856.70	8-K	29.4	-0.005	18.0	0.013	0.98	0.55	7.51	13.0	24.3
234: PIPE - 21	234	PIPE - 214	5-10-K	5,854.51	5,855.85	5-8-K	69.0	-0.019	18.0	0.013	11.99	9.24	14.64	81.9	68.8
228: PIPE - 21	228	PIPE - 215	9-10-K	5,857.36	5,857.51	9-K	30.7	-0.005	18.0	0.013	4.54	2.57	7.34	61.8	56.9
229: PIPE - 21	229	PIPE - 216	9-10-K	5,857.36	5,857.62	10-K	9.1	-0.028	18.0	0.013	4.54	8.39	17.73	25.6	34.5
231: PIPE - 21	231	PIPE - 217	5-10-K	5,854.51	5,857.06	9-10-K	40.0	-0.064	18.0	0.013	8.78	13.48	26.53	33.1	39.6
238: PIPE - 21	238	PIPE - 218	5-12-K	5,845.00	5,854.01	5-10-K	271.8	-0.033	24.0	0.013	17.98	12.66	41.19	43.7	46.2
248: PIPE - 22	248	PIPE - 220	5-12-K	5,845.50	5,846.01	12-K	8.5	-0.060	18.0	0.013	8.81	4.99	25.77	34.2	40.3
250: PIPE - 22			OS-12-K	5,842.74	5,844.00	5-12-K	69.8	-0.018	36.0	0.013	23.66	3.35	89.60	26.4	35.1
255: PIPE - 22	255	PIPE - 222	OS-14-K	5,843.34	5,843.40	13-K	8.2	-0.007	18.0	0.013	0.69	0.39	9.00	7.7	18.8
256: PIPE - 22	256	PIPE - 223	OS-14-K	5,843.34	5,843.81	14-K	28.5	-0.016	18.0	0.013	14.38	8.14	13.49	106.6	90.1
326: PIPE - 27			MH-2160	5,879.80	5,870.21		246.2	0.039	30.0	0.013	54.33	17.68	80.95	67.1	60.0
181: PIPE - 25	181	PIPE - 2500	INLET 1-J	5,894.27	5,893.82	MH - 40	44.7	0.010	30.0	0.013	10.04	6.92	41.15	24.4	33.6
182: PIPE - 26			MH - 40	5,893.62	5,890.68		294.5	0.010	30.0	0.013	13.58	7.50	40.98	33.1	39.6
410: PIPE 83		PIPE 83	INLET 2-J		5,894.62		10.0	0.010	18.0	0.013	3.71	5.43	10.51	35.4	41.1
379: PIPE 84		PIPE 84	MH-42	-	5,870.71		27.5	0.020	24.0	0.013	19.06	6.07	31.97	59.6	55.6
381: PIPE 85		PIPE 85	MH-43		5,872.26		304.0	0.017	24.0	0.013	9.56	8.33	29.24	32.7	39.3
383: PIPE 86	_	PIPE 86	MH-44		5,877.54		52.0	0.020	24.0	0.013	9.59	8.90	31.99	30.0	37.5
394: PIPE 87		PIPE 87	INLET 16-K	5,879.11	5,878.78		33.1	0.010	24.0	0.013	4.85	5.72	22.58	21.5	31.5
392: PIPE 88		PIPE 88	INLET 15-K	5,878.88	5,878.78		10.0	0.010	24.0	0.013	5.35	5.91	22.68	23.6	33.0
385: PIPE 89		PIPE 89	INLET 17-K	5,873.22	5,872.76		9.2	0.050	18.0	0.013	3.09	1.75	23.44	13.2	24.5
387: PIPE 90		PIPE 90	INLET 18-K	5,874.21			29.0	0.050	18.0	0.013	8.36	12.17	23.49	35.6	41.2
399: PIPE 92		PIPE 92	INLET 20-K	5,881.45	5,881.15		30.0	0.010	24.0	0.013	11.72	3.73	22.62	51.8	51.1
400: PIPE 93		PIPE 93	MH-60	5,880.85	-	MH-2160	29.5	0.019	24.0	0.013	15.56	4.95	30.91	50.3	50.2
402: PIPE 94		PIPE 94	INLET 19-K	5,881.24	5,881.15		8.7	0.010	24.0	0.013	4.10	1.31	23.06	17.8	28.6
390: PIPE 104		PIPE 104	INLET 21-K	5,868.52	5,868.38		6.4	0.022	18.0	0.013	2.04	1.15	15.58	13.1	24.4
		PIPE 105	INLET 22-Kb	5,873.42			29.8	0.010	24.0	0.013	5.89	6.14	23.06	25.5	34.5
		PIPE 107	INLET 22-Ka	5,880.59	5,880.44		29.5	0.005	24.0	0.013	4.58	1.46	16.12	28.4	36.5
		PIPE 235	INLET 3-J	5,892.31			30.1	0.041	24.0	0.013	22.94	14.56	45.70	50.2	50.1
408: PIPE 238		PIPE 238	INLET 4-J	5,891.38	5,891.08		8.2	0.037	24.0	0.013	2.68	7.65	43.27	6.2	16.9
		PIPE 239	MH-232	5,863.34	5,859.54		155.0	0.025	18.0	0.013	6.89	8.89	16.45	41.9	45.2
		PIPE 240	7-K-AREA	5,864.11			17.1	0.027	18.0	0.013	6.90	9.28	17.41	39.6	43.8
368: PIPE 241	368	PIPE 241	1-K	5,866.07	5,865.84	MH-235	22.8	0.010	18.0	0.013	2.33	1.32	10.55	22.1	31.9

Inlet Report (100yr)

	ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert) (ft)	Headloss Method	Headloss Coefficient (Standard)	Inlet Type	Capture Efficiency (Calculated) (%)	Flow (Total Out) (cfs)	Hydraulic Grade Line (In) (ft)
330: 12-K	330	12-K	5,851.33	5,851.33	5,846.16	Standard	0.050	Full Capture	100.0	8.81	5,848.43
331: 5-K	331	5-K	5,864.76	5,864.76	5,861.28	Standard	0.050	Percent Capture	97.7	4.27	5,862.46
332: 7-K	332	7-K	5,861.19	5,861.19	5,856.62	Standard	0.050	Percent Capture	78.9	0.09	5,858.47
333: 9-K	333	9-K	5,862.03	5,862.03	5,857.51	Standard	0.050	Percent Capture	95.8	4.54	5,859.18
334: 10-K	334	10-K	5,861.98	5,861.98	5,857.48	Standard	0.050	Percent Capture	95.8	4.54	5,859.14
352: OS-E	352	OS-E	5,854.52	5,854.52	5,847.22	Standard	0.050	Full Capture	100.0	3.40	5,847.97
424: INLET 22-	424	INLET 22-Ka	5,889.95	5,889.95	5,880.59	Standard	0.050	Percent Capture	50.0	4.58	5,884.25
426: INLET 16-	426	INLET 16-K	5,888.76	5,888.76	5,879.11	Standard	0.050	Percent Capture	89.5	4.85	5,880.41
427: INLET 15-	427	INLET 15-K	5,888.53	5,888.53	5,878.88	Standard	0.050	Percent Capture	81.9	5.35	5,880.42
428: INLET 22-	428	INLET 22-Kb	5,876.93	5,876.93	5,873.42	Standard	0.050	Percent Capture	100.0	5.89	5,874.33
430: INLET 1-J	430	INLET 1-J	5,899.27	5,899.27	5,894.27	Standard	0.050	Percent Capture	42.5	10.04	5,895.38
431: INLET 2-J	431	INLET 2-J	5,899.01	5,899.01	5,894.72	Standard	0.050	Percent Capture	97.9	3.71	5,895.51
432: INLET 3-J	432	INLET 3-J	5,897.49	5,897.49	5,892.31	Standard	0.050	Percent Capture	100.0	22.94	5,894.06
433: INLET 4-J	433	INLET 4-J	5,895.99	5,895.99	5,891.38	Standard	0.050	Percent Capture	100.0	2.68	5,893.10
436: INLET 18-	436	INLET 18-K	5,881.53	5,881.53	5,874.21	Standard	0.050	Percent Capture	100.0	8.36	5,875.38
437: INLET 17-	437	INLET 17-K	5,881.04	5,881.04	5,873.22	Standard	0.050	Percent Capture	100.0	3.09	5,875.17
441: 14-K	441	14-K	5,849.56	5,849.56	5,843.81	Standard	0.050	Percent Capture	100.0	14.38	5,847.42

Manhole Report (100yr)

					<u> </u>	· , ,				
	ID	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Depth (Out) (ft)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Headloss Coefficient (Standard)	Flow (Total Out) (cfs)
50: MH - 40	50	MH - 40	5,900.64	5,900.64	1.95	5,895.05	5,894.86	Standard	0.400	13.58
53: MH - 230	53	MH - 230	5,895.79	5,895.79	2.04	5,893.06	5,892.62	Standard	0.400	36.02
71: MH - 430	71	MH - 430	5,896.70	5,896.70	1.33	5,891.92	5,890.80	Standard	1.020	35.85
77: MH - 200	77	MH - 200	5,876.58	5,876.58	3.10	5,871.71	5,869.98	Standard	1.020	73.86
89: OS-2-K (MH-201)	89	OS-2-K (MH-201)	5,867.01	5,867.01	2.78	5,863.36	5,861.13	Standard	1.020	81.16
90: 2-K	90	2-K	5,866.95	5,866.95	1.46	5,863.57	5,863.52	Standard	0.050	5.90
95: 6-K	95	6-K	5,864.76	5,864.76	1.12	5,861.80	5,861.75	Standard	0.050	7.55
98: MH - 206	98	MH - 206	5,863.81	5,863.81	1.29	5,861.33	5,860.53	Standard	1.020	11.46
101: 3+4-K	101	3+4-K	5,862.06	5,862.06	1.49	5,859.41	5,859.36	Standard	0.050	6.59
105: 3-4-K (MH-205)	105	3-4-K (MH-205)	5,861.67	5,861.67	1.13	5,859.34	5,858.67	Standard	1.520	6.58
106: 9-10-K	106	9-10-K	5,861.60	5,861.60	1.15	5,859.07	5,858.21	Standard	1.520	8.78
107: 8-K	107	8-K	5,861.19	5,861.19	1.73	5,858.48	5,858.43	Standard	0.050	0.98
109: 5-8-K	109	5-8-K	5,860.85	5,860.85	1.26	5,858.42	5,857.16	Standard	1.520	11.99
110: OS-4-K (MH202)	110	OS-4-K (MH202)	5,860.81	5,860.81	0.58	5,851.49		Standard	1.020	85.39
112: 5-10-K	112	5-10-K	5,860.21	5,860.21	1.53	5,856.31	5,855.54	Standard	1.020	17.98
125: OS-12-K	125	OS-12-K	5,851.22	5,851.22	5.90	5,847.96		Standard	1.020	89.91
126: 5-12-K	126	5-12-K	5,850.65	5,850.65	3.90	5,848.32	5,848.05	Standard	1.520	23.66
127: MH - 31 (K)		MH - 31 (K)	5,850.04	5,850.04	3.18	5,844.79		Standard	1.020	110.58
128: 13-K	128	13-K	5,849.57	5,849.57	3.44	5,846.89		Standard	0.050	0.69
131: INLET 1-I	131	INLET 1-I	5,849.31	5,849.31	2.15	5,847.40		Standard	0.050	12.26
132: INLET 2-I		INLET 2-I	5,849.31	5,849.31	1.86	5,846.78		Standard	0.050	4.05
133: OS-14-K		OS-14-K	5,849.24	5,849.24	4.56	5,846.83		Standard	1.520	100.90
134: MH - 30 (I)	134	MH - 30 (I)	5,849.07	5,849.07	1.42	5,846.72		Standard	1.520	15.50
137: MH - 32		MH - 32	5,845.00	5,845.00	3.70	5,839.88		Standard	0.050	109.77
138: MH - 33		MH - 33	5,844.06	5,844.06	3.16	5,839.21		Standard	1.320	109.42
146: MH - 34	146	MH - 34	5,841.45	5,841.45	3.16	5,834.18		Standard	0.050	109.24
148: INLET 5-I	148	INLET 5-I	5,840.33	5,840.33	3.30	5,832.08		Standard	0.400	120.25
153: MH - 35	153	MH - 35	5,831.98	5,831.98	3.30	5,824.70		Standard	0.400	119.81
322: MH-2160	322	MH-2160	5,891.30	5,891.30	2.21	5,884.19		Standard	1.020	54.33
325: MH-2170	325	MH-2170	5,879.76	5,879.76	3.34	5,874.05		Standard	1.020	68.67
353: MH-3		MH-3	5,849.69	5,849.69	3.00	5,847.53		Standard	1.322	3.40
359: MH-232		MH-232	5,869.25	5,869.25	1.02	5,864.96		Standard	1.320	6.89
360: 7-K-AREA		7-K-AREA	5,868.00	5,868.00	1.02	5,865.18		Standard	0.050	6.90
364: MH-235		MH-235	5,872.77	5,872.77	2.73	5,868.97		Standard	1.020	75.88
367: 1-K		1-K	5,869.63	5,869.63	2.91	5,869.03		Standard	0.050	2.33
378: MH-42		MH-42	5,880.86	5,880.86	2.98	5,875.11		Standard	1.520	19.06
380: MH-43		MH-43	5,887.04	5,887.04	1.11	5,878.50		Standard	0.100	9.56
382: MH-44		MH-44	5,888.11	5,888.11	1.11	5,880.37	•	Standard	1.520	9.59
388: INLET 21-K		INLET 21-K	5,876.95	5,876.95	3.61	5,871.77		Standard	0.050	2.04
397: INLET 20-K		INLET 20-K	5,891.42	5,891.42	3.35	5,884.85		Standard	0.050	11.72
398: MH-60		MH-60	5,890.82	5,890.82	3.48	5,884.72		Standard	1.020	15.56
401: INLET 19-K		INLET 19-K	5,890.93	5,890.93	3.48	5,884.77		Standard	0.050	4.10

									Forebay Volume		Forebay Outlet Sizing	
Design Point	Total Water Quality Control Volume (Cu. Ft.)	Pond Name	Pond Drainage Area (Acres)	Pond Drainage Area Less Pond Footprint (Acres)	Forebay Location	Drainage area tributary to Forebay	Proportion of Total Drainage Area	Proportional WQCV Volume (Cu. Ft.)	3% of WQCV (Cu. Ft.)	Q100 to Forebay (cfs)	2% of Q100 (cfs)	Forebay Slot Sizing (inches)
DP 6-L	7688.859746	Northeast Pond	9.09	8.411372819	Northeast	8.41	1.00	7688.86	231	35.9	0.7	5.0

Table EDD 4 EDD o nonent criteria

	WQCV		Pond Footprint	
Single Family EDB Pond	0.177	Acre-Ft	0.68	Acres
Percent of WQCV for Forebay	3%	Between 5 and 3	20 impervious acres	
Impervious Percentage	59.05%			
	Impervious Acres	5.4	Acres	

	On-Site EDBs for Watersheds up to 1 Impervious Acre ¹	EDBs with Watersheds between 1 and 2 Impervious Acres ¹	EDBs with Watersheds up to 5 Impervious Acres	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Impervious Acres
Forebay Release and Configuration		Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetaine 100-year pea- discharge by way of a wall/notch or berm/pipe ² configuration
Minimum Forebay Volume	EDBs should not be used for watersheds	1% of the WQCV	2% of the WQCV	3% of the WQCV	3% of the WQCV
Maximum Forebay Depth	with less than 1 impervious acre.	12 inches	18 inches	18 inches	30 inches
Trickle Channel Capacity	uele.	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outle capacity
Micropool		Area ≥ 10 ft²	Area ≥ 10 ft²	Area ≥ 10 ft²	Area \geq 10 ft ²
Initial Surcharge Volume		Depth ≥ 4 inches	Depth ≥ 4 inches	Depth ≥ 4 in. Volume ≥ 0.3% WQCV	Depth ≥ 4 in Volume ≥ 0.3% WQC

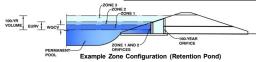
 $^{^1\,}$ EDBs are not recommended for sites with less than 2 impervious acres. Consider a sand filter or rain garden.

² Round up to the first standard pipe size (minimum 8 inches).

