# FINAL DRAINAGE REPORT

For

# TRAILS AT ASPEN RIDGE Filing No. 4

Prepared for: EL PASO COUNTY Engineering Development Review Team 2880 International Circle Colorado Springs, CO 80910

On Behalf of: **COLA, LLC.** 555 Middle Creek Parkway, Suite 380 Colorado Springs, CO 80921



Matrix Design Group 2435 Research Parkway, Suite 300 Colorado Springs, CO 80920 (719) 575-0100 fax (719) 572-02f08

August 2021

Project No. 21.886.038

PCD File No. SF-21-024

#### **Engineer's Statement:**

This report and plan for the drainage design of Trails at Aspen Ridge Filing No. 4 was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the El Paso County Drainage Criteria Manual and is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Jesse Sullivan Registered Professional Engineer State of Colorado No. 55600 Date

SEAL

#### **Developer's Statement:**

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

COLA, LLC

Business Name

By:

Tim Buschar

Date

Title: Director of Land Acquisition and Development

Address: 555 Middle Creek Parkway, Suite 380 Colorado Springs, CO 80921

#### El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Criteria Manual, as amended.

Jennifer Irvine, P.E. County Engineer / ECM Administrator Date

Conditions:

## TABLE OF CONTENTS

| I. ] | INTRODUCTION                                      | 1  |
|------|---------------------------------------------------|----|
| II.  | PURPOSE AND SCOPE OF STUDY                        | 2  |
| III. | GENERAL LOCATION AND DESCRIPTION                  | 2  |
| IV.  | SOIL CONDITIONS                                   | 4  |
| V.   | PROJECT CHARACTERISTICS                           | 4  |
| VI.  | DRAINAGE DESIGN CRITERIA                          | 5  |
| VII. | DRAINAGE BASINS AND SUB-BASINS                    | 7  |
| VIII | DRAINAGE FACILITY DESIGN                          | 23 |
| IX.  | ENVIRONMENTAL EVALUATIONS                         |    |
| Х.   | EROSION CONTROL PLAN                              | 31 |
| XI.  | DRAINAGE FEES                                     | 31 |
| XII. | CONSTRUCTION COST OPINION                         | 32 |
| XIII | . SUMMARY                                         | 33 |
| XIV  | . REFERENCES                                      | 33 |
| XV.  | APPENDICES                                        | 34 |
|      | ENDIX<br>A. Hydrologic and Hydraulic Calculations |    |
|      | B. Standard Design Charts and Tables              |    |
|      | C. Report References                              |    |
|      | D. Maps                                           |    |

# I. Introduction

The Trails at Aspen Ridge Filing No. 4 development is within the Waterview East (Waterview II) Subdivision, which is within El Paso County jurisdiction and is comprised of a total of 17.903 acres of single-family residential, open space, and public right-of-way. The site is located within the 721.8-acre Waterview Development in the 419.8-acre portion of the development east of Powers. The Trails at Aspen Ridge development was referred to as Waterview East or Waterview II in the original Waterview Master Development Drainage Study (MDDP).



Figure 1 - Project Location

# II. PURPOSE AND SCOPE OF STUDY

The purpose of this Final Drainage Report (FDR) is to identify and evaluate the offsite and onsite drainage patterns associated with Filing No. 4 of the Trails at Aspen Ridge development (17.903 acres) and to provide hydrologic and hydraulic analyses of this area to ensure compliance with the El Paso County Drainage Criteria Manual (DCM) and the most recent MDDP Amendment, as well as provide effective, safe routing to downstream outfalls.

# **III. GENERAL LOCATION AND DESCRIPTION**

Trails at Aspen Ridge Filing No. 4 is within the Waterview subdivision, which extends from Grinnell Road on the west to approximately one-half mile east of the north-south portion of Powers Boulevard. The west portion of the subdivision (Waterview I) is bounded on the north by an east-west portion of Powers Boulevard and on the south by Bradley Road. The east portion of the subdivision (Waterview East/Waterview II) is bounded on the north by the Colorado Springs Airport and on the south, approximately 3,260 feet south of the Bradley and Powers intersection by property owned by the State of Colorado. The subject of this report, Trails at Aspen Ridge Filing No. 4, is in the Waterview East portion of the overall Waterview Subdivision and located southeast of the intersection of Powers Boulevard and Bradley Road. More specifically, the study area is located as follows:

**A.** <u>General Location</u>: The southwest <sup>1</sup>/<sub>4</sub> and the northwest <sup>1</sup>/<sub>4</sub> of Section 9, Township 15 South, Range 65 West of the 6<sup>th</sup> P.M. in the County of El Paso, State of Colorado.

## B. Surrounding Streets and Developments:

- a. North: Bradley Road.
- b. <u>East:</u> Several undeveloped properties. See DR-02 for location and ownership
- c. <u>South:</u> Trails at Aspen Ridge PUDSP, Filing No. 1, and Filing No. 2
- **d.** <u>West:</u> Legacy Hill Drive, commercially zoned property owned at time of report writing by CRP Entitlements, LLC, and portions of Trails at Aspen Ridge PUDSP
- **C.** <u>Drainageway:</u> This site is located within the West Fork Jimmy Camp Creek Drainage Basin and the Marksheffel Tributary to Jimmy Camp Creek basins.
  - a. <u>West Fork Jimmy Camp Creek</u>: There appears to be a broad swale running along the west edge of the project area. Flows are conveyed in a southeasterly direction. Total area of basin considered in this report for the East Pond is approximately 165.2 acres. This includes approximately 52.5 acres in Trails at Aspen Ridge Filing No. 1, 77.3 acres of the Trails at Aspen Ridge PUDSP (Including the 15.730 Acres in Trails at Aspen Ridge Filing No. 2 and 17.903 acres of Filing No. 4), and 35.1 acres of offsite areas.
  - **b.** <u>Marksheffel Tributary Jimmy Camp Creek:</u> A small portion in the northeast corner of the overall Trails at Aspen Ridge site is within the Marksheffel Tributary sub-basin of the Jimmy Camp Creek Drainage Basin. The total basin area considered in this report is 14.35 acres. Approximately 4.6 acres along Bradley Road are outside of Trails at Aspen Ridge and

the other 9.75 acres are within the proposed development. Note that because of the details of site grading, the area differs somewhat from the 12.2 acres indicated in PDRA-Matrix, however, detention will be designed to over detain and maintain the same level of flows. Also, both basins are within the Jimmy Camp Creek basin and thus the flows remain within the same general stream.

#### **D.** Irrigation Facilities

No known functioning irrigation facilities are within the project area.

#### E. Utilities and Encumbrances

- a) Storm Sewer: A 36" storm sewer is extended out of a bend on the main Filing No. 2 storm sewer to drain an existing low spot just north of Legacy Hill Drive in Trails at Aspen Ridge Filing No. 2. (This storm sewer will be extended across the portion of the PUDSP area not in Filing 6 in order to provide storm sewer to the portion of Filing 6 which is within the West Fork Jimmy Camp Creek basin.
- **b)** Sanitary Sewer: Sanitary sewer associated with Trails at Aspen Ridge Filing No. 1 has been stubbed out along Frontside Drive at the west boundary of this development. Sanitary sewer will also be extended up to the development from Filing No. 2 along Big Johnson Drive.
- c) Gas: There is an existing petroleum line running just inside the Powers Boulevard easement west of the proposed development. No known gas encumbrances on the project site.
- **d)** Water: A 12-inch water main associated with Trails at Aspen Ridge Filing No. 1 has been stubbed out along Frontside Drive at the west boundary of this development.
- e) Electric: There is an existing overhead electric easement parallel to the east side of this development with two sets of overhead lines.

### F. Referenced Drainage Reports

This site is within the Waterview II or Waterview East portion of the Waterview Subdivision. This study looks at Trails at Aspen Ridge Filing No. 2, which takes up the south 15.730 acres of the Waterview East Subdivision. The three reports below were used as references for this report.

"Amendment to Waterview Master Drainage Development Plan", completed by Springs Engineering, dated July 2014 (MDDP-2014)

**"MDDP for Waterview East and PDR for Trails at Aspen Ridge",** completed by Matrix Design Group, Dated September 2019. (MDDPA-Matrix) Note: This report supersedes a previously approved PDR "Springs East at Waterview" by Stantec (SP-17-010).

"Final Drainage Report for Trails at Aspen Ridge Filing No. 1", completed by Matrix Design Group, Dated January 2020. (FDR-F1)

"Final Drainage Report for Trails at Aspen Ridge Filing No. 2", completed by Matrix Design Group, Dated February 2021. (FDR-F2) (in review)

"Final Drainage Report for Trails at Aspen Ridge Filing No. 3", completed by Matrix Design Group, Dated March 2021. (FDR-F3) (in review)

"PDR Amendment for Trails at Aspen Ridge", completed by Matrix Design Group, Dated April 2021. (PDRA-Matrix).

## G. Land Uses

Land uses for the proposed development will be single family residential, public roads, and open space.

# IV. SOIL CONDITIONS

Soils can be classified in four different hydrologic groups, A, B, C, or D to help predict stormwater runoff rates. Hydrologic group "A" is characterized by deep, well-drained coarse-grained soils with a rapid infiltration rate when thoroughly wet and having a low runoff potential. Group "D" typically has a clay layer at or near to the surface, or a very shallow depth to impervious bedrock and has a very slow infiltration rate and a high runoff potential. See Soils Map; Appendix C. Table 3.1 on the following page lists the soil types present in the development area:

| SOIL ID | SOIL ID SOIL HYDROLOGIC PERMEABILITY                            |                |              |         |  |  |
|---------|-----------------------------------------------------------------|----------------|--------------|---------|--|--|
| NUMBER  |                                                                 | CLASSIFICATION |              | ON SITE |  |  |
| 52      | Manzanst clay<br>loam, 0 to 3<br>percent slopes                 | С              | Well Drained | 45.3%   |  |  |
| 56      | Nelson-Tassel<br>fine sandy<br>loams, 3 to 18<br>percent slopes | В              | Well Drained | 54.7%   |  |  |

Table 3.1 – NRCS Soil Survey for El Paso County

Predevelopment site conditions are undeveloped and ground cover consists of sparse natural vegetative land cover.

# V. Project Characteristics

## A. Major Basin Description

West Fork Jimmy Camp Creek:

a. <u>Onsite Flows:</u> 3.55 Acres of Filing No. 4 are within the West Fork Jimmy Camp Creek Basin. Under predevelopment conditions flows in this area generally flow south. After development flows will generally sheet flow to adjacent streets, where they will be conveyed via gutter flow towards sump or at-grade inlets which will capture the flows. Flows will then be conveyed to the proposed East Pond via storm sewer.

## b. Offsite Flows:

1. A portion of offsite flows to the East Pond are upstream of the Trails at Aspen Ridge PUDSP. There are two offsite areas. The first is approximately 14.5 acres of

commercially zoned area in two lots just north of the PUDSP and south of Bradley Road. (Legacy Hill Drive runs between the two lots). The second, on the north side of Bradley Road, is approximately 19.6 acres (12.3 acres of the West Fork Jimmy Camp Creek Basin plus an additional 7.3 acres of Big Johnson Reservoir drainage area diverted into the West Fork Jimmy Camp Creek by CDOT construction of Powers Boulevard). Runoff south of Bradley Road under predevelopment conditions generally sheet flows to the south and slightly east within the West Fork Jimmy Camp Creek Drainage Basin (DBPS-WFJCC) at slopes ranging from 2 to 9 percent. There appears to be a broad swale running along the middle of this basin in a southeasterly direction. These offsite areas are analyzed in more detail in MDDP-Matrix and FDR-F1.

Marksheffel Tributary to Jimmy Camp Creek:

1. This portion of the project is located at the most northwestern extent of the Marksheffel Tributary to Jimmy Camp Creek. Runoff from the approximately 14.35 acres of this basin within the project area sheet flow to the northeast towards Bradley Road at slopes between 7 and 8 percent and flows channelized in the road ditch then run to the east at a slope of approximately 3 percent. The other 4.6 acres of this basin analyzed by MDDPA-Matrix are along Bradley Road. Flows from this portion of the basin sheet flow off Bradley Road and into the road ditch to be carried east at slopes of approximately 3 percent.

## B. Regulatory Floodplain

Per the *Flood Insurance Rate Map (FIRM)* 08041C0768-G, effective date December 7, 2018, published by the Federal Emergency Management Agency (FEMA), no portion of Trails at Aspen Ridge (Waterview East) lies within any designated 100-year floodplain. This map can be found in Appendix C.

## VI. Drainage Design Criteria

## B. Design References

As required by El Paso County, Colorado, this report has been prepared in accordance to the criteria set forth in the *City of Colorado Springs and El Paso County Drainage Criteria Manual Volume 1 & 2* (Drainage Criteria Manual or DCM), the El Paso County Engineering Criteria Manual (ECM), and El Paso County Resolutions 15-042 and 19-245.

In addition to the DCM, the *Urban Storm Drainage Criteria Manuals, Volumes 1-3* (UDFCD), published by the Urban Drainage and Flood Control District, latest update, have been used to supplement the Drainage Criteria Manual for water quality capture volume (WQCV).

## C. Design Frequency

Design frequency is based on the DCM. The 100-year storm event was used as the major storm for the project, and the 5-year storm event was used as the minor storm.

#### D. Design Discharge

#### a. Method of Analysis

The hydrology for this project uses the Rational Method as recommended by the Drainage Criteria Manual for the minor and major storms for drainage basins less than 100-acres in size. The Rational Method uses the following equation: Q=C\*i\*A Where:

Q = Maximum runoff rate in cubic feet per second (cfs)

- C = Runoff coefficient
- i = Average rainfall intensity (inches per hour)
- A = Area of drainage sub-basin (acres)

#### b. Runoff Coefficient

Rational Method coefficients from Table 6-6 of the Drainage Criteria Manual for developed land were utilized in the Rational Method calculations. See Appendix B for more information.

#### c. Time of Concentration

The time of concentration consists of the initial time of overland flow and the travel time in a channel to the inlet or point of interest. A minimum time of concentrations of 5 minutes is utilized for urban areas.

#### d. Rainfall Intensity

The hypothetical rainfall depths for the 1-hour storm duration were taken from Table 6-2 of the Drainage Criteria Manual. Table 5.1, below, lists the rainfall depth for the Major and Minor 1-hour storm events.

| abic 5.1 – 1 10ject 711ea 1-11001 Kalillali Depl |                |  |
|--------------------------------------------------|----------------|--|
| Storm Recurrence                                 | Rainfall Depth |  |
| Interval                                         | (inches)       |  |
| 5-year                                           | 1.50           |  |
| 100-year                                         | 2.52           |  |
|                                                  |                |  |

Table 5.1 – Project Area 1-Hour Rainfall Depth

The rainfall intensity equation for the Rational Method was taken from Drainage Criteria Manual Volume 1 Figure 6-5. Table 9-4. STORMCAD Standard Method Coefficients

#### e. StormCAD Analysis

#### 1. Routing

Storm CAD was utilized to analyze the routing of runoff through the proposed storm sewer system. Catchments were created in the model and calibrated to match the values calculated in the Rational Method spreadsheet.

### 2. HGL Profiles

StormCAD was also used to determine the Hydraulic Grade Profiles for the major and

|            | Bend Loss                |            |  |  |  |
|------------|--------------------------|------------|--|--|--|
| Bend Angle | Bend Angle K Coefficient |            |  |  |  |
| 0°         | 0.0                      | 5          |  |  |  |
| 22.5°      | 0.1                      | 0          |  |  |  |
| 45°        | 0.4                      | 0          |  |  |  |
| 60°        | 0.6                      | 4          |  |  |  |
| 90°        | 1.3                      | 2          |  |  |  |
|            | LATERAL LOSS             |            |  |  |  |
| (          | One Lateral K Coeffic    | ient       |  |  |  |
| Bend Angle | Non surcharged           | Surcharged |  |  |  |

. ...

| Dena i ingle               | rton surenuigeu | Surchargea |  |  |  |  |  |  |
|----------------------------|-----------------|------------|--|--|--|--|--|--|
| 45°                        | 45° 0.27 0.4    |            |  |  |  |  |  |  |
| 60°                        | 0.90            |            |  |  |  |  |  |  |
| 90°                        | 1.02            | 1.77       |  |  |  |  |  |  |
| Two Laterals K Coefficient |                 |            |  |  |  |  |  |  |
| 45°                        | 0.9             | 6          |  |  |  |  |  |  |
| 60° 1.16                   |                 |            |  |  |  |  |  |  |
| 90°                        | 1.5             | 2          |  |  |  |  |  |  |

minor storms. The standard method was used to calculate head loss in the system with K coefficients taken from Table 9-4 of the DCM.

# VII. Drainage Basins and Sub-basins

- **A.** The *predevelopment conditions* for the site have been analyzed and are presented by design points (Table 6.2) and are described as follows:
- a. <u>West Fork Jimmy Camp Creek:</u>

The south portion of the studied area is within the West Fork tributary to Jimmy Camp Creek. A portion of this basin is upstream of Bradley Road. Flows in that sub-basin (OS-1:  $Q_5 = 11.8 \text{ cfs}$ ,  $Q_{100} = 47.4 \text{ cfs}$ ) sheet flow to the road ditch and are conveyed to two 42-inch CMP crossroad pipes which direct the water across Bradley Road and on to the proposed development area.

The next downstream sub-basin is WF-1 ( $Q_5 = 33.2$  cfs,  $Q_{100} = 139.1$  cfs) which includes 14.5 Acres of commercially zoned offsite area, 66.10 acres of offsite Trails at Aspen Ridge PUD (Originally 8.99), 32.09 Acres of Trails at Aspen Ridge Filing No. 1, 15.89 Acres of Trails at Aspen Ridge Filing No. 2 (PUD area reduced), and 5.00 Acres which are in both Filing No. 1 and the PUD. Flows in this sub-basin sheet flow towards the middle of the sub-basins where they join flows from OS-1 and are conveyed via a broad swale in a southeasterly direction and out of the study area.

The third sub-basin within the West Fork basin is sub-basin WF-2 ( $Q_5 = 5.5$  cfs,  $Q_{100} = 31.1$  cfs) which includes 15.77 Acres of Filing No. 1 and 5.38 Acres of the PUD. Flows in this basin sheet flow in an easterly direction where they are captured by another broad swale at the south limit of the study area and conveyed in a southeasterly direction.

| Total discharge to the West Fork Jimmy Camp Creek basin is approximately 37.0 cfs for Q5 event and 170.0 cfs for the Q100 event. (* Below indicates SWMM Values) | r the |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Trails at Arran Biles                                                                                                                                            |       |

| <u>Trails at Aspen Ridge</u><br>Existing Conditions Sub-basin Summary Table |                 |             |               |  |  |
|-----------------------------------------------------------------------------|-----------------|-------------|---------------|--|--|
| Area<br>ID                                                                  | Area<br>(Acres) | Q5<br>(cfs) | Q100<br>(cfs) |  |  |
| West Fork Jimmy Camp Creek / OS - 1                                         | 19.60           | 11.8*       | 47.4*         |  |  |
| West Fork Jimmy Camp Creek / WF-1                                           | 119.08          | 33.2*       | 139.1*        |  |  |
| West Fork Jimmy Camp Creek / WF-2                                           | 21.15           | 5.5*        | 31.1*         |  |  |

| <u>Trails at Aspen Ridge</u><br>Existing Design Point Summary |                                                                               |                        |               |                 |  |  |
|---------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------|---------------|-----------------|--|--|
| Design Point                                                  | Sub-Basins                                                                    | Total<br>Area<br>(ac.) | Q(5)<br>(cfs) | Q(100)<br>(cfs) |  |  |
| OS-1                                                          | OS-1<br>(7.3 Acres diverted by CDOT from Big Johnson)                         | 19.60                  | 11.8*         | 47.4*           |  |  |
| WF-1                                                          | WF-1 & OS-1                                                                   | 138.69                 | 33.2*         | 139.1*          |  |  |
| WF-2                                                          | WF-2                                                                          | 21.15                  | 5.5*          | 31.1*           |  |  |
| TO WEST FORK<br>JIMMY CAMP CREEK                              | WF-1, WF-2, & OS-1<br>(Basins are parallel, so this is a sum of WF-1 & WF-2.) | 159.84                 | 37.0*         | 170.0*          |  |  |

### b. <u>Marksheffel Tributary to Jimmy Camp Creek:</u>

The eastern portion of the studied area is within the Marksheffel Tributary to Jimmy Camp Creek. This basin is represented by Sub-basin MKT-1 ( $Q_5 = 5.4$  cfs,  $Q_{100} = 36.5$  cfs). Flows in this sub basin sheet flow to the northeast to the Bradley Road ditch where they are conveyed eastward. The total discharge from the studied area under predevelopment conditions is approximately 5.4 cfs for the Q<sub>5</sub> event and 36.5 cfs for the Q<sub>100</sub> event.

| <u>Trails at Aspen Ridge, Filing No. 1</u><br>FDR<br>Existing Conditions Sub-basin Summary Table |                 |             |               |  |
|--------------------------------------------------------------------------------------------------|-----------------|-------------|---------------|--|
| Area<br>ID                                                                                       | Area<br>(Acres) | Q5<br>(cfs) | Q100<br>(cfs) |  |
| Marksheffel Tributary to<br>Jimmy Camp Creek / MKT-1                                             | 7.21            | 1.6         | 10.9          |  |

|                                                          | <u>it Aspen Ridge, Filing No. 1</u><br>FDR<br>ng Design Point Summary |                        |               |                 |
|----------------------------------------------------------|-----------------------------------------------------------------------|------------------------|---------------|-----------------|
| Design Point                                             | Sub-Basins                                                            | Total<br>Area<br>(ac.) | Q(5)<br>(cfs) | Q(100)<br>(cfs) |
| MKT-1<br>TO MARKSHEFFEL TRIBUTARY TO<br>JIMMY CAMP CREEK | MKT-1                                                                 | 7.21                   | 1.63          | 10.95           |

### **B.** The <u>fully developed</u> conditions for the site are as follows:

### a. West Fork – Jimmy Camp Creek:

Under proposed conditions, flows for this basin will be directed to a proposed detention pond (East Pond) near the southeast corner of the proposed Trails at Aspen Ridge development. Sub-basins and Design Points for this major basin are summarized in hydrology tables below and on the following pages. (Note that grey shading indicates subbasins within the West Fork Jimmy Camp Creek basin that are covered in previous drainage reports. Sub-basins C-7 and C-8 were covered in *MDDP-Matrix*, but, as the HGLs for the inlets serving these two sub-basins are included in this report, they are not shaded gray.)

| <u>Trails at Aspen Ridge</u><br>West Fork - Jimmy Camp Creek<br>Proposed Conditions - Sub-basin Summary<br>(Gray shading: Covered in previous drainage report) |       |     |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|--|
| Basin                                                                                                                                                          | Area  | Q5  | Q100 |  |
|                                                                                                                                                                | acres | cfs | cfs  |  |
| OS-1                                                                                                                                                           | 19.67 | 4.0 | 26.8 |  |
| A-1                                                                                                                                                            | 12.34 | 4.4 | 18.9 |  |
| A-2                                                                                                                                                            | 1.09  | 2.7 | 5.2  |  |
| A-3                                                                                                                                                            | 4.98  | 2.2 | 9.0  |  |
| A-4                                                                                                                                                            | 0.12  | 0.6 | 1.0  |  |
| B-1                                                                                                                                                            | 1.06  | 1.8 | 4.1  |  |
| C-1                                                                                                                                                            | 3.27  | 5.9 | 12.9 |  |
| C-2                                                                                                                                                            | 1.19  | 2.4 | 5.3  |  |

| <u>Trails at Aspen Ridge</u><br>West Fork - Jimmy Camp Creek<br>Proposed Conditions - Sub-basin Summary<br>(Gray shading: Covered in previous drainage report) |       |      |      |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|------|------|--|
| Basin                                                                                                                                                          | Area  | Q5   | Q100 |  |
|                                                                                                                                                                | acres | cfs  | cfs  |  |
| C-3                                                                                                                                                            | 4.60  | 8.4  | 18.5 |  |
| C-4                                                                                                                                                            | 0.36  | 1.6  | 3.0  |  |
| C-5                                                                                                                                                            | 3.13  | 5.7  | 12.5 |  |
| C-6                                                                                                                                                            | 0.07  | 0.3  | 0.6  |  |
| C-7+8<br>(MDDP Sub-basins C7 and C8 combined)                                                                                                                  | 2.26  | 4.2  | 9.2  |  |
| D-1                                                                                                                                                            | 2.21  | 1.6  | 5.2  |  |
| E-1                                                                                                                                                            | 6.43  | 3.9  | 12.2 |  |
| E-2                                                                                                                                                            | 2.14  | 3.9  | 8.7  |  |
| F-1                                                                                                                                                            | 1.49  | 2.7  | 6.0  |  |
| F-2                                                                                                                                                            | 0.58  | 1.1  | 2.5  |  |
| F-3                                                                                                                                                            | 1.25  | 2.3  | 5.0  |  |
| F-4                                                                                                                                                            | 0.58  | 1.1  | 2.5  |  |
| F-5                                                                                                                                                            | 2.27  | 3.5  | 7.8  |  |
| F-6                                                                                                                                                            | 1.00  | 1.7  | 3.9  |  |
| F-7                                                                                                                                                            | 5.06  | 7.5  | 16.5 |  |
| F-8                                                                                                                                                            | 0.84  | 1.5  | 3.3  |  |
| G-1                                                                                                                                                            | 1.11  | 2.1  | 4.6  |  |
| H-1                                                                                                                                                            | 3.60  | 5.6  | 12.3 |  |
| Н-2                                                                                                                                                            | 1.16  | 1.9  | 4.2  |  |
| H-3                                                                                                                                                            | 2.97  | 4.7  | 10.3 |  |
| H-4                                                                                                                                                            | 0.92  | 1.6  | 3.6  |  |
| H-5                                                                                                                                                            | 2.42  | 4.0  | 8.9  |  |
| H-6                                                                                                                                                            | 2.46  | 4.1  | 9.1  |  |
| H-7                                                                                                                                                            | 2.03  | 3.0  | 6.6  |  |
| H-8                                                                                                                                                            | 0.97  | 1.7  | 3.8  |  |
| Н-9а                                                                                                                                                           | 1.95  | 2.3  | 5.8  |  |
| Н-9b                                                                                                                                                           | 0.38  | 0.6  | 1.3  |  |
| H-10                                                                                                                                                           | 1.33  | 2.5  | 5.5  |  |
| H-11                                                                                                                                                           | 3.42  | 5.0  | 11.0 |  |
| I-3                                                                                                                                                            | 4.18  | 7.1  | 15.6 |  |
| K-1+2                                                                                                                                                          | 2.37  | 3.2  | 7.9  |  |
| K-3+4                                                                                                                                                          | 1.23  | 2.9  | 6.3  |  |
| K-5                                                                                                                                                            | 0.95  | 2.0  | 4.4  |  |
| K-6                                                                                                                                                            | 0.72  | 1.5  | 3.3  |  |
| K-7                                                                                                                                                            | 3.26  | 2.9  | 7.9  |  |
| K-8                                                                                                                                                            | 0.15  | 0.5  | 0.9  |  |
| K-9                                                                                                                                                            | 1.16  | 2.1  | 4.7  |  |
| K-10                                                                                                                                                           | 1.10  | 2.2  | 4.7  |  |
| K-11                                                                                                                                                           | 1.39  | 2.6  | 5.8  |  |
| K-12                                                                                                                                                           | 0.67  | 1.4  | 3.0  |  |
| K-13                                                                                                                                                           | 0.09  | 0.3  | 0.6  |  |
| K-14<br>OS Fast Side                                                                                                                                           | 2.78  | 5.0  | 11.0 |  |
| OS-East Side                                                                                                                                                   | 4.15  | 0.6  | 4.0  |  |
| <u>J1</u>                                                                                                                                                      | 5.89  | 10.2 | 23.5 |  |
| <u>J2</u>                                                                                                                                                      | 0.90  | 1.7  | 3.8  |  |
| J3                                                                                                                                                             | 1.81  | 3.7  | 8.1  |  |
| J4<br>1/15                                                                                                                                                     | 0.56  | 1.2  | 2.6  |  |
| K15                                                                                                                                                            | 1.65  | 3.0  | 6.6  |  |

| <u>Trails at Aspen Ridge</u><br>West Fork - Jimmy Camp Creek<br>Proposed Conditions - Sub-basin Summary<br>(Gray shading: Covered in previous drainage report) |       |     |      |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----|------|--|--|--|
| Basin                                                                                                                                                          | Area  | Q5  | Q100 |  |  |  |
| Dasiii                                                                                                                                                         | acres | cfs | cfs  |  |  |  |
| K16                                                                                                                                                            | 1.20  | 2.4 | 5.4  |  |  |  |
| K17                                                                                                                                                            | 0.41  | 0.9 | 1.9  |  |  |  |
| K18                                                                                                                                                            | 1.90  | 3.5 | 7.8  |  |  |  |
| K19                                                                                                                                                            | 0.93  | 1.8 | 4.0  |  |  |  |
| K20                                                                                                                                                            | 2.78  | 5.4 | 11.8 |  |  |  |
| K21                                                                                                                                                            | 0.44  | 0.9 | 2.0  |  |  |  |
| K22                                                                                                                                                            | 2.18  | 3.7 | 9.2  |  |  |  |

| Design Point Summary - StormCAD |                                                                                              |       |       |       |       |                 |  |  |
|---------------------------------|----------------------------------------------------------------------------------------------|-------|-------|-------|-------|-----------------|--|--|
| (C                              | (Gray shading: Covered in previous drainage report) Testal Surface Storm Sewer Demonstration |       |       |       |       |                 |  |  |
|                                 | Total                                                                                        |       |       |       |       | Downstream      |  |  |
| Design Point                    | Drainage<br>Area                                                                             | Q5    | Q100  | Q5    | Q100  | Design<br>Point |  |  |
|                                 | Area                                                                                         | (cfs) | (cfs) | (cfs) | (cfs) | Point           |  |  |
| 1-05                            | 19.67                                                                                        | 4.0   | 26.8  | -     | -     | А               |  |  |
| 1-A                             | 12.34                                                                                        | 3.5   | 17.6  | -     | -     | А               |  |  |
| 2-A                             | 1.09                                                                                         | 2.7   | 5.2   | -     | -     | А               |  |  |
| 3-A                             | 4.98                                                                                         | 2.2   | 8.9   | -     | -     | А               |  |  |
| 4-A                             | 0.12                                                                                         | 0.6   | 1.0   | -     | -     | А               |  |  |
| Α                               | 38.20                                                                                        | -     | -     | 12.0  | 55.6  | В               |  |  |
| 1-B                             | 1.06                                                                                         | 1.8   | 4.1   | -     | -     | В               |  |  |
| В                               | 39.26                                                                                        | -     | -     | 12.7  | 57.1  | С               |  |  |
| 1-C                             | 3.27                                                                                         | 5.9   | 12.9  | -     | -     | С               |  |  |
| 2-C                             | 1.19                                                                                         | 2.4   | 5.3   | -     | -     | С               |  |  |
| 3-C                             | 4.60                                                                                         | 8.4   | 18.5  | -     | -     | С               |  |  |
| 4-C                             | 0.36                                                                                         | 1.6   | 3.0   | -     | -     | С               |  |  |
| 5-C                             | 3.13                                                                                         | 5.7   | 12.5  | -     | -     | С               |  |  |
| 6-C                             | 0.07                                                                                         | 0.3   | 0.6   | -     | -     | С               |  |  |
| 7+8-C                           | 2.26                                                                                         | 4.2   | 9.2   | -     | -     | С               |  |  |
| С                               | 54.13                                                                                        | -     | -     | 27.6  | 90.2  | D               |  |  |
| 1-D                             | 2.21                                                                                         | 1.6   | 5.2   | -     | -     | D               |  |  |
| D                               | 56.34                                                                                        | 0.0   | 0.0   | 28.1  | 92.1  | Е               |  |  |
| 1-E                             | 6.43                                                                                         | 2.6   | 11.4  | -     | -     | Е               |  |  |
| 2-E                             | 2.14                                                                                         | 3.9   | 8.7   | -     | -     | Е               |  |  |
| Е                               | 64.91                                                                                        | -     | -     | 33.7  | 108.8 | F               |  |  |
| 1-F                             | 2.07                                                                                         | 2.7   | 6.0   | 2.7   | 6.0   | 3-F             |  |  |
| 2-F                             | 0.58                                                                                         | 1.1   | 2.5   | 1.6   | 3.6   | 3-F             |  |  |
| 3-F                             | 3.32                                                                                         | 2.3   | 5.0   | 3.8   | 8.4   | 4-F             |  |  |
| 4-F                             | 3.89                                                                                         | 1.1   | 2.5   | 5.0   | 11.1  | 5-F             |  |  |
| 5-F                             | 6.16                                                                                         | 3.5   | 7.8   | 6.6   | 14.6  | 6-F             |  |  |
| 6-F                             | 7.16                                                                                         | 1.7   | 3.9   | 7.9   | 17.5  | 8-F             |  |  |

| <b>Design Point Summary - StormCAD</b><br>(Gray shading: Covered in previous drainage report) |                  |             |               |             |               |                 |
|-----------------------------------------------------------------------------------------------|------------------|-------------|---------------|-------------|---------------|-----------------|
|                                                                                               | Total            |             | face          |             | Sewer         | Downstream      |
| Design Point                                                                                  | Drainage<br>Area | Q5<br>(cfs) | Q100<br>(cfs) | Q5<br>(cfs) | Q100<br>(cfs) | Design<br>Point |
| 7-F                                                                                           | 5.06             | 7.5         | 16.5          | 7.5         | 16.5          | 8-F             |
| 8-F                                                                                           | 13.07            | 1.5         | 3.3           | 16.2        | 35.8          | F               |
| F                                                                                             | 77.97            | -           | -             | 43.5        | 131.0         | G               |
| 1-G                                                                                           | 1.11             | 2.1         | 4.6           | -           | -             | G               |
| G                                                                                             | 79.08            | -           | -             | 44.2        | 132.7         | М               |
| 1-H                                                                                           | 3.60             | 5.9         | 13.1          | -           | -             | 1-2 H           |
| 2-H                                                                                           | 1.16             | 1.9         | 4.2           | -           | -             | 1-2 H           |
| 1-2 H                                                                                         | 4.76             | -           | -             | 9.0         | 19.8          | 1-4 H           |
| 3-H                                                                                           | 2.97             | 4.7         | 10.3          | -           | -             | 1-4 H           |
| 4-H                                                                                           | 0.92             | 1.6         | 3.6           | -           | -             | 1-4 H           |
| 1-4 H                                                                                         | 8.65             | -           | -             | 16.4        | 36.1          | 1-6 H           |
| 5-H                                                                                           | 2.42             | 4.0         | 8.9           | -           | -             | 1-6 H           |
| 6-H                                                                                           | 2.46             | 3.9         | 8.6           | -           | -             | 1-6 H           |
| 1-6 H                                                                                         | 13.53            | -           | -             | 20.2        | 44.9          | 1-8 H           |
| 7-H                                                                                           | 2.03             | 2.9         | 6.4           | -           | -             | 1-8 H           |
| 8-H                                                                                           | 0.97             | 1.7         | 3.7           | -           | -             | 1-8 H           |
| 1-8 H                                                                                         | 16.52            | -           | -             | 23.3        | 49.3          | 1-10 H          |
| 9a-H                                                                                          | 1.95             | 2.3         | 5.7           | -           | -             | 9b-H            |
| 9b-H                                                                                          | 0.38             | 0.6         | 1.4           | 2.8         | 6.5           | 10-H            |
| 10-H                                                                                          | 1.33             | 2.4         | 5.2           | -           | -             | 1-10 H          |
| 1-10 H                                                                                        | 20.17            | -           | -             | 29.6        | 66.5          | 11-H            |
| 11 <b>-</b> H                                                                                 | 3.42             | 5.0         | 11.0          | -           | -             | Н               |
| Н                                                                                             | 23.59            |             |               | 37.4        | 83.0          | М               |
| 1-J                                                                                           | 5.89             | 10.2        | 23.5          | -           | -             | 1-2-J           |
| 2-J                                                                                           | 0.90             | 1.7         | 3.8           | -           | -             | 1-2-J           |
| 1-2-J                                                                                         | 6.79             |             |               | 5.6         | 13.6          | 1-4-J           |
| 3-J                                                                                           | 1.81             | 3.7         | 8.1           | -           | -             | 1-4-J           |
| 4-J                                                                                           | 0.56             | 1.2         | 2.6           | -           | -             | 1-4-J           |
| 1-4-J                                                                                         | 9.16             |             |               | 14.8        | 36.0          | 5-J             |
| 15-K                                                                                          | 1.65             | 3.0         | 6.6           | -           | -             | 15-16-K         |
| 16-K                                                                                          | 1.20             | 2.4         | 5.4           | -           | -             | 15-16-K         |
| 15-16-K                                                                                       | 2.85             |             |               | 4.1         | 9.6           | 15-18-K         |
| 17-K                                                                                          | 0.41             | 0.9         | 1.9           | -           | -             | 15-18-K         |
| 18-K                                                                                          | 1.90             | 3.5         | 7.8           | -           | -             | 15-18-K         |
| 15-18-K                                                                                       | 5.17             |             |               | 8.2         | 19.1          | 6-J             |
| 19-K                                                                                          | 0.93             | 1.8         | 4.0           | -           | -             | 19-20-K         |
| 20-К                                                                                          | 2.78             | 5.4         | 11.8          | -           | -             | 19-20-K         |
| 19-20-К                                                                                       | 3.71             |             |               | 6.7         | 15.6          | 5-J             |

| <b>Design Point Summary - StormCAD</b><br>(Gray shading: Covered in previous drainage report) |                  |             |               |             |               |                        |
|-----------------------------------------------------------------------------------------------|------------------|-------------|---------------|-------------|---------------|------------------------|
|                                                                                               | Total            | -           | face          |             | Sewer         | Downstream             |
| Design Point                                                                                  | Drainage<br>Area | Q5<br>(cfs) | Q100<br>(cfs) | Q5<br>(cfs) | Q100<br>(cfs) | Design<br>Point        |
| 21-К                                                                                          | 0.44             | 0.9         | 2.0           | -           | -             | 7-J                    |
| 22 <b>-</b> K                                                                                 | 2.18             | 3.7         | 9.2           | -           | -             | 7-J                    |
| 5-J                                                                                           | 12.87            | -           | -             | 23.8        | 58.6          | 6-J                    |
| 6-J                                                                                           | 18.04            | -           | -             | 30.2        | 72.6          | 7-J                    |
| 7-J                                                                                           | 20.66            | -           | -             | 30.8        | 73.9          | OS-2-K                 |
| 1-K                                                                                           | 0.78             | 0.8         | 2.3           | -           | -             | OS-2-K                 |
| 2-K                                                                                           | 1.58             | 2.7         | 5.9           | -           | -             | OS-2-K                 |
| OS-2-K                                                                                        | 23.02            | -           | -             | 33.3        | 81.2          | OS-12-K                |
| 3+4-K                                                                                         | 1.23             | 2.9         | 6.3           | -           | -             | 3-4-K                  |
| OS-4-K                                                                                        | 24.25            | -           | -             | 35.2        | 85.4          | OS-12-K                |
| 5-K                                                                                           | 0.95             | 2.0         | 4.4           | -           | -             | 6-K                    |
| 6-K                                                                                           | 0.72             | 1.5         | 3.3           | 3.4         | 7.6           | 5-8-K                  |
| 7-K                                                                                           | 3.26             | 2.9         | 7.9           | -           | -             | 5-8-K                  |
| 8-K                                                                                           | 0.15             | 0.5         | 0.9           | -           | -             | 5-8-K                  |
| 5-8-K                                                                                         | 5.08             | -           | -             | 5.2         | 12.0          | 5-10-K                 |
| 9-K                                                                                           | 1.16             | 2.1         | 4.7           | -           | -             | 9-10-K                 |
| 10-K                                                                                          | 1.10             | 2.2         | 4.7           | -           | -             | 9-10-K                 |
| 9-10-К                                                                                        | 2.26             | -           | -             | 4.0         | 8.8           | 5-10-K                 |
| 5-10-K                                                                                        | 7.34             | -           | -             | 7.8         | 18.0          | 5-12-K                 |
| 11 <b>-</b> K                                                                                 | 1.39             | 2.6         | 5.8           | -           | -             | 5-12-K                 |
| 12-K                                                                                          | 0.67             | 1.4         | 3.0           | -           | -             | 5-12-K                 |
| 5-12-K                                                                                        | 9.40             | -           | -             | 10.3        | 23.6          | OS-12-K                |
| OS-12-K                                                                                       | 33.65            | -           | -             | 36.9        | 89.9          | OS-14-K                |
| 13 <b>-</b> K                                                                                 | 0.09             | 0.3         | 0.6           | -           | -             | OS-14-K                |
| OS-E                                                                                          | 4.15             | 3.1         | 3.4           | -           | -             | 14-K                   |
| 14 <b>-</b> K                                                                                 | 2.78             | 5.0         | 11.0          | 5.1         | 11.0          | OS-14-K                |
| OS-14-K                                                                                       | 36.52            | -           | -             | 43.6        | 100.9         | К                      |
| К                                                                                             | 40.23            | -           | -             | 48.0        | 110.6         | 3-I                    |
| 1-I                                                                                           | 3.13             | 6.9         | 12.3          | -           | -             | К                      |
| 2-I                                                                                           | 0.59             | 2.3         | 4.1           | -           | -             | К                      |
| 3-I                                                                                           | 4.18             | 9.3         | 16.5          | 8.7         | 15.5          | М                      |
| Ι                                                                                             | 44.42            | -           | -             | 52.0        | 120.3         | М                      |
| М                                                                                             | 158.79           | -           | -             | 154.5       | 383.7         | East Pond<br>Discharge |
| East Pond Discharge<br>(Filing 1 & 2 Buildout)                                                | 158.79           | -           | -             | 6.7         | 120.0         | Existing Swale         |

|              | <b>DESIGN POIN'T DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                               |  |  |  |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|
| Design Point | Description                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Downstream<br>Design<br>Point |  |  |  |
| 1-OS         | <ul> <li>This design point is at the downstream end of the offsite sub-basin (OS-1) north of Bradley Road. Flows in Sub-basin OS-1 will sheet flow to the road ditch running along Bradley and Powers Boulevard. Once channelized in the ditch flows will be directed to a proposed 24-inch RCP storm pipe sleeved into one of the existing 42-inch CMP crossroad pipes to minimize disturbance to Bradley Road and avoid conflicts with existing utilities along the north side of Bradley Road. From there flows will be conveyed on to design point A. The second existing 42" CMP will be plugged.</li> <li>Please note that approximately 7.3 acres of the area tributary to this design point have been diverted from the Big Johnson Reservoir by CDOT construction of Powers Boulevard. Future development of that portion of the tributary sub-basin must redirect these flows to the Big Johnson Reservoir to maintain compliance with the two relevant DBPS reports.</li> <li>Development of the OS-1 Sub-basin will require onsite detention and an FDR.</li> </ul> | А                             |  |  |  |
| 1-A          | <ul> <li>This design point is located at a sump inlet on the north side of Frontside Drive<br/>and just west of the Legacy Hill Drive Roundabout.</li> <li>Please note that the commercial lot to within Sub-basin A-1 will be treated as<br/>undeveloped for the purposes of this report. Per MDDPA-Matrix, future<br/>development of this lot will require on-site detention as described in the referenced<br/>MDDP.</li> <li>-Development of this basin will require onsite detention and an FDR.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | А                             |  |  |  |
| 2-A          | <ul> <li>This design point is located at a sump inlet on the south side of Frontside Drive<br/>and just west of the Legacy Hill Drive Roundabout.</li> <li>Flow to This design point is primarily from street drainage along Frontside<br/>Drive.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | А                             |  |  |  |
| 3-A          | <ul> <li>This design point is located at a sump inlet on the north side of Frontside Drive and just east of the Legacy Hill Drive Roundabout.</li> <li>Please note that the commercial lot to within Sub-basin A-3 will be treated as undeveloped for the purposes of this report. Per MDDPA-Matrix, future development of this lot will require on-site detention as described in the referenced MDDP.</li> <li>Development of this basin will require onsite detention and an FDR.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | А                             |  |  |  |
| 4-A          | <ul> <li>This design point is located at a sump inlet on the south side of Frontside Drive<br/>and just east of the Legacy Hill Drive Roundabout.</li> <li>Flow to This design point is almost exclusively from street drainage along<br/>Frontside Drive.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | А                             |  |  |  |
| Α            | -This design point represents the manhole combining drainage from Design points OS-1 and 1-A through 4-A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | В                             |  |  |  |
| 1-B          | -This design point represents the on-grade inlet south of Frontside Drive.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | В                             |  |  |  |

|              | <b>DESIGN POINT DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                                                                                                                                                                                                                                                                                        |                               |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Design Point | Description                                                                                                                                                                                                                                                                                                                                                                                                                    | Downstream<br>Design<br>Point |
| В            | -This design point represents the manhole on Legacy Hill Drive combining the flows from design point A with design point 1-B.                                                                                                                                                                                                                                                                                                  | С                             |
| 1-C          | -This is an offsite design point in a future filing. This is located at a sump inlet<br>on the west side of Drinking Horse Drive.<br>-Future filing                                                                                                                                                                                                                                                                            | С                             |
| 2-C          | -This is an offsite design point in a future filing. This is located at a sump inlet<br>on the east side of Drinking Horse Drive.<br>-Future filing                                                                                                                                                                                                                                                                            | С                             |
| 3-C          | -This design point is at a sump inlet just west of Legacy Hill Drive on the north side of Moose Meadow Street.                                                                                                                                                                                                                                                                                                                 | С                             |
| 4-C          | -This design point is at a sump inlet just west of Legacy Hill Drive on the south side of Moose Meadow Street.                                                                                                                                                                                                                                                                                                                 | С                             |
| 5-C          | -This design point is at a sump inlet just east of Legacy Hill Drive on the north side of Moose Meadow Street.                                                                                                                                                                                                                                                                                                                 | С                             |
| 6-C          | -This design point is at a sump inlet just east of Legacy Hill Drive on the south side of Moose Meadow Street.                                                                                                                                                                                                                                                                                                                 | С                             |
| 7+8-C        | - This design point is located at a sump inlet on the south side of Moose<br>Meadow Street between Roundhouse Drive and Beartrack Point. Sub-basins C-<br>7+8 is tributary to this location. This sub-basin will not be developed in this<br>filing excepting the extension of Moose Meadow Drive from its Filing No. 1<br>termination point just east of Legacy Hill Drive over to its intersection with Bear<br>Track Point. | С                             |
| С            | -This design point is at a manhole in Legacy Hill Drive at its intersection with<br>Moose Meadow Street. It reflects the combination of flows from design points<br>1-C through 8-C with flows from design point B.                                                                                                                                                                                                            | D                             |
| 1-D          | -This design point is an on-grade inlet on Legacy Hill Drive northwest of its intersection with Sunday Gulch.                                                                                                                                                                                                                                                                                                                  | D                             |
| D            | -This design point combines flows from design point 1-D with flows from design point C at a manhole in Legacy Hill Drive northwest of its intersection with Sunday Gulch Drive.                                                                                                                                                                                                                                                | Е                             |
| 1-E          | -This design point is located at a sump inlet on Falling Rock Drive just west of<br>Sunday Gulch Drive which captures flows from Sub-basin E-1 and flow bypass<br>from design point 1-D.                                                                                                                                                                                                                                       | Е                             |
| 2-E          | -This is a sump inlet across the street from design point 1-E.<br>-During lower probability events flows to design point 1-E may equalize across<br>the street to this design point.                                                                                                                                                                                                                                           | Е                             |

|              | <b>DESIGN POINT DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                                                                                                                           |                               |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
| Design Point | Description                                                                                                                                                                                                                                                       | Downstream<br>Design<br>Point |  |  |
| Е            | This design point is at a manhole at the intersection of Sunday Gulch Drive and Falling Rock Drive. Flows from Design points 1-E, 2-E, and D are combined at this design point.                                                                                   | F                             |  |  |
| 1-F          | -This design point is at an at-grade inlet on the west side of future Lazy Ridge Drive. (Future filing)                                                                                                                                                           | 3-F                           |  |  |
| 2-F          | -This design point is at an at-grade inlet on the east side of future Lazy Ridge Drive. (Future filing)                                                                                                                                                           | 3-F                           |  |  |
| 3-F          | <ul> <li>This design point is at an at-grade inlet on the west side of future Lazy Ridge Drive.</li> <li>Flows from Sub-basin F-3 are combined with storm sewer flows from design points 1-F and 2-F (Future filing)</li> </ul>                                   | 4-F                           |  |  |
| 4-F          | <ul> <li>This design point is at an at-grade inlet on the east side of future Lazy Ridge Drive.</li> <li>Flows from sub-basin F-4 are combined with flows from 1-F, 2-F and 3-F. (Future filing)</li> </ul>                                                       | 5-F                           |  |  |
| 5-F          | <ul> <li>This design point is at an at-grade inlet on the west side of Wagon Hammer<br/>Drive.</li> <li>Flows from Sub-basin F-5 are combined with storm sewer flows from design<br/>points 1-F, 2-F, 3-F, and 4-F</li> </ul>                                     | 6-F                           |  |  |
| 6-F          | <ul> <li>This design point is at an at-grade inlet on the east side of Wagon Hammer<br/>Drive.</li> <li>Flows from Sub-basin F-6 are combined with storm sewer flows from design<br/>points 1-F, 2-F, 3-F, 4-F, and 5-F</li> </ul>                                | 8-F                           |  |  |
| 7-F          | -This design point is at a sump inlet located on the north side of Lookout Court<br>just west of its intersection with Sunday Gulch Drive.<br>-This inlet captures flows from Sub-basin F-7                                                                       | 8-F                           |  |  |
| 8-F          | -This design point is at a sump inlet and manhole on the south side of Lookout<br>Court just west of its intersection with Sunday Gulch Drive.<br>-Flows from Sub-basin F-8 are combined with flows from design points 1-F, 2-<br>F, 3-F, 4-F, 5-F, 6-F, and 7-F. | F                             |  |  |
| F            | -This design point combines flows from design points 1-F through 8-F with<br>flows from design point E.<br>-Variance Drop Manhole                                                                                                                                 | G                             |  |  |
| 1-G          | -This design point is at an at-grade inlet capturing flows from Sub-basin G.                                                                                                                                                                                      | G                             |  |  |
| G            | -This design point reflects the combination of surface flows from design point<br>1-G with storm sewer flows from design point F                                                                                                                                  | М                             |  |  |
| 1-H          | -This design point is at a sump inlet on the west side of Lazy Ridge Drive capturing flows from Sub-basin H-1.                                                                                                                                                    | 1-2 H                         |  |  |

|              | <b>DESIGN POINT DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                                                                                                                        |                               |  |  |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|
| Design Point | Description                                                                                                                                                                                                                                                    | Downstream<br>Design<br>Point |  |  |
| 2-Н          | -This design point is at a sump inlet on the east side of Lazy Ridge Drive capturing flows from Sub-basin H-2.                                                                                                                                                 | 1-2 H                         |  |  |
| 1-2 H        | -Flows from design points 1-H and 2-H are combined at this manhole on the south side of Buffalo Horn Drive at its intersection with Lazy Ridge Drive.                                                                                                          | 1-4 H                         |  |  |
| 3-Н          | -This design point is at a sump inlet on the west side of Wagon Hammer Drive capturing flows from Sub-basin H-3                                                                                                                                                | 1-4 H                         |  |  |
| 4-H          | -This design point is at a sump inlet on the east side of Wagon Hammer Drive capturing flows from Sub-basin H-5                                                                                                                                                | 1-4 H                         |  |  |
| 1-4 H        | -Flows from design point 1-2 H are combined with flows from 3-H and 4-H at this manhole on the south side of Buffalo Horn Drive at its intersection with Wagon Hammer Drive.                                                                                   | 1-6 H                         |  |  |
| 5-H          | -This is an at-grade inlet on the north side of Buffalo Horn Drive just west of its intersection with Windy Pass Court.                                                                                                                                        | 1-6 H                         |  |  |
| 6-H          | -This is an at-grade inlet on the south side of Buffalo Horn Drive just west of its intersection with Windy Pass Court.                                                                                                                                        | 1-6 H                         |  |  |
| 1-6 H        | -Flows from design point 1-4 H are combined with flows from 5-H and 6-H at this manhole on the south side of Buffalo Horn Drive west of its intersection with Windy Pass Court.                                                                                | 1-8 H                         |  |  |
| 7-H          | -This design point is at an on-grade inlet on the west side of Sunday Gulch<br>Drive just north of its intersection with Buffalo Horn Drive.<br>-This inlet captures flows from Sub-basin H-7                                                                  | 1-8 H                         |  |  |
| 8-H          | -This design point is at an on-grade inlet on the east side of Sunday Gulch Drive<br>just north of its intersection with Buffalo Horn Drive.<br>-This inlet captures flows from Sub-basin H-8                                                                  | 1-8 H                         |  |  |
| 1-8 H        | -Flows from design point 1-6 H are combined with flows from 7-H and 8-H at this manhole on the south side of Buffalo Horn Drive west of its intersection with Sunday Gulch Drive.                                                                              | 1-10 H                        |  |  |
| 9a-H         | <ul> <li>This design point is near the south boundary of Filing No. 1 where a flared end section captures flows from a swale running along this southern boundary of the study area.</li> <li>This design point captures flows from Sub-basin H-9a.</li> </ul> | 9b-H                          |  |  |
| 9b-H         | -This design point is near the south boundary of Filing No. 1 where a Type C<br>Inlet captures flows within Sub-basin H-9b.<br>-This design point combines flows from Sub-basins H-9a and H-9b.                                                                | 10-H                          |  |  |

|              | <b>DESIGN POINT DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                                                                                 |                               |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Design Point | Description                                                                                                                                                                                                             | Downstream<br>Design<br>Point |
| 10-H         | -This design point is at a sump inlet on the south side of the cul-de-sac at the east end of Buffalo Horn Drive. Surface flows from Sub-basin H-10 are combined with storm sewer flows from design point 9-H.           | 1-10 H                        |
| 1-10 H       | -Flows from design points 10-H and 1-8 H are combined at a manhole towards the north side of the cul-de-sac at the east end of Buffalo Horn Drive.                                                                      | 11-H                          |
| 11-H         | -This design point is at a sump inlet on the north side of the cul-de-sac at the<br>east end of Buffalo Horn Drive.<br>-This inlet captures flows from Sub-basin H-11                                                   | Н                             |
| н            | -This design point combines storm sewer flows from design point 11-H and 1-<br>10 H                                                                                                                                     | М                             |
| 1-J          | -This is design point is at an at-grade inlet on the north side of Schoonover<br>Drive just east of the intersection of Keyhole Drive and Schoonover Drive.<br>Bypass flows to DP 3-J                                   | 1-2-J                         |
| 2-J          | -This is design point is at an at-grade inlet on the sourth side of Schoonover<br>Drive just east of the intersection of Keyhole Drive and Schoonover Drive.<br>Bypass flows to DP 3-J                                  | 1-2-J                         |
| 1-2-J        | This design point represents a manhole combining flows from design points 1-J and 2-J                                                                                                                                   | 1-4-J                         |
| 3-J          | -This design point is at a 10-foot Type R Sump inlet on the north side of<br>Schoonover Drive and between its intersections with Big Johnson Drive and<br>Fishhook Drive. Q100 equalizes between inlets at 3-J and 4-J. | 1-4-J                         |
| 4-J          | -This design point is at a 10-foot Type R Sump inlet on the sourth side of<br>Schoonover Drive and between its intersections with Big Johnson Drive and<br>Fishhook Drive.                                              | 1-4-J                         |
| 1-4-J        | -This design point represents a manhole combining flows from Design Point 3-J and 4-J with flows from design point 1-2-J.                                                                                               | 5-J                           |
| 15-K         | This is an at-grade inlet in a future filing on the south side of Hazelton Drive just west of its intersection with Bird Ridge Drive.                                                                                   | 15-16-K                       |
| 16-K         | This is an at-grade inlet in a future filing on the north side of Hazelton Drive just west of its intersection with Bird Ridge Drive.                                                                                   | 15-16-K                       |
| 15-16-K      | This design point (future filing) represents the combination of flows from Design Points 15-J and 16-J.                                                                                                                 | 15-18-K                       |
| 17-K         | This design point represents a sump inlet on the south side of Hazelton Drive<br>just west of its intersection with Big Johnson Drive. This inlet will be<br>constructed as part of a future filing.                    | 15-18-K                       |
| 18-K         | This design point represents a sump inlet on the north side of Hazelton Drive<br>just west of its intersection with Big Johnson Drive. This inlet will be<br>constructed as part of a future filing.                    | 15-18-K                       |

|              | <b>DESIGN POINT DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                                                                                                                                                                                                    |                               |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Design Point | Description                                                                                                                                                                                                                                                                                                                                | Downstream<br>Design<br>Point |
| 15-18-K      | This design point is a manhole combining flows from inlets 17-K and 18-K with flows from design point 15-16-K. This manhole will be constructed as part of a future filing.                                                                                                                                                                | 6-J                           |
| 19-K         | This design point represents a sump inlet on the south side of Lowline Drive<br>just west of its intersection with Big Johnson Drive. This inlet will be<br>constructed as part of a future filing.                                                                                                                                        | 19-20-K                       |
| 20-К         | This design point represents a sump inlet on the north side of Lowline Drive<br>just west of its intersection with Big Johnson Drive. This inlet will be<br>constructed as part of a future filing.                                                                                                                                        | 19-20-К                       |
| 19-20-K      | This design point is at a manhole combining flows from 19-K and 20-K. This manhole will be constructed as part of a future filing.                                                                                                                                                                                                         | 5-J                           |
| 21-K         | This design point is at an at-grade inlet on the west side of Big Johnson Drive<br>south of its intersection with Hazelton Drive and just north of Trails at Aspen<br>Ridge Filing No. 2. This inlet will be constructed as part of a future filing.                                                                                       | 7-J                           |
| 22-K         | This design point represents two at-grade inlets on the east side of Big Johnson<br>Drive. One inlet is located roughly halfway up the basin at the Big Johnson and<br>Lowline Drive intersection and the other is located just north of Trails at Aspen<br>Ridge Filing No. 2. This inlet will be constructed as part of a future filing. | 7-J                           |
| 5-J          | This design point represents a manhole in Big Johnson Drive combining flows from Design Points 19-20-K, 1-4-J, and roughly half of 22-K                                                                                                                                                                                                    | 6-J                           |
| 6-J          | This design point represents a manhole in Big Johnson Drive at its intersection with Hazelton Drive combining flows from Design Points 5-J and 15-18-K                                                                                                                                                                                     | 7-J                           |
| 7-J          | This design point represents a manhole in Big Johnson Drive just north of Trails<br>at Aspen Ridge Filing No. 2 which combines the flows from 6-J with flows from<br>Design Point 21-K and 22-K                                                                                                                                            | OS-2-K                        |
| 1-K          | - Type C inlet in open space represented by Sub-basin K-1                                                                                                                                                                                                                                                                                  | OS-2 -K                       |
| 2-K          | - Sump inlet on Nutterbutter Point just west of the intersection of Nutterbutter<br>Point and Big Johnson Drive. Captures flows from Sub-basin K-2.                                                                                                                                                                                        | OS-2 -K                       |
| OS-2 -K      | This manhole in Big Johnson Drive combines flows from Design Points K-OS and 1+2-K                                                                                                                                                                                                                                                         | OS-4-K                        |
| 3+4-K        | -At-grade inlet on Turtle Lake Way just west of the intersection of Turtle Lake<br>Way and Big Johnson. Captures flows from Sub-basin K-3+4.                                                                                                                                                                                               | OS-4-K                        |
| OS-4-K       | -Manhole in Big Johnson Drive and Turtle Lake Way intersection combining<br>Design Points 3+4-K and OS-2-K                                                                                                                                                                                                                                 | OS-12-K                       |
| 5-K          | -At-grade inlet west of the intersection of Bear Track Point and Bird Ridge<br>Drive (north side of Bear Track Point). Captures flows from Sub-basin K-5.                                                                                                                                                                                  | 5-6-K                         |

|              | <b>DESIGN POINT DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                                                                                                        |                               |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|
| Design Point | Description                                                                                                                                                                                                                                    | Downstream<br>Design<br>Point |
| 6-K          | -At-grade inlet west of the intersection of Bear Track Point and Bird Ridge<br>Drive (south side of Bird Ridge Drive). Combines captured flows from Sub-<br>basin K-6 with flows from Design Point 5-K.                                        | 5-8-K                         |
| 7-K          | -At-grade inlet on Bird Ridge Drive north of intersection with Roundhouse Drive (west side of road). Captures flows from Sub-basin K-7.                                                                                                        | 5-8-K                         |
| 8-K          | -At-grade inlet on Bird Ridge Drive north of intersection with Roundhouse<br>Drive (east side of road). Captures flows from Sub-basin K-8.                                                                                                     | 5-8-K                         |
| 5-8-K        | -Manhole in Bird Ridge Drive combining flows from Design Point 5-6-K with flows from Design Points 7-K and 8-K                                                                                                                                 | 5-10-K                        |
| 9-K          | -At-grade inlet on Roundhouse drive west of intersection with Bird Ridge Drive.<br>Captures flows from Sub-basin K-9.                                                                                                                          | 9-10-K                        |
| 10-K         | -At-grade inlet on Roundhouse drive west of intersection with Bird Ridge Drive.<br>Captures flows from Sub-basin K-10.                                                                                                                         | 9-10-K                        |
| 9-10-K       | -Manhole in Roundhouse Drive combining flows from Design Points 9-K and 10-K                                                                                                                                                                   | 5-10-K                        |
| 5-10-K       | -Manhole in Roundhouse Drive and Bird Ridge Drive intersection combining flows from Design Points 9-10-K and 5-8-K                                                                                                                             | 5-12-K                        |
| 11+12-K      | -Sump inlet on Roundhouse Drive just west of intersection with Big Johnson<br>Drive on the south side road. Captures flows from Sub-basins K-11 and K-12.                                                                                      | 5-12-K                        |
| 5-12-K       | -Manhole combining flows from 5-10-K and 11+12-K                                                                                                                                                                                               | OS-12-K                       |
| OS-12-K      | -Manhole combining flows from 5-12-K and OS-4-K at intersection of Big<br>Johnson Drive and Roundhouse Drive.                                                                                                                                  | OS-14-K                       |
| 13-K         | -Sump inlet on the west side of Big Johnson Drive located mid-block between<br>Roundhouse Drive and Legacy Hill Drive. Captures flows from Sub-basin K-13.                                                                                     | OS-14-K                       |
| 14-K         | -Sump inlet on the east side of Big Johnson Drive located mid-block between<br>Roundhouse Drive and Legacy Hill Drive. This inlet captures flows from sub-<br>basin K-14 and combines them with flows captured from Sub-basin OS-East<br>Side. | OS-14-K                       |
| OS-14-K      | -Manhole combining flows from OS-12-K, 13-K, and 14-K                                                                                                                                                                                          | К                             |
| OS-E         | -Type C inlet capturing flows from sub-basin OS-East Side. Flows will be<br>conveyed to Design Point 14-K via 18-inch storm pipe.                                                                                                              | К                             |

|                        | <b>DESIGN POINT DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                                                                                                                                                                         |                               |  |  |  |
|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|--|--|--|
| Design Point           | Description                                                                                                                                                                                                                                                                                                     | Downstream<br>Design<br>Point |  |  |  |
| К                      | -This design point combines storm sewer flows from design points 1-14-K, 2-I, and 1-I in a manhole located at the intersection of Big Johnson Drive and Legacy Hill Drive.                                                                                                                                      | 3-I                           |  |  |  |
| 1-I                    | -This design point is at a sump inlet on the north side of Legacy Hill Drive just<br>west of its intersection with Big Johnson Drive.<br>-Flows from Sub-basin I-1 are captured at this inlet.                                                                                                                  | K                             |  |  |  |
| 2-I                    | -This design point is at a sump inlet on the south side of Legacy Hill Drive just<br>west of its intersection with Big Johnson Drive.<br>-Flows from Sub-basin I-2 are captured at this inlet.                                                                                                                  | K                             |  |  |  |
| 3-I                    | -This design point is at a sump inlet at the south side of the cul-de-sac at the east<br>end of Falling Rock Drive.<br>-Flows from Sub-basin I-3 are captured by this inlet                                                                                                                                     | М                             |  |  |  |
| I                      | -This design point represents the combination of storm sewer flows from design<br>point K with flows captured by the inlet at design point 3-I                                                                                                                                                                  | М                             |  |  |  |
| М                      | -This design point represents the combinate of all of the flows directed to the<br>East Pond.<br>-Included Sub-basins: OS-1, A-1 to A-4, B-1, C-1 to C-8, D-1, E-1, E-2, F-1 to<br>F-8, H-1 to H-11, I-1 to I-3, K1 to K-14, K15-22, OS-East Side, and M                                                        | East Pond<br>Discharge        |  |  |  |
| East Pond<br>Discharge | -This design point is at the discharge structure from the East Pond.<br>-Developed flows from the proposed improvements will be metered out by this<br>structure at predevelopment levels as determined by a combination of UD-<br>Detention and SWMM modeling of the Full Spectrum Extended Detention<br>Basin | Existing<br>Swale             |  |  |  |

- Generally, flows will sheet flow off developed lots towards adjacent streets which will capture flows and direct them downstream to the nearest inlets. After capture in inlets the flows will be conveyed onwards towards the downstream detention basin via storm sewer.

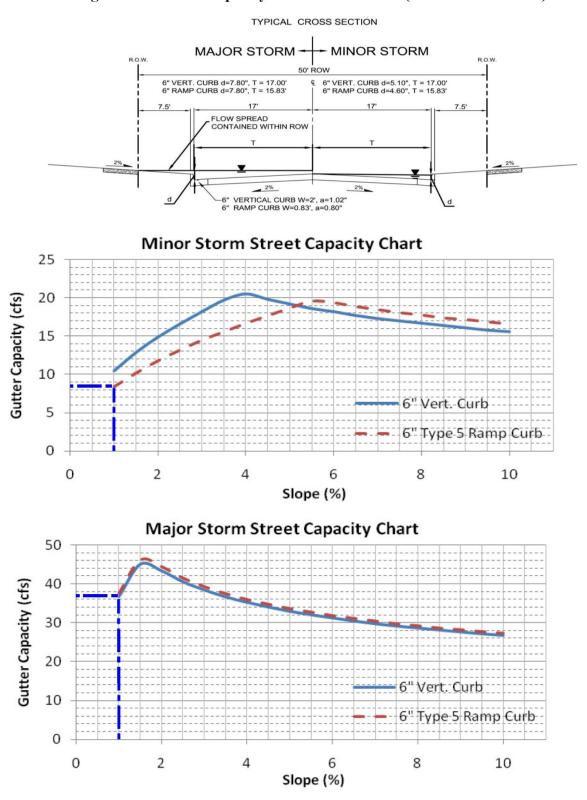
## b. Marksheffel Tributary to Jimmy Camp Creek:

Under proposed conditions flows for this small basin at the northeast corner of the study area will be directed to a small proposed detention pond near the northeast corner of the proposed Trails at Aspen Ridge development. Sub-basins and Design Points within this major basin are summarized and described in the following tables:

| SUB-BASIN SUMMARY<br>TRAILS AT ASPEN RIDGE FILING NO. 4<br>MARKSHEFFEL TRIBUTARY<br>TO JIMMY CAMP CREEK |       |     |      |  |  |  |  |
|---------------------------------------------------------------------------------------------------------|-------|-----|------|--|--|--|--|
| Basin                                                                                                   | Area  | Q5  | Q100 |  |  |  |  |
|                                                                                                         | acres | cfs | cfs  |  |  |  |  |
| L1                                                                                                      | 2.23  | 4.1 | 9.2  |  |  |  |  |
| L2                                                                                                      | 2.91  | 5.9 | 13.0 |  |  |  |  |
| L3                                                                                                      | 1.43  | 3.0 | 6.6  |  |  |  |  |
| L4                                                                                                      | 1.70  | 3.3 | 7.6  |  |  |  |  |
| L5                                                                                                      | 0.10  | 0.2 | 0.5  |  |  |  |  |
| L6                                                                                                      | 0.05  | 0.1 | 0.2  |  |  |  |  |
| L7                                                                                                      | 0.68  | 0.5 | 2.4  |  |  |  |  |
| L8                                                                                                      | 0.20  | 0.2 | 0.9  |  |  |  |  |

| TRAILS AT A  | PROPOSED DESIGN POINT SUMMARY<br>TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)<br>Marksheffel Tributary to Jimmy Camp Creek |                        |               |                 |  |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------------|-----------------|--|--|--|--|
| Design Point | Sub-Basins                                                                                                                          | Total<br>Area<br>(ac.) | Q(5)<br>(cfs) | Q(100)<br>(cfs) |  |  |  |  |
| SUB-BASIN L5 | SUB-BASIN L5                                                                                                                        | 0.10                   | 0.23          | 0.50            |  |  |  |  |
| SUB-BASIN L6 | SUB-BASIN L6                                                                                                                        | 0.05                   | 0.11          | 0.24            |  |  |  |  |
| 1-L          | SUB-BASINS L5 & L6                                                                                                                  | 0.15                   | 0.34          | 0.74            |  |  |  |  |
| SUB-BASIN L2 | SUB-BASIN L2                                                                                                                        | 2.91                   | 5.90          | 12.99           |  |  |  |  |
| 2-L          | SUB-BASINS L2, L5 & L6                                                                                                              | 3.06                   | 6.19          | 13.64           |  |  |  |  |
| 3-L          | SUB-BASIN L3                                                                                                                        | 1.43                   | 2.98          | 6.57            |  |  |  |  |
| 4-L          | SUB-BASINS L2, L3, L5 & L6                                                                                                          | 4.49                   | 9.08          | 20.01           |  |  |  |  |
| 5-L          | SUB-BASINS L1-L6                                                                                                                    | 8.42                   | 15.64         | 34.94           |  |  |  |  |
| 6-L          | NE POND (SUB-BASINS L1-L7)                                                                                                          | 9.09                   | 15.53         | 35.92           |  |  |  |  |
| 7-L          | NE POND DISCHARGE                                                                                                                   | 9.09                   | 0.70          | 7.80            |  |  |  |  |
| 8-L          | SITE DISCHARGE                                                                                                                      | 9.30                   | 0.89          | 8.67            |  |  |  |  |

|              | <b>DESIGN POINT DESCRIPTIONS</b><br>(Gray shading: Covered in previous drainage report)                                                                               |                       |  |  |  |  |  |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|--|--|--|--|--|
| Design Point | sign Point Description                                                                                                                                                |                       |  |  |  |  |  |
| SUB-BASIN L5 | At this point SUB-BASIN L5 is captured by an at-grade inlet on the north boundary of the development.                                                                 | 1-L                   |  |  |  |  |  |
| SUB-BASIN L6 | At this point SUB-BASIN L6 is captured by an at-grade inlet on the north boundary of the development.                                                                 | 1-L                   |  |  |  |  |  |
| 1-L          | This design point represents a manhole combining flows from SUB-BASINS L5 & L6.                                                                                       | 2-L                   |  |  |  |  |  |
| SUB-BASIN L2 | At this point flows from SUB-BASIN L2 are captured by an at-grade inlet on the south side of Winner Creek Drive at its intersection with Blackmer Street.             | 2-L                   |  |  |  |  |  |
| 2-L          | This design point represents a manhole combining flows from SUB-BASINS L2, L5 & L6.                                                                                   | 4-L                   |  |  |  |  |  |
| 3-L          | At this point flows from SUB-BASIN L3 are captured by an at-grade inlet on the east side of Big Johnson Drive just south of its intersection with Winner Creek Drive. | 4-L                   |  |  |  |  |  |
| 4-L          | This design point represents a manhole combining flows from SUB-BASINS L2, L3, L5 & L6.                                                                               | 5-L                   |  |  |  |  |  |
| 5-L          | This design point represents a pair of sump inlets capturing flows from SUB-BASIN L4 & L1 and combining these flows with flows from SUB-BASINS L2, L3, L4, L5 & L6.   | 6-L                   |  |  |  |  |  |
| 6-L          | This represents the total flow into the NE POND (SUB-BASINS L1-L7)                                                                                                    | 7-L                   |  |  |  |  |  |
| 7-L          | NE POND Discharge.                                                                                                                                                    | 8-L                   |  |  |  |  |  |
| 8-L          | Total site discharge.                                                                                                                                                 | Bradley Road<br>Ditch |  |  |  |  |  |


# VIII. Drainage Facility Design

### A. Street Capacity

The width of the typical section for streets within Filing No. 4 will be 35 feet from back of curb to back of curb. Curb heights will be 6-inch. These streets will generally utilize EPC Optional Type C curb and gutter with EPC Type A curb and gutter used for the curb radii through intersections. The following table lists streets and capacities by Design Point:

|                                 | Table<br>STREET CAPACITIES<br>TRAILS AT ASPEN RIDGE FILING NO. 4 |                                       |                                              |            |                                                     |                       |                                                |                                             |                                  |  |
|---------------------------------|------------------------------------------------------------------|---------------------------------------|----------------------------------------------|------------|-----------------------------------------------------|-----------------------|------------------------------------------------|---------------------------------------------|----------------------------------|--|
| Street                          | Sub-<br>basin                                                    | BYPASS<br>SOURCE<br>(Design<br>Point) | Q(5)<br>BYPASS<br>FLOWS<br>RECEIVED<br>(cfs) | Slope<br>% | ROAD<br>ROAD<br>CAPACITY<br>MINOR<br>STORM<br>(cfs) | Q(5)<br>TOTAL<br>FLOW | Q(100)<br>BYPASS<br>FLOWS<br>RECEIVED<br>(cfs) | ROAD<br>CAPACITY<br>MAJOR<br>STORM<br>(cfs) | Q(100)<br>TOTAL<br>FLOW<br>(cfs) |  |
| SCHOONOVER<br>DR.               | J1                                                               | N/A                                   | -                                            | 1.0%       | 10.4                                                | 10.2                  | -                                              | 41.7                                        | 23.5                             |  |
| SCHOONOVER<br>DR.               | J2                                                               | N/A                                   | -                                            | 1.0%       | 10.4                                                | 1.7                   | -                                              | 41.7                                        | 3.8                              |  |
| SCHOONOVER<br>DR.               | J3                                                               | J1                                    | 3.4                                          | 1.0%       | 10.4                                                | 7.1                   | 13.5                                           | 41.7                                        | 21.6                             |  |
| SCHOONOVER<br>DR.               | J4                                                               | J2                                    | -                                            | 1.0%       | 10.4                                                | 1.2                   | 0.1                                            | 41.7                                        | 2.6                              |  |
| WINNER CREEK                    | L1                                                               | N/A                                   | -                                            | 2.9%       | 17.8                                                | 4.1                   | -                                              | 44.0                                        | 9.2                              |  |
| WINNER CREEK                    | L2                                                               | N/A                                   | -                                            | 2.9%       | 17.8                                                | 5.9                   | -                                              | 44.0                                        | 13.0                             |  |
| BIG JOHNSON<br>DRIVE            | L3                                                               | N/A                                   | -                                            | 2.5%       | 16.5                                                | 3.0                   | -                                              | 46.0                                        | 6.6                              |  |
| BIG JOHNSON<br>DRIVE            | L4                                                               | N/A                                   | -                                            | 2.5%       | 16.5                                                | 3.3                   | -                                              | 46.0                                        | 7.6                              |  |
| BLACKMER DR.                    | L5                                                               | N/A                                   | -                                            | 3.0%       | 10.6                                                | 0.2                   | -                                              | 45.8                                        | 0.5                              |  |
| BLACKMER DR.                    | L6                                                               | N/A                                   | -                                            | 3.0%       | 10.6                                                | 0.1                   | -                                              | 45.8                                        | 0.2                              |  |
| HAZELTON DR.<br>(Future Filing) | K15                                                              | N/A                                   | -                                            | 2.4%       | 16.2                                                | 3.0                   | -                                              | 46.5                                        | 6.6                              |  |
| HAZELTON DR.<br>(Future Filing) | K16                                                              | N/A                                   | -                                            | 2.4%       | 16.2                                                | 2.4                   | -                                              | 46.5                                        | 5.4                              |  |
| HAZELTON DR.<br>(Future Filing) | K17                                                              | K15                                   | -                                            | 2.0%       | 14.8                                                | 0.9                   | 1.2                                            | 49.1                                        | 3.1                              |  |
| HAZELTON DR.<br>(Future Filing) | K18                                                              | K16                                   | -                                            | 2.0%       | 14.8                                                | 3.5                   | 0.6                                            | 49.1                                        | 8.4                              |  |
| LOWLINE DR.<br>(Future Filing)  | K19                                                              | N/A                                   | -                                            | 2.0%       | 14.8                                                | 1.8                   | -                                              | 49.1                                        | 4.0                              |  |
| LOWLINE DR.<br>(Future Filing)  | K20                                                              | N/A                                   | -                                            | 2.0%       | 14.8                                                | 5.4                   | -                                              | 49.1                                        | 11.8                             |  |
| BIG JOHNSON<br>DR.              | K21                                                              | N/A                                   | -                                            | 4.0%       | 20.0                                                | 0.9                   | -                                              | 39.9                                        | 2.0                              |  |
| BIG JOHNSON<br>DR.              | K22                                                              | N/A                                   | -                                            | 4.0%       | 20.0                                                | 3.7                   | -                                              | 39.9                                        | 9.2                              |  |

Nomograph 7-7 from the DCM is shown below:





#### Notes:

- EPC Optional Type C curb and gutter was used for all streets.
- The nomograph (Figure 7-7) above was used to calculate capacities for the EPC Type C (Local/Residential) streets within the project area. Compared to requirements in the El Paso DCM this nomograph is slightly more conservative for the major storm (7.8-inch depth versus 12-inch depth in Table 6-1 of the El Paso County DCM) and identical for the minor/initial storm.

### B. Inlet Capacity

In accordance with the DCM, this project will use Type R inlets. On-grade inlet capacities were determined utilizing UD-Inlet. Sump inlet capacities were determined utilizing DCM Nomograph 8-11 shown below. The following Table 6.2 lists inlets by design point and corresponding capacity. Table 6.3 describes overflow routing for each sump inlet.

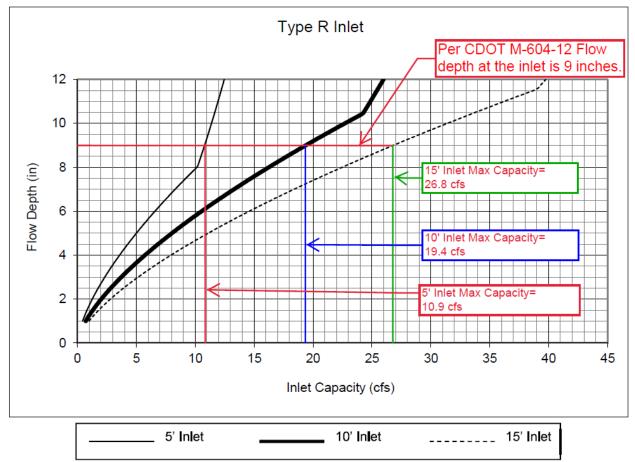



Figure 2-Inlet Capacity - Sump Conditions (DCM Figure 8-11)

|                                                      | Table 6.2         PROPOSED INLET SUMMARY              |                       |               |   |                   |                                  |                         |                      |      |       |                          |                                                      |
|------------------------------------------------------|-------------------------------------------------------|-----------------------|---------------|---|-------------------|----------------------------------|-------------------------|----------------------|------|-------|--------------------------|------------------------------------------------------|
|                                                      | TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6) |                       |               |   |                   |                                  |                         |                      |      |       |                          |                                                      |
| DESIGN<br>POINT<br>(#-Letter)<br>or<br>SUB-<br>BASIN | SUB-<br>BASINS                                        | TOTAL<br>AREA<br>(AC) | SIZE<br>(Ft.) |   | ilet<br>condition | Q(5)<br>BYPASS<br>FLOWS<br>(cfs) | Q(5)<br>TOTAL<br>INFLOW | Q5 INLET<br>CAPACTIY |      |       | MAX<br>INLET<br>CAPACITY | NOTES:                                               |
| (Letter#)                                            | 1110                                                  |                       | ` ´           |   |                   |                                  |                         |                      |      |       |                          | T 1 8 T 4                                            |
| 5-L                                                  | L1, L2<br>BYPASS                                      | 2.23                  | 10            | R | SUMP              | -                                | 4.13                    | 4.1                  | -    | 11.73 | 19.3                     | L1 & L4 are<br>paired 10' inlets                     |
| 3-L                                                  | L3                                                    | 1.43                  | 10            | R | AT-GRADE          | -                                | 2.98                    | 3.0                  | 1.2  | 6.57  | 5.4                      |                                                      |
| 5-L                                                  | L4                                                    | 1.70                  | 10            | R | SUMP              | -                                | 3.30                    | 3.3                  | -    | 8.80  | 19.3                     | L1 & L4 are<br>paired 10' inlets                     |
| L2                                                   | L2                                                    | 2.91                  | 15            | R | AT-GRADE          | -                                | 5.90                    | 5.9                  | 2.5  | 12.99 | 10.5                     |                                                      |
| L5                                                   | L5                                                    | 0.10                  | 5             | R | AT-GRADE          | -                                | 0.23                    | 0.2                  | -    | 0.50  | 0.5                      |                                                      |
| L6                                                   | L6                                                    | 0.05                  | 5             | R | AT-GRADE          | -                                | 0.11                    | 0.1                  | -    | 0.24  | 0.2                      |                                                      |
|                                                      |                                                       |                       |               |   |                   |                                  |                         |                      |      |       |                          |                                                      |
| 1-J                                                  | J1                                                    | 5.89                  | 10            | R | AT-GRADE          | 3.4                              | 10.21                   | 6.8                  | 13.5 | 23.54 | 10.0                     |                                                      |
| 2-J                                                  | J2                                                    | 0.90                  | 10            | R | AT-GRADE          | -                                | 1.72                    | 1.7                  | 0.1  | 3.78  | 3.7                      |                                                      |
| 3-J                                                  | J3                                                    | 1.81                  | 10            | R | SUMP              | -                                | 7.09                    | 7.1                  | -    | 21.64 | 19.3                     | Bypass from J1<br>Q100 surcharge<br>equalizes to 4-J |
| 4-J                                                  | J4                                                    | 0.56                  | 10            | R | SUMP              | -                                | 1.16                    | 1.2                  | -    | 2.63  | 19.3                     | Bypass from J2                                       |
| 15-K                                                 | K15                                                   | 1.65                  | 10            | R | AT-GRADE          | -                                | 2.99                    | 3.0                  | 1.2  | 6.59  | 5.4                      | Future Filing                                        |
| 16-K                                                 | K16                                                   | 1.20                  | 10            | R | AT-GRADE          | -                                | 2.44                    | 2.4                  | 0.6  | 5.37  | 4.8                      | Future Filing                                        |
| 17 <b>-</b> K                                        | K17                                                   | 0.41                  | 5             | R | SUMP              | -                                | 0.87                    | 0.9                  | -    | 3.10  | 11                       | Road<br>Construction in<br>Future Filing             |
| 18-K                                                 | K18                                                   | 1.90                  | 5             | R | SUMP              | -                                | 3.54                    | 3.5                  | -    | 8.37  | 11                       | Road<br>Construction in<br>Future Filing             |
| 19 <b>-</b> K                                        | K19                                                   | 0.93                  | 10            | R | SUMP              | -                                | 1.82                    | 1.8                  | -    | 4.02  | 11                       | Road<br>Construction in<br>Future Filing             |
| 20-К                                                 | K20                                                   | 2.78                  | 10            | R | SUMP              | -                                | 5.35                    | 7.2                  | -    | 11.79 | 19.3                     | Road<br>Construction in<br>Future Filing             |
| 21-К                                                 | K21                                                   | 0.44                  | 10            | R | AT-GRADE          | -                                | 0.93                    | 0.9                  | -    | 2.04  | 2.0                      | Big Johnson Dr.                                      |
| 22-К                                                 | K22                                                   | 2.18                  | 2 X<br>10     | R | AT-GRADE          | -                                | 3.67                    | 3.7                  | -    | 9.23  | 9.2                      | Big Johnson Dr.                                      |

|       | Table 6.3<br>Overflow Routing<br>Trails at Aspen Ridge, Filing No. 4                                                                                                                                                                                |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Inlet | Overflow Routing Under Inlet Blockage Conditions                                                                                                                                                                                                    |
| 5-L   | In case of blockage of this inlet flows will surcharge the curb and gutter and flow directly into the NE Detention pond.                                                                                                                            |
| 3-J   | In case of blockage flows will surcharge the crown of the road and enter inlet 4-J. If<br>both inlets are blocked flows will back up the curb and gutter to Big Johnson Drive<br>and continue downstream along Big Johnson Drive to the next inlet. |
| 4-J   | In case of blockage flows will surcharge the crown of the road and enter inlet 3-J. If<br>both inlets are blocked flows will back up the curb and gutter to Big Johnson Drive<br>and continue downstream along Big Johnson Drive to the next inlet. |
| 17-K  | In case of blockage flows will continue up the curb and gutter to and along Big<br>Johnson Drive until reaching the next downstream inlet.                                                                                                          |
| 18-K  | In case of blockage flows will continue up the curb and gutter to and along Big<br>Johnson Drive until reaching the next downstream inlet.                                                                                                          |
| 19-K  | In case of blockage flows will continue up the curb and gutter to and along Big<br>Johnson Drive until reaching the next downstream inlet.                                                                                                          |
| 20-K  | In case of blockage flows will continue up the curb and gutter to and along Big<br>Johnson Drive until reaching the next downstream inlet.                                                                                                          |

### C. Storm Sewer Capacities

Storm sewer capacities and HGL's were analyzed in StormCAD. Summary tables and HGL profiles for the Q5 and Q100 events can be found in Appendix A.

### D. Detention

Summary information for the East Pond is listed below. Supporting UD-Detention spreadsheets and SWMM analysis for the East Pond can be found in Appendix A. The East and West Ponds will be privately owned and maintained by the Waterview II Metropolitan District.

|                                                    | Table 6.5         |                  |                                                                   |                                  |                |                  |           |            |             |                |
|----------------------------------------------------|-------------------|------------------|-------------------------------------------------------------------|----------------------------------|----------------|------------------|-----------|------------|-------------|----------------|
|                                                    |                   |                  | Por                                                               | nd Summan                        | ry Table       |                  |           |            |             |                |
|                                                    |                   |                  |                                                                   | Approximate Detention<br>Volumes |                |                  | EX        | Proposed   | EX          | Proposed       |
| Major<br>Basin                                     | Pond<br>ID        | ~                | Contributing<br>Basins                                            | WQCV                             | EURV           | Q100             | 5<br>Year | 5<br>Year  | 100<br>Year | 100<br>Year    |
|                                                    |                   |                  |                                                                   | AcFt.                            | AcFt.          | AcFt.            | (CFS)     | (CFS)      | (CFS)       | (CFS)          |
| <u>West Fork</u><br>Jimmy Camp<br>Creek            | East<br>Pond      | UD-<br>Detention | OS-1, A, B, C,<br>D, E, F, G, J,<br>K, I, H, M, &<br>OS-East Side |                                  | 5.835<br>6.581 | 17.083<br>18.001 | 22.3      | 6.7<br>6.0 | 144.6       | 120.0<br>139.6 |
| Marksheffel<br>Tributary to<br>Jimmy Camp<br>Creek | Northeast<br>Pond | UD-<br>Detention | L1-L7                                                             | .162                             | .505           | 1.057            | 0.2       | 0.7        | 11.2        | 7.9            |

Trails at Aspen Ridge, Filing No. 4 = F6, Trails at Aspen Ridge, Full Buildout = FB

#### **Emergency Overflows**

|                                                   | Table 6.6      |                                                                                                                                                                                                                                                                        |  |  |  |  |  |
|---------------------------------------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|                                                   |                | Emergency Overflow Weirs                                                                                                                                                                                                                                               |  |  |  |  |  |
| Major<br>Basin                                    | Pond ID        | Description of Emergency Overflow Weir                                                                                                                                                                                                                                 |  |  |  |  |  |
| West Fork -<br>Jimmy<br>Camp Creek                | East Pond      | The emergency overflow weir for this pond will release emergency overflows<br>to a proposed swale along the edge of the development boundary and direct<br>the flows south to an existing swale flowing to the southeast. Flows will then<br>follow historic patterns. |  |  |  |  |  |
| Marksheffel<br>Tributary to<br>Jimmy<br>Camp Cree | Northeast Pond | The emergency overflow weir for this pond will release emergency overflows<br>to the existing Bradley Road ditch running along the north side of the<br>proposed development. From this point flows will follow historic paths.                                        |  |  |  |  |  |

### **Outfall Analysis**

### East Pond

The outfall for the East Pond was analyzed in *MDDP-Matrix* to confirm that the receiving swale should remain stable after construction of the pond. Hydraflow Express was utilized to check the

velocity of the anticipated Full Buildout Q100 Discharge and calculated a velocity in the 48" outfall pipe of 12.9 feet per second. A second Hydraflow calculation was performed at the narrowest point in the swale receiving the discharge. The results of this calculation indicated that the anticipated velocity of a Q100 discharge from the pond is around 3.7 feet per second which is well below the maximum 100-year velocity and barely above the maximum low flow velocity indicated for erosive soils in Table 12-3 (shown on the following page) of the DCM regarding Hydraulic Design Criteria for natural unlined channels. Additionally, the outfall will discharge to a rip rap lined low tailwater basin designed in accordance with UDFCD criteria.

| Design Parameter                   | Erosive Soils or<br>Poor Vegetation | Erosion Resistant<br>Soils and Vegetation |
|------------------------------------|-------------------------------------|-------------------------------------------|
| Maximum Low-flow Velocity (ft/sec) | 3.5 ft/sec                          | 5.0 ft/sec                                |
| Maximum 100-year Velocity (ft/sec) | 5.0 ft/sec                          | 7.0 ft/sec                                |
| Froude No., Low-flow               | 0.5                                 | 0.7                                       |
| Froude No., 100-year               | 0.6                                 | 0.8                                       |
| Maximum Tractive Force, 100-year   | 0.60 lb/sf                          | 1.0 lb/sf                                 |

 Table 12-3. Hydraulic Design Criteria for Natural Unlined Channels

<sup>1</sup> Velocities, Froude numbers and tractive force values listed are average values for the cross section.

<sup>2</sup> "Erosion resistant" soils are those with 30% or greater clay content. Soils with less than 30% clay content shall be considered "erosive soils."

The Web Soil Survey for the site indicates that the Soils for the receiving swale are are classified as Stoneham sandy loam which is likely an erosive soil.

After receiving the East Pond Discharge, the existing swale will convey the stormwater to an existing detention feature on an adjacent property. According to the West Fork – Jimmy Camp Creek DBPS (See DPBS plan Sheet 6 in Appendix C of *MDDP-Matrix*) this existing detention feature is expected to receive up to 380 cfs for a Q100 event. The tributary drainage area treated by the East Pond makes up approximately 70 percent of the area tributary to the existing offsite pond. As the anticipated discharge from the East Pond is less than half (Filing No. 4: 120.0 cfs, Full Buildout: 139.6 cfs) of the the flow listed in the DBPS, the existing detention feature should not be adversely affected.

### Northeast Pond

Swale capacity calculations for the Bradley Road Ditch receiving the outfall of the Northeast detention pond indicate an anticipated Q100 velocity of 3.0 ft/s for the combined detention discharge and upstream Bradley Road flows. This velocity is considered stable for erosive soils, therefore, this road ditch should be considered a suitable outfall location nor should the ditch and downstream areas be adversely affected by the NE Pond discharge.

## SWMM Analysis: West Fork – Jimmy Camp Creek

Please note that the *MDDPA-Matrix* report analyzed the full buildout of the area tributary to the East Pond using pond inflow hydrographs generated in SWMM and input to UD-Detention because full build out of the basin will include detention ponds for the commercial areas along Bradley Road

in series with the East Pond. However, as these commercial areas are not anticipated to be developed prior to Trails at Aspen Ridge Filing No. 4, analysis of the East Pond for this filing utilized only the UD-Detention spreadsheet and considered all the upstream areas as undeveloped in order to confirm that the East Pond outlet structure for Filing No. 4 will conform to detention requirements in the DCM.

### East Pond Phasing:

The East Pond was constructed as part of Trails at Aspen Ridge Filing No. 1. The pond was built to the size required for full development of the upstream basin, so expansion of the pond volume is not required for this development. (This volume does **not** include developed flows from the commercial areas or OS-East Side. These areas will be required to construct full spectrum detention when developed.) The Filing No. 1 orifice plate for the East Pond outlet structure has been evaluated and found *adequate* to discharge the combined Filing No. 1, Filing No. 2, Filing No. 3 and Filing No. 4 developed flows in compliance with DCM Criteria. Future filings will require additional evaluations and, possibly, redesigns of the orifice plate to ensure compliance with the DCM and *MDDPA-Matrix* criteria.

## IX. Environmental Evaluations

## A. WETLAND IMPACTS

There are no designated wetland or riparian areas on site, and no anticipated impacts.

## **B. STORMWATER QUALITY**

All on-site detention facilities shall be designed to accommodate water quality requirements. As the development of each parcel progresses, the detention guidelines outlined in this report are to be upheld. Per Chapter 4, Section 4.1, of the El Paso County DCM, Volume 2, the DCM requires a Four Step Process for receiving water protection that focuses on reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainageways, and implementing long-term source controls.

## Step 1: Employ Runoff Reduction Practices

• Site specific landscaping will be done on each lot to decrease the connectivity of impervious areas. Grass lined swales will be used where possible to allow infiltration.

### <u>Step 2:</u> Stabilize Drainageways.

• The site is in the West Fork – Jimmy Camp Creek and Marksheffel tributary to Jimmy Camp Creek basins. Drainage fees, to be paid by the relevant Trails at Aspen Ridge (Waterview East) developers at the time of platting, will help fund future channel improvements. Specific information on future improvements to the Jimmy Camp Creek channel was unavailable for this report.

### Step 3: Provide Water Quality Capture Volume

• The East Pond and Northeast Pond both meet the DCM standards for the release rates of Full Spectrum Detention Ponds for Water Quality Capture Volumes.

### Step 4: Consider Need for Industrial and Commercial BMPs

• There are no commercial or industrial components of this development, therefore no BMPs of this nature are required. The Full Spectrum Detention BMP is provided for the proposed development by the East and Northeast Ponds.

## C. PERMITTING REQUIREMENTS

No additional permitting requirements are expected at this time.

## X. Erosion Control Plan

A grading and erosion control plan (GEC) for Trails at Aspen Ridge Filing No. 4 will be completed. The GEC incorporates straw wattles, straw bale check dams, silt fence, vehicle tracking control, inlet & outlet control, sedimentation basins and other best management practices (BMPs) identified in the DCM Volume 2. Please refer to the GEC for phasing and procedural information for adaptations between the Filing No. 4 GEC and the overall GEC.

## XI. Drainage Fees

| Land Use Type                  | %<br>Impervious | Area<br>(Acres) | Impervious<br>Acres |
|--------------------------------|-----------------|-----------------|---------------------|
| West Fork Jin                  | mmy Camp Cre    | eek             |                     |
| Residential (1/8 acre or less) | 65%             | 7.518           | 4.887               |
| Park                           | 7%              | 0.634           | 0.044               |
|                                | Total           | 8.152           | 4.931               |

Impervious Area Calculations

| Marksheffel Tributary to Jimmy Camp Creek |       |       |       |  |  |  |  |
|-------------------------------------------|-------|-------|-------|--|--|--|--|
| Residential (1/8 acre or less)            | 65%   | 7.831 | 5.090 |  |  |  |  |
| Park/Detention/Open Space                 | 7%    | 1.919 | 0.134 |  |  |  |  |
|                                           | Total | 9.749 | 5.224 |  |  |  |  |

|                        | TRAILS AT ASPEN RIDGE FILING NO. 4                  |             |                   |                |              |          |  |  |  |
|------------------------|-----------------------------------------------------|-------------|-------------------|----------------|--------------|----------|--|--|--|
|                        | 2021 Drainage and Bridge Fees                       |             |                   |                |              |          |  |  |  |
|                        | Impervious                                          |             |                   |                |              | Drainage |  |  |  |
|                        | Area                                                | Fee/ Imp.   |                   | Reimbursable   | Fee Due at   | Fee      |  |  |  |
|                        | (ac.)                                               | Acre        | Fee Due           | Const. Costs   | Platting     | Credit   |  |  |  |
|                        |                                                     | Marksheffe  | l Tributary to Ji | mmy Camp Creek |              |          |  |  |  |
| Drainage Fee           | 5.224                                               | \$19,752.00 | \$103,188.66      | \$0.00         | \$103,188.66 | \$0.00   |  |  |  |
| Bridge Fee             | 5.224                                               | \$2,551.00  | \$13,326.97       | \$0.00         | \$13,326.97  | \$0.00   |  |  |  |
| Surety Fee             | 5.224                                               | \$7,285.00  | \$38,056.84       | \$0.00         | \$38,056.84  | \$0.00   |  |  |  |
| Sub-Total              |                                                     |             |                   | _              | \$154,572.47 | _        |  |  |  |
|                        |                                                     | West        | Fork Jimmy C      | amp Creek      |              | -        |  |  |  |
| Drainage Fee           | 4.931                                               | \$13,524.00 | \$66,685.51       | \$0.00         | \$66,685.51  | \$0.00   |  |  |  |
| Bridge Fee             | 4.931                                               | \$4,001.00  | \$19,728.54       | \$0.00         | \$19,728.54  | \$0.00   |  |  |  |
| Surety Fee 📐           | 4.931                                               | \$7,285.00  | \$35,922.34       | \$0.00         | \$35,922.34  | \$0.00   |  |  |  |
| Sub-Total              |                                                     |             |                   |                | \$122,336.38 | _        |  |  |  |
|                        | Delete surety fee for West Fork                     |             |                   |                |              |          |  |  |  |
| Overall Total          | Overall Total Jimmy Camp Creek. Only needed \$276,9 |             |                   |                |              |          |  |  |  |
| for Jimmy Camp Creek . |                                                     |             |                   |                |              |          |  |  |  |

# XII. Construction Cost Opinion

| Engineer's Estimate of Probable Construction Costs          |      |                 |             |              |
|-------------------------------------------------------------|------|-----------------|-------------|--------------|
| Trails at Aspen Ridge Filing No. 4                          |      |                 |             |              |
| Public Non-Reimbursable                                     |      |                 |             |              |
| Item                                                        | Unit | Quantity        | Unit Cost   | Extension    |
| 18" RCP                                                     | LF   | 404             | \$67.00     | \$27,068.00  |
| 24" RCP                                                     | LF   | 258             | \$81.00     | \$20,898.00  |
| 30" RCP                                                     | LF   | 873             | \$100.00    | \$87,300.00  |
| 36" RCP                                                     | LF   | 160             | \$124.00    | \$19,840.00  |
| 18" FES                                                     | EA   | 1               | \$402.00    | \$402.00     |
| TYPE I MANHOLE                                              | EA   | 0               | \$12,034.00 | \$0.00       |
| TYPE II MANHOLE                                             | EA   | 9               | \$6,619.00  | \$59,571.00  |
| 5' TYPE R INLET                                             | EA   | 2               | \$5,736.00  | \$11,472.00  |
| 10' TYPE R INLET                                            | EA   | 7               | \$7,894.00  | \$55,258.00  |
| 15' TYPE R INLET                                            | EA   | 1               | \$10,265.00 | \$10,265.00  |
| NE DETENTION/WQ POND<br>(Private: Waterview II Metro Dist.) | EA   | 1               | \$85,000.00 | \$85,000.00  |
|                                                             |      | Sub Total       |             | \$377,074.00 |
|                                                             |      | 10% Contingency |             | \$37,707.40  |
|                                                             |      | TOTAL:          |             | \$414,781.40 |

Since the engineer has no control over the cost of labor, materials, equipment or services furnished by others, or over the contractor's method of determining prices, or over the competitive bidding or market conditions, the opinion of probable construction costs provided herein are made on the basis of the engineer's experience and qualifications and represents the best judgment as an experienced and qualified professional familiar with the construction industry. The engineer cannot, and does not guarantee that proposals, bid or actual construction costs will not vary from the opinions of probable cost.

Please note that some inlets, manholes, and pipes described in this report will be constructed under future filings and were not included in the above Construction Cost Estimate. These items are located between Filings No. 2 and No. 4.

## XIII. Summary

The above report has demonstrated that the proposed development will comply with the governing DCM, ECM, previous drainage reports, and the El Paso County MS4 permit. No adverse effect on downstream infrastructure is anticipated. Therefore, we recommend approval of the proposed development.

# **XIV. References**

- 1. El Paso County Drainage Criteria Manual, Volume 1 & 2, El Paso County, May 2014
- 2. El Paso County Engineering Criteria Manual, El Paso County, Rev. December 2016
- 3. Web Soil Survey of El Paso County Area, Colorado. Unites States Department of Agriculture Soil Conservation Service.
- Flood Insurance Rate Maps for El Paso County, Colorado and Incorporated Areas, Panel 768 of 1300, Federal Emergency Management Agency, Effective Date December 7, 2018.
- 5. *Urban Storm Drainage Criteria Manual, Vol. 1-3* by Urban Drainage and Flood Control District (UDFCD), January 2016
- 6. West Fork Jimmy Camp Creek Drainage Basin Planning Study by Kiowa Engineering, revised October 2003
- 7. Jimmy Camp Creek Drainage Basin Planning Study, Development of Alternatives & Design of Selected Plan, Report by Kiowa Engineering, March 2015
- 8. **Big Johnson Reservoir/Crews Gulch Drainage Basin Planning Study,** by Kiowa Engineering, September 1991.
- 9. **"Amendment to Waterview Master Drainage Development Plan"**, completed by Springs Engineering, dated July 2014 (*MDDP-2014*)
- "Master Drainage Development Plan Amendment for Waterview East & Preliminary Drainage Plan for Trails at Aspen Ridge", Completed by Matrix Design Group, Dated August 2019 (MDDPA-Matrix)
- 11. "Final Drainage Report for Trails at Aspen Ridge Filing No. 1", completed by Matrix Design Group, Dated January 2020. (FDR-F1)
- 12. *"Final Drainage Report for Trails at Aspen Ridge Filing No. 2"*, completed by Matrix Design Group, Dated March 2021. (FDR-F2)
- 13. *"Final Drainage Report for Trails at Aspen Ridge Filing No. 3"*, completed by Matrix Design Group, Dated March 2021. (FDR-F3) (Approval Pending)
- 14. **"PDR Amendment for Trails at Aspen Ridge",** completed by Matrix Design Group, Dated April 2021. (PDRA-Matrix) (Approval Pending)

# XV. Appendices

# <u>Appendixa</u>

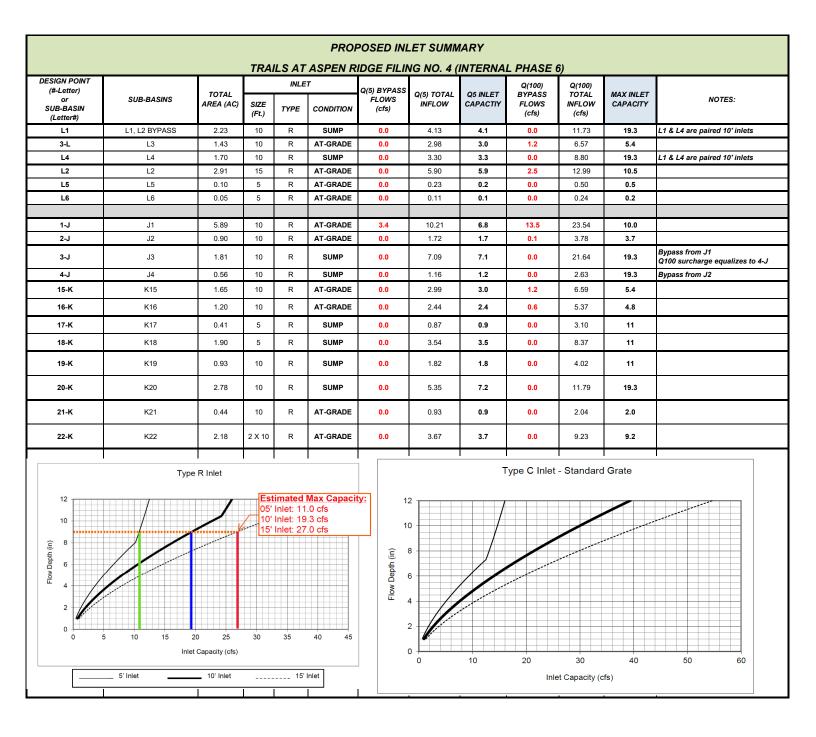
HYDROLOGIC AND HYDRAULIC CALCULATIONS

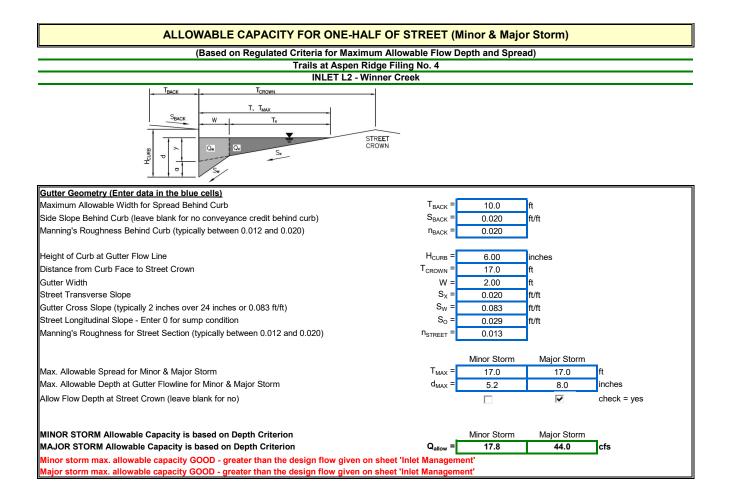
# Project Name

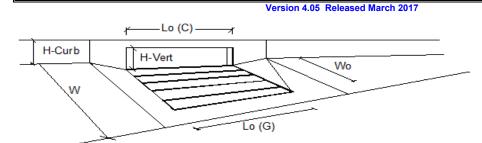
# TRAILS AT ASPEN RIDGE FILING NO. 4 (INTERNAL PHASE 6)

| Project Name:<br>Project Location:<br>Designer<br>Notes:   | TRAILS AT ASPEN RIDGE FILING NO. 4 (INT<br>EL PASO COUNTY<br>JTS<br>Existing Condition                                                                                                                                                                                                                                                                                                                                                     | TERNAL PHAS | SE 6)  |             |                    |                              |      |                           |             |      |         |         |           |         |                      |                    |          |              |                                | H               | nel Flow Type<br>leavy Meadow<br>Tillage/Field<br>ure and Lawns | 2<br>3      |                |             |       |       |      |       |
|------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------|-------------|--------------------|------------------------------|------|---------------------------|-------------|------|---------|---------|-----------|---------|----------------------|--------------------|----------|--------------|--------------------------------|-----------------|-----------------------------------------------------------------|-------------|----------------|-------------|-------|-------|------|-------|
| Average Channel Velocity<br>Average Slope for Initial Flow | 5<br>0.04                                                                                                                                                                                                                                                                                                                                                                                                                                  |             |        | channel vel |                    | s will be igno<br>e ignored) |      |                           |             |      |         |         |           |         |                      |                    |          |              |                                | Nearly<br>Grass | y Bare Ground<br>sed Waterway<br>Paved Areas                    | 5<br>6      |                |             |       |       |      |       |
|                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                            | Are         | a      |             | Surface Typ        |                              | 5    | I 'C' Value<br>Surface Ty | pe 3        | Com  | iposite | Initial |           | Lengths | True                 | Initial<br>Average |          |              | Channel Flow Type              | Velocity        | Channel                                                         | Tc<br>Total | Rainfall<br>i5 | Intensity & | i100  | Q100  | Q5   | Q100  |
| Major Basin / Sub-basin                                    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                   | sf          | acres  | C5          | (Imperviou<br>C100 | Area (SF)                    |      | (Undevelo)<br>C100        | Area        | C5   | C100    | ft      | Length ft | ft      | Channel<br>Length ft | Slope              | Tc (min) | (%)<br>Slope | (See Key above)<br>Ground Type | (ft/s)          | Tc (min)                                                        | (min)       | in/hr          | cfs         | in/hr | cfs   | cfs  | cfs   |
| West Fork Jimmy Camp Creek<br>/ OS - 1                     | The most northwestern portion of this<br>basin (7.268 Acres) outside of the<br>proposed Trails at Aspen Ridge<br>development was rerouted out of the Big<br>Johnson Reservoir basin by CDOT<br>construction of Powers Boulevard and<br>Bradley Road. Future development of the<br>rerouted area will require routing the<br>flows back to the Big Johnson Reservoir<br>to return the area to compliance with the<br>relevant DBPS studies. | 853,953.7   | 19.60  | 0.90        | 0.96               | 42,031.0                     | 0.09 | 0.36                      | 811,922.7   | 0.13 | 0.39    | 621.00  | 300.00    | 2146.00 | 2467.00              | 0.106              | 19.79    | 2.470        | 5.000                          | 1.5             | 26.5                                                            | 46.3        | 1.9            | 4.8         | 3.1   | 24.1  | 11.8 | 47.4  |
| West Fork Jimmy Camp Creek<br>/ WF-1                       | - The small area just outside the east<br>boundary of Trails at Aspen Ridge will be<br>kept off of the proposed project by raising<br>the elevation of the proposed trail along<br>this side of the development.                                                                                                                                                                                                                           | 5,187,332.2 | 119.08 | 0.90        | 0.96               |                              | 0.09 | 0.36                      | 5,187,332.2 | 0.09 | 0.36    | 530.00  | 300.00    | 3811.00 | 4041.00              | 0.089              | 20.22    | 2.940        | 5.000                          | 1.7             | 39.5                                                            | 59.8        | 1.6            | 17.1        | 2.7   | 115.2 | 21.4 | 97.6  |
| West Fork Jimmy Camp Creek<br>/ WF-2                       | Located at south end of study area.                                                                                                                                                                                                                                                                                                                                                                                                        | 921,440.7   | 21.15  | 0.90        | 0.96               |                              | 0.09 | 0.36                      | 921,440.7   | 0.09 | 0.36    | 300.00  | 300.00    | 1014.00 | 1014.00              | 0.080              | 15.74    | 6.114        | 5.000                          | 2.5             | 6.8                                                             | 22.6        | 2.8            | 5.4         | 4.8   | 36.5  | 5.5  | 31.1  |
| Marksheffel Tributary to<br>Jimmy Camp Creek / MKT-1       | Located at northeast corner of Trails at<br>Aspen Ridge PUD                                                                                                                                                                                                                                                                                                                                                                                | 314,083.1   | 7.21   | 0.90        | 0.96               |                              | 0.09 | 0.36                      | 314,083.1   | 0.09 | 0.36    | 300.00  | 300.00    | 1125.00 | 1125.00              | 0.056              | 17.74    | 3.000        | 5.000                          | 1.7             | 10.8                                                            | 28.6        | 2.5            | 1.6         | 4.2   | 10.9  |      |       |
| EXISTING CONDITIONS - DESIGN POINTS                        | INCLUDED SUB-BASINS                                                                                                                                                                                                                                                                                                                                                                                                                        |             |        |             |                    |                              |      |                           |             |      |         |         |           |         |                      |                    |          |              |                                |                 |                                                                 |             |                |             |       |       |      |       |
| OS-1                                                       | OS-1<br>(Note: 7.3 Acres diverted by CDOT from<br>Big Johnson)                                                                                                                                                                                                                                                                                                                                                                             | 853,953.7   | 19.60  | 0.90        | 0.96               | 42,031.0                     | 0.09 | 0.36                      | 811,922.7   | 0.13 | 0.39    | 621.00  | 300.00    | 2146.00 | 2467.00              | 0.106              | 19.79    | 2.470        | 5.000                          | 1.5             | 26.5                                                            | 46.3        | 1.9            | 4.8         | 3.1   | 24.1  | 11.8 | 47.4  |
| WF-1 (SWMM WF-East)                                        | WF-1 & OS-1                                                                                                                                                                                                                                                                                                                                                                                                                                | 6,041,285.9 | 138.69 | 0.90        | 0.96               | 42,031.0                     | 0.09 | 0.36                      | 5,999,254.9 | 0.10 | 0.36    | 621.00  | 300.00    | 5957.00 | 6278.00              | 0.106              | 20.49    | 2.771        | 5.000                          | 1.6             | 63.7                                                            | 84.2        | 1.3            | 16.9        | 2.1   | 108.1 | 33.2 | 139.1 |
| WF-2                                                       | WF-2                                                                                                                                                                                                                                                                                                                                                                                                                                       | 921,440.7   | 21.15  | 0.90        | 0.96               | 0.0                          | 0.09 | 0.36                      | 921,440.7   | 0.09 | 0.36    | 300.00  | 300.00    | 1014.00 | 1014.00              | 0.080              | 15.74    | 6.114        | 5.000                          | 2.5             | 6.8                                                             | 22.6        | 2.8            | 5.4         | 4.8   | 36.5  | 5.5  | 31.1  |
| TO WEST FORK JIMMY CAMP CREEK                              | WF-1, WF-2, & OS-1<br>(Basins are parallel so this is a sum of WF-<br>1 & WF-2.)                                                                                                                                                                                                                                                                                                                                                           | 6,962,726.5 | 159.84 | 0.90        | 0.96               | 42,031.0                     | 0.09 | 0.36                      | 6,920,695.5 | 0.09 | 0.36    |         | 0.00      |         | 0.00                 |                    | #DIV/0!  |              | 5.000                          |                 |                                                                 |             |                | 22.3        |       | 144.6 | 37.0 | 170.0 |
| MKT-1<br>TO MARKSHEFFEL TRIBUTARY TO JIMMY CAMP CREEK      | МКТ-1                                                                                                                                                                                                                                                                                                                                                                                                                                      | 314,083.1   | 7.21   | 0.90        | 0.96               | 0.0                          | 0.09 | 0.36                      | 314,083.1   | 0.09 | 0.36    | 300.00  | 300.00    | 1125.00 | 1125.00              | 0.056              | 17.74    | 3.000        | 5.000                          | 1.7             | 10.8                                                            | 28.6        | 2.5            | 1.6         | 4.2   | 10.9  |      |       |

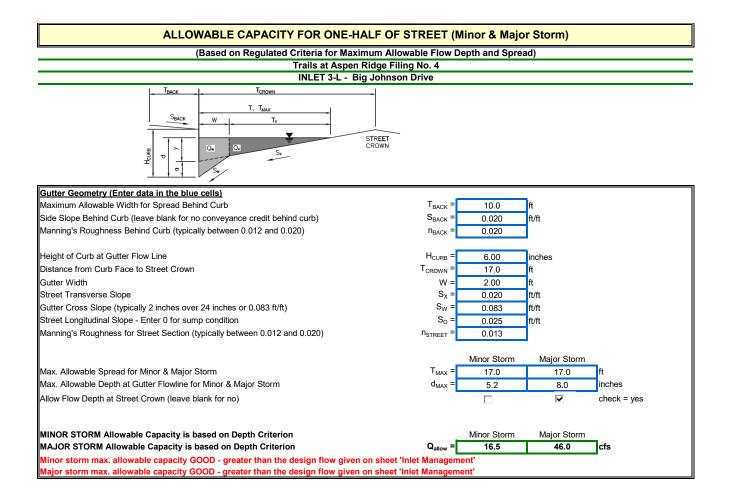
Note: -SWMM values are listed for the West Fork Jimmy Camp Creek Basin due to the required analysis of pond in series for that basin. SWMM Analysis can be found in the approved PDR for Trails at Aspen Ridge

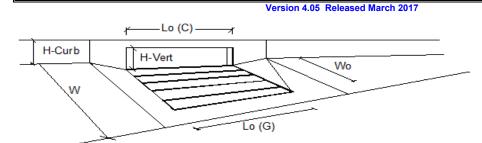

# **Rational Method - Existing Conditions**


| Project Name:                  | TRAILS AT ASPEN RIDO | GE FILING NO. 4 (INTE | RNAL PHASE 6)     |                                        |
|--------------------------------|----------------------|-----------------------|-------------------|----------------------------------------|
| Project Location:              | EL PASO COUNTY       |                       |                   |                                        |
| Designer                       | JTS                  |                       |                   |                                        |
| Notes:                         | Proposed Condition   |                       |                   |                                        |
|                                |                      |                       |                   |                                        |
| Average Channel Velocity       |                      | 4.00 ft/s             | (If specific chan | nel vel is used, this will be ignored) |
| Average Slope for Initial Flow |                      | 0.04 ft/ft            | (If Elevations ar | re used, this will be ignored)         |
|                                |                      |                       |                   |                                        |

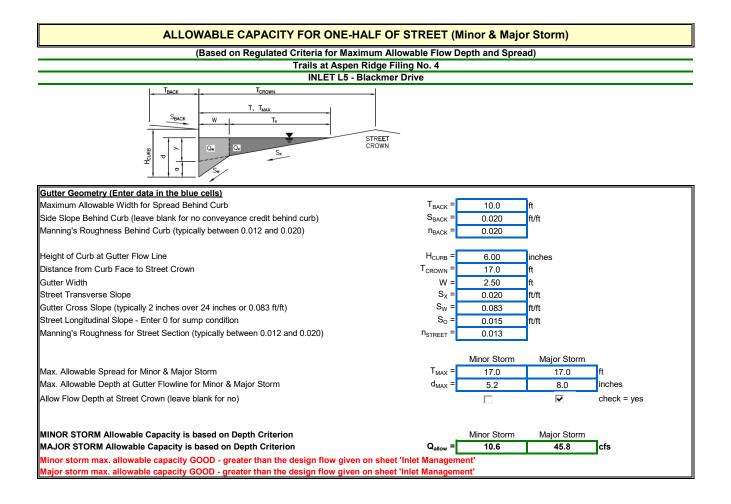

|                 |                                                    | A                | rea          |      |                 |      |      |                   |                      |      |                 | Rational 'C' Va | lues         |             |           |                  |                   |                 |                    |           |            |          | Flow I    | Lengths      |              |                      |              |             |                                      |              |            | Tc           | Rainfall In | ntensity & Rat | ational Flow | Rate         |
|-----------------|----------------------------------------------------|------------------|--------------|------|-----------------|------|------|-------------------|----------------------|------|-----------------|-----------------|--------------|-------------|-----------|------------------|-------------------|-----------------|--------------------|-----------|------------|----------|-----------|--------------|--------------|----------------------|--------------|-------------|--------------------------------------|--------------|------------|--------------|-------------|----------------|--------------|--------------|
|                 |                                                    |                  |              |      | Surface Type 1  |      |      | Surface Type 2    | 2                    |      | Surface Type 3  |                 | Surface Ty   | xe 4        |           | Surface Type 5   |                   | Surface         | Type 6             |           |            |          |           |              |              |                      |              |             |                                      |              |            |              |             |                | 1            |              |
| Sub-basin       | Comments                                           |                  |              |      | Commercial Area | as   |      | sidential (1/8 or | less)                |      | Streets - Paved |                 | ghborhoods/M | ulti-Family | Pa        | arks and Cemetar | ries U            | ndeveloped-Hist | oric Flow Analysis | Composite | Percent    | Initial  | True      | Channel      | True Channel | Average<br>(decimal) | Initial      | Average (%) | Channel Flow Type<br>(See Key above) | Velocity     | Channel    | Total        | i5          | Q5             | i100         | Q100         |
| Sub-basin       | Comments                                           |                  |              |      | (95% Impervious | s)   |      | (65% Imperviou    | 15)                  |      | (100% Imperviou | s)              | (70% Imper-  | rious)      |           | (7% Impervious   | )                 | (2% Imp         | servious)          |           | impervious |          | millai    |              |              | (acciniai)           |              |             | (ore ney above)                      |              |            |              |             |                | - T          |              |
|                 |                                                    | sf               | acres        | C5   | C100            | Area | C5   | C100              | Area (SF)            | C5   | C100            | Area (SF) C5    | C100         | Area        | C5        | C100             | Area C            | 5 C100          | Area               | C5 C10    | 10         | ft       | Length ft | ft           | Length ft    | Slope                | Tc (min)     | Slope       | Ground Type                          | (ft/s)       | Tc (min) ( | (min)        | in/hr       | cfs            | in/hr        | cfs          |
| ]1              | WEST FORK JCC                                      | 256681           |              |      |                 |      |      | 0.59              | 231803.00            |      |                 |                 | 0.68         |             | 0.19      |                  | 24878.00 0.       |                 |                    |           | 8 59.38    |          |           | 642          | 642          | 0.05                 | 5.03         | 1.00        | 7                                    | 2.00         |            |              |             | 10.2           |              |              |
| ]2              | WEST FORK JCC                                      | 39240            | 017.0        | 0.04 | 0.89            |      | 0.15 | 0.59              | 39240.00             | 0.70 | 0.70            | 0.55            | 0.68         |             | 0.12      | 0.52             |                   | 09 0.36         |                    | 0.45 0.5; | 9 65.00    | 50       | 30        | 548          | 548          | 0.05                 | 4.84         | 1.00        | 7                                    | 40000        |            |              | 4.20        |                | 7.05         | 3.8          |
| ]3              | WEST FORK JCC<br>WEST FORK JCC                     | 78909<br>24208   | 1.81         | 0.82 |                 |      | 0.45 | 0.59              | 78909.00<br>24208.00 |      | 0.96            | 0.53            | 0.68         |             | 0.19      | 0.00             |                   | 09 0.36         |                    | 0.45 0.59 |            | 50       | 50        | 360<br>284   | 360<br>284   | 0.05                 | 4.84         | 1.00        | 7                                    | 2.00         |            | 7.83         | 1110        |                |              | 8.1          |
| J#<br>I 1       | MARKSHEFFEL TRIB TO JCC                            |                  | 2.23         | 0.82 | 0.89            |      | 0.45 | 0.59              | 24208.00<br>93679.00 | 0.90 |                 | 0.53            |              |             | 0.19      | 0.52             | 3430.00 0.        |                 |                    | 0.45 0.55 |            | 50       | 50        | 264 957      | 264          | 0.05                 | 4.91         | 2.90        | 7                                    | 3.41         | 64 m. P 1  | 9.58         |             |                | 1.00         | 9.2          |
| 1.2             | MARKSHEFFEL TRIB TO JCC                            | 126973           | 2.91         | 0.82 |                 |      | 0.45 | 0.59              | 126973.30            | 0.90 |                 | 0.53            |              |             | 0.19      |                  |                   | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       | 50        | 631          | 631          | 0.05                 | 4.84         | 2.90        | 7                                    | 3.41         | 3.09       | 7.92         |             |                | 7.49         | 13.0         |
| L3              | MARKSHEFFEL TRIB TO JCC                            | 62303            | 1.43         | 0.82 | 0.89            | 1    | 0.45 | 0.59              | 62302.80             | 0.90 | 0.96            | 0.53            |              |             | 0.19      |                  |                   | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       | 50        | 451          | 451          | 0.05                 | 4.84         | 2.50        | 7                                    | 3.16         | 2.38       | 7.21         | 4.60        | 3.0            | 7.73         | 6.6          |
| L4              | MARKSHEFFEL TRIB TO JCC                            |                  | 1.70         | 0.82 |                 |      | 0.45 | 0.59              | 66260.50             | 0.90 |                 | 0.53            |              |             | 0.19      |                  |                   |                 |                    | 0.42 0.58 |            | 50       | 50        | 451          | 451          | 0.05                 | 5.04         | 2.50        | 7                                    | 3.16         |            | 7.41         |             | 3.3            | 7.00         | 7.6          |
| L5              | MARKSHEFFEL TRIB TO JCC                            |                  |              | 0.82 |                 |      | 0.45 | 0.59              | 4305.60              |      | 0.96            | 0.53            |              |             | 0.19      |                  |                   | 09 0.36         |                    | 0.45 0.59 | 9 65.00    |          | 15        | 73           | 73           | 0.05                 | 2.65         | 3.00        | 7                                    | 3.46         |            | 5.00         |             |                | 8.58         | 0.5          |
| L6<br>17        | MARKSHEFFEL TRIB TO JCC<br>MARKSHEFFEL TRIB TO JCC |                  |              | 0.02 | 0.07            |      | 0.45 | 0.59              | 2039.00              |      | 0.96            | 0.53            |              |             | 0.19      |                  | 0.<br>29561.80 0. |                 |                    | 0.45 0.59 | 05.00      | 15<br>20 | 15<br>20  | 73 193       | 73 193       | 0.05                 | 2.65         | 3.00        | 4                                    | 3.46<br>0.49 |            | 0.00         |             |                | 0.50         | 2.4          |
| 18              | MARKSHEFFEL TRIB TO JCC                            |                  |              |      |                 |      |      | 0.59              |                      |      | 0.96            |                 | 0.68         |             |           |                  | 8837.30 0.        |                 |                    | 0.19 0.52 |            | 10       |           |              | 221          |                      |              | 3.00        | 4                                    | 1.21         |            |              | 4.85        |                |              |              |
|                 |                                                    |                  |              |      |                 |      |      | 0.00              | 1                    |      |                 | 0.00            | 0.00         |             |           |                  |                   | 5.00            | İ                  | 0.0       |            |          |           |              |              |                      |              |             |                                      |              |            |              |             |                |              |              |
| K15             | WFJCC, FUTURE FILING                               | 72066            |              | 0.82 |                 |      | 0.45 |                   | 72066.00             |      | 0.96            | 0.53            |              |             |           | 0.52             |                   | 09 0.36         |                    | 0.45 0.59 |            | 100      | 100       | 730          | 730          | 0.05                 | 6.84         | 2.40        | 7                                    | 3.10         |            | 10.76        |             |                |              | 6.6          |
| K16             | WFJCC, FUTURE FILING                               | 52256            | 1.20         | 0.82 |                 |      | 0.45 | 0.59              | 52255.80             | 0.90 |                 | 0.53            |              |             | 0.19      |                  |                   | 09 0.36         |                    | 0.45 0.59 |            | 50       | 50        | 558          | 558          | 0.05                 | 4.84         | 2.40        | 7                                    | 3.10         |            |              |             |                | 1.04         | 5.4          |
| K17             | WFJCC, FUTURE FILING                               | 17888            | 0.41         | 0.82 | 0.89            |      | 0.45 | 0.59              | 17887.90             |      | 0.96            | 0.53            |              |             | 0.19      |                  |                   | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       | 50        | 352          | 352          | 0.05                 | 4.84         | 2.00        | 7                                    | 2.83         |            | 6.91<br>9.98 |             |                | 7.83         | 1.9          |
| K10             | WFJCC, FUTURE FILING<br>WFJCC, FUTURE FILING       | 82852<br>40516   | 0.93         | 0.82 | 0.07            |      | 0.45 | 0.59              | 82852.00<br>40516.00 | 0.90 | 0.96            | 0.53            |              |             | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.59 | 05.00      | 100      | 50        | 533 649      | 533          | 0.05                 | 6.84<br>4.84 | 2.00        | 7                                    | 2.83         | 3.14       | 7.70         | 4.11        | 3.5            | 6.90         | 7.8          |
| K20             | WFJCC, FUTURE FILING                               | 121070           | 2.78         | 0.82 |                 |      | 0.45 | 0.59              | 121070.00            | 0.90 | 0.96            | 0.53            |              |             | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.59 |            | 50       | 50        | 725          | 725          | 0.05                 | 4.84         | 2.00        | 7                                    | 2.83         |            | 9.11         |             |                |              | 11.8         |
| K21             | BIG JOHNSON ROAD, WFJCC                            | 19297            | 0.44         | 0.82 | 0.89            | 1    | 0.45 | 0.59              | 19297.00             | 0.90 | 0.96            | 0.53            | 0.68         |             | 0.19      | 0.52             | 0.                | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       | 50        | 564          | 564          | 0.05                 | 4.84         | 4.00        | 7                                    | 4.00         | 2.35       | 7.18         | 4.60        | 0.9            | 7.74         | 2.0          |
| K22             | BIG JOHNSON ROAD, WFJCC                            | 95154            | 2.18         | 0.82 | 0.89            |      | 0.45 | 0.59              | 70375.00             | 0.90 | 0.96            | 0.53            | 0.68         |             | 0.19      | 0.52             | 24779.00 0.       | 09 0.36         |                    | 0.38 0.57 | 7 49.90    | 50       | 50        | 742          | 742          | 0.05                 | 5.34         | 4.00        | 7                                    | 4.00         | 3.09       | 8.43         | 4.37        | 3.7            | 7.33         | 9.2          |
|                 |                                                    |                  |              |      |                 |      |      |                   |                      |      |                 |                 |              |             |           |                  |                   |                 |                    |           |            |          |           |              |              |                      |              |             |                                      |              |            |              |             |                |              |              |
| DESIGN POINTS   |                                                    |                  |              |      |                 |      |      |                   |                      |      |                 |                 | +            |             |           |                  |                   |                 |                    |           |            |          |           |              |              |                      |              |             |                                      |              |            |              |             |                |              |              |
| SUB-BASIN L5    | SUB-BASIN L5                                       | 4306             | 0.10         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 4306                 | 0.90 | 0.96            | 0 0.53          | 0.68         | 0           | 0.19      | 0.52             | 0 0.              | 09 0.36         | 0                  | 0.45 0.59 | 9 65.00    | 15       | 15        | 73           | 73           | 0.05                 | 2.65         | 3.0         | 7                                    | 3.46         | 0.35       | 5.00         | 5.10        | 0.2            | 8,58         | 0.5          |
| SUB-BASIN L6    | SUB-BASIN L6                                       | 2039             | 0.05         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 2039                 | 0.90 | 0.96            | 0 0.53          | 0.68         | 0           | 0.19      | 0.52             | 0 0.              | 09 0.36         | 0                  | 0.45 0.59 | 9 65.00    | 15       | 15        | 73           | 73           | 0.05                 | 2.65         | 3.0         | 7                                    | 3.46         | 0.35       | 5.00         |             | 0.1            | 8.58         | 0.2          |
| 1-L             | SUB-BASINS L5 & L6                                 | 6345             | 0.15         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 6345                 | 0.90 | 017.0           | 0 0.53          | 0.00         |             | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.59 |            |          |           | 73           | 73           | 0.05                 | 2.65         | 3.0         | 7                                    | 3.46         | 0.00       |              |             |                |              | 0.7          |
| SUB-BASIN L2    | SUB-BASIN L2<br>SUB-BASINS L2, L5 & L6             | 126973 133318    |              | 0.82 | 0103            | 0    | 0.45 | 0.59              | 126973<br>133318     | 0.90 |                 | 0 0.53          |              |             | 0.19      | 0.52             | 0.                | 09 0.36         |                    | 0.45 0.59 | 05.00      | 50       | 50        | 631          | 631          | 0.05                 | 4.84         | 2.9         | 7                                    | 3.41         | 3.07       |              |             | 3.7            |              | 13.0<br>13.6 |
| 2-L<br>3-L      | SUB-BASINS L2, L5 & L6<br>SUB-BASIN L3             | 62303            | 3.06         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 62303                | 0.90 | 0.96            | 0 0.53          |              |             | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.55 |            | 50       | 50        | 451          | 451          | 0.05                 | 4.84         | 2.9         | 7                                    | 3.41         |            | 1.74         |             |                |              | 6.6          |
| 4-L             | SUB-BASINS L2, L3, L5 & L6                         | 195621           | 4.49         | 0.82 | 0.89            | Ő    | 0.45 | 0.59              | 195621               | 0.90 | 0.96            | 0 0.53          |              |             | 0.19      |                  |                   | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       | 50        | 631          | 631          | 0.05                 | 4.84         | 2.9         | 7                                    | 3.41         |            |              |             |                |              | 20.0         |
| 5-L             | SUB-BASINS L1-L6                                   | 366611           | 8.42         | 0.82 | 0.07            | 0    | 0.45 | 0.59              | 355560               |      | 0.96            | 0 0.53          | 0.00         |             | 0.19      | 0.52             | 11051 0.          |                 |                    | 0.44 0.59 |            |          | 50        | 957          | 957          | 0.05                 | 4.90         | 2.9         | 7                                    | 3.41         | 4.00       |              |             | 15.0           | 1.01         | 34.9         |
| 6-L             | NE POND (SUB-BASINS L1-L7)<br>NE POND DISCHARGE    | 396173<br>396173 | 9.09         | 0.82 |                 | 0    | 0.45 | 0.59              | 355560               |      |                 | 0 0.53          |              | 0           | 0.19      | 0.52             | 40613 0.          |                 |                    | 0.42 0.58 |            | 50       |           | 1150<br>1150 | 1150<br>1150 | 0.05                 | 5.04         | 2.9         | 7                                    | 3.41         |            | 10.66        |             | 15.5<br>0.2    |              | 35.9         |
| /-L<br>8-I      | SITE DISCHARGE                                     | 405010           | 7.67         | 0.82 | 0107            | 0    | 0.45 | 0.59              | 0                    |      | 0.96            | 0 0.53          | 0.00         |             | 0.19      |                  | 8837 0.           | 0.50            |                    |           |            | 50       |           | 1150         | 1150         | 0.05                 | 7.52         | 2.9         | 4                                    | 0.43         |            | 23.58        |             |                |              | 8.8          |
| 5-2             | SHE DISCHINGE                                      | 405010           | 2.50         | 0.02 | 0.05            | ~    | 0.45 | 0.07              |                      | 0.70 | 0.70            | 0 000           | 0.00         |             | 0.17      | 0.04             | 0007 0.           | 0.50            | 570115             | 0.07 0.5  |            | 50       | 30        | 1150         | 1150         | 0.00                 | 7.50         |             |                                      | 1.17         | 10.00      | 20.00        |             | 0.1            | 4.05         | 0.0          |
| 1-J             | SUB-BASIN J1                                       | 256681           | 5.89         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 231803               | 0.90 | 0.96            | 0 0.53          |              | 0           | 0.19      | 0.52             | 24878 0.          | 09 0.36         | 0                  | 0.42 0.58 | 8 59.38    | 50       | 50        | 642          | 642          | 0.05                 | 5.03         | 1.0         | 7                                    | 2.00         |            | 10.37        |             |                |              | 23.5         |
| 2-J             | SUB-BASIN J2                                       | 39240            | 0.90         | 0.82 |                 | 0    | 0.45 | 0.59              | 39240                | 0.90 | 0.96            | 0 0.53          |              | 0           | 0.19      | 0.52             | 0 0.              | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       | 50        | 548          | 548          | 0.05                 | 4.84         | 1.0         | 7                                    | 2.00         |            |              |             | 1.7            |              | 3.8          |
| 1-2-J           | SUB-BASINS J1 & J2<br>SUB-BASIN J3                 | 295921<br>78909  | 6.79<br>1.81 | 0.82 |                 | 0    | 0.45 | 0.59              | 271043<br>78909      | 0.90 | 0.96            | 0 0.53          |              | 0           | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.43 0.58 |            | 50       |           | 642<br>360   | 642          | 0.05                 | 5.00         | 1.0         | 7                                    | 2.00         |            | 10.35        |             |                |              | 27.2 8.1     |
| 3-J<br>4-I      | SUB-BASIN J3<br>SUB-BASIN J4                       | 24208            | 0.56         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 24208                | 0.90 |                 | 0 0.53          |              | 0           | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.55 |            | 50       | 50        | 284          | 284          | 0.05                 | 4.84         | 1.0         | 7                                    | 2.00         |            | 7.20         |             |                |              | 2.6          |
| 1-4-J           | SUB-BASINS J1 TO J4                                | 399038           | 9.16         | 0.82 |                 | 0    | 0.45 | 0.59              | 374160               |      | 0.96            | 0 0.53          |              | 0           | 0.19      | 0.52             | 24878 0.          |                 |                    | 0.43 0.59 |            | 50       | 50        | 1002         | 1002         | 0.05                 | 4.96         | 1.0         | 7                                    | 2.00         |            | 13.30        |             |                |              | 33.2         |
|                 |                                                    |                  |              |      |                 |      |      |                   |                      |      |                 |                 |              |             |           |                  |                   |                 |                    |           |            |          |           |              |              |                      |              |             |                                      |              |            |              |             |                |              |              |
| 15-K            | SUB-BASIN K15                                      | 72066            | 1.65         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 72066                | 0.90 | 0.96            | 0 0.53          |              | 0           | 0.19      | 0.52             | 0.                | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 100      | 100       | 730          | 730          | 0.05                 | 6.84         | 2.40        | 7                                    | 3.10         | 0070       | 10.76        |             |                | 011.0        | 6.6          |
| 16-K<br>15-16-K | SUB-BASIN K16<br>SUB-BASINS K15 & K16              | 52256<br>124322  | 2.85         | 0.82 |                 | 0    | 0.45 | 0.59              | 52256<br>124322      | 0.90 | 0.96            | 0 0.53          |              |             | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       |           | 558<br>558   | 558<br>558   | 0.05                 | 4.84         | 2.40        | 7                                    | 3.10         |            | 7.83         |             |                | 7.52         | 5.4          |
| 15-16-K<br>17-K | SUB-BASINS KI5 & KI6<br>SUB-BASIN KI7              | 124322           | 2.85         | 0.82 | 0107            | 0    | 0.45 | 0.59              | 124322<br>17888      | 0.90 | 019.0           | 0 0.53          |              | 0           | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.55 | 05.00      | 50       |           | 352          | 352          | 0.05                 | 4.84         | 2.40        | 7                                    | 2.83         | 3.00       |              |             |                |              | 12.8         |
| 18-K            | SUB-BASIN KI8                                      | 82852            | 1.90         | 0.82 |                 | 0    | 0.45 | 0.59              | 82852                | 0.90 | 0.96            | 0 0.53          |              | 0           | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.55 | 9 65.00    | 100      |           | 533          | 533          | 0.05                 | 6.84         | 2.00        | 7                                    | 2.83         |            |              |             |                |              | 7.8          |
| 15-18-K         | SUB-BASINS KI5 & K18                               | 225062           | 5.17         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 225062               | 0.90 | 0.96            | 0 0.53          | 0.68         | 0           | 0.19      | 0.52             | 0 0.              | 09 0.36         | 0                  | 0.45 0.59 | 9 65.00    | 50       | 50        | 558          | 558          | 0.05                 | 4.84         | 2.40        | 7                                    | 3.10         | 3.00       | 7.83         | 4.48        | 10.5           | 7.52         | 23.1         |
| 19-K            | SUB-BASIN K19                                      | 40516            |              | 0.82 |                 | 0    | 0.45 | 0.59              | 40516                | 0.90 | 0.96            | 0 0.53          |              | 0           | 0.19      | 0.52             | 0 0.              | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       | 50        | 649          | 649          | 0.05                 | 4.84         | 2.0         | 7                                    | 2.83         |            |              |             |                |              | 4.0          |
| 20-K            | SUB-BASIN K20                                      | 121070           |              | 0.82 |                 | 0    | 0.45 | 0.59              | 121070               | 0.90 |                 | 0 0.53          |              | 0           | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.59 | 9 65.00    | 50       | 50        | 725          | 725          | 0.05                 | 4.84         | 2.0         | 7                                    | 2.83         |            | 9.11         |             |                | 7.13         | 11.8         |
| 19-20-K<br>21-K | SUB-BASINS K19 & K20<br>SUB-BASIN K21              | 161586<br>19297  | 3.71<br>0.44 | 0.82 | 0107            | 0    | 0.45 | 0.59              | 161586<br>19297      | 0.90 | 0.96            | 0 0.53          | 0.00         | 0           | 0.19 0.19 | 0.52             |                   | 09 0.36         |                    | 0.45 0.59 |            | 50<br>50 | 50        | 725<br>564   | 725<br>564   | 0.05                 | 4.84         | 2.00        | 7                                    | 2.83<br>4.00 |            | 9.11<br>7.18 | 11110       |                | 7.13         | 15.7         |
| 22-K            | SUB-BASIN K21<br>SUB-BASIN K22                     | 95154            | 2.18         | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 70375                | 0.90 | 0.96            | 0 0.55          |              | 0           | 0.19      | 0.52             |                   | 09 0.36         |                    | 0.45 0.55 |            | 50       | 50        | 742          | 742          | 0.05                 | 5.34         | 4.0         | 7                                    | 4.00         |            |              |             |                |              | 9.2          |
| 5-J             | SUB-BASINS J1-J4, K19 & K20                        | 560624           | 12.87        | 0.82 |                 | 0    | 0.45 | 0.59              | 535746               | 0.90 | 0.010           | 0 0.53          |              | 0           | 0.19      | 0.52             | 24878 0.          |                 |                    |           | 9 62.43    | 50       | 50        | 1727         | 1727         | 0.05                 | 4.92         | 3.80        | 7                                    | 3.90         |            | 12.30        |             | 21.5           |              | 48.3         |
| 6-J             | SUB-BASINS J1-J4 & K15-K20                         | 785686           | 18.04        | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 760808               | 0.90 | 0.96            | 0 0.53          | 0.68         | 0           | 0.19      | 0.52             | 24878 0.          | 09 0.36         | 0                  | 0.44 0.59 | 9 63.16    | 100      | 100       | 2285         | 2285         | 0.05                 | 6.93         | 4.00        | 7                                    | 4.00         | 9.52       | 16.44        | 3.32        | 26.6           | 5.57         | 59.6         |
| 7-J             | SUB-BASINS J1-J4 & K15-K22                         | 900137           | 20.66        | 0.82 | 0.89            | 0    | 0.45 | 0.59              | 850480               | 0.90 | 0.96            | 0 0.53          | 0.68         | 0           | 0.19      | 0.52             | 49657 0.          | 09 0.36         | 0                  | 0.44 0.59 | 9 61.80    | 100      | 100       | 2285         | 2285         | 0.05                 | 6.99         | 4.00        | 7                                    | 4.00         | 9.52       | 16.51        | 3.31        | 30.0           | 5.56         | 67.9         |
|                 |                                                    |                  |              |      |                 |      |      |                   |                      |      |                 |                 |              |             |           |                  |                   |                 |                    |           |            |          |           |              |              |                      |              |             |                                      |              |            |              |             |                |              |              |