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date:	Jesse Sullivan Matrix Design Group April 19, 2021	P (Version 3.07, March 2018) Sheet 1 of 3
Project:	Trails at Aspen Ridge Filing No. 4 (Internal F6) - Forebay Sizing No.	E Detention Pond
Location:	El Paso County, Colorado	
1. Basin Storage	Volume	
A) Effective Im	perviousness of Tributary Area, I _a	I _a = 59.05 %
	rea's Imperviousness Ratio (i = I _a / 100)	i = 0.591
	g Watershed Area	Area = 9.090 ac
	sheds Outside of the Denver Region, Depth of Average sducing Storm	d ₆ = in
E) Design Cor (Select EUF	ncept RV when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)
	ume (WQCV) Based on 40-hour Drain Time (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.177 ac-ft
Water Qua	sheds Outside of the Denver Region, lity Capture Volume (WQCV) Design Volume $_{ER} = (d_{\sigma}^*(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} = ac-ft
	of Water Quality Capture Volume (WQCV) Design Volume lifferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft
i) Percent ii) Percen	ologic Soil Groups of Tributary Watershed lage of Watershed consisting of Type A Soils tage of Watershed consisting of Type B Soils ntage of Watershed consisting of Type C/D Soils	HSG _A =
For HSG A	an Runoff Volume (EURV) Design Volume Δ : EURV _A = 1.68 * $i^{1.28}$ Δ : EURV _B = 1.36 * $i^{1.08}$ Δ /D: EURV _{CID} = 1.20 * $i^{1.08}$	EURV _{DESIGN} = ac-f t
	of Excess Urban Runoff Volume (EURV) Design Volume ifferent EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t
	Length to Width Ratio n to width ratio of at least 2:1 will improve TSS reduction.)	L : W = : 1
3. Basin Side Slo	pes	
	mum Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft
4. Inlet		
A) Describe m inflow local	neans of providing energy dissipation at concentrated tions:	
5. Forebay		
	orebay Volume _i = 3% of the WQCV)	V _{FMIN} = 0.005 ac-ft
B) Actual Fore	· · · · · · · · · · · · · · · · · · ·	V _F = 0.005 ac-ft
C) Forebay De	·	D _F = 18.0 in
D) Forebay Dis	scharge	
i) Undetair	ned 100-year Peak Discharge	Q ₁₀₀ = 35.90 cfs
	y Discharge Design Flow $02 * Q_{100}$)	Q _F = cfs
E) Forebay Dis	scharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge P	Pipe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangula	r Notch Width	Calculated W _N = 5.0 in

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator

LID Credit by Impervious Reduction Factor (IRF) Method


				U	D-BMP (Version	1 3.06, Novemb	er 2016)								
	User Input														
	Calculated cells				Designer:		ullivan								
			i		Company:		Design Gro	oup							
***Design Storm: 1-Hour Rain Depth	WQCV Event	0.60	inches		Date:		0, 2021								
***Minor Storm: 1-Hour Rain Depth	5-Year Event	1.50	inches		Project:			en Ridge Fil	ing No. 4 (I	nternal F6)					
***Major Storm: 1-Hour Rain Depth	100-Year Event	2.52	inches		Location:	El Paso	County, Co)							
Optional User Defined Storm	CUHP														
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm	100-Year Event	2.52													
Max Intensity for Optional User Defined Storm	2.51496														
ITE INFORMATION (USER-INPUT)	Sub-basin Identifier	L1	L2	L3	L4	L5	L6	L7							
Receiving Pa	ervious Area Soil Type	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Clay Loam	Sandy Loam	Sandy Loam
Total Area (ac., Sum of D		2.230	2.910	1.430	1.700	0.100	0.050	0.680	Sandy Edain	Sandy Edain	Sandy Loann	Sandy Loann	Clay Loan	Sandy Edain	Sandy Edani
Directly Connected Impervio		1.404	1.892	0.930	1.003	0.065	0.033	0.048							
Unconnected Impervi		0.000	0.000	0.000	0.000	0.000	0.000	0.000							
	ous Area (RPA, acres)	0.000	0.000	0.000	0.000	0.000	0.000	0.000							
	ious Area (SPA, acres)	0.826	1.019	0.501	0.697	0.000	0.000	0.632							
RPA Treatment T	Type: Conveyance (C),	0.826 C	1.019 C	0.301 C	0.697 C	0.035 C	0.018 C	0.652 C	С	С	С	С	С	С	С
Volume (V), or Perm	neable Pavement (PP)				_		-	_	MISSING	MISSING	MISSING	MISSING	MISSING	MISSING	MISSING
									INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT
CALCULATED RESULTS (OUTPUT)															
Total Calculated Area (ac	, check against input)	2.230	2.910	1.430	1.700	0.100	0.050	0.680							
Directly Connected Impe	rvious Area (DCIA, %)	63.0%	65.0%	65.0%	59.0%	65.0%	65.0%	7.0%							
Unconnected Imp	ervious Area (UIA, %)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%							
Receiving Po	ervious Area (RPA, %)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%							
-	ervious Area (SPA, %)	37.1%	35.0%	35.0%	41.0%	35.0%	35.0%	93.0%							
	A _R (RPA / UIA)	0.000	0.000	0.000	0.000	0.000	0.000	0.000							
	I _a Check	1.000	1.000	1.000	1.000	1.000	1.000	1.000							
	f / I for WQCV Event:	1.7	1.7	1.7	1.7	1.7	1.7	1.7							
	f / I for 5-Year Event:	0.5	0.5	0.5	0.5	0.5	0.5	0.5							
	/ I for 100-Year Event:	0.3	0.3	0.3	0.3	0.3	0.3	0.3							
f / I for Optional User		0.3	0.3	0.3	0.31	0.3	0.31	0.3							
	IRF for WQCV Event:														
	_	1.00	1.00	1.00	1.00	1.00	1.00	1.00							
	IRF for 5-Year Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00							
	RF for 100-Year Event:	1.00	1.00	1.00	1.00	1.00	1.00	1.00							
IRF for Optional User	l l	1.00	1.00	1.00	1.00	1.00	1.00	1.00							
	Imperviousness: I _{total}	63.0%	65.0%	65.0%	59.0%	65.0%	65.0%	7.0%							
Effective Impervious	•	63.0%	65.0%	65.0%	59.0%	65.0%	65.0%	7.0%							
Effective Impervious		63.0%	65.0%	65.0%	59.0%	65.0%	65.0%	7.0%					ļ		
Effective Imperviousnes	ŀ	63.0%	65.0%	65.0%	59.0%	65.0%	65.0%	7.0%					ļ		
Effective Imperviousness for Optional User	Defined Storm CUHP:	63.0%	65.0%	65.0%	59.0%	65.0%	65.0%	7.0%							
ID / EFFECTIVE IMPERVIOUSNESS CREDITS															
WQCV Event CREDIT: 1	Reduce Detention By:	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%							
	only for 10-Year Event	N/A	N/A	N/A	N/A	N/A	N/A	N/A							
100-Year Event CREDIT**: F	Reduce Detention By:	0.0%	0.0%	0.0%	0.0%	0.3%	0.6%	0.5%							
User Defined CUHP CREDIT: 1	Reduce Detention By:	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%							
		Total Site Im	perviousness:	59.0%]	Notes:									
Total Site Effective Imperviousness for WQCV Event: 59.0%								infiltration ra							
Total Site Effective Imperviousness for 5-Year Event: 59.0% Total Site Effective Imperviousness for 100-Year Event: 59.0%										tions from Sto					
Total Site Effective Imp				59.0%	1	ivietnod	assumes that	1-110ur rainta	п аеріп із еq	uivalett to 1-	nour intensity	ioi calculatio	pur posed		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge - Filing No. 4

Basin ID: Northeast Pond: Marksheffel Tributary to Jimmy Camp Creek: Sub-basin L

Required Volume Calculation

ulled volulile Calculation		_
Selected BMP Type =	EDB	
Watershed Area =	9.09	acres
Watershed Length =	1,058	ft
Watershed Slope =	0.060	ft/ft
Watershed Imperviousness =	59.05%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	0.177	acre-feet
Excess Urban Runoff Volume (EURV) =	0.582	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.477	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.642	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.840	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.113	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.307	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	1.561	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	2.364	acre-feet
Approximate 2-yr Detention Volume =	0.446	acre-feet
Approximate 5-yr Detention Volume =	0.603	acre-feet
Approximate 10-yr Detention Volume =	0.779	acre-feet
Approximate 25-yr Detention Volume =	0.844	acre-feet
Approximate 50-yr Detention Volume =	0.880	acre-feet
Approximate 100-yr Detention Volume =	0.962	acre-feet

1-hr Precipitation					
1.19	inches				
1.50	inches				
1.75	inches				
2.00	inches				
2.25	inches				
2.52	inches				
3.55	inches				

ge-Storage Calculation		
Zone 1 Volume (WQCV) =	0.177	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.405	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.381	acre-fee
Total Detention Basin Volume =	0.962	acre-fee
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	

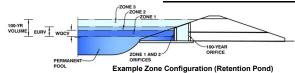
Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (V _{total}) =	user	acre-fe

Stage Stag	Depth Increment =	0.25	ft							
Description (8) Super (1) (8			Optional							
Top of Micropool - 0.00 0.00 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.003 - 0.000 - 0.003 - 0.0	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
\$879.61									(ft/3)	(ac-ft)
S880										
- 2.00 6.788 0.156 9.208 0.211 - 3.00 6.990 0.206 17.165 0.394 - 4.00 10.035 0.230 2.30 7.0612 - 5.00 11.748 0.270 37.599 0.802 - 6.00 13.514 0.310 30.200 1.152 - 7.00 15.331 0.392 64.022 1.484 5987 - 8.00 17.330 0.398 80.952 1.859										
- 3.00 8,990 0.206 17,165 0.394 - 4.00 10,035 0.230 26,677 0.912 - 5.00 11,748 0.270 37,569 0.862 - 7.00 13,514 0.310 50,200 1.152 - 7.00 15,331 0.352 46,822 1.848 5887 - 8.00 17,330 0.398 80,952 1.858 17,330 0.398 80,952 1.858	5880									
4.00 10.035 0.230 28,677 0.812 5.00 11,748 0.270 37,589 0.862 6.00 15,5331 0.332 04,622 1.484 5887 8.00 15,331 0.332 04,622 1.484 5887 8.00 17,330 0.398 80,952 1.858										
- 5.00 1,748 0,270 37,589 0,882										
15,331 0.382 64,622 1.484 1.5887 1.800 1.858 1										
1.887										
					-		15,331	0.352	64,622	1.484
	5887		8.00				17,330	0.398	80,952	1.858
				-						
				-						
				-						
		-		-						
				-						
		-		-						
				_						
		-		-	-					
		-		-						
				-						
				-						
		-		-						
		-		-						
		-		-						
		-		-						
				-						
				-						
				-						
				-						
				-						
		-		-						
1		-		-						
1		-		-						
** ** ** ** ** ** ** ** ** ** ** ** **										
										-
				-						

+NE POND-Sizing-FINAL, Basin 6/8/2021, 3:48 PM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)


+NE POND-Sizing-FINAL, Basin 6/8/2021, 3:48 PM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge - Filing No. 4

Basin ID: Northeast Pond: Marksheffel Tributary to Jimmy Camp Creek: Sub-basin L

		Stage (ft)	Zone Volume (ac-ft)	Outlet Type
	Zone 1 (WQCV)	1.77	0.177	Orifice Plate
	Zone 2 (EURV)	3.87	0.405	Circular Orifice
2	one 3 (100-year)	5.37	0.381	Weir&Pipe (Restrict)
			0.962	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = inches N/A

Calculate	a rarameters for	Onaciai
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate 1.77 ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = inches 8.80 Orifice Plate: Orifice Area per Row = 1.10 sq. inches (diameter = 1-3/16 inches)

Calcu	lated Parameters for	Plate
WQ Orifice Area per Row =	7.639E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²
•		

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Total 7 tota of East of Miss Total (Mainboroa Mont of Mignost)								
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.59	1.18					
Orifice Area (sq. inches)	1.10	1.10	1.10					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	1.77	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	3.87	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	0.38	N/A	inches

Calculated Parameters for Vertical Orifice						
	Zone 2 Circular	Not Selected				
Vertical Orifice Area =	0.00	N/A	ft ²			
Vertical Orifice Centroid =	0.02	N/A	fee			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.25	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	6.00	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	4.00	N/A	feet
Overflow Grate Open Area % =	70%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir				
	Zone 3 Weir	Not Selected		
Height of Grate Upper Edge, H_t =	5.25	N/A	feet	
Over Flow Weir Slope Length =	4.12	N/A	feet	
Grate Open Area / 100-yr Orifice Area =	24.85	N/A	should be >	
Overflow Grate Open Area w/o Debris =	17.32	N/A	ft ²	
Overflow Grate Open Area w/ Debris =	8.66	N/A	ft ²	

ut: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restri	ctor Plate, or Rectan	gular Orifice)	Calculated Parameter	Calculated Parameters for Outlet Pipe w/ Flow Restriction P			
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	Ì	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage	= 0 ft) Outlet Orifice Area =	0.70	N/A	ft²	
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.36	N/A	fee	
Restrictor Plate Height Above Pipe Invert =	7.50		inches H	alf-Central Angle of Restrictor Plate on Pipe =	1.40	N/A	rac	

ser input zinerBener spinitar (neetang	saidi oi iidperoiddi,	
Spillway Invert Stage=	5.70	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	30.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calcula	ted Parameters for S	pillway
Spillway Design Flow Depth=	0.42	feet
Stage at Top of Freeboard =	7.12	feet
Basin Area at Top of Freeboard =	0.36	acres

Routed	Hydrograph	Results

WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.55
0.177	0.582	0.477	0.642	0.840	1.113	1.307	1.561	2.364
0.176	0.581	0.475	0.642	0.839	1.111	1.305	1.560	2.361
0.00	0.00	0.01	0.02	0.20	0.66	0.91	1.23	2.05
0.0	0.0	0.1	0.2	1.8	6.0	8.3	11.2	18.7
3.0	9.9	8.1	10.9	14.2	18.8	22.0	26.3	39.5
0.1	0.2	0.2	0.2	1.8	6.3	7.5	7.9	26.3
N/A	N/A	N/A	1.1	1.0	1.1	0.9	0.7	1.4
Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Outlet Plate 1	Outlet Plate 1	Spillway
N/A	N/A	N/A	N/A	0.1	0.4	0.4	0.4	0.5
N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
38	61	56	64	65	62	61	59	54
41	67	62	71	74	72	71	70	67
1.66	3.73	3.26	3.99	4.51	4.85	5.11	5.62	6.04
	0.22	0.21	0.23	0.25	0.26	0.27	0.29	0.31
0.160	0.551	0.449	0.610	0.735	0.820	0.890	1.035	1.162
	0.53 0.177 0.176 0.00 0.0 3.0 0.1 N/A Plate N/A N/A N/A 38 41 1.66 0.15	0.53 1.07 0.582 0.176 0.581 0.00 0.00 0.00 0.0 3.0 9.9 0.1 0.2 N/A	0.53 1.07 1.19 0.177 0.582 0.477 0.176 0.581 0.475 0.00 0.00 0.01 0.0 0.0 0.1 3.0 9.9 8.1 0.1 0.2 0.2 N/A N/A N/A Plate Vertical Orifice 1 Vertical Orifice 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A 166 3.73 3.26 0.15 0.22 0.21	0.53 1.07 1.19 1.50 0.177 0.582 0.477 0.642 0.176 0.581 0.475 0.642 0.00 0.00 0.01 0.02 0.0 0.0 0.1 0.2 3.0 9.9 8.1 10.9 0.1 0.2 0.2 0.2 N/A N/A N/A 1.1 Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 N/A N/A N/A N/A N/A N/A N/A N/A 38 61 56 64 41 67 62 71 1.66 3.73 3.26 3.99 0.15 0.22 0.21 0.23	0.53 1.07 1.19 1.50 1.75 0.177 0.582 0.477 0.642 0.840 0.176 0.581 0.475 0.642 0.839 0.00 0.00 0.01 0.02 0.20 0.0 0.0 0.1 0.2 1.8 3.0 9.9 8.1 10.9 14.2 0.1 0.2 0.2 0.2 1.8 N/A N/A N/A N/A 1.1 1.0 Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Grate 1 N/A N/A N/A N/A N/A 0.1 N/A N/A N/A N/A N/A N/A N/A	0.53 1.07 1.19 1.50 1.75 2.00 0.177 0.582 0.477 0.642 0.840 1.113 0.176 0.581 0.475 0.642 0.839 1.111 0.00 0.00 0.01 0.02 0.20 0.66 0.0 0.0 0.1 0.2 1.8 6.0 3.0 9.9 8.1 10.9 14.2 18.8 0.1 0.2 0.2 0.2 1.8 6.3 N/A N/A N/A 1.1 1.0 1.1 Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Grate 1 Overflow Grate 1 N/A N/A N/A N/A N/A 0.1 0.4 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	0.53 1.07 1.19 1.50 1.75 2.00 2.25 0.177 0.582 0.477 0.642 0.840 1.113 1.307 0.176 0.581 0.475 0.642 0.839 1.111 1.305 0.00 0.00 0.01 0.02 0.20 0.66 0.91 0.0 0.0 0.1 0.2 1.8 6.0 8.3 3.0 9.9 8.1 10.9 14.2 18.8 22.0 0.1 0.2 0.2 1.8 6.3 7.5 N/A N/A N/A 1.1 1.0 1.1 0.9 Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 Overflow Grate 1 Overflow Grate 1 Outler Plate 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A <t< td=""><td>0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 0.177 0.582 0.477 0.642 0.840 1.113 1.307 1.561 0.176 0.581 0.475 0.642 0.839 1.111 1.305 1.560 0.00 0.00 0.01 0.02 0.20 0.66 0.91 1.23 0.0 0.0 0.1 0.2 1.8 6.0 8.3 11.2 3.0 9.9 8.1 10.9 14.2 18.8 22.0 26.3 0.1 0.2 0.2 0.2 1.8 6.3 7.5 7.9 N/A N/A N/A 1.1 1.0 1.1 0.9 0.7 Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 0vertlow Grate 1 0vertlow Grate 1 Outlet Plate 1 Outlet Plate 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A</td></t<>	0.53 1.07 1.19 1.50 1.75 2.00 2.25 2.52 0.177 0.582 0.477 0.642 0.840 1.113 1.307 1.561 0.176 0.581 0.475 0.642 0.839 1.111 1.305 1.560 0.00 0.00 0.01 0.02 0.20 0.66 0.91 1.23 0.0 0.0 0.1 0.2 1.8 6.0 8.3 11.2 3.0 9.9 8.1 10.9 14.2 18.8 22.0 26.3 0.1 0.2 0.2 0.2 1.8 6.3 7.5 7.9 N/A N/A N/A 1.1 1.0 1.1 0.9 0.7 Plate Vertical Orifice 1 Vertical Orifice 1 Vertical Orifice 1 0vertlow Grate 1 0vertlow Grate 1 Outlet Plate 1 Outlet Plate 1 N/A N/A N/A N/A N/A N/A N/A N/A N/A