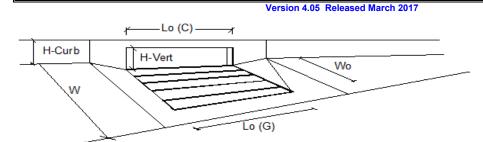
# **Rational Method - Proposed Conditions**


| Channel Flow Type Key     |
|---------------------------|
| Heavy Meadow 2            |
| Tillage/Field 3           |
| Short Pasture and Lawns 4 |
| Nearly Bare Ground 5      |
| Grassed Waterway 6        |
| Paved Areas 7             |

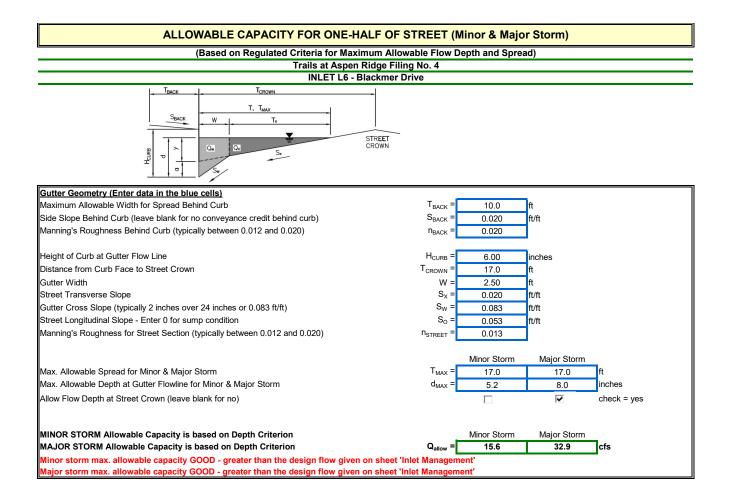


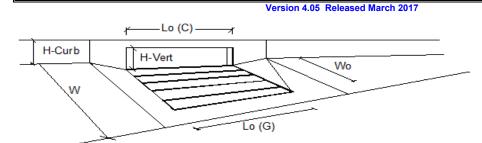


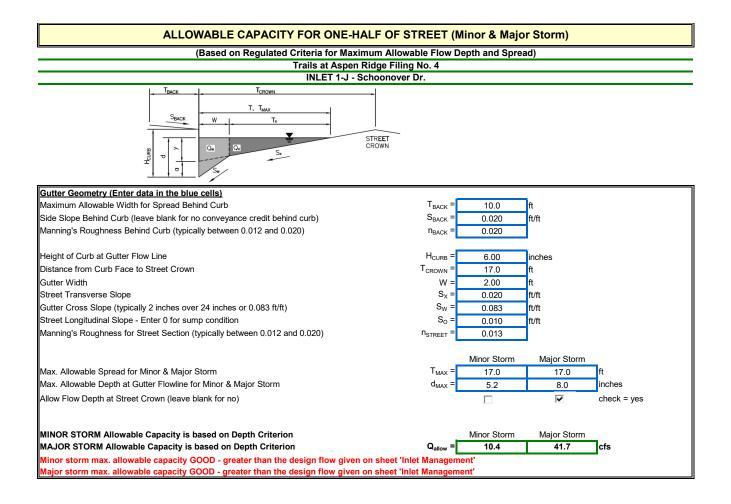


| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 15.00       | 15.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                       | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 5.9         | 10.5         | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 2.5          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 81           | %      |

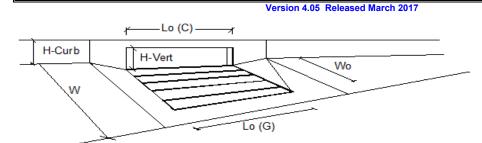




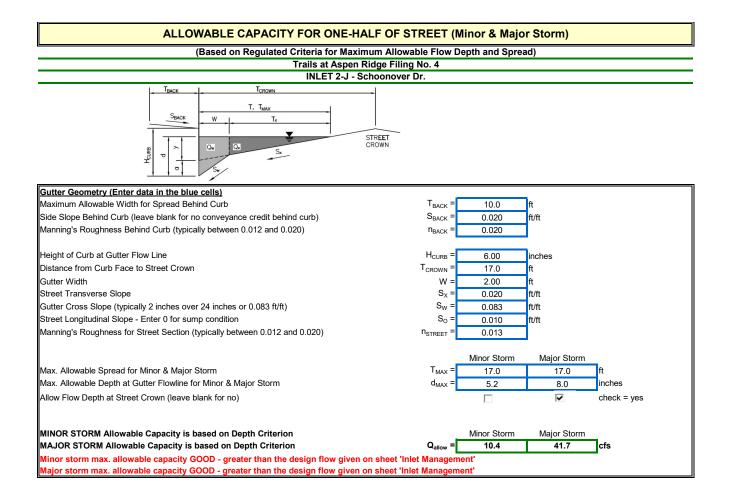


| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                         | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 3.0         | 5.4          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 1.2          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 82           | %      |

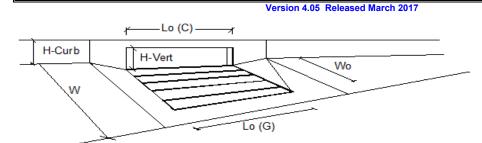




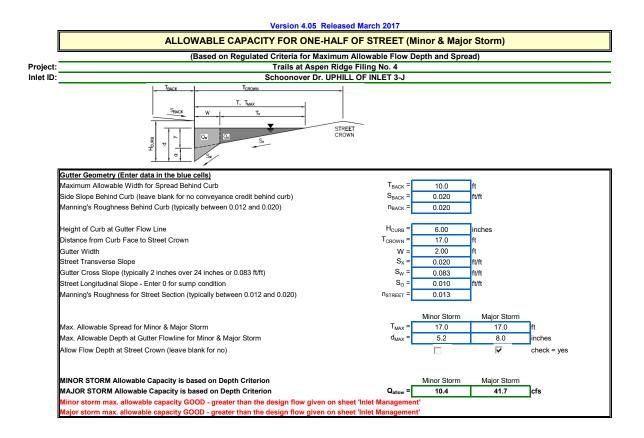


| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 5.00        | 5.00         | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 0.2         | 0.5          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100          | %      |



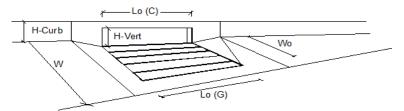




| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 5.00        | 5.00         | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                         | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 0.1         | 0.2          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 100          | %      |

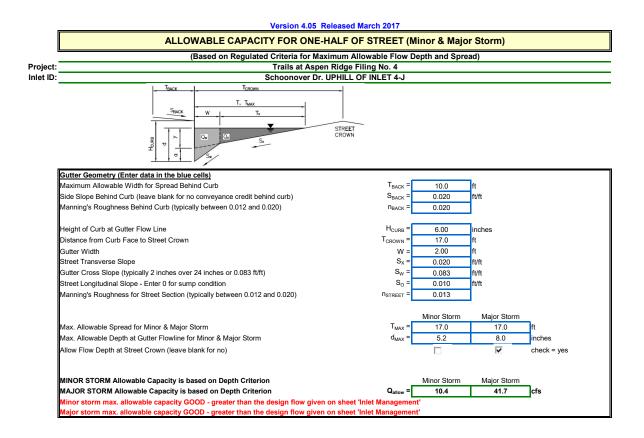




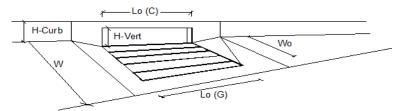

| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                         | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 6.8         | 10.0         | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 3.4         | 13.5         | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 66          | 42           | %      |



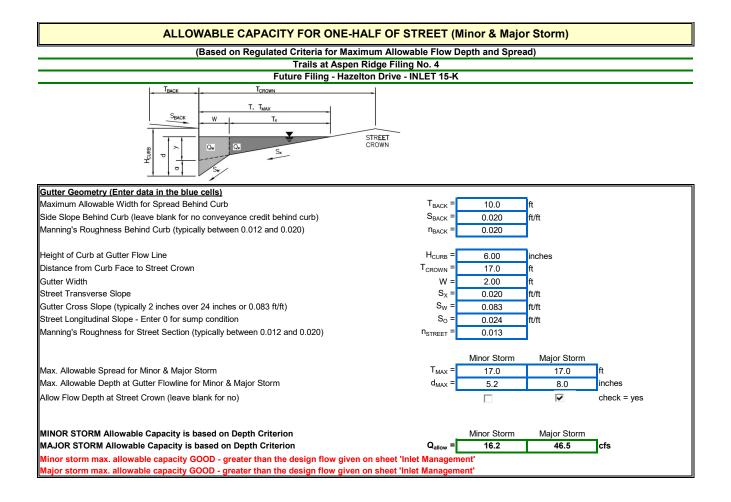


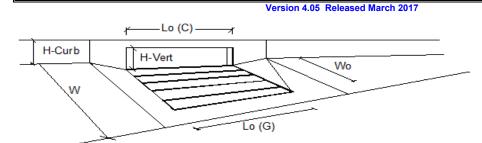


| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity'                    |                      | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 1.7         | 3.7          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.1          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 98           | %      |



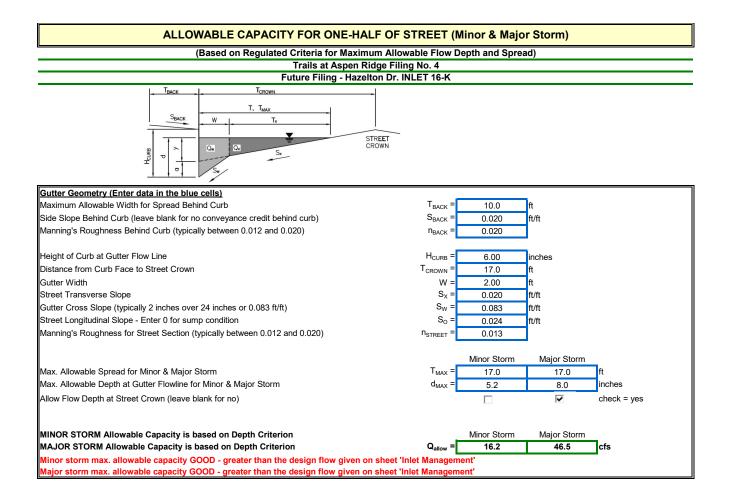


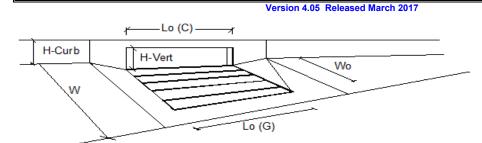




| Design Information (Input)                                                |                      | MINOR | MAJOR |        |
|---------------------------------------------------------------------------|----------------------|-------|-------|--------|
| Type of Inlet                                                             | Type =               |       |       |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = |       |       | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 |       |       |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     |       |       | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     |       |       | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  |       |       |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  |       |       |        |
|                                                                           |                      | MINOR | MAJOR | _      |
| Total Inlet Interception Capacity                                         | Q =                  |       |       | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     |       |       | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 |       |       | %      |

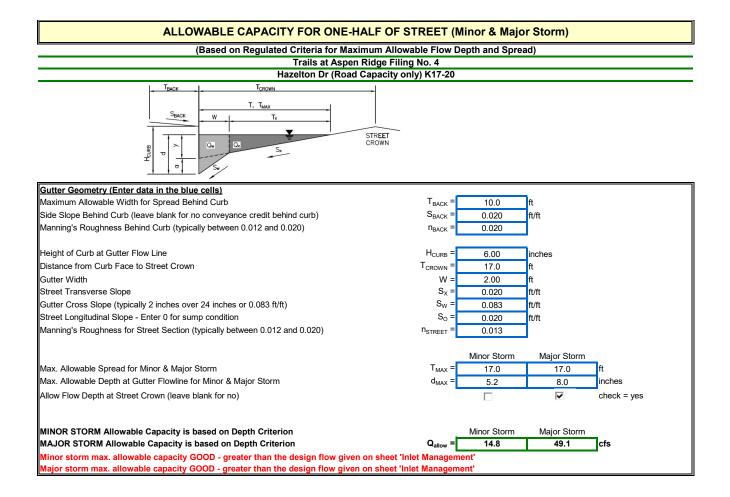


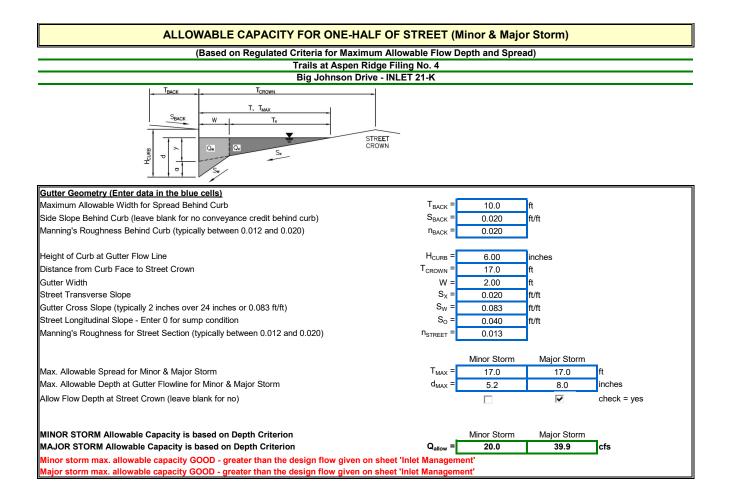


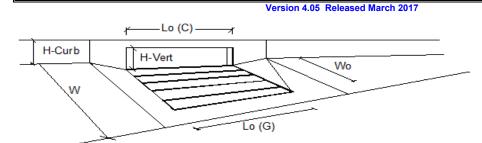





| Design Information (Input)                                                |                      | MINOR | MAJOR |        |
|---------------------------------------------------------------------------|----------------------|-------|-------|--------|
| Type of Inlet                                                             | Type =               |       |       |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = |       |       | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 |       |       |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     |       |       | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     |       |       | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  |       |       |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  |       |       |        |
|                                                                           |                      | MINOR | MAJOR | _      |
| Total Inlet Interception Capacity                                         | Q =                  |       |       | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     |       |       | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 |       |       | %      |

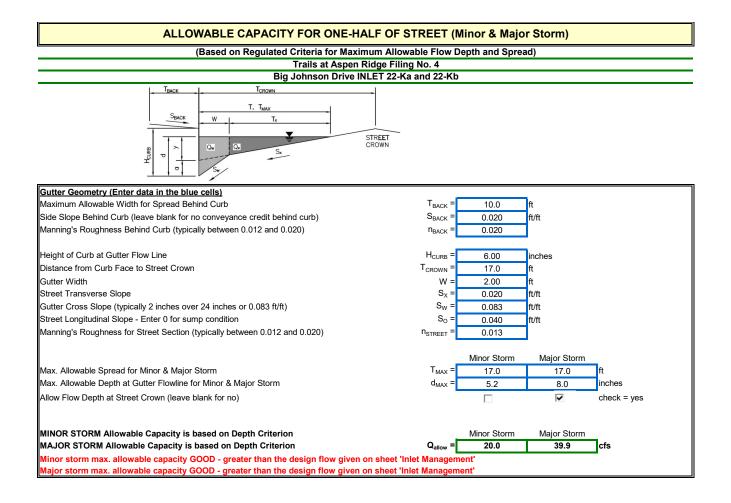


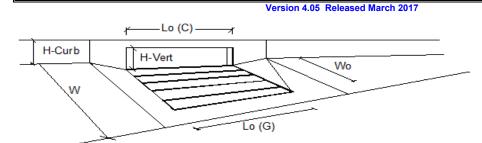




| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     |                         | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 3.0         | 5.4          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 1.2          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 82           | %      |

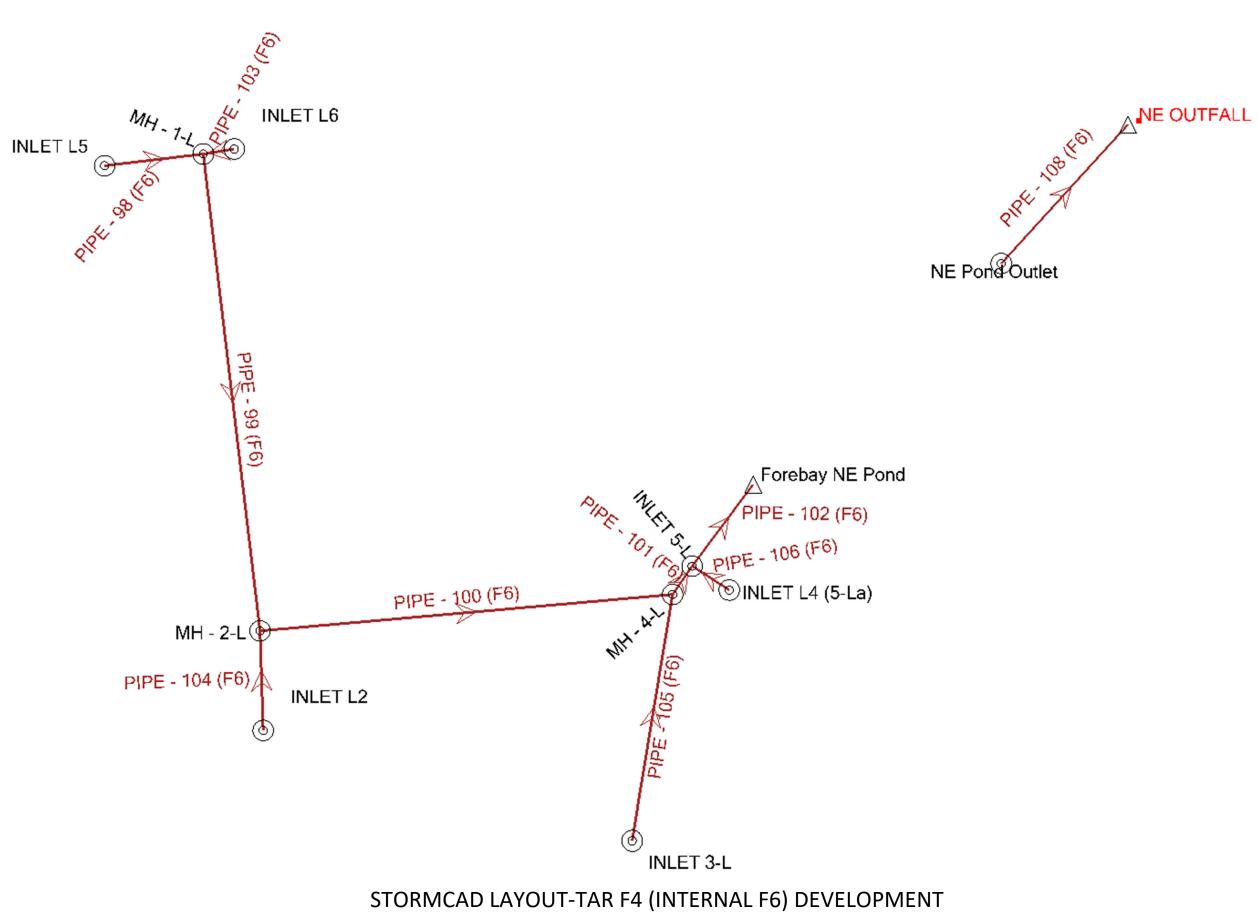






| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                       | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 2.4         | 4.8          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.6          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 89           | %      |

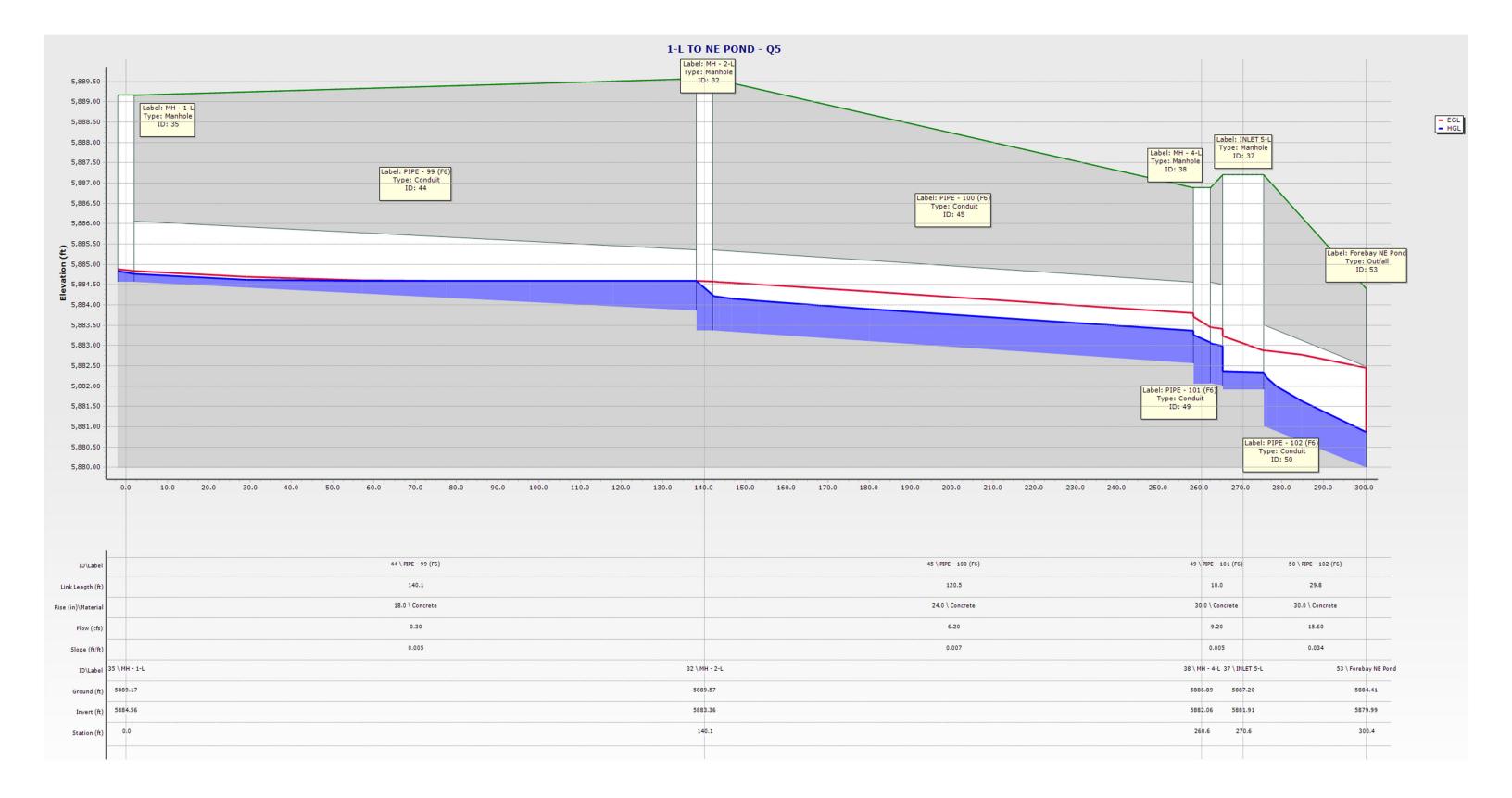




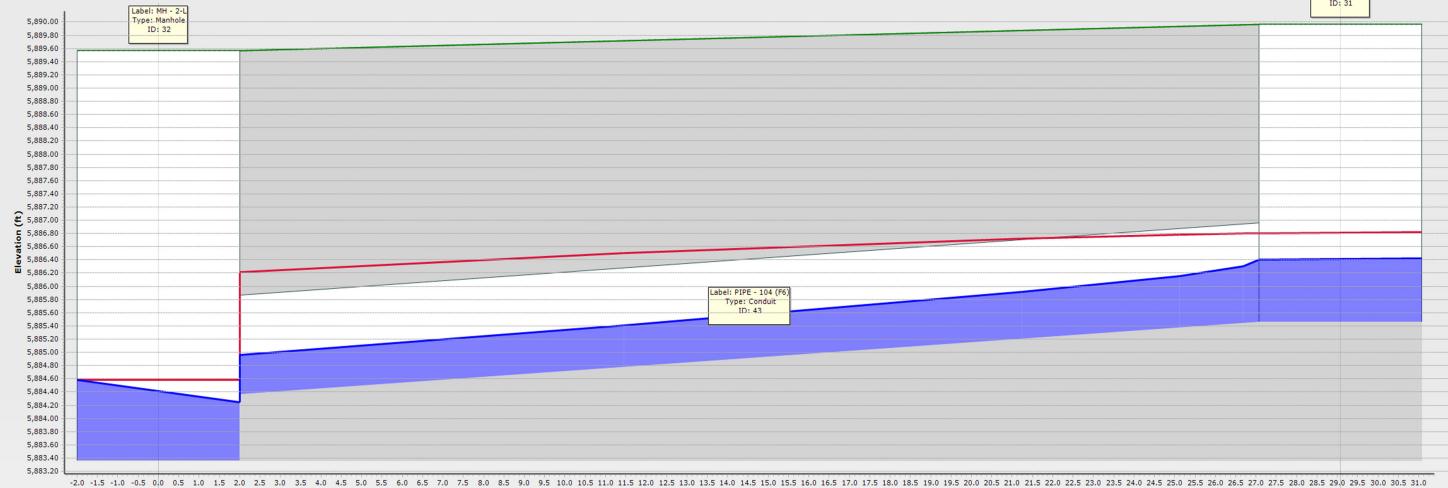

| Design Information (Input)                                                |                         | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|-------------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =                  | CDOT Type R | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> =    | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                    | 1           | 1            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =        | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =        | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =     | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =     | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                       | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                     | 0.9         | 2.0          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | <b>Q</b> <sub>b</sub> = | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                    | 100         | 100          | %      |






| Design Information (Input)                                                |                      | MINOR       | MAJOR        |        |
|---------------------------------------------------------------------------|----------------------|-------------|--------------|--------|
| Type of Inlet                                                             | Type =               | CDOT Type F | Curb Opening |        |
| Local Depression (additional to continuous gutter depression 'a')         | a <sub>LOCAL</sub> = | 3.0         | 3.0          | inches |
| Total Number of Units in the Inlet (Grate or Curb Opening)                | No =                 | 2           | 2            |        |
| Length of a Single Unit Inlet (Grate or Curb Opening)                     | L <sub>o</sub> =     | 10.00       | 10.00        | ft     |
| Width of a Unit Grate (cannot be greater than W, Gutter Width)            | W <sub>o</sub> =     | N/A         | N/A          | ft     |
| Clogging Factor for a Single Unit Grate (typical min. value = 0.5)        | C <sub>f</sub> -G =  | N/A         | N/A          |        |
| Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) | C <sub>f</sub> -C =  | 0.10        | 0.10         |        |
| Street Hydraulics: OK - Q < Allowable Street Capacity                     | _                    | MINOR       | MAJOR        |        |
| Total Inlet Interception Capacity                                         | Q =                  | 3.7         | 9.2          | cfs    |
| Total Inlet Carry-Over Flow (flow bypassing inlet)                        | Q <sub>b</sub> =     | 0.0         | 0.0          | cfs    |
| Capture Percentage = Q <sub>a</sub> /Q <sub>o</sub> =                     | C% =                 | 100         | 100          | %      |




Marksheffel Tributary to Jimmy Camp Creek





|                                              | Label: INLET<br>Type: Manh<br>ID: 34 | r L6<br>Dle                                       | LAT: L5 TO L6 - Q5                                                                                               |
|----------------------------------------------|--------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| 5,889.60                                     | 10.34                                | Label                                             | MH~1-L                                                                                                           |
| 5,889.40                                     |                                      | Type:                                             | MH ~ 1-L<br>Manhole<br>): 35                                                                                     |
| 5,889.20                                     |                                      |                                                   |                                                                                                                  |
| 5,889.00                                     |                                      |                                                   |                                                                                                                  |
| 5,888.80                                     |                                      |                                                   |                                                                                                                  |
| 5,888.60                                     |                                      |                                                   |                                                                                                                  |
| 5,888.40                                     |                                      |                                                   |                                                                                                                  |
| 5,888.20                                     |                                      |                                                   |                                                                                                                  |
| 5,888.00                                     |                                      |                                                   |                                                                                                                  |
| 5,887.80                                     |                                      |                                                   |                                                                                                                  |
| 5,887.60                                     |                                      |                                                   |                                                                                                                  |
| 5,887.40                                     |                                      |                                                   |                                                                                                                  |
| 5,887.20                                     |                                      |                                                   |                                                                                                                  |
| 5,887.00                                     |                                      |                                                   |                                                                                                                  |
| 5,887.40<br>5,887.20<br>5,887.00<br>5,886.80 |                                      | Label: PIPE - 103 (F6)<br>Type: Conduit<br>ID: 47 | Label: PIPE - 98 (F6)                                                                                            |
| 5,886.60                                     |                                      | ID: 47                                            | Label: PIPE - 98 (F6)<br>Type: Conduit<br>ID: 46                                                                 |
| 5,886.40                                     |                                      |                                                   |                                                                                                                  |
| 5,886.20                                     |                                      |                                                   |                                                                                                                  |
| 5,886.00                                     |                                      |                                                   |                                                                                                                  |
| 5,885.80                                     |                                      |                                                   |                                                                                                                  |
| 5,885.60                                     |                                      |                                                   |                                                                                                                  |
| 5,885.40                                     |                                      |                                                   |                                                                                                                  |
| 5,885.20                                     |                                      |                                                   |                                                                                                                  |
| 5,885.00                                     |                                      |                                                   |                                                                                                                  |
| 5,884.80                                     |                                      |                                                   |                                                                                                                  |
| 5,884.60                                     |                                      |                                                   |                                                                                                                  |
| ٤,                                           | -2.0 -1.0 0.0                        | 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9                 | .0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 30.0 31.0 |
| -                                            |                                      |                                                   |                                                                                                                  |
| ID\Label                                     |                                      | 47 \ PIPE - 103 (F6)                              | 46 \ PIPE - 98 (F6)                                                                                              |
| Link Length (ft)                             |                                      | 9.1                                               | 28.9                                                                                                             |
| Rise (in)\Material                           |                                      | 18.0 \ Concrete                                   | 18.0 \ Concrete                                                                                                  |
| Flow (cfs)                                   |                                      | 0.10                                              | 0.20                                                                                                             |
| Slope (ft/ft)                                |                                      | 0.005                                             | 0.005                                                                                                            |
| ID\Label                                     | 34 \ INLET L                         |                                                   | MH - 1-L                                                                                                         |
| Ground (ft)                                  | 5889.49                              |                                                   | 89.17                                                                                                            |
| Invert (ft)                                  | 5884.91                              |                                                   | 84.56                                                                                                            |
| Station (ft)                                 | 0.0                                  |                                                   | 9.1                                                                                                              |
|                                              |                                      |                                                   |                                                                                                                  |



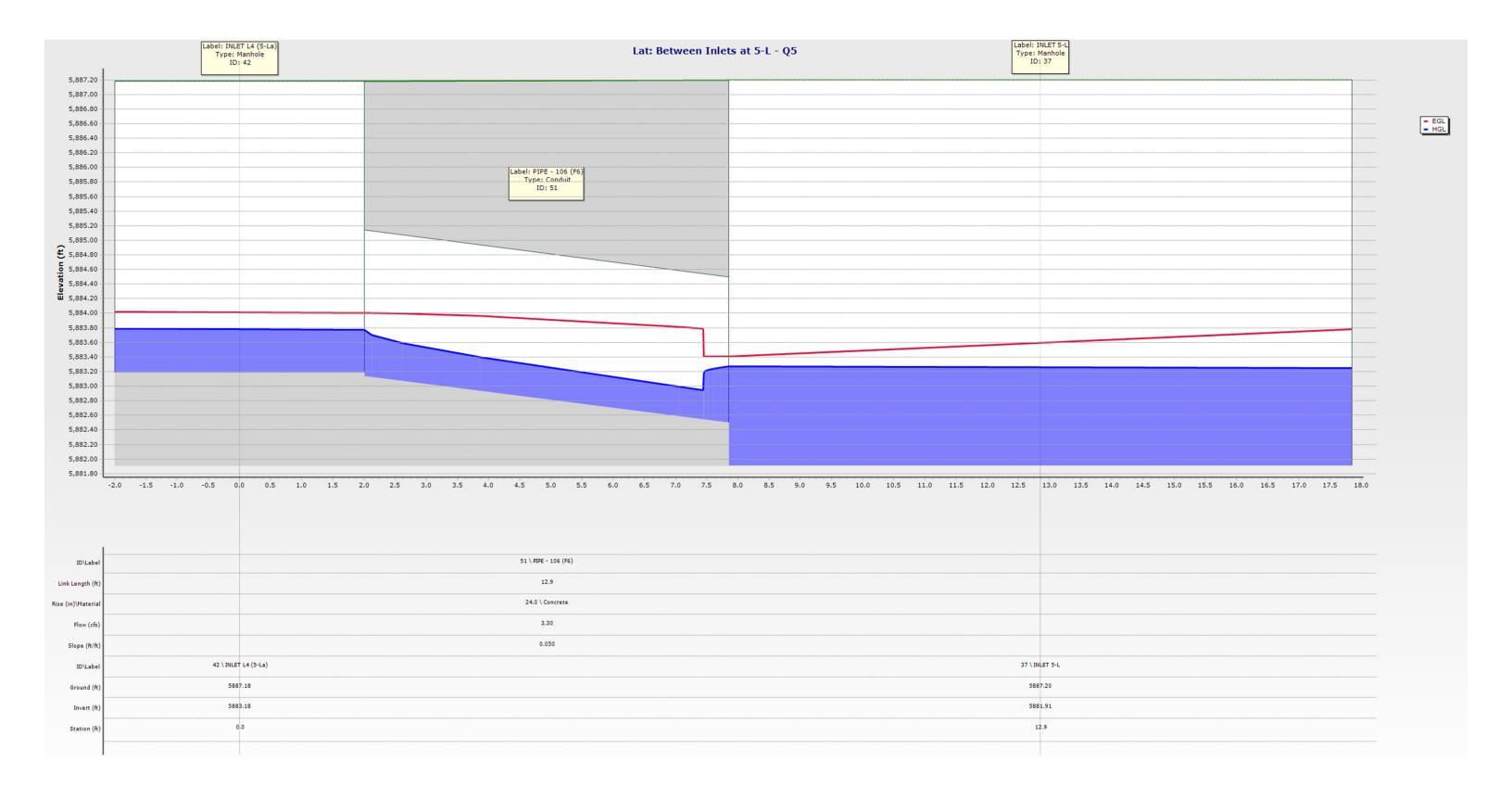


| ID\Label           |              | 43 \ PIPE - 104 (F6) |
|--------------------|--------------|----------------------|
| Link Length (ft)   |              | 29.1                 |
| Rise (in)\Material |              | 18.0 \ Concrete      |
| Flow (cfs)         |              | 5.90                 |
| Slope (ft/ft)      |              | 0.038                |
| ID\Label           | 32 \ MH - 2- | L                    |
| Ground (ft)        | 5889.57      |                      |
| Invert (ft)        | 5883.36      |                      |
| Station (ft)       | 0.0          |                      |
|                    |              |                      |



| 31 \ INLET L2 |
|---------------|
| 5889.96       |
| 5985.46       |
|               |
| 29.1          |
|               |
|               |




## 5,887.80 5,887.60 5,887.40 Label: MH - 4-L Type: Manhole 1D: 38 5,887.20 5,887.00 5,886.80 5,886.60 5,886.40 5,886.20 5,886.00 5,885.80 5,885.60 5,885.40 £ 5,885.20 5,885.00 Label: PIPE - 105 (F6) Type: Conduit ID: 48 5,884.80 **b** 5,884.60 5,884.40 5,884.20 5,884.00 5,883.80 5,883.60 5,883.40 5,883.20 5,883.00 5,882.80 5,882.60 5,882.40 5,882.20 5,882.00 -2.0 0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0 20.0 22.0 24.0 26.0 28.0 30.0 32.0 34.0 36.0 38.0 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0 60.0 62.0 64.0 66.0 68.0 70.0 72.0 74.0 76.0 78.0 80.0 82.0 84.0 86.0 88.0 90.0 92.0 94.0 96.0 98.0 100.0 102.0 104.0 105.0 48 \ PIPE - 105 (F6) ID\Label 103.4 Link Length (ft) 18.0 \ Concrete Rise (in)\Material 3.00 Flow (cfs) 0.005 Slope (ft/ft) 38 \ MH - 4-L ID\Label 5886.89 Ground (ft) 5882.06 Invert (ft)


0.0

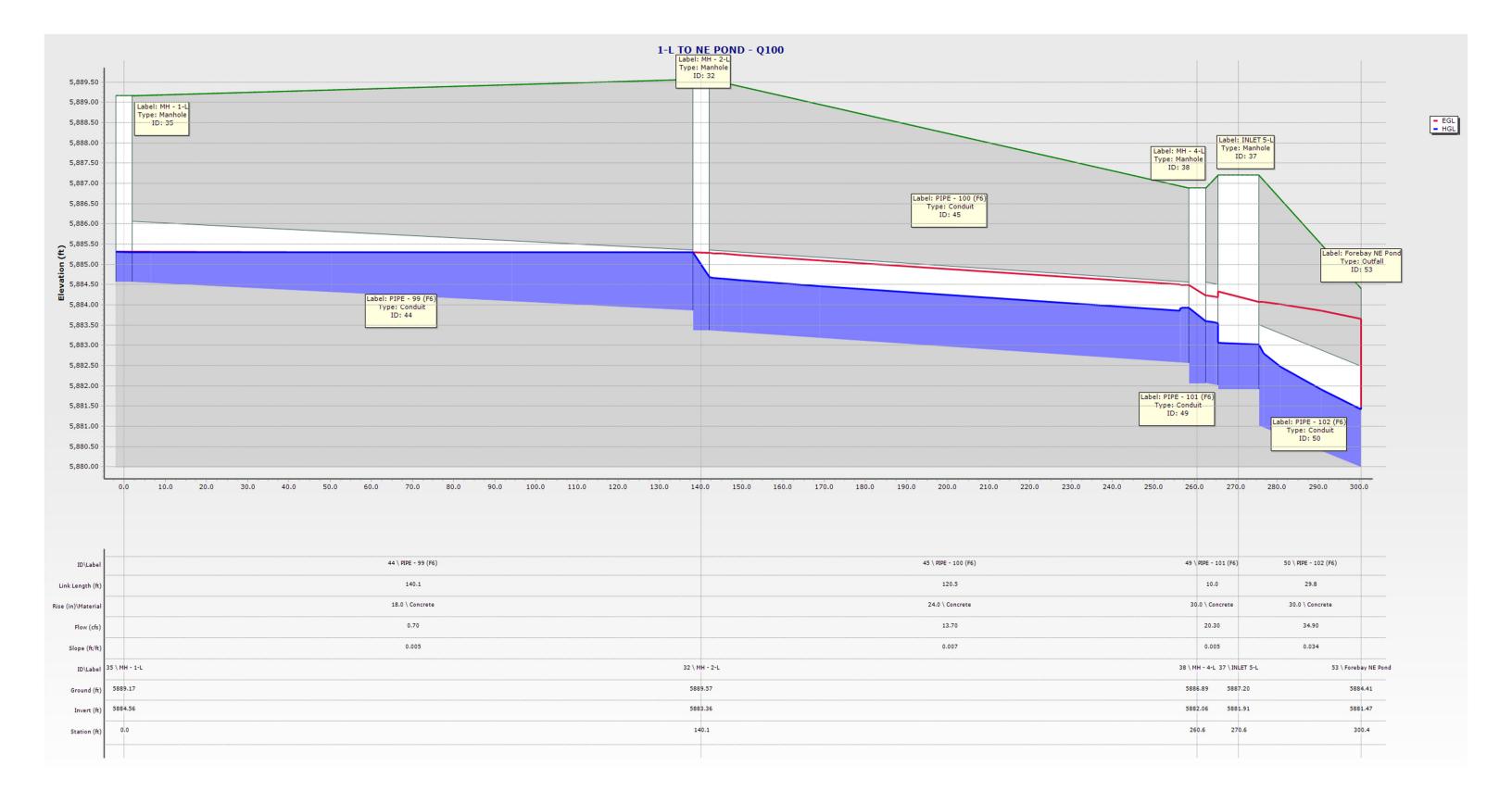
Station (ft)

# LAT: 3-L TO 4-L - Q5

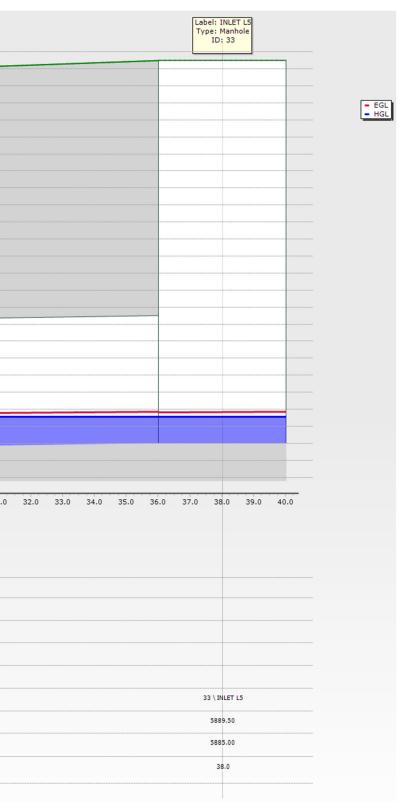


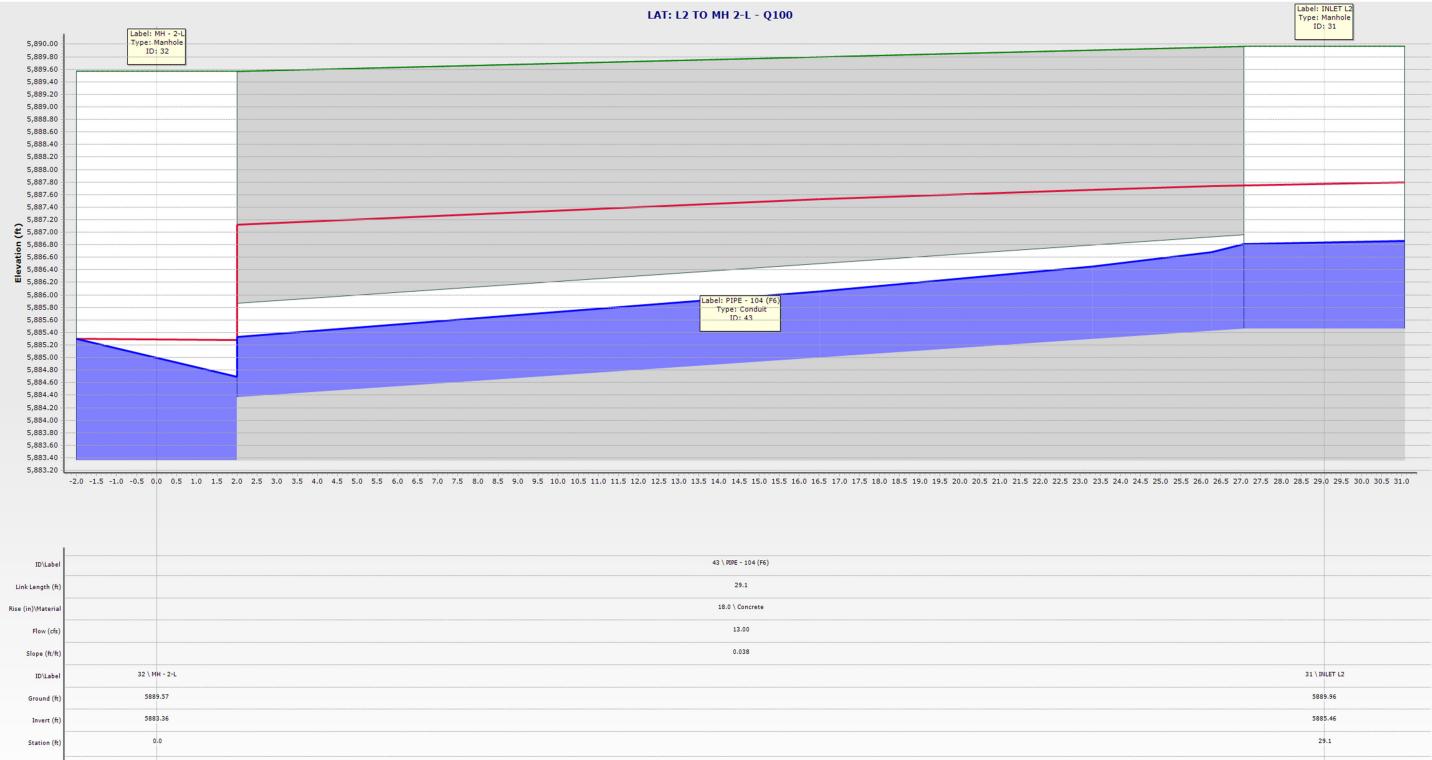





|                                         | EC                      |
|-----------------------------------------|-------------------------|
|                                         | н                       |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         | Label: NE OUTFALL       |
|                                         | Type: Outfall<br>ID: 41 |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
| 44.0 45.0 46.0 47.0 48.0 49.0 50.0 51.0 | 52.0 53.0 54.0 55.0     |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         |                         |
|                                         | 41 \ NE OUTFALL         |
|                                         |                         |
|                                         |                         |
|                                         | 5880.36                 |
|                                         |                         |
|                                         | 5880.36<br>5878.17      |
|                                         |                         |
|                                         | 5878.17                 |
|                                         | 5878.17                 |

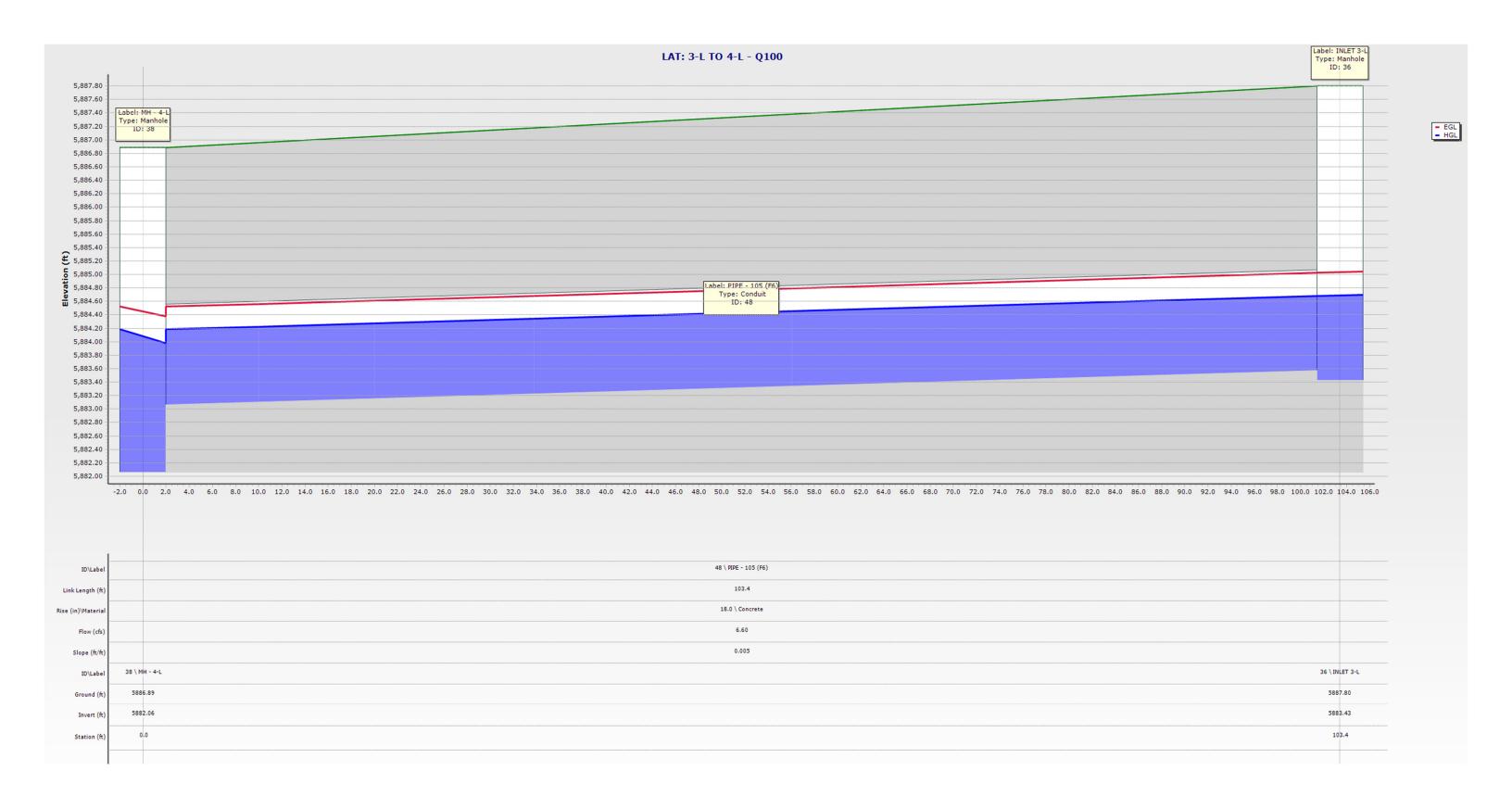
# Pipe Report (5yr)

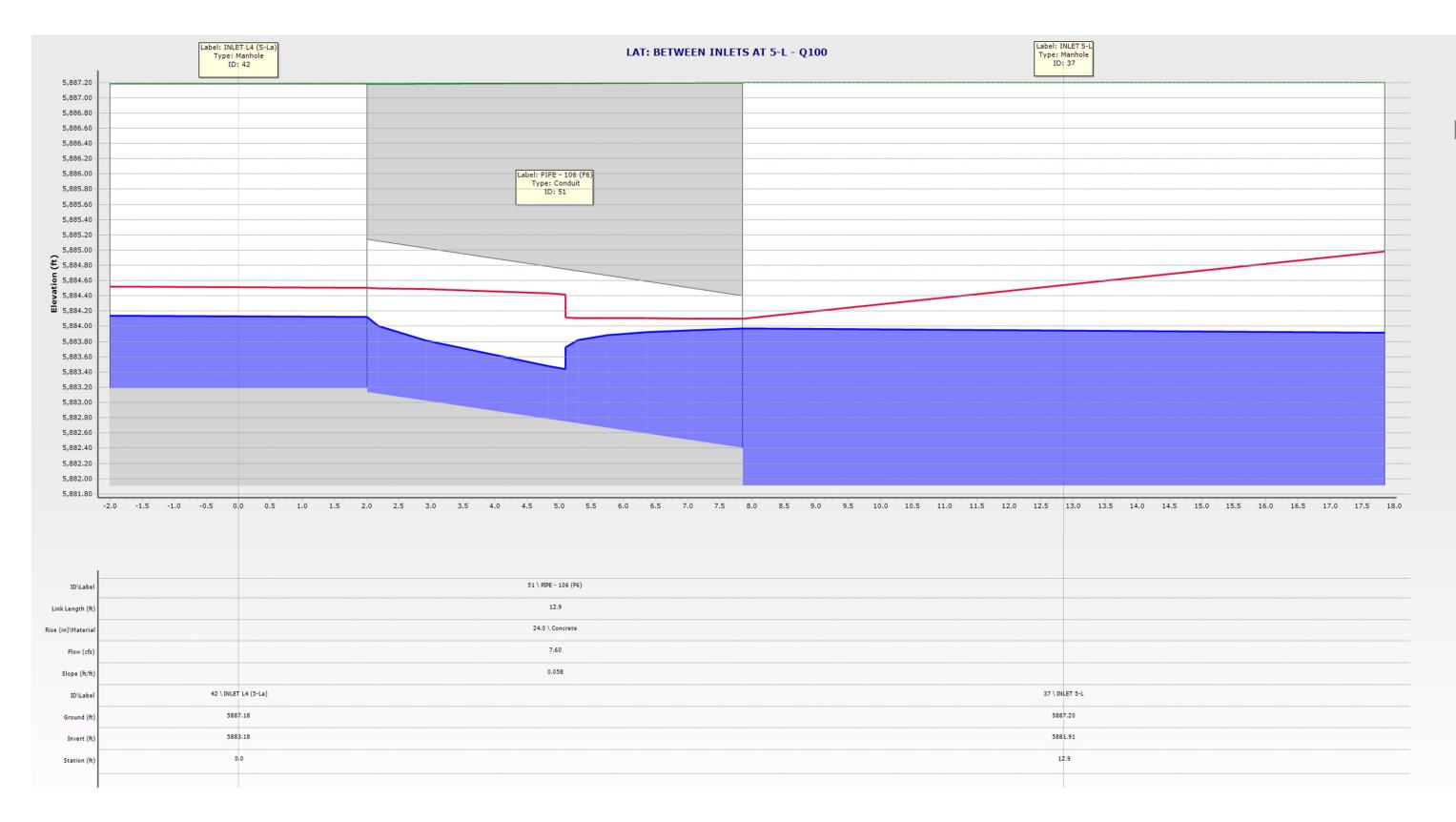

|                     | ID | Label 🔺         | Start Node      | Invert<br>(Start)<br>(ft) | Invert<br>(Stop)<br>(ft) | Stop Node       | Length (User<br>Defined)<br>(ft) | Slope<br>(Calculated)<br>(ft/ft) | Diameter<br>(in) | Manning's n | Flow<br>(cfs) | Velocity<br>(ft/s) | Capacity (Full<br>Flow)<br>(cfs) | Flow /<br>Capacity<br>(Design)<br>(%) | Depth<br>(Normal) /<br>Rise<br>(%) |
|---------------------|----|-----------------|-----------------|---------------------------|--------------------------|-----------------|----------------------------------|----------------------------------|------------------|-------------|---------------|--------------------|----------------------------------|---------------------------------------|------------------------------------|
| 46: PIPE - 98 (F6)  | 46 | PIPE - 98 (F6)  | INLET L5        | 5,885.00                  | 5,884.86                 | MH - 1-L        | 28.9                             | 0.005                            | 18.0             | 0.013       | 0.20          | 1.82               | 7.43                             | 2.7                                   | 11.3                               |
| 44: PIPE - 99 (F6)  | 44 | PIPE - 99 (F6)  | MH - 1-L        | 5,884.56                  | 5,883.86                 | MH - 2-L        | 140.1                            | 0.005                            | 18.0             | 0.013       | 0.30          | 2.06               | 7.43                             | 4.0                                   | 13.7                               |
| 45: PIPE - 100 (F6) | 45 | PIPE - 100 (F6) | MH - 2-L        | 5,883.36                  | 5,882.56                 | MH - 4-L        | 120.5                            | 0.007                            | 24.0             | 0.013       | 6.20          | 5.29               | 18.43                            | 33.6                                  | 40.0                               |
| 49: PIPE - 101 (F6) | 49 | PIPE - 101 (F6) | MH - 4-L        | 5,882.06                  | 5,882.01                 | INLET 5-L       | 10.0                             | 0.005                            | 30.0             | 0.013       | 9.20          | 5.24               | 29.00                            | 31.7                                  | 38.7                               |
| 50: PIPE - 102 (F6) | 50 | PIPE - 102 (F6) | INLET 5-L       | 5,881.01                  | 5,879.99                 | Forebay NE Pond | 29.8                             | 0.034                            | 30.0             | 0.013       | 15.60         | 12.17              | 75.94                            | 20.5                                  | 30.8                               |
| 47: PIPE - 103 (F6) | 47 | PIPE - 103 (F6) | INLET L6        | 5,884.91                  | 5,884.86                 | MH - 1-L        | 9.1                              | 0.005                            | 18.0             | 0.013       | 0.10          | 1.48               | 7.43                             | 1.3                                   | 8.1                                |
| 43: PIPE - 104 (F6) | 43 | PIPE - 104 (F6) | INLET L2        | 5,885.46                  | 5,884.36                 | MH - 2-L        | 29.1                             | 0.038                            | 18.0             | 0.013       | 5.90          | 10.00              | 20.43                            | 28.9                                  | 36.8                               |
| 48: PIPE - 105 (F6) | 48 | PIPE - 105 (F6) | INLET 3-L       | 5,883.57                  | 5,883.06                 | MH - 4-L        | 103.4                            | 0.005                            | 18.0             | 0.013       | 3.00          | 3.95               | 7.36                             | 40.8                                  | 44.5                               |
| 51: PIPE - 106 (F6) | 51 | PIPE - 106 (F6) | INLET L4 (5-La) | 5,883.14                  | 5,882.50                 | INLET 5-L       | 12.9                             | 0.050                            | 24.0             | 0.013       | 3.30          | 9.07               | 50.48                            | 6.5                                   | 17.3                               |
| 52: PIPE - 108 (F6) | 52 | PIPE - 108 (F6) | NE Pond Outlet  | 5,878.44                  | 5,878.17                 | NE OUTFALL      | 54.8                             | 0.005                            | 18.0             | 0.013       | 0.70          | 2.63               | 7.37                             | 9.5                                   | 20.8                               |


# Manhole Report (5yr)

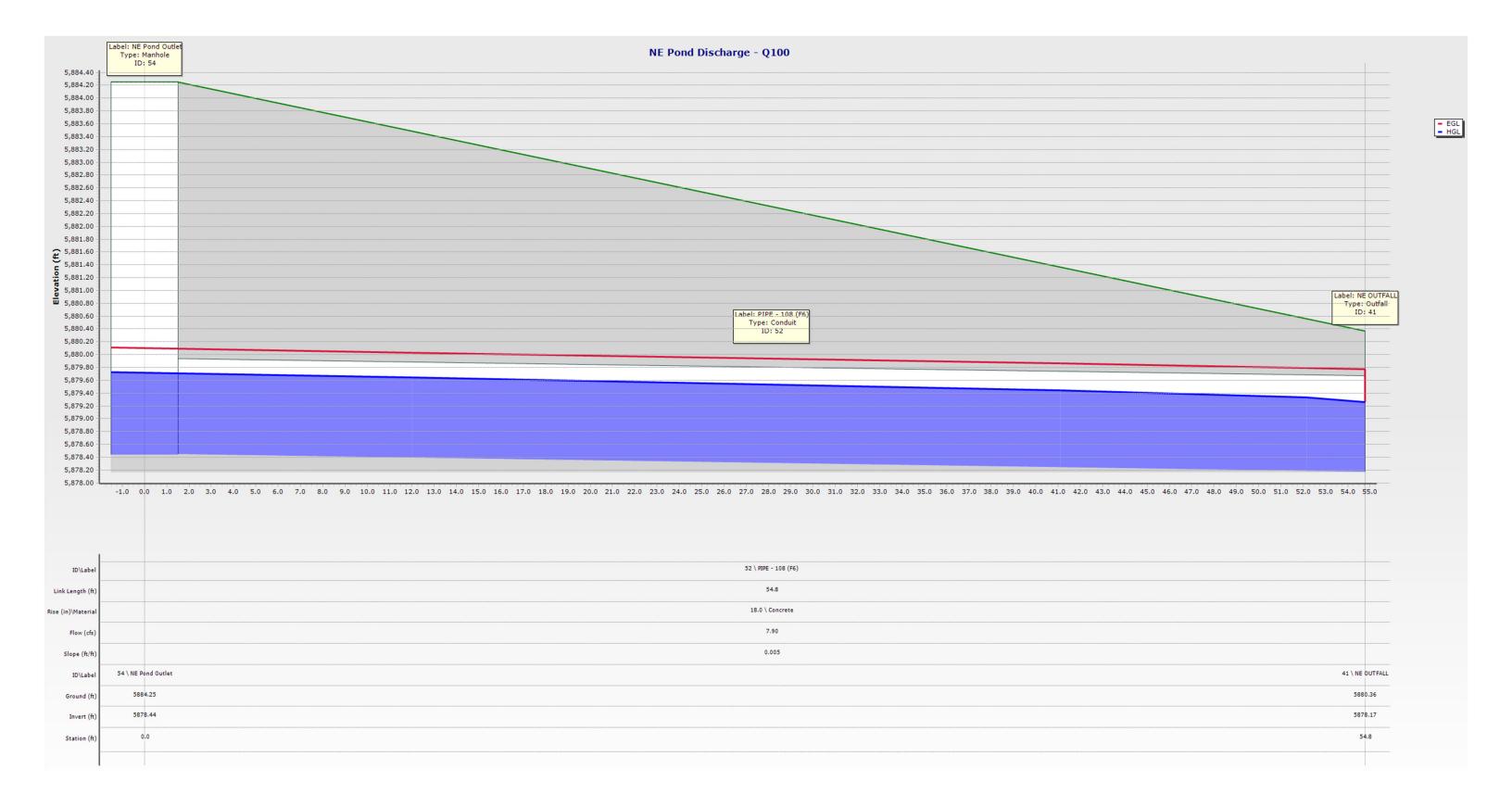
|                     | ID | Label           | Elevation<br>(Ground)<br>(ft) | Elevation<br>(Rim)<br>(ft) | Depth<br>(Out)<br>(ft) | Hydraulic<br>Grade Line<br>(In)<br>(ft) | Hydraulic<br>Grade Line<br>(Out)<br>(ft) | Headloss<br>Method | Headloss<br>Coefficient<br>(Standard) | Flow<br>(Total<br>Out)<br>(cfs) |
|---------------------|----|-----------------|-------------------------------|----------------------------|------------------------|-----------------------------------------|------------------------------------------|--------------------|---------------------------------------|---------------------------------|
| 31: INLET L2        | 31 | INLET L2        | 5,889.96                      | 5,889.96                   | 0.94                   | 5,886.42                                | 5,886.40                                 | Standard           | 0.050                                 | 5.90                            |
| 32: MH - 2-L        | 32 | MH - 2-L        | 5,889.57                      | 5,889.57                   | 0.88                   | 5,884.59                                | 5,884.24                                 | Standard           | 1.020                                 | 6.20                            |
| 33: INLET L5        | 33 | INLET L5        | 5,889.50                      | 5,889.50                   | 0.17                   | 5,885.17                                | 5,885.17                                 | Standard           | 0.050                                 | 0.20                            |
| 34: INLET L6        | 34 | INLET L6        | 5,889.49                      | 5,889.49                   | 0.12                   | 5,885.03                                | 5,885.03                                 | Standard           | 0.050                                 | 0.10                            |
| 35: MH - 1-L        | 35 | MH - 1-L        | 5,889.17                      | 5,889.17                   | 0.21                   | 5,884.83                                | 5,884.77                                 | Standard           | 1.020                                 | 0.30                            |
| 36: INLET 3-L       | 36 | INLET 3-L       | 5,887.80                      | 5,887.80                   | 0.81                   | 5,884.25                                | 5,884.24                                 | Standard           | 0.050                                 | 3.00                            |
| 37: INLET 5-L       | 37 | INLET 5-L       | 5,887.20                      | 5,887.20                   | 0.43                   | 5,882.37                                | 5,882.34                                 | Standard           | 0.050                                 | 15.60                           |
| 38: MH - 4-L        | 38 | MH - 4-L        | 5,886.89                      | 5,886.89                   | 1.01                   | 5,883.27                                | 5,883.07                                 | Standard           | 0.520                                 | 9.20                            |
| 42: INLET L4 (5-La) | 42 | INLET L4 (5-La) | 5,887.18                      | 5,887.18                   | 0.60                   | 5,883.79                                | 5,883.77                                 | Standard           | 0.050                                 | 3.30                            |
| 54: NE Pond Outlet  | 54 | NE Pond Outlet  | 5,884.25                      | 5,884.25                   | 0.31                   | 5,878.76                                | 5,878.75                                 | Standard           | 0.050                                 | 0.70                            |




| 5,889.60 -                                                   | Label: I<br>Type: I<br>ID: | INLET L6<br>Manhole<br>: 34 |                                     |          | Labels  | MH = 1 = 1                  |              |           | LAT: I    | L5 TO L6 - | Q100     |        |                                  |            |      |          |         |          |
|--------------------------------------------------------------|----------------------------|-----------------------------|-------------------------------------|----------|---------|-----------------------------|--------------|-----------|-----------|------------|----------|--------|----------------------------------|------------|------|----------|---------|----------|
|                                                              |                            |                             |                                     |          | Type: N | MH - 1-L<br>Manhole<br>- 35 |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,889.40                                                     |                            |                             |                                     |          | 10      | 35                          |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,889.20                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,889.00                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,888.80                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,888.60                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,888.40                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,888.20                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,888.00                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,887.80                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,887.60                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| £ 5,887.40                                                   |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,887.20                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,887.00                                                     |                            |                             | Label: DIDE -                       | 103 (E6) |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| (H) 5,887.40<br>5,887.20<br>5,887.00<br>5,887.00<br>5,886.80 |                            |                             | Label: PIPE -<br>Type: Co<br>ID: 43 | nduit    |         |                             |              |           |           |            |          |        | Label: PIPE                      | 98 (F6)    |      |          |         |          |
| 5,886.60                                                     |                            |                             | 10. 4                               |          |         |                             |              |           |           |            |          |        | Label: PIPE<br>Type: Co<br>ID: 4 | nduit<br>6 |      |          |         |          |
| 5,886.40                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,886.20                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,886.00                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,885.80                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,885.60                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,885.40                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,885.20                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,885.00                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,884.80                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| 5,884.60                                                     |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| ı                                                            | -2.0 -1.0 0                | .0 1.0 2.0                  | 3.0 4.0 5.0                         | 6.0 7.0  | 8.0 9.0 | 0 10.0 11                   | .0 12.0 13.0 | 14.0 15.0 | 16.0 17.0 | ) 18.0 19  | 9.0 20.0 | 21.0 2 | 2.0 23.0                         | 24.0 25.0  | 26.0 | 27.0 28. | .0 29.0 | 30.0 31. |
|                                                              |                            |                             | 47 \ PIPE - 10                      | 12 (56)  |         |                             |              |           |           |            |          |        | 46 \ PIPE - 1                    | 9 (52)     |      |          |         |          |
| ID\Label                                                     |                            |                             | 9.1                                 |          |         |                             |              |           |           |            |          |        | 28.9                             |            |      |          |         |          |
| Link Length (ft)<br>Rise (in)\Material                       |                            |                             | 18.0 \ Cond                         |          |         |                             |              |           |           |            |          |        | 18.0 \ Cor                       |            |      |          |         |          |
| Flow (cfs)                                                   |                            |                             |                                     | 0.50     |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |
| Slope (ft/ft)                                                |                            | 0.005                       |                                     |          |         |                             | 0.005        |           |           |            |          |        |                                  |            |      |          |         |          |
| ID\Label                                                     | 34 \ IM                    | ILET L6                     |                                     |          | 35 \ M  | H - 1-L                     |              |           |           |            |          |        |                                  |            |      |          |         |          |
| Ground (ft)                                                  | 588                        | 9.49                        |                                     |          | 588     | 9.17                        |              |           |           |            |          |        |                                  |            |      |          |         |          |
| Invert (ft)                                                  | 588                        | 4.91                        |                                     |          | 588     | 4.56                        |              |           |           |            |          |        |                                  |            |      |          |         |          |
| Station (ft)                                                 | 0                          | .0                          |                                     |          | 9       | .1                          |              |           |           |            |          |        |                                  |            |      |          |         |          |
|                                                              |                            |                             |                                     |          |         |                             |              |           |           |            |          |        |                                  |            |      |          |         |          |





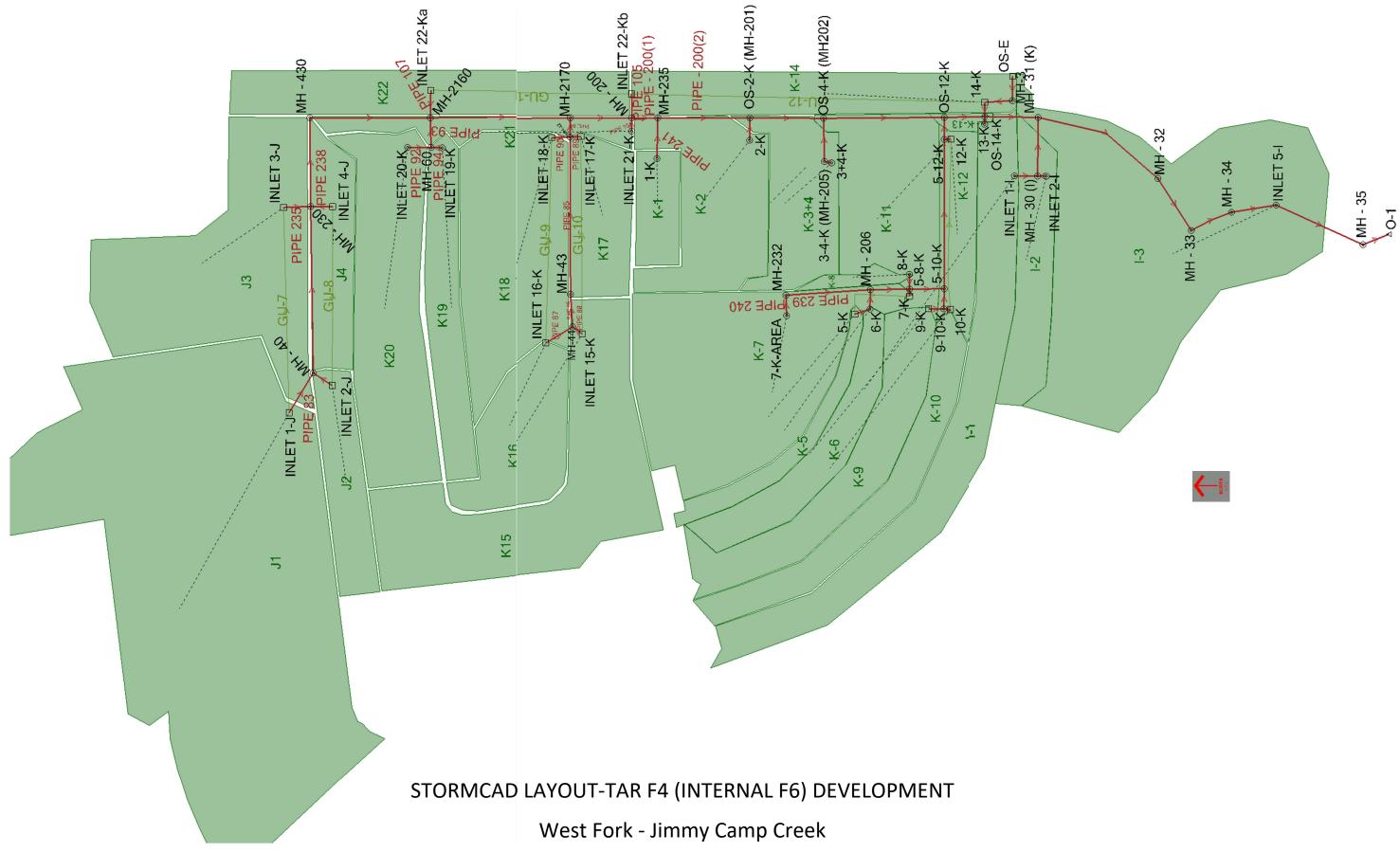


| 31 \ INLET L2 |
|---------------|
| 5889.96       |
| 5885.46       |
|               |
| 29.1          |
|               |
|               |





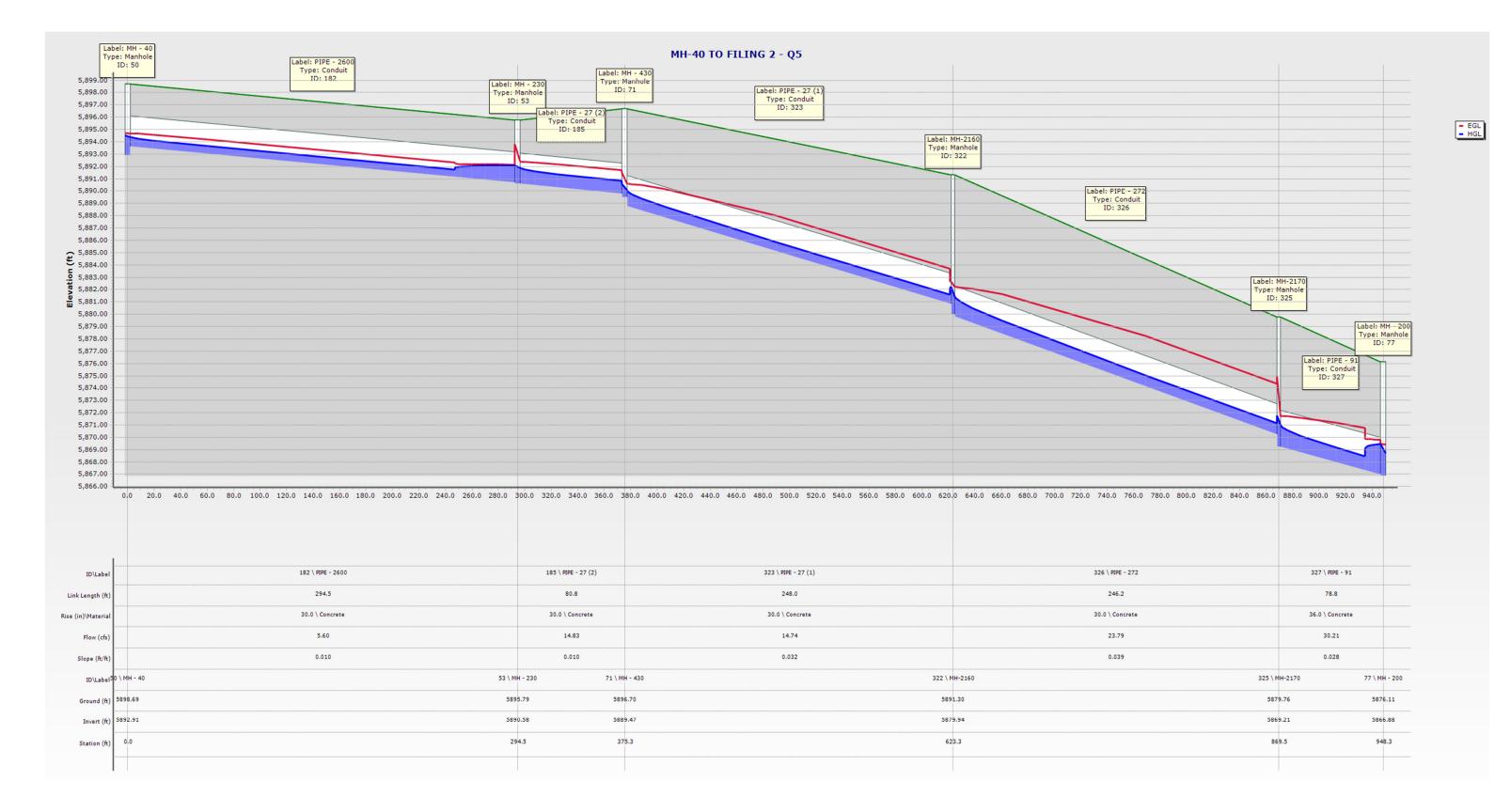


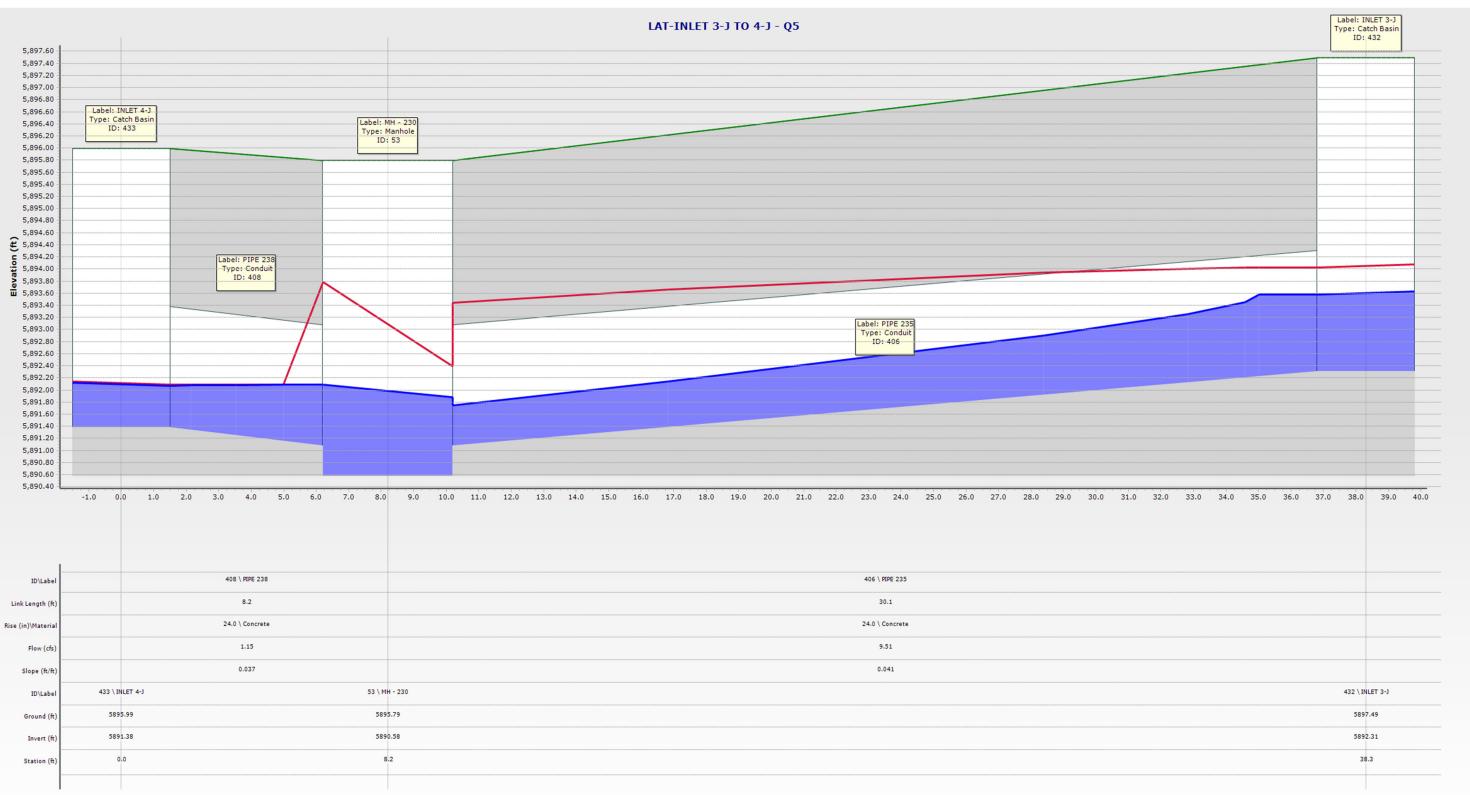
= EGL = HGL




|                     | ID | Label 🔺         | Start Node      | Invert<br>(Start)<br>(ft) | Invert<br>(Stop)<br>(ft) | Stop Node  | Length (User<br>Defined)<br>(ft) | Slope<br>(Calculated)<br>(ft/ft) | Diameter<br>(in) | Manning's n | Flow<br>(cfs) | Velocity<br>(ft/s) | Capacity (Full<br>Flow)<br>(cfs) | Flow /<br>Capacity<br>(Design)<br>(%) | Depth<br>(Normal) /<br>Rise<br>(%) |
|---------------------|----|-----------------|-----------------|---------------------------|--------------------------|------------|----------------------------------|----------------------------------|------------------|-------------|---------------|--------------------|----------------------------------|---------------------------------------|------------------------------------|
| 46: PIPE - 98 (F6)  | 46 | PIPE - 98 (F6)  | INLET L5        | 5,885.00                  | 5,884.86                 | MH - 1-L   | 28.9                             | 0.005                            | 18.0             | 0.013       | 0.50          | 2.39               | 7.43                             | 6.7                                   | 17.6                               |
| 44: PIPE - 99 (F6)  | 44 | PIPE - 99 (F6)  | MH - 1-L        | 5,884.56                  | 5,883.86                 | MH - 2-L   | 140.1                            | 0.005                            | 18.0             | 0.013       | 0.70          | 2.64               | 7.43                             | 9.4                                   | 20.7                               |
| 45: PIPE - 100 (F6) | 45 | PIPE - 100 (F6) | MH - 2-L        | 5,883.36                  | 5,882.56                 | MH - 4-L   | 120.5                            | 0.007                            | 24.0             | 0.013       | 13.70         | 6.43               | 18.43                            | 74.3                                  | 64.2                               |
| 49: PIPE - 101 (F6) | 49 | PIPE - 101 (F6) | MH - 4-L        | 5,882.06                  | 5,882.01                 | INLET 5-L  | 10.0                             | 0.005                            | 30.0             | 0.013       | 20.30         | 6.39               | 29.00                            | 70.0                                  | 61.7                               |
| 50: PIPE - 102 (F6) | 50 | PIPE - 102 (F6) | INLET 5-L       | 5,881.01                  | 5,879.99                 | Forebay NE | 29.8                             | 0.034                            | 30.0             | 0.013       | 34.90         | 15.15              | 75.94                            | 46.0                                  | 47.6                               |
| 47: PIPE - 103 (F6) | 47 | PIPE - 103 (F6) | INLET L6        | 5,884.91                  | 5,884.86                 | MH - 1-L   | 9.1                              | 0.005                            | 18.0             | 0.013       | 0.20          | 1.82               | 7.43                             | 2.7                                   | 11.3                               |
| 43: PIPE - 104 (F6) | 43 | PIPE - 104 (F6) | INLET L2        | 5,885.46                  | 5,884.36                 | MH - 2-L   | 29.1                             | 0.038                            | 18.0             | 0.013       | 13.00         | 12.25              | 20.43                            | 63.6                                  | 57.9                               |
| 48: PIPE - 105 (F6) | 48 | PIPE - 105 (F6) | INLET 3-L       | 5,883.57                  | 5,883.06                 | MH - 4-L   | 103.4                            | 0.005                            | 18.0             | 0.013       | 6.60          | 4.71               | 7.36                             | 89.7                                  | 74.0                               |
| 51: PIPE - 106 (F6) | 51 | PIPE - 106 (F6) | INLET L4 (5-La) | 5,883.14                  | 5,882.40                 | INLET 5-L  | 12.9                             | 0.058                            | 24.0             | 0.013       | 7.60          | 12.18              | 54.28                            | 14.0                                  | 25.3                               |
| 52: PIPE - 108 (F6) | 52 | PIPE - 108 (F6) | NE Pond Outlet  | 5,878.44                  | 5,878.17                 | NE OUTFALL | 54.8                             | 0.005                            | 18.0             | 0.013       | 7.90          | 4.67               | 7.37                             | 107.1                                 | 91.3                               |

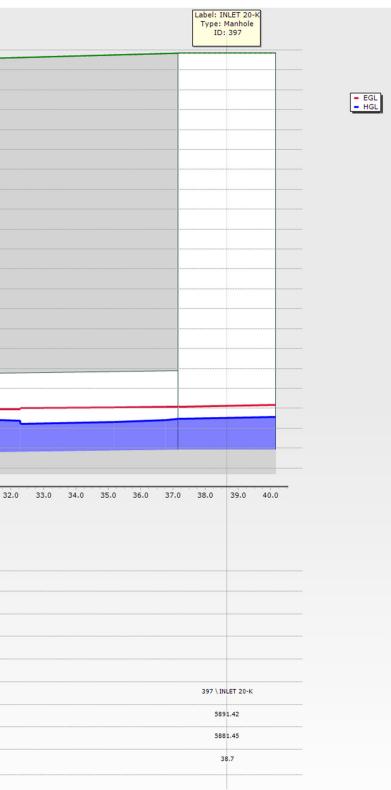
# Pipe Report (100yr)

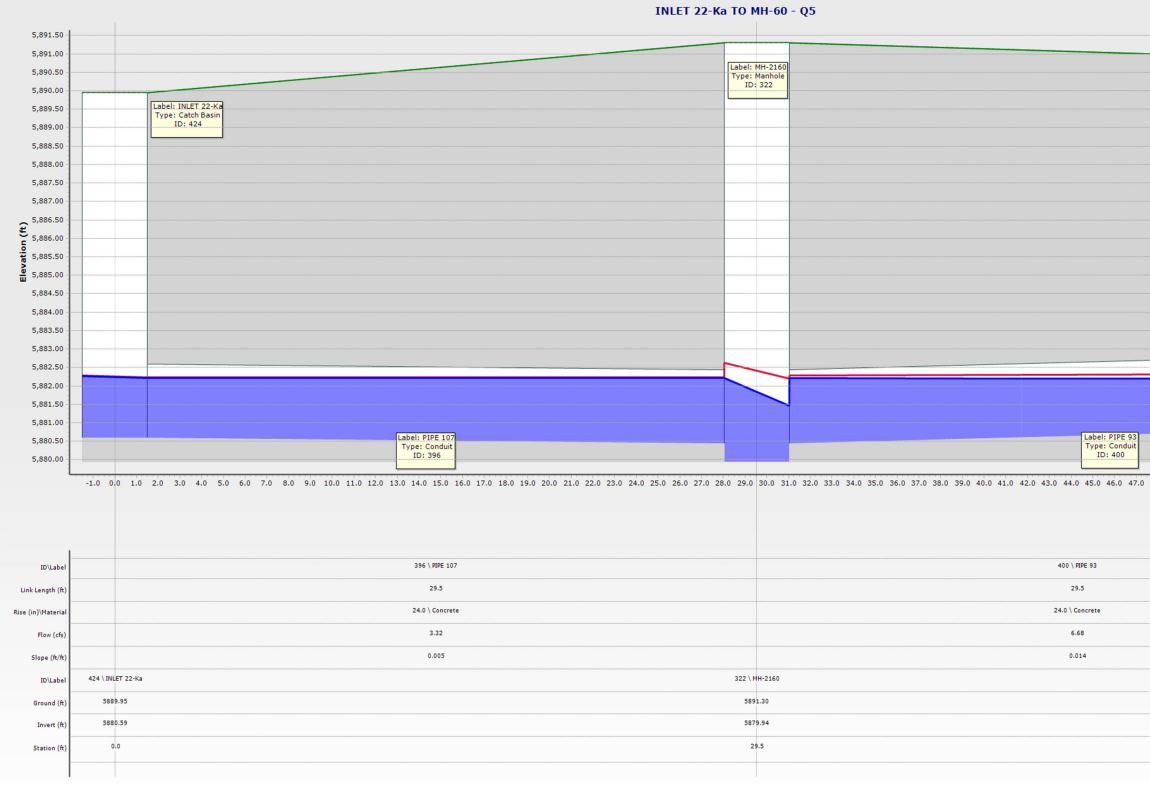

# Manhole Report (100yr)


|                     | ID | Label           | Elevation<br>(Ground)<br>(ft) | Elevation<br>(Rim)<br>(ft) | Depth<br>(Out)<br>(ft) | Hydraulic<br>Grade Line<br>(In)<br>(ft) | Hydraulic<br>Grade Line<br>(Out)<br>(ft) | Headloss<br>Method | Headloss<br>Coefficient<br>(Standard) | Flow<br>(Total<br>Out)<br>(cfs) |
|---------------------|----|-----------------|-------------------------------|----------------------------|------------------------|-----------------------------------------|------------------------------------------|--------------------|---------------------------------------|---------------------------------|
| 31: INLET L2        | 31 | INLET L2        | 5,889.96                      | 5,889.96                   | 1.35                   | 5,886.86                                | 5,886.81                                 | Standard           | 0.050                                 | 13.00                           |
| 32: MH - 2-L        | 32 | MH - 2-L        | 5,889.57                      | 5,889.57                   | 1.33                   | 5,885.30                                | 5,884.69                                 | Standard           | 1.020                                 | 13.70                           |
| 33: INLET L5        | 33 | INLET L5        | 5,889.50                      | 5,889.50                   | 0.31                   | 5,885.31                                | 5,885.31                                 | Standard           | 0.050                                 | 0.50                            |
| 34: INLET L6        | 34 | INLET L6        | 5,889.49                      | 5,889.49                   | 0.40                   | 5,885.31                                | 5,885.31                                 | Standard           | 0.050                                 | 0.20                            |
| 35: MH - 1-L        | 35 | MH - 1-L        | 5,889.17                      | 5,889.17                   | 0.74                   | 5,885.31                                | 5,885.30                                 | Standard           | 1.020                                 | 0.70                            |
| 36: INLET 3-L       | 36 | INLET 3-L       | 5,887.80                      | 5,887.80                   | 1.25                   | 5,884.70                                | 5,884.68                                 | Standard           | 0.050                                 | 6.60                            |
| 37: INLET 5-L       | 37 | INLET 5-L       | 5,887.20                      | 5,887.20                   | 1.11                   | 5,883.07                                | 5,883.02                                 | Standard           | 0.050                                 | 34.90                           |
| 38: MH - 4-L        | 38 | MH - 4-L        | 5,886.89                      | 5,886.89                   | 1.54                   | 5,883.93                                | 5,883.60                                 | Standard           | 0.520                                 | 20.30                           |
| 42: INLET L4 (5-La) | 42 | INLET L4 (5-La) | 5,887.18                      | 5,887.18                   | 0.94                   | 5,884.14                                | 5,884.12                                 | Standard           | 0.050                                 | 7.60                            |
| 54: NE Pond Outlet  | 54 | NE Pond Outlet  | 5,884.25                      | 5,884.25                   | 1.27                   | 5,879.73                                | 5,879.71                                 | Standard           | 0.050                                 | 7.90                            |



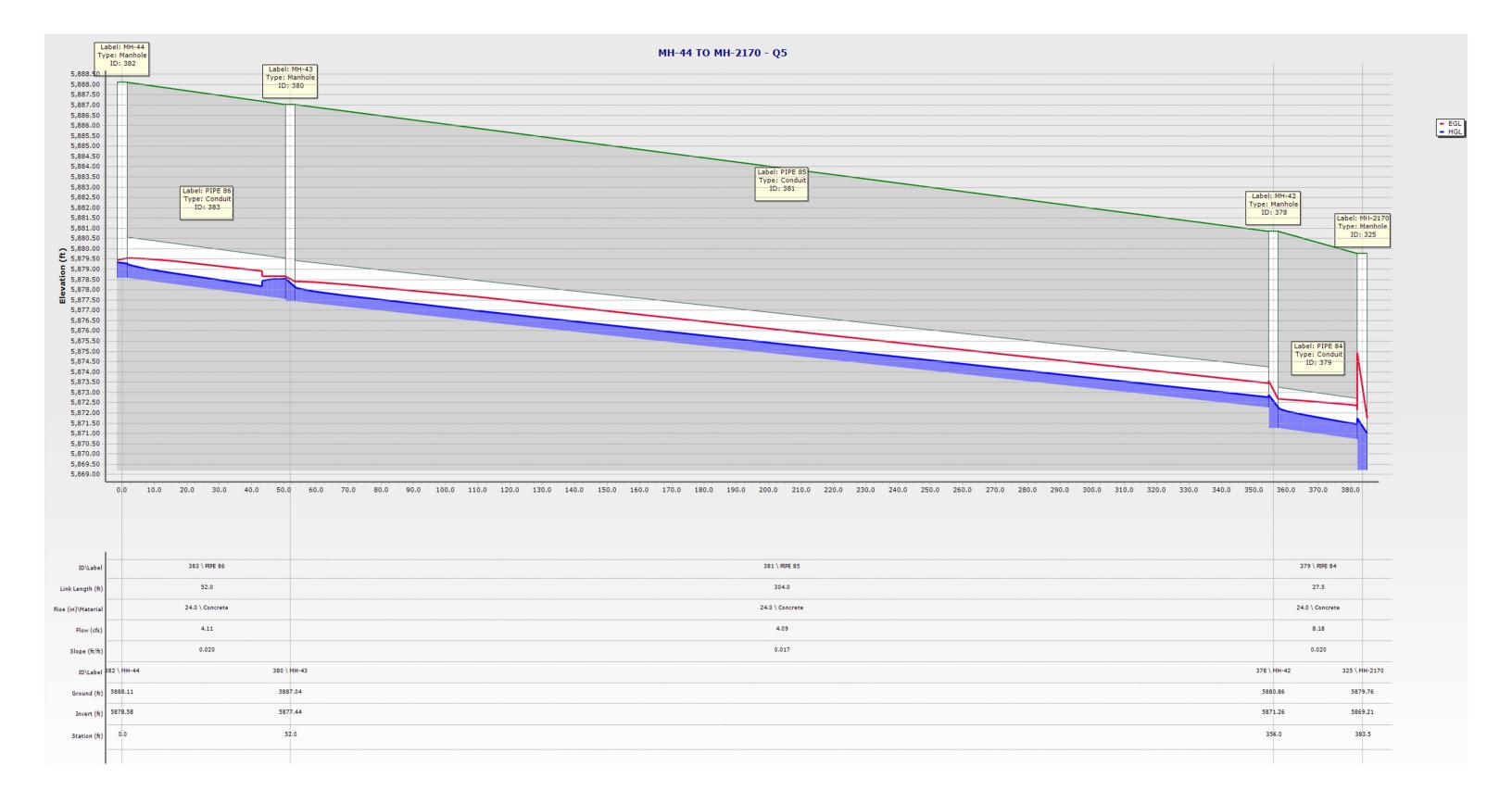


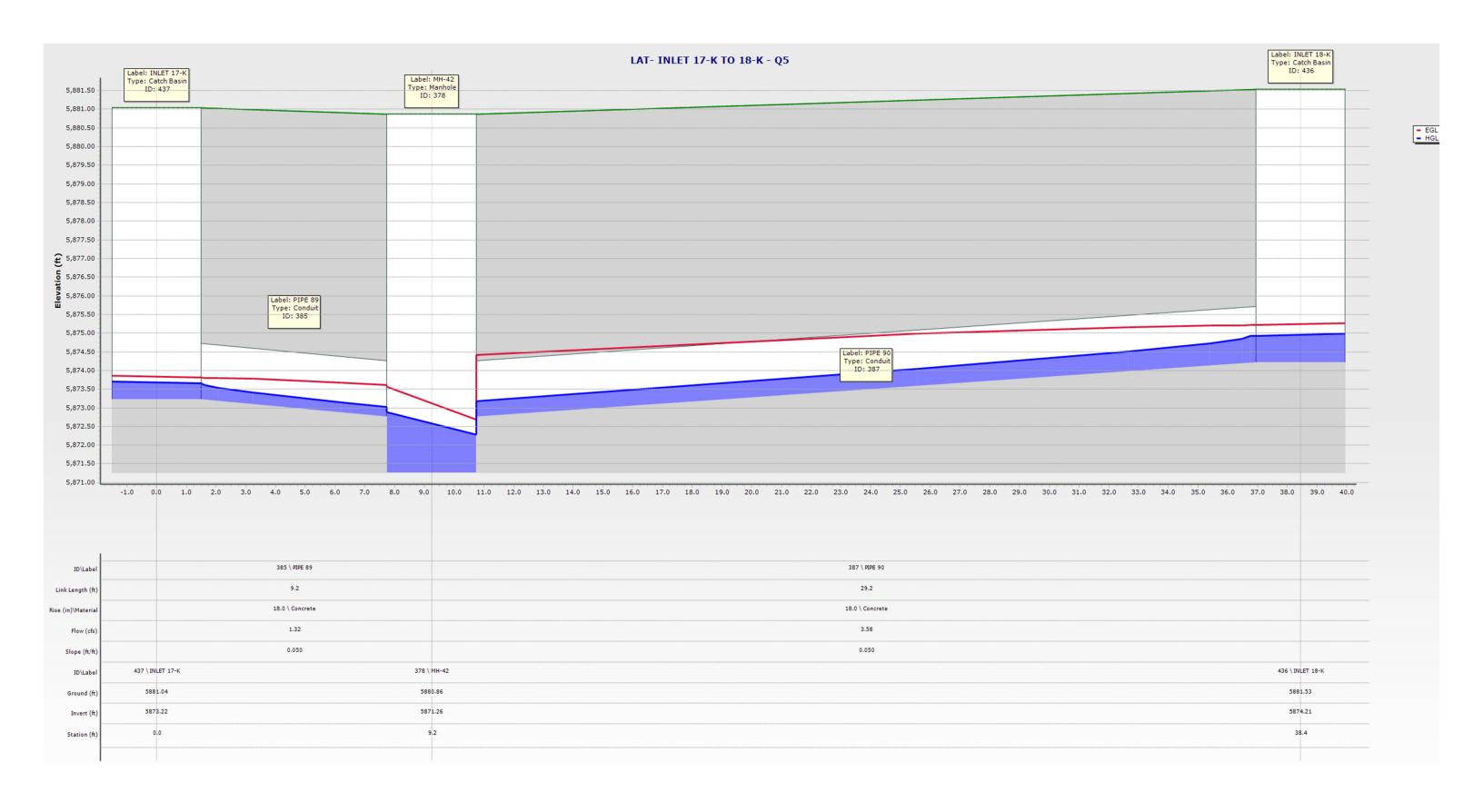

= EGL = HGL





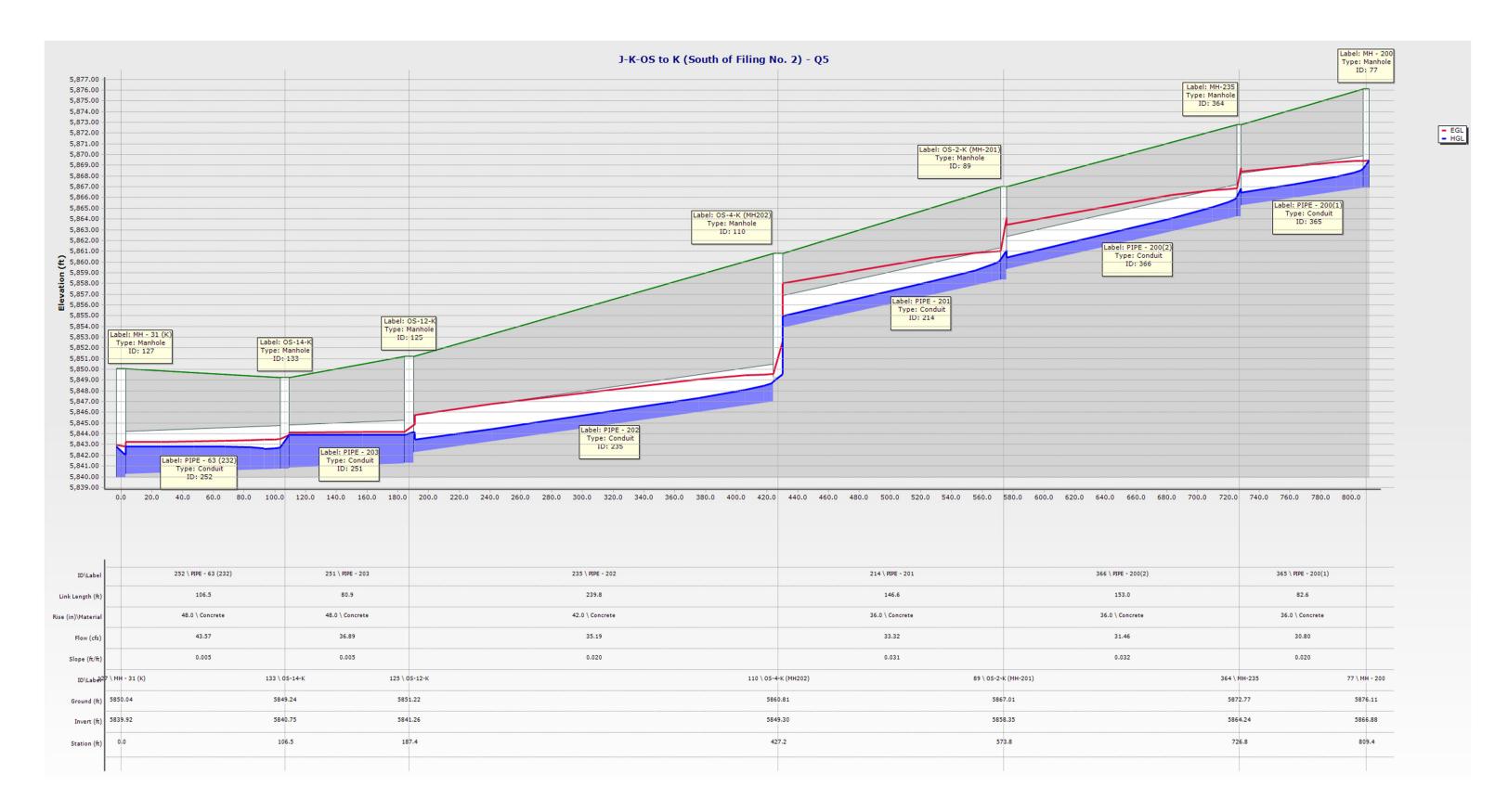


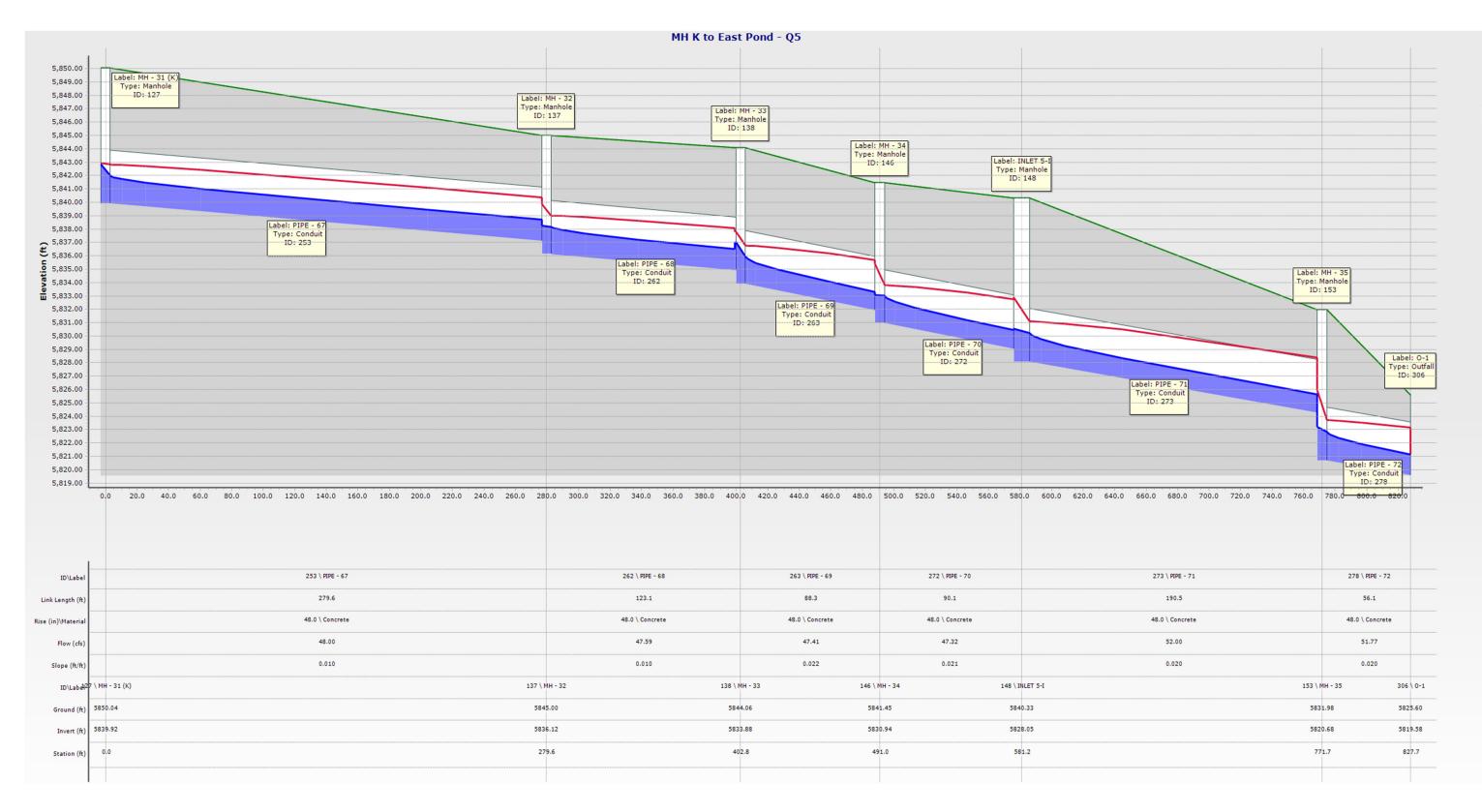


|                                              |                               |                                            |                                          |                    |               | LAT-INLET  | 19K TO 2 | 20K - Q5  |        |                                            |         |          |      |         |          |     |
|----------------------------------------------|-------------------------------|--------------------------------------------|------------------------------------------|--------------------|---------------|------------|----------|-----------|--------|--------------------------------------------|---------|----------|------|---------|----------|-----|
| 5 001 50                                     | Label: INLET 1<br>Type: Manho | e                                          | Label: MH-60<br>Type: Manhole<br>ID: 398 |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,891.50<br>5,891.00 -                       | ID: 401                       |                                            | ID: 398                                  |                    |               |            |          |           |        |                                            |         |          |      |         |          | -   |
| 5,891.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,890.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
|                                              |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,889.50<br>5,889.00                         |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,889.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,888.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,887.50                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
|                                              |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| £ 5,885 50                                   |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,886.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,887.00<br>5,886.50<br>5,886.00<br>5,885.50 |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,885.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,884.50                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,884.00                                     |                               | Label: PIPE 94<br>Type: Conduit<br>ID: 402 |                                          |                    |               |            |          |           |        | Label: PIPE 92                             |         |          |      |         |          |     |
| 5,883.50                                     |                               | ID: 402                                    |                                          |                    |               |            |          |           |        | Label: PIPE 92<br>Type: Conduit<br>ID: 399 |         |          |      |         |          |     |
| 5,883.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,882.50                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          | _   |
| 5,882.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,881.50                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 5,881.00                                     |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| 1                                            | -1.0 0.0                      | 1.0 2.0 3.0 4.0 5.0 6.0 7.0                | 8.0 9.0 10                               | 0.0 11.0 12.0 13.0 | 14.0 15.0 16. | 0 17.0 18. | 0 19.0   | 20.0 21.0 | 22.0 2 | 3.0 24.0                                   | 25.0 26 | 6.0 27.0 | 28.0 | 29.0 30 | 0.0 31.0 | i c |
|                                              |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
|                                              |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
|                                              |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| ID\Label                                     |                               | 402 \ PIPE 94                              |                                          |                    |               |            |          |           |        | 399 \ PIPE 92                              |         |          |      |         |          |     |
| Link Length (ft)                             |                               | 8.7                                        |                                          |                    |               |            |          |           |        | 30.0                                       |         |          |      |         |          |     |
| Rise (in)\Material                           |                               | 24.0 \ Concrete                            |                                          |                    |               |            |          |           |        | 24.0 \ Concrete                            |         |          |      |         |          |     |
|                                              |                               |                                            |                                          |                    |               |            |          |           |        | 5.02                                       |         |          |      |         |          |     |
| Flow (cfs)                                   |                               | 1.76                                       |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| Slope (ft/ft)                                |                               | 0.010                                      |                                          |                    |               |            |          |           |        | 0.010                                      |         |          |      |         |          |     |
| ID\Label                                     | 401 \ INLET 19-               | <                                          | 398 \ MH-60                              |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| Ground (ft)                                  | 5890.93                       |                                            | 5890.82                                  |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| Invert (ft)                                  | 5881.24                       |                                            | 5880.85                                  |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
| Station (ft)                                 | 0.0                           |                                            | 8.7                                      |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |
|                                              |                               |                                            |                                          |                    |               |            |          |           |        |                                            |         |          |      |         |          |     |






|                                                   | Label:<br>Type: M<br>ID: | MH-60<br>Ianhole |      | 50             |
|---------------------------------------------------|--------------------------|------------------|------|----------------|
|                                                   |                          | 390              |      | - EGL<br>- HGL |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
| 48.0 49.0 50.0 51.0 52.0 53.0 54.0 55.0 56.0 57.0 | 58.0 59                  | .0 60.0          | 61.0 |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   |                          |                  |      |                |
|                                                   | 398 \ M                  | 1H-60            |      |                |
|                                                   | 5890                     | .82              |      |                |
|                                                   | 5880                     |                  |      |                |
|                                                   | 59                       | .0               |      |                |
|                                                   |                          |                  |      |                |






|                                      | Label: INLET 22-Kb<br>Type: Catch Basin<br>ID: 428 | INLET 21-K TO 22-Kb - Q5                                                                                                         |                    |
|--------------------------------------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------|
| 5,877.00                             | 10. 420                                            |                                                                                                                                  | Label              |
| 5,876.50                             |                                                    |                                                                                                                                  | Label<br>Type<br>I |
| 5,876.00                             |                                                    |                                                                                                                                  |                    |
| 5,875.50                             |                                                    |                                                                                                                                  |                    |
| 5,875.00                             |                                                    |                                                                                                                                  |                    |
| 5,874.50                             |                                                    |                                                                                                                                  |                    |
| 5,874.00                             |                                                    |                                                                                                                                  |                    |
| 5,873.50                             |                                                    |                                                                                                                                  |                    |
| 5,873.00                             |                                                    |                                                                                                                                  |                    |
| £ 5,872.50                           |                                                    |                                                                                                                                  |                    |
| (t) 5,872.50<br>5,872.00<br>5,871.50 |                                                    |                                                                                                                                  |                    |
| 5,871.50                             |                                                    | Label: PIPE 105<br>Type: Conduit<br>ID: 423                                                                                      |                    |
| <b>u</b><br>5,871.00                 |                                                    |                                                                                                                                  |                    |
| 5,870.50                             |                                                    |                                                                                                                                  |                    |
| 5,870.00                             |                                                    |                                                                                                                                  |                    |
| 5,869.50                             |                                                    |                                                                                                                                  |                    |
| 5,869.00                             |                                                    |                                                                                                                                  |                    |
| 5,868.50                             |                                                    |                                                                                                                                  |                    |
| 5,868.00                             |                                                    |                                                                                                                                  |                    |
| 5,867.50                             |                                                    |                                                                                                                                  |                    |
| 5,867.00                             |                                                    |                                                                                                                                  |                    |
|                                      | -1.0 0.0 1.0                                       | 0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22.0 23.0 24.0 25.0 26.0 27.0 28.0 | 29.0               |
|                                      |                                                    |                                                                                                                                  |                    |
|                                      |                                                    |                                                                                                                                  |                    |
|                                      |                                                    |                                                                                                                                  |                    |
| ID\Label                             |                                                    | 423 \ PIPE 105                                                                                                                   |                    |
| Link Length (ft)                     |                                                    | 29.8                                                                                                                             |                    |
| Rise (in)\Material                   |                                                    | 24.0 \ Concrete                                                                                                                  |                    |
| Flow (cfs)                           |                                                    | 0.00                                                                                                                             |                    |
| Slope (ft/ft)                        |                                                    | 0.020                                                                                                                            |                    |
| ID\Label                             | 428 \ INLET 22-Kb                                  |                                                                                                                                  | 77 \               |
| Ground (ft)                          | 5876.93                                            |                                                                                                                                  | 5                  |
| Invert (ft)                          | 5868.58                                            |                                                                                                                                  | 5                  |
| Station (ft)                         | 0.0                                                |                                                                                                                                  |                    |
|                                      |                                                    |                                                                                                                                  |                    |
|                                      |                                                    |                                                                                                                                  |                    |