Detention Basin Outlet Structure Design

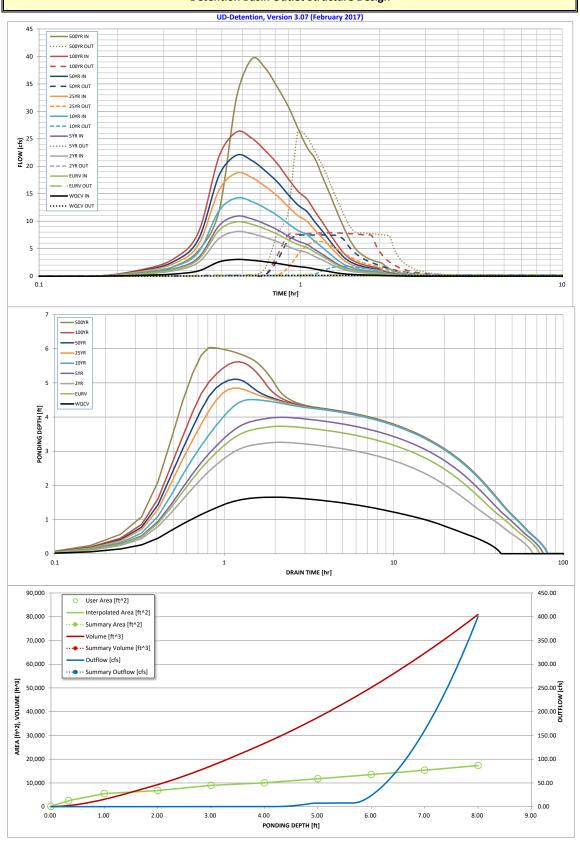


Figure 13-12b. Emergency Spillway Profile at Embankment

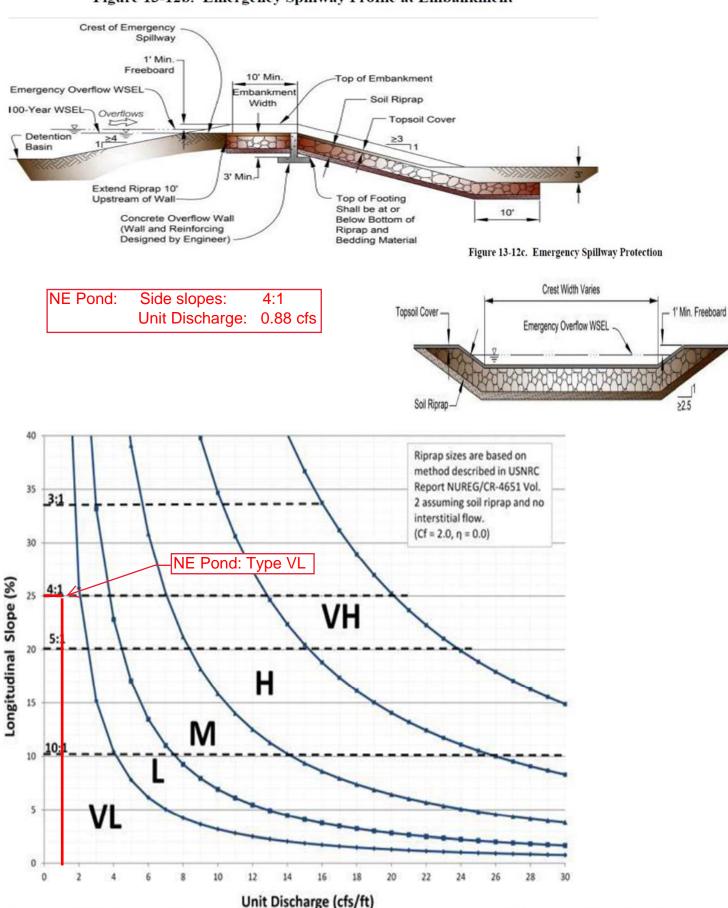
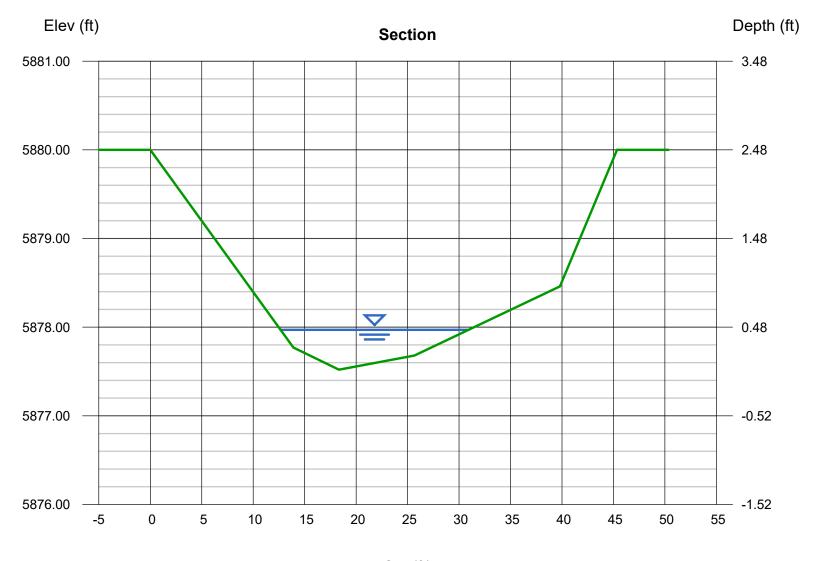



Figure 13-12d. Riprap Types for Emergency Spillway Protection

Bradley Road Ditch Capacity Combined Bradley Runoff and NE Pond Discharge

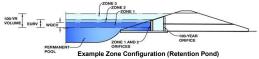
User-defined		Highlighted	
Invert Elev (ft)	= 5877.52	Depth (ft)	= 0.45
Slope (%)	= 3.00	Q (cfs)	= 15.30
N-Value	= 0.035	Area (sqft)	= 5.04
		Velocity (ft/s)	= 3.03
Calculations		Wetted Perim (ft)	= 18.31
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.46
Known Q (cfs)	= 15.30	Top Width (ft)	= 18.27
		EGL (ft)	= 0.59

(Sta, EI, n)-(Sta, EI, n)... (0.00, 5880.00)-(13.90, 5877.77, 0.035)-(18.33, 5877.52, 0.035)-(25.67, 5877.68, 0.035)-(39.80, 5878.46, 0.035)-(45.35, 5880.00, 0.035)

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator

LID Credit by Impervious Reduction Factor (IRF) Method

_				UI	D-BMP (Version	3.06, Novemb	er 2016)								
	User Input														
	Calculated cells				Designer:		Gullivan								
					Company:	Matrix	Design Gro	oup							
***Design Storm: 1-Hour Rain Depth	WQCV Event	0.60	inches		Date:	April 2	0, 2021								
***Minor Storm: 1-Hour Rain Depth	5-Year Event	1.50	inches		Project:	FDR: T	rails at Asp	en Ridge Fil	ing No. 4 (I	nternal F6)					
***Major Storm: 1-Hour Rain Depth	100-Year Event	2.52	inches		Location:	El Paso	County, Co	כ							
Optional User Defined Storm	CUHP														
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm	100-Year Event	2.52													
Max Intensity for Optional User Defined Storm	2.51496														
wax intensity for Optional oser Defined Storm	2.51490														
SITE INFORMATION (USER-INPUT)															
	Sub-basin Identifier	Filing No. 1	Filing No. 2	Filing No. 3	Filing No. 4	TAR Future	Offsite								
Receivi	ng Pervious Area Soil Type	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Sandy Loam	Clay Loam	Sandy Loam	Sandy Loam
Total Area (ac., Sum	of DCIA, UIA, RPA, & SPA)	49.763	17.614	18.328	9.090	26.919	41.161								
Directly Connected Imp	ervious Area (DCIA, acres)	28.168	10.645	9.799	5.368	0.538	0.823								
Unconnected Im	pervious Area (UIA, acres)	0.000	0.000	0.000	0.000	0.000	0.000								
	Pervious Area (RPA, acres)	0.000	0.000	0.000	0.000	0.000	0.000								
	Pervious Area (SPA, acres)	21.595	6.969	8.529	3.722	26.381	40.338								
RPA Treatm	ent Type: Conveyance (C),	C C	C C	C C	C C	C C	C C	С	С	С	С	С	С	С	С
Volume (V), or	Permeable Pavement (PP)							MISSING	MISSING	MISSING	MISSING	MISSING	MISSING	MISSING	MISSING
								INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT	INPUT
ALCULATED RESULTS (OUTPUT)															
Total Calculated Are	a (ac, check against input)	49.763	17.614	18.328	9.090	26.919	41.161								
Directly Connected	Impervious Area (DCIA, %)	56.6%	60.4%	53.5%	59.1%	2.0%	2.0%								
Unconnected	Impervious Area (UIA, %)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%								
Receivi	ing Pervious Area (RPA, %)	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%								
Separa	ate Pervious Area (SPA, %)	43.4%	39.6%	46.5%	41.0%	98.0%	98.0%								
	A _R (RPA / UIA)	0.000	0.000	0.000	0.000	0.000	0.000								
	I _a Check	1.000	1.000	1.000	1.000	1.000	1.000								
	f / I for WQCV Event:	1.7	1.7	1.7	1.7	1.7	1.7								
	f / I for 5-Year Event:	0.5	0.5	0.5	0.5	0.5	0.5								
		0.3	0.3	0.3	0.3	0.3	0.3								
£/1.5 × 0 × 1 × 1	f / I for 100-Year Event: Jser Defined Storm CUHP:														
f / I for Optional (0.31	0.31	0.31	0.31	0.31	0.31								
	IRF for WQCV Event:	1.00	1.00	1.00	1.00	1.00	1.00								
	IRF for 5-Year Event:	1.00	1.00	1.00	1.00	1.00	1.00								
	IRF for 100-Year Event:	1.00	1.00	1.00	1.00	1.00	1.00								
	Jser Defined Storm CUHP:	1.00	1.00	1.00	1.00	1.00	1.00								
Total	Site Imperviousness: I _{total}	56.6%	60.4%	53.5%	59.1%	2.0%	2.0%								
Effective Imperv	iousness for WQCV Event:	56.6%	60.4%	53.5%	59.1%	2.0%	2.0%								
Effective Imperv	iousness for 5-Year Event:	56.6%	60.4%	53.5%	59.1%	2.0%	2.0%								
Effective Imperviou	usness for 100-Year Event:	56.6%	60.4%	53.5%	59.1%	2.0%	2.0%								
Effective Imperviousness for Optional I	Jser Defined Storm CUHP:	56.6%	60.4%	53.5%	59.1%	2.0%	2.0%								
					4										
ID / EFFECTIVE IMPERVIOUSNESS CREDITS				I	T		I				I				
	DIT: Reduce Detention By:	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%								
	ine only for 10-Year Event **: Reduce Detention By:	N/A 0.0%	N/A 0.0%	N/A 0.0%	N/A 0.0%	N/A -14.9%	N/A -9.7%								
	OIT: Reduce Detention By:	0.0%	0.0%	0.0%	0.0%	0.0%	0.0%								
OSCI DEIMEG COTT CITE					1		2.370				I.				
			perviousness:	34.0%		Notes:									
	Total Site Effective Imp			34.0%				infiltration ra							
	Total Site Effective Imp			34.0%				volume credit							
was ton a set or	Total Site Effective Imper			34.0%	-	*** Method	assumes that	1-hour rainfa	III depth is eq	uivalent to 1-	hour intensity	for calculation	on purposed		
Total Site Effective Imperviousness for Optional User Defined Storm CUHP: 34.0			34.0%	J											


East Pond-Filings 1-4 - Copy.xism, IRF

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Project: <u>Trails at Aspen Ridge</u>

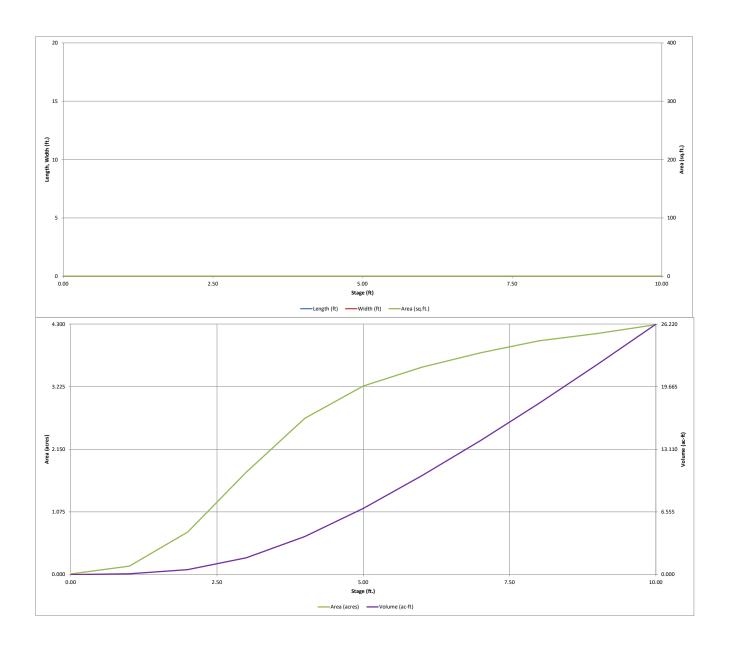
Basin ID: <u>West Fork of Jimmy Camp Creek: East Pond(located in Sub-basin M) Updated to include development of Filing 4 (Internal F6)</u>

quired Volume Calculation		
Selected BMP Type =	EDB	
Watershed Area =	162.88	acres
Watershed Length =	3,742	ft
Watershed Slope =	0.030	ft/ft
Watershed Imperviousness =	34.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	87.0%	percent
Percentage Hydrologic Soil Groups C/D =	13.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	2.218	acre-feet
Excess Urban Runoff Volume (EURV) =	5.654	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	4.485	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	6.442	acre-feet
10-vr Runoff Volume (P1 = 1.75 in.) =	9.434	acre-feet

Percentage Hydrologic Soil Groups C/D =	13.0%	percent
Desired WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	2.218	acre-feet
Excess Urban Runoff Volume (EURV) =	5.654	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	4.485	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	6.442	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	9.434	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	14.949	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	18.644	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	23.459	acre-feet
500-yr Runoff Volume (P1 = 3.55 in.) =	37.392	acre-feet
Approximate 2-yr Detention Volume =	4.191	acre-feet
Approximate 5-yr Detention Volume =	6.051	acre-feet
Approximate 10-yr Detention Volume =	8.345	acre-feet
Approximate 25-yr Detention Volume =	9.486	acre-feet
Approximate 50-yr Detention Volume =	9.969	acre-feet
Approximate 100-yr Detention Volume =	11.676	acre-feet

et	Optional User	Overrid
et	1-hr Precipita	tion
et	1.19	inches
et	1.50	inches
et	1.75	inches
et	2.00	inches
et	2.25	inches
et	2.52	inches
et	3.55	inches

Stage-Storage Calculation

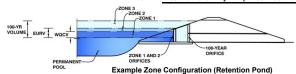

Zone 1 Volume (WQCV) =	2.218	acre-feet
Zone 2 Volume (EURV - Zone 1) =	3.437	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	6.022	acre-feet
Total Detention Basin Volume =	11.676	acre-feet
Initial Surcharge Volume (ISV) =	user	ft^3
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
		-
Initial Surcharge Area (A _{ISV}) =	user	ft^2
Curabanna Valuma Langth /L \ -		1.

ilitida Odronalgo Alca (Alsv) -	4001	117
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (LFLOOR) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (Vtotal) =	user	acre-fee

Depth Increment =	1	ft							
		Optional				Optional			
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool		0.00			-	443	0.010	X	
5817		1.00		-		6,211	0.143	3,265	0.075
5818		2.00		-		31,782	0.730	22,007	0.505
5819		3.00				76,551	1.757	76,490	1.756
5820		4.00		_		116,770	2.681	173,150	3.975
5821		5.00		-	-	141,034	3.238	302,052	6.934
5822		6.00		-		154,951	3.557	450,045	10.332
5823		7.00				165,754	3.805	610,397	14.013
5824		8.00			-	174,708	4.011	780,628	17.921
5825		9.00				180,233	4.138	958,098	21.995
5826	-	10.00		-		186,799	4.288	1,141,614	26.208
	1			-	-				
				-	-				
				-	-				
			-	-	-				
				-	-				
				-	-				
				-	-				
				-	-				
					-				
				-	-				
	-			-					
			-	-	-				
				-	-				
					-				
				-					
				-					
	-			-	-				
				-					
	-			-	-				
	-				-				
	-			-	-				
	-			-					
				-	-				
	-			-					
	-		-	-	-				
	-			-	-				
	-			-	-				
	-			-	-				
				-	-				
				-					
	-			-					
				-					
	-			-	-				
	-			-	-				
				-	-				
					-				
	_=			-	-				
	-			-					
	-			-	-		l		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)



Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Trails at Aspen Ridge

Basin ID: West Fork of Jimmy Camp Creek-East Pond. (Full Buildout with SWMM Hydrographs-PDR Amendment)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	3.25	2.218	Orifice Plate
Zone 2 (EURV)	4.60	3.437	Rectangular Orifice
one 3 (100-year)	6.38	6.022	Weir&Pipe (Restrict)
•		11.676	Total

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculate	ed Parameters for Un	ıderdra
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate								
Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)	WQ Orifice Area CHECK CELLS AB84:BE84	N/A	ft ²			
Depth at top of Zone using Orifice Plate =	3.33	ft (relative to basin bottom at Stage = 0 ft)	Elliptical Half-Width =	N/A	feet			
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Elliptical Slot Centroid =	N/A	feet			
Orifice Plate: Orifice Area per Row =	N/A	inches	Elliptical Slot Area =	N/A	ft ²			

inches

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Vertical Orifice Width =

Freeboard above Max Water Surface =

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.70	1.40	2.10	2.80			
Orifice Area (sq. inches)	4.10	4.20	4.20	4.20	4.30			