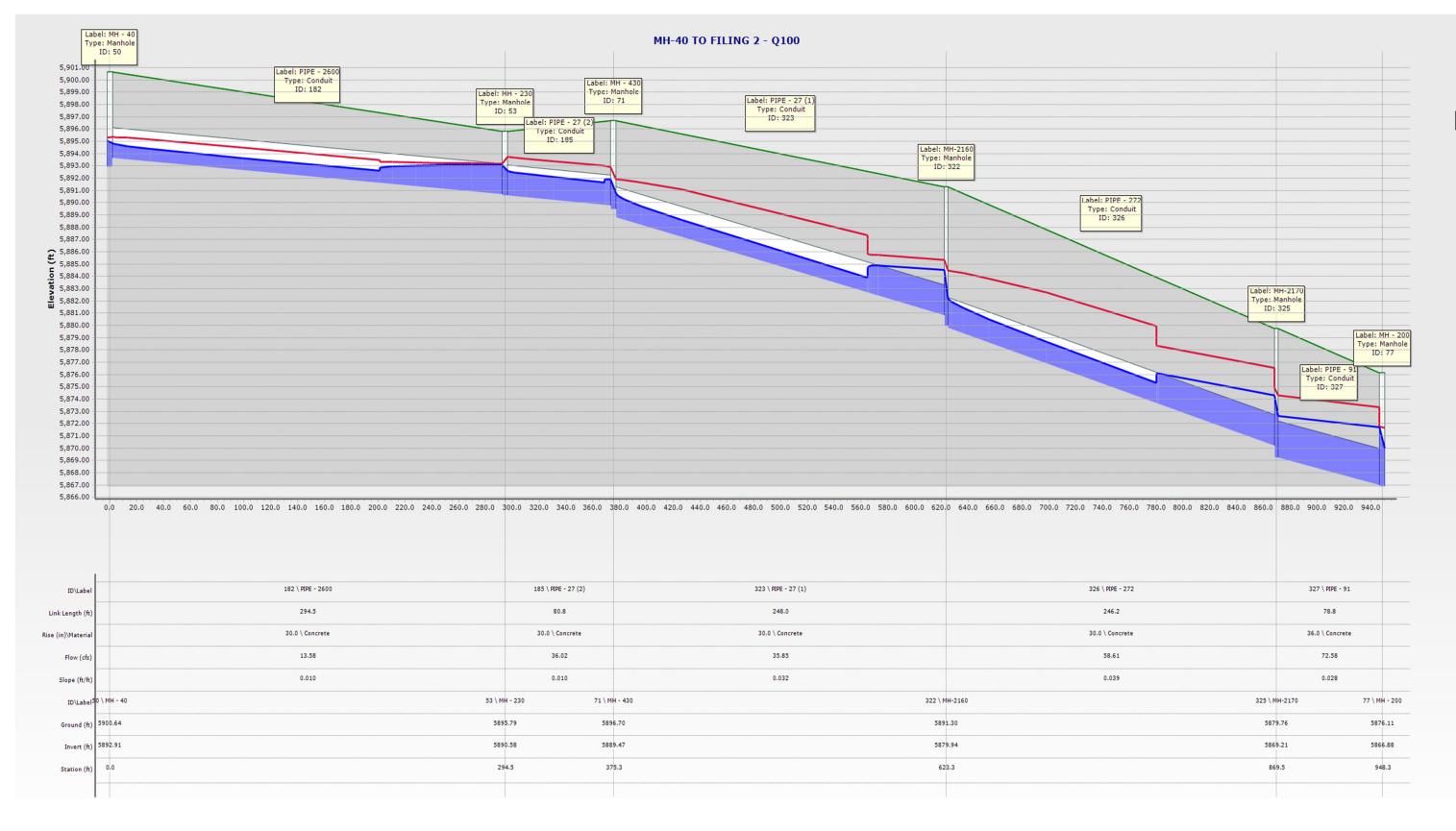




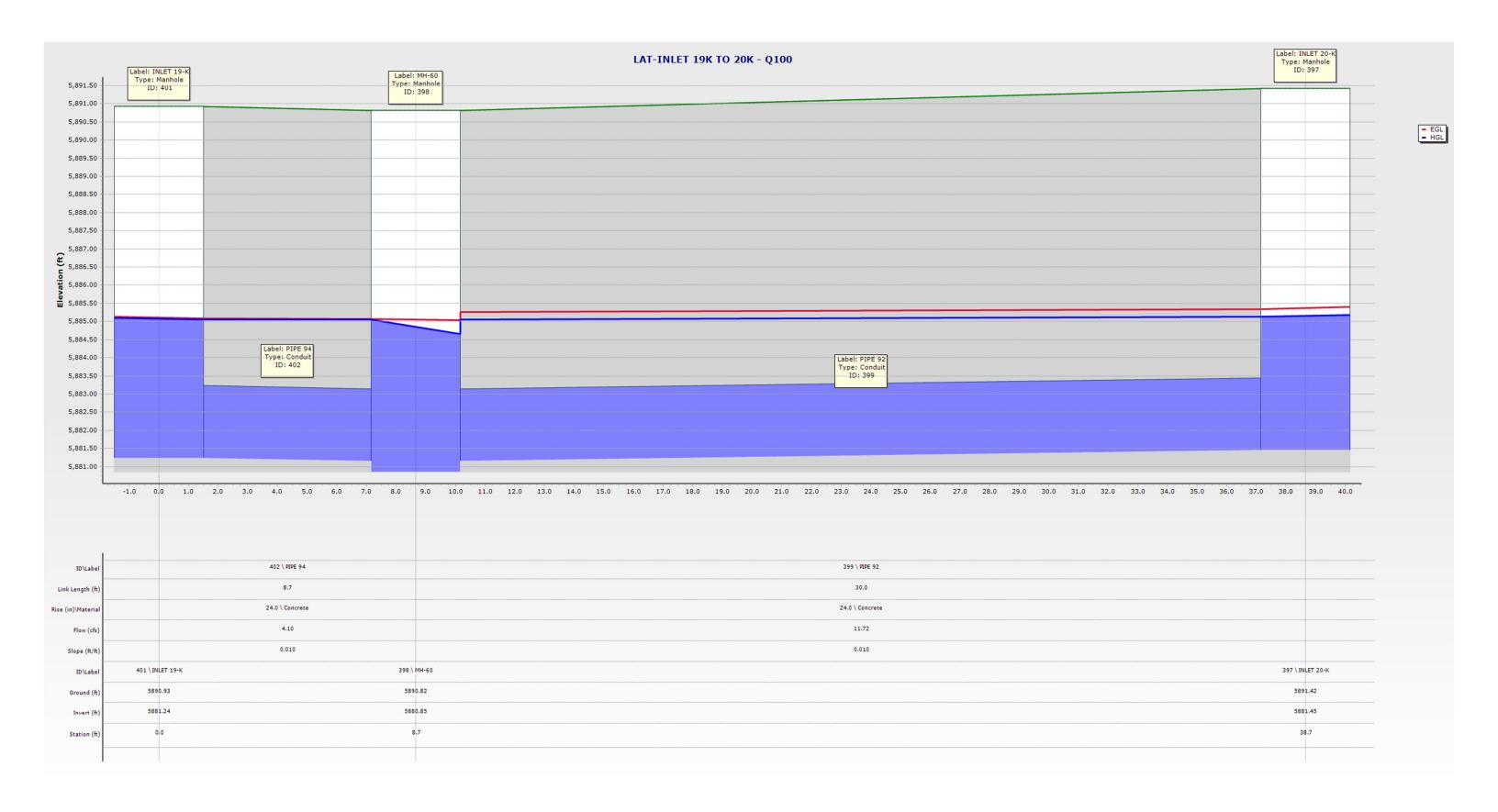




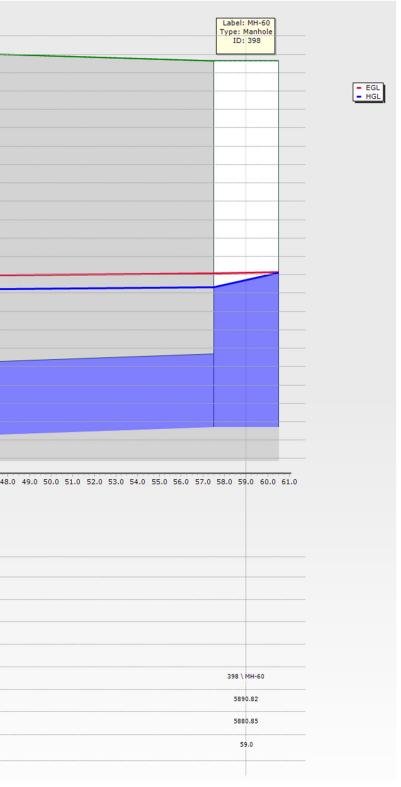

## Pipe Report (5yr)

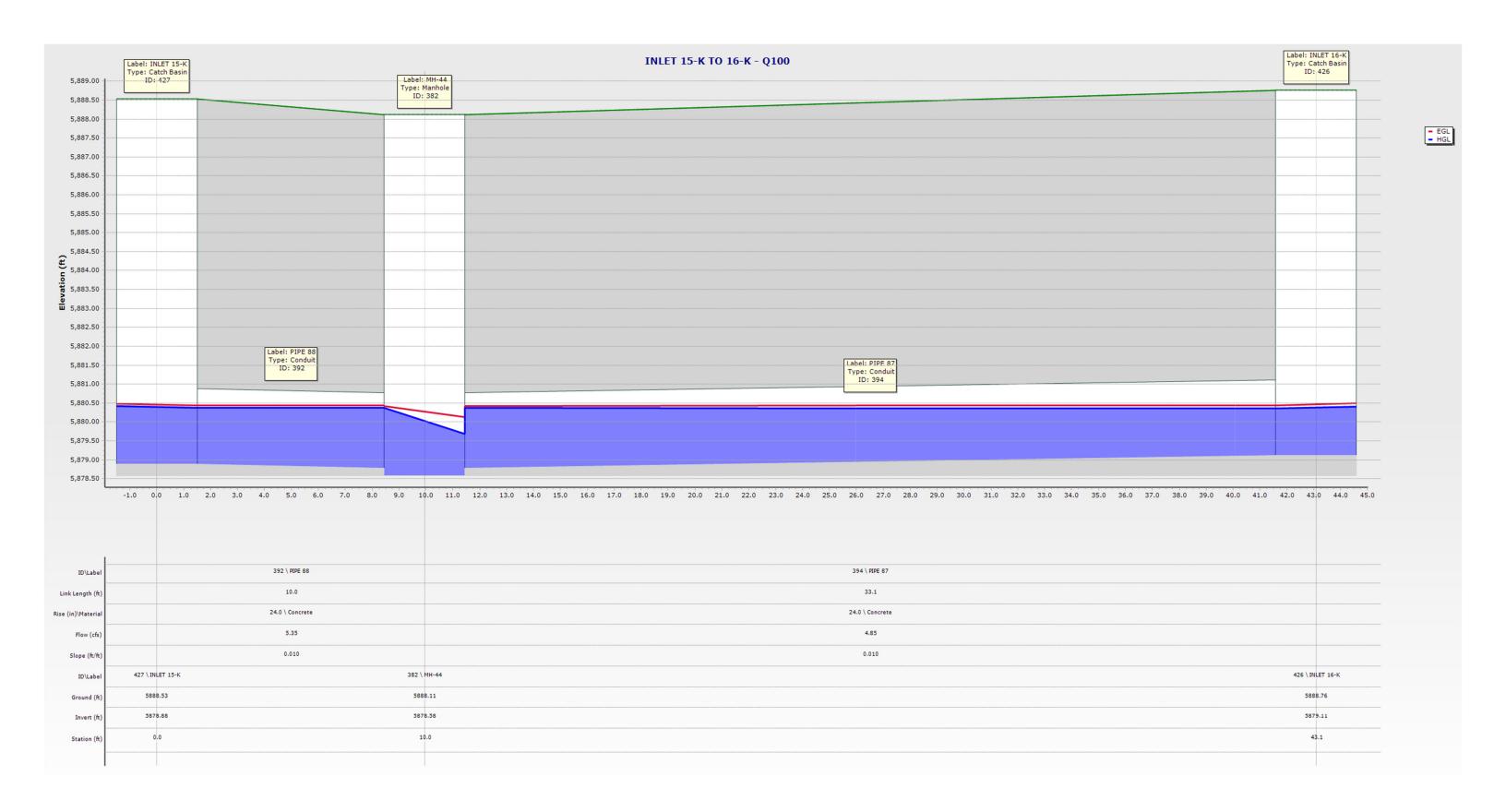

|                                  |                                      |                               |                 |                                     |                  |                    |                |               | - 1 - 1                          |                                       |                                    |                    |                           |                          |                                  |                                         |                                          |
|----------------------------------|--------------------------------------|-------------------------------|-----------------|-------------------------------------|------------------|--------------------|----------------|---------------|----------------------------------|---------------------------------------|------------------------------------|--------------------|---------------------------|--------------------------|----------------------------------|-----------------------------------------|------------------------------------------|
|                                  | Label                                | Start Node                    | Stop Node       | Length<br>(User<br>Defined)<br>(ft) | Diameter<br>(in) | Notes              | Manning's<br>n | Flow<br>(cfs) | Capacity (Full<br>Flow)<br>(cfs) | Flow /<br>Capacity<br>(Design)<br>(%) | Depth<br>(Normal) /<br>Rise<br>(%) | Velocity<br>(ft/s) | Invert<br>(Start)<br>(ft) | Invert<br>(Stop)<br>(ft) | Slope<br>(Calculated)<br>(ft/ft) | Hydraulic<br>Grade Line<br>(In)<br>(ft) | Hydraulic<br>Grade Line<br>(Out)<br>(ft) |
| 326: PIPE - 272                  | PIPE - 272                           | MH-2160                       | MH-2170         | 246.2                               | 30.0             | 30" RCP            | 0.013          | 23.79         | 80.95                            | 29.4                                  | 37.1                               | 14.33              | 5,879.80                  | 5,870.21                 | 0.039                            | 5,881.46                                | 5,871.14                                 |
| 214: PIPE - 201                  | PIPE - 201                           | OS-2-K (MH-201)               | OS-4-K (MH202)  | 146.6                               | 36.0             | 36" RCP            | 0.013          | 33.32         | 116.84                           | 28.5                                  | 36.5                               | 14.25              | 5,858.35                  | 5,853.85                 | 0.031                            | 5,860.22                                | 5,854.96                                 |
| 366: PIPE - 200(2)               | PIPE - 200(2)                        | MH-235                        | OS-2-K (MH-201) | 153.0                               | 36.0             | 36" RCP            | 0.013          | 31.46         | 119.23                           | 26.4                                  | 35.1                               | 14.23              | 5,864.24                  | 5,859.35                 | 0.032                            | 5,866.06                                | 5,860.41                                 |
| 263: PIPE - 69                   | PIPE - 69                            | MH - 33                       | MH - 34         | 88.3                                | 48.0             | 48" RCP            | 0.013          | 47.41         | 213.02                           | 22.3                                  | 32.1                               | 13.64              | 5,833.88                  | 5,831.94                 | 0.022                            | 5,835.95                                | 5,833.32                                 |
| 273: PIPE - 71                   | PIPE - 71                            | INLET 5-I                     | MH - 35         | 190.5                               | 48.0             | 48" RCP            | 0.013          | 52.00         | 203.11                           | 25.6                                  | 34.5                               | 13.52              | 5,828.05                  | 5,824.24                 | 0.020                            | 5,830.22                                | 5,825.64                                 |
| 327: PIPE - 91                   | PIPE - 91                            | MH-2170                       | MH - 200        | 78.8                                | 36.0             | 36" RCP            | 0.013          | 30.21         | 112.17                           | 26.9                                  | 35.4                               | 13.47              | 5,869.21                  | 5,866.98                 | 0.028                            | 5,870.99                                | 5,869.45                                 |
| 278: PIPE - 72                   | PIPE - 72                            | MH - 35                       | 0-1             | 56.1                                | 48.0             | 48" RCP            | 0.013          | 51.77         | 201.16                           | 25.7                                  | 34.6                               | 13.41              | 5,820.68                  | 5,819.58                 | 0.020                            | 5,822.84                                | 5,821.14                                 |
| 272: PIPE - 70                   | PIPE - 70                            | MH - 34                       | INLET 5-I       | 90.1                                | 48.0             | 48" RCP            | 0.013          | 47.32         | 208.12                           | 22.7                                  | 32.4                               | 13.41              | 5,830.94                  | 5,829.05                 | 0.021                            | 5,833.00                                | 5,830.44                                 |
| 406: PIPE 235                    | PIPE 235                             | INLET 3-J                     | MH - 230        | 28.1                                | 24.0             | 24" RCP            | 0.013          | 9.51          | 50.50                            | 18.8                                  | 29.4                               | 12.34              | 5,892.48                  | 5,891.08                 | 0.050                            | 5,893.58                                | 5,891.74                                 |
| 235: PIPE - 202                  | PIPE - 202                           | OS-4-K (MH202)                | OS-12-K         | 239.8                               | 42.0             | 42" RCP            | 0.013          | 35.19         | 141.73                           | 24.8                                  | 34.0                               | 12.22              | 5,847.00                  | 5,842.24                 | 0.020                            | 5,848.84                                | 5,844.18                                 |
| 365: PIPE - 200(1)               | PIPE - 200(1)                        | MH - 200                      | MH-235          | 82.6                                | 36.0             | 36" RCP            | 0.013          | 30.80         | 93.98                            | 32.8                                  | 39.4                               | 11.90              | 5,866.88                  | 5,865.24                 | 0.020                            | 5,868.68                                | 5,866.48                                 |
| 230: PIPE - 208                  | PIPE - 208                           | OS-4-K (MH202)                | 3-4-K (MH-205)  | 22.0                                | 18.0             | 18" RCP            | 0.013          | 2.92          | 34.18                            | 8.5                                   | 19.8                               | 11.81              | 5,855.35                  | 5,857.68                 | -0.106                           | 5,858.33                                | 5,855.67                                 |
| 323: PIPE - 27 (1)               | PIPE - 27 (1)                        | MH - 430                      | MH-2160         | 248.0                               | 30.0             | 30" RCP            | 0.013          | 14.74         | 73.52                            | 20.0                                  | 30.4                               | 11.70              | 5,888.77                  | 5,880.80                 | 0.032                            | 5,890.06                                | 5,882.21                                 |
| 231: PIPE - 217                  | PIPE - 217                           | 5-10-K                        | 9-10-K          | 40.0                                | 18.0             | 18" RCP            | 0.013          | 3.77          | 26.53                            | 14.2                                  | 25.5                               | 10.63              | 5,854.51                  | 5,857.06                 | -0.064                           | 5,857.80                                | 5,855.34                                 |
| 248: PIPE - 220                  | PIPE - 220                           | 5-12-K                        | 12-К            | 8.5                                 | 18.0             | 18" RCP            | 0.013          | 3.78          | 25.77                            | 14.7                                  | 25.9                               | 10.42              | 5,845.50                  | 5,846.01                 | -0.060                           | 5,846.75                                | 5,845.98                                 |
| 253: PIPE - 67                   | PIPE - 67                            | MH - 31 (K)                   | MH - 32         | 279.6                               | 48.0             | 48" RCP            | 0.013          | 48.00         | 143.63                           | 33.4                                  | 39.8                               | 10.29              | 5,839.92                  | 5,837.12                 | 0.010                            | 5,841.99                                | 5,838.71                                 |
| 262: PIPE - 68                   | PIPE - 68                            | MH - 32                       | MH - 33         | 123.1                               | 48.0             | 48" RCP            | 0.013          | 47.59         | 143.63                           | 33.1                                  | 39.6                               | 10.26              | 5,836.12                  | 5,834.89                 | 0.010                            | 5,838.18                                | 5,837.02                                 |
| 238: PIPE - 218                  | PIPE - 218                           | 5-12-K                        | 5-10-K          | 271.8                               | 24.0             | 24" RCP            | 0.013          | 7.23          | 41.19                            | 17.6                                  | 28.4                               | 9.86               | 5,845.00                  | 5,854.01                 | -0.033                           | 5,854.96                                | 5,845.57                                 |
| 387: PIPE 90                     | PIPE 90                              | INLET 18-K                    | MH-42           | 29.0                                |                  | 18" RCP            | 0.013          | 3.58          | 23.49                            | 15.2                                  | 26.4                               | 9.61               | 5,874.21                  |                          | 0.050                            | 5,874.93                                | 5,873.18                                 |
| 254: PIPE - 64                   | PIPE - 64                            | MH - 31 (K)                   | MH - 30 (I)     | 118.8                               |                  | 24" RCP            | 0.013          | 7.08          | 35.83                            | 19.8                                  | 30.1                               | 8.87               | 5,841.32                  | 5,844.30                 | -0.025                           | 5,845.24                                | 5,842.84                                 |
| 223: PIPE - 211                  | PIPE - 211                           | 5-8-K                         | MH - 206        | 80.2                                |                  | 18" RCP            | 0.013          | 4.43          | 19.24                            | 23.0                                  | 32.6                               | 8.85               | 5,856.55                  | 5,859.24                 | -0.034                           | 5,860.05                                | -                                        |
| 379: PIPE 84                     | PIPE 84                              | MH-42                         | MH-2170         | 27.5                                |                  | 24" RCP            | 0.013          | 8.18          | 31.97                            | 25.6                                  | 34.5                               | 8.51               | 5,871.26                  | 5,870.71                 | 0.020                            | 5,872.28                                | 5,871.75                                 |
| 250: PIPE - 221                  | PIPE - 221                           | OS-12-K                       | 5-12-K          | 69.8                                |                  | 36" RCP            | 0.013          | 9.64          | 89.60                            | 10.8                                  | 22.1                               | 8.28               | 5,842.74                  | 5,844.00                 | -0.018                           | 5,844.98                                | 5,844.18                                 |
| 256: PIPE - 223                  | PIPE - 223                           | OS-14-K                       | 14-K            | 28.5                                | 18.0             |                    | 0.013          | 8.11          | 13.49                            | 60.1                                  | 55.9                               | 7.98               | 5,843.34                  | 5,843.81                 | -0.016                           | 5,844.91                                | 5,844.22                                 |
| 252: PIPE - 63 (232)             | PIPE - 63 (232)                      | OS-14-K                       | MH - 31 (K)     | 106.5                               | 48.0             | 48" RCP            | 0.013          | 43.57         | 101.57                           | 42.9                                  | 45.8                               | 7.77               | 5,840.75                  | 5,840.22                 | 0.005                            | 5,842.73                                | 5,842.84                                 |
| 185: PIPE - 27 (2)               | PIPE - 27 (2)                        | MH - 230                      | MH - 430        | 80.8                                |                  | 30" RCP            | 0.013          | 14.83         | 41.06                            | 36.1                                  | 41.5                               | 7.69               | 5,890.58                  | 5,889.77                 | 0.010                            | 5,891.88                                | 5,890.82                                 |
| 251: PIPE - 203                  | PIPE - 203                           | OS-12-K                       | OS-14-K         | 80.9                                | 48.0             |                    | 0.013          | 36.89         | 101.00                           | 36.5                                  | 41.8                               | 7.41               | 5,841.24                  | 5,840.84                 | 0.005                            | 5,843.91                                | 5,843.90                                 |
| 234: PIPE - 214                  | PIPE - 214                           | 5-10-K                        | 5-8-K           | 69.0                                |                  | 18" RCP            | 0.013          | 4.67          | 14.64                            | 31.9                                  | 38.8                               | 7.36               | 5,854.51                  | 5,855.85                 | -0.019                           | 5,856.68                                | 5,855.34                                 |
| 385: PIPE 89                     | PIPE 89                              | INLET 17-K                    | MH-42           | 9.2                                 |                  | 18" RCP            | 0.013          | 1.32          | 23.44                            | 5.6                                   | 16.1                               | 7.17               | 5,873.22                  | 5,872.76                 | 0.050                            | 5,873.65                                | 5,873.03                                 |
| 400: PIPE 93                     | PIPE 93                              | MH-60                         | MH-2160         | 29.5                                |                  | 24" RCP            | 0.013          | 6.68          | 26.69                            | 25.0                                  | 34.1                               | 7.06               | 5,880.85                  | 5,880.44                 | 0.014                            | 5,882.18                                | 5,882.21                                 |
| 383: PIPE 86                     | PIPE 86                              | MH-44                         | MH-43           | 52.0                                |                  | 24" RCP            | 0.013          | 4.11          | 31.99                            | 12.8                                  | 24.2                               | 7.00               | 5,878.58                  |                          | 0.020                            | 5,879.29                                | 5,878.55                                 |
| 361: PIPE 240                    | PIPE 240                             | 7-K-AREA                      | MH-232          | 17.1                                | 18.0             |                    | 0.013          | 2.48          | 17.41                            | 14.2                                  | 25.5                               | 6.98               | 5,864.11                  | 5,863.64                 | 0.027                            | 5,864.71                                | 5,864.05                                 |
| 354: 233                         | 233                                  | OS-E                          | MH-3            | 123.0                               |                  | 18" RCP            | 0.013          | 3.40          | 14.85                            | 22.9                                  | 32.5                               | 6.82               | 5,847.22                  | 5,844.76                 | 0.020                            | 5,847.92                                | 5,845.52                                 |
| 362: PIPE 239                    | PIPE 239                             | MH-232                        | MH - 206        | 155.0                               | 18.0             | -                  | 0.013          | 2.48          | 16.45                            | 15.1                                  | 26.2                               | 6.70               | 5,863.34                  | 5,859.54                 | 0.025                            | 5,863.94                                | 5,860.38                                 |
| 222: PIPE - 210                  | PIPE - 210                           | MH - 206                      | 6-К             | 60.2                                | 18.0             | -                  | 0.013          | 3.23          | 14.51                            | 22.3                                  | 32.1                               | 6.61               | 5,859.54                  | 5,860.69                 | -0.019                           | 5,861.38                                | 5,860.38                                 |
| 381: PIPE 85                     | PIPE 85                              | MH-43                         | MH-42           | 304.0                               |                  | 24" RCP            | 0.013          | 4.09          | 29.53                            | 13.9                                  | 25.1                               | 6.61               | 5,877.44                  | 5,872.26                 | 0.017                            | 5,878.15                                | 5,872.76                                 |
| 229: PIPE - 216                  | PIPE - 216                           | 9-10-K                        | 10-K            | 9.1                                 | 18.0             | 18" RCP            | 0.013          | 1.95          | 17.73                            | 11.0                                  | 22.4                               | 6.59               | 5,857.36                  | 5,857.62                 | -0.028                           | 5,858.15                                |                                          |
| 408: PIPE 238                    | PIPE 238                             | INLET 4-J                     | MH - 230        | 6.1                                 |                  | 24" RCP            | 0.013          | 1.15          | 50.25                            | 2.3                                   |                                    | 6.59               |                           | 5,891.08                 | 0.049                            | 5,892.07                                | 5,892.08                                 |
| 215: PIPE - 205                  | PIPE - 205                           | OS-2-K (MH-201)               | 2-К             | 49.9                                |                  | 18" RCP            | 0.013          | 2.13          | 16.23                            | 13.2                                  |                                    | 6.36               |                           | 5,862.04                 | -0.024                           | 5,862.59                                |                                          |
| 258: PIPE - 65                   | PIPE - 65                            | MH - 30 (I)                   | INLET 1-I       | 46.2                                |                  | 18" RCP            | 0.013          | 5.25          | 10.48                            | 50.1                                  |                                    | 5.94               | -                         | 5,845.26                 | -0.010                           | 5,846.14                                |                                          |
| 182: PIPE - 2600                 | PIPE - 2600                          | MH - 40                       | MH - 230        | 294.5                               |                  | 30" RCP            | 0.013          | 5.60          | 40.98                            | 13.7                                  | 25.0                               | 5.84               |                           | 5,890.68                 | 0.010                            | 5,894.40                                |                                          |
| 399: PIPE 92                     | PIPE 92                              | INLET 20-K                    | MH-60           | 30.0                                |                  | 24" RCP            | 0.013          | 5.02          | 22.62                            | 22.2                                  | 32.0                               | 5.79               |                           | 5,881.15                 | 0.010                            | 5,882.24                                |                                          |
| 221: PIPE - 209                  | PIPE - 209                           | 6-К                           | 5-K             | 33.2                                |                  | 18" RCP            | 0.013          | 1.83          | 14.47                            | 12.6                                  | 24.0                               | 5.60               | -                         | 5,861.62                 | -0.019                           | 5,862.13                                |                                          |
| 181: PIPE - 2500                 | PIPE - 2500                          | INLET 1-J                     | MH - 40         | 44.6                                |                  | 30" RCP            | 0.013          | 4.08          | 41.20                            | 9.9                                   | 21.3                               | 5.35               |                           | 5,893.82                 | 0.010                            | 5,894.93                                |                                          |
| 355: 234                         | 234                                  | MH-3                          | 14-K            | 34.9                                |                  | 18" RCP            | 0.013          | 3.40          | 10.52                            | 32.3                                  | 39.1                               | 5.31               |                           | 5,844.11                 | 0.010                            | 5,845.16                                |                                          |
| 259: PIPE - 66                   | PIPE - 66                            | MH - 30 (I)                   | INLET 2-I       | 10.2                                |                  | 18" RCP            | 0.013          | 2.27          | 10.41                            | 21.8                                  | 31.7                               | 4.71               |                           | 5,844.90                 | -0.010                           | 5,845.79                                |                                          |
| 392: PIPE 88                     | PIPE 88                              | INLET 15-K                    | MH-44           | 10.0                                |                  | 24" RCP            | 0.013          | 2.29          | 22.68                            | 10.1                                  |                                    | 4.63               |                           | 5,878.78                 | 0.010                            | 5,879.41                                |                                          |
| 390: PIPE 104                    | PIPE 104                             | INLET 21-K                    | MH - 200        | 6.4                                 |                  | 18" RCP            | 0.013          | 0.87          | 15.02                            | 5.8                                   |                                    | 4.63               |                           | 5,867.98                 | 0.020                            | 5,869.45                                |                                          |
| 394: PIPE 87                     | PIPE 87                              | INLET 16-K                    | MH-44           | 33.1                                |                  | 24" RCP            | 0.013          | 2.08          | 22.58                            | 9.2                                   | 22230 335                          | 4.48               |                           | 5,878.78                 | 0.010                            | 5,879.61                                | -                                        |
| 402: PIPE 94                     | PIPE 94                              | INLET 19-K                    | MH-60           | 8.7                                 |                  | 24" RCP            | 0.013          | 1.76          | 23.06                            | 7.6                                   |                                    | 4.34               |                           | 5,881.15                 | 0.010                            | 5,882.32                                |                                          |
| 410: PIPE 83                     | PIPE 83                              | INLET 2-J                     | MH - 40         | 9.8                                 |                  | 18" RCP            | 0.013          | 1.59          | 10.59                            | 15.0                                  | 26.2                               | 4.31               |                           | 5,894.62                 | 0.010                            | 5,895.19                                |                                          |
| 396: PIPE 107                    | PIPE 107                             | INLET 22-Ka                   | MH-2160         | 29.5                                |                  | 24" RCP            | 0.013          | 3.32          | 16.12                            | 20.6                                  | 30.8                               | 4.04               |                           | 5,880.44                 | 0.005                            | 5,882.21                                |                                          |
| 226: PIPE - 207                  | PIPE - 207                           | 3-4-K (MH-205)                | 3+4-K           | 7.3                                 |                  | 18" RCP            | 0.013          | 2.92          | 6.74                             | 43.4                                  |                                    | 3.68               |                           | 5,858.01                 | -0.004                           | 5,858.72                                |                                          |
| 228: PIPE - 215                  | PIPE - 215                           | 9-10-K                        | 9-K             | 30.7                                |                  | 18" RCP            | 0.013          | 1.94          | 7.34                             | 26.5                                  |                                    | 3.51               |                           | 5,857.51                 | -0.004                           | 5,858.25                                |                                          |
| 368: PIPE 241                    | PIPE 215                             | 1-K                           | MH-235          | 22.8                                |                  | 18" RCP            | 0.013          | 0.78          | 10.55                            | 7.3                                   |                                    | 3.49               |                           | 5,865.84                 | 0.003                            | 5,866.84                                |                                          |
| 255: PIPE - 222                  | PIPE 241<br>PIPE - 222               | OS-14-K                       | 13-K            | 8.2                                 |                  | 18" RCP            | 0.013          | 0.78          | 9.00                             | 3.8                                   |                                    | 2.45               | 5,843.34                  |                          | -0.007                           | 5,843.90                                |                                          |
| 232: PIPE - 213                  | 1 1FL - 222                          |                               |                 | 29.4                                |                  | 18" RCP            | 0.013          | 0.34          | 7.51                             | 6.2                                   | 15.5                               | 2.45               | -                         | 5,856.70                 | -0.007                           | 5,857.19                                |                                          |
|                                  | DIDE - 212                           |                               |                 |                                     |                  |                    | 0.010          | 0.10          | 7.51                             | 0.2                                   | 10.0                               | 2.00               | 2.020.22                  | 3,030.70                 | -0.005                           | 3,037.19                                | 3,037.19                                 |
|                                  | PIPE - 213                           | 5-8-K                         | 8-K             |                                     |                  |                    |                |               |                                  |                                       |                                    |                    | -                         |                          |                                  |                                         | 5 857 10                                 |
| 233: PIPE - 212<br>423: PIPE 105 | PIPE - 213<br>PIPE - 212<br>PIPE 105 | 5-8-K<br>5-8-K<br>INLET 22-Kb | 7-K<br>MH - 200 | 7.3                                 | 18.0             | 18" RCP<br>24" RCP | 0.013          | 0.04          | 10.27<br>32.09                   | 0.4                                   |                                    | 1.40               | 5,856.55                  | 5,856.62<br>5,867.98     | -0.010 0.020                     | 5,857.19<br>5,869.45                    |                                          |

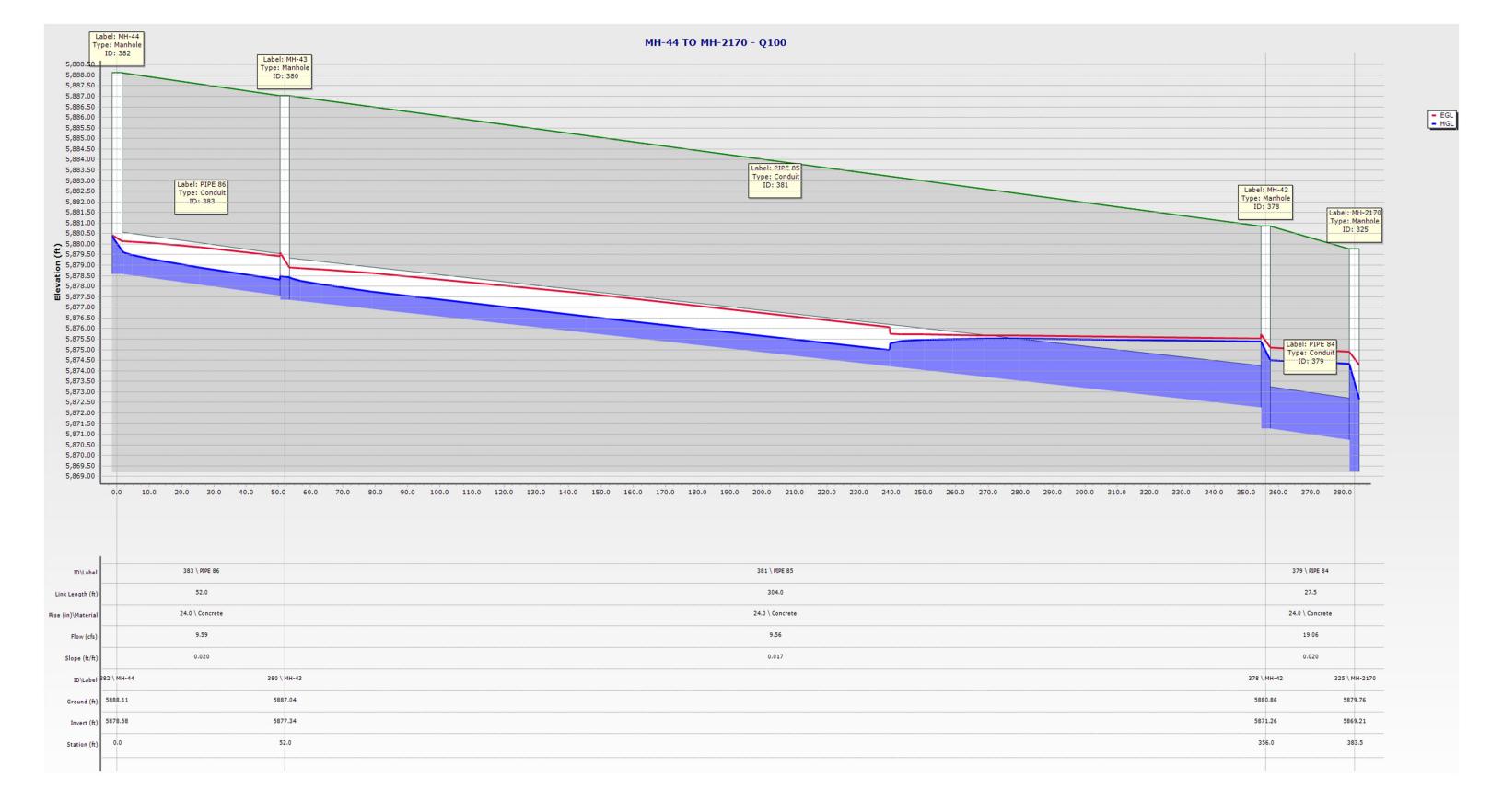
## Inlet Report (5yr)


|                  | IC 🛎 | Label       | Elevation<br>(Ground)<br>(ft) | Elevation<br>(Rim)<br>(ft) | Elevation<br>(Invert)<br>(ft) | Headloss<br>Method | Headloss<br>Coefficient<br>(Standard) | Hydraulic<br>Grade Line<br>(In)<br>(ft) | Inlet Type      | Flow<br>(Total<br>Out)<br>(cfs) |
|------------------|------|-------------|-------------------------------|----------------------------|-------------------------------|--------------------|---------------------------------------|-----------------------------------------|-----------------|---------------------------------|
| 330: 12-K        | 330  | 12-K        | 5,851.33                      | 5,851.33                   | 5,846.16                      | Standard           | 0.050                                 | 5,846.80                                | Full Capture    | 3.78                            |
| 331: 5-K         | 331  | 5-K         | 5,864.76                      | 5,864.76                   | 5,861.28                      | Standard           | 0.050                                 | 5,862.18                                | Percent Capture | 1.83                            |
| 332: 7-K         | 332  | 7-K         | 5,861.19                      | 5,861.19                   | 5,856.62                      | Standard           | 0.050                                 | 5,857.24                                | Percent Capture | 0.04                            |
| 333: 9-К         | 333  | 9-К         | 5,862.03                      | 5,862.03                   | 5,857.51                      | Standard           | 0.050                                 | 5,858.30                                | Percent Capture | 1.94                            |
| 334: 10-К        | 334  | 10-К        | 5,861.98                      | 5,861.98                   | 5,857.48                      | Standard           | 0.050                                 | 5,858.20                                | Percent Capture | 1.95                            |
| 352: OS-E        | 352  | OS-E        | 5,854.52                      | 5,854.52                   | 5,847.22                      | Standard           | 0.050                                 | 5,847.97                                | Full Capture    | 3.40                            |
| 424: INLET 22-Ka | 424  | INLET 22-Ka | 5,889.95                      | 5,889.95                   | 5,880.59                      | Standard           | 0.050                                 | 5,882.26                                | Full Capture    | 3.32                            |
| 426: INLET 16-K  | 426  | INLET 16-K  | 5,888.76                      | 5,888.76                   | 5,879.11                      | Standard           | 0.050                                 | 5,879.66                                | Percent Capture | 2.08                            |
| 427: INLET 15-K  | 427  | INLET 15-K  | 5,888.53                      | 5,888.53                   | 5,878.88                      | Standard           | 0.050                                 | 5,879.46                                | Percent Capture | 2.29                            |
| 428: INLET 22-Kb | 428  | INLET 22-Kb | 5,876.93                      | 5,876.93                   | 5,868.58                      | Standard           | 0.050                                 | 5,869.50                                | Percent Capture | 0.00                            |
| 430: INLET 1-J   | 430  | INLET 1-J   | 5,899.27                      | 5,899.27                   | 5,894.27                      | Standard           | 0.050                                 | 5,894.98                                | Percent Capture | 4.08                            |
| 431: INLET 2-J   | 431  | INLET 2-J   | 5,899.01                      | 5,899.01                   | 5,894.72                      | Standard           | 0.050                                 | 5,895.24                                | Percent Capture | 1.59                            |
| 432: INLET 3-J   | 432  | INLET 3-J   | 5,897.49                      | 5,897.49                   | 5,892.48                      | Standard           | 0.050                                 | 5,893.63                                | Percent Capture | 9.51                            |
| 433: INLET 4-J   | 433  | INLET 4-J   | 5,895.99                      | 5,895.99                   | 5,891.38                      | Standard           | 0.050                                 | 5,892.12                                | Percent Capture | 1.15                            |
| 436: INLET 18-K  | 436  | INLET 18-K  | 5,881.53                      | 5,881.53                   | 5,874.21                      | Standard           | 0.050                                 | 5,874.98                                | Percent Capture | 3.58                            |
| 437: INLET 17-K  | 437  | INLET 17-K  | 5,881.04                      | 5,881.04                   | 5,873.22                      | Standard           | 0.050                                 | 5,873.70                                | Percent Capture | 1.32                            |
| 441: 14-K        | 441  | 14-K        | 5,849.56                      | 5,849.56                   | 5,843.81                      | Standard           | 0.050                                 | 5,844.96                                | Percent Capture | 8.11                            |

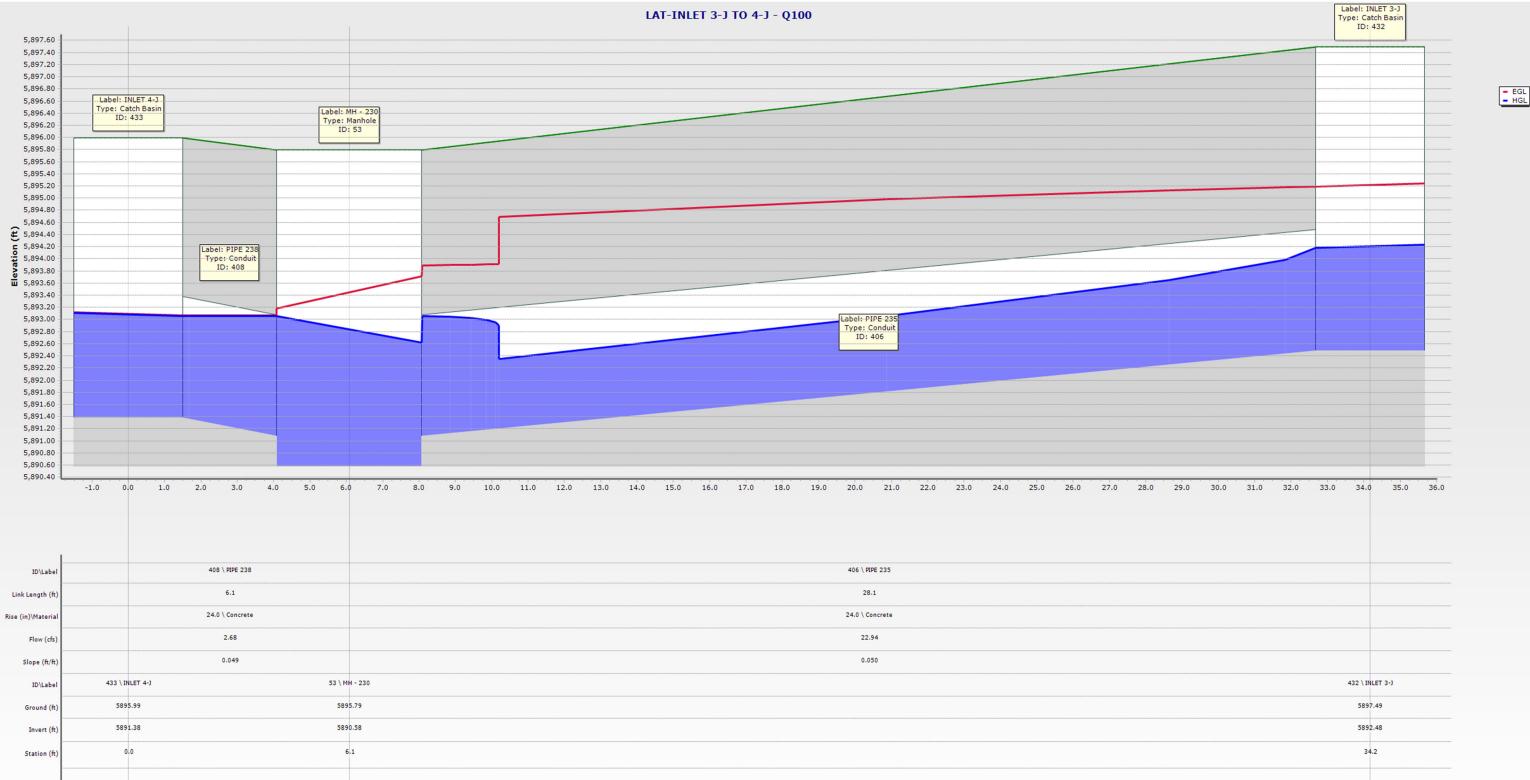
|                     |     |                   |                               | Manho                      | le Repoi                      | rt (5yr)                     |                        |                                         |                                          |                    |                                       |
|---------------------|-----|-------------------|-------------------------------|----------------------------|-------------------------------|------------------------------|------------------------|-----------------------------------------|------------------------------------------|--------------------|---------------------------------------|
|                     | ID  | Label 🔺           | Elevation<br>(Ground)<br>(ft) | Elevation<br>(Rim)<br>(ft) | Elevation<br>(Invert)<br>(ft) | Flow (Total<br>Out)<br>(cfs) | Depth<br>(Out)<br>(ft) | Hydraulic<br>Grade Line<br>(In)<br>(ft) | Hydraulic<br>Grade Line<br>(Out)<br>(ft) | Headloss<br>Method | Headloss<br>Coefficient<br>(Standard) |
| 367: 1-K            | 367 | 1-K               | 5,869.63                      | 5,869.63                   | 5,866.07                      | 0.78                         | 0.77                   | 5,866.89                                | 5,866.84                                 | Standard           | 0.050                                 |
| 90: 2-K             | 90  | 2-К               | 5,866.95                      | 5,866.95                   | 5,862.06                      | 2.13                         | 0.53                   | 5,862.64                                | 5,862.59                                 | Standard           | 0.050                                 |
| 101: 3+4-K          | 101 | 3+4-K             | 5,862.06                      | 5,862.06                   | 5,857.87                      | 2.92                         | 0.85                   | 5,858.77                                | 5,858.72                                 | Standard           | 0.050                                 |
| 105: 3-4-K (MH-205) | 105 | 3-4-K (MH-205)    | 5,861.67                      | 5,861.67                   | 5,857.54                      | 2.92                         | 0.79                   | 5,858.70                                | 5,858.33                                 | Standard           | 1.520                                 |
| 112: 5-10-K         | 112 | 5-10-K            | 5,860.21                      | 5,860.21                   | 5,854.01                      | 7.23                         | 0.95                   | 5,855.34                                | 5,854.96                                 | Standard           | 1.020                                 |
| 126: 5-12-K         | 126 | 5-12-K            | 5,850.65                      | 5,850.65                   | 5,844.15                      | 9.64                         | 0.83                   | 5,845.52                                | 5,844.98                                 | Standard           | 1.520                                 |
| 109: 5-8-K          | 109 | 5-8-K             | 5,860.85                      | 5,860.85                   | 5,855.90                      | 4.67                         | 0.78                   | 5,857.19                                | 5,856.68                                 | Standard           | 1.520                                 |
| 95: 6-K             | 95  | 6-К               | 5,864.76                      | 5,864.76                   | 5,860.63                      | 3.23                         | 0.75                   | 5,861.42                                | 5,861.38                                 | Standard           | 0.050                                 |
| 360: 7-K-AREA       | 360 | 7-K-AREA          | 5,868.00                      | 5,868.00                   | 5,864.11                      | 2.48                         | 0.60                   | 5,864.76                                | 5,864.71                                 | Standard           | 0.050                                 |
| 107: 8-K            | 107 | 8-К               | 5,861.19                      | 5,861.19                   | 5,856.70                      | 0.46                         | 0.49                   | 5,857.24                                | 5,857.19                                 | Standard           | 0.050                                 |
| 106: 9-10-K         | 106 | 9-10-К            | 5,861.60                      | 5,861.60                   | 5,857.06                      | 3.77                         | 0.74                   | 5,858.24                                | 5,857.80                                 | Standard           | 1.520                                 |
| 128: 13-K           | 128 | 13-K              | 5,849.57                      | 5,849.57                   | 5,843.40                      | 0.34                         | 0.50                   | 5,843.95                                | 5,843.90                                 | Standard           | 0.000                                 |
| 131: INLET 1-I      | 131 | INLET 1-I         | 5,849.31                      | 5,849.31                   | 5,845.20                      | 5.25                         | 0.94                   | 5,846.19                                | 5,846.14                                 | Standard           | 0.050                                 |
| 132: INLET 2-I      | 132 | INLET 2-I         | 5,849.31                      | 5,849.31                   | 5,844.87                      | 2.27                         | 0.92                   | 5,845.84                                | 5,845.79                                 | Standard           | 0.050                                 |
| 148: INLET 5-I      | 148 | INLET 5-I         | 5,840.33                      | 5,840.33                   | 5,828.05                      | 52.00                        | 2.17                   | 5,830.57                                | 5,830.22                                 |                    | 0.400                                 |
| 401: INLET 19-K     | 401 | INLET 19-K        | 5,890.93                      | 5,890.93                   | 5,881.24                      | 1.76                         | 1.08                   | 5,882.37                                | -                                        | Standard           | 0.050                                 |
| 397: INLET 20-K     | 397 | INLET 20-K        | 5,891.42                      | 5,891.42                   | 5,881.45                      | 5.02                         | 0.79                   | 5,882.29                                | 5,882.24                                 | Standard           | 0.050                                 |
| 388: INLET 21-K     | 388 | INLET 21-K        | 5,876.95                      | 5,876.95                   | 5,868.11                      | 0.87                         | 1.34                   | 5,869.50                                | 5,869.45                                 | Standard           | 0.050                                 |
| 134: MH - 30 (I)    | 134 | MH - 30 (I)       | 5,849.07                      | 5,849.07                   | 5,844.30                      | 7.08                         | 0.94                   | 5,845.80                                | 5,845.24                                 |                    | 1.520                                 |
| 127: MH - 31 (K)    | 127 | MH - 31 (K)       | 5,850.04                      | 5,850.04                   | 5,839.92                      | 48.00                        | 2.08                   | 5,842.84                                |                                          | Standard           | 1.020                                 |
| 137: MH - 32        | 137 | MH - 32           | 5,845.00                      | 5,845.00                   | 5,836.12                      | 47.59                        | 2.07                   | 5,838.23                                | 5,838.18                                 | Standard           | 0.050                                 |
| 138: MH - 33        | 138 | MH - 33           | 5,844.06                      | 5,844.06                   | 5,833.88                      | 47.41                        | 2.06                   | 5,837.02                                | 5,835.95                                 | Standard           | 1.320                                 |
| 146: MH - 34        | 146 | MH - 34           | 5,841.45                      | 5,841.45                   | 5,830.94                      | 47.32                        | 2.06                   | 5,833.05                                | 5,833.00                                 |                    | 0.050                                 |
| 153: MH - 35        | 153 | MH - 35           | 5,831.98                      | 5,831.98                   | 5,820.68                      | 51.77                        | 2.16                   | 5,823.19                                |                                          | Standard           | 0.400                                 |
| 50: MH - 40         |     | MH - 40           | 5,900.64                      | 5,900.64                   | 5,892.91                      | 5.60                         | 1.49                   | 5,894.52                                | 5,894.40                                 |                    | 0.400                                 |
| 77: MH - 200        |     |                   | 5,876.11                      | 5,876.11                   | 5,866.88                      | 30.80                        | 1.80                   | 5,869.45                                | 5,868.68                                 | Standard           | 1.020                                 |
| 98: MH - 206        |     | MH - 206          | 5,863.81                      | 5,863.81                   | 5,859.24                      | 4.43                         | 0.81                   | 5,860.38                                | 5,860.05                                 |                    | 1.020                                 |
| 53: MH - 230        |     | MH - 230          | 5,895.79                      | 5,895.79                   | 5,890.58                      | 14.83                        | 1.30                   | 5,892.08                                |                                          | Standard           | 0.400                                 |
| 71: MH - 430        |     | MH - 430          | 5,896.70                      | 5,896.70                   | 5,889.47                      | 14.74                        | 0.59                   | 5,890.59                                |                                          | Standard           | 1.020                                 |
| 353: MH-3           |     | MH-3              | 5,849.69                      | 5,849.69                   | 5,844.46                      | 3.40                         | 0.70                   | 5,845.52                                |                                          | Standard           | 1.322                                 |
| 378: MH-42          |     | MH-42             | 5,880.86                      | 5,880.86                   | 5,871.26                      | 8.18                         | 1.02                   | 5,872.89                                | 5,872.28                                 |                    | 1.520                                 |
| 380: MH-43          |     | MH-43             | 5,887.04                      | 5,887.04                   | 5,877.44                      | 4.09                         | 0.71                   | 5,878.55                                |                                          | Standard           | 1.520                                 |
| 382: MH-44          |     | MH-44             | 5,888.11                      | 5,888.11                   | 5,878.58                      | 4.11                         | 0.71                   | 5,879.34                                |                                          | Standard           | 0.100                                 |
| 398: MH-60          |     | MH-60             | 5,890.82                      | 5,890.82                   | 5,880.85                      | 6.68                         | 1.33                   | 5,882.32                                |                                          | Standard           | 1.020                                 |
| 359: MH-232         |     | MH-232            | 5,869.25                      | 5,869.25                   | 5,863.34                      | 2.48                         | 0.60                   | 5,864.23                                | 5,863.94                                 |                    | 1.320                                 |
| 364: MH-235         |     | MH-235            | 5,872.77                      | 5,872.77                   | 5,864.24                      | 31.46                        | 1.82                   | 5,866.84                                |                                          | Standard           | 1.020                                 |
| 322: MH-2160        |     | MH-235<br>MH-2160 | 5,891.30                      | 5,891.30                   | 5,879.94                      | 23.79                        | 1.52                   | 5,882.21                                | 5,881.46                                 |                    | 1.020                                 |
| 325: MH-2170        |     | MH-2170           | 5,879.76                      | 5,879.76                   | 5,869.21                      | 30.21                        | 1.78                   | 5,871.75                                | -                                        | Standard           | 1.020                                 |
| 89: OS-2-K (MH-201) |     | OS-2-K (MH-201)   |                               | -                          | 5,858.35                      | 33.32                        | 1.78                   |                                         | 5,860.22                                 |                    | 1.020                                 |
|                     |     |                   | 5,867.01                      | 5,867.01                   |                               |                              |                        | 5,861.04                                |                                          |                    |                                       |
| 110: OS-4-K (MH202) | ·   | OS-4-K (MH202)    | 5,860.81                      | 5,860.81                   | 5,849.30                      | 35.19                        | -0.46                  | 5,849.59                                |                                          | Standard           | 1.020                                 |
| 125: 0S-12-K        |     | OS-12-K           | 5,851.22                      | 5,851.22                   | 5,841.26                      | 36.89                        | 2.65                   | 5,844.18                                |                                          | Standard           | 1.020                                 |
| 133: OS-14-K        | 133 | OS-14-K           | 5,849.24                      | 5,849.24                   | 5,840.75                      | 43.57                        | 1.98                   | 5,843.90                                | 5,842.73                                 | Standard           | 1.520                                 |



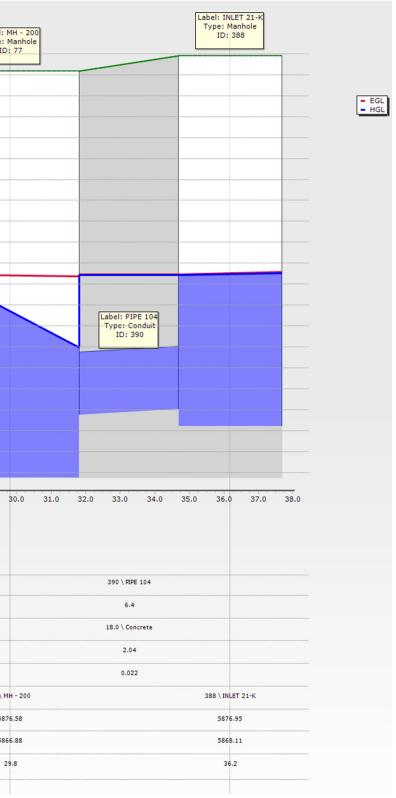



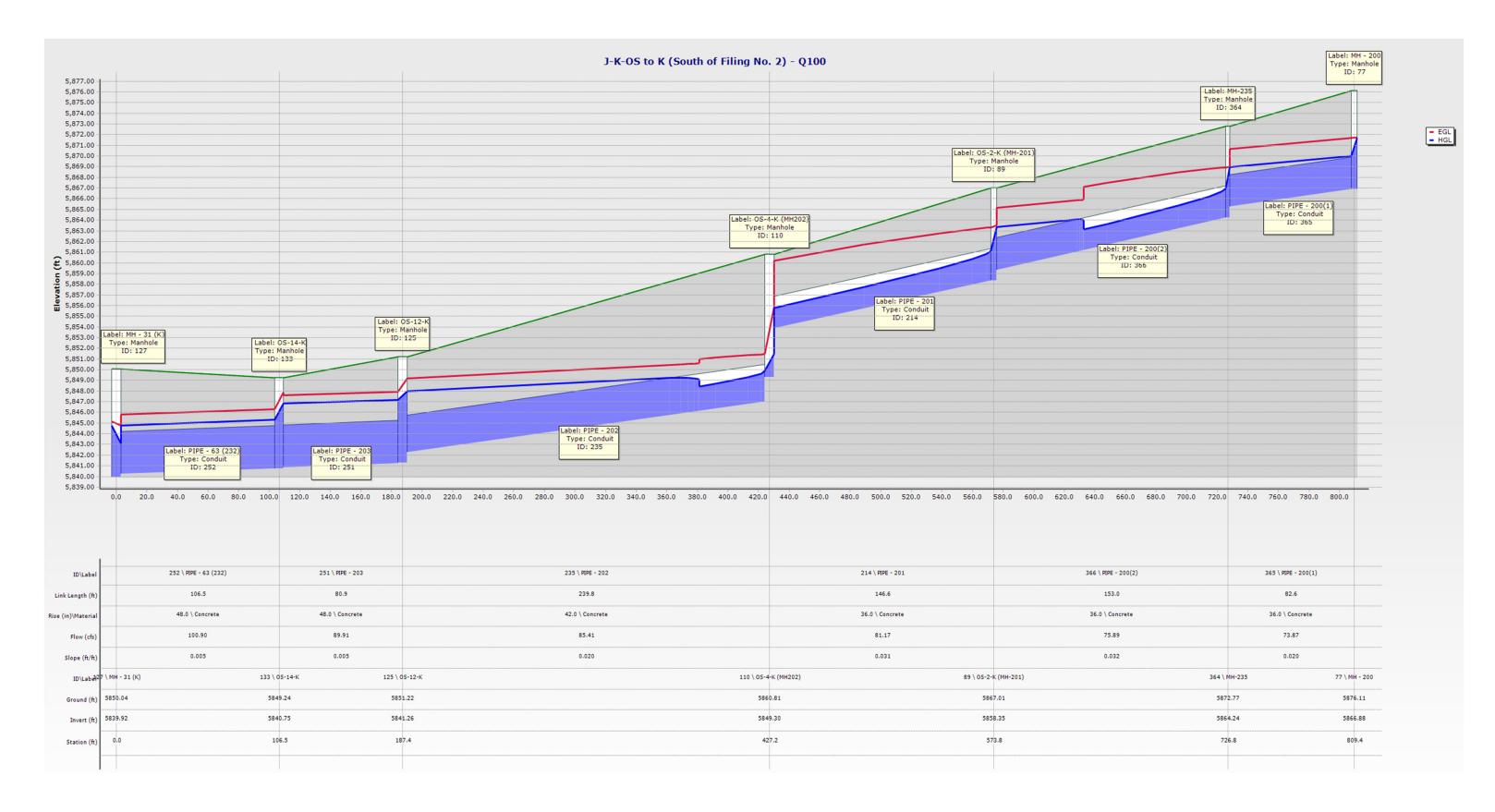


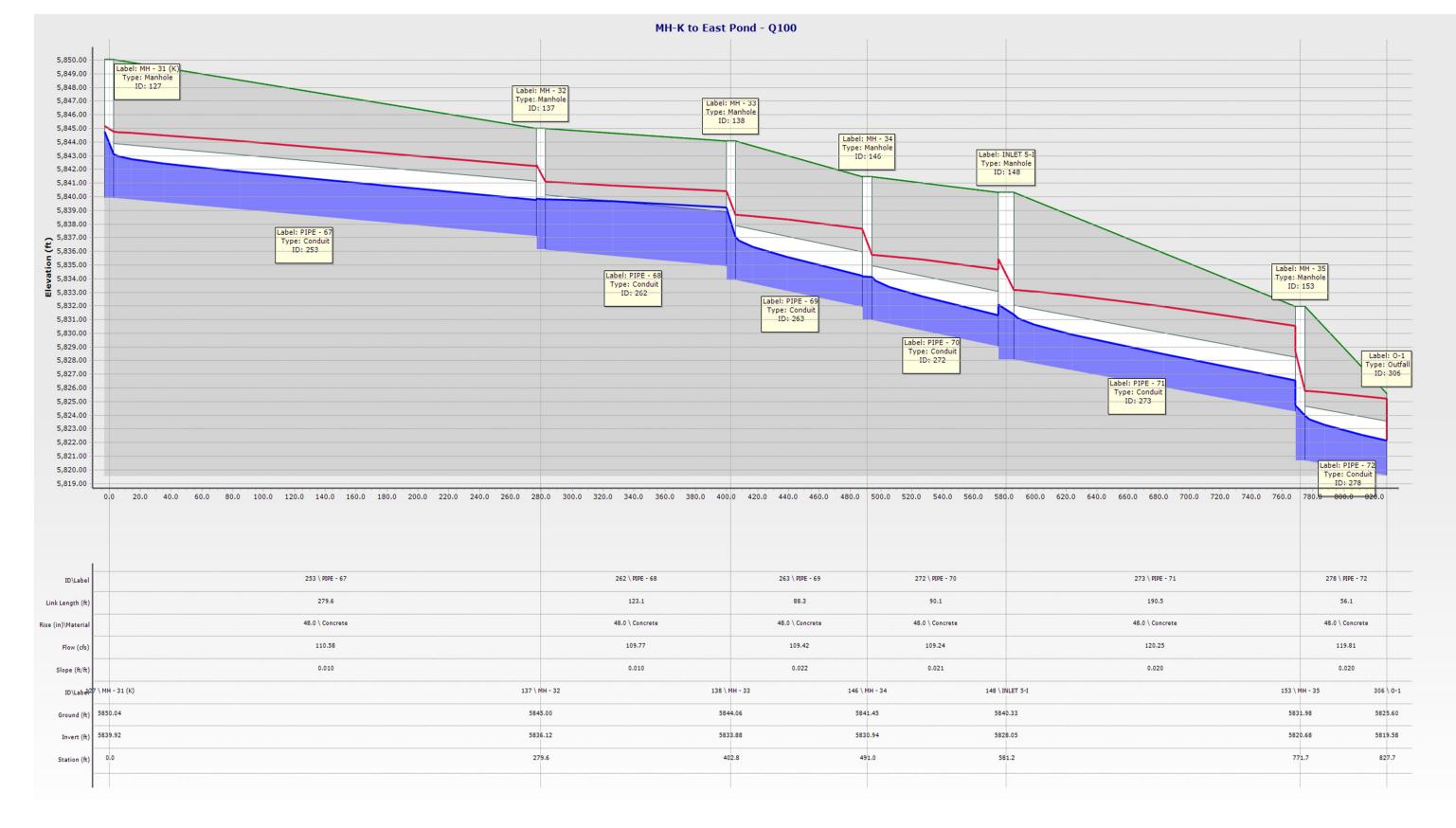


|                                              |                                            |                                                                   | INLET 22-Ka TO M                      | 1H-60 - Q100                    |                                                               |
|----------------------------------------------|--------------------------------------------|-------------------------------------------------------------------|---------------------------------------|---------------------------------|---------------------------------------------------------------|
| 5,891.50                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,891.00                                     | Label: INLET 22-Ka<br>Type: Catch Basin    |                                                                   | Label:<br>Type:                       | MH-2160<br>Manhole              |                                                               |
| 5,890.50                                     | Type: Catch Basin<br>ID: 424               |                                                                   | ID                                    | 0: 322                          |                                                               |
| 5,890.00                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,889.50                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,889.00                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,888.50                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,888.00                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,887.50                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,887.00                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 1                                            |                                            |                                                                   |                                       |                                 |                                                               |
| £ 5,886.00                                   |                                            |                                                                   |                                       |                                 |                                                               |
| 5,885.50                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,886.50<br>5,886.00<br>5,885.50<br>5,885.00 |                                            |                                                                   |                                       |                                 |                                                               |
| <b>u</b><br>5,884.50 -                       |                                            |                                                                   |                                       |                                 |                                                               |
| 5,884.00 -                                   |                                            |                                                                   |                                       |                                 |                                                               |
| 5,883.50                                     |                                            | Label: PIPE 107<br>Type: Conduit<br>ID: 396                       |                                       |                                 |                                                               |
| 5,883.00                                     |                                            | ID: 396                                                           |                                       |                                 | Label: PIPE 93                                                |
| 5,882.50                                     |                                            |                                                                   |                                       |                                 | Type: Conduit<br>ID: 400                                      |
| 5,882.00                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,881.50                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,881.00                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,880.50                                     |                                            |                                                                   |                                       |                                 |                                                               |
| 5,880.00                                     |                                            |                                                                   |                                       |                                 |                                                               |
|                                              |                                            |                                                                   |                                       |                                 | ***                                                           |
|                                              | -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9 | .0 10.0 11.0 12.0 13.0 14.0 15.0 16.0 17.0 18.0 19.0 20.0 21.0 22 | .0 23.0 24.0 25.0 26.0 27.0 28.0 29.0 | 0 30.0 31.0 32.0 33.0 34.0 35.0 | 36.0 37.0 38.0 39.0 40.0 41.0 42.0 43.0 44.0 45.0 46.0 47.0 4 |
|                                              |                                            |                                                                   |                                       |                                 |                                                               |
|                                              |                                            |                                                                   |                                       |                                 |                                                               |
|                                              |                                            |                                                                   |                                       |                                 |                                                               |
| ID\Label                                     |                                            | 396 \ PIPE 107                                                    |                                       |                                 | 400 \ PIPE 93                                                 |
| Link Length (ft)                             |                                            | 29.5                                                              |                                       |                                 | 29.5                                                          |
| Rise (in)\Material                           |                                            | 24.0 \ Concrete                                                   |                                       |                                 | 24.0 \ Concrete                                               |
| Flow (cfs)                                   |                                            | 9.17                                                              |                                       |                                 | 15.56                                                         |
| Slope (ft/ft)                                |                                            | 0.005                                                             |                                       |                                 | 0.019                                                         |
|                                              | 424 \ INLET 22-Ka                          |                                                                   | 322 \                                 | MH-2160                         |                                                               |
| ID\Label                                     | 5889.95                                    |                                                                   |                                       | 891.30                          |                                                               |
| Ground (ft)                                  | 5880.59                                    |                                                                   |                                       | 879.94                          |                                                               |
| Invert (ft)                                  |                                            |                                                                   |                                       |                                 |                                                               |
| Station (ft)                                 | 0.0                                        |                                                                   |                                       | 29.5                            |                                                               |
|                                              |                                            |                                                                   |                                       |                                 |                                                               |








| 422 \ INI ET 2-1           |
|----------------------------|
| 432 \ INLET 3-J            |
| 432 \ INLET 3-J            |
|                            |
| 432 \INILET 3-J<br>5897.49 |
| 5897.49                    |
|                            |
| 5897.49                    |
| 5897.49<br>5892.48         |
| 5897.49                    |
| 5897.49<br>5892.48         |
| 5897.49<br>5892.48         |
| 5897.49<br>5892.48         |
| 5897.49<br>5892.48         |

| 5 077 00 l                                                                                                                                   | Label: INLI<br>Type: Cat<br>ID: 4 | T 22-Kb<br>h Basin<br>28 |     |     |     |     |     |     |     |     |      |      |      |      | Ľ                                 | T: INLE     | т 21-к | TO 22- | - <b>K</b> b - Q | 100  |         |       |        |         |        |      |      | Label:<br>Type:<br>IC |
|----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|--------------------------|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|-----------------------------------|-------------|--------|--------|------------------|------|---------|-------|--------|---------|--------|------|------|-----------------------|
| 5,877.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,876.50                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      | Label: PIP<br>Type: Con<br>ID: 42 | 105<br>duit |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,876.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      | ID: 42                            | 3           |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,875.50                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,875.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,874.50                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      | The second second                 |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,874.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,873.50                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,873.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      | _    |                       |
| 1                                                                                                                                            |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| <b>5</b> ,872.50<br>5,872.00<br>5,871.50                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| vatio                                                                                                                                        |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| <u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u> |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,871.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,870.50                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,870.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,869.50                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,869.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,868.50                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,868.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,867.50                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 5,867.00                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| l                                                                                                                                            | -1.0 0.0                          |                          | 2.0 | 3.0 | 4.0 |     | 6.0 | 7.0 | 8.0 |     | 10.0 | 11.0 | 12.0 | 12.0 | 14.0                              | 0 16.0      | 17.0   | 18.0   | 10.0             | 20.0 |         | 0 0   | 20 24  | 0 25 (  | 2      | 27.0 | 28.0 | 29.0                  |
|                                                                                                                                              | -1.0 0.0                          | 1.0                      | 2.0 | 5.0 | 4.0 | 5.0 | 6.0 | 7.0 | 0.0 | 9.0 | 10.0 | 11.0 | 12.0 | 13.0 | 14.0 1                            | .0 16.0     | 17.0   | 18.0   | 19.0             | 20.0 | 21.0 22 | .0 23 | 3.0 24 | .0 25.0 | 0 26.0 | 27.0 | 28.0 | 29.0                  |
|                                                                                                                                              |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
|                                                                                                                                              |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| 1                                                                                                                                            |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| ID\Label                                                                                                                                     |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      | 423 \ PIPE                        | 105         |        |        |                  |      |         |       |        |         |        |      |      |                       |
| Link Length (ft)                                                                                                                             |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      | 29.8                              |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| Rise (in)\Material                                                                                                                           |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      | 24.0 \ Cond                       | ete         |        |        |                  |      |         |       |        |         |        |      |      |                       |
| Flow (cfs)                                                                                                                                   |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      | 5.89                              |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| Slope (ft/ft)                                                                                                                                |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      | 0.010                             |             |        |        |                  |      |         |       |        |         |        |      |      |                       |
| ID\Label                                                                                                                                     | 428 \ INLE                        | 22-КЬ                    |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      | 77 \ 1                |
| Ground (ft)                                                                                                                                  | 5876.                             | 93                       |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      | 58                    |
| Invert (ft)                                                                                                                                  | 5873.                             | 42                       |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      | 58                    |
| Station (ft)                                                                                                                                 | 0.0                               |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      | :                     |
|                                                                                                                                              |                                   |                          |     |     |     |     |     |     |     |     |      |      |      |      |                                   |             |        |        |                  |      |         |       |        |         |        |      |      |                       |









Pipe Report (100yr)

| 355: 234       355       234       N         323: PIPE - 27       323       PIPE - 27 (1)       N         185: PIPE - 27       185       PIPE - 27 (2)       N         252: PIPE - 63       252       PIPE - 63 (232)       C         254: PIPE - 64       254       PIPE - 64       N         258: PIPE - 65       258       PIPE - 65       N         259: PIPE - 66       259       PIPE - 66       N         253: PIPE - 67       253       PIPE - 67       N         262: PIPE - 68       262       PIPE - 68       N         263: PIPE - 69       263       PIPE - 69       N | OS-E         5,847.22           MH-3         5,844.44           MH - 430         5,888.7           MH - 230         5,890.54           OS-14-K         5,840.75           MH - 31 (K)         5,841.33           MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 31 (K)         5,839.92           MH - 31 (K)         5,833.83           MH - 32         5,833.83           MH - 34         5,830.94 | 5,844.11           5,844.11           5,880.80           5,889.77           5,840.22           5,840.22           5,844.30           5,844.30           5,844.90           5,844.90           5,837.12                        | 14-K<br>MH-2160<br>MH - 430<br>MH - 31 (K)<br>MH - 30 (I)<br>INLET 1-I<br>INLET 2-I | 123.0<br>34.9<br>248.0<br>80.8<br>106.5<br>118.8<br>46.2 | 0.020<br>0.010<br>0.032<br>0.010<br>0.005<br>-0.025 | 18.0<br>18.0<br>30.0<br>30.0 | 0.013<br>0.013<br>0.013 | 3.40<br>3.40<br>35.85 | 6.82<br>1.92 | 14.85<br>10.52 | 22.9<br>32.3 | 32.5         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|------------------------------|-------------------------|-----------------------|--------------|----------------|--------------|--------------|
| 323: PIPE - 27       323       PIPE - 27 (1)       N         185: PIPE - 27       185       PIPE - 27 (2)       N         252: PIPE - 63       252       PIPE - 63 (232)       C         254: PIPE - 64       254       PIPE - 64       N         258: PIPE - 65       258       PIPE - 65       N         259: PIPE - 66       259       PIPE - 66       N         253: PIPE - 67       253       PIPE - 67       N         262: PIPE - 68       262       PIPE - 68       N         263: PIPE - 69       263       PIPE - 69       N                                              | MH - 430         5,888.7           MH - 230         5,890.58           OS-14-K         5,840.7           MH - 31 (K)         5,841.32           MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 31 (K)         5,839.92           MH - 31 (K)         5,839.92           MH - 32         5,836.12           MH - 33         5,833.80           MH - 34         5,830.92                               | 7         5,880.80           8         5,889.77           5         5,840.22           2         5,844.30           5         5,845.26           5         5,844.90           2         5,844.91           2         5,847.12 | MH-2160<br>MH - 430<br>MH - 31 (K)<br>MH - 30 (I)<br>INLET 1-I<br>INLET 2-I         | 248.0<br>80.8<br>106.5<br>118.8<br>46.2                  | 0.032<br>0.010<br>0.005                             | 30.0                         | 0.013                   |                       |              | 10.52          | 32.3         |              |
| 185: PIPE - 27       185       PIPE - 27 (2)       N         252: PIPE - 63       252       PIPE - 63 (232)       C         254: PIPE - 64       254       PIPE - 64       N         258: PIPE - 65       258       PIPE - 65       N         259: PIPE - 66       259       PIPE - 66       N         253: PIPE - 67       253       PIPE - 67       N         262: PIPE - 68       262       PIPE - 68       N         263: PIPE - 69       263       PIPE - 69       N                                                                                                           | MH - 230         5,890.58           OS-14-K         5,840.75           MH - 31 (K)         5,841.32           MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 31 (K)         5,839.92           MH - 31 (K)         5,833.83           MH - 33         5,833.83           MH - 34         5,830.94                                                                                                    | 5,889.77           5,840.22           5,844.30           5,845.26           5,844.90           5,837.12                                                                                                                       | MH - 430<br>MH - 31 (K)<br>MH - 30 (I)<br>INLET 1-I<br>INLET 2-I                    | 80.8<br>106.5<br>118.8<br>46.2                           | 0.010<br>0.005                                      |                              |                         | 35.85                 |              |                | 52.0         | 39.1         |
| 252: PIPE - 63       252       PIPE - 63 (232)       C         254: PIPE - 64       254       PIPE - 64       M         258: PIPE - 65       258       PIPE - 65       M         259: PIPE - 66       259       PIPE - 66       M         253: PIPE - 67       253       PIPE - 66       M         262: PIPE - 68       262       PIPE - 68       M         263: PIPE - 69       263       PIPE - 69       M                                                                                                                                                                        | OS-14-K         5,840.7           MH - 31 (K)         5,841.33           MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 31 (K)         5,839.93           MH - 31 (K)         5,833.80           MH - 33         5,833.80           MH - 34         5,830.94                                                                                                  | 5,840.22<br>5,844.30<br>5,845.26<br>5,844.90<br>5,837.12                                                                                                                                                                      | MH - 31 (K)<br>MH - 30 (I)<br>INLET 1-I<br>INLET 2-I                                | 106.5<br>118.8<br>46.2                                   | 0.005                                               | 30.0                         |                         |                       | 14.88        | 73.52          | 48.8         | 49.3         |
| 254: PIPE - 64         254         PIPE - 64         N           258: PIPE - 65         258         PIPE - 65         N           259: PIPE - 66         259         PIPE - 66         N           253: PIPE - 67         253         PIPE - 67         N           262: PIPE - 68         262         PIPE - 68         N           263: PIPE - 69         263         PIPE - 69         N                                                                                                                                                                                         | MH - 31 (K)         5,841.33           MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 31 (K)         5,839.93           MH - 31 (K)         5,833.80           MH - 33         5,833.80           MH - 34         5,830.94                                                                                                                                    | 2 5,844.30<br>5,845.26<br>5,844.90<br>2 5,837.12                                                                                                                                                                              | MH - 30 (I)<br>INLET 1-I<br>INLET 2-I                                               | 118.8<br>46.2                                            |                                                     |                              | 0.013                   | 36.02                 | 9.43         | 41.06          | 87.7         | 72.6         |
| 258: PIPE - 65         258         PIPE - 65         M           259: PIPE - 66         259         PIPE - 66         M           253: PIPE - 67         253         PIPE - 67         M           262: PIPE - 68         262         PIPE - 68         M           263: PIPE - 69         263         PIPE - 69         M                                                                                                                                                                                                                                                          | MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 30 (I)         5,844.80           MH - 31 (K)         5,839.92           MH - 32         5,836.12           MH - 33         5,833.80           MH - 34         5,830.94                                                                                                                                                                               | 5,845.26<br>5,844.90<br>5,837.12                                                                                                                                                                                              | INLET 1-I<br>INLET 2-I                                                              | 46.2                                                     | -0.025                                              | 48.0                         | 0.013                   | 100.90                | 8.03         | 101.57         | 99.3         | 81.4         |
| 259: PIPE - 66         259         PIPE - 66         M           253: PIPE - 67         253         PIPE - 67         M           262: PIPE - 68         262         PIPE - 68         M           263: PIPE - 69         263         PIPE - 69         M                                                                                                                                                                                                                                                                                                                           | MH - 30 (I)         5,844.80           MH - 31 (K)         5,839.91           MH - 32         5,836.11           MH - 33         5,833.80           MH - 34         5,830.91                                                                                                                                                                                                                                                             | 5,844.90<br>5,837.12                                                                                                                                                                                                          | INLET 2-I                                                                           |                                                          |                                                     | 24.0                         | 0.013                   | 15.50                 | 10.99        | 35.83          | 43.3         | 46.0         |
| 253: PIPE - 67         253         PIPE - 67         M           262: PIPE - 68         262         PIPE - 68         M           263: PIPE - 69         263         PIPE - 69         M                                                                                                                                                                                                                                                                                                                                                                                            | MH - 31 (K)         5,839.92           MH - 32         5,836.12           MH - 33         5,833.83           MH - 34         5,830.92                                                                                                                                                                                                                                                                                                    | 5,837.12                                                                                                                                                                                                                      |                                                                                     |                                                          | -0.010                                              | 18.0                         | 0.013                   | 12.26                 | 6.94         | 10.48          | 117.0        | (N/A)        |
| 262: PIPE - 68 262 PIPE - 68 M<br>263: PIPE - 69 263 PIPE - 69 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MH - 32 5,836.12<br>MH - 33 5,833.84<br>MH - 34 5,830.94                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                               | MLI 22                                                                              | 10.2                                                     | -0.010                                              | 18.0                         | 0.013                   | 4.05                  | 2.29         | 10.41          | 38.9         | 43.3         |
| 263: PIPE - 69 263 PIPE - 69 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | MH - 33 5,833.84<br>MH - 34 5,830.94                                                                                                                                                                                                                                                                                                                                                                                                     | 5,834.89                                                                                                                                                                                                                      | MH - 32                                                                             | 279.6                                                    | 0.010                                               | 48.0                         | 0.013                   | 110.58                | 12.61        | 143.63         | 77.0         | 65.8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH - 34 5,830.94                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               | MH - 33                                                                             | 123.1                                                    | 0.010                                               | 48.0                         | 0.013                   | 109.77                | 12.59        | 143.63         | 76.4         | 65.5         |
| 272: PIPE - 70 272 PIPE - 70 N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,831.94                                                                                                                                                                                                                      | MH - 34                                                                             | 88.3                                                     | 0.022                                               | 48.0                         | 0.013                   | 109.42                | 17.06        | 213.02         | 51.4         | 50.8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,829.05                                                                                                                                                                                                                      | INLET 5-I                                                                           | 90.1                                                     | 0.021                                               | 48.0                         | 0.013                   | 109.24                | 16.76        | 208.12         | 52.5         | 51.5         |
| 273: PIPE - 71 273 PIPE - 71 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 5-I 5,828.03                                                                                                                                                                                                                                                                                                                                                                                                                       | 5,824.24                                                                                                                                                                                                                      | MH - 35                                                                             | 190.5                                                    | 0.020                                               | 48.0                         | 0.013                   | 120.25                | 16.84        | 203.11         | 59.2         | 55.4         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH - 35 5,820.68                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                     | 56.1                                                     | 0.020                                               | 48.0                         | 0.013                   | 119.81                | 16.70        | 201.16         | 59.6         | 55.6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH-2170 5,869.2                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               | MH - 200                                                                            | 78.8                                                     | 0.028                                               | 36.0                         | 0.013                   | 68.67                 | 9.72         | 112.17         | 61.2         | 56.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH - 200 5,866.88                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                             |                                                                                     | 82.6                                                     | 0.030                                               | 36.0                         | 0.013                   | 73.86                 | 10.45        | 114.63         | 64.4         | 58.4         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH-235 5,864.24                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               | OS-2-K (MH                                                                          | 153.0                                                    | 0.032                                               | 36.0                         | 0.013                   | 75.88                 | 17.87        | 119.23         | 63.6         | 57.9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS-2-K (MH-201) 5,858.3                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               | OS-4-K (MH                                                                          | 146.6                                                    | 0.031                                               | 36.0                         | 0.013                   | 81.16                 | 17.85        | 116.84         | 69.5         | 61.3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS-4-K (MH202) 5,847.00                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                     | 239.8                                                    | 0.020                                               | 42.0                         | 0.013                   | 85.39                 | 15.41        | 141.73         | 60.2         | 56.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS-12-K 5,841.24                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                     | 80.9                                                     | 0.005                                               | 48.0                         | 0.013                   | 89.91                 | 7.15         | 101.00         | 89.0         | 73.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS-2-K (MH-201) 5,860.8                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                     | 49.9                                                     | -0.024                                              | 18.0                         | 0.013                   | 5.90                  | 8.46         | 16.23          | 36.4         | 41.7         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3-4-K (MH-205) 5,857.98                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                               |                                                                                     | 7.3                                                      | -0.004                                              | 18.0                         | 0.013                   | 6.59                  | 4.35         | 6.74           | 97.7         | 80.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS-4-K (MH202) 5,855.3                                                                                                                                                                                                                                                                                                                                                                                                                   | -                                                                                                                                                                                                                             |                                                                                     | 22.0                                                     | -0.106                                              | 18.0                         | 0.013                   | 6.58                  | 14.94        | 34.18          | 19.2         | 29.7         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 6-K 5,860.99                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                               |                                                                                     | 33.2                                                     | -0.019                                              | 18.0                         | 0.013                   | 4.27                  | 7.13         | 14.47          | 29.5         | 37.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH - 206 5,859.54                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                     | 60.2                                                     | -0.019                                              | 18.0                         | 0.013                   | 7.55                  | 8.30         | 14.51          | 52.0         | 51.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-8-K 5,856.5                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               | MH - 206                                                                            | 80.2                                                     | -0.034                                              | 18.0                         | 0.013                   | 11.46                 | 11.36        | 19.24          | 59.6         | 55.6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-8-K 5,856.55                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                     | 7.3                                                      | -0.010                                              | 18.0                         | 0.013                   | 0.09                  | 0.05         | 10.27          | 0.9          | 6.7          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-8-K 5,856.5                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                     | 29.4                                                     | -0.005                                              | 18.0                         | 0.013                   | 0.98                  | 0.55         | 7.51           | 13.0         | 24.3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-10-K 5,854.5                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                     | 69.0                                                     | -0.019                                              | 18.0                         | 0.013                   | 11.99                 | 9.24         | 14.64          | 81.9         | 68.8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9-10-K 5,857.30                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                     | 30.7                                                     | -0.005                                              | 18.0                         | 0.013                   | 4.54                  | 2.57         | 7.34           | 61.8         | 56.9         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 9-10-K 5,857.30                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                               |                                                                                     | 9.1                                                      | -0.028                                              | 18.0                         | 0.013                   | 4.54                  | 8.39         | 17.73          | 25.6         | 34.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-10-K 5,854.5                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                               |                                                                                     |                                                          | -0.064                                              | 18.0                         | 0.013                   | 8.78                  | 13.48        | 26.53          | 33.1         | 39.6<br>46.2 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 5-12-K 5,845.00<br>5-12-K 5,845.50                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                     | 271.8                                                    | -0.033                                              | 24.0                         | 0.013                   | 17.98<br>8.81         | 12.66        | 41.19<br>25.77 | 43.7         | 40.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS-12-K 5,842.74                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                     | 69.8                                                     | -0.000                                              | 18.0<br>36.0                 | 0.013                   | 23.66                 | 4.99         | 89.60          | 34.2<br>26.4 | 35.1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS-14-K 5,843.34                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                     | 8.2                                                      | -0.013                                              | 18.0                         | 0.013                   | 0.69                  | 0.39         | 9.00           | 7.7          | 18.8         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | OS-14-K 5,843.34                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               |                                                                                     | 28.5                                                     | -0.016                                              | 18.0                         | 0.013                   | 14.38                 | 8.14         | 13.49          | 106.6        | 90.1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH-2160 5,879.80                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               | MH-2170                                                                             | 246.2                                                    | 0.039                                               | 30.0                         | 0.013                   | 54.33                 | 17.68        | 80.95          | 67.1         | 60.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 1-J 5,894.2                                                                                                                                                                                                                                                                                                                                                                                                                        | -                                                                                                                                                                                                                             |                                                                                     | 44.7                                                     | 0.010                                               | 30.0                         | 0.013                   | 10.04                 | 6.92         | 41.15          | 24.4         | 33.6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH - 40 5,893.62                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                               | MH - 230                                                                            | 294.5                                                    | 0.010                                               | 30.0                         | 0.013                   | 13.58                 | 7.50         | 40.98          | 33.1         | 39.6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 2-J 5,894.7                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                               |                                                                                     | 10.0                                                     | 0.010                                               | 18.0                         | 0.013                   | 3.71                  | 5.43         | 10.50          | 35.4         | 41.1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH-42 5,871.20                                                                                                                                                                                                                                                                                                                                                                                                                           | · ·                                                                                                                                                                                                                           | MH-2170                                                                             | 27.5                                                     | 0.020                                               | 24.0                         | 0.013                   | 19.06                 | 6.07         | 31.97          | 59.6         | 55.6         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH-43 5,877.3                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                     | 304.0                                                    | 0.020                                               | 24.0                         | 0.013                   | 9.56                  | 8.33         | 29.24          | 32.7         | 39.3         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH-44 5,878.5                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                               |                                                                                     | 52.0                                                     | 0.020                                               | 24.0                         | 0.013                   | 9.59                  | 8.90         | 31.99          | 30.0         | 37.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 16-K 5,879.1                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                     | 33.1                                                     | 0.010                                               | 24.0                         | 0.013                   | 4.85                  | 5.72         | 22.58          | 21.5         | 31.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 15-K 5,878.88                                                                                                                                                                                                                                                                                                                                                                                                                      | -                                                                                                                                                                                                                             |                                                                                     | 10.0                                                     | 0.010                                               | 24.0                         | 0.013                   | 5.35                  | 5.91         | 22.68          | 23.6         | 33.0         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 17-K 5,873.22                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                     | 9.2                                                      | 0.050                                               | 18.0                         | 0.013                   | 3.09                  | 1.75         | 23.44          | 13.2         | 24.5         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 18-K 5,874.2                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                     | 29.0                                                     | 0.050                                               | 18.0                         | 0.013                   | 8.36                  | 12.17        | 23.49          | 35.6         | 41.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 20-K 5,881.4                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                               |                                                                                     | 30.0                                                     | 0.010                                               | 24.0                         | 0.013                   | 11.72                 | 3.73         | 22.62          | 51.8         | 51.1         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | MH-60 5,880.8                                                                                                                                                                                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                             | MH-2160                                                                             | 29.5                                                     | 0.019                                               | 24.0                         | 0.013                   | 15.56                 | 4.95         | 30.91          | 50.3         | 50.2         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | INLET 19-K 5,881.24                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               |                                                                                     | 8.7                                                      | 0.010                                               | 24.0                         | 0.013                   | 4.10                  | 1.31         | 23.06          | 17.8         | 28.6         |
| 390: PIPE 104 390 PIPE 104 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INLET 21-K 5,868.52                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                               | MH - 200                                                                            | 6.4                                                      | 0.022                                               | 18.0                         | 0.013                   | 2.04                  | 1.15         | 15.58          | 13.1         | 24.4         |
| 423: PIPE 105 423 PIPE 105 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INLET 22-Kb 5,873.42                                                                                                                                                                                                                                                                                                                                                                                                                     | 5,873.11                                                                                                                                                                                                                      | MH - 200                                                                            | 29.8                                                     | 0.010                                               | 24.0                         | 0.013                   | 5.89                  | 6.14         | 23.06          | 25.5         | 34.5         |
| 396: PIPE 107 396 PIPE 107 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INLET 22-Ka 5,880.5                                                                                                                                                                                                                                                                                                                                                                                                                      | 5,880.44                                                                                                                                                                                                                      | MH-2160                                                                             | 29.5                                                     | 0.005                                               | 24.0                         | 0.013                   | 4.58                  | 1.46         | 16.12          | 28.4         | 36.5         |
| 406: PIPE 235 406 PIPE 235 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INLET 3-J 5,892.3                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,891.08                                                                                                                                                                                                                      | MH - 230                                                                            | 30.1                                                     | 0.041                                               | 24.0                         | 0.013                   | 22.94                 | 14.56        | 45.70          | 50.2         | 50.1         |
| 408: PIPE 238 408 PIPE 238 II                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | INLET 4-J 5,891.3                                                                                                                                                                                                                                                                                                                                                                                                                        | 5,891.08                                                                                                                                                                                                                      | MH - 230                                                                            | 8.2                                                      | 0.037                                               | 24.0                         | 0.013                   | 2.68                  | 7.65         | 43.27          | 6.2          | 16.9         |
| 362: PIPE 239 362 PIPE 239 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MH-232 5,863.34                                                                                                                                                                                                                                                                                                                                                                                                                          | 5,859.54                                                                                                                                                                                                                      | MH - 206                                                                            | 155.0                                                    | 0.025                                               | 18.0                         | 0.013                   | 6.89                  | 8.89         | 16.45          | 41.9         | 45.2         |
| 361: PIPE 240 361 PIPE 240 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7-K-AREA 5,864.1                                                                                                                                                                                                                                                                                                                                                                                                                         | 5,863.64                                                                                                                                                                                                                      | MH-232                                                                              | 17.1                                                     | 0.027                                               | 18.0                         | 0.013                   | 6.90                  | 9.28         | 17.41          | 39.6         | 43.8         |
| 368: PIPE 241 368 PIPE 241 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1-K 5,866.0                                                                                                                                                                                                                                                                                                                                                                                                                              | 5,865.84                                                                                                                                                                                                                      | MH-235                                                                              | 22.8                                                     | 0.010                                               | 18.0                         | 0.013                   | 2.33                  | 1.32         | 10.55          | 22.1         | 31.9         |

|                | ID  | Label       | Elevation<br>(Ground)<br>(ft) | Elevation<br>(Rim)<br>(ft) | Elevation<br>(Invert)<br>(ft) | Headloss<br>Method | Headloss<br>Coefficient<br>(Standard) | Inlet Type      | Capture<br>Efficiency<br>(Calculated)<br>(%) | Flow (Total<br>Out)<br>(cfs) | Hydraulic<br>Grade Line<br>(In)<br>(ft) |
|----------------|-----|-------------|-------------------------------|----------------------------|-------------------------------|--------------------|---------------------------------------|-----------------|----------------------------------------------|------------------------------|-----------------------------------------|
| 330: 12-K      | 330 | 12-К        | 5,851.33                      | 5,851.33                   | 5,846.16                      | Standard           | 0.050                                 | Full Capture    | 100.0                                        | 8.81                         | 5,848.43                                |
| 331: 5-K       | 331 | 5-K         | 5,864.76                      | 5,864.76                   | 5,861.28                      | Standard           | 0.050                                 | Percent Capture | 97.7                                         | 4.27                         | 5,862.46                                |
| 332: 7-K       | 332 | 7-К         | 5,861.19                      | 5,861.19                   | 5,856.62                      | Standard           | 0.050                                 | Percent Capture | 78.9                                         | 0.09                         | 5,858.47                                |
| 333: 9-K       | 333 | 9-К         | 5,862.03                      | 5,862.03                   | 5,857.51                      | Standard           | 0.050                                 | Percent Capture | 95.8                                         | 4.54                         | 5,859.18                                |
| 334: 10-K      | 334 | 10-К        | 5,861.98                      | 5,861.98                   | 5,857.48                      | Standard           | 0.050                                 | Percent Capture | 95.8                                         | 4.54                         | 5,859.14                                |
| 352: OS-E      | 352 | OS-E        | 5,854.52                      | 5,854.52                   | 5,847.22                      | Standard           | 0.050                                 | Full Capture    | 100.0                                        | 3.40                         | 5,847.9                                 |
| 424: INLET 22- | 424 | INLET 22-Ka | 5,889.95                      | 5,889.95                   | 5,880.59                      | Standard           | 0.050                                 | Percent Capture | 50.0                                         | 4.58                         | 5,884.2                                 |
| 426: INLET 16- | 426 | INLET 16-K  | 5,888.76                      | 5,888.76                   | 5,879.11                      | Standard           | 0.050                                 | Percent Capture | 89.5                                         | 4.85                         | 5,880.4                                 |
| 427: INLET 15- | 427 | INLET 15-K  | 5,888.53                      | 5,888.53                   | 5,878.88                      | Standard           | 0.050                                 | Percent Capture | 81.9                                         | 5.35                         | 5,880.4                                 |
| 428: INLET 22- | 428 | INLET 22-Kb | 5,876.93                      | 5,876.93                   | 5,873.42                      | Standard           | 0.050                                 | Percent Capture | 100.0                                        | 5.89                         | 5,874.3                                 |
| 430: INLET 1-J | 430 | INLET 1-J   | 5,899.27                      | 5,899.27                   | 5,894.27                      | Standard           | 0.050                                 | Percent Capture | 42.5                                         | 10.04                        | 5,895.3                                 |
| 431: INLET 2-J | 431 | INLET 2-J   | 5,899.01                      | 5,899.01                   | 5,894.72                      | Standard           | 0.050                                 | Percent Capture | 97.9                                         | 3.71                         | 5,895.5                                 |
| 432: INLET 3-J | 432 | INLET 3-J   | 5,897.49                      | 5,897.49                   | 5,892.31                      | Standard           | 0.050                                 | Percent Capture | 100.0                                        | 22.94                        | 5,894.0                                 |
| 433: INLET 4-J | 433 | INLET 4-J   | 5,895.99                      | 5,895.99                   | 5,891.38                      | Standard           | 0.050                                 | Percent Capture | 100.0                                        | 2.68                         | 5,893.1                                 |
| 436: INLET 18- | 436 | INLET 18-K  | 5,881.53                      | 5,881.53                   | 5,874.21                      | Standard           | 0.050                                 | Percent Capture | 100.0                                        | 8.36                         | 5,875.3                                 |
| 437: INLET 17- | 437 | INLET 17-K  | 5,881.04                      | 5,881.04                   | 5,873.22                      | Standard           | 0.050                                 | Percent Capture | 100.0                                        | 3.09                         | 5,875.1                                 |
| 441: 14-K      | 441 | 14-K        | 5,849.56                      | 5,849.56                   | 5,843.81                      | Standard           | 0.050                                 | Percent Capture | 100.0                                        | 14.38                        | 5,847.4                                 |

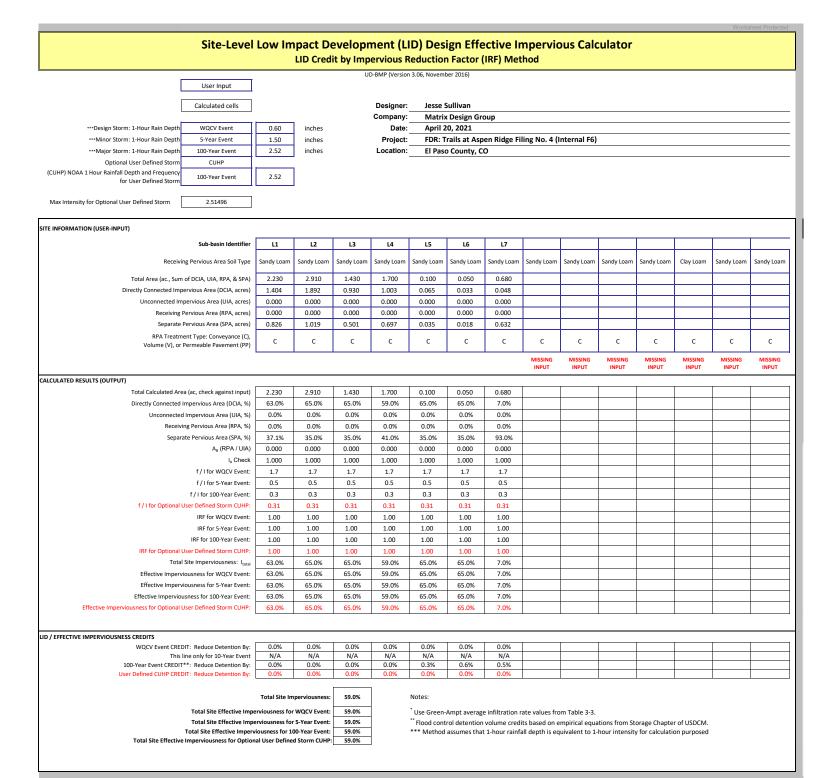
# Inlet Report (100yr)

### Manhole Report (100yr)

|                     |     |                 |                               |                            | •                      |                                         |                                          |                    |                                       |                                 |
|---------------------|-----|-----------------|-------------------------------|----------------------------|------------------------|-----------------------------------------|------------------------------------------|--------------------|---------------------------------------|---------------------------------|
|                     | ID  | Label           | Elevation<br>(Ground)<br>(ft) | Elevation<br>(Rim)<br>(ft) | Depth<br>(Out)<br>(ft) | Hydraulic<br>Grade Line<br>(In)<br>(ft) | Hydraulic<br>Grade Line<br>(Out)<br>(ft) | Headloss<br>Method | Headloss<br>Coefficient<br>(Standard) | Flow<br>(Total<br>Out)<br>(cfs) |
| 50: MH - 40         | 50  | MH - 40         | 5,900.64                      | 5,900.64                   | 1.95                   | 5,895.05                                | 5,894.86                                 | Standard           | 0.400                                 | 13.5                            |
| 53: MH - 230        | 53  | MH - 230        | 5,895.79                      | 5,895.79                   | 2.04                   | 5,893.06                                | 5,892.62                                 | Standard           | 0.400                                 | 36.0                            |
| 71: MH - 430        | 71  | MH - 430        | 5,896.70                      | 5,896.70                   | 1.33                   | 5,891.92                                | 5,890.80                                 | Standard           | 1.020                                 | 35.8                            |
| 77: MH - 200        | 77  | MH - 200        | 5,876.58                      | 5,876.58                   | 3.10                   | 5,871.71                                | 5,869.98                                 | Standard           | 1.020                                 | 73.8                            |
| 89: OS-2-K (MH-201) | 89  | OS-2-K (MH-201) | 5,867.01                      | 5,867.01                   | 2.78                   | 5,863.36                                | 5,861.13                                 | Standard           | 1.020                                 | 81.1                            |
| 90: 2-K             | 90  | 2-К             | 5,866.95                      | 5,866.95                   | 1.46                   | 5,863.57                                | 5,863.52                                 | Standard           | 0.050                                 | 5.9                             |
| 95: 6-K             | 95  | 6-К             | 5,864.76                      | 5,864.76                   | 1.12                   | 5,861.80                                | 5,861.75                                 | Standard           | 0.050                                 | 7.5                             |
| 98: MH - 206        | 98  | MH - 206        | 5,863.81                      | 5,863.81                   | 1.29                   | 5,861.33                                | 5,860.53                                 | Standard           | 1.020                                 | 11.4                            |
| 101: 3+4-K          | 101 | 3+4-K           | 5,862.06                      | 5,862.06                   | 1.49                   | 5,859.41                                | 5,859.36                                 | Standard           | 0.050                                 | 6.5                             |
| 105: 3-4-K (MH-205) | 105 | 3-4-K (MH-205)  | 5,861.67                      | 5,861.67                   | 1.13                   | 5,859.34                                | 5,858.67                                 | Standard           | 1.520                                 | 6.5                             |
| 106: 9-10-K         | 106 | 9-10-K          | 5,861.60                      | 5,861.60                   | 1.15                   | 5,859.07                                | 5,858.21                                 | Standard           | 1.520                                 | 8.7                             |
| 107: 8-K            | 107 | 8-К             | 5,861.19                      | 5,861.19                   | 1.73                   | 5,858.48                                | 5,858.43                                 | Standard           | 0.050                                 | 0.9                             |
| 109: 5-8-K          | 109 | 5-8-K           | 5,860.85                      | 5,860.85                   | 1.26                   | 5,858.42                                | 5,857.16                                 | Standard           | 1.520                                 | 11.9                            |
| 110: OS-4-K (MH202) | 110 | OS-4-K (MH202)  | 5,860.81                      | 5,860.81                   | 0.58                   | 5,851.49                                | 5,849.88                                 | Standard           | 1.020                                 | 85.3                            |
| 112: 5-10-K         | 112 | 5-10-K          | 5,860.21                      | 5,860.21                   | 1.53                   | 5,856.31                                | 5,855.54                                 | Standard           | 1.020                                 | 17.9                            |
| 125: 0S-12-K        | 125 | OS-12-K         | 5,851.22                      | 5,851.22                   | 5.90                   | 5,847.96                                | 5,847.15                                 | Standard           | 1.020                                 | 89.9                            |
| 126: 5-12-K         | 126 | 5-12-K          | 5,850.65                      | 5,850.65                   | 3.90                   | 5,848.32                                | 5,848.05                                 | Standard           | 1.520                                 | 23.6                            |
| 127: MH - 31 (K)    | 127 | MH - 31 (K)     | 5,850.04                      | 5,850.04                   | 3.18                   | 5,844.79                                | 5,843.10                                 | Standard           | 1.020                                 | 110.5                           |
| 128: 13-K           | 128 | 13-K            | 5,849.57                      | 5,849.57                   | 3.44                   | 5,846.89                                | 5,846.84                                 | Standard           | 0.050                                 | 0.6                             |
| 131: INLET 1-I      | 131 | INLET 1-I       | 5,849.31                      | 5,849.31                   | 2.15                   | 5,847.40                                | 5,847.35                                 | Standard           | 0.050                                 | 12.2                            |
| 132: INLET 2-I      | 132 | INLET 2-I       | 5,849.31                      | 5,849.31                   | 1.86                   | 5,846.78                                | 5,846.73                                 | Standard           | 0.050                                 | 4.0                             |
| 133: OS-14-K        | 133 | OS-14-K         | 5,849.24                      | 5,849.24                   | 4.56                   | 5,846.83                                | 5,845.31                                 | Standard           | 1.520                                 | 100.9                           |
| 134: MH - 30 (I)    | 134 | MH - 30 (I)     | 5,849.07                      | 5,849.07                   | 1.42                   | 5,846.72                                | 5,845.72                                 | Standard           | 1.520                                 | 15.5                            |
| 137: MH - 32        | 137 |                 | 5,845.00                      | 5,845.00                   | 3.70                   | 5,839.88                                | 5,839.82                                 | Standard           | 0.050                                 | 109.7                           |
| 138: MH - 33        | 138 | MH - 33         | 5,844.06                      | 5,844.06                   | 3.16                   | 5,839.21                                | 5,837.04                                 | Standard           | 1.320                                 | 109.4                           |
| 146: MH - 34        | 146 | MH - 34         | 5,841.45                      | 5,841.45                   | 3.16                   | 5,834.18                                | 5,834.10                                 | Standard           | 0.050                                 | 109.2                           |
| 148: INLET 5-I      | 148 | INLET 5-I       | 5,840.33                      | 5,840.33                   | 3.30                   | 5,832.08                                | 5,831.35                                 | Standard           | 0.400                                 | 120.2                           |
| 153: MH - 35        | 153 | MH - 35         | 5,831.98                      | 5,831.98                   | 3.30                   | 5,824.70                                | 5,823.98                                 | Standard           | 0.400                                 | 119.8                           |
| 322: MH-2160        | 322 | MH-2160         | 5,891.30                      | 5,891.30                   | 2.21                   | 5,884.19                                | 5,882.15                                 | Standard           | 1.020                                 | 54.3                            |
| 325: MH-2170        | 325 | MH-2170         | 5,879.76                      | 5,879.76                   | 3.34                   | 5,874.05                                | 5,872.55                                 | Standard           | 1.020                                 | 68.6                            |
| 353: MH-3           | 353 | MH-3            | 5,849.69                      | 5,849.69                   | 3.00                   | 5,847.53                                | 5,847.46                                 | Standard           | 1.322                                 | 3.4                             |
| 359: MH-232         | 359 | MH-232          | 5,869.25                      | 5,869.25                   | 1.02                   | 5,864.96                                | 5,864.36                                 | Standard           | 1.320                                 | 6.8                             |
| 360: 7-K-AREA       | 360 | 7-K-AREA        | 5,868.00                      | 5,868.00                   | 1.02                   | 5,865.18                                | 5,865.13                                 | Standard           | 0.050                                 | 6.9                             |
| 364: MH-235         | 364 | MH-235          | 5,872.77                      | 5,872.77                   | 2.73                   | 5,868.97                                | 5,866.97                                 | Standard           | 1.020                                 | 75.8                            |
| 367: 1-K            | 367 | 1-К             | 5,869.63                      | 5,869.63                   | 2.91                   | 5,869.03                                | 5,868.98                                 | Standard           | 0.050                                 | 2.3                             |
| 378: MH-42          | 378 | MH-42           | 5,880.86                      | 5,880.86                   | 2.98                   | 5,875.11                                | 5,874.24                                 | Standard           | 1.520                                 | 19.0                            |
| 380: MH-43          | 380 | MH-43           | 5,887.04                      | 5,887.04                   | 1.11                   | 5,878.50                                |                                          | Standard           | 0.100                                 | 9.5                             |
| 382: MH-44          |     | MH-44           | 5,888.11                      | 5,888.11                   | 1.11                   | 5,880.37                                |                                          | Standard           | 1.520                                 | 9.5                             |
| 388: INLET 21-K     |     | INLET 21-K      | 5,876.95                      | 5,876.95                   | 3.61                   | 5,871.77                                |                                          | Standard           | 0.050                                 | 2.0                             |
| 397: INLET 20-K     | 397 |                 | 5,891.42                      | 5,891.42                   | 3.35                   | 5,884.85                                |                                          | Standard           | 0.050                                 | 11.7                            |
| 398: MH-60          | -   | MH-60           | 5,890.82                      | 5,890.82                   | 3.48                   | 5,884.72                                |                                          | Standard           | 1.020                                 | 15.5                            |
| 401: INLET 19-K     |     | INLET 19-K      | 5,890.93                      | 5,890.93                   | 3.48                   | 5,884.77                                |                                          | Standard           | 0.050                                 | 4.1                             |

|                 |                                                 |                |                                  |                                                      |                  |                                       |                                      |                                          | Forebay Volume          |                             | Forebay Outlet Sizing |                                    |
|-----------------|-------------------------------------------------|----------------|----------------------------------|------------------------------------------------------|------------------|---------------------------------------|--------------------------------------|------------------------------------------|-------------------------|-----------------------------|-----------------------|------------------------------------|
| Design<br>Point | Total Water Quality Control Volume (Cu.<br>Ft.) | Pond Name      | Pond Drainage<br>Area<br>(Acres) | Pond Drainage Area<br>Less Pond Footprint<br>(Acres) | Forebay Location | Drainage area tributary<br>to Forebay | Proportion of Total<br>Drainage Area | Proportional<br>WQCV Volume<br>(Cu. Ft.) | 3% of WQCV<br>(Cu. Ft.) | Q100 to<br>Forebay<br>(cfs) | 2% of Q100<br>(cfs)   | Forebay<br>Slot Sizing<br>(inches) |
| DP 6-L          | 7688.859746                                     | Northeast Pond | 9.09                             | 8.411372819                                          | Northeast        | 8.41                                  | 1.00                                 | 7688.86                                  | 231                     | 35.9                        | 0.7                   | 5.0                                |

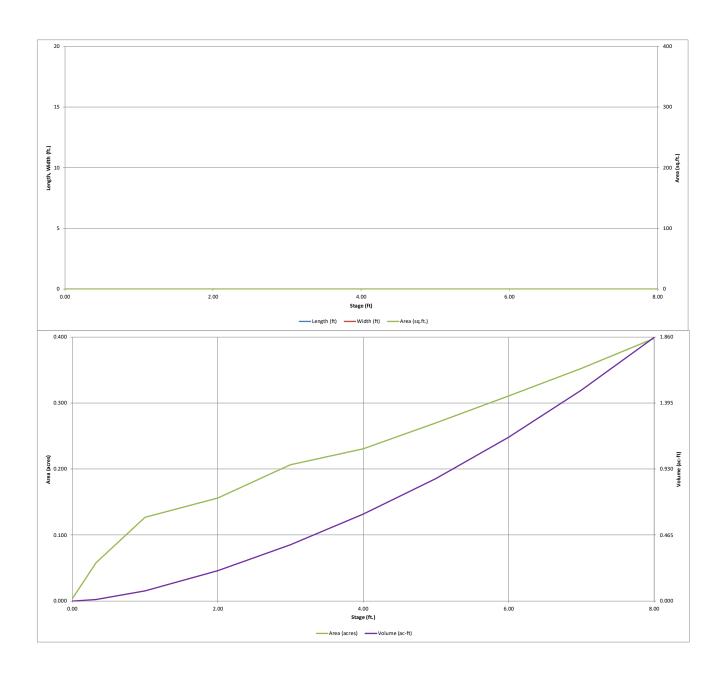
Table EDB-4. EDB component criteria


|                                                      |                  |                  |                  |       |                                         | On-Site<br>for<br>Waters<br>up to<br>Imperv<br>Acr |
|------------------------------------------------------|------------------|------------------|------------------|-------|-----------------------------------------|----------------------------------------------------|
|                                                      | WQCV             |                  | Pond Footprint   |       |                                         |                                                    |
| Single Family EDB Pond                               | 0.177            | Acre-Ft          | 0.68             | Acres |                                         |                                                    |
| Percent of WQCV for Forebay<br>Impervious Percentage | 3%<br>59.05%     | Between 5 and 20 | impervious acres |       | Forebay<br>Release and<br>Configuration |                                                    |
|                                                      | Impervious Acres | 5.4              | Acres            |       | Configuration                           |                                                    |
|                                                      |                  |                  |                  |       |                                         |                                                    |

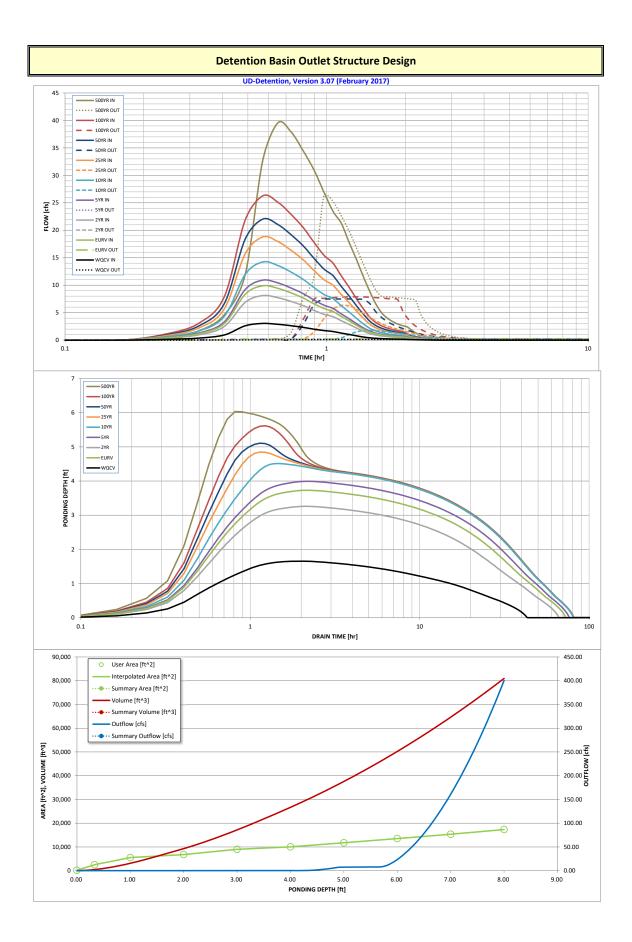
|                                         | On-Site EDBs<br>for<br>Watersheds<br>up to 1<br>Impervious<br>Acre <sup>1</sup> | EDBs with<br>Watersheds<br>between 1 and<br>2 Impervious<br>Acres <sup>1</sup>                              | EDBs with<br>Watersheds<br>up to 5<br>Impervious<br>Acres                                                   | EDBs with<br>Watersheds<br>over 5<br>Impervious<br>Acres                                                    | EDBs with<br>Watersheds<br>over 20<br>Impervious<br>Acres                                                                                |
|-----------------------------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|
| Forebay<br>Release and<br>Configuration |                                                                                 | Release 2% of<br>the undetained<br>100-year peak<br>discharge by<br>way of a<br>wall/notch<br>configuration | Release 2% of<br>the undetained<br>100-year peak<br>discharge by<br>way of a<br>wall/notch<br>configuration | Release 2% of<br>the undetained<br>100-year peak<br>discharge by<br>way of a<br>wall/notch<br>configuration | Release 2% of<br>the undetained<br>100-year peak<br>discharge by<br>way of a<br>wall/notch or<br>berm/pipe <sup>2</sup><br>configuration |
| Minimum<br>Forebay<br>Volume            | EDBs should<br>not be used<br>for<br>watersheds<br>with less than               | 1% of the<br>WQCV                                                                                           | 2% of the<br>WQCV                                                                                           | 3% of the<br>WQCV                                                                                           | 3% of the<br>WQCV                                                                                                                        |
| Maximum<br>Forebay Depth                | 1 impervious                                                                    | 12 inches                                                                                                   | 18 inches                                                                                                   | 18 inches                                                                                                   | 30 inches                                                                                                                                |
| Trickle<br>Channel<br>Capacity          |                                                                                 | ≥ the<br>maximum<br>possible<br>forebay outlet<br>capacity                                                  | ≥ the<br>maximum<br>possible<br>forebay outlet<br>capacity                                                  | ≥ the<br>maximum<br>possible<br>forebay outlet<br>capacity                                                  | ≥ the<br>maximum<br>possible<br>forebay outlet<br>capacity                                                                               |
| Micropool                               | ]                                                                               | Area $\ge 10 \text{ ft}^2$                                                                                  | Area $\ge 10 \text{ ft}^2$                                                                                  | Area $\geq$ 10 ft <sup>2</sup>                                                                              | Area $\geq$ 10 ft <sup>2</sup>                                                                                                           |
| Initial<br>Surcharge<br>Volume          |                                                                                 | Depth≥ 4<br>inches                                                                                          | Depth≥ 4<br>inches                                                                                          | Depth≥ 4 in.<br>Volume ≥<br>0.3% WQCV                                                                       | Depth≥ 4 in.<br>Volume≥<br>0.3% WQCV                                                                                                     |

 $^1\,$  EDBs are not recommended for sites with less than 2 impervious acres. Consider a sand filter or rain garden.

<sup>2</sup> Round up to the first standard pipe size (minimum 8 inches).


|                                               | Design Procedure Form:                                                                                                  | Extended Detention Basin (EDB)                                               |
|-----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| <u>,                                     </u> | UD-BMP                                                                                                                  | (Version 3.07, March 2018) Sheet 1 of 3                                      |
| Designer:                                     | Jesse Sullivan                                                                                                          |                                                                              |
| Company:                                      | Matrix Design Group                                                                                                     |                                                                              |
| Date:<br>Project:                             | April 19, 2021<br>Trails at Aspen Ridge Filing No. 4 (Internal F6) - Forebay Sizing NE                                  | Detention Pond                                                               |
| Location:                                     | El Paso County, Colorado                                                                                                |                                                                              |
|                                               |                                                                                                                         |                                                                              |
| 1. Basin Storage                              | Volume                                                                                                                  |                                                                              |
| A) Effective Imp                              | perviousness of Tributary Area, I <sub>a</sub>                                                                          | I <sub>a</sub> = 59.05 %                                                     |
|                                               | ea's Imperviousness Ratio (i = I <sub>a</sub> / 100 )                                                                   | i = 0.591                                                                    |
| , ,                                           | ,                                                                                                                       |                                                                              |
| C) Contributing                               | g Watershed Area                                                                                                        | Area = <u>9.090</u> ac                                                       |
|                                               | heds Outside of the Denver Region, Depth of Average<br>ducing Storm                                                     | $d_6 =$ in                                                                   |
|                                               | -                                                                                                                       | Choose One                                                                   |
| E) Design Con<br>(Select EUR                  | cept<br>W when also designing for flood control)                                                                        | Water Quality Capture Volume (WQCV)                                          |
|                                               |                                                                                                                         | C Excess Urban Runoff Volume (EURV)                                          |
| E) Design Velu                                |                                                                                                                         | V - 0.477 co #                                                               |
|                                               | ıme (WQCV) Based on 40-hour Drain Time<br>1.0 * (0.91 * i <sup>3</sup> - 1.19 * i <sup>2</sup> + 0.78 * i) / 12 * Area) | V <sub>DESIGN</sub> = 0.177 ac-ft                                            |
| G) For Waters                                 | heds Outside of the Denver Region,                                                                                      | V <sub>DESIGN OTHER</sub> = ac-ft                                            |
| Water Qual                                    | ity Capture Volume (WQCV) Design Volume<br><sub>R</sub> = (d <sub>6</sub> *(V <sub>DESIGN</sub> /0.43))                 |                                                                              |
|                                               |                                                                                                                         |                                                                              |
|                                               | of Water Quality Capture Volume (WQCV) Design Volume<br>fferent WQCV Design Volume is desired)                          | V <sub>design user</sub> =ac-ft                                              |
|                                               | logic Soil Groups of Tributary Watershed                                                                                |                                                                              |
| i) Percenta                                   | age of Watershed consisting of Type A Soils                                                                             | HSG <sub>A</sub> = %                                                         |
|                                               | age of Watershed consisting of Type B Soils<br>tage of Watershed consisting of Type C/D Soils                           | HSG <sub>B</sub> =%<br>HSG <sub>CD</sub> =%                                  |
|                                               | an Runoff Volume (EURV) Design Volume                                                                                   |                                                                              |
| For HSG A                                     | :: EURV <sub>A</sub> = 1.68 * i <sup>1.28</sup>                                                                         | EURV <sub>DESIGN</sub> =ac-f t                                               |
|                                               | :: $EURV_B = 1.36 * i^{1.08}$<br>:/D: $EURV_{C/D} = 1.20 * i^{1.08}$                                                    |                                                                              |
| K) User Input o                               | of Excess Urban Runoff Volume (EURV) Design Volume                                                                      | EURV <sub>DESIGN USER</sub> ≡ ac-f t                                         |
|                                               | fferent EURV Design Volume is desired)                                                                                  |                                                                              |
|                                               |                                                                                                                         |                                                                              |
|                                               | ength to Width Ratio<br>to width ratio of at least 2:1 will improve TSS reduction.)                                     | L : W = : 1                                                                  |
|                                               |                                                                                                                         |                                                                              |
| 3. Basin Side Slop                            | Des                                                                                                                     |                                                                              |
|                                               | num Side Slopes                                                                                                         | Z = ft / ft                                                                  |
| (Horizontal                                   | distance per unit vertical, 4:1 or flatter preferred)                                                                   |                                                                              |
| 4. Inlet                                      |                                                                                                                         |                                                                              |
|                                               |                                                                                                                         |                                                                              |
| A) Describe me<br>inflow locati               | eans of providing energy dissipation at concentrated<br>ions:                                                           |                                                                              |
|                                               |                                                                                                                         |                                                                              |
| 5. Forebay                                    |                                                                                                                         |                                                                              |
| A) Minimum Fo                                 |                                                                                                                         | V <sub>FMN</sub> = 0.005 ac-ft                                               |
| (V <sub>FMIN</sub>                            | = <u>3%</u> of the WQCV)                                                                                                |                                                                              |
| B) Actual Fore                                | bay Volume                                                                                                              | V <sub>F</sub> = 0.005 ac-ft                                                 |
| C) Forebay Dep                                |                                                                                                                         |                                                                              |
| (D <sub>F</sub>                               | = <u>18</u> inch maximum)                                                                                               | D <sub>F</sub> = 18.0 in                                                     |
| D) Forebay Dise                               | charge                                                                                                                  |                                                                              |
| i) Undetain                                   | ed 100-year Peak Discharge                                                                                              | Q <sub>100</sub> = <u>35.90</u> cfs                                          |
|                                               | Discharge Design Flow                                                                                                   | Q <sub>F</sub> = 0.72 cfs                                                    |
| (Q <sub>F</sub> = 0.0                         | 12 * Q <sub>100</sub> )                                                                                                 |                                                                              |
| E) Forebay Dise                               | charge Design                                                                                                           | Choose One                                                                   |
|                                               |                                                                                                                         | Berm With Pipe     Flow too small for berm w/ pipe     Wall with Rect. Notch |
|                                               |                                                                                                                         | Wall with V-Notch Weir                                                       |
| F) Discharge Pi                               | ipe Size (minimum 8-inches)                                                                                             |                                                                              |
| , -                                           |                                                                                                                         |                                                                              |
| G) Rectangular                                | ואסנכוו אאומנה                                                                                                          | Calculated $W_N = 5.0$ in                                                    |




|                                                                                               |                              |                        | DETE          | NTION B          | ASIN STAGE-S                    | TORAG      |                      | BUILDER  | 2        |        |                      |                 |                  |                |
|-----------------------------------------------------------------------------------------------|------------------------------|------------------------|---------------|------------------|---------------------------------|------------|----------------------|----------|----------|--------|----------------------|-----------------|------------------|----------------|
|                                                                                               |                              |                        |               | UD-D             | etention, Version 3             | .07 (Febru | iary 2017)           |          |          |        |                      |                 |                  |                |
|                                                                                               |                              | pen Ridge - F          |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| ZONE 3                                                                                        |                              | ond: Marksh            | ettel Tributa | ry to Jimmy (    | Camp Creek: Sub-basi            | n L        |                      |          |          |        |                      |                 |                  |                |
|                                                                                               | 2<br>ONE 1                   |                        |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
|                                                                                               |                              |                        |               |                  |                                 |            | _                    |          |          |        |                      |                 |                  |                |
|                                                                                               | 1 AND 2                      | 100-YE                 | AR<br>E       |                  | Depth Increment =               | 0.25       | ft                   |          |          |        |                      |                 |                  |                |
| PERMANENT ORIFIC<br>POOL Example Zone                                                         | 1 AND 2<br>Ces<br>Configurat | ion (Retenti           | ion Pond)     |                  | Stage - Storage                 | Stage      | Optional<br>Override | Length   | Width    | Area   | Optional<br>Override | Area            | Volume           | Volume         |
|                                                                                               |                              |                        | ,             |                  | Description<br>Top of Micropool | (ft)<br>   | Stage (ft)<br>0.00   | (ft)<br> | (ft)<br> | (ft^2) | Area (ft^2)<br>150   | (acre)<br>0.003 | (ft^3)           | (ac-ft)        |
| Required Volume Calculation<br>Selected BMP Type =                                            | EDB                          | 1                      |               |                  | 5879.01                         |            | 0.00                 |          |          |        | 2,507                | 0.003           | 414              | 0.009          |
| Watershed Area =                                                                              | 9.09                         | acres                  |               |                  | 5880                            |            | 1.00                 |          |          |        | 5,513                | 0.127           | 3,070            | 0.070          |
| Watershed Length =                                                                            | 1,058                        | ft                     |               |                  |                                 |            | 2.00                 |          | -        |        | 6,788                | 0.156           | 9,208            | 0.211          |
| Watershed Slope =                                                                             | 0.060                        | ft/ft                  |               |                  |                                 |            | 3.00                 |          | -        |        | 8,990                | 0.206           | 17,165           | 0.394          |
| Watershed Imperviousness =                                                                    | 59.05%                       | percent                |               |                  |                                 |            | 4.00                 |          | -        |        | 10,035               | 0.230           | 26,677           | 0.612          |
| Percentage Hydrologic Soil Group A =                                                          | 0.0%                         | percent                |               |                  |                                 |            | 5.00                 |          | -        |        | 11,748               | 0.270           | 37,569           | 0.862          |
| Percentage Hydrologic Soil Group B =<br>Percentage Hydrologic Soil Groups C/D =               | 100.0%<br>0.0%               | percent<br>percent     |               |                  |                                 |            | 6.00<br>7.00         |          | -        |        | 13,514<br>15,331     | 0.310 0.352     | 50,200<br>64,622 | 1.152<br>1.484 |
| Desired WQCV Drain Time =                                                                     | 40.0                         | hours                  |               |                  | 5887                            |            | 8.00                 |          |          |        | 17,330               | 0.398           | 80,952           | 1.858          |
| Location for 1-hr Rainfall Depths =                                                           |                              |                        |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Water Quality Capture Volume (WQCV) =                                                         | 0.177                        | acre-feet              | Optional Us   |                  |                                 |            |                      |          |          |        |                      | -               |                  |                |
| Excess Urban Runoff Volume (EURV) =                                                           | 0.582                        | acre-feet              | 1-hr Precipi  | _                |                                 |            |                      |          |          |        |                      |                 |                  |                |
| 2-yr Runoff Volume (P1 = 1.19 in.) =<br>5-yr Runoff Volume (P1 = 1.5 in.) =                   | 0.477                        | acre-feet<br>acre-feet | 1.19          | inches<br>inches |                                 |            |                      |          |          |        |                      |                 |                  |                |
| 10-yr Runoff Volume (P1 = 1.5 in.) =                                                          | 0.840                        | acre-feet              | 1.50          | inches           |                                 |            |                      |          |          |        |                      |                 |                  |                |
| 25-yr Runoff Volume (P1 = 2 in.) =                                                            | 1.113                        | acre-feet              | 2.00          | inches           |                                 |            |                      |          |          |        |                      |                 |                  |                |
| 50-yr Runoff Volume (P1 = 2.25 in.) =                                                         | 1.307                        | acre-feet              | 2.25          | inches           |                                 |            |                      |          |          |        |                      |                 |                  |                |
| 100-yr Runoff Volume (P1 = 2.52 in.) =                                                        | 1.561                        | acre-feet              | 2.52          | inches           |                                 |            |                      |          |          |        |                      |                 |                  |                |
| 500-yr Runoff Volume (P1 = 3.55 in.) =                                                        | 2.364                        | acre-feet              | 3.55          | inches           |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Approximate 2-yr Detention Volume =<br>Approximate 5-yr Detention Volume =                    | 0.446                        | acre-feet<br>acre-feet |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Approximate 10-yr Detention Volume =                                                          | 0.003                        | acre-feet              |               |                  |                                 | -          |                      |          |          |        |                      |                 |                  |                |
| Approximate 25-yr Detention Volume =                                                          | 0.844                        | acre-feet              |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Approximate 50-yr Detention Volume =                                                          | 0.880                        | acre-feet              |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Approximate 100-yr Detention Volume =                                                         | 0.962                        | acre-feet              |               |                  |                                 |            |                      |          |          |        |                      |                 |                  | l              |
| Stage-Storage Calculation                                                                     |                              |                        |               |                  |                                 |            |                      | -        |          |        |                      |                 |                  |                |
| Zone 1 Volume (WQCV) =                                                                        | 0.177                        | acre-feet              |               |                  |                                 |            |                      | -        |          |        |                      |                 |                  |                |
| Zone 2 Volume (EURV - Zone 1) =                                                               | 0.405                        | acre-feet              |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Zone 3 Volume (100-year - Zones 1 & 2) =                                                      | 0.381                        | acre-feet              |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Total Detention Basin Volume =                                                                | 0.962                        | acre-feet              |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Initial Surcharge Volume (ISV) =                                                              | user                         | ft^3                   |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Initial Surcharge Depth (ISD) =<br>Total Available Detention Depth (H <sub>total</sub> ) =    | user<br>user                 | ft                     |               |                  |                                 |            |                      | -        |          |        |                      |                 |                  |                |
| Depth of Trickle Channel (H <sub>TC</sub> ) =                                                 | user                         | ft<br>ft               |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Slope of Trickle Channel (S <sub>TC</sub> ) =                                                 | user                         | ft/ft                  |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Slopes of Main Basin Sides ( $S_{main}$ ) =                                                   | user                         | H:V                    |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Basin Length-to-Width Ratio ( $R_{L/W}$ ) =                                                   | user                         | 1                      |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Initial Surcharge Area (A <sub>tsv</sub> ) =                                                  | licor                        |                        |               |                  |                                 |            |                      | -        |          |        |                      |                 |                  |                |
| Initial Surcharge Area (A <sub>ISV</sub> ) =<br>Surcharge Volume Length (L <sub>ISV</sub> ) = | user<br>user                 | ft^2                   |               |                  |                                 |            |                      | -        |          |        |                      |                 |                  |                |
| Surcharge Volume Width (W <sub>ISV</sub> ) =                                                  | user                         | ft                     |               |                  |                                 |            |                      | -        |          |        |                      |                 |                  |                |
| Depth of Basin Floor (H <sub>FLOOR</sub> ) =                                                  | user                         | ft                     |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Length of Basin Floor $(L_{FLOOR})$ =                                                         | user                         | ft                     |               |                  |                                 |            |                      |          |          |        |                      |                 |                  | I              |
| Width of Basin Floor (W <sub>FLOOR</sub> ) =                                                  | user                         | ft                     |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Area of Basin Floor $(A_{FLOOR})$ =<br>Volume of Basin Floor $(V_{FLOOR})$ =                  | user                         | ft*2<br>ft*3           |               |                  |                                 |            |                      | -        |          |        |                      |                 |                  |                |
| Depth of Main Basin ( $W_{FLOOR}$ ) =                                                         | user                         | ft*3                   |               |                  |                                 |            |                      | -        |          |        |                      |                 |                  |                |
| Length of Main Basin ( $L_{MAIN}$ ) =                                                         | user                         | ft                     |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Width of Main Basin (W <sub>MAIN</sub> ) =                                                    | user                         | ft                     |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Area of Main Basin (A <sub>MAIN</sub> ) =                                                     | user                         | ft^2                   |               |                  |                                 |            |                      |          |          |        |                      |                 |                  | I              |
| Volume of Main Basin ( $V_{MAIN}$ ) =                                                         | user                         | ft^3                   |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
| Calculated Total Basin Volume ( $V_{total}$ ) =                                               | user                         | acre-feet              |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
|                                                                                               |                              |                        |               |                  |                                 |            |                      |          |          |        |                      |                 |                  | (              |
|                                                                                               |                              |                        |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
|                                                                                               |                              |                        |               |                  |                                 |            |                      |          |          |        |                      |                 |                  |                |
|                                                                                               |                              |                        |               |                  |                                 | -          |                      | -        |          |        |                      |                 |                  |                |
|                                                                                               |                              |                        |               |                  |                                 |            |                      |          |          |        |                      | I               | I                | I              |

### DETENTION BASIN STAGE-STORAGE TABLE BUILDER

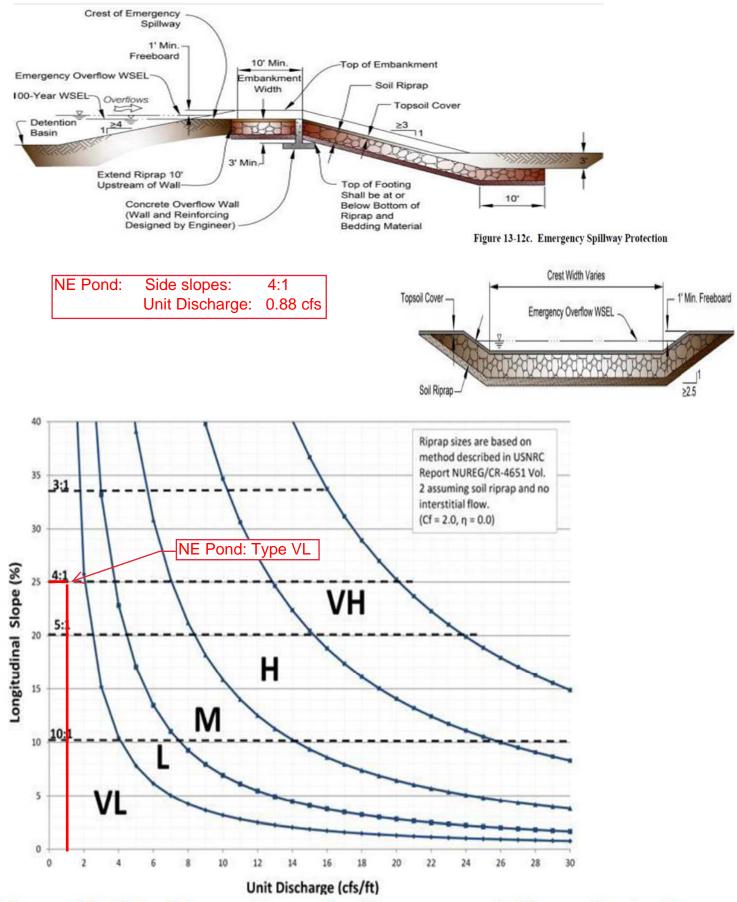
UD-Detention, Version 3.07 (February 2017)

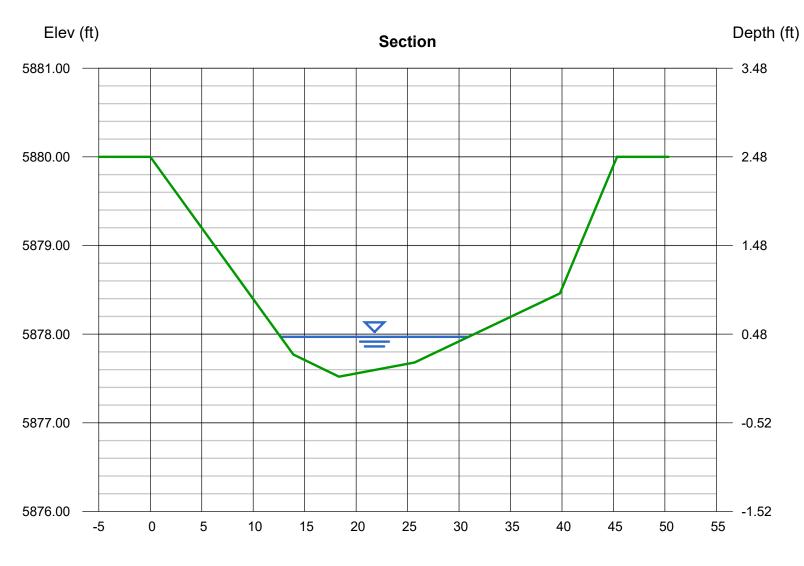


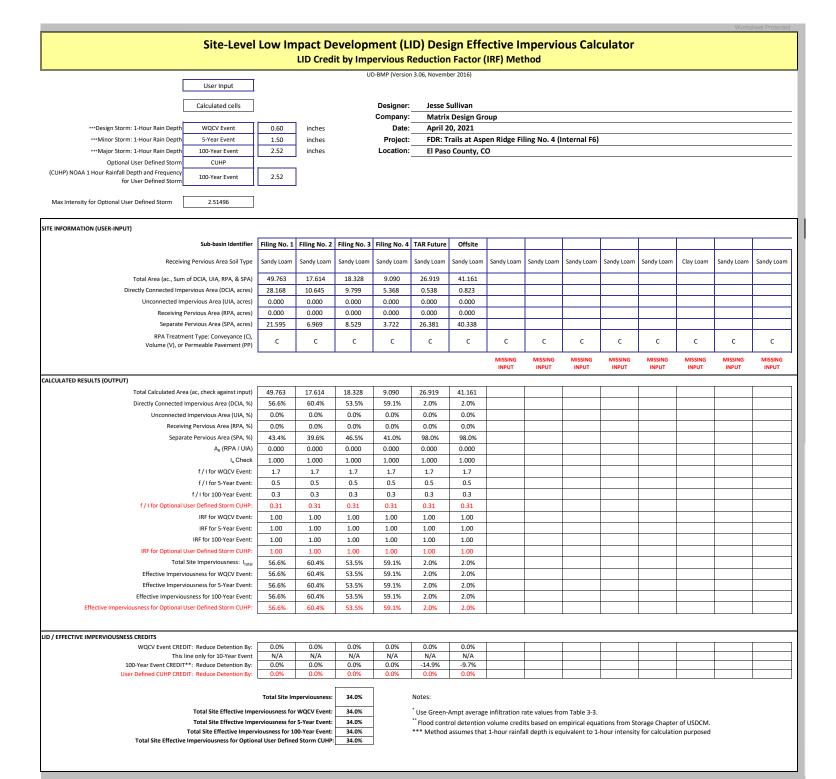
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ntion Basin (                                                                                                                                                                                                                                                                                       | Outlet Struct                                                                                                                                                                                                       | ure Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     | rsion 3.07 (Februar                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Trails at Aspen Rid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to Jimmy Camp Cre                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| (ZONE 3<br>20NE 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Northeast Fond. Ma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | to simility camp cre                                                                                                                                                                                                                                                                                | EK. Sub-basin L                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     | Stage (ft)                                                                                                                                                                                                          | Zone Volume (ac-ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Outlet Type                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zone 1 (WQCV)                                                                                                                                                                                                                                                                                       | 1.77                                                                                                                                                                                                                | 0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Orifice Plate                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 100-YEA<br>ORIFICE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone 2 (EURV)                                                                                                                                                                                                                                                                                       | 3.87                                                                                                                                                                                                                | 0.405                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Circular Orifice                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| PERMANENT ORIFICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 'one 3 (100-year)                                                                                                                                                                                                                                                                                   | 5.37                                                                                                                                                                                                                | 0.381                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weir&Pipe (Restrict)                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| Example Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Configuration (Re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | tention Pond)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     | 0.962                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Total                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| User Input: Orifice at Underdrain Outlet (typically us                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          | ed Parameters for Ur                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| Underdrain Orifice Invert Depth =<br>Underdrain Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft (distance below th<br>inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | e filtration media sur                                                                                                                                                                                                                                                                              | face)                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | erdrain Orifice Area =<br>ain Orifice Centroid =                                                                                                                                                                                                                                                                                                                                         | N/A<br>N/A                                                                                                                                                                                                                                                                                                   | ft²<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                 |
| Underdrain Uniter Diameter -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     | Underuna                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ani onnce centroid -                                                                                                                                                                                                                                                                                                                                                                     | N/A                                                                                                                                                                                                                                                                                                          | leet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                 |
| Jser Input: Orifice Plate with one or more orifices of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | or Elliptical Slot Weir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (typically used to dra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ain WQCV and/or EU                                                                                                                                                                                                                                                                                  | RV in a sedimentatio                                                                                                                                                                                                | n BMP)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Calcu                                                                                                                                                                                                                                                                                                                                                                                    | lated Parameters for                                                                                                                                                                                                                                                                                         | Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                 |
| Invert of Lowest Orifice =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ft (relative to basin b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | oottom at Stage = 0 ft                                                                                                                                                                                                                                                                              | )                                                                                                                                                                                                                   | WQ O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                    | 7.639E-03                                                                                                                                                                                                                                                                                                    | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |
| Depth at top of Zone using Orifice Plate =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | oottom at Stage = 0 ft                                                                                                                                                                                                                                                                              | )                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | lliptical Half-Width =                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                 |
| Orifice Plate: Orifice Vertical Spacing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     | Elli                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ptical Slot Centroid =                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                 |
| Orifice Plate: Orifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | sq. inches (diameter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 1-3/16 inches)                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Elliptical Slot Area =                                                                                                                                                                                                                                                                                                                                                                   | N/A                                                                                                                                                                                                                                                                                                          | ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| Jser Input: Stage and Total Area of Each Orifice F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Row (numbered fron                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | lowest to highest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Row 1 (required)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Row 2 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Row 3 (optional)                                                                                                                                                                                                                                                                                    | Row 4 (optional)                                                                                                                                                                                                    | Row 5 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Row 6 (optional)                                                                                                                                                                                                                                                                                                                                                                         | Row 7 (optional)                                                                                                                                                                                                                                                                                             | Row 8 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                 |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 0.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.18                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1.10                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Row 9 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Row 10 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Row 11 (optional)                                                                                                                                                                                                                                                                                   | Row 12 (optional)                                                                                                                                                                                                   | Row 13 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Row 14 (optional)                                                                                                                                                                                                                                                                                                                                                                        | Row 15 (optional)                                                                                                                                                                                                                                                                                            | Row 16 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                               |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | o (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (optional)                                                                                                                                                                                                                                                                                          | (optional)                                                                                                                                                                                                          | (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                          | (optional)                                                                                                                                                                                                                                                                                                   | ro (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                 |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| User Input: Vertical Orifice (Circ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ÷ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calculated                                                                                                                                                                                                                                                                                                                                                                               | Parameters for Vert                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                               |
| Invert of Vertical Orifica -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 2 Circular<br>1.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ft (ralativo to bacin k                                                                                                                                                                                                                                                                             | ottom at Stage = 0 ft                                                                                                                                                                                               | ) V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | artical Orifica Aroa -                                                                                                                                                                                                                                                                                                                                                                   | Zone 2 Circular<br>0.00                                                                                                                                                                                                                                                                                      | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ft <sup>2</sup>                                                                                                                                                 |
| Invert of Vertical Orifice =<br>= Depth at top of Zone using Vertical Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 3.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                     | ottom at Stage = 0 ft<br>ottom at Stage = 0 ft                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 'ertical Orifice Area =<br>cal Orifice Centroid =                                                                                                                                                                                                                                                                                                                                        | 0.00                                                                                                                                                                                                                                                                                                         | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | π<br>feet                                                                                                                                                       |
| Vertical Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.38                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | inches                                                                                                                                                                                                                                                                                              | ottom at Stage - o h                                                                                                                                                                                                | , verti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                          | 0.02                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | leet                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| User Input: Overflow Weir (Dropbox) and G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calculated                                                                                                                                                                                                                                                                                                                                                                               | Parameters for Ove                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                                               |
| Overflow Weir Front Edge Height, Ho =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zone 3 Weir<br>4.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ft (rolativo to bosin boi                                                                                                                                                                                                                                                                           | term at Stage - 0 ft)                                                                                                                                                                                               | Height of Gr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | rata Lippor Edgo, H                                                                                                                                                                                                                                                                                                                                                                      | Zone 3 Weir<br>5.25                                                                                                                                                                                                                                                                                          | Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ft (relative to basin bo                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                 |
| Overnow Weir From Fage Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ate Upper Edge, H <sub>t</sub> =                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet<br>feet                                                                                                                                                    |
| Overflow Weir Front Edge Length =<br>Overflow Weir Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6.00<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet<br>H:V (enter zero for fl                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                     | Over Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>100-yr Orifice Area =                                                                                                                                                                                                                                                                                                                                             | 4.12                                                                                                                                                                                                                                                                                                         | N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>feet<br>should be <u>≥</u> 4                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                     | Over Flow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>100-yr Orifice Area =                                                                                                                                                                                                                                                                                                                                             | 4.12                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet                                                                                                                                                            |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00<br>4.00<br>70%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H:V (enter zero for fl                                                                                                                                                                                                                                                                              | at grate)                                                                                                                                                                                                           | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weir Slope Length =<br>100-yr Orifice Area =                                                                                                                                                                                                                                                                                                                                             | 4.12<br>24.85                                                                                                                                                                                                                                                                                                | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>should be <u>&gt;</u> 4                                                                                                                                 |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H:V (enter zero for fl<br>feet                                                                                                                                                                                                                                                                      | at grate)                                                                                                                                                                                                           | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =                                                                                                                                                                                                                                                                                                                     | 4.12<br>24.85<br>17.32                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>should be <u>&gt;</u> 4<br>ft <sup>2</sup>                                                                                                              |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.00<br>4.00<br>70%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%                                                                                                                                                                                                                                         | at grate)                                                                                                                                                                                                           | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =                                                                                                                                                                                                                                                                                             | 4.12<br>24.85<br>17.32<br>8.66                                                                                                                                                                                                                                                                               | N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>should be $\ge$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                 |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.00<br>4.00<br>70%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%                                                                                                                                                                                                                                         | at grate)                                                                                                                                                                                                           | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =                                                                                                                                                                                                                                                                                             | 4.12<br>24.85<br>17.32<br>8.66                                                                                                                                                                                                                                                                               | N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>should be $\ge$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                 |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00<br>4.00<br>70%<br>50%                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)                                                                                                                                                                                                                       | at grate)                                                                                                                                                                                                           | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =                                                                                                                                                                                                                                                                                             | 4.12<br>24.85<br>17.32<br>8.66                                                                                                                                                                                                                                                                               | N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>should be $\ge$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                 |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A<br>N/A<br>N/A<br>N/A<br>ctor Plate, or Rectanj<br>Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)                                                                                                                                                                                                                       | at grate)<br>otal area                                                                                                                                                                                              | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =<br>Calculated Parameter                                                                                                                                                                                                                                                                     | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor                                                                                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>should be $\ge$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                 |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Cr<br>Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectany<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>g <b>ular Orifice)</b><br>ft (distance below basi                                                                                                                                                                                    | at grate)<br>otal area<br>n bottom at Stage = 0 f                                                                                                                                                                   | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =                                                                                                                                                                                                           | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70                                                                                                                                                                                                                         | N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                             |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectany<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches                                                                                                                                                                                  | at grate)<br>otal area<br>n bottom at Stage = 0 f                                                                                                                                                                   | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>t)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =                                                                                                                                                                                        | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40                                                                                                                                                                                                         | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet                                                  |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>gular or Trapezoidal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>linches<br>inches                                                                                                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                                                                         | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>t)<br>t)<br>Out<br>Central Angle of Rest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calculat                                                                                                                                                                            | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>xted Parameters for S                                                                                                                                                                                | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet                                                  |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>3ular or Trapezoidal)<br>5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches                                                                                                                                                                                  | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                                                                         | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>t)<br>t)<br>Central Angle of Rest<br>Spillway                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=                                                                                                                                       | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>sted Parameters for S<br>0.42                                                                                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet                                                  |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Cl<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>gular or Trapezoidal)<br>5.70<br>30.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin b<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>linches<br>inches                                                                                                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                                                                         | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>(<br>verflow Grate Op<br>Overflow Grate Op<br>(<br>verflow Grate Op)(<br>verflow Grate Op)(<br>verfl | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =                                                                                                                              | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>ted Parameters for S<br>0.42<br>7.12                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet                                                  |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>3ular or Trapezoidal)<br>5.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin b                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>linches<br>inches                                                                                                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                                                                         | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>(<br>verflow Grate Op<br>Overflow Grate Op<br>(<br>verflow Grate Op)(<br>verflow Grate Op)(<br>verfl | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=                                                                                                                                       | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>sted Parameters for S<br>0.42                                                                                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet                                                  |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>linches<br>inches                                                                                                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-(                                                                                                                                                         | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>(<br>verflow Grate Op<br>Overflow Grate Op<br>(<br>verflow Grate Op)(<br>verflow Grate Op)(<br>verfl | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =                                                                                                                              | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>ted Parameters for S<br>0.42<br>7.12                                                                                                                                                                 | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup> |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin t<br>feet<br>H:V<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft                                                                                                                                              | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f                                                                                                                                                         | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>(<br>Coverflow Grate Op)(<br>Coverflow Grate Op)(<br>Coverf                               | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =                                                                                                      | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>rted Parameters for S<br>0.42<br>7.12<br>0.36                                                                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>fe<br>ft <sup>2</sup><br>feet<br>radians                                                     |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sldes =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00<br>1.00<br>WQCV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A<br>N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet<br>H:V<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>If (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year                                                                                                                                    | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-4<br>)<br>5 Year                                                                                                                                          | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>t)<br>Contral Angle of Resti<br>Spillway<br>Stage a<br>Basin Area a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/ Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =                                                                                                       | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>tted Parameters for 5<br>0.42<br>7.12<br>0.36                                                                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>ipillway<br>feet<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                               |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00<br>1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>ft (relative to basin t<br>feet<br>H:V<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft                                                                                                                                              | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f                                                                                                                                                         | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>(<br>Coverflow Grate Op)(<br>Coverflow Grate Op)(<br>Coverf                               | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =                                                                                                      | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>rted Parameters for S<br>0.42<br>7.12<br>0.36                                                                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>Spillway<br>feet<br>feet<br>acres                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                           |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (Cl<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Stom Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00<br>1.00<br>WQCV<br>0.53<br>0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A<br>N/A<br>N/A<br>ctor Plate, or Rectan<br>N/A<br>N/A<br>N/A<br>ft (relative to basin the<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>0.582                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br><u>2 Year</u><br>1.19<br>0.477                                                                                                            | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br><u>5 Year<br/>1.50<br/>0.642</u>                                                                                                                | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>1.1113                                                                                               | 4.12<br>24.85<br>17.32<br>8.66<br><b>xs for Outlet Pipe w/</b><br><b>Zone 3 Restrictor</b><br>0.70<br>0.36<br>1.40<br><b>tted Parameters for 5</b><br>0.42<br>7.12<br>0.36<br><b>50 Year</b><br>2.25<br>1.307                                                                                                | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>ipillway<br>feet<br>feet<br>acres<br>100 Year<br>2.52<br>1.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.55<br>2.364                                  |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slotes =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>OPTIONAL Override Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                                                         | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>2014<br>5.70<br>30.00<br>4.00<br>1.00<br>1.00<br>1.00<br>0.53<br>0.177<br>0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>N/A<br>ft (relative to basin the<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>H:07<br>0.582<br>0.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.477<br>0.475                                                                                                          | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-4<br>)<br><u>5 Year</u><br>1.50<br>0.642                                                                                                                  | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.840<br>0.839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>1.113<br>1.111                                                                                                            | 4.12<br>24.85<br>17.32<br>8.66<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>sted Parameters for S<br>0.42<br>7.12<br>0.36<br>30<br>50 Year<br>2.25<br>1.307<br>30<br>1.305                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>ipillway<br>feet<br>feet<br>acres<br>100 Year<br>2.52<br>1.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.55<br>2.364<br>2.361                    |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Cl<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Cne-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>OPTIONAL Override Runoff Volume (acre-ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>gular or Trapezoidal)<br>5.70<br>30.00<br>4.00<br>1.00<br>0.53<br>0.177<br>0.176<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>0.582<br>0.581<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.477<br>0.475<br>0.01                                                                                                  | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-(<br>)<br>5 Year<br>1.50<br>0.642<br>0.02                                                                                                                 | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.840                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>1.1113                                                                                               | 4.12<br>24.85<br>17.32<br>8.66<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>ted Parameters for S<br>0.42<br>7.12<br>0.36<br>0.42<br>7.12<br>0.36                                                                                                                                  | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A<br>N/A<br>ipillway<br>feet<br>feet<br>acres<br>100 Year<br>2.52<br>1.561                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.55<br>2.364<br>2.361<br>2.05                                    |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Cl<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Calculated Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =                                                                                                                                                                                                                                                           | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>2014<br>5.70<br>30.00<br>4.00<br>1.00<br>1.00<br>1.00<br>0.53<br>0.177<br>0.176                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>N/A<br>ft (relative to basin the<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>H:07<br>0.582<br>0.581                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.477<br>0.475                                                                                                          | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-4<br>)<br><u>5 Year</u><br>1.50<br>0.642                                                                                                                  | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.840<br>0.839<br>0.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>1.113<br>1.111<br>0.66                                           | 4.12<br>24.85<br>17.32<br>8.66<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>sted Parameters for S<br>0.42<br>7.12<br>0.36<br>30<br>50 Year<br>2.25<br>1.307<br>30<br>1.305                                                                                                        | N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>N/A<br>N/A<br>N/A<br>N/A<br>spillway<br>feet<br>feet<br>acres<br>100 Year<br>2.52<br>1.561<br>1.560<br>1.23                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.55<br>2.364<br>2.361                    |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sldes =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (Cl<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Closeign Storm Return Period =<br>One-Hour Rainfall Depth (m) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                     | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>7.50<br>30.00<br>4.00<br>1.00<br>1.00<br>0.00<br>0.176<br>0.00<br>0.0<br>3.0<br>0.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A N/A N/A N/A N/A N/A N/A Ctor Plate, or Rectang Not Selected N/A N/A ft (relative to basin to feet H:V feet EURV 1.07 0.582 0.581 0.00 0.0 9.9 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.477<br>0.475<br>0.01<br>0.1<br>8.1<br>0.2                                                                             | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.642<br>0.642<br>0.02<br>0.2<br>10.9<br>0.2                                                                                  | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>C<br>C<br>t)<br>Out<br>Central Angle of Rest<br>Spillway<br>Stage a<br>Basin Area a<br>10 Year<br>1.75<br>0.840<br>0.839<br>0.20<br>1.8<br>14.2<br>1.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=<br>t Top of Freeboard =<br><b>25 Year</b><br>2.00<br>1.113<br>1.111<br>0.66<br>6.0<br>18.8<br>6.3                                      | 4.12<br>24.85<br>17.32<br>8.66<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>ted Parameters for S<br>0.42<br>7.12<br>0.36<br>0.42<br>7.12<br>0.36<br>50 Year<br>2.25<br>1.307<br>1.305<br>0.91<br>8.3<br>22.0<br>7.5                                                               | N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           100 Year           2.52           1.560           1.23           11.2           26.3           7.9                                                                                                                                                                                                                                                                                               | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                  |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sldes =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Cl<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (n) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Volume (acre-ft) =<br>Predevelopment Peak Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q Cefs) =<br>Ratio Peak Outflow to Predevelopment Q =                                                                                                                                                                                                                                | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>2010<br>5.70<br>30.00<br>4.00<br>1.00<br>0.00<br>0.177<br>0.176<br>0.00<br>0.0<br>3.0<br>0.1<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A           N/A           N/A           N/A           N/A           ctor Plate, or Rectang           Not Selected           N/A           N/A           N/A           ft (relative to basin to<br>feet           H:V           feet           0.581           0.00           0.0           0.9           0.2           N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br><u>2 Year</u><br>1.19<br>0.475<br>0.01<br>0.1<br>8.1<br>0.2<br>N/A                                                                        | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.642<br>0.642<br>0.02<br>0.2<br>10.9<br>0.2<br>1.1                                                                           | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Overflow Grate Overflow<br>Overflow Grate Overflow Grate Overflow<br>Overflow Grate Overflow Grate Overflo                                                                                                                                                                                                                                                                                                    | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>1.113<br>1.111<br>0.66<br>6.0<br>18.8<br>6.3<br>1.1                            | 4.12<br>24.85<br>17.32<br>8.66<br>xs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>xted Parameters for 5<br>0.42<br>7.12<br>0.36<br>50 Year<br>2.25<br>1.307<br>2.25<br>1.307<br>8.3<br>22.0<br>0.91<br>8.3<br>22.0<br>7.5<br>0.9                                                       | N/A           N/A           N/A           N/A           N/A           Plow Restriction Plat           Not Selected           N/A           I.560           1.23           1.2           2.5           7.9           0.7 | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>fe<br>ft <sup>2</sup><br>feet<br>radians                                                         |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sldes =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =                                                                                                                                                                                                                               | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00<br>1.00<br>0.00<br>0.176<br>0.176<br>0.00<br>0.0<br>3.0<br>0.177                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>Not Selected<br>N/A<br>N/A<br>N/A<br>(ft (relative to basin b<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>0.582<br>0.581<br>0.00<br>0.582<br>0.581<br>0.00<br>0.0<br>9.9<br>0.2<br>N/A<br>Vertical Orifice 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H:V (enter zero for ff<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.477<br>0.475<br>0.01<br>0.1<br>8.1<br>0.2<br>N/A<br>Vertical Orifice 1                                                | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.642<br>0.642<br>0.642<br>0.02<br>0.2<br>10.9<br>0.2<br>1.1<br>Vertical Orifice 1                                            | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=<br>t Top of Freeboard =<br><b>25 Year</b><br>2.00<br>1.113<br>1.111<br>0.66<br>6.0<br>18.8<br>6.3                                      | 4.12<br>24.85<br>17.32<br>8.66<br><b>xs for Outlet Pipe w/</b><br><b>Zone 3 Restrictor</b><br>0.70<br>0.36<br>1.40<br><b>tet Parameters for 5</b><br>0.42<br>7.12<br>0.36<br><b>50 Year</b><br>2.25<br>1.307<br><b>50 Year</b><br>2.25<br>1.307<br><b>8.3</b><br>22.0<br>7.5<br>0.9<br>0.9<br>Outlet Plate 1 | N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           Spillway           feet           feet           1.560           1.23           1.1.2           26.3           7.9           0.7           Outlet Plate 1                                    | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                               |
| Overflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (Cl<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Reuted Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (n) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Volume (acre-ft) =<br>Predevelopment Peak Q (cfs) =<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q                                                                                                                                                                                                                                                                                                                   | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>2010<br>5.70<br>30.00<br>4.00<br>1.00<br>0.00<br>0.177<br>0.176<br>0.00<br>0.0<br>3.0<br>0.1<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | N/A           N/A           N/A           N/A           N/A           ctor Plate, or Rectang           Not Selected           N/A           N/A           N/A           ft (relative to basin to<br>feet           H:V           feet           0.581           0.00           0.0           0.9           0.2           N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br><u>2 Year</u><br>1.19<br>0.475<br>0.01<br>0.1<br>8.1<br>0.2<br>N/A                                                                        | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.642<br>0.642<br>0.02<br>0.2<br>10.9<br>0.2<br>1.1                                                                           | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Overflow Grate Overflow<br>Overflow Grate Overflow Grate Overflow<br>Overflow Grate Overflow Grate Overflo                                                                                                                                                                                                                                                                                                    | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>25 Year<br>2.00<br>1.113<br>1.111<br>0.66<br>6.0<br>18.8<br>6.3<br>1.1<br>Overflow Grate 1        | 4.12<br>24.85<br>17.32<br>8.66<br>xs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>xted Parameters for 5<br>0.42<br>7.12<br>0.36<br>50 Year<br>2.25<br>1.307<br>2.25<br>1.307<br>8.3<br>22.0<br>0.91<br>8.3<br>22.0<br>7.5<br>0.9                                                       | N/A           N/A           N/A           N/A           N/A           Plow Restriction Plat           Not Selected           N/A           I.560           1.23           1.2           2.5           7.9           0.7 | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>fe<br>ft <sup>2</sup><br>feet<br>radians                                                         |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Max Velocity through Grate 1 (fts) =<br>Max Velocity through Grate 2 (fts) =<br>Time to Drain 97% of Inflow Volume (Acre) fts)                                                                                                                                                                           | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00<br>1.00<br>0.00<br>4.00<br>1.00<br>0.176<br>0.176<br>0.00<br>0.0<br>3.0<br>0.177<br>0.176<br>0.00<br>0.0<br>3.0<br>0.177<br>0.176<br>0.00<br>0.1<br>1.00<br>0.0<br>3.0<br>0.1<br>1.00<br>0.0<br>3.0<br>0.1<br>1.00<br>0.0<br>3.0<br>0.1<br>1.00<br>0.2<br>5.3<br>0.177<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.177<br>0.176<br>0.177<br>0.177<br>0.176<br>0.177<br>0.177<br>0.176<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.176<br>0.177<br>0.177<br>0.176<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.1777<br>0.1777<br>0.1777<br>0.17770<br>0.17770<br>0.17770000000000 | N/A           N/A           N/A           N/A           N/A           ctor Plate, or Rectan           Not Selected           N/A           N/A           ft (relative to basin b           feet           H:V           feet           0.581           0.00           9.9           0.2           N/A           Vertical Orifice 1           N/A           N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H:V (enter zero for ff<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.477<br>0.477<br>0.477<br>0.477<br>0.475<br>0.01<br>0.1<br>8.1<br>0.2<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>56 | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.642<br>0.02<br>0.2<br>10.9<br>0.2<br>10.9<br>0.2<br>1.1<br>Vertical Orifice 1<br>N/A<br>64                                  | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Open<br>Overflow Grate 1<br>0.1<br>0.1<br>0.20<br>0.20<br>1.8<br>10.20<br>1.8<br>10.20<br>0.839<br>0.20<br>1.8<br>10.20<br>0.839<br>0.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.8<br>10.20<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>1.0<br>5<br>5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>1.111<br>0.66<br>6.0<br>18.8<br>6.3<br>1.1<br>Overflow Grate 1<br>0.4<br>N/A<br>62                        | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>rted Parameters for S<br>0.42<br>7.12<br>0.36<br>0.42<br>7.12<br>0.36<br>0.42<br>7.12<br>0.36<br>0.91<br>8.3<br>22.0<br>7.5<br>0.91<br>0.4<br>N/A<br>61                                              | N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           100 Year           2.52           1.560           1.23           11.2           26.3           7.9           0.7           Outlet Plate 1           0.4           N/A           59                                                                                                                                                                                                                                                                                                                 | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>fe<br>fet<br>radians                                                                             |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Invert Stage=<br>Spillway Enset Length =<br>Spillway Enset Length =<br>Inflow Hydrograph Results<br>Design Storm Return Period =<br>OPTIONAL Override Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Untflow Q (cfs) =<br>Peak Untflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 1 (fps) =<br>Time to Drain 99% of Inflow Volume (hours) = | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00<br>1.00<br>0.00<br>0.00<br>0.177<br>0.176<br>0.00<br>0.0<br>3.0<br>0.177<br>0.176<br>0.00<br>0.0<br>3.0<br>0.1<br>N/A<br>Plate<br>N/A<br>N/A<br>N/A<br>N/A<br>41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | N/A           N/A           N/A           N/A           N/A           ctor Plate, or Rectanger of the section of the sectio | H:V (enter zero for ff<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.477<br>0.477<br>0.477<br>0.477<br>0.1<br>8.1<br>0.2<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>N/A<br>N/A          | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-4<br>)<br>5 Year<br>1.50<br>0.642<br>0.642<br>0.642<br>0.02<br>10.9<br>0.2<br>10.9<br>0.2<br>11.1<br>Vertical Orifice 1<br>N/A<br>N/A<br>N/A<br>N/A<br>71 | Over Flow<br>Grate Open Area /<br>Overflow Grate Ope<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Ope<br>Overflow Grate 1<br>0.1<br>0.1<br>N/A<br>0.2<br>0.20<br>1.8<br>14.2<br>1.8<br>1.0<br>0.20<br>0.20<br>1.8<br>14.2<br>1.8<br>1.0<br>0.20<br>0.20<br>1.8<br>1.4<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.20<br>0.20<br>0.20<br>0.20<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.2<br>0<br>0.2<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.7<br>5<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.7<br>5<br>1.7<br>5<br>0.20<br>0<br>0<br>1.8<br>1.4<br>2.2<br>1.7<br>5<br>1.7<br>5<br>0.2<br>0<br>0<br>1.8<br>1.4<br>2<br>1.7<br>5<br>1.7<br>5<br>1.7<br>5<br>1.7<br>5<br>1.7<br>5<br>1.7<br>5<br>1.7<br>5<br>1.7<br>5<br>1.7<br>5<br>1.7<br>5<br>1.7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7<br>7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>pen Area w/o Debris =<br>calculated Parameter<br>Outlet Orifice Area =<br>let Orifice Centroid =<br>rictor Plate on Pipe =<br>Calcula<br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>1.113<br>1.111<br>0.66<br>6.0<br>18.8<br>6.3<br>1.1<br>Overflow Grate 1<br>0.4<br>N/A<br>62<br>72 | 4.12<br>24.85<br>17.32<br>8.66<br>xs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>xted Parameters for S<br>0.42<br>7.12<br>0.36<br>30 Year<br>2.25<br>1.307<br>30<br>30<br>30<br>22.0<br>7.5<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9<br>0.9                     | N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           Solutiet Plate 1           0.4           N/A                                                                                                                                                                                                                       | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                  |
| Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (Ci<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectang<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =<br>Peak Inflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (nours)                                                                                                                                                                               | 4.00<br>4.00<br>70%<br>50%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.25<br>18.00<br>7.50<br>30.00<br>4.00<br>1.00<br>0.00<br>4.00<br>1.00<br>0.176<br>0.176<br>0.00<br>0.0<br>3.0<br>0.177<br>0.176<br>0.00<br>0.0<br>3.0<br>0.177<br>0.176<br>0.00<br>0.1<br>1.00<br>0.0<br>3.0<br>0.1<br>1.00<br>0.0<br>3.0<br>0.1<br>1.00<br>0.0<br>3.0<br>0.1<br>1.00<br>0.2<br>5.3<br>0.177<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.176<br>0.177<br>0.176<br>0.177<br>0.177<br>0.176<br>0.177<br>0.177<br>0.176<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.176<br>0.177<br>0.177<br>0.176<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.177<br>0.1777<br>0.1777<br>0.1777<br>0.17770<br>0.17770<br>0.17770000000000 | N/A           N/A           N/A           N/A           N/A           ctor Plate, or Rectan           Not Selected           N/A           N/A           ft (relative to basin b           feet           H:V           feet           0.581           0.00           9.9           0.2           N/A           Vertical Orifice 1           N/A           N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | H:V (enter zero for ff<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>0.477<br>0.477<br>0.477<br>0.477<br>0.475<br>0.01<br>0.1<br>8.1<br>0.2<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>56 | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-0<br>)<br>5 Year<br>1.50<br>0.642<br>0.02<br>0.2<br>10.9<br>0.2<br>10.9<br>0.2<br>1.1<br>Vertical Orifice 1<br>N/A<br>64                                  | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Op<br>Overflow Grate Open<br>Overflow Grate 1<br>0.1<br>0.1<br>0.20<br>0.20<br>1.8<br>14.2<br>1.8<br>1.0<br>Overflow Grate 1<br>0.1<br>N/A<br>65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Weir Slope Length =<br>100-yr Orifice Area =<br>en Area w/o Debris =<br>ben Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Centroid =<br>rictor Plate on Pipe =<br><b>Calcula</b><br>Design Flow Depth=<br>t Top of Freeboard =<br>t Top of Freeboard =<br>1.111<br>0.66<br>6.0<br>18.8<br>6.3<br>1.1<br>Overflow Grate 1<br>0.4<br>N/A<br>62                        | 4.12<br>24.85<br>17.32<br>8.66<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>0.70<br>0.36<br>1.40<br>rted Parameters for S<br>0.42<br>7.12<br>0.36<br>0.42<br>7.12<br>0.36<br>0.42<br>7.12<br>0.36<br>0.91<br>8.3<br>22.0<br>7.5<br>0.91<br>0.4<br>N/A<br>61                                              | N/A           N/A           N/A           N/A           N/A           Flow Restriction Plat           Not Selected           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           100 Year           2.52           1.560           1.23           11.2           26.3           7.9           0.7           Outlet Plate 1           0.4           N/A           59                                                                                                                                                                                                                                                                                                                 | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                  |