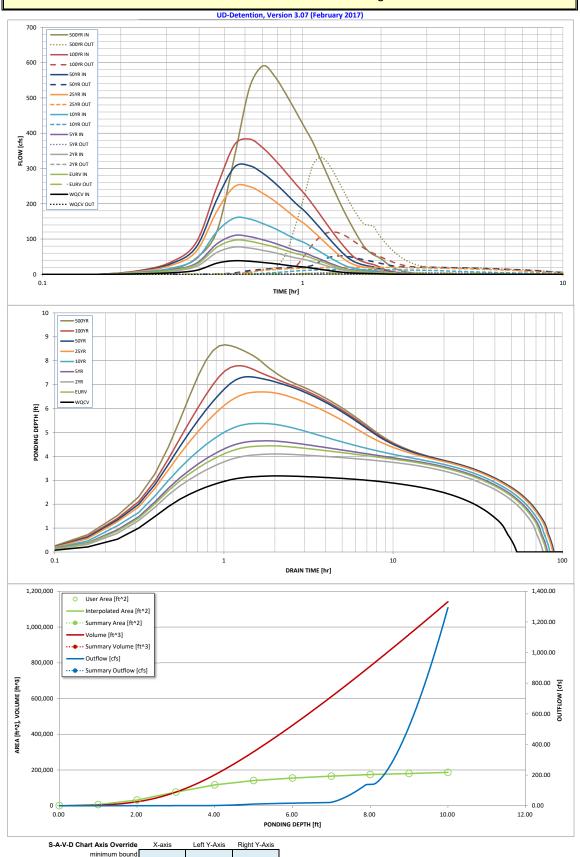
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circ	ular or Rectangular)		Cal	ulated Parameters for '	Vertical Orifice	
	Zone 2 Rectangular	Not Selected		Zone 2 Rectange	ular Not Selected	1
Invert of Vertical Orifice =	3.73	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice	Area = 2.50	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	6.95	N/A	ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Cen	roid = 0.63	N/A	feet
Vertical Orifice Height =	15.00	N/A	inches			

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped) ${\bf Calculated} \ \underline{{\bf Parameters} \ {\bf for} \ {\bf Overflow} \ {\bf Weir}$ Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho 6.94 N/A Height of Grate Upper Edge, H_{t} Overflow Weir Front Edge Length 14.50 N/A Over Flow Weir Slope Length 9.50 N/A Overflow Weir Slope Grate Open Area / 100-yr Orifice Area 9.23 0.00 N/A H:V (enter zero for flat grate) N/A should be <u>></u> 4 Horiz. Length of Weir Sides = Overflow Grate Open Area w/o Debris 103.31 9.50 N/A feet N/A Overflow Grate Open Area % Overflow Grate Open Area w/ Debris = 75% N/A %, grate open area/total area 56.82 N/A Debris Clogging % = 45% N/A

User Input: Outlet Pipe w/ Flow Restriction Plant	ate (Circular Orifice, Re	estrictor Plate, or Rectar	ngular Orifice)

24.00


1.00

put: Outlet Pipe w/ Flow Restriction Plate (Ci	rcular Orifice, Restric	ctor Plate, or Rectan	guiar Orifice)	Calculated Parameter	s for Outlet Pipe W/ I	-low Restriction Plat	≀е
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	11.19	N/A	ft ²
Outlet Pipe Diameter =	48.00	N/A	inches	Outlet Orifice Centroid =	1.80	N/A	feet
Restrictor Plate Height Above Pipe Invert =	40.00		inches Half-Central Ar	gle of Restrictor Plate on Pipe =	2.30	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal) **Calculated Parameters for Spillway** Spillway Design Flow Depth= ft (relative to basin bottom at Stage = 0 ft) Spillway Invert Stage= 8.08 1.02 feet Spillway Crest Length = 136.00 feet Stage at Top of Freeboard = 10.10 feet Spillway End Slopes 4.00 H:V Basin Area at Top of Freeboard = 4.29

Routed Hydrograph Results									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.55
Calculated Runoff Volume (acre-ft) =	2.218	5.654	4.485	6.442	9.434	14.949	18.644	23.459	37.392
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	2.219	5.657	4.489	6.448	9.441	14.958	18.652	23.475	37.424
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.04	0.24	0.73	1.01	1.35	2.24
Predevelopment Peak Q (cfs) =	0.0	0.0	2.2	6.0	38.9	119.5	164.1	219.2	364.7
Peak Inflow Q (cfs) =	38.7	97.1	77.4	110.3	159.8	248.9	307.9	383.3	590.6
Peak Outflow Q (cfs) =	0.9	4.6	2.2	6.7	13.6	20.0	52.5	120.0	331.7
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.1	0.3	0.2	0.3	0.5	0.9
Structure Controlling Flow =	Plate	Vertical Orifice 1	Overflow Grate 1	Overflow Grate 1	Spillway				
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	0.3	0.9	1.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	46	68	66	68	68	66	64	61	53
Time to Drain 99% of Inflow Volume (hours) =	50	74	71	74	75	76	75	74	70
Maximum Ponding Depth (ft) =	3.18	4.44	4.10	4.65	5.38	6.70	7.33	7.79	8.67
Area at Maximum Ponding Depth (acres) =	1.92	2.93	2.74	3.04	3.36	3.73	3.87	3.97	4.09
Maximum Volume Stored (acre-ft) =	2.087	5.208	4.246	5.835	8.154	12.845	15.280	17.083	20.595

Detention Basin Outlet Structure Design

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.69 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:09:23	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:14:04	1.66	3.90	3.19	4.36	5.94	8.35	9.60	10.77	13.11
1.067	0:18:46	4.54	11.01	8.90	12.40	17.40	25.77	30.53	35.45	46.67
	0:23:27 0:28:08	11.65 31.98	28.27 77.46	22.84 62.62	31.84 87.20	44.70 122.20	66.30 180.72	78.70 214.22	92.16 250.20	124.14 335.07
	0:32:50	38.70	97.06	77.41	110.28	159.76	248.93	304.06	367.66	530.45
	0:37:31	37.08	93.91	74.57	107.01	156.74	248.67	307.89	383.33	590.57
	0:42:13	33.74	85.74	67.96	97.82	143.86	229.61	286.16	358.17	560.46
	0:46:54	30.31	77.28	61.23	88.20	129.81	207.37	258.94	324.42	511.97
	0:51:35 0:56:17	26.38 22.94	67.76 59.23	53.59 46.80	77.40 67.70	114.26 100.04	183.20 160.57	229.74 201.96	290.00 256.84	463.09 416.53
	1:00:58	20.79	53.34	42.22	60.90	89.68	143.24	179.53	228.09	374.30
	1:05:40	17.34	44.87	35.42	51.32	76.04	122.50	154.44	197.35	324.44
	1:10:21	14.31	37.24	29.36	42.62	63.26	102.08	129.31	166.84	277.66
	1:15:02	11.24	29.65	23.29	34.00	50.77	82.55	105.51	137.91	234.11
	1:19:44	8.58 6.33	23.00 17.27	18.01 13.47	26.42 19.88	39.62 29.99	64.75 49.40	83.54 64.62	111.23 88.16	195.00 160.56
	1:29:07	4.79	12.89	10.09	14.80	22.19	36.56	48.45	67.68	130.10
	1:33:48	3.89	10.31	8.10	11.82	17.61	28.70	37.41	50.92	102.71
	1:38:29	3.29	8.67	6.82	9.93	14.75	23.92	30.86	41.24	79.44
	1:43:11 1:47:52	2.87	7.52	5.93	8.61	12.76	20.60	26.44	35.04	64.47
	1:52:34	2.57	6.72 6.15	5.30 4.85	7.69 7.03	11.37 10.38	18.30 16.65	23.38	30.75 27.67	55.04 48.67
	1:57:15	1.74	4.62	3.62	5.31	7.96	13.06	16.84	22.35	40.25
	2:01:56	1.27	3.34	2.62	3.83	5.73	9.41	12.19	16.37	30.53
	2:06:38	0.94	2.47	1.94	2.84	4.26	6.98	9.00	11.91	22.30
	2:11:19	0.69	1.84 1.35	1.44	2.11 1.55	3.16 2.34	5.18 3.84	6.69 4.97	8.92 6.68	16.43 12.42
	2:16:01 2:20:42	0.36	0.97	0.76	1.12	1.69	2.78	3.64	4.96	9.36
	2:25:23	0.26	0.71	0.55	0.81	1.22	2.01	2.64	3.63	7.03
	2:30:05	0.18	0.50	0.39	0.57	0.87	1.45	1.93	2.70	5.27
	2:34:46	0.11	0.32	0.25	0.38	0.58	0.97	1.32	1.92	4.00
	2:39:28 2:44:09	0.06	0.19	0.14	0.22	0.34	0.59	0.83	1.28	2.90
	2:44:09	0.03	0.09	0.07	0.10	0.17	0.30	0.46	0.76 0.38	1.97
	2:53:32	0.00	0.00	0.00	0.00	0.00	0.01	0.04	0.12	0.66
	2:58:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.26
	3:02:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	3:07:36 3:12:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:16:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:21:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:26:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:31:03	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:44 3:40:26	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:49:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:54:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:59:11 4:03:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:08:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:13:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:57 4:22:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:01	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:36:43 4:41:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:46:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:47 4:55:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:04:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:09:32 5:14:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:14:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:23:37	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:28:18 5:32:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:32:59	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Į.										

APPENDIX B STANDARD DESIGN CHARTS AND TABLES

El Paso County Drainage Basin Fees

Resolution No. 20-424

Basin	Receiving	Year	Drainage Basin Name	2021 Drainage Fee	2021 Bridge Fee
Number	Waters	Studied		(per Impervious Acre)	(per Impervious Acre)
Drainage Basins w	ith DBPS's:				
CHMS0200	Chico Creek	2013	Haegler Ranch	\$11,113	\$1,640
CHWS1200	Chico Creek	2001	Bennett Ranch	\$12,441	\$4,772
CHWS1400	Chico Creek	2013	Falcon	\$31,885	\$4,380
FOFO2000	Fountain Creek	2001	West Fork Jimmy Camp Creek	\$13,524	\$4,001
FOFO2600	Fountain Creek	1991*	Big Johnson / Crews Gulch	\$19,752	\$2,551
FOFO2800	Fountain Creek	1988*	Widefield	\$19,752	\$0
FOFO2900	Fountain Creek	1988*	Security	\$19,752	\$0
FOFO3000	Fountain Creek	1991*	Windmill Gulch	\$19,752	\$296
FOFO3100 / FOFO320	00 Fountain Creek	1988*	Carson Street / Little Johnson	\$12,048	\$0
FOFO3400	Fountain Creek	1984*	Peterson Field	\$14,246	\$1,080
FOFO3600	Fountain Creek	1991*	Fisher's Canyon	\$19,752	\$0
FOFO4000	Fountain Creek	1996	Sand Creek	\$20,387	\$8,339
FOFO4200	Fountain Creek	1977	Spring Creek	\$10,244	\$0
FOFO4600	Fountain Creek	1984*	Southwest Area	\$19,752	\$0
FOFO4800	Fountain Creek	1991	Bear Creek	\$19,752	\$1,080
FOFO5400	Fountain Creek	1977	21st Street	\$5,942	\$0
FOFO5600	Fountain Creek	1964	19th Street	\$3,887	\$0
FOFO5800	Fountain Creek	1964	Camp Creek	\$2,189	\$0
FOMO0400	Monument Creek	1986*	Mesa	\$10,331	\$0
FOMO1000	Monument Creek	1981	Douglas Creek	\$12,421	\$274
FOMO1200	Monument Creek	1977	Templeton Gap	\$12,752	\$296
FOMO1400	Monument Creek	1976	Pope's Bluff	\$3,956	\$675
FOMO1600	Monument Creek	1976	South Rockrimmon	\$4,643	\$0
FOMO1800	Monument Creek	1973	North Rockrimmon	\$5,942	\$0 *0
FOMO2000 FOMO2200	Monument Creek	1971	Pulpit Rock	\$6,549	\$0 \$1,080
	Monument Creek Monument Creek	1994 1966	Cottonwood Creek / S. Pine	\$19,752 \$15,502	\$1,080 \$565
FOMO2400 FOMO3600	Monument Creek	1989*	Dry Creek Black Squirrel Creek	\$15,592 \$8,968	\$565 \$565
OMO3000 FOMO3700	Monument Creek	1987*	Middle Tributary	\$16,482	\$005 \$0
FOMO3800	Monument Creek	1987*	Monument Branch	\$19,752	\$0 \$0
FOMO4000	Monument Creek	1996	Smith Creek	\$8,052	\$1,080
FOMO4200	Monument Creek	1989*	Black Forest	\$19,752	\$538
FOMO5200	Monument Creek	1993*	Dirty Woman Creek	\$19,752	\$1,080
FOMO5300	Fountain Creek	1993*	Crystal Creek	\$19,752	\$1,080
Miscellaneous Drai	inage Basins: 1				
CHBS0800	Chico Creek		Book Ranch	\$18,533	\$2,683
CHEC0400	Chico Creek		Upper East Chico	\$10,097	\$293
CHWS0200	Chico Creek		Telephone Exchange	\$11,093	\$260
CHWS0400	Chico Creek		Livestock Company	\$18,273	\$217
CHWS0600	Chico Creek		West Squirrel	\$9,525	\$3,953
CHWS0800	Chico Creek		Solberg Ranch	\$19,752	\$0
OFO1200	Fountain Creek		Crooked Canyon	\$5,963	\$0
OFO1400	Fountain Creek		Calhan Reservoir	\$4,979	\$290
OFO1600	Fountain Creek		Sand Canyon	\$3,597	\$0
OFO2000	Fountain Creek		Jimmy Camp Creek ³	\$19,752	\$924
OFO2200	Fountain Creek		Fort Carson	\$15,592	\$565
OFO2700	Fountain Creek		West Little Johnson	\$1,301	\$0
OFO3800	Fountain Creek		Stratton	\$9,474	\$424
OFO5000	Fountain Creek		Midland	\$15,592	\$565
OFO6000	Fountain Creek		Palmer Trail	\$15,592	\$565
OFO6800	Fountain Creek		Black Canyon	\$15,592	\$565
OMO4600	Monument Creek		Beaver Creek	\$11,808	\$0
OMO3000	Monument Creek		Kettle Creek	\$10,666	\$0
OMO3400	Monument Creek		Elkhorn	\$1,792	\$0
FOMO5000	Monument Creek		Monument Rock	\$8,561	\$0
FOMO5400	Monument Creek		Palmer Lake	\$13,689	\$0
FOMO5600	Monument Creek		Raspberry Mountain	\$4,605	\$0 \$0
PLPL0200	Monument Creek		Bald Mountain	\$9,813	\$0
	! 2				
Interim Drainage B FOFO1800 FOMO4400	Fountain Creek Monument Creek		Little Fountain Creek Jackson Creek	\$2,525 \$7,818	\$0 \$0

^{1.} The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies performed within the last 14 years.

Tovicou 100 Will be folimbuledu. Coe Modelade	11 00 020 (0/11/00) and 1000idion 10 020 (0/01/10).	
EPC Stormwater Management	Jennifer Irvine, P.E.	

^{2.} Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available information suitable for setting a fee.)

^{3.} This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of \$7,285 per impervious acre shall be provided to secure payment of additional fees in the event that the DBPS results in a fee greater than the current fee. Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Resolution 16-320 (9/07/16).

Chapter 6 Hydrology

depths over the duration of the storm as a fraction of the 1-hour depth and is also shown in Figure 6-19. By applying the 1-hour depths shown in Table 6-2 to the values shown in Table 6-3, a short-duration project design storm can be developed for any return period storm from a 2-year up to 100-year frequency. By applying the appropriate 1-hour depth for other project locations, a project design storm can be created for any location.

Table 6-3. 2-Hour Design Storm Distribution, $\leq 1 \text{ mi}^2$

Time (minutes)	Fraction of 1-Hour Rainfall Depth	Time (minutes)	Fraction of 1-Hour Rainfall Depth
5	0.014	65	1.004
10	0.046	70	1.018
15	0.079	75	1.030
20	0.120	80	1.041
25	0.179	85	1.052
30	0.258	90	1.063
35	0.421	95	1.072
40	0.712	100	1.082
45	0.824	105	1.091
50	0.892	110	1.100
55	0.935	115	1.109
60	0.972	120	1.119

• Frontal Storms: The characteristics of longer-duration "frontal storms" (general) is less well understood than the shorter duration thunderstorms and should be studied further. However, some events of this nature have been observed, such as the April 1999 storm which produced flooding on Fountain Creek, showing that these types of events do occur and tend to produce hazardous flood flows. In addition, modeling of the Jimmy Camp Creek drainage basin using the 24-hour, Type II distribution shows that it produces results reasonably comparably to recorded flow data. Therefore, the NRCS 24-hour Type II distribution has replaced the Type IIa distribution as the standard, long-duration design storm. This distribution can be applied to drainage basins up to 10 square miles without a DARF correction and is shown in Table 6-4. This distribution is included as a standard storm option in the HEC-HMS program.