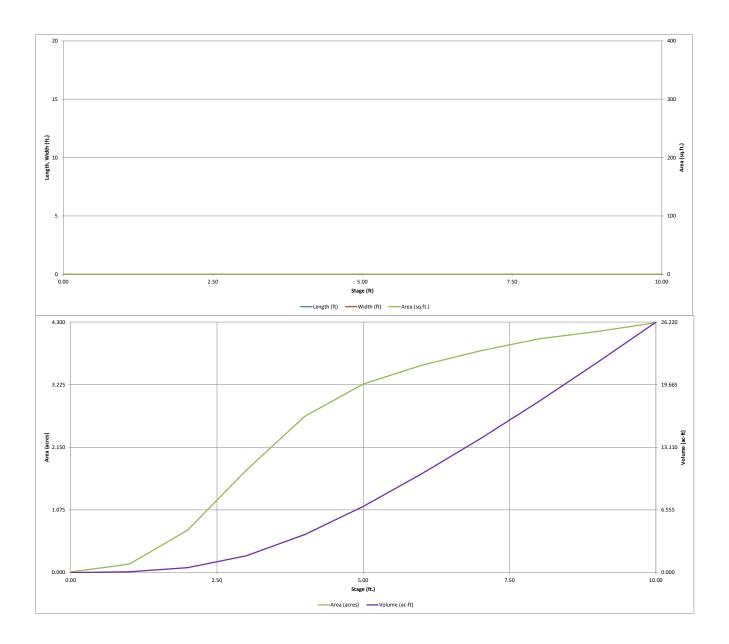


Figure 13-12d. Riprap Types for Emergency Spillway Protection


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

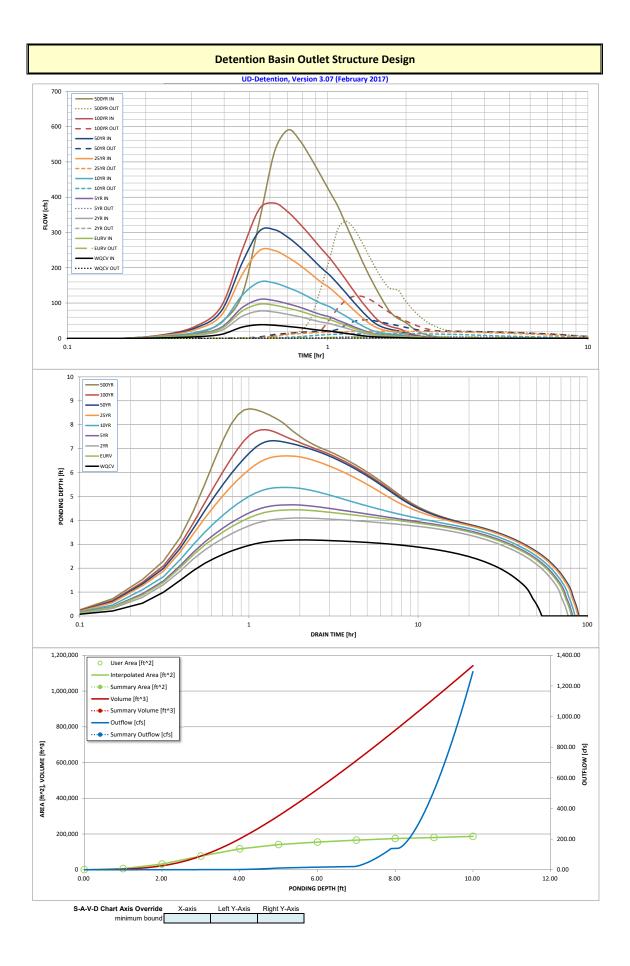
### Bradley Road Ditch Capacity Combined Bradley Runoff and NE Pond Discharge

| User-defined     |           | Highlighted         |         |
|------------------|-----------|---------------------|---------|
| Invert Elev (ft) | = 5877.52 | Depth (ft)          | = 0.45  |
| Slope (%)        | = 3.00    | Q (cfs)             | = 15.30 |
| N-Value          | = 0.035   | Area (sqft)         | = 5.04  |
|                  |           | Velocity (ft/s)     | = 3.03  |
| Calculations     |           | Wetted Perim (ft)   | = 18.31 |
| Compute by:      | Known Q   | Crit Depth, Yc (ft) | = 0.46  |
| Known Q (cfs)    | = 15.30   | Top Width (ft)      | = 18.27 |
|                  |           | EGL (ft)            | = 0.59  |

(Sta, El, n)-(Sta, El, n)... ( 0.00, 5880.00)-(13.90, 5877.77, 0.035)-(18.33, 5877.52, 0.035)-(25.67, 5877.68, 0.035)-(39.80, 5878.46, 0.035)-(45.35, 5880.00, 0.035)







|                                                                                               |                 |                        | DETE                         | NTION B      | ASIN STAGE-S                   | TORAG         | TABLE                  | BUILDEF        | ł             |                |                         |                |                    |                                              |
|-----------------------------------------------------------------------------------------------|-----------------|------------------------|------------------------------|--------------|--------------------------------|---------------|------------------------|----------------|---------------|----------------|-------------------------|----------------|--------------------|----------------------------------------------|
|                                                                                               |                 |                        |                              | UD-D         | etention, Version 3            | 3.07 (Febru   | iary 2017)             |                |               |                |                         |                |                    |                                              |
|                                                                                               | Trails at Asp   |                        | an Creak: Ea                 | at Dand(laga | ted in Sub-basin M) U          | ndated to in  | aluda davala           |                | ing 4 (Intern | -1 50)         |                         |                |                    |                                              |
| ZONE 3                                                                                        |                 | a Jinny Can            | ip Creek: Ea                 | st Pond(loca | ted in Sub-basin M) O          | puated to in  | ciude deveic           | pment of Fi    | ing 4 (intern | ai F6)         |                         |                |                    |                                              |
|                                                                                               |                 | T                      |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| VOLUMET EURY WOCV                                                                             |                 |                        |                              |              |                                |               | 1                      |                |               |                |                         |                |                    |                                              |
|                                                                                               | 1 AND 2         | 0RIFICE                | lA<br>E                      |              | Depth Increment =              | 1             | ft<br>Optional         |                |               |                | Optional                |                | 1                  | <b></b>                                      |
| PERMANENT ORIFIC<br>POOL Example Zone                                                         |                 | on (Retentio           | on Pond)                     |              | Stage - Storage<br>Description | Stage<br>(ft) | Override<br>Stage (ft) | Length<br>(ft) | Width<br>(ft) | Area<br>(ft^2) | Override<br>Area (ft^2) | Area<br>(acre) | Volume<br>(ft^3)   | Volume<br>(ac-ft)                            |
| Required Volume Calculation                                                                   |                 | _                      |                              |              | Top of Micropool               |               | 0.00                   |                | -             |                | 443                     | 0.010          | (11.07             | (do it)                                      |
| Selected BMP Type =                                                                           | EDB             |                        |                              |              | 5817                           |               | 1.00                   |                |               |                | 6,211                   | 0.143          | 3,265              | 0.075                                        |
| Watershed Area =                                                                              | 162.88<br>3,742 | acres<br>ft            |                              |              | 5818<br>5819                   |               | 2.00                   |                |               |                | 31,782<br>76,551        | 0.730          | 22,007<br>76,490   | 0.505                                        |
| Watershed Length =<br>Watershed Slope =                                                       | 0.030           | π<br>ft/ft             |                              |              | 5819                           |               | 4.00                   |                | -             |                | 116,770                 | 2.681          | 173,150            | 1.756<br>3.975                               |
| Watershed Imperviousness =                                                                    | 34.00%          | percent                |                              |              | 5821                           |               | 5.00                   |                |               |                | 141,034                 | 3.238          | 302,052            | 6.934                                        |
| Percentage Hydrologic Soil Group A =                                                          | 0.0%            | percent                |                              |              | 5822                           |               | 6.00                   |                |               |                | 154,951                 | 3.557          | 450,045            | 10.332                                       |
| Percentage Hydrologic Soil Group B =<br>Percentage Hydrologic Soil Groups C/D =               | 87.0%<br>13.0%  | percent<br>percent     |                              |              | 5823<br>5824                   |               | 7.00                   |                | -             |                | 165,754<br>174,708      | 3.805<br>4.011 | 610,397<br>780,628 | 14.013<br>17.921                             |
| Desired WQCV Drain Time =                                                                     | 40.0            | hours                  |                              |              | 5825                           |               | 9.00                   |                |               |                | 180,233                 | 4.138          | 958,098            | 21.995                                       |
| Location for 1-hr Rainfall Depths =                                                           |                 | -                      |                              |              | 5826                           |               | 10.00                  |                |               |                | 186,799                 | 4.288          | 1,141,614          | 26.208                                       |
| Water Quality Capture Volume (WQCV) =<br>Excess Urban Runoff Volume (EURV) =                  | 2.218<br>5.654  | acre-feet<br>acre-feet | Optional Us<br>1-hr Precipit |              |                                |               |                        |                | -             | -              |                         |                |                    |                                              |
| 2-yr Runoff Volume (P1 = 1.19 in.) =                                                          | 4.485           | acre-feet              | 1.19                         | inches       |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| 5-yr Runoff Volume (P1 = 1.5 in.) =                                                           | 6.442           | acre-feet              | 1.50                         | inches       |                                |               |                        |                |               |                |                         |                |                    |                                              |
| 10-yr Runoff Volume (P1 = 1.75 in.) =                                                         | 9.434<br>14.949 | acre-feet              | 1.75<br>2.00                 | inches       |                                |               |                        |                |               |                |                         |                |                    |                                              |
| 25-yr Runoff Volume (P1 = 2 in.) =<br>50-yr Runoff Volume (P1 = 2.25 in.) =                   | 18.644          | acre-feet<br>acre-feet | 2.00                         | inches       |                                |               |                        |                | -             | -              |                         |                |                    |                                              |
| 100-yr Runoff Volume (P1 = 2.52 in.) =                                                        | 23.459          | acre-feet              | 2.52                         | inches       |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| 500-yr Runoff Volume (P1 = 3.55 in.) =                                                        | 37.392          | acre-feet              | 3.55                         | inches       |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Approximate 2-yr Detention Volume =<br>Approximate 5-yr Detention Volume =                    | 4.191<br>6.051  | acre-feet<br>acre-feet |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Approximate 10-yr Detention Volume =                                                          | 8.345           | acre-feet              |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Approximate 25-yr Detention Volume =                                                          | 9.486           | acre-feet              |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Approximate 50-yr Detention Volume =<br>Approximate 100-yr Detention Volume =                 | 9.969<br>11.676 | acre-feet<br>acre-feet |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| · +                                                                                           |                 | ]                      |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Stage-Storage Calculation                                                                     |                 | -                      |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Zone 1 Volume (WQCV) =<br>Zone 2 Volume (EURV - Zone 1) =                                     | 2.218<br>3.437  | acre-feet              |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Zone 3 Volume (100-year - Zones 1 & 2) =                                                      | 6.022           | acre-feet<br>acre-feet |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Total Detention Basin Volume =                                                                | 11.676          | acre-feet              |                              |              |                                |               |                        |                | -             | -              |                         |                |                    |                                              |
| Initial Surcharge Volume (ISV) =<br>Initial Surcharge Depth (ISD) =                           | user<br>user    | ft^3                   |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Total Available Detention Depth (H <sub>total</sub> ) =                                       | user            | ft<br>ft               |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Depth of Trickle Channel (H <sub>TC</sub> ) =                                                 | user            | ft                     |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Slope of Trickle Channel ( $S_{TC}$ ) =<br>Slopes of Main Basin Sides ( $S_{main}$ ) =        | user            | ft/ft                  |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Slopes of Main Basin Sides ( $S_{main}$ ) =<br>Basin Length-to-Width Ratio ( $R_{L/W}$ ) =    | user<br>user    | H:V                    |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
|                                                                                               |                 | -                      |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Initial Surcharge Area (A <sub>ISV</sub> ) =                                                  | user            | ft^2                   |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Surcharge Volume Length (L <sub>ISV</sub> ) =<br>Surcharge Volume Width (W <sub>ISV</sub> ) = | user<br>user    | ft                     |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Depth of Basin Floor (H <sub>FLOOR</sub> ) =                                                  | user            | ft ft                  |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Length of Basin Floor ( $L_{FLOOR}$ ) =                                                       | user            | ft                     |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Width of Basin Floor (W <sub>FLOOR</sub> ) =<br>Area of Basin Floor (A <sub>FLOOR</sub> ) =   | user            | ft                     |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Volume of Basin Floor (V <sub>FLOOR</sub> ) =                                                 | user            | ft^2<br>ft^3           |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Depth of Main Basin (H <sub>MAIN</sub> ) =                                                    | user            | ft                     |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Length of Main Basin (L <sub>MAIN</sub> ) =<br>Width of Main Basin (W <sub>MAIN</sub> ) =     | user            | ft                     |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
| Width of Main Basin (W <sub>MAIN</sub> ) =<br>Area of Main Basin (A <sub>MAIN</sub> ) =       | user<br>user    | ft<br>ft^2             |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
| Volume of Main Basin (V <sub>MAIN</sub> ) =                                                   | user            | ft^3                   |                              |              |                                |               |                        |                |               | -              |                         |                |                    |                                              |
| Calculated Total Basin Volume ( $V_{total}$ ) =                                               | user            | acre-feet              |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
|                                                                                               |                 |                        |                              |              |                                |               |                        |                |               |                |                         |                |                    |                                              |
|                                                                                               |                 |                        |                              |              |                                |               |                        |                | -             | -              |                         |                |                    | <u> </u>                                     |
|                                                                                               |                 |                        |                              |              |                                |               |                        |                | -             |                |                         |                |                    |                                              |
|                                                                                               |                 |                        |                              |              |                                |               |                        |                | -             |                |                         | I              | 1                  | <u>і                                    </u> |

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)



|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     | Dete                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ntion Basin (                                                                                                                                                                                                                                                                                    | Outlet Struct                                                                                                                                                                                              | ure Design                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  | rsion 3.07 (Februar                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Trails at Aspen Ridg<br>West Fork of Jimmy                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ment)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| ZONE 3<br>ZONE 2<br>ZONE 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| 100-YR EURY Wack                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone 1 (WQCV)                                                                                                                                                                                                                                                                                    | Stage (ft)<br>3.25                                                                                                                                                                                         | Zone Volume (ac-ft<br>2.218                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Outlet Type Orifice Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 100-YEAF<br>ORIFICE                                                                                                                                                                                                                                                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 2 (EURV)                                                                                                                                                                                                                                                                                    | 4.60                                                                                                                                                                                                       | 3.437                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rectangular Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| PERMANENT ORIFICES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 'one 3 (100-year)                                                                                                                                                                                                                                                                                | 6.38                                                                                                                                                                                                       | 6.022                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Weir&Pipe (Restrict)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| Example Zone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Configuration (Re                                                                                                                                                                                                                                                                   | tention Pond)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            | 11.676                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Total                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| Jser Input: Orifice at Underdrain Outlet (typically u                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>6</b> 10 - 11                                                                                                                                                                                                                                                                                 | <b>c</b>                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ed Parameters for Un                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| Underdrain Orifice Invert Depth =<br>Underdrain Orifice Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N/A<br>N/A                                                                                                                                                                                                                                                                          | ft (distance below th                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e filtration media sur                                                                                                                                                                                                                                                                           | тасе)                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | erdrain Orifice Area =<br>ain Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | N/A<br>N/A                                                                                                                                                                                                                                                                                                   | ft²<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              | ]                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                  |
| Jser Input: Orifice Plate with one or more orifices                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | lated Parameters for                                                                                                                                                                                                                                                                                         | Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                  |
| = Invert of Lowest Orifice<br>= Depth at top of Zone using Orifice Plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | oottom at Stage = 0 ft<br>oottom at Stage = 0 ft                                                                                                                                                                                                                                                 |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | ECK CELLS AB84:BE84<br>Elliptical Half-Width =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | N/A<br>N/A                                                                                                                                                                                                                                                                                                   | ft <sup>2</sup><br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                  |
| Orifice Plate: Orifice Vertical Spacing =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | N/A                                                                                                                                                                                                                                                                                 | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ottom at Stage - o it                                                                                                                                                                                                                                                                            | ,                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | iptical Slot Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                  |
| Orifice Plate: Orifice Area per Row =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N/A                                                                                                                                                                                                                                                                                 | inches                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Elliptical Slot Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | N/A                                                                                                                                                                                                                                                                                                          | ft²                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| Jser Input: Stage and Total Area of Each Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Row (numbered from                                                                                                                                                                                                                                                                  | lowest to highest)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Row 1 (required)                                                                                                                                                                                                                                                                    | Row 2 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Row 3 (optional)                                                                                                                                                                                                                                                                                 | Row 4 (optional)                                                                                                                                                                                           | Row 5 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Row 6 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Row 7 (optional)                                                                                                                                                                                                                                                                                             | Row 8 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ]                                                                                                                                                                                                                |
| Stage of Orifice Centroid (ft)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.00                                                                                                                                                                                                                                                                                | 0.70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.40                                                                                                                                                                                                                                                                                             | 2.10                                                                                                                                                                                                       | 2.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4.10                                                                                                                                                                                                                                                                                | 4.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.20                                                                                                                                                                                                                                                                                             | 4.20                                                                                                                                                                                                       | 4.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | J                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Row 9 (optional)                                                                                                                                                                                                                                                                    | Row 10 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Row 11 (optional)                                                                                                                                                                                                                                                                                | Row 12 (optional)                                                                                                                                                                                          | Row 13 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Row 14 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Row 15 (optional)                                                                                                                                                                                                                                                                                            | Row 16 (optional)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ]                                                                                                                                                                                                                |
| Stage of Orifice Centroid (ft)<br>Orifice Area (sq. inches)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | -                                                                                                                                                                                                                |
| Office Area (sq. incres)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                |
| User Input: Vertical Orifice (Cir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameters for Vert                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 2 Rectangular                                                                                                                                                                                                                                                                  | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <i>ft (</i>                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 2 Rectangular                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | c.2                                                                                                                                                                                                              |
| Invert of Vertical Orifice =<br>= Depth at top of Zone using Vertical Orifice                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.73<br>6.95                                                                                                                                                                                                                                                                        | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ft (relative to basin b<br>ft (relative to basin b                                                                                                                                                                                                                                               | ottom at Stage = 0 fi<br>ottom at Stage = 0 fi                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Vertical Orifice Area =<br>ical Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2.50<br>0.63                                                                                                                                                                                                                                                                                                 | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ft <sup>2</sup><br>feet                                                                                                                                                                                          |
| Vertical Orifice Height =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 15.00                                                                                                                                                                                                                                                                               | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | inches                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            | .,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| Vertical Orifice Width =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 24.00                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | inches                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                  |
| User Input: Overflow Weir (Drenbey) and (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frate (Elat or Slaned)                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calculator                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Baramotors for Ovo                                                                                                                                                                                                                                                                                           | rflow Woir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                  |
| User Input: Overflow Weir (Dropbox) and O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Grate (Flat or Sloped)<br>Zone 3 Weir                                                                                                                                                                                                                                               | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calculated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Parameters for Ove<br>Zone 3 Weir                                                                                                                                                                                                                                                                            | rflow Weir<br>Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                                                                                                                                                                |
| Overflow Weir Front Edge Height, Ho =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Zone 3 Weir<br>6.94                                                                                                                                                                                                                                                                 | N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ft (relative to basin bot                                                                                                                                                                                                                                                                        | ttom at Stage = 0 ft)                                                                                                                                                                                      | Height of G                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>Calculated</b><br>rate Upper Edge, H <sub>t</sub> =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | <b>Zone 3 Weir</b><br>6.94                                                                                                                                                                                                                                                                                   | Not Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet                                                                                                                                                                                                             |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 Weir<br>6.94<br>14.50                                                                                                                                                                                                                                                        | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                            | Over Flov                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir<br>6.94<br>9.50                                                                                                                                                                                                                                                                                  | Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet                                                                                                                                                                                                             |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone 3 Weir<br>6.94<br>14.50<br>0.00                                                                                                                                                                                                                                                | N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet<br>H:V (enter zero for fl                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                            | Over Flov<br>Grate Open Area /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>' 100-yr Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>6.94<br>9.50<br>9.23                                                                                                                                                                                                                                                                          | Not Selected<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet<br>should be <u>&gt;</u> 4                                                                                                                                                                                  |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 Weir<br>6.94<br>14.50                                                                                                                                                                                                                                                        | N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet                                                                                                                                                                                                                                                                                             | at grate)                                                                                                                                                                                                  | Over Flov<br>Grate Open Area /<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir<br>6.94<br>9.50                                                                                                                                                                                                                                                                                  | Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | feet                                                                                                                                                                                                             |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50                                                                                                                                                                                                                                        | N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet<br>H:V (enter zero for fl<br>feet                                                                                                                                                                                                                                                           | at grate)                                                                                                                                                                                                  | Over Flov<br>Grate Open Area /<br>Overflow Grate Op                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>' 100-yr Orifice Area =<br>ven Area w/o Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31                                                                                                                                                                                                                                                                | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet<br>should be <u>&gt;</u> 4<br>ft²                                                                                                                                                                           |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area %<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%                                                                                                                                                                                                                              | at grate)                                                                                                                                                                                                  | Over Flov<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>' 100-yr Orifice Area =<br>een Area w/o Debris =<br>upen Area w/ Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82                                                                                                                                                                                                                                                       | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                  |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area %<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%                                                                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%                                                                                                                                                                                                                              | at grate)                                                                                                                                                                                                  | Over Flov<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>' 100-yr Orifice Area =<br>ven Area w/o Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82                                                                                                                                                                                                                                                       | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\ge 4$<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                  |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area %<br>Debris Clogging % =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict                                                                                                                                                                                             | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)                                                                                                                                                                                                            | at grate)                                                                                                                                                                                                  | Over Flov<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>' 100-yr Orifice Area =<br>ben Area w/o Debris =<br>upen Area w/ Debris =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/                                                                                                                                                                                                                              | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                 |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope<br>Horiz. Length of Weir Sldes<br>Overflow Grate Open Area %<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe<br>Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrictor<br>0.50<br>48.00                                                                                                                                                                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>tor Plate, or Rectany<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches                                                                                                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f                                                                                                                                                          | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>ene Area w/o Debris =<br>pen Area w/ Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80                                                                                                                                                                                        | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                                               |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length<br>Overflow Weir Slope<br>Horiz. Length of Weir Sides<br>Overflow Grate Open Area %<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrictor<br>0.50                                                                                                                                                                                   | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>tor Plate, or Rectany<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi                                                                                                                                                                                 | at grate)<br>otal area<br>n bottom at Stage = 0 f                                                                                                                                                          | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rate Upper Edge, H, =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>ene Area w/o Debris =<br>upen Area w/ Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19                                                                                                                                                                                                | Not Selected<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Flow Restriction Plat<br>Not Selected<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup>                                                                                                                        |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope<br>Horiz. Length of Weir Sldes<br>Overflow Grate Open Area %<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe<br>Outlet Pipe Diameter =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir           6.94           14.50           0.00           9.50           75%           45%           ircular Orifice, Restri           Zone 3 Restrictor           0.50           48.00           40.00                                                                   | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>tor Plate, or Rectany<br>Not Selected<br>N/A<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches                                                                                                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f                                                                                                                                                          | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>i 100-yr Orifice Area =<br>een Area w/o Debris =<br>ppen Area w/ Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80                                                                                                                                                                                        | Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                                               |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Front Edge Length =<br>Horiz. Length of Weir Sides<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08                                                                                                                                | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Selected<br>N/A<br>N/A<br>Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches                                                                                                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-t                                                                                                                                                | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Overflow Grate O<br>tt)<br>Our<br>Central Angle of Res<br>Spillwa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/ 100-yr Orifice Area =<br>upen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br>Calcula<br>y Design Flow Depth=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02                                                                                                                                               | Not Selected           N/A                                                                                                                                                                                                                                                                                                                                               | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                                               |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00                                                                                                   | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>tor Plate, or Rectan<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                             | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-t                                                                                                                                                | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C<br>Overflow Grate C<br>tt)<br>Our<br>Central Angle of Res<br>Spiillwa<br>Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10                                                                                                                                      | Not Selected           N/A           Spillway           feet           feet                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                                               |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Stope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00                                                                                           | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Selected<br>N/A<br>N/A<br>Selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                             | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-t                                                                                                                                                | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C<br>Overflow Grate C<br>tt)<br>Our<br>Central Angle of Res<br>Spiillwa<br>Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/ 100-yr Orifice Area =<br>upen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br>Calcula<br>y Design Flow Depth=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02                                                                                                                                               | Not Selected           N/A                                                                                                                                                                                                                                                                                                                                               | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                                               |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Iser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert stage<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00                                                                                                      | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectany<br>N/A<br>N/A<br>N/A<br>tf (relative to basin b<br>feet<br>H:V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                             | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-t                                                                                                                                                | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C<br>Overflow Grate C<br>tt)<br>Our<br>Central Angle of Res<br>Spiillwa<br>Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10                                                                                                                                      | Not Selected           N/A           Spillway           feet           feet                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>feet                                                                                                                |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Stope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00                                                                                   | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectan<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>inches<br>oottom at Stage = 0 ft                                                                                                                         | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-1                                                                                                                                                | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C<br>(t)<br>Central Angle of Res<br>Spillwa<br>Stage<br>Basin Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>/ 100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>1.02<br>1.01<br>4.29                                                                                                                       | Not Selected N/A N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A N/A N/A N/A N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>feet<br>radians                                                                                                     |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert stage<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00                                                                                   | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Ctor Plate, or Rectany<br>N/A<br>N/A<br>N/A<br>tf (relative to basin b<br>feet<br>H:V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches                                                                                                                                                             | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-t                                                                                                                                                | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C<br>Overflow Grate C<br>tt)<br>Our<br>Central Angle of Res<br>Spiillwa<br>Stage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10                                                                                                                                      | Not Selected           N/A           Spillway           feet           feet                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>should be $\geq 4$<br>ft <sup>2</sup><br>ft <sup>2</sup><br>te<br>ft <sup>2</sup><br>fteet                                                                                                               |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert stage<br>Spillway Invert Stage<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Ore-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (are-ft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00                                                                                   | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>ctor Plate, or Rectany<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet<br>EURV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft                                                                                                                                   | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-1<br>)<br>5 Year                                                                                                                                 | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate C<br>Overflow Grate C<br>tt)<br>Our<br>Central Angle of Resi<br>Spillwa<br>Stage<br>Basin Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rate Upper Edge, H, =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>pen Area w/O Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br>Calcula<br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>ated Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year                                                                                                                   | Not Selected N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                                   |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Restrictor Plate Height Abore Pipe Invert =<br>Calculated Ruonff Volume (accreft) =<br>OPTIONAL Override Runoff Volume (accreft) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>WQCV<br>0.53<br>2.218                                                                             | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Construction<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>5.654                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>H:V (enter zero for fl<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br><u>2 Year</u><br><u>1.19</u><br><u>4.485</u>                                                                                   | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f<br>)<br><u>5 Year<br/>1.50</u><br><u>6.442</u>                                                                                                 | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>(0)<br>(t)<br>Central Angle of Rest<br>Spillwa<br>Stage<br>Basin Area<br>10 Year<br>1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rate Upper Edge, H, =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =<br>25 Year<br>2.00<br>14.949                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>stor Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>18.644                                                                                                   | Not Selected           N/A           Spillway           feet           feet           acres           100 Year           2.52           23.459                                                                                                                                                                                                                                         | feet<br>should be $\geq$ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>500 Year<br>3.55<br>37.392                                                          |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert stage<br>Spillway Invert Stage<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>Onen-tour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>OPTIONAL. Override Runoff Volume (acre-ft) =<br>OPTIONAL. Override Runoff Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrik<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>1.00<br>1.00<br>2.218<br>2.219<br>0.00                                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Construction<br>N/A<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>5.654<br>5.657<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>4.485<br>4.489<br>0.01                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f<br>)<br>5 Year<br>1.50<br>6.442<br>6.448<br>0.04                                                                                               | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Nerflow Grate O<br>Nerflow Grate O<br>Nerflow Grate O<br>Spillwa<br>Stage<br>Basin Area<br>10 Year<br>1.75<br>9.434<br>9.441<br>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/100-yr Orifice Area =<br>upen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br>Calcula<br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =<br>25 Year<br>2.00<br>14.949<br>14.958<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>ted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>18.644<br>18.652<br>1.01                                                                                | Not Selected           N/A           Spillway           feet           feet           acres           100 Year           2.52           23.459           23.475           1.35                                                                                                                                                                             | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>3.55<br>37.392<br>3.7.424<br>2.24                                                                           |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>One-Hour Rainfall Depth (in)<br>Calculated Runoff Volume (acreft) =<br>OPTIONAL Override Runoff Volume (acreft) =<br>Inflow Hydrograph Volume (acreft) =<br>Predevelopment Unit Peak Flow, q. (cfs/acre) =<br>Predevelopment Peak Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>WQCV<br>0.53<br>2.218<br>2.219<br>0.00<br>0.0                                                       | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Constant of the second<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>1.07<br>5.654<br>5.657<br>0.00<br>0.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>4.485<br>4.489<br>0.01<br>2.2                                                                                | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f<br>)<br>5 Year<br>1.50<br>6.442<br>6.448<br>0.04<br>6.0                                                                                        | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Noverflow Grate O<br>Nove | rate Upper Edge, H <sub>t</sub> =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =<br>25 Year<br>2.00<br>14.949<br>14.958<br>0.73<br>119.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>So routlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>18.644<br>18.652<br>1.01<br>164.1                                                                         | Not Selected           N/A           Spillway           feet           acres           100 Year           2.52           2.3.459           1.35           2.19.2     | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert stage<br>Spillway Invert Stage<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>Onen-tour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>OPTIONAL. Override Runoff Volume (acre-ft) =<br>OPTIONAL. Override Runoff Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrik<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>1.00<br>1.00<br>2.218<br>2.219<br>0.00                                          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Construction<br>N/A<br>N/A<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>5.654<br>5.657<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>4.485<br>4.489<br>0.01                                                                                       | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f<br>)<br>5 Year<br>1.50<br>6.442<br>6.448<br>0.04                                                                                               | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Nerflow Grate O<br>Nerflow Grate O<br>Nerflow Grate O<br>Spillwa<br>Stage<br>Basin Area<br>10 Year<br>1.75<br>9.434<br>9.441<br>0.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/100-yr Orifice Area =<br>upen Area w/o Debris =<br>Calculated Parameter<br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br>Calcula<br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =<br>25 Year<br>2.00<br>14.949<br>14.958<br>0.73                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>ted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>18.644<br>18.652<br>1.01                                                                                | Not Selected           N/A           Spillway           feet           feet           acres           100 Year           2.52           23.459           23.475           1.35                                                                                                                                                                             | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>3.55<br>37.392<br>3.7.424<br>2.24                                                                           |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spi | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrii<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>0.53<br>2.218<br>2.218<br>2.219<br>0.00<br>0.0<br>38.7<br>0.9<br>N/A            | N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           Not Selected           N/A           N/A           N/A           N/A           N/A           It (relative to basin b<br>feet           H:V           feet           1.07           5.654           5.657           0.00           0.0           97.1           4.6           N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basis<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>1.19<br>4.485<br>4.489<br>0.01<br>2.2<br>77.4<br>2.2<br>N/A                                                 | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f<br>)<br>5 Year<br>1.50<br>6.442<br>6.442<br>6.448<br>0.04<br>6.0<br>1110.3<br>6.7<br>1.1                                                       | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Noverflow Grate O<br>Nove | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =<br>at Top of Freeboard =<br>14.949<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>sfor Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>18.644<br>18.652<br>1.01<br>164.1<br>307.9<br>52.5<br>0.3                                                | Not Selected           N/A           Spillway           feet           feet           acres           23.475           1.35           219.2           383.3           120.0           0.5                                                                                                                                                    | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Restrictur Plate Height Moure (acreft) =<br>Calculated Runoff Volume (acreft) =<br>Inflow Hydrograph Volume (acreft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre)<br>Predevelopment Unit Peak Inflow Q (cfs) =<br>Peak Unflow to Predevelopment Q =<br>Ratio Peak Quitow Q (cfs) =<br>Ratio Peak Quitow Q (cfs) =<br>Ratio Peak Quitow Q (cfs) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict<br>Cone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>WQCV<br>0.53<br>2.218<br>2.219<br>0.00<br>0.0<br>38.7<br>0.9<br>N/A<br>Plate   | N/A           Selected           N/A           N/A           Selected           N/A           Selected           EURV           1.07           5.654           Selected           0.00           97.1           4.6           N/A           Vertical Orifice 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>4.485<br>4.489<br>0.01<br>2.2<br>77.4<br>2.2<br>N/A<br>Vertical Orifice 1                                    | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-1<br>)<br>5 Year<br>1.50<br>6.442<br>6.442<br>6.448<br>0.04<br>6.0<br>1110.3<br>6.7<br>1.1<br>Vertical Orifice 1                                 | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Noverflow Grate O<br>Overflow Grate O<br>Noverflow Grate O<br>Spillwa<br>Stage<br>Basin Area<br>Basin Area<br>10 Year<br>1.75<br>9.434<br>9.441<br>0.24<br>38.9<br>159.8<br>13.6<br>0.3<br>Vertical Orifice 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | rate Upper Edge, H, =<br>v Weir Slope Length =<br>'100-yr Orifice Area =<br>upen Area w/ Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =<br>at Top of Freeboard =<br><u>25 Year</u><br>2.00<br>14.949<br><u>14.958</u><br>0.73<br>1119.5<br>248.9<br>20.0<br>0.2<br>Vertical Orifice 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>So outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>18.644<br>18.652<br>1.01<br>164.1<br>307.9<br>52.5<br>0.3<br>Overflow Grate 1                              | Not Selected           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           Not Selected           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           N/A           Spillway           feet           feet           323.455           1.35           219.2           383.3           120.0           0.5           Overflow Grate 1                                                                                                                                                                                                                   | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Slope =<br>Horiz. Length of Weir Sides =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>Jser Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage<br>Spillway Invert Stage<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway Enter Surface =<br>Reeboard above Max Water Surface =<br>Reeboard above Max Water Surface =<br>Cone-Hour Rainfall Depth (in)<br>Calculated Runoff Volume (acre-ft) =<br>OPTIONAL. Override Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q. (cfs/acre) =<br>Peak Inflow Q. (cfs) =<br>Peak Untflow Q. (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 2 (fps) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>WQCV<br>0.53<br>2.218<br>2.219<br>0.00<br>0.00<br>0.0<br>38.7<br>0.9<br>N/A<br>Plate<br>N/A<br>N/A          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Constant of the constant of the co | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>4.485<br>0.01<br>2.2<br>77.4<br>2.2<br>N/A<br>Vertical Orifice 1<br>N/A                                      | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f<br>)<br>5 Year<br>1.50<br>6.442<br>6.442<br>6.448<br>0.04<br>6.0<br>110.3<br>6.7<br>1.1<br>Vertical Orifice 1<br>N/A<br>N/A                    | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Overflow Grate O<br>Norther State<br>Basin Area<br>10 Year<br>1.75<br>9.434<br>9.441<br>0.24<br>38.9<br>159.8<br>13.6<br>0.3<br>Vertical Orifice 1<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =<br>at Top of Freeboard =<br>14.958<br>0.73<br>119.5<br>248.9<br>20.0<br>0.2<br>Vertical Orifice 1<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>1.8.644<br>18.652<br>1.01<br>164.1<br>307.9<br>52.5<br>0.3<br>Overflow Grate 1<br>0.3<br>N/A            | Not Selected           N/A           Spillway           feet           feet           acres           23.475           1.35           219.2           383.3           120.0           0.5           Overflow Grate 1           0.9           N/A                                                                                                                                                                                 | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>37.424<br>2.24<br>364.7<br>590.6<br>331.7<br>0.9<br>Spillway<br>1.2<br>N/A                                  |
| Overflow Weir Front Edge Height, Ho<br>Overflow Weir Front Edge Length =<br>Overflow Weir Front Edge Length =<br>Horiz. Length of Weir Sides =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stages<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>C<br>Routed Hydrograph Results<br>Design Storm Return Period =<br>One-Hour Rainfall Depth (in) =<br>Calculated Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Flow, q (cfs/acre)<br>Peak Inflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Peak Outflow Q (cfs) =<br>Ratio Peak Cutflow to Predevelopment Paw<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Grate 2 (fps) =<br>Time to Drain 97% of Inflow Volume (hours) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restrict<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>.2218<br>2.218<br>2.218<br>0.00<br>0.0<br>3.8.7<br>0.9<br>N/A<br>Plate<br>N/A<br>Plate<br>N/A<br>46 | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Construction<br>N/A<br>N/A<br>ft (relative to basin b<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>H:V<br>feet<br>EURV<br>1.07<br>5.657<br>0.00<br>0.0<br>97.1<br>4.6<br>N/A<br>Vertical Orifice 1<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>4.485<br>0.01<br>2.2<br>77.4<br>2.2<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>66                         | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f<br>)<br>5 Year<br>1.50<br>6.442<br>6.448<br>0.04<br>6.0<br>110.3<br>6.7<br>1.1<br>Vertical Orifice 1<br>N/A<br>68                              | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Number<br>Spillwa<br>Stage<br>Basin Area<br>10 Year<br>1.75<br>9.434<br>0.24<br>38.9<br>159.8<br>13.6<br>0.3<br>Vertical Orifice 1<br>N/A<br>68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/ 100-yr Orifice Area =<br>upen Area w/o Debris =<br>/ 200-yr Orifice Area =<br>/ 200-yr Orifice Centroid =<br>trictor Plate on Pipe =<br>/ 200-<br>/ 2 | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>So outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>Ated Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>18.644<br>1.64.1<br>307.9<br>5.2.5<br>0.3<br>Overflow Grate 1<br>0.3<br>N/A<br>64                          | Not Selected           N/A           Spillway           feet           feet           acres           100 Year           2.52           2.3.459           2.3.459           2.3.459           2.3.459           2.1.35           2.19.2           383.3           120.0           0.5           Overflow Grate 1           0.9           N/A           61                                                                        | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians                                                                                                                |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Front Edge Length =<br>Norflow Weir Slope =<br>Horiz. Length of Weir Slope =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Invert Stage=<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Created Hydrograph Volume (acre-ft) =<br>Predevelopment Verlaw Hording (cfs) =<br>Peak Unflow Q (cfs) =<br>Peak Nufflow Q (cfs) =<br>Peak Nufflow Q (cfs) =<br>Peak Nufflow Q (cfs) =<br>Peak Nufflow Q (cfs) =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>gular or Trapezoidal)<br>8.08<br>136.00<br>4.00<br>1.00<br>WQCV<br>0.53<br>2.218<br>2.219<br>0.00<br>0.00<br>0.0<br>38.7<br>0.9<br>N/A<br>Plate<br>N/A<br>N/A          | N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>N/A<br>Constant of the constant of the co | feet<br>H:V (enter zero for fi<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>4.485<br>0.01<br>2.2<br>77.4<br>2.2<br>N/A<br>Vertical Orifice 1<br>N/A                                      | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-f<br>)<br>5 Year<br>1.50<br>6.442<br>6.442<br>6.448<br>0.04<br>6.0<br>110.3<br>6.7<br>1.1<br>Vertical Orifice 1<br>N/A<br>N/A                    | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Overflow Grate O<br>Norther State<br>Basin Area<br>10 Year<br>1.75<br>9.434<br>9.441<br>0.24<br>38.9<br>159.8<br>13.6<br>0.3<br>Vertical Orifice 1<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/100-yr Orifice Area =<br>upen Area w/o Debris =<br><b>Calculated Parameter</b><br>Outlet Orifice Area =<br>tlet Orifice Centroid =<br>trictor Plate on Pipe =<br><b>Calcula</b><br>y Design Flow Depth=<br>at Top of Freeboard =<br>at Top of Freeboard =<br>at Top of Freeboard =<br>14.958<br>0.73<br>119.5<br>248.9<br>20.0<br>0.2<br>Vertical Orifice 1<br>N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>s for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>sted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>1.8.644<br>18.652<br>1.01<br>164.1<br>307.9<br>52.5<br>0.3<br>Overflow Grate 1<br>0.3<br>N/A            | Not Selected           N/A           Spillway           feet           feet           acres           23.475           1.35           219.2           383.3           120.0           0.5           Overflow Grate 1           0.9           N/A                                                                                                                                                                                 | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>3.55<br>37.392<br>37.424<br>2.24<br>364.7<br>590.6<br>33.17<br>0.9<br>Spillway<br>1.2<br>N/A                |
| Overflow Weir Front Edge Height, Ho =<br>Overflow Weir Front Edge Length =<br>Overflow Weir Front Edge Length =<br>Overflow Grate Open Area % =<br>Debris Clogging % =<br>User Input: Outlet Pipe w/ Flow Restriction Plate (C<br>Depth to Invert of Outlet Pipe =<br>Outlet Pipe Diameter =<br>Restrictor Plate Height Above Pipe Invert =<br>User Input: Emergency Spillway (Rectan<br>Spillway Crest Length =<br>Spillway Crest Length =<br>Spillway End Slopes =<br>Freeboard above Max Water Surface =<br>Calculated Runoff Volume (acre-ft) =<br>OPTIONAL Override Runoff Volume (acre-ft) =<br>Inflow Hydrograph Volume (acre-ft) =<br>Predevelopment Unit Peak Q (cfs) =<br>Predevelopment Q =<br>Ratio Peak Outflow to Predevelopment Q =<br>Structure Controlling Flow =<br>Max Velocity through Grate 1 (fps) =<br>Max Velocity through Crate 1 (fps) =<br>Time to Drain 99% of Inflow Volume (hours) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Zone 3 Weir<br>6.94<br>14.50<br>0.00<br>9.50<br>75%<br>45%<br>ircular Orifice, Restri<br>Zone 3 Restrictor<br>0.50<br>48.00<br>40.00<br>200<br>8.08<br>136.00<br>4.00<br>1.00<br>0.53<br>2.218<br>2.219<br>0.00<br>0.0<br>38.7<br>0.9<br>N/A<br>Plate<br>N/A<br>N/A<br>N/A<br>S0    | N/A           N/A           N/A           N/A           N/A           N/A           N/A           itor Plate, or Rectang           Not Selected           N/A           N/A           t(relative to basin b           feet           H:V           feet           5.657           0.00           97.1           4.6           N/A           Vertical Orifice 1           N/A           N/A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | feet<br>H:V (enter zero for fif<br>feet<br>%, grate open area/t<br>%<br>gular Orifice)<br>ft (distance below basi<br>inches<br>inches<br>bottom at Stage = 0 ft<br>2 Year<br>1.19<br>4.485<br>4.489<br>0.01<br>2.2<br>7.7.4<br>2.2<br>N/A<br>Vertical Orifice 1<br>N/A<br>N/A<br>N/A<br>66<br>71 | at grate)<br>otal area<br>n bottom at Stage = 0 f<br>Half-1<br>)<br>5 Year<br>1.50<br>6.442<br>6.442<br>6.448<br>0.04<br>6.0<br>110.3<br>6.7<br>1.1<br>Vertical Orifice 1<br>N/A<br>N/A<br>N/A<br>68<br>74 | Over Flow<br>Grate Open Area /<br>Overflow Grate Op<br>Overflow Grate O<br>Overflow Grate O<br>Overflow Grate O<br>Overflow Grate O<br>Spillwa<br>Stage<br>Basin Area<br>D<br>0.441<br>0.24<br>38.9<br>159.8<br>13.6<br>0.3<br>Vertical Orifice 1<br>N/A<br>N/A<br>N/A<br>68<br>75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | rate Upper Edge, H, =<br>v Weir Slope Length =<br>/100-yr Orifice Area =<br>lopen Area w/ Debris =<br>// Debris =                                                                                                                                                                                                                                                                                                                                         | Zone 3 Weir<br>6.94<br>9.50<br>9.23<br>103.31<br>56.82<br>rs for Outlet Pipe w/<br>Zone 3 Restrictor<br>11.19<br>1.80<br>2.30<br>ted Parameters for S<br>1.02<br>10.10<br>4.29<br>50 Year<br>2.25<br>18.644<br>18.652<br>1.01<br>164.1<br>307.9<br>52.5<br>0.3<br>Overflow Grate 1<br>0.3<br>N/A<br>64<br>75 | Not Selected           N/A           Selected           N/A           N/A           N/A           Selected           100 Year           2.52           23.459           23.475           1.35           219.2           383.3           120.0           0.5           Overflow Grate 1           0.9           N/A           61           74 | feet<br>should be ≥ 4<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>feet<br>radians<br>3.55<br>3.7.392<br>37.424<br>2.24<br>364.7<br>590.6<br>331.7<br>0.9<br>\$pillway<br>1.2<br>N/A<br>N/A<br>70 |



#### **Detention Basin Outlet Structure Design**

Outflow Hydrograph Workbook Filename:

|               | The user can o     | verride the calcu | lated inflow hyd | rographs from th | nis workbook wit | h inflow hydrogr | aphs developed   | in a separate pro | gram.            |                  |
|---------------|--------------------|-------------------|------------------|------------------|------------------|------------------|------------------|-------------------|------------------|------------------|
|               | SOURCE             | WORKBOOK          | WORKBOOK         | WORKBOOK         | WORKBOOK         | WORKBOOK         | WORKBOOK         | WORKBOOK          | WORKBOOK         | WORKBOOK         |
| Time Interval | TIME               | WQCV [cfs]        | EURV [cfs]       | 2 Year [cfs]     | 5 Year [cfs]     | 10 Year [cfs]    | 25 Year [cfs]    | 50 Year [cfs]     | 100 Year [cfs]   | 500 Year [cfs    |
| 4.69 min      | 0:00:00            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 0:04:41            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
| Hydrograph    | 0:09:23            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
| Constant      | 0:14:04            | 1.66              | 3.90             | 3.19             | 4.36             | 5.94             | 8.35             | 9.60              | 10.77            | 13.11            |
| 1.067         | 0:18:46            | 4.54              | 11.01            | 8.90             | 12.40            | 17.40            | 25.77            | 30.53             | 35.45            | 46.67            |
|               | 0:23:27            | 11.65             | 28.27            | 22.84            | 31.84            | 44.70            | 66.30            | 78.70             | 92.16            | 124.14           |
|               | 0:28:08            | 31.98             | 77.46            | 62.62            | 87.20            | 122.20           | 180.72           | 214.22            | 250.20           | 335.07           |
|               | 0:32:50            | 38.70             | 97.06            | 77.41            | 110.28           | 159.76           | 248.93           | 304.06            | 367.66           | 530.45           |
|               | 0:37:31            | 37.08             | 93.91            | 74.57            | 107.01           | 156.74           | 248.67           | 307.89            | 383.33           | 590.57           |
|               | 0:42:13            | 33.74             | 85.74            | 67.96            | 97.82            | 143.86           | 229.61           | 286.16            | 358.17           | 560.46           |
|               | 0:46:54<br>0:51:35 | 30.31             | 77.28            | 61.23            | 88.20            | 129.81           | 207.37           | 258.94            | 324.42           | 511.97           |
|               | 0:56:17            | 26.38<br>22.94    | 67.76<br>59.23   | 53.59<br>46.80   | 77.40<br>67.70   | 114.26<br>100.04 | 183.20<br>160.57 | 229.74<br>201.96  | 290.00<br>256.84 | 463.09<br>416.53 |
|               | 1:00:58            | 22.94             | 53.34            | 40.80            | 60.90            | 89.68            | 143.24           | 179.53            | 238.84           | 374.30           |
|               | 1:05:40            | 17.34             | 44.87            | 35.42            | 51.32            | 76.04            | 143.24           | 179.55            | 197.35           | 324.44           |
|               | 1:10:21            | 14.31             | 37.24            | 29.36            | 42.62            | 63.26            | 102.08           | 129.31            | 166.84           | 277.66           |
|               | 1:15:02            | 11.24             | 29.65            | 23.29            | 34.00            | 50.77            | 82.55            | 105.51            | 137.91           | 234.11           |
|               | 1:19:44            | 8.58              | 23.00            | 18.01            | 26.42            | 39.62            | 64.75            | 83.54             | 111.23           | 195.00           |
|               | 1:24:25            | 6.33              | 17.27            | 13.47            | 19.88            | 29.99            | 49.40            | 64.62             | 88.16            | 160.56           |
|               | 1:29:07            | 4.79              | 12.89            | 10.09            | 14.80            | 22.19            | 36.56            | 48.45             | 67.68            | 130.10           |
|               | 1:33:48            | 3.89              | 10.31            | 8.10             | 11.82            | 17.61            | 28.70            | 37.41             | 50.92            | 102.71           |
|               | 1:38:29            | 3.29              | 8.67             | 6.82             | 9.93             | 14.75            | 23.92            | 30.86             | 41.24            | 79.44            |
|               | 1:43:11            | 2.87              | 7.52             | 5.93             | 8.61             | 12.76            | 20.60            | 26.44             | 35.04            | 64.47            |
|               | 1:47:52            | 2.57              | 6.72             | 5.30             | 7.69             | 11.37            | 18.30            | 23.38             | 30.75            | 55.04            |
|               | 1:52:34            | 2.36              | 6.15             | 4.85             | 7.03             | 10.38            | 16.65            | 21.19             | 27.67            | 48.67            |
|               | 1:57:15            | 1.74              | 4.62             | 3.62             | 5.31             | 7.96             | 13.06            | 16.84             | 22.35            | 40.25            |
|               | 2:01:56            | 1.27              | 3.34             | 2.62             | 3.83             | 5.73             | 9.41             | 12.19             | 16.37            | 30.53            |
|               | 2:06:38            | 0.94              | 2.47             | 1.94             | 2.84             | 4.26             | 6.98             | 9.00              | 11.91            | 22.30            |
|               | 2:11:19            | 0.69              | 1.84             | 1.44             | 2.11<br>1.55     | 3.16<br>2.34     | 5.18<br>3.84     | 6.69<br>4.97      | 8.92<br>6.68     | 16.43<br>12.42   |
|               | 2:16:01<br>2:20:42 | 0.36              | 0.97             | 0.76             | 1.12             | 1.69             | 2.78             | 3.64              | 4.96             | 9.36             |
|               | 2:25:23            | 0.36              | 0.97             | 0.76             | 0.81             | 1.09             | 2.78             | 2.64              | 3.63             | 7.03             |
|               | 2:30:05            | 0.18              | 0.50             | 0.39             | 0.57             | 0.87             | 1.45             | 1.93              | 2.70             | 5.27             |
|               | 2:34:46            | 0.10              | 0.32             | 0.25             | 0.38             | 0.58             | 0.97             | 1.32              | 1.92             | 4.00             |
|               | 2:39:28            | 0.06              | 0.19             | 0.14             | 0.22             | 0.34             | 0.59             | 0.83              | 1.28             | 2.90             |
|               | 2:44:09            | 0.03              | 0.09             | 0.07             | 0.10             | 0.17             | 0.30             | 0.46              | 0.76             | 1.97             |
|               | 2:48:50            | 0.01              | 0.03             | 0.02             | 0.03             | 0.05             | 0.11             | 0.19              | 0.38             | 1.23             |
|               | 2:53:32            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.01             | 0.04              | 0.12             | 0.66             |
|               | 2:58:13            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.26             |
|               | 3:02:55            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.04             |
|               | 3:07:36            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:12:17            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:16:59            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:21:40            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:26:22            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:31:03            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:35:44<br>3:40:26 | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:45:07            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:49:49            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:54:30            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 3:59:11            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:03:53            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:08:34            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:13:16<br>4:17:57 | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:17:57<br>4:22:38 | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:27:20            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:32:01            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:36:43            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:41:24            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:46:05<br>4:50:47 | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 4:50:47            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 5:00:10            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 5:04:51            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 5:09:32            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 5:14:14            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 5:18:55            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 5:23:37<br>5:28:18 | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 5:28:18            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |
|               | 5:37:41            | 0.00              | 0.00             | 0.00             | 0.00             | 0.00             | 0.00             | 0.00              | 0.00             | 0.00             |

### <u>Appendix B</u>

STANDARD DESIGN CHARTS AND TABLES

### El Paso County Drainage Basin Fees

Resolution No. 20-424

| Basin                | Receiving                        | Year    | Drainage Basin Name                    | 2021 Drainage Fee     | 2021 Bridge Fee       |
|----------------------|----------------------------------|---------|----------------------------------------|-----------------------|-----------------------|
| Number               | Waters                           | Studied |                                        | (per Impervious Acre) | (per Impervious Acre) |
| Drainage Basins wit  | h DBPS's:                        |         |                                        |                       |                       |
| CHMS0200             | Chico Creek                      | 2013    | Haegler Ranch                          | \$11,113              | \$1,640               |
| CHWS1200             | Chico Creek                      | 2001    | Bennett Ranch                          | \$12,441              | \$4,772               |
| CHWS1400             | Chico Creek                      | 2013    | Falcon                                 | \$31,885              | \$4,380               |
| FOFO2000             | Fountain Creek                   | 2001    | West Fork Jimmy Camp Creek             | \$13,524              | \$4,001               |
| FOFO2600             | Fountain Creek                   | 1991*   | Big Johnson / Crews Gulch              | \$19,752              | \$2,551               |
| FOFO2800             | Fountain Creek                   | 1988*   | Widefield                              | \$19,752              | \$0                   |
| FOFO2900             | Fountain Creek                   | 1988*   | Security                               | \$19,752              | \$0                   |
| FOFO3000             | Fountain Creek                   | 1991*   | Windmill Gulch                         | \$19,752              | \$296                 |
| FOFO3100 / FOFO3200  | Fountain Creek                   | 1988*   | Carson Street / Little Johnson         | \$12,048              | \$0                   |
| FOFO3400             | Fountain Creek                   | 1984*   | Peterson Field                         | \$14,246              | \$1,080               |
| FOFO3600             | Fountain Creek                   | 1991*   | Fisher's Canyon                        | \$19,752              | \$0                   |
| FOFO4000             | Fountain Creek                   | 1996    | Sand Creek                             | \$20,387              | \$8,339               |
| FOFO4200             | Fountain Creek                   | 1977    | Spring Creek                           | \$10,244              | \$0                   |
| FOFO4600             | Fountain Creek                   | 1984*   | Southwest Area                         | \$19,752              | \$0                   |
| FOFO4800             | Fountain Creek                   | 1991    | Bear Creek                             | \$19,752              | \$1,080               |
| FOFO5400             | Fountain Creek                   | 1977    | 21st Street                            | \$5,942               | \$0                   |
| FOFO5600             | Fountain Creek                   | 1964    | 19th Street                            | \$3,887               | \$0                   |
| FOF05800             | Fountain Creek                   | 1964    | Camp Creek                             | \$2,189               | \$0                   |
| FOMO0400             | Monument Creek                   | 1986*   | Mesa                                   | \$10,331              | \$0                   |
| FOMO1000             | Monument Creek                   | 1981    | Douglas Creek                          | \$12,421              | \$274                 |
| FOMO1200             | Monument Creek                   | 1977    | Templeton Gap                          | \$12,752              | \$296                 |
| FOMO1400             | Monument Creek                   | 1976    | Pope's Bluff                           | \$3,956               | \$675                 |
| FOMO1600             | Monument Creek                   | 1976    | South Rockrimmon                       | \$4,643               | \$0                   |
| FOMO1800             | Monument Creek                   | 1973    | North Rockrimmon                       | \$5,942               | \$0                   |
| FOMO2000             | Monument Creek                   | 1971    | Pulpit Rock                            | \$6,549               | \$0                   |
| FOMO2200             | Monument Creek                   | 1994    | Cottonwood Creek / S. Pine             | \$19,752              | \$1,080               |
| FOMO2400             | Monument Creek                   | 1966    | Dry Creek                              | \$15,592              | \$565                 |
| FOMO3600             | Monument Creek                   | 1989*   | Black Squirrel Creek                   | \$8,968               | \$565                 |
| FOMO3700             | Monument Creek                   | 1987*   | Middle Tributary                       | \$16,482              | \$0                   |
| FOMO3800             | Monument Creek                   | 1987*   | Monument Branch                        | \$19,752              | \$0                   |
| FOMO4000             | Monument Creek                   | 1996    | Smith Creek                            | \$8,052               | \$1,080               |
| FOMO4200             | Monument Creek                   | 1989*   | Black Forest                           | \$19,752              | \$538                 |
| FOMO5200             | Monument Creek                   | 1993*   | Dirty Woman Creek                      | \$19,752              | \$1,080               |
| FOMO5300             | Fountain Creek                   | 1993*   | Crystal Creek                          | \$19,752              | \$1,080               |
| Miscellaneous Drain  |                                  |         |                                        | · · / -               | , ,                   |
| CHBS0800             | Chico Creek                      |         | Book Ranch                             | ¢40 500               | ¢0,000                |
| CHES0800<br>CHEC0400 |                                  |         | Upper East Chico                       | \$18,533<br>#10,007   | \$2,683<br>\$293      |
|                      | Chico Creek                      |         | ••                                     | \$10,097              |                       |
| CHWS0200             | Chico Creek                      |         | Telephone Exchange                     | \$11,093              | \$260                 |
| CHWS0400             | Chico Creek                      |         | Livestock Company                      | \$18,273              | \$217                 |
| CHWS0600             | Chico Creek                      |         | West Squirrel                          | \$9,525               | \$3,953               |
| CHWS0800             | Chico Creek                      |         | Solberg Ranch                          | \$19,752              | \$0                   |
| FOFO1200             | Fountain Creek                   |         | Crooked Canyon                         | \$5,963               | \$0                   |
| FOFO1400             | Fountain Creek                   |         | Calhan Reservoir                       | \$4,979               | \$290                 |
| FOFO1600             | Fountain Creek                   |         | Sand Canyon                            | \$3,597               | \$0                   |
| FOFO2000             | Fountain Creek                   |         | Jimmy Camp Creek <sup>3</sup>          | \$19,752              | \$924                 |
| FOFO2200             | Fountain Creek                   |         | Fort Carson                            | \$15,592              | \$565                 |
| FOF02700             | Fountain Creek                   |         | West Little Johnson                    | \$1,301               | \$0                   |
| FOFO3800             | Fountain Creek                   |         | Stratton                               | \$9,474               | \$424                 |
| FOFO5000             | Fountain Creek                   |         | Midland                                | \$15,592              | \$565                 |
| FOFO6000             | Fountain Creek                   |         | Palmer Trail                           | \$15,592              | \$565                 |
| FOFO6800             | Fountain Creek                   |         | Black Canyon                           | \$15,592              | \$565                 |
| FOMO4600             | Monument Creek                   |         | Beaver Creek                           | \$11,808              | \$0                   |
| FOMO3000             | Monument Creek                   |         | Kettle Creek                           | \$10,666              | \$0                   |
| FOMO3400             | Monument Creek                   |         | Elkhorn                                | \$1,792               | \$0                   |
| FOMO5000             | Monument Creek                   |         | Monument Rock                          | \$8,561               | \$0                   |
| FOMO5400             | Monument Creek                   |         | Palmer Lake                            | \$13,689              | \$0                   |
| FOMO5600             | Monument Creek                   |         | Raspberry Mountain                     | \$4,605               | \$0                   |
| PLPL0200             | Monument Creek                   |         | Bald Mountain                          | \$9,813               | \$0                   |
| Interim Drainage Ba  |                                  |         |                                        | <b>*</b> 2 525        | <b>*</b> 0            |
|                      | Equatain Crook                   |         | Little Fountain Crock                  |                       |                       |
| FOFO1800<br>FOMO4400 | Fountain Creek<br>Monument Creek |         | Little Fountain Creek<br>Jackson Creek | \$2,525<br>\$7,818    | \$0<br>\$0            |

1. The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies performed within the last 14 years.

2. Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available information suitable for setting a fee.)