Chapter 6 Hydrology

Table 6-6. Runoff Coefficients for Rational Method

(Source: UDFCD 2001)

Land Use or Surface	Percent						Runoff Co	efficients					
Characteristics	Impervious	2-year		5-у	5-year		year	25-	/ear	50- _\	/ear	100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	0.45	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential													
1/8 Acre or less	65	0.41	0.45	0.45	0.49	0.49	0.54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.47	0.43	0.52	0.47	0.57
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.51	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial													
Light Areas	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas													
Historic Flow Analysis Greenbelts, Agriculture	2	0.03	0.05	0.09	0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Pasture/Meadow	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Forest	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Offsite Flow Analysis (when landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
Streets													
Paved	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_t) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For non-urban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

Hydrology Chapter 6

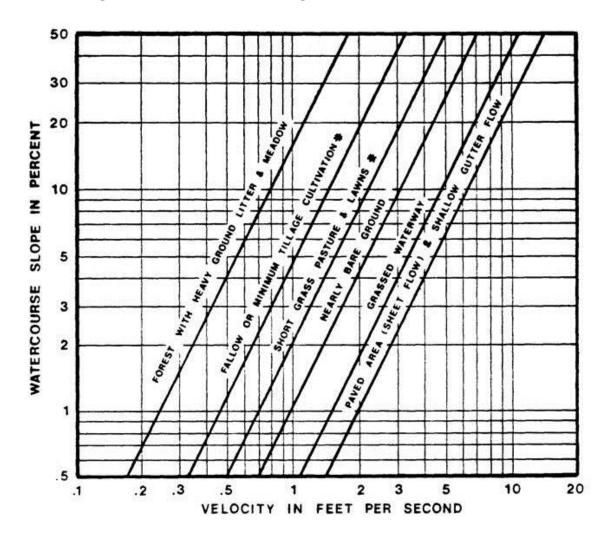
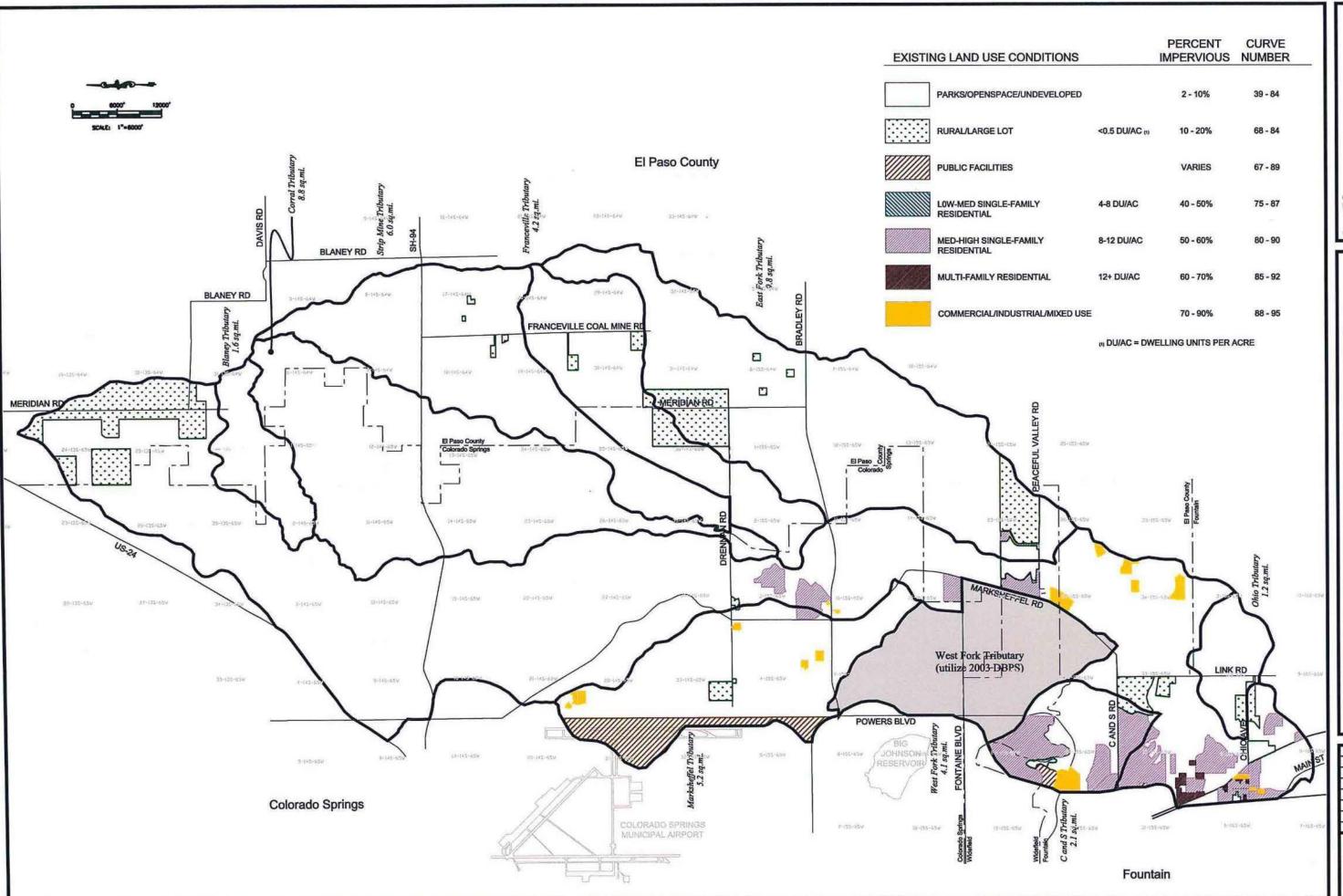



Figure 6-25. Estimate of Average Concentrated Shallow Flow

<u>APPENDIX C</u> Report References

EXCERPTS FROM DBPS WEST FORK JIMMY CAMP CREEK

JIMMY CAMP CREEK WATERSHED DRAINAGE BASIN PLANNING STUDY EXISTING CONDITIONS LAND USE MAP CITY OF COLORADO SPRINGS

Project No.: 14008
Dote: OCT 2014
Design:
Drown: BJW
Check:
Revisions:

II-1

VII. IMPLEMENTATION OF SELECTED PLAN

7.1 General

The results of the analyses summarized in Chapter 6 represent a concept level design process. The selected plan improvements shown on the conceptual design drawings will be subject to refinement as the development of the land within the Jimmy Camp Creek Basin commences. The size and location of the channel conveyances will have to be determined based upon a higher level of engineering analysis that is typically carried out during the preparation of the master development drainage and final drainage planning reports. It is an underlying intent of the selected to plan to preserve to the greatest extent practical the existing condition 100-year floodplain and environmental resources that exist therein. It will be important that the major drainageway channel conveyances that have been identified in this DBPS be followed and major deviations from the concepts presented herein should be discouraged when land development applications are made to the City of Colorado Springs.

With respect to FSD as presented in this DBPS, the location of future FSD basins will be refined during the land development process. Guidelines for locating FSD's have been provided in previous sections of the DBPS. If implemented, FSD will result in the limitation of peak discharges released from developing areas to pre-development conditions. As such, the future major drainageway conveyances and road crossings need only to be designed to be able to carry the pre-development condition discharges. Consolidation of FSD sites should be encouraged in order to limit long-term maintenance costs so long as the intent of the FSD system is achieved. Implementation of the concepts in this DBPS will reduce the level of planning and engineering that will be required during later drainage planning phases associated with the land development process.

7.2 Cost Estimates

Presented on Table VII-1 are the costs estimates for the major drainageway conveyances for Jimmy Camp Creek and its major sub-tributaries within the City of Colorado Springs. Presented on Table VII-2 are conveyance costs for sub-drainageways for the City of Colorado Springs. There has been no cost estimate made for local storm sewer systems. An estimate for the cost to replace roadway crossings found to be deficient when the hydraulic analysis was prepared has also not been made in this DBPS. Unit costs applied when calculating the conveyance costs are prepared on the tables. Engineering design costs have been estimated at 10 percent of the construction. A contingency allowance of 10 percent off the construction has been assumed. No allowance for the relocation of utilities has been assumed when developing the conveyance cost estimates.

Presented on tables within the DBPS are costs estimates for the major drainageway conveyances for Jimmy Camp Creek and its major sub-tributaries within the City of Colorado Springs. There has been no cost estimate made for local storm sewer systems. An estimate for the cost to replace roadway crossings found to be deficient when the hydraulic analysis was prepared has also not been made in this DBPS. Unit costs applied when calculating the conveyance costs are prepared on the tables. The estimated cost of the FSD

basins was presented in Chapter 5 of the DBPS. The cost and acreage data associated with FSD has been provided in the DBPS and used in the development of a storage fee. Since the effect of implementing the FSD alternative is to maintain rates of runoff to be conveyed by the receiving drainageways to pre-development conditions it is has been concluded to be reasonable to spread only the cost of the major drainage conveyances in amongst all un-platted property within Colorado Springs.

The total cost for future roadway culverts and bridges has not been made in this DBPS. This is primarily because the number and location of the future roadway crossing cannot be accurately determined at this time. All future roadway crossings should be sized to convey the pre-development condition discharge. Because runoff will be controlled to existing peak discharges, there is no additional costs for culverts and bridges associated with providing capacity because of increased runoff due to development.

7.3 Unplatted Acreage

Presented on Figure VII-1 are the jurisdictional limits and corresponding acreage of the three governmental entities in the Jimmy Camp Creek watershed. Presented on Figure VII-2 are the un-plattable acreage that lies within the City of Colorado Springs, City of Fountain and El Paso County. Using El Paso County Tax Assessor maps, plats and ownership records the amount of un-platted and developable acreage was estimated. From these records the following total un-platted acreages were determined:

City of Colorado Spring outside BLR	148 acres
City of Colorado Spring inside BLR	13,341acres
City of Colorado Springs Total	13,489 acres

El Paso County 14,018 acres

City of Fountain 664 acres

The unplatted acreage shown on Figure VII-2 excludes the existing 100-year floodplains, large regional parks, school sites and public utility easement corridors. Land that is already platted has not been accounted for in the estimate of the plattable acreage unless the platted parcel exceeded 15 acres in size. Most of these large acreage platted parcels occur within the County. The un-platted acreage listed in the report is the land that is considered developable and would be subject to drainage and storage fees.

The weighted percent imperviousness was estimated for the entire watershed. Based upon the land use planning information accumulated and applied in this DBPS, the weighted percent imperviousness for the watershed was determined to be 57.5 percent.

7.4 Unit Drainage Costs

Presented on Table VII-3 of the DBPS and this Executive Summary are the unit major drainageway and FSD storage fee calculations for the City of Colorado Springs. All of the improvements that were used in the calculation of the unit drainage costs are considered public facilities subject to maintenance by the Colorado Springs in accordance with this DBPS and applicable drainage criteria. The unit drainage costs can

Jimmy Camp Creek DBPS, Page 72

be used to structure a fee system for the Jimmy Camp Creek watershed to replace the present fee system that has been established using the 1987 Wilson DBPS. It is recommended that a drainage fee be established within each of the jurisdictions to cover the capital improvement costs associated with the stabilization of the major and sub-drainageways identified in this DBPS. Since FSD is the selected storage option for the watershed, it may be possible to have the fees associated with the unit drainage costs accumulate during the initial phases of land development until such time that major drainageway or sub-drainageway stabilization is needed. Having the drainage fund accumulate by not requiring a developer to install major drainageway improvements during the initial phase of the land development process will help the keep the drainage fund from becoming immediately in debt. It will also give the City time and some greater flexibility in focusing the capital improvement funds generated by the fee system. Managing the fees system in this way may also help the land development process by not front-end loading the very initial phases of development with the costs of major and sub-drainageway improvements that could very well be offsite from the land development activity itself.

The FSD storage cost can be used to develop a FSD storage fee. The unit storage fee can be assessed at the time of platting if the parcel subject to platting is so limited in size as to not to be feasible to site a regional FSD. In developing the FSD unit storage fee 15 percent has been added to the unit acre-foot construction cost presented on Table V-4 of the DBPS to bring the unit storage cost to 2014 dollars. Fees that accumulate in the FSD storage fund could later be used to reimburse a property owner that would be required because of its size to construct and FSD. It is however preferable to construct the regional FSD's at the earliest possible time during the development of a sub-watershed so that the impact of develop runoff on the receiving drainageway is mitigated.

Because the land area within the watershed and the land that is within the City is controlled by one major land owner it may be feasible to "close" the basin to fees. This would then end the need to collect drainage and FSD fees at the time of platting land. Accordingly, no reimbursement for any public major drainageway or FSD facilities would occur.

A bridge fee has not been calculated for this watershed. This is primarily because the number and location of bridges cannot be accurately determined, and the fact that any bridge or major roadway crossing would only have to be sized to convey pre-development condition discharges. In this regard, the cost of a bridge or culvert associated with a future road is based on the need for transportation and not storm water conveyance. It may be necessary to establish some form of interim fee to cover the cost of reimbursements already established under the present Jimmy Camp Creek bridge fee system.

Jimmy Camp Creek DBPS, Page 78

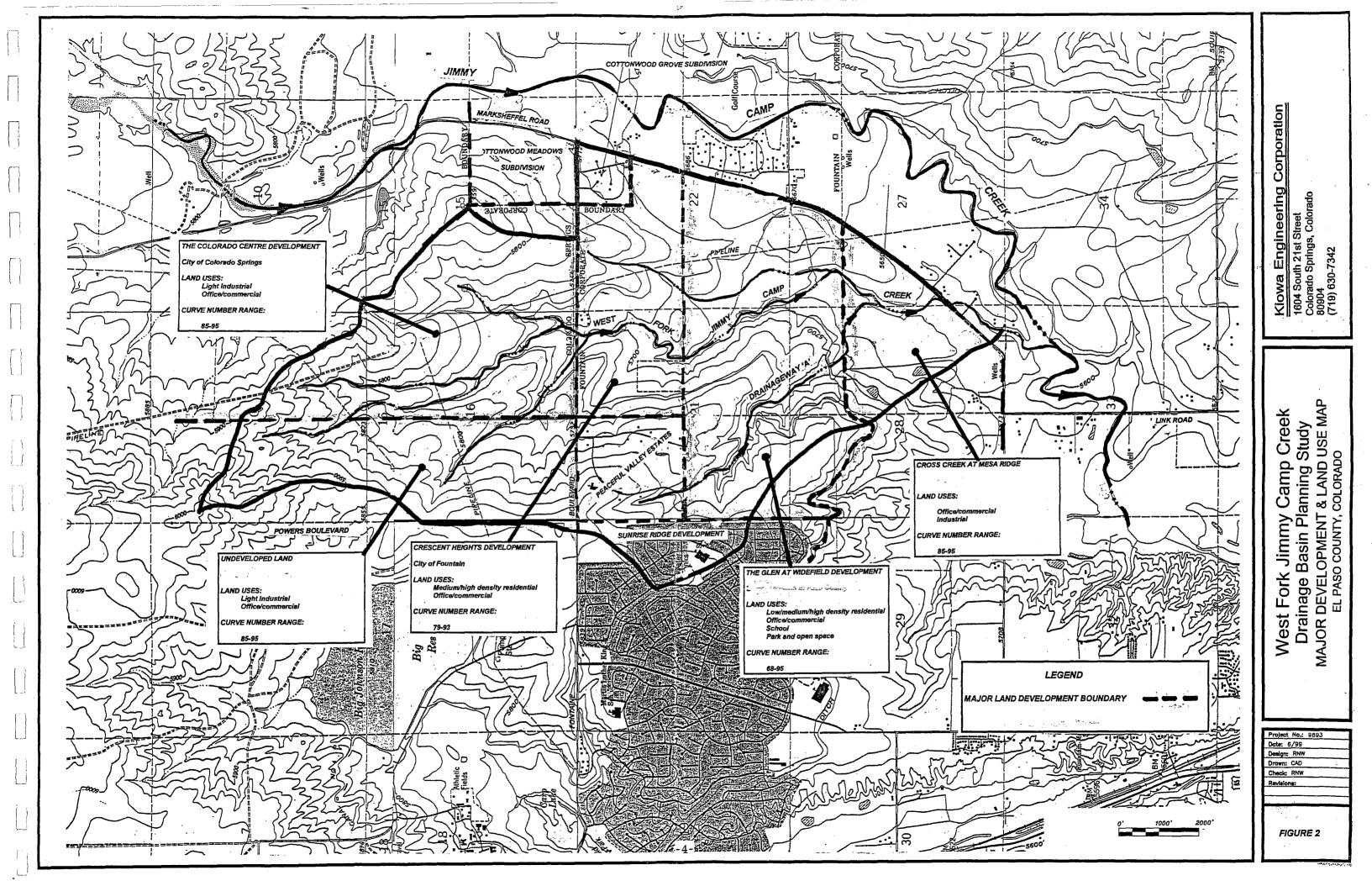
Drainageway	Dratnage Structure Description	Structure tnvantory #	Roadway	Structure Condition	Intet Channel Condition	Outlet Channel Condition	Extsting 100-year (cfs)	Structure Capacity (cfs)	% of Extsttng 100-year Q
Jimmy Camp Creek	360' Bridge 3-spans	PR1	Old Pueblo Road	Good to Fair	Good	Fair	22,100	>24000	100
	244' Bridga Mulit-span	RR1	D & RGW RR	Good to Fair	Good to Fair	Good to Feir	22,100	>>24000	100
	220' Bridga 3-spens	01	Ohio Avenua	Good to Feir	Good to Fair	Fair	22,100	19800	95
	190' Bridge 3-spans	LR1	Link Roed	Good	Good Floodplain well vegatated	Poor Headout et outlet	21,880	26000	100
	4-48" X 29" CMP	PV1	Peeceful Velley Roed	Poor Mosily clogged	Роог	Poor	17,360	< 200	<5
	Bridge	FB1	Fonlaina Boulaverd	Good	Good	Good Riprap channel	15,380	>16000	100
	360' Bridge 3-spans	B2	Bradley Roed	Good	Fair	Fair Benk sloughing along west benk	15,380	>18000	100
	54' Bridge 2-spans	DR3	Drennen Roed	Feir	Good	Low flow stable	5,760	>6500	100
	160' Bridge 4-spans	NF2	State Highway 94	Good	Good to Fair	Felr Bank sloughing elong west bank	4,760	15000	100
Eest Fork Jimmy Camp Creek	Twin CBC 8' x 12'	B4	Bradley Roed	Good	Good Chennel poorly defined	Good Chennel poorly defined	2,860	2400	84
	54' Bridge 2-spans	DR5	Drannan Road	Poor to Feir	Good	Good	1,720	>3000	100
	2-43" X 29" CMP	M7	Meridien Roed	Inlet bent Outlat rusted	Poor	Poor	1,610	140	<10
Marksheffel Tributery	Twin 72-inch CMP	MS2	Marksheffal Road	Poor No wingwalls	Good	Feir	950	300	32
	Detention Basin	MK1	Marksheffel Roed	Good	Good	Poor	1,920 in/950 out	na	100
	Triple 7' X 12' CBC	В3	Bradley Road	Good	Good Well vegeleted	Good Well vegeteted	1,640	2800	100
Corral Tributary	80' Bridga 2-spans	DR4	Drannan Roed	Fair Wingwalls in poor condition	Good Send invert	Poor Bank sloughing on west benk	11,550	>40000	100
	Triple 12' X 10' CBC	NF12	Stele Hghway 94	Good	Feir Wide sand Invert	Feir Wide sand Invert	3,230	>3750	100

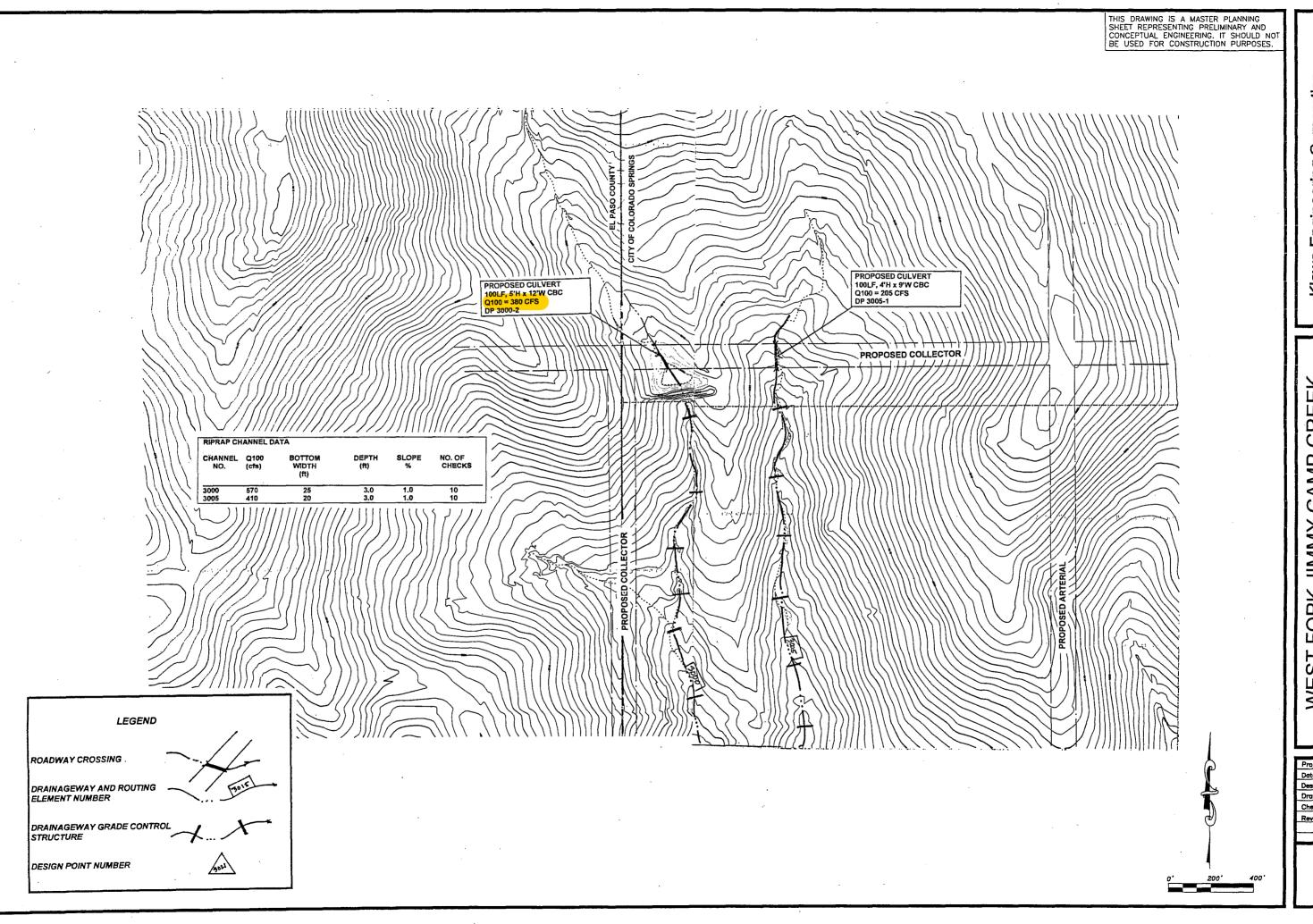
⁽¹⁾ Bridge capacity equel to the bridge erea below the low chord et a velocity of 10 feet per second. Culvart cepacity besed upon inlet control at a HW/D equal to 1.

on the design plans. The purpose of the detention basins is to limit peak discharges at the basin's outfall to Jimmy Camp Creek to the existing hydrologic condition. The regional basins have also been sited within each of the major land developments to more locally control runoff to existing levels. Wherever practical, the regional detention basins should be designed so as to take advantage of the adjacent roadway embankments. It is not anticipated that any of the regional detention basins will be subject to State Engineer's regulations. Stormwater quality measures should be designed into the regional stormwater detention basins. These measures would include the provision of a water quality and sediment pool area in addition to the volume required for stormwater detention.

Right-of-Way

For the most part the main channels within the basin which pass through undeveloped areas and the right-of-way can be dedicated as part of the land development process. For those segments of the drainageway where floodplain preservation is the recommended plan, a combination of open space dedication (such as park-land and greenbelts), in combination with a more narrow dedicated right-of-way along the low flow area of the drainageway should be obtained through the land development process. Land acquisition will be required for the regional detention basins. The dedication of easements and right-of-way for the drainageways and detention basins would be accomplished at the time of development planning and platting of the parcels that lie adjacent to or upstream of the stormwater facility.


Cost Estimates and Drainage Basin Fees


Cost estimates have been prepared and are contained within the DBPS. The cost of the major drainageway facilities has been determined for each jurisdiction. The facility cost estimate will be used in the determination of the drainage and bridge fees for this basin. Bridge crossing costs have been determined as well for the basin.

Presented on Table 17 through 19 is the cost and plattable acreage (i.e., that area available for platting into subdivisions), data associated with the determination of drainage and bridge fees for the basin. The plattable acreage has been determined using a combination of assessor's maps, aerial photographs and topographic mapping that covering the watershed. As presented on Table 17, the reductions in the area available for platting have been listed. The reductions are mostly attributable to areas that are already platted, known roadway or planned road right-of-ways for minor and major arterials, and the area underlying the proposed detention basins.

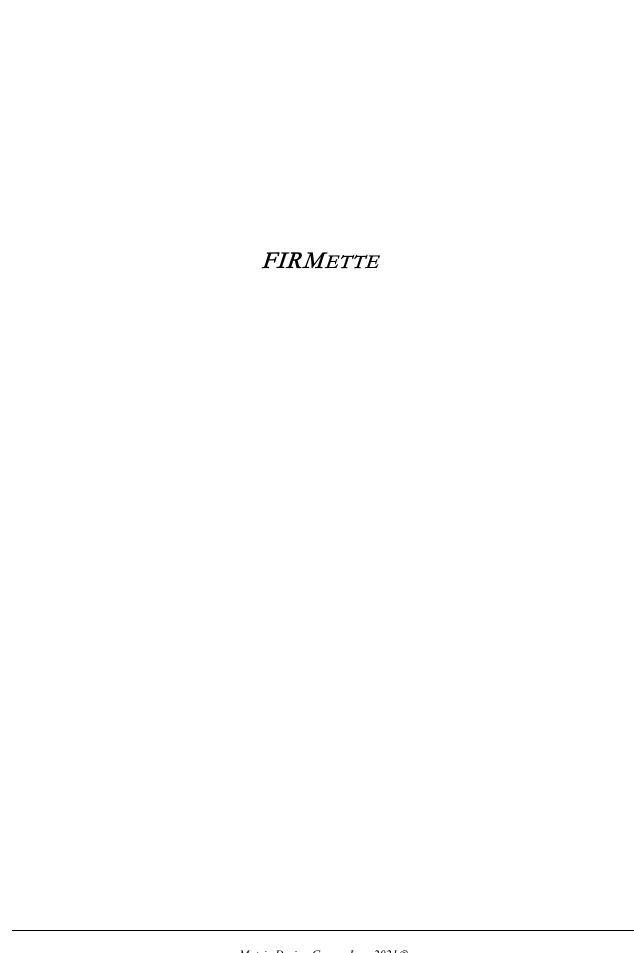
Drainage basin fees have been determined for those areas that are within the City of Colorado Springs and El Paso County. The City of Fountain does not have a drainage basin fee system and therefore no fees have been calculated for the areas within the City of Fountain. The

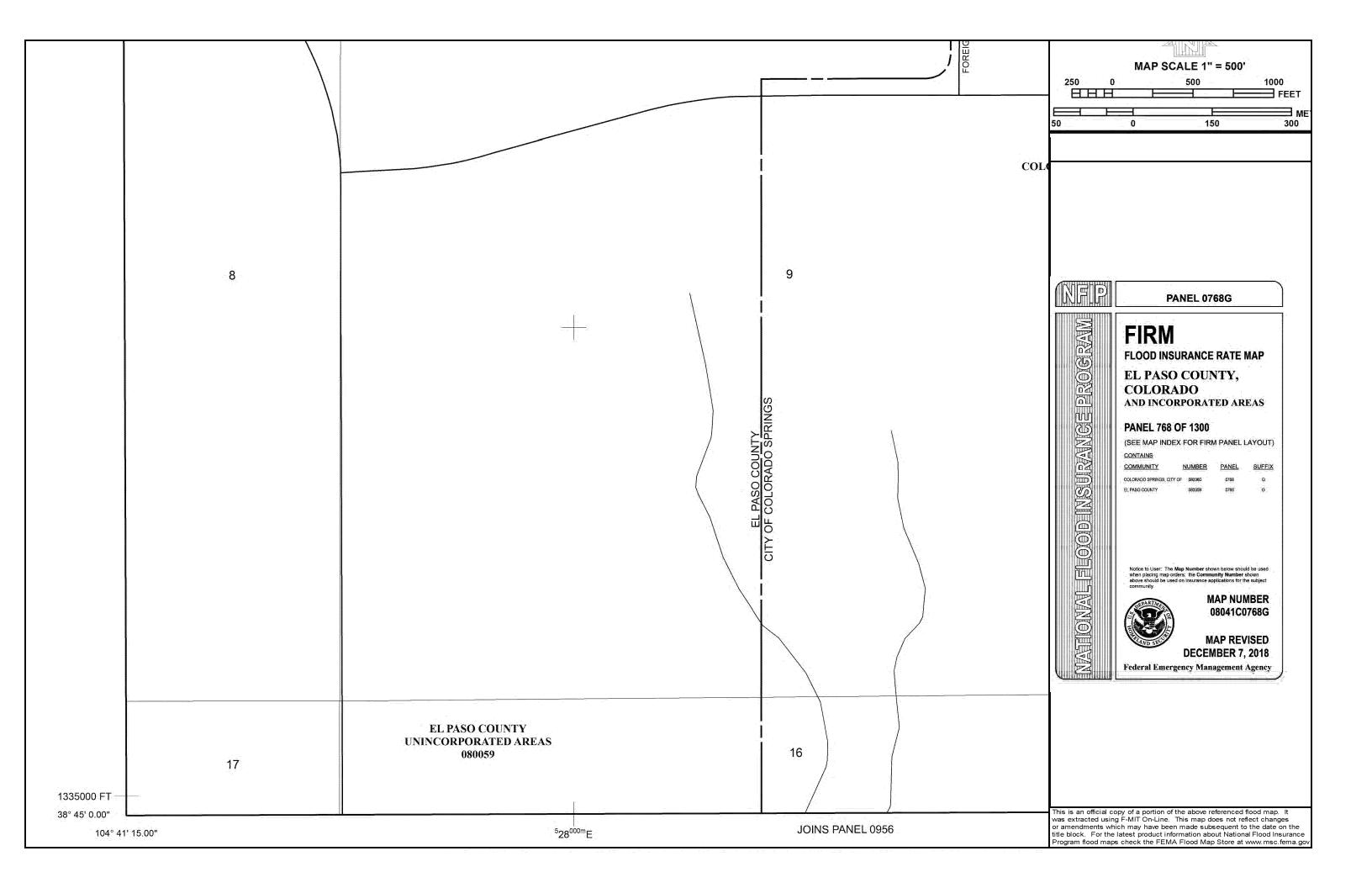
area of the basin within the City of Colorado Springs lies within the Colorado Centre development and the Banning-Lewis Ranch Flood Conservancy District (District). It is the intent of the City of Colorado Springs that the District will be responsible for all drainage, detention and bridge improvement construction and maintenance. Prior to any development within the City, specific agreements will have to be finalized between the City and the District. The drainage and bridge fees calculated for the County areas have been determined in accordance with Resolution No. 99-383. The percent impervious values listed on Exhibit 3 of this resolution where applied when calculating the weighted percent impervious value for the sub-basins within the County.

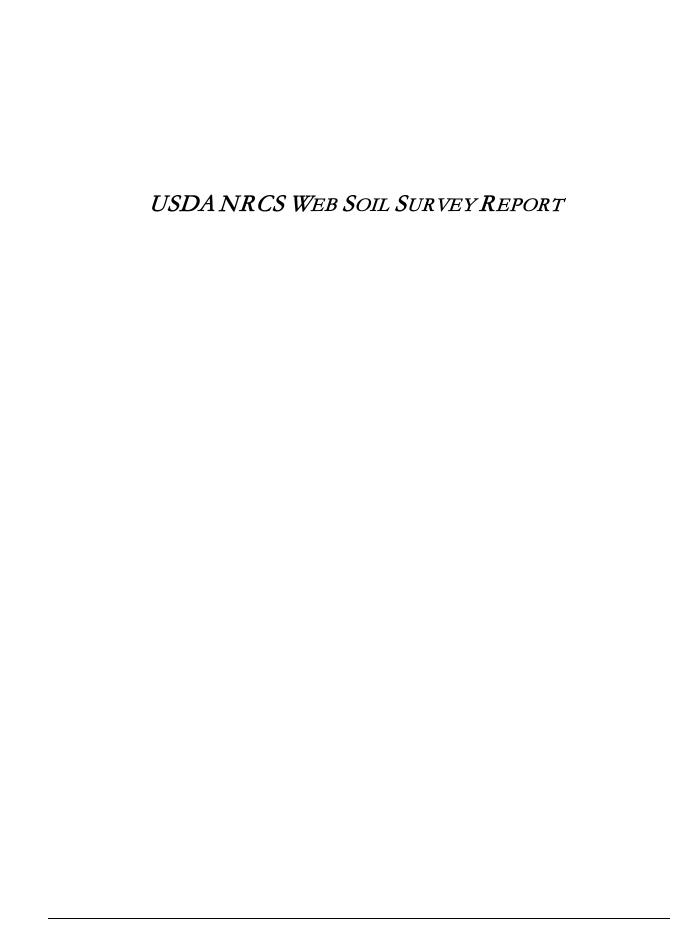
WEST FORK JIMMY CAMP CREEK

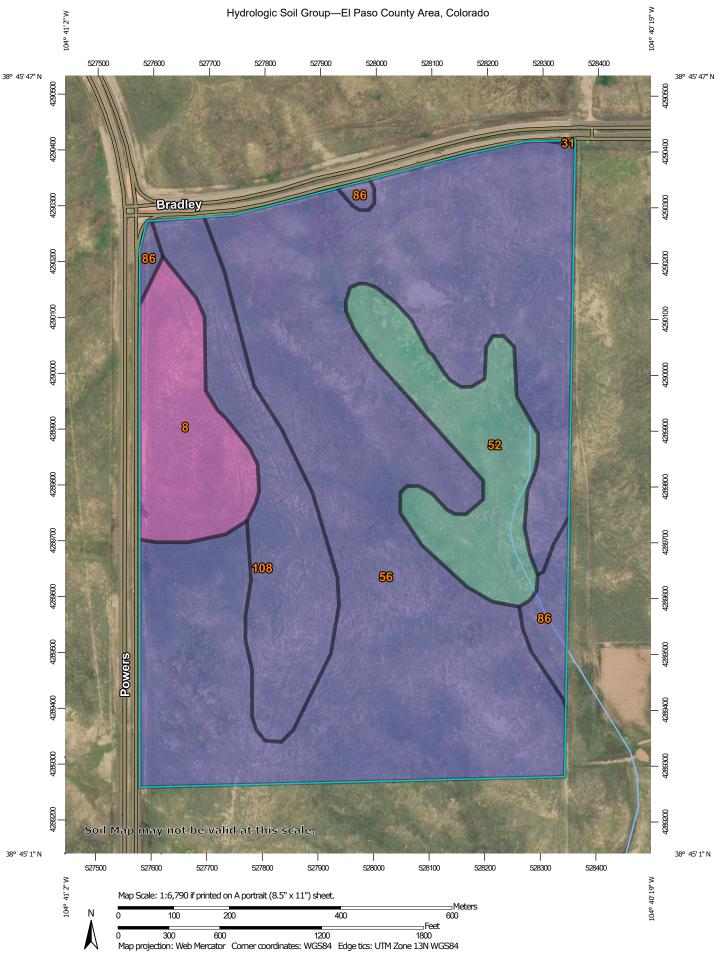
DRAINAGE BASIN PLANNING STUDY

PRELIMINARY PLAN


EL PASO COUNTY, COLORADO


(719)


Klowa Engineering Corporation 1604 South 21st Street Colorado Springs, Colorado 80904 (719) 630-7342


Project No.: 9893
Date: 2/00
Design: RNW
Drawn: CAD
Check: RNW
Revisions:

6

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Soils Warning: Soil Map may not be valid at this scale. D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil **Water Features** line placement. The maps do not show the small areas of A/D Streams and Canals contrasting soils that could have been shown at a more detailed В Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map measurements. Interstate Highways C/D Source of Map: Natural Resources Conservation Service **US Routes** Web Soil Survey URL: D Major Roads Coordinate System: Web Mercator (EPSG:3857) Not rated or not available -Local Roads Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Soil Rating Lines Background distance and area. A projection that preserves area, such as the Aerial Photography Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. B/D Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 16, Sep 10, 2018 Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Not rated or not available Date(s) aerial images were photographed: Apr 12. 2017—Nov 17. 2017 **Soil Rating Points** The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background A/D imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI				
8	Blakeland loamy sand, 1 to 9 percent slopes	А	17.8	8.6%				
31	Fort Collins loam, 3 to 8 percent slopes	В	0.0	0.0%				
52	Manzanst clay loam, 0 to 3 percent slopes	С	21.0	10.2%				
56	Nelson-Tassel fine sandy loams, 3 to 18 percent slopes	В	137.7	66.8%				
86	Stoneham sandy loam, 3 to 8 percent slopes	В	5.3	2.6%				
108	Wiley silt loam, 3 to 9 percent slopes	В	24.3	11.8%				
Totals for Area of Inter	Totals for Area of Interest			100.0%				

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

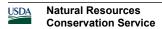
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.


If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

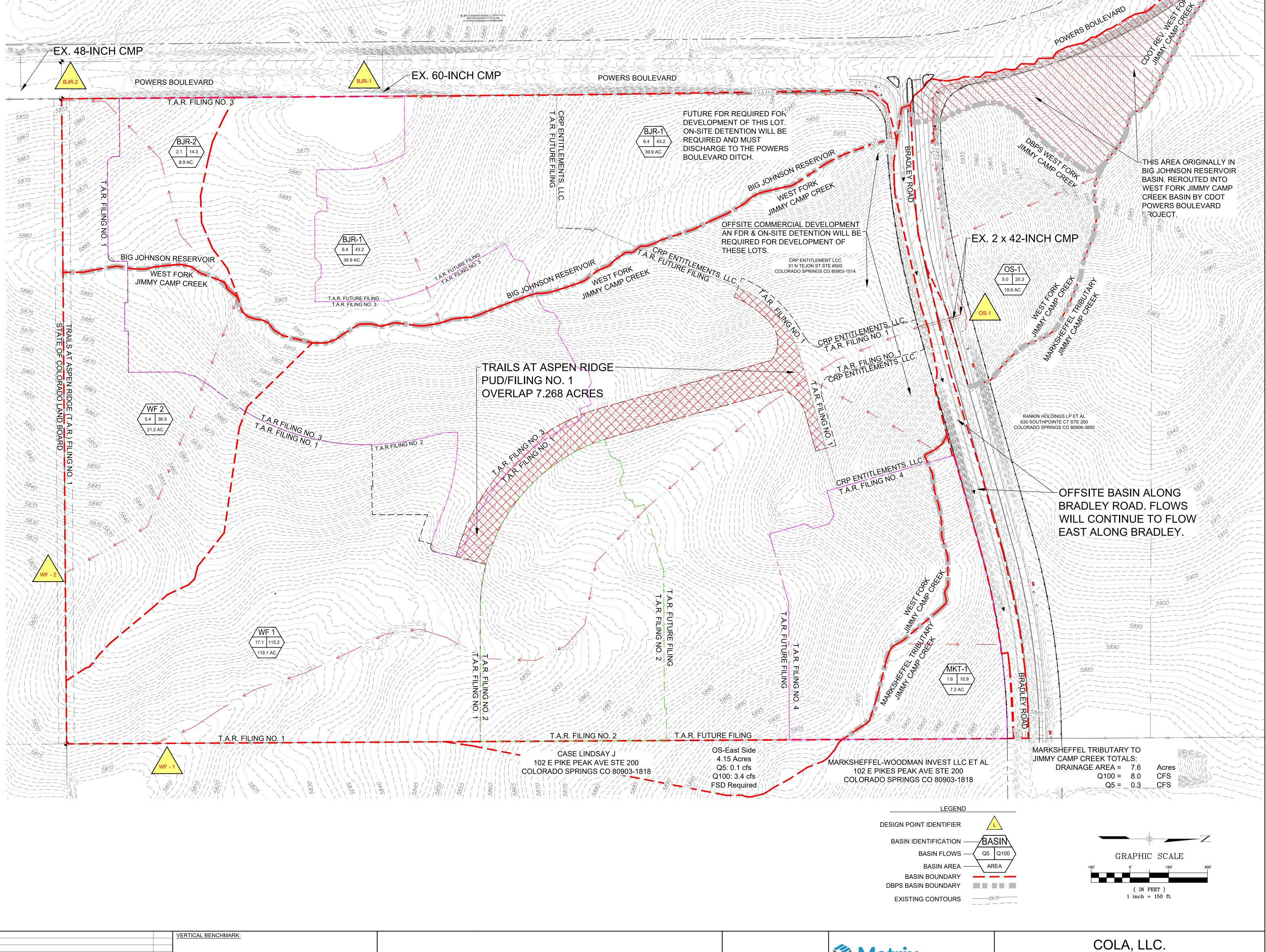
Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified

Tie-break Rule: Higher

<u>APPENDIXD</u>

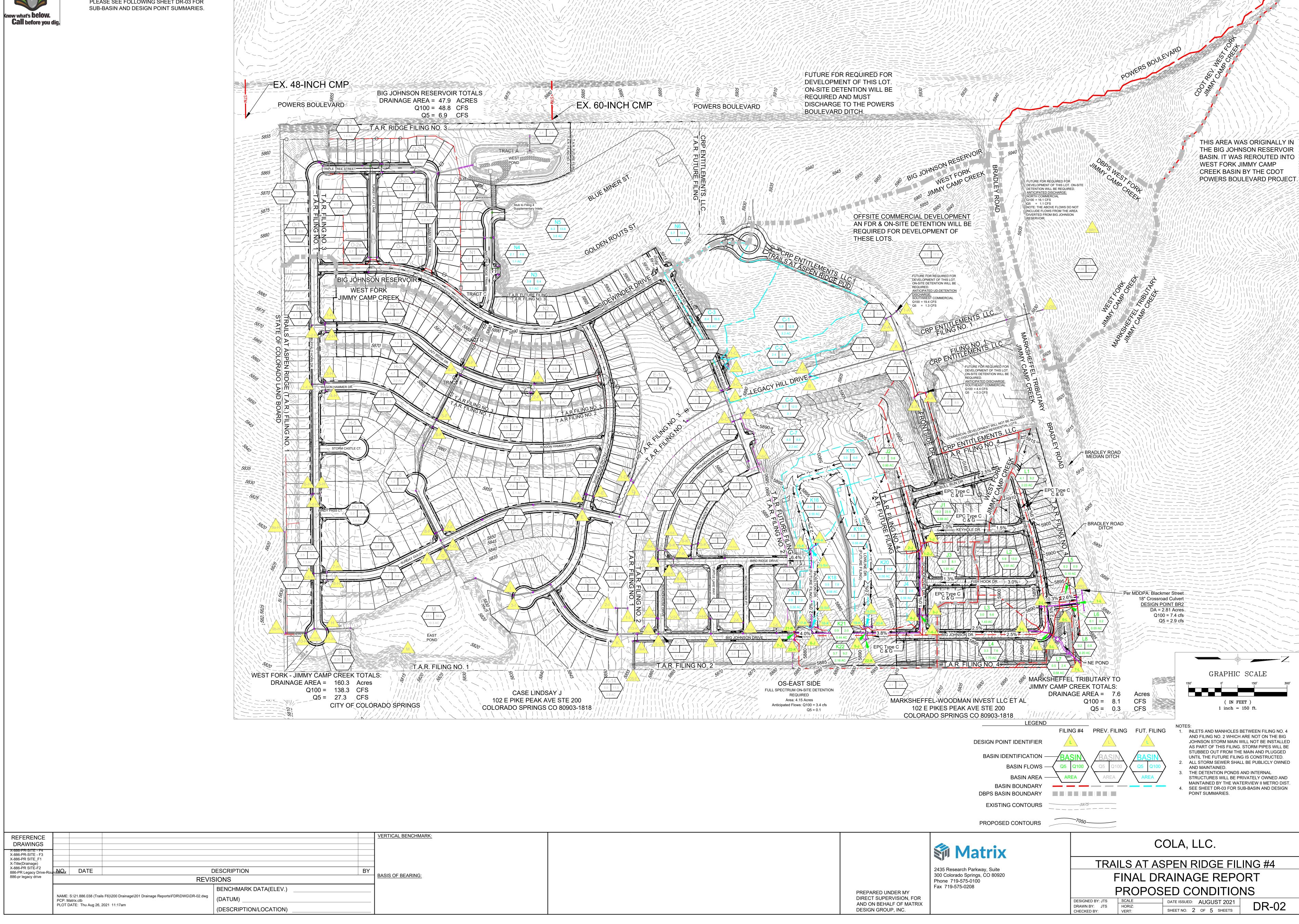
MAPS



Trails at Aspen Ridge Vicinity Map

Trails at Aspen Ridge Final Drainage Report Existing Design Point Summary						
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)		
BJR-1	BJR-1	39.94	6.43	43.22		
BJR-2	BJR-2	8.85	2.13	14.32		
TO BIG JOHNSON RESERVOIR	BJR-1 & BJR-2 (Basins are parallel so this is a sum of BJR-1 & BJR-2.)	48.79	8.56	57.54		
OS-1	OS-1 (Note: 7.3 Acres diverted by CDOT from Big Johnson)		4.79	24.15		
WF-1	WF-1 & OS-1	138.69	16.90	108.09		
WF-2	WF-2	21.15	5.43	36.51		
TO WEST FORK JIMMY CAMP CREEK	WF-1, WF-2, & OS-1 (Basins are parallel so this is a sum of WF-1 & WF-2.)	159.84	37.00	170.00		
MARKSHEFFEL TRIBUTARY TO JIMMY CAMP CREEK MKT-1	MKT-1	7.21	1.63	10.95		

Trails at Aspen Ridge Final Drainage Report Existing Conditions Basin Summary Table						
Area ID	Area (Acres)	Q5 (cfs)	Q100 (cfs)			
Big Johnson Reservoir / BJR-1	39.94	6.43	43.22			
Big Johnson Reservoir / BJR-2	8.85	2.13	14.32			
West Fork Jimmy Camp Creek / OS - 1	19.60	4.79	24.15			
West Fork Jimmy Camp Creek / WF-1	119.08	17.15	115.23			
West Fork Jimmy Camp Creek / WF-2	21.15	5.43	36.51			
Marksheffel Tributary to Jimmy Camp Creek / MKT-1	7.21	1.63	10.95			

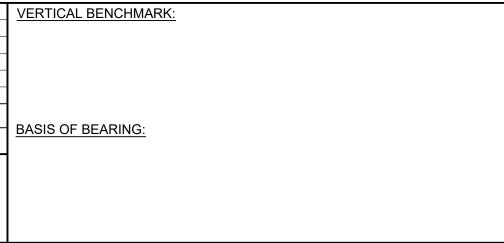


REFERENCE **DRAWINGS Matrix** X-886-PR SITE F1 X-886-PR SITE 10415-Storm Base-201 886-PR Legacy Drive 2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 Phone 719-575-0100 Fax 719-575-0208 X-886-EX SURVEY DATE DESCRIPTION X-Title(Drainage) BASIS OF BEARING: **REVISIONS** BENCHMARK DATA(ELEV.) PREPARED UNDER MY NAME: S:\21.886.038 (Trails F6)\200 Drainage\201 Drainage Reports\FDR\DWG\DR01-TAR FDR F4 (F6) dwg (DATUM) DIRECT SUPERVISION, FOR DESIGNED BY: JTS SCALE
DRAWN BY: JTS HORIZ:
CHECKED BY: VERT: PCP: Matrix.ctb PLOT DATE: Fri Aug 06, 2021 12:53pm AND ON BEHALF OF MATRIX (DESCRIPTION/LOCATION) DESIGN GROUP, INC.

TRAILS AT ASPEN RIDGE FINAL DRAINAGE REPORT

PRE-DEVELOPMENT CONDITIONS DATE ISSUED: AUGUST 2021

SHEET NO. 1 OF 5 SHEETS



Design Point Routing Trails at Aspen Ridge Filing No. 2 StormCAD						
	Total		face	Storm	Sewer	Darragetra
Design Point	Drainage		Q100		Q100	Downstream Design Point
1-OS	Area 19.67	4.0	26.8			
1-O3	12.34	3.5	17.6	-	-	A A
2-A	1.09	2.7	5.2	-	-	A
3-A 4-A	4.98 0.12	0.6	8.9	-	-	A A
A	38.20	-	-	12.0	55.6	В
1-B B	1.06 39.26	1.8	4.1	12.7	57.1	B C
1-C	39.20	5.9	12.9	12./	-	C
2-C	1.19	2.4	5.3	-	-	С
3-C 4-C	4.60 0.36	8.4	18.5	-	_	C
5-C	3.13	5.7	12.5	-	-	C
6-C	0.07	0.3	0.6	_	_	С
7+8-C C	2.26 54.14	4.2	9.2	27.6	90.2	C D
1-D	2.21	1.6	5.2	-	-	D
D 1-E	56.34 6.43	2.6	0.0	28.1	92.1	E E
2-E	2.14	3.9	8.7		_	E
E	64.91	-	-	33.7	108.8	F
1-F 2-F	2.07 0.58	2.7	2.5	2.7	3.6	3-F 3-F
3-F	3.32	2.3	5.0	3.8	8.4	4-F
4-F 5-F	3.89	1.1	2.5	5.0	11.1	5-F 6-F
6-F	6.16 7.16	3.5	7.8	6.6 7.9	14.6 17.5	8-F
7-F	5.06	7.5	16.5	7.5	16.5	8-F
8-F F	13.07 77.98	1.5	3.3	16.2 43.5	35.8 131.0	F G
1-G	1.11	2.1	4.6	-	-	G
G	79.09	-	-	44.2	132.7	M
1-H 2-H	3.60 1.16	5.9	13.1	-	-	1-2 H 1-2 H
1-2 H	4.76	-	-	9.0	19.8	1-4 H
3-H	2.97	4.7	10.3	_	-	1-4 H
4-H 1-4 H	0.92 8.65	1.6	3.6	16.4	36.1	1-4 H 1-6 H
5-H	2.42	4.0	8.9	-	-	1-6 H
6-H 1-6 H	2.46 13.53	3.9	8.6	20.2	44.9	1-6 H 1-8 H
7-H	2.03	2.9	6.4	-	-	1-8 H
8-H 1-8 H	0.97	1.7	3.7	-	- 40.2	1-8 H 1-10 H
9-H	16.52 2.32	3.3	8.0	23.3	49.3	1-10 H 1-10 H
10-H	1.33	2.4	5.2	2.8	6.5	1-10 H
10-H 1-10 H	1.33 21.50	2.4	5.2	29.6	66.5	1-10 H 11-H
11-H	3.42	5.0	11.0	-	-	Н
<u>H</u> 1-J	24.92 5.89	10.2	23.5	37.4	83.0	M 1-2-J
2-J	0.90	1.7	3.8	-	-	1-2-J
1-2-J 3-J	6.79 1.81	2 7	0 1	5.6	13.6	1-4-J 1-4-J
4-J	0.56	3.7	8.1	-	-	1-4-J 1-4-J
1-4-J	9.16			14.8	36.0	5-J
15-K 16-K	1.65 1.20	3.0	5.4	-	-	15-16-K 15-16-K
15-16-K	2.85		011	4.1	9.6	15-18-K
17-K 18-K	0.41 1.90	0.9	1.9 7.8	-	-	15-18-K 15-18-K
15-18-K	5.17	3.3	7.0	8.2	- 19.1	6-J
19-K	0.93	1.8	4.0	-	-	19-20-K
20-K 19-20-K	2.78 3.71	5.4	11.8	6.7	15.6	19-20-K 5-J
21-K	0.44	0.9	2.0	-	-	7-J
22-K 5-J	2.18 12.87	3.7	9.2	23.8	58.6	7-J 6-J
6-J	18.04	-	_	30.2	72.6	7-J
7-J	20.66	-	-	30.8	73.9	OS-2-K
1-K 2-K	0.78 1.58	0.8	2.3 5.9	-	-	OS-2-K OS-2-K
OS-2-K	23.02	-	-	33.3	81.2	OS-12-K
3+4-K OS-4-K	1.23 24.25	2.9	6.3	35.2	- 85.4	3-4-K OS-12-K
5-K	0.95	2.0	4.4	35.2	- 85.4	08-12-K 6-K
6-K	0.72	1.5	3.3	3.4	7.6	5-8-K
7-K 8-K	3.26 0.15	0.5	7.9	-	-	5-8-K 5-8-K
5-8-K	5.08	-	-	5.2	12.0	5-10-K
9-K 10-K	1.16 1.10	2.1	4.7	_	-	9-10-K 9-10-K
9-10-K	2.26	-	4.7	4.0	8.8	5-10-K 5-10-K
5-10-K	7.34	-	-	7.8	18.0	5-12-K
11-K 12-K	1.39 0.67	2.6	5.8		_	5-12-K 5-12-K
5-12-K	9.40	-	-	10.3	23.6	OS-12-K
OS-12-K 13-K	33.65	- 0.2	-	36.9	89.9	OS-14-K OS-14-K
OS-E	0.09 4.15	3.1	0.6	-	_	14-K
14-K	2.78	5.0	11.0	5.1	11.0	OS-14-K
OS-14-K K	36.52 40.23	_	_	43.6	100.9	3-I
		-	100	TU.U	110.0	
1-I	3.13	6.9	12.3	_	_	K
2-I 3-I	0.59 4.18	2.3 9.3	4.1	8.7	15.5	K M
I I	44.42	-	-	52.0	120.3	M
M	158.79		_	154.5	383.7	East Pond Discharge
East Pond Discharge	450 50					
(Filing 1-4 Buildout)	158.79	-	_	6.7	120.0	Existing Swale

		Filing No	. 6
	ed Cond asin Sum		
Basin	Area	Q5	Q100
	acres	cfs	cfs
WEST FORK JI	IMMY C	AMP CRE	EEK
J1	5.89	10.2	23.5
J2	0.90	1.7	3.8
J3	1.81	3.7	8.1
J4	0.56	1.2	2.6
K15	1.65	3.0	6.6
K16	1.20	2.4	5.4
K17	0.41	0.9	1.9
K18	1.90	3.5	7.8
K19	0.93	1.8	4.0
K20	2.78	5.4	11.8
K21	0.44	0.9	2.0
K22	2.18	3.7	9.2
SUB-BAS TRAILS AT ASPEI (INTERI MARKSHEF TO JIMMY	N RIDG NAL PH FFEL TR	E FILINC ASE 6) IBUTAR	
Basin	Area	Q5	Q100
	acres	cfs	cfs
L1	2.23	4.1	9.2
L2	2.91	5.9	13.0
T 2	1.43	3.0	6.6
L3		_	
L3 L4	1.70	3.3	7.6
	1.70 0.10	3.3 0.2	7.6
L4			
L4 L5	0.10	0.2	0.5

TRAILS A	PROPOSED DESIGN POINT SUMMARY I ASPEN RIDGE FILING NO. 4 (INTERNAL)	PHASE 6)		
Design Point	Sub-Basins	Total Area (ac.)	Q(5) (cfs)	Q(100) (cfs)
	Marksheffel Tributary to Jimmy Camp Creek	l		1
SUB-BASIN L5	SUB-BASIN L5	0.10	0.23	0.50
SUB-BASIN L6	SUB-BASIN L6	0.05	0.11	0.24
1-L	SUB-BASINS L5 & L6	0.15	0.34	0.74
SUB-BASIN L2	SUB-BASIN L2	2.91	5.90	12.99
2-L	SUB-BASINS L2, L5 & L6	3.06	6.19	13.64
3-L	SUB-BASIN L3	1.43	2.98	6.57
4-L	SUB-BASINS L2, L3, L5 & L6	4.49	9.08	20.01
5-L	SUB-BASINS L1-L6	8.42	15.64	34.94
6-L	NE POND (SUB-BASINS L1-L7)	9.09	15.53	35.92
7-L	NE POND DISCHARGE	9.09	0.20	7.90
8-L	SITE DISCHARGE	9.30	0.39	8.77
	West Fork Tributary to Jimmy Camp Creek			•
1-J	SUB-BASIN J1	5.89	10.21	23.54
2-J	SUB-BASIN J2	0.90	1.72	3.78
1-2-J	SUB-BASINS J1 & J2	6.79	11.87	27.20
3-J	SUB-BASIN J3	1.81	3.68	8.10
4-J	SUB-BASIN J4	0.56	1.16	2.55
1-4-J	SUB-BASINS J1 TO J4	9.16	14.63	33.18
15-K	SUB-BASIN K15	1.65	2.99	6.59
16-K	SUB-BASIN K16	1.20	2.44	5.37
15-16-K	SUB-BASINS K15 & K16	2.85	5.79	12.76
17-K	SUB-BASIN K17	0.41	0.87	1.91
18-K	SUB-BASIN K18	1.90	3.54	7.80
15-18-K	SUB-BASINS K15 & K18	5.17	10.49	23.11
19-K	SUB-BASIN K19	0.93	1.82	4.02
20-K	SUB-BASIN K20	2.78	5.35	11.79
19-20-K	SUB-BASINS K19 & K20	3.71	7.15	15.74
21-K	SUB-BASIN K21	0.44	0.93	2.04
22-K	SUB-BASIN K22	2.18	3.67	9.23
5-J	SUB-BASINS J1-J4, K19 & K20	12.87	21.48	48.30
6-J	SUB-BASINS J1-J4 & K15-K20	18.04	26.65	59.57
7-J	SUB-BASINS J1-J4 & K15-K22	20.66	30.05	67.92
				1

REFERENCE						VERTIC
DRAWINGS						
X-886-PR-SITE - F6 X-886-PR-SITE - F3						
X-886-PR SITE_F1 X-Title(Drainage)						_
X-886-PR SITE-F2 886-PR Legacy Drive-Rou	ndabOut	DATE		DESCRIPTION	BY	BASIS C
886-pr legacy drive			REVI	SIONS		BASIS C
				BENCHMARK DATA(ELEV.)		
	PCP: Ma	atrix.ctb	s F6)\200 Drainage\201 Drainage Reports\FDR\DWG\DR-02.dwg	(DATUM)		
	PLOT D	ATE: Fri Aug 06, 20	021 12:37pm	(DESCRIPTION/LOCATION)		

COLA, LLC.	
AT ASPEN RIDGE FIL	
	_

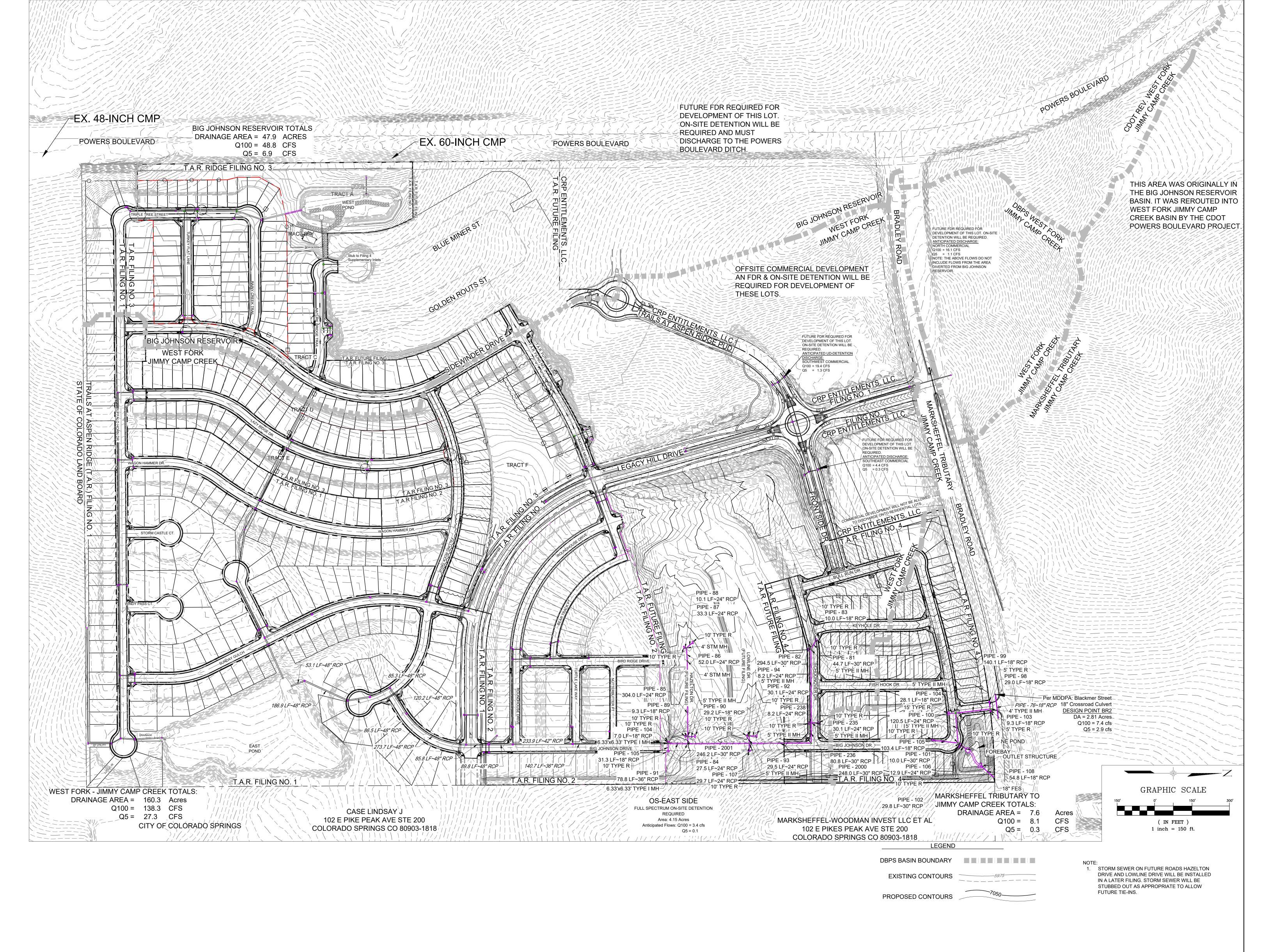
TRAILS AT ASPEN RIDGE FILING #4

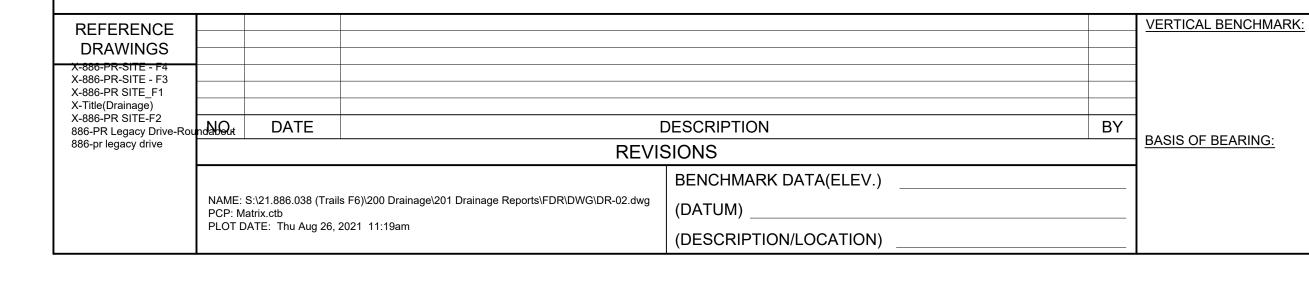
FINAL DRAINAGE REPORT
SUB-BASIN & DESIGN POINT SUMMARY

DESIGNED BY: JTS
DRAWN BY: JTS
CHECKED BY:

DESIGNED BY: JTS
CHECKED BY:

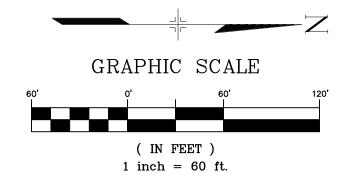
SCALE
HORIZ:
VERT:


DATE ISSUED: AUGUST 2021
SHEET NO. 3 OF 5 SHEETS


DR-03

PIPE SUMMARY TABLE						
PIPE NAME	PIPE DESCRIPTION	PIPE SLOPE	PIPE LENGTH	CHORD LENGTH		
PIPE - 81	30" RCP	1.00%	44.70	44.70		
PIPE - 82	30" RCP	1.00%	294.47	294.47		
PIPE - 83	18" RCP	0.98%	9.99	9.99		
PIPE - 84	24" RCP	2.00%	27.54	27.54		
PIPE - 85	24" RCP	1.67%	303.98	303.98		
PIPE - 86	24" RCP	2.00%	52.01	52.01		
PIPE - 87	24" RCP	1.00%	33.27	33.27		
PIPE - 88	24" RCP	0.99%	10.05	10.05		
PIPE - 89	18" RCP	4.99%	9.26	9.26		
PIPE - 90	18" RCP	4.97%	29.17	29.17		
PIPE - 91	36" RCP	2.83%	78.84	78.84		
PIPE - 92	24" RCP	1.00%	30.14	30.14		
PIPE - 93	24" RCP	1.88%	29.46	29.46		
PIPE - 94	24" RCP	1.06%	8.17	8.17		
PIPE - 104	18" RCP	2.00%	7.01	7.01		
PIPE - 105	18" RCP	0.99%	31.32	31.32		
PIPE - 107	24" RCP	0.97%	29.72	29.72		
PIPE - 235	24" RCP	4.08%	30.14	30.14		
PIPE - 236	30" RCP	1.00%	80.81	80.81		
PIPE - 238	24" RCP	3.71%	8.20	8.20		
PIPE - 2000	30" RCP	3.21%	248.03	248.03		
PIPE - 2001	30" RCP	3.90%	246.18	246.18		

	DIDE		ADIE				
PIPE SUMMARY TABLE							
PIPE NAME	PIPE DESCRIPTION	PIPE SLOPE	PIPE LENGTH	CHORD LENGTH			
PIPE - 98	18" RCP	0.50%	29.04	29.04			
PIPE - 99	18" RCP	0.50%	140.10	140.10			
PIPE - 100	24" RCP	0.66%	120.47	120.47			
PIPE - 101	30" RCP	0.50%	10.03	10.03			
PIPE - 102	30" RCP	3.44%	29.75	29.75			
PIPE - 103	18" RCP	0.49%	9.31	9.31			
PIPE - 104	18" RCP	3.91%	28.13	28.13			
PIPE - 105	18" RCP	0.50%	103.39	103.39			
PIPE - 106	24" RCP	5.78%	12.85	12.85			
PIPE - 108	18" RCP	0.49%	54.77	54.77			


Matrix 2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 Phone 719-575-0100 Fax 719-575-0208 PREPARED UNDER MY DIRECT SUPERVISION, FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC.

COLA, LLC. TRAILS AT ASPEN RIDGE FILING #4 FINAL DRAINAGE REPORT STORM SEWER MAP & SUMMARY DESIGNED BY: JTS SCALE
DRAWN BY: JTS HORIZ:
CHECKED BY: VERT:

SHEET NO. 4 OF 5 SHEETS

PLEASE SEE SHEET DR-03 FOR SUB-BASIN AND DESIGN POINT SUMMARIES.

BASINS DRAINING TOWARDS NORTHEAST POND

BASINS DRAINING TOWARDS

REFERENCE

DRAWINGS

886-PR Legacy Drive-Roundabout DATE 886-pr legacy drive

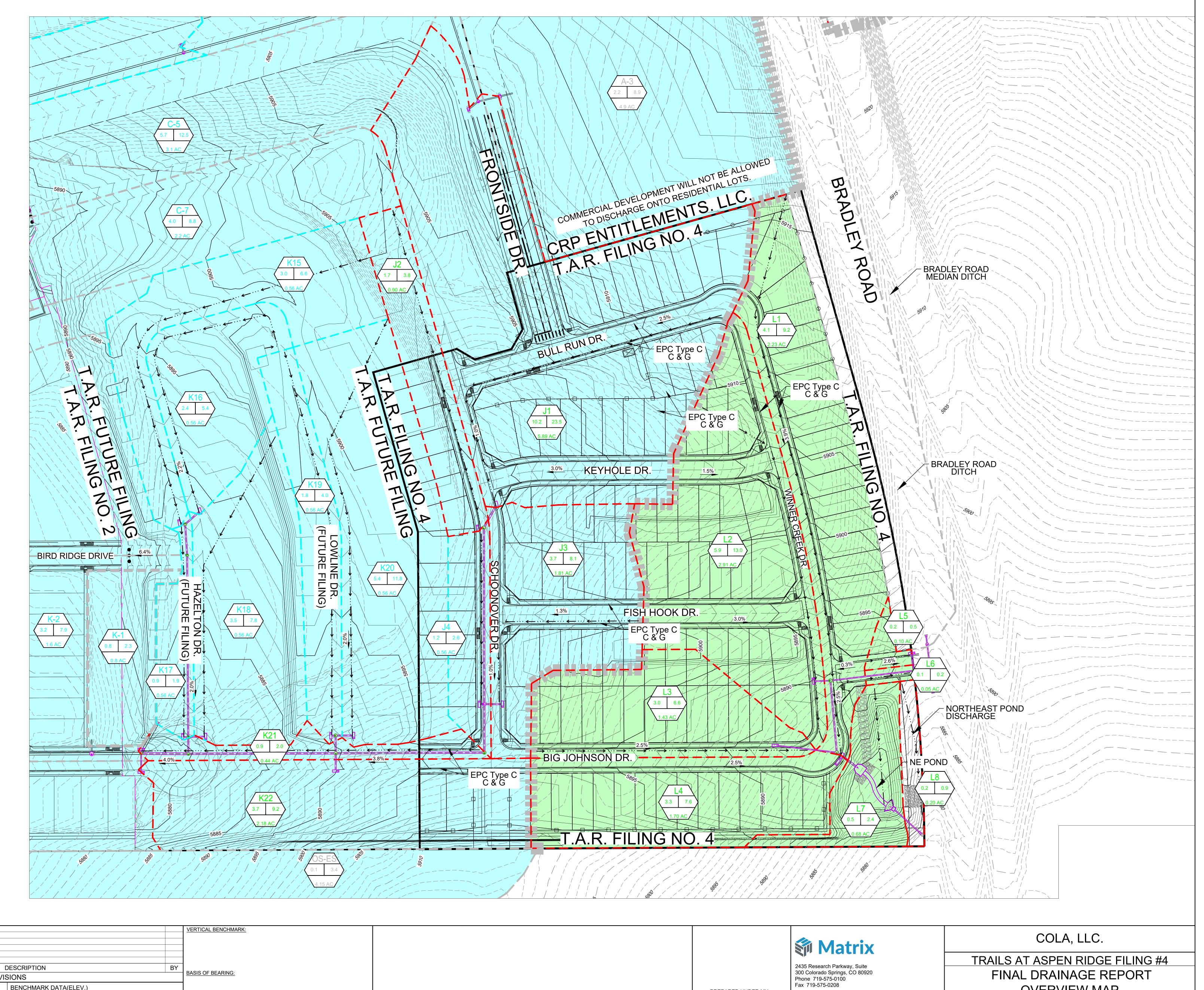
REVISIONS

PCP: Matrix.ctb PLOT DATE: Thu Aug 26, 2021 11:24am

BENCHMARK DATA(ELEV.)

(DESCRIPTION/LOCATION)

BASIS OF BEARING:


X-886-PR-SITE - F3 X-886-PR SITE_F1

X-Title(Drainage)

BASIN IDENTIFICATION

PROPOSED CONTOURS

- 1. INLETS AND MANHOLES BETWEEN FILING NO. 4 AND FILING NO. 2 WHICH ARE NOT ON THE BIG
- 3. THE DETENTION PONDS AND INTERNAL
- MAINTAINED BY THE WATERVIEW II METRO DIST.
 4. SEE SHEET DR-03 FOR SUB-BASIN AND DESIGN

PREPARED UNDER MY DIRECT SUPERVISION, FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC.

FINAL DRAINAGE REPORT

OVERVIEW MAP

DATE ISSUED: AUGUST 2021
SHEET NO. 5 OF 5 SHEETS

DR-05