3. This is an interim fee and will be adjusted when a DBPS is completed. In addition to the Drainage Fee a surety in the amount of \$7,285 per impervious acre shall be provided to secure payment of additional fees in the event that the DBPS results in a fee greater than the current fee. Fees paid in excess of the future revised fee will be reimbursed. See Resolution 06-326 (9/14/06) and Resolution 16-320 (9/07/16).

depths over the duration of the storm as a fraction of the 1-hour depth and is also shown in Figure 6-19. By applying the 1-hour depths shown in Table 6-2 to the values shown in Table 6-3, a shortduration project design storm can be developed for any return period storm from a 2-year up to 100year frequency. By applying the appropriate 1-hour depth for other project locations, a project design storm can be created for any location.

| Time<br>(minutes) | Fraction of<br>1-Hour<br>Rainfall<br>Depth | Time<br>(minutes) | Fraction of<br>1-Hour<br>Rainfall<br>Depth |
|-------------------|--------------------------------------------|-------------------|--------------------------------------------|
| 5                 | 0.014                                      | 65                | 1.004                                      |
| 10                | 0.046                                      | 70                | 1.018                                      |
| 15                | 0.079                                      | 75                | 1.030                                      |
| 20                | 0.120                                      | 80                | 1.041                                      |
| 25                | 0.179                                      | 85                | 1.052                                      |
| 30                | 0.258                                      | 90                | 1.063                                      |
| 35                | 0.421                                      | 95                | 1.072                                      |
| 40                | 0.712                                      | 100               | 1.082                                      |
| 45                | 0.824                                      | 105               | 1.091                                      |
| 50                | 0.892                                      | 110               | 1.100                                      |
| 55                | 0.935                                      | 115               | 1.109                                      |
| 60                | 0.972                                      | 120               | 1.119                                      |

Table 6-3. 2-Hour Design Storm Distribution,  $\leq 1 \text{ mi}^2$ 

• **Frontal Storms**: The characteristics of longer-duration "frontal storms" (general) is less well understood than the shorter duration thunderstorms and should be studied further. However, some events of this nature have been observed, such as the April 1999 storm which produced flooding on Fountain Creek, showing that these types of events do occur and tend to produce hazardous flood flows. In addition, modeling of the Jimmy Camp Creek drainage basin using the 24-hour, Type II distribution shows that it produces results reasonably comparably to recorded flow data. Therefore, the NRCS 24-hour Type II distribution has replaced the Type IIa distribution as the standard, long-duration design storm. This distribution can be applied to drainage basins up to 10 square miles without a DARF correction and is shown in Table 6-4. This distribution is included as a standard storm option in the HEC-HMS program.

| Land Use or Surface                               | Percent    |         |         |                   |         |         | Runoff Co | efficients |         |         |         |                   |         |
|---------------------------------------------------|------------|---------|---------|-------------------|---------|---------|-----------|------------|---------|---------|---------|-------------------|---------|
| Characteristics                                   | Impervious | 2-у     | ear     | 5-y               | ear     | י-10    | /ear      | ر-25       | /ear    | ן-50    | /ear    | 100-              | year    |
|                                                   |            | HSG A&B | HSG C&D | HSG A&B           | HSG C&D | HSG A&B | HSG C&D   | HSG A&B    | HSG C&D | HSG A&B | HSG C&D | HSG A&B           | HSG C&D |
| Business                                          |            |         |         |                   |         |         |           |            |         |         |         |                   |         |
| Commercial Areas                                  | 95         | 0.79    | 0.80    | <mark>0.81</mark> | 0.82    | 0.83    | 0.84      | 0.85       | 0.87    | 0.87    | 0.88    | <mark>0.88</mark> | 0.89    |
| Neighborhood Areas                                | 70         | 0.45    | 0.49    | <mark>0.49</mark> | 0.53    | 0.53    | 0.57      | 0.58       | 0.62    | 0.60    | 0.65    | 0.62              | 0.68    |
| Residential                                       |            |         |         |                   |         |         |           |            |         |         |         |                   |         |
| 1/8 Acre or less                                  | 65         | 0.41    | 0.45    | <mark>0.45</mark> | 0.49    | 0.49    | 0.54      | 0.54       | 0.59    | 0.57    | 0.62    | <mark>0.59</mark> | 0.65    |
| 1/4 Acre                                          | 40         | 0.23    | 0.28    | 0.30              | 0.35    | 0.36    | 0.42      | 0.42       | 0.50    | 0.46    | 0.54    | 0.50              | 0.58    |
| 1/3 Acre                                          | 30         | 0.18    | 0.22    | 0.25              | 0.30    | 0.32    | 0.38      | 0.39       | 0.47    | 0.43    | 0.52    | 0.47              | 0.57    |
| 1/2 Acre                                          | 25         | 0.15    | 0.20    | 0.22              | 0.28    | 0.30    | 0.36      | 0.37       | 0.46    | 0.41    | 0.51    | 0.46              | 0.56    |
| 1 Acre                                            | 20         | 0.12    | 0.17    | 0.20              | 0.26    | 0.27    | 0.34      | 0.35       | 0.44    | 0.40    | 0.50    | 0.44              | 0.55    |
| Industrial                                        |            |         |         |                   |         |         |           |            |         |         |         |                   |         |
| Light Areas                                       | 80         | 0.57    | 0.60    | 0.59              | 0.63    | 0.63    | 0.66      | 0.66       | 0.70    | 0.68    | 0.72    | 0.70              | 0.74    |
| Heavy Areas                                       | 90         | 0.71    | 0.73    | 0.73              | 0.75    | 0.75    | 0.77      | 0.78       | 0.80    | 0.80    | 0.82    | 0.81              | 0.83    |
| Parks and Cemeteries                              | 7          | 0.05    | 0.09    | 0.12              | 0.19    | 0.20    | 0.29      | 0.30       | 0.40    | 0.34    | 0.46    | 0.39              | 0.52    |
| Playgrounds                                       | 13         | 0.07    | 0.13    | 0.16              | 0.23    | 0.24    | 0.31      | 0.32       | 0.42    | 0.37    | 0.48    | 0.41              | 0.54    |
| Railroad Yard Areas                               | 40         | 0.23    | 0.28    | 0.30              | 0.35    | 0.36    | 0.42      | 0.42       | 0.50    | 0.46    | 0.54    | 0.50              | 0.58    |
| Undeveloped Areas                                 |            |         |         |                   |         |         |           |            |         |         |         |                   |         |
| Historic Flow Analysis<br>Greenbelts, Agriculture | 2          | 0.03    | 0.05    | 0.09              | 0.16    | 0.17    | 0.26      | 0.26       | 0.38    | 0.31    | 0.45    | 0.36              | 0.51    |
| Pasture/Meadow                                    | 0          | 0.02    | 0.04    | 0.08              | 0.15    | 0.15    | 0.25      | 0.25       | 0.37    | 0.30    | 0.44    | 0.35              | 0.50    |
| Forest                                            | 0          | 0.02    | 0.04    | 0.08              | 0.15    | 0.15    | 0.25      | 0.25       | 0.37    | 0.30    | 0.44    | 0.35              | 0.50    |
| Exposed Rock                                      | 100        | 0.89    | 0.89    | 0.90              | 0.90    | 0.92    | 0.92      | 0.94       | 0.94    | 0.95    | 0.95    | 0.96              | 0.96    |
| Offsite Flow Analysis (when landuse is undefined) | 45         | 0.26    | 0.31    | 0.32              | 0.37    | 0.38    | 0.44      | 0.44       | 0.51    | 0.48    | 0.55    | 0.51              | 0.59    |
|                                                   |            |         |         |                   |         |         |           |            |         |         |         |                   |         |
| Streets                                           | 100        | 0.00    | 0.00    | 0.00              | 0.00    | 0.02    | 0.02      | 0.04       | 0.04    | 0.05    | 0.05    | 0.00              | 0.00    |
| Paved                                             | 100        | 0.89    | 0.89    | 0.90              | 0.90    | 0.92    | 0.92      | 0.94       | 0.94    | 0.95    | 0.95    | 0.96              | 0.96    |
| Gravel                                            | 80         | 0.57    | 0.60    | 0.59              | 0.63    | 0.63    | 0.66      | 0.66       | 0.70    | 0.68    | 0.72    | 0.70              | 0.74    |
| Drive and Walks                                   | 100        | 0.89    | 0.89    | 0.90              | 0.90    | 0.92    | 0.92      | 0.94       | 0.94    | 0.95    | 0.95    | 0.96              | 0.96    |
| Roofs                                             | 90         | 0.71    | 0.73    | 0.73              | 0.75    | 0.75    | 0.77      | 0.78       | 0.80    | 0.80    | 0.82    | 0.81              | 0.83    |
| Lawns                                             | 0          | 0.02    | 0.04    | 0.08              | 0.15    | 0.15    | 0.25      | 0.25       | 0.37    | 0.30    | 0.44    | 0.35              | 0.50    |

# Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

#### **3.2** Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration  $(t_c)$  consists of an initial time or overland flow time  $(t_i)$  plus the travel time  $(t_i)$  in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time  $(t_i)$  plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion  $(t_i)$  of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

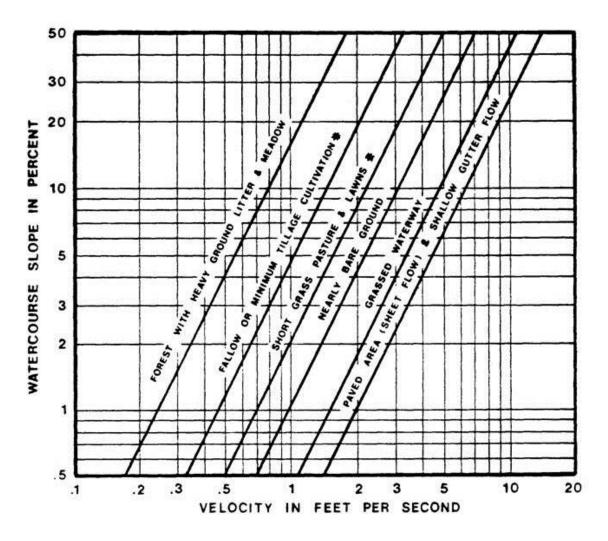
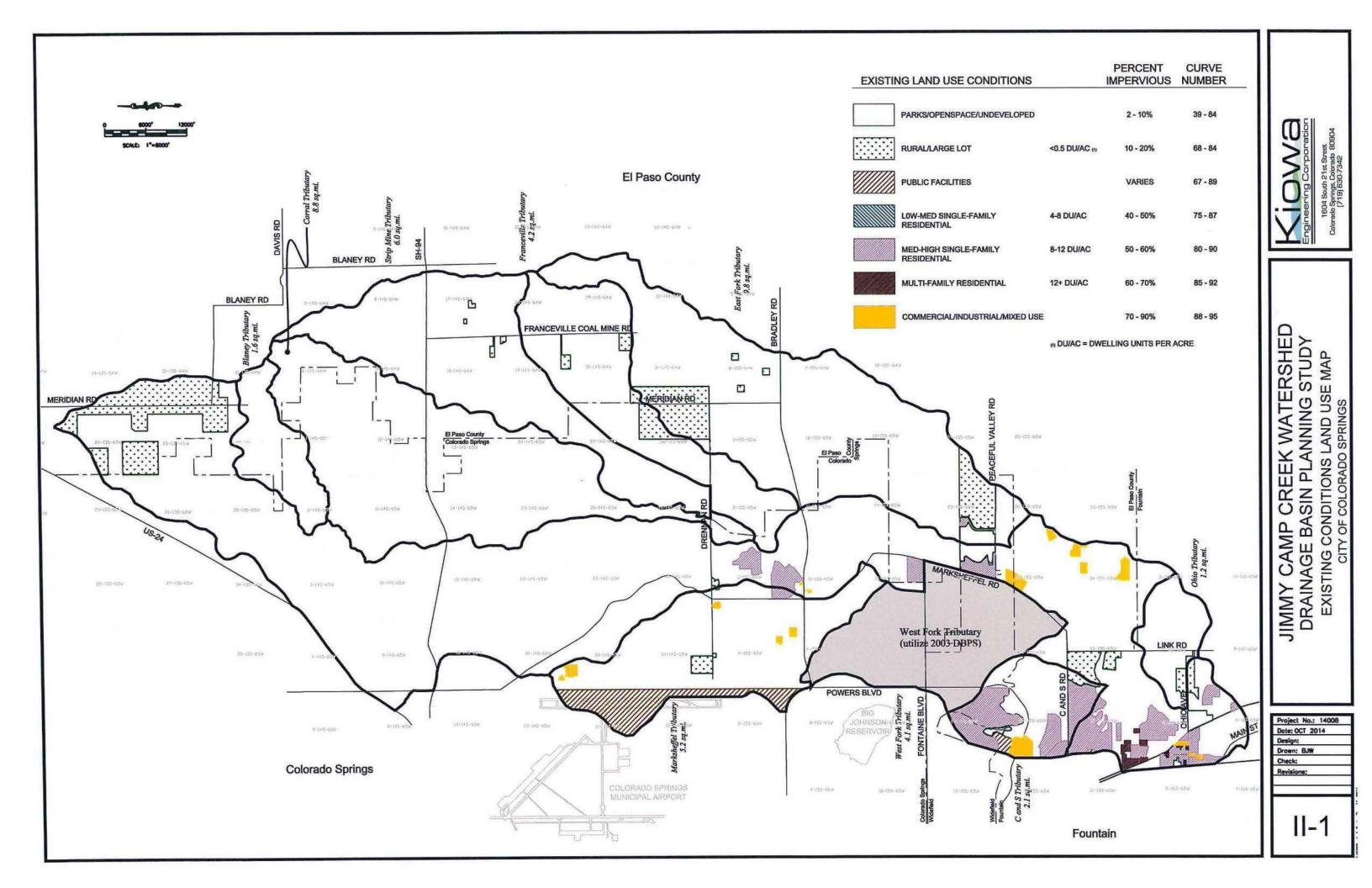




Figure 6-25. Estimate of Average Concentrated Shallow Flow

<u>Appendix C</u>

**REPORT REFERENCES** 

Excerpts from DBPS West Fork Jimmy Camp Creek



#### 7.1 General

The results of the analyses summarized in Chapter 6 represent a concept level design process. The selected plan improvements shown on the conceptual design drawings will be subject to refinement as the development of the land within the Jimmy Camp Creek Basin commences. The size and location of the channel conveyances will have to be determined based upon a higher level of engineering analysis that is typically carried out during the preparation of the master development drainage and final drainage planning reports. It is an underlying intent of the selected to plan to preserve to the greatest extent practical the existing condition 100-year floodplain and environmental resources that exist therein. It will be important that the major drainageway channel conveyances that have been identified in this DBPS be followed and major deviations from the concepts presented herein should be discouraged when land development applications are made to the City of Colorado Springs.

With respect to FSD as presented in this DBPS, the location of future FSD basins will be refined during the land development process. Guidelines for locating FSD's have been provided in previous sections of the DBPS. If implemented, FSD will result in the limitation of peak discharges released from developing areas to pre-development conditions. As such, the future major drainageway conveyances and road crossings need only to be designed to be able to carry the pre-development condition discharges. Consolidation of FSD sites should be encouraged in order to limit long-term maintenance costs so long as the intent of the FSD system is achieved. Implementation of the concepts in this DBPS will reduce the level of planning and engineering that will be required during later drainage planning phases associated with the land development process.

#### 7.2 Cost Estimates

Presented on Table VII-1 are the costs estimates for the major drainageway conveyances for Jimmy Camp Creek and its major sub-tributaries within the City of Colorado Springs. Presented on Table VII-2 are conveyance costs for sub-drainageways for the City of Colorado Springs. There has been no cost estimate made for local storm sewer systems. An estimate for the cost to replace roadway crossings found to be deficient when the hydraulic analysis was prepared has also not been made in this DBPS. Unit costs applied when calculating the conveyance costs are prepared on the tables. Engineering design costs have been estimated at 10 percent of the construction. A contingency allowance of 10 percent off the construction has been assumed. No allowance for the relocation of utilities has been assumed when developing the conveyance cost estimates.

Presented on tables within the DBPS are costs estimates for the major drainageway conveyances for Jimmy Camp Creek and its major sub-tributaries within the City of Colorado Springs. There has been no cost estimate made for local storm sewer systems. An estimate for the cost to replace roadway crossings found to be deficient when the hydraulic analysis was prepared has also not been made in this DBPS. Unit costs applied when calculating the conveyance costs are prepared on the tables. The estimated cost of the FSD

basins was presented in Chapter 5 of the DBPS. The cost and acreage data associated with FSD has been provided in the DBPS and used in the development of a storage fee. Since the effect of implementing the FSD alternative is to maintain rates of runoff to be conveyed by the receiving drainageways to pre-development conditions it is has been concluded to be reasonable to spread only the cost of the major drainage conveyances in amongst all un-platted property within Colorado Springs.

The total cost for future roadway culverts and bridges has not been made in this DBPS. This is primarily because the number and location of the future roadway crossing cannot be accurately determined at this time. All future roadway crossings should be sized to convey the pre-development condition discharge. Because runoff will be controlled to existing peak discharges, there is no additional costs for culverts and bridges associated with providing capacity because of increased runoff due to development.

#### 7.3 Unplatted Acreage

Presented on Figure VII-1 are the jurisdictional limits and corresponding acreage of the three governmental entities in the Jimmy Camp Creek watershed. Presented on Figure VII-2 are the un-plattable acreage that lies within the City of Colorado Springs, City of Fountain and El Paso County. Using El Paso County Tax Assessor maps, plats and ownership records the amount of un-platted and developable acreage was estimated. From these records the following total un-platted acreages were determined:

City of Colorado Spring outside BLR City of Colorado Spring inside BLR City of Colorado Springs Total

**El Paso County** 

#### **City of Fountain**

The unplatted acreage shown on Figure VII-2 excludes the existing 100-year floodplains, large regional parks, school sites and public utility easement corridors Land that is already platted has not been accounted for in the estimate of the plattable acreage unless the platted parcel exceeded 15 acres in size. Most of these large acreage platted parcels occur within the County. The un-platted acreage listed in the report is the land that is considered developable and would be subject to drainage and storage fees.

The weighted percent imperviousness was estimated for the entire watershed. Based upon the land use planning information accumulated and applied in this DBPS, the weighted percent imperviousness for the watershed was determined to be 57.5 percent.

#### 7.4 Unit Drainage Costs

Presented on Table VII-3 of the DBPS and this Executive Summary are the unit major drainageway and FSD storage fee calculations for the City of Colorado Springs. All of the improvements that were used in the calculation of the unit drainage costs are considered public facilities subject to maintenance by the Colorado Springs in accordance with this DBPS and applicable drainage criteria. The unit drainage costs can

148 acres <u>13,341acres</u> 13,489 acres

14,018 acres

#### 664 acres

be used to structure a fee system for the Jimmy Camp Creek watershed to replace the present fee system that has been established using the 1987 Wilson DBPS. It is recommended that a drainage fee be established within each of the jurisdictions to cover the capital improvement costs associated with the stabilization of the major and sub-drainageways identified in this DBPS. Since FSD is the selected storage option for the watershed, it may be possible to have the fees associated with the unit drainage costs accumulate during the initial phases of land development until such time that major drainageway or sub-drainageway stabilization is needed. Having the drainage fund accumulate by not requiring a developer to install major drainageway improvements during the initial phase of the land development process will help the keep the drainage fund from becoming immediately in debt. It will also give the City time and some greater flexibility in focusing the capital improvement funds generated by the fee system. Managing the fees system in this way may also help the land development process by not front-end loading the very initial phases of development with the costs of major and sub-drainageway improvements that could very well be offsite from the land development activity itself.

The FSD storage cost can be used to develop a FSD storage fee. The unit storage fee can be assessed at the time of platting if the parcel subject to platting is so limited in size as to not to be feasible to site a regional FSD. In developing the FSD unit storage fee 15 percent has been added to the unit acre-foot construction cost presented on Table V-4 of the DBPS to bring the unit storage cost to 2014 dollars. Fees that accumulate in the FSD storage fund could later be used to reimburse a property owner that would be required because of its size to construct and FSD. It is however preferable to construct the regional FSD's at the earliest possible time during the development of a sub-watershed so that the impact of develop runoff on the receiving drainageway is mitigated.

Because the land area within the watershed and the land that is within the City is controlled by one major land owner it may be feasible to "close" the basin to fees. This would then end the need to collect drainage and FSD fees at the time of platting land. Accordingly, no reimbursement for any public major drainageway or FSD facilities would occur.

A bridge fee has not been calculated for this watershed. This is primarily because the number and location of bridges cannot be accurately determined, and the fact that any bridge or major roadway crossing would only have to be sized to convey pre-development condition discharges. In this regard, the cost of a bridge or culvert associated with a future road is based on the need for transportation and not storm water conveyance. It may be necessary to establish some form of interim fee to cover the cost of reimbursements already established under the present Jimmy Camp Creek bridge fee system.

Jimmy Camp Creek DBPS, Page 78

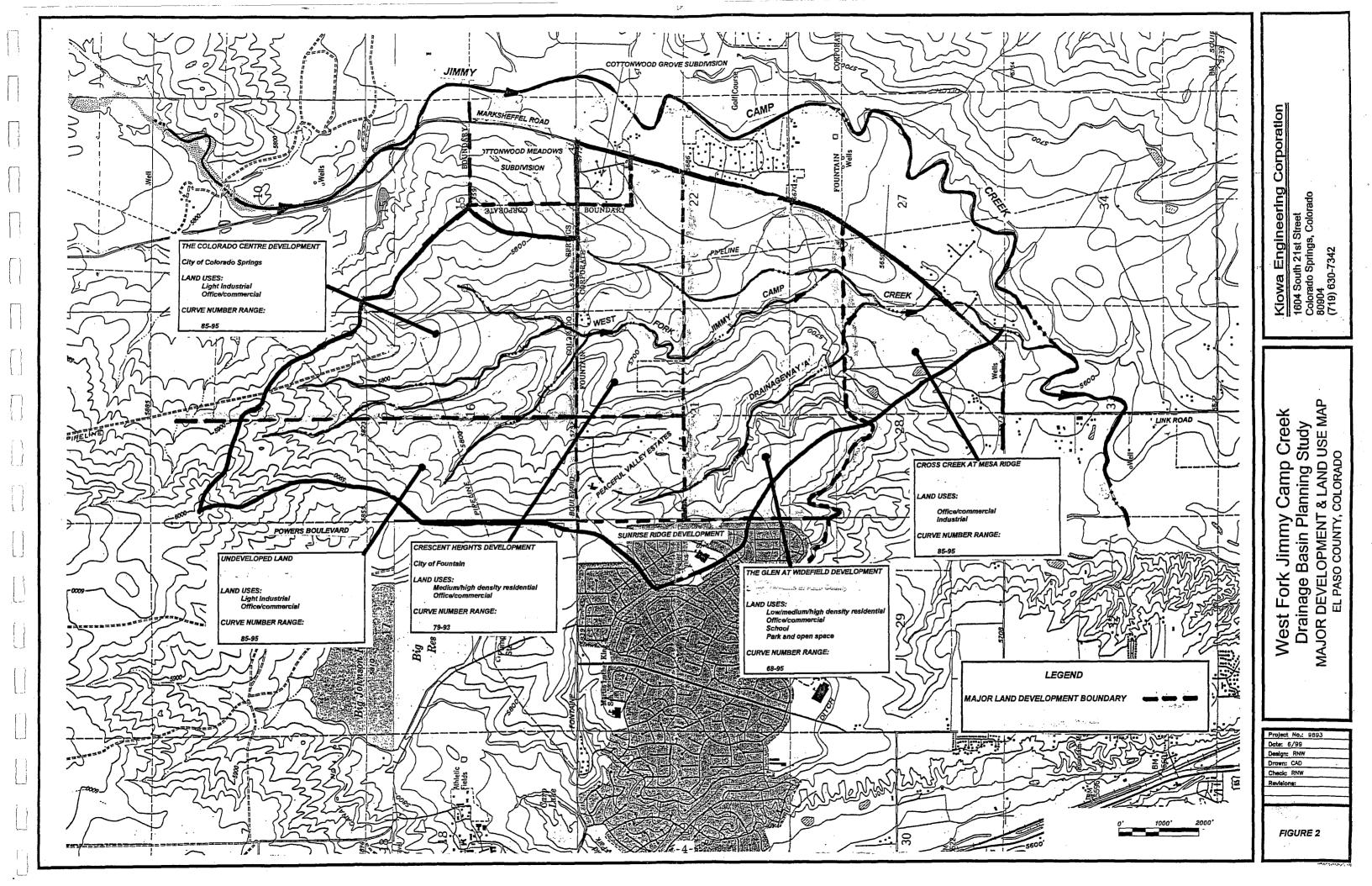
| Deales                        | Dealer                               | Ol                          | <b>M</b>                | Market Constant                        |                                      | <b>.</b>                                  | <b>-</b> • • •                | <b>.</b>                       |                              |
|-------------------------------|--------------------------------------|-----------------------------|-------------------------|----------------------------------------|--------------------------------------|-------------------------------------------|-------------------------------|--------------------------------|------------------------------|
| Drainageway                   | Dratnage<br>Structure<br>Description | Structure<br>tnvantory<br># | Roadway                 | Structure<br>Condition                 | intet<br>Channel<br>Condition        | Outlet<br>Channel<br>Condition            | Extsting<br>100-year<br>(cfs) | Structure<br>Capacity<br>(cfs) | % of<br>Extsting<br>100-year |
| Jimmy Camp Creek              | 360' Bridge<br>3-spans               | PR1                         | Old Pueblo Road         | Good to Fair                           | Good                                 | Fair                                      | 22,100                        | >24000                         | 100                          |
|                               | 244' Bridga<br>Mulit-span            | RR1                         | D & RGW RR              | Good to Fair                           | Good to Fair                         | Good to Feir                              | 22,100                        | >>24000                        | 100                          |
|                               | 220' Bridga<br>3-spens               | 01                          | Ohio Avenua             | Good to Feir                           | Good to Fair                         | Fair                                      | 22,100                        | 19800                          | 95                           |
|                               | 190' Bridge<br>3-spans               | LR1                         | Link Roed               | Good                                   | Good<br>Floodplain well<br>vegatated | Poor<br>Headcut et outlet                 | 21,880                        | 26000                          | 100                          |
|                               | 4-48" X 29"<br>CMP                   | PV1                         | Peeceful Velley<br>Roed | Poor<br>Mosily clogged                 | Poor                                 | Poor                                      | 17,360                        | < 200                          | <5                           |
|                               | Bridge                               | FB1                         | Fonlaina Boulaverd      | Good                                   | Good                                 | Good<br>Riprap channel                    | 15,380                        | >16000                         | 100                          |
|                               | 360' Bridge<br>3-spans               | B2                          | Bradley Roed            | Good                                   | Fair                                 | Fair<br>Benk sloughing<br>along west benk | 15,380                        | >18000                         | 100                          |
|                               | 54' Bridge<br>2-spans                | DR3                         | Drennen Roed            | Feir                                   | Good                                 | Low flow stable                           | 5,760                         | >6500                          | 100                          |
|                               | 160' Bridge<br>4-spans               | NF2                         | State Highway 94        | Good                                   | Good to Fair                         | Felr<br>Bank sloughing<br>elong west bank | 4,760                         | 15000                          | 100                          |
| Eest Fork Jimmy<br>Camp Creek | Twin CBC<br>8' x 12'                 | B4                          | Bradley Roed            | Good                                   | Good<br>Chennel poorly<br>defined    | Good<br>Chennel poorly<br>defined         | 2,860                         | 2400                           | 84                           |
|                               | 54' Bridge<br>2-spans                | DR5                         | Drannan Road            | Poor to Feir                           | Good                                 | Good                                      | 1,720                         | >3000                          | 100                          |
|                               | 2-43" X 29"<br>CMP                   | M7                          | Meridien Roed           | Inlet bent<br>Outlat rusted            | Poor                                 | Poor                                      | 1,610                         | 140                            | <10                          |
| Marksheffel<br>Tributery      | Twin 72-inch CMP                     | MS2                         | Marksheffal Road        | Poor<br>No wingwalls                   | Good                                 | Feir                                      | 950                           | 300                            | 32                           |
|                               | Detention Basin                      | MK1                         | Marksheffel Roed        | Good                                   | Good                                 | Poor                                      | 1,920 in/950 out              | na                             | 100                          |
|                               | Triple 7' X 12'<br>CBC               | B3                          | Bradley Road            | Good                                   | Good<br>Well vegeleted               | Good<br>Well vegeteted                    | 1,640                         | 2800                           | 100                          |
| Corral Tributary              | 80' Bridga<br>2-spans                | DR4                         | Drannan Roed            | Fair<br>Wingwalls in poor<br>condition | Good<br>Send invert                  | Poor<br>Bank sloughing on<br>west benk    | 11,550                        | >40000                         | 100                          |
|                               | Triple 12' X 10'<br>CBC              | NF12                        | Stele Hghway 94         | Good                                   | Feir<br>Wide sand<br>Invert          | Feir<br>Wide sand<br>Invert               | 3,230                         | >3750                          | 100                          |

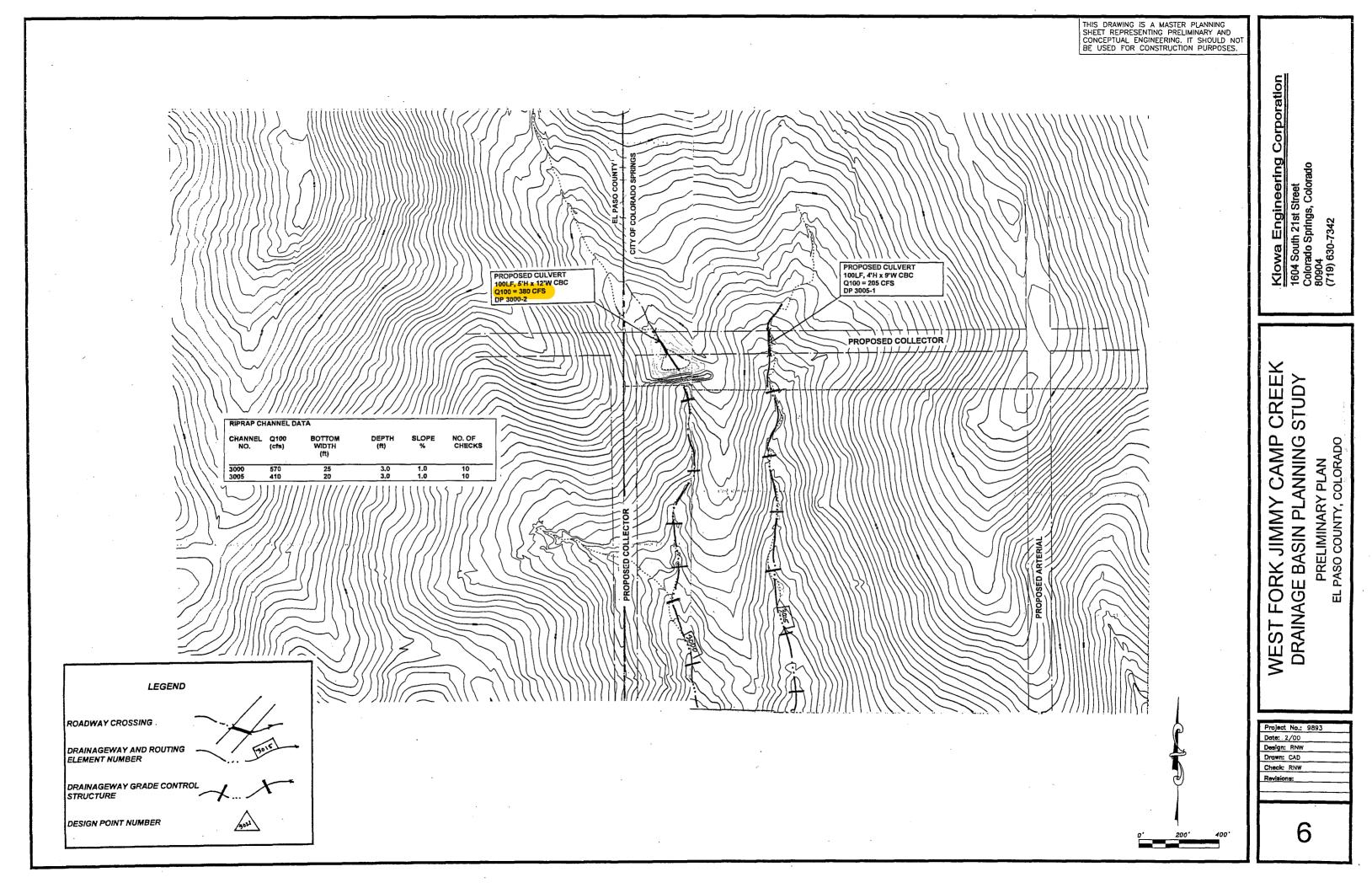
(1) Bridge capacity equel to the bridge erea below the low chord et a velocity of 10 feet per second. Culvart cepacity besed upon inlet control at a HW/D equal to 1.

on the design plans. The purpose of the detention basins is to limit peak discharges at the basin's outfall to Jimmy Camp Creek to the existing hydrologic condition. The regional basins have also been sited within each of the major land developments to more locally control runoff to existing levels. Wherever practical, the regional detention basins should be designed so as to take advantage of the adjacent roadway embankments. It is not anticipated that any of the regional detention basins will be subject to State Engineer's regulations. Stormwater quality measures should be designed into the regional stormwater detention basins. These measures would include the provision of a water quality and sediment pool area in addition to the volume required for stormwater detention.

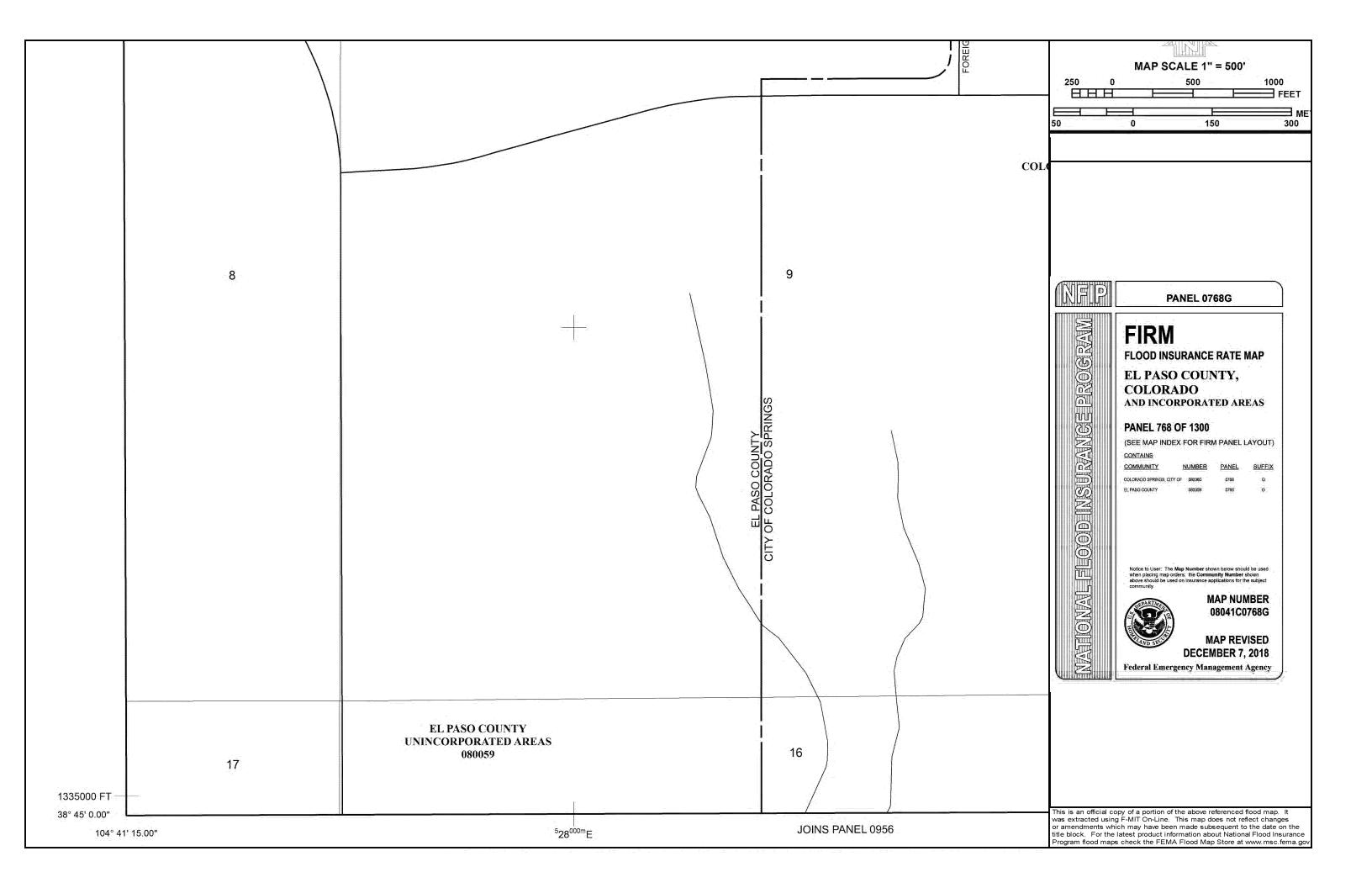
#### Right-of-Way

For the most part the main channels within the basin which pass through undeveloped areas and the right-of-way can be dedicated as part of the land development process. For those segments of the drainageway where floodplain preservation is the recommended plan, a combination of open space dedication (such as park-land and greenbelts), in combination with a more narrow dedicated right-of-way along the low flow area of the drainageway should be obtained through the land development process. Land acquisition will be required for the regional detention basins. The dedication of easements and right-of-way for the drainageways and detention basins would be accomplished at the time of development planning and platting of the parcels that lie adjacent to or upstream of the stormwater facility.


#### Cost Estimates and Drainage Basin Fees


Cost estimates have been prepared and are contained within the DBPS. The cost of the major drainageway facilities has been determined for each jurisdiction. The facility cost estimate will be used in the determination of the drainage and bridge fees for this basin. Bridge crossing costs have been determined as well for the basin.

Presented on Table 17 through 19 is the cost and plattable acreage (i.e., that area available for platting into subdivisions), data associated with the determination of drainage and bridge fees for the basin. The plattable acreage has been determined using a combination of assessor's maps, aerial photographs and topographic mapping that covering the watershed. As presented on Table 17, the reductions in the area available for platting have been listed. The reductions are mostly attributable to areas that are already platted, known roadway or planned road right-of-ways for minor and major arterials, and the area underlying the proposed detention basins.

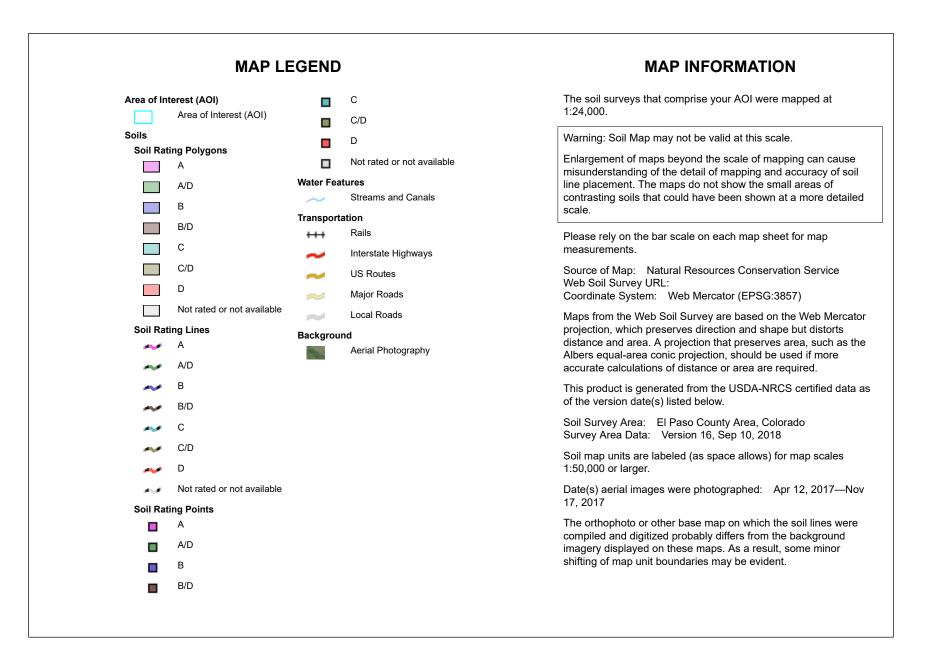

Drainage basin fees have been determined for those areas that are within the City of Colorado Springs and El Paso County. The City of Fountain does not have a drainage basin fee system and therefore no fees have been calculated for the areas within the City of Fountain. The

area of the basin within the City of Colorado Springs lies within the Colorado Centre development and the Banning-Lewis Ranch Flood Conservancy District (District). It is the intent of the City of Colorado Springs that the District will be responsible for all drainage, detention and bridge improvement construction and maintenance. Prior to any development within the City, specific agreements will have to be finalized between the City and the District. The drainage and bridge fees calculated for the County areas have been determined in accordance with Resolution No. 99-383. The percent impervious values listed on Exhibit 3 of this resolution where applied when calculating the weighted percent impervious value for the sub-basins within the County.






### **FIRMETTE**




USDA NRCS WEB SOIL SURVEY REPORT



Page 1 of 4

Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey



## Hydrologic Soil Group

| Map unit symbol          | Map unit name                                                | Rating | Acres in AOI | Percent of AOI |
|--------------------------|--------------------------------------------------------------|--------|--------------|----------------|
| 8                        | Blakeland loamy sand, 1<br>to 9 percent slopes               | A      | 17.8         | 8.6%           |
| 31                       | Fort Collins loam, 3 to 8 percent slopes                     | В      | 0.0          | 0.0%           |
| 52                       | Manzanst clay loam, 0<br>to 3 percent slopes                 | С      | 21.0         | 10.2%          |
| 56                       | Nelson-Tassel fine<br>sandy loams, 3 to 18<br>percent slopes | В      | 137.7        | 66.8%          |
| 86                       | Stoneham sandy loam,<br>3 to 8 percent slopes                | В      | 5.3          | 2.6%           |
| 108                      | Wiley silt loam, 3 to 9 percent slopes                       | В      | 24.3         | 11.8%          |
| Totals for Area of Inter | est                                                          |        | 206.0        | 100.0%         |

### Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

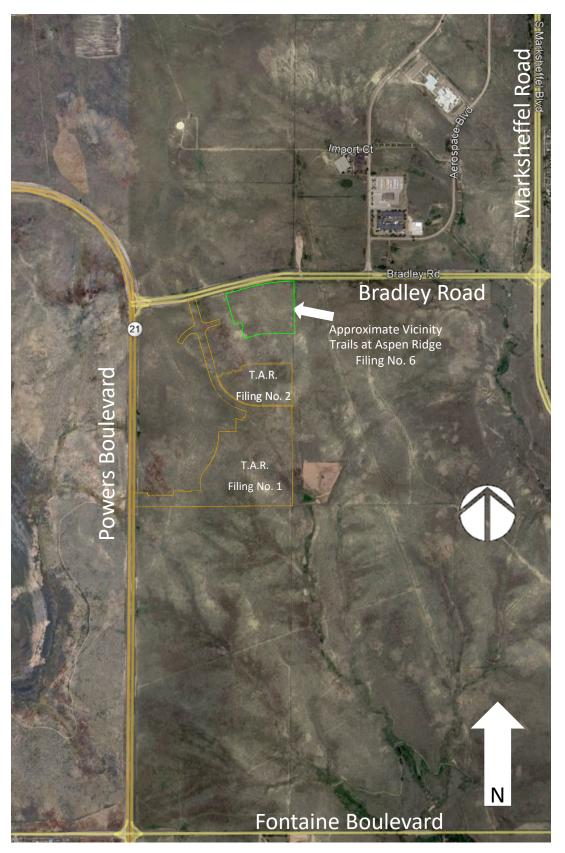
The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

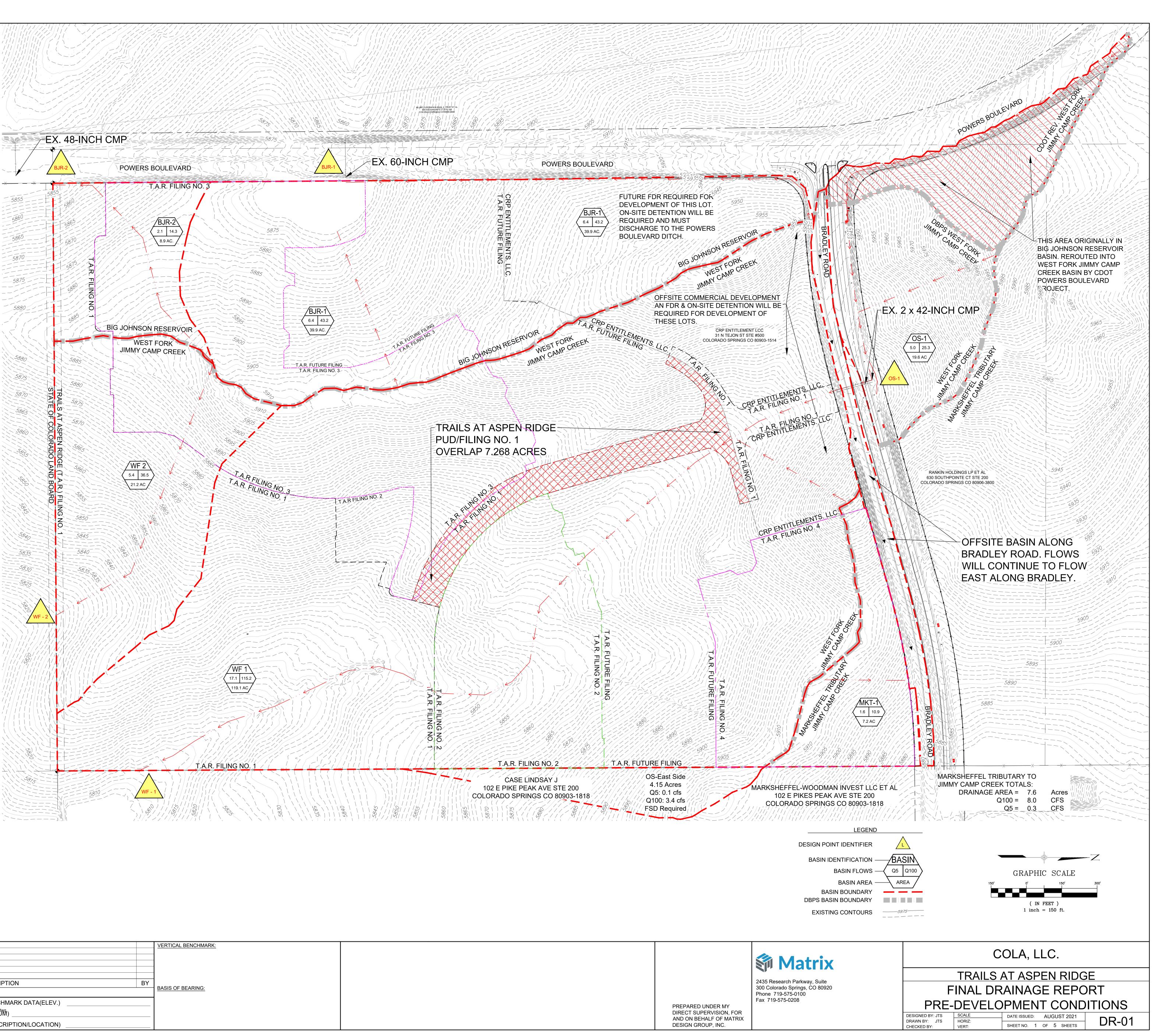

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

### **Rating Options**

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

### <u>Appendix D</u>

MAPS

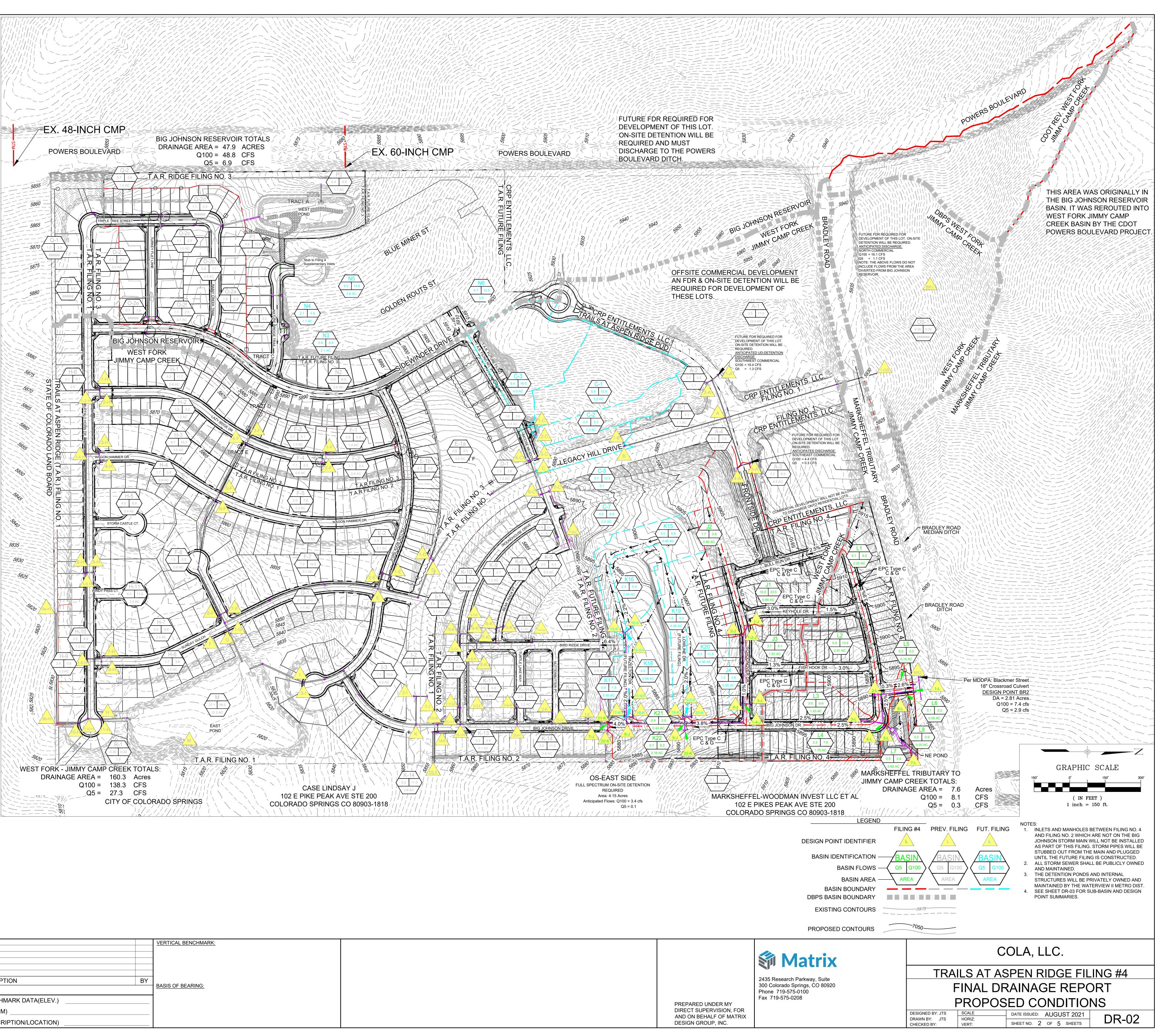



Trails at Aspen Ridge Vicinity Map



|                                                          | Trails at Aspen Ridg<br>Final Drainage Repo<br>Existing Design Point Su         | ort                    |               |                 |
|----------------------------------------------------------|---------------------------------------------------------------------------------|------------------------|---------------|-----------------|
| Design Point                                             | Sub-Basins                                                                      | Total<br>Area<br>(ac.) | Q(5)<br>(cfs) | Q(100)<br>(cfs) |
| BJR-1                                                    | BJR-1                                                                           | 39.94                  | 6.43          | 43.22           |
| BJR-2                                                    | BJR-2                                                                           | 8.85                   | 2.13          | 14.32           |
| TO BIG JOHNSON<br>RESERVOIR                              | BJR-1 & BJR-2<br>(Basins are parallel so this<br>is a sum of BJR-1 &<br>BJR-2.) | 48.79                  | 8.56          | 57.54           |
| OS-1                                                     | OS-1<br>(Note: 7.3 Acres diverted<br>by CDOT from Big<br>Johnson)               | 19.60                  | 4.79          | 24.15           |
| WF-1                                                     | WF-1 & OS-1                                                                     | 138.69                 | 16.90         | 108.09          |
| WF-2                                                     | WF-2                                                                            | 21.15                  | 5.43          | 36.51           |
| TO WEST FORK<br>JIMMY CAMP<br>CREEK                      | WF-1, WF-2, & OS-1<br>(Basins are parallel so this<br>is a sum of WF-1 & WF-2.) | 159.84                 | 37.00         | 170.00          |
| MARKSHEFFEL<br>TRIBUTARY TO<br>JIMMY CAMP<br>CREEK MKT-1 | MKT-1                                                                           | 7.21                   | 1.63          | 10.95           |

| Trails at Aspen Ridg<br>Final Drainage Repo<br>Existing Conditions Basin Sun | ort             | ble         |               |
|------------------------------------------------------------------------------|-----------------|-------------|---------------|
| Area<br>ID                                                                   | Area<br>(Acres) | Q5<br>(cfs) | Q100<br>(cfs) |
| Big Johnson Reservoir / BJR-1                                                | 39.94           | 6.43        | 43.22         |
| Big Johnson Reservoir / BJR-2                                                | 8.85            | 2.13        | 14.32         |
| West Fork Jimmy Camp Creek<br>/ OS - 1                                       | 19.60           | 4.79        | 24.15         |
| West Fork Jimmy Camp Creek<br>/ WF-1                                         | 119.08          | 17.15       | 115.23        |
| West Fork Jimmy Camp Creek<br>/ WF-2                                         | 21.15           | 5.43        | 36.51         |
| Marksheffel Tributary to Jimmy Camp Creek /<br>MKT-1                         | 7.21            | 1.63        | 10.95         |




| REFERENCE<br>DRAWINGS                                                             |        |                     |                                                                                     | <u></u> <u>V</u> I | ERTICAL BENCHMARK: |  |
|-----------------------------------------------------------------------------------|--------|---------------------|-------------------------------------------------------------------------------------|--------------------|--------------------|--|
| X-886-PR SITE_F1<br>X-886-PR SITE<br>10415-Storm Base-2017<br>886-PR Legacy Drive |        |                     |                                                                                     |                    |                    |  |
| 886-PR Legacy Drive<br>X-886-EX SURVEY<br>X-Title(Drainage)                       | NO.    | DATE                | DESCRIPTION REVISIONS                                                               | BY B/              | ASIS OF BEARING:   |  |
|                                                                                   |        |                     | s F6)\200 Drainage\201 Drainage Reports\FDR\DWG\DR01-TAR FDR F4 (F6) dwg<br>(DATUM) |                    |                    |  |
|                                                                                   | PLOT D | ATE: Fri Aug 06, 20 | (DESCRIPTION/LOCATION)                                                              |                    |                    |  |

| PREPARED UNDER MY       |
|-------------------------|
| DIRECT SUPERVISION, FOR |
| AND ON BEHALF OF MATRIX |
|                         |



PLEASE SEE FOLLOWING SHEET DR-03 FOR SUB-BASIN AND DESIGN POINT SUMMARIES.



| REFERENCE<br>DRAWINGS                                                                                                                                   |                                                                                                                                               |                     |                        |  | VERTICAL BENCHMARK: |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|---------------------|------------------------|--|---------------------|
| X-886-PR-SITE - F4<br>X-886-PR-SITE - F3<br>X-886-PR SITE_F1<br>X-Title(Drainage)<br>X-886-PR SITE-F2<br>886-PR Legacy Drive-Rou<br>886-pr legacy drive |                                                                                                                                               |                     |                        |  |                     |
| 886-PR Legacy Drive-Rou                                                                                                                                 | ndabout DATE                                                                                                                                  | DATE DESCRIPTION BY |                        |  | BASIS OF BEARING:   |
| oou-prilegacy drive                                                                                                                                     | REVISIONS                                                                                                                                     |                     |                        |  |                     |
|                                                                                                                                                         | NAME: S:\21.886.038 (Trails F6)\200 Drainage\201 Drainage Reports\FDR\DWG\DR-02.dwg<br>PCP: Matrix.ctb<br>PLOT DATE: Thu Aug 26, 2021 11:17am |                     | BENCHMARK DATA(ELEV.)  |  |                     |
|                                                                                                                                                         |                                                                                                                                               |                     | (DATUM)                |  |                     |
|                                                                                                                                                         |                                                                                                                                               |                     | (DESCRIPTION/LOCATION) |  |                     |



| REFERENCE                                   |                                                                                                        |                                |                        |  | VERTICAL BENCHMARK: |  |  |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------|--------------------------------|------------------------|--|---------------------|--|--|
| DRAWINGS                                    |                                                                                                        |                                |                        |  |                     |  |  |
| X-886-PR-SITE - F6<br>X-886-PR-SITE - F3    |                                                                                                        |                                |                        |  |                     |  |  |
| X-886-PR SITE_F1<br>X-Title(Drainage)       |                                                                                                        |                                |                        |  | -                   |  |  |
| X-886-PR SITE-F2<br>886-PR Legacy Drive-Rou | ndabout                                                                                                | DATE                           | DESCRIPTION            |  | BASIS OF BEARING:   |  |  |
| 886-pr legacy drive                         | REVISIONS                                                                                              |                                |                        |  |                     |  |  |
|                                             |                                                                                                        |                                | BENCHMARK DATA(ELEV.)  |  |                     |  |  |
|                                             | NAME: S:\21.886.038 (Trails F6)\200 Drainage\201 Drainage Reports\FDR\DWG\DR-02.dwg<br>PCP: Matrix.ctb |                                | (DATUM)                |  | _                   |  |  |
|                                             | PLOT D                                                                                                 | DATE: Fri Aug 06, 2021 12:37pm | (DESCRIPTION/LOCATION) |  |                     |  |  |

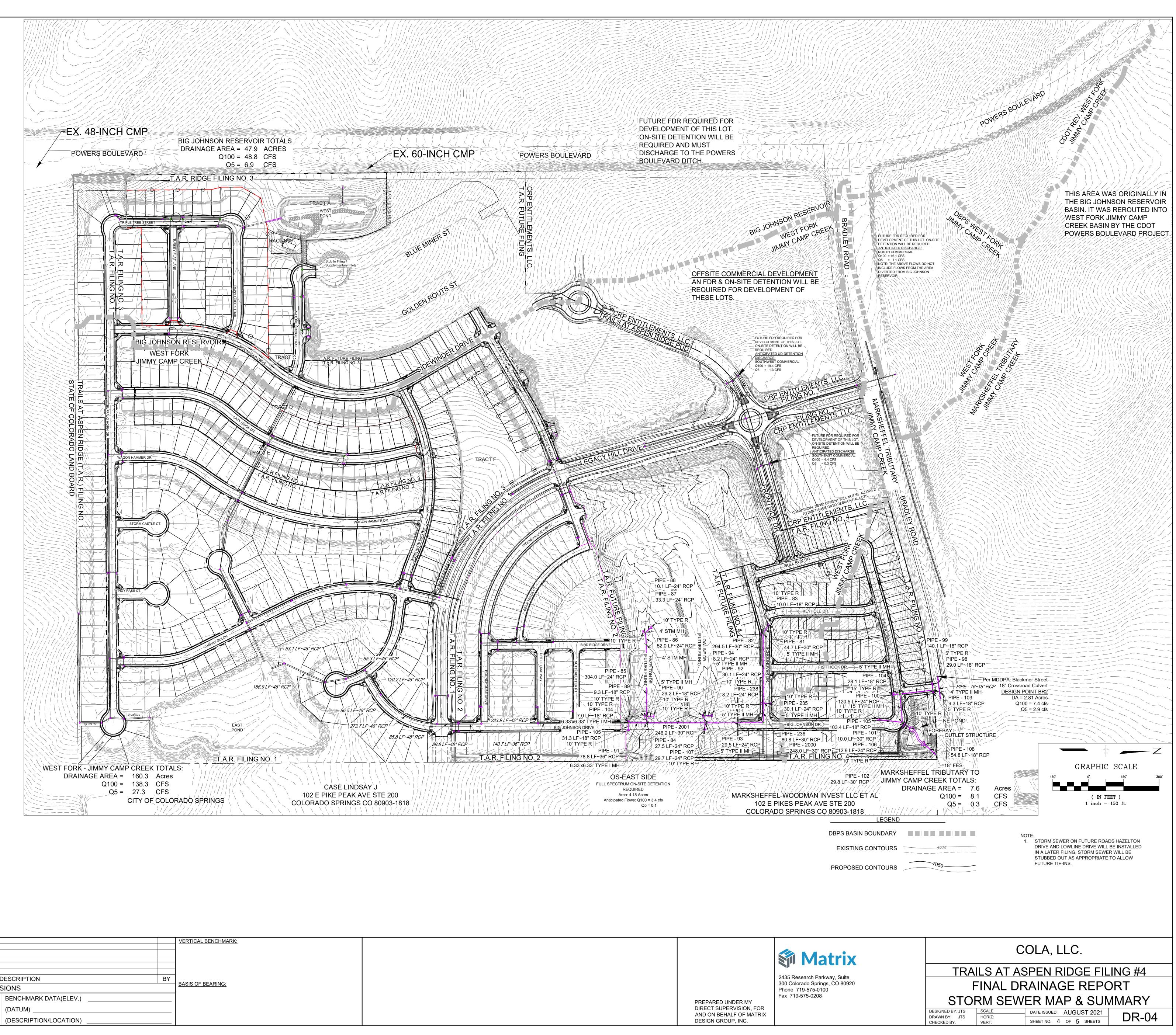
|                     | at Aspen Ridg        |            | ling I      | No. 2                |                  |                       |
|---------------------|----------------------|------------|-------------|----------------------|------------------|-----------------------|
|                     | StormCA              | _          | faco        | Storm                | Somor            |                       |
| Design Point        | Total<br>Drainage    |            |             |                      | Sewer            | Downstream            |
|                     | Area                 | <b>Q</b> 5 | Q100        | <b>Q</b> 5           | Q100             | Design Point          |
| 1-05                | 19.67                | 4.0        | 26.8        | -                    | -                | А                     |
| 1-A                 | 12.34                | 3.5        | 17.6        | -                    | -                | А                     |
| <u>2-A</u>          | 1.09                 | 2.7        | 5.2         | -                    | -                | A                     |
| 3-A<br>4-A          | 4.98<br>0.12         | 2.2        | 8.9         | -                    | -                | A                     |
| A                   | 38.20                | 0.6        | 1.0         | - 12.0               | <b>-</b><br>55.6 | AB                    |
| <u>1-B</u>          | 1.06                 | 1.8        | 4.1         | -                    | -                | B                     |
| В                   | 39.26                | -          | -           | 12.7                 | 57.1             | С                     |
| 1-C                 | 3.27                 | 5.9        | 12.9        | -                    | -                | С                     |
| 2-C                 | 1.19                 | 2.4        | 5.3         | -                    | -                | С                     |
| <u>3-C</u><br>4-C   | 4.60                 | 8.4        | 18.5<br>3.0 | -                    | -                | C<br>C                |
| <u> </u>            | 3.13                 | 1.6        | 12.5        | -                    | -                | C                     |
| <u> </u>            | 0.07                 | 0.3        | 0.6         | -                    | -                | C                     |
| 7+8-C               | 2.26                 | 4.2        | 9.2         | -                    | _                | С                     |
| С                   | 54.14                | -          | -           | 27.6                 | 90.2             | D                     |
| <u>1-D</u>          | 2.21                 | 1.6        | 5.2         | -                    | -                | D                     |
| D<br>1-E            | <u>56.34</u><br>6.43 | 0.0        | 0.0         | 28.1                 | 92.1             | E<br>E                |
| 2-E                 | 2.14                 | 3.9        | 8.7         | _                    | -                | E                     |
| E                   | 64.91                | -          | -           | 33.7                 | 108.8            | F                     |
| 1-F                 | 2.07                 | 2.7        | 6.0         | 2.7                  | 6.0              | 3-F                   |
| 2-F                 | 0.58                 | 1.1        | 2.5         | 1.6                  | 3.6              | 3-F                   |
| 3-F                 | 3.32                 | 2.3        | 5.0         | 3.8                  | 8.4              | 4-F                   |
| <u> </u>            | 3.89<br>6.16         | 1.1        | 2.5<br>7.8  | 5.0<br>6.6           | 11.1             | 5-F<br>6-F            |
| <u> </u>            | 7.16                 | <u> </u>   | 3.9         | 6.6<br>7.9           | 14.0             | 0-F<br>8-F            |
| 7-F                 | 5.06                 | 7.5        | 16.5        | 7.5                  | 16.5             | 8-F                   |
| 8-F                 | 13.07                | 1.5        | 3.3         | 16.2                 | 35.8             | F                     |
| <u> </u>            | 77.98                | -          | -           | 43.5                 | 131.0            | G                     |
| <u>1-G</u><br>G     | 1.11 79.09           | 2.1        | 4.6         | - 44.2               | - 132.7          | G<br>M                |
| <u> </u>            | 3.60                 | 5.9        | - 13.1      | 44.2                 | -                | <br>1-2 Н             |
| 2-H                 | 1.16                 | 1.9        | 4.2         | -                    | -                | 1-2 H                 |
| 1-2 H               | 4.76                 | -          | -           | 9.0                  | 19.8             | 1-4 H                 |
| 3-H                 | 2.97                 | 4.7        | 10.3        | -                    |                  | 1-4 H                 |
| 4-H                 | 0.92                 | 1.6        | 3.6         | -                    | -                | 1-4 H                 |
| <u>1-4 H</u><br>5-H | 8.65                 | 4.0        | -<br>8.9    | - 16.4               | - 36.1           | 1-6 H<br>1-6 H        |
| <u> </u>            | 2.42                 | 3.9        | 8.6         | _                    | -                | 1-6 H                 |
| 1-6 H               | 13.53                | -          | -           | 20.2                 | 44.9             | 1-8 H                 |
| 7 <b>-</b> H        | 2.03                 | 2.9        | 6.4         | -                    | -                | 1-8 H                 |
| 8-H                 | 0.97                 | 1.7        | 3.7         | -                    | -                | 1-8 H                 |
| <u>1-8 H</u>        | 16.52                | -          | -           | 23.3                 | 49.3             | 1-10 H                |
| <u>9-H</u><br>10-H  | 2.32                 | 3.3        | 8.0         | - 2.8                | - 6.5            | 1-10 H<br>1-10 H      |
| 10 H                | 1.33                 | 2.4        | 5.2         | -                    | -                | 1-10 H                |
| 1-10 H              | 21.50                | -          | -           | 29.6                 | 66.5             | 11-H                  |
| 11-H                | 3.42                 | 5.0        | 11.0        | -                    | -                | Н                     |
|                     | 24.92                | 10.0       | 00.5        | 37.4                 | 83.0             | M                     |
| <u>1-J</u><br>2-J   | 5.89<br>0.90         | 10.2       | 23.5<br>3.8 | -                    | -                | 1-2-J<br>1-2-J        |
| <u> </u>            | 6.79                 | 1./        | 5.0         | 5.6                  | 13.6             | 1-4-J                 |
| 3-J                 | 1.81                 | 3.7        | 8.1         | -                    | -                | 1-4-J                 |
| 4-J                 | 0.56                 | 1.2        | 2.6         | -                    | -                | 1-4-J                 |
| <u>1-4-J</u>        | 9.16                 | 2.0        |             | 14.8                 | 36.0             | 5-J                   |
| <u> </u>            | 1.65<br>1.20         | 3.0        | 6.6<br>5.4  | -                    | -                | 15-16-K<br>15-16-K    |
| 15-16-K             | 2.85                 | 2.4        | 5.4         | 4.1                  | 9.6              | 15-10-K<br>15-18-K    |
| 17-K                | 0.41                 | 0.9        | 1.9         | -                    | -                | 15-18-K               |
| 18-K                | 1.90                 | 3.5        | 7.8         | -                    | -                | 15-18-K               |
| 15-18-K             | 5.17                 |            |             | 8.2                  | 19.1             | 6-J                   |
| <u>19-K</u>         | 0.93                 | 1.8        | 4.0         | -                    | -                | 19-20-K               |
| 20-K<br>19-20-K     | 2.78                 | 5.4        | 11.8        | -<br>6.7             | - 15.6           | <u>19-20-К</u><br>5-Ј |
| 21-K                | 0.44                 | 0.9        | 2.0         | -                    | -                | 7-J                   |
| 22-K                | 2.18                 | 3.7        | 9.2         | -                    | -                | 7-J                   |
| 5-J                 | 12.87                | -          | -           | 23.8                 | 58.6             | 6-J<br>7 I            |
| <u> </u>            | 18.04                | -          | -           | 30.2                 | 72.6             | 7-J                   |
| <u></u>             | 20.66<br>0.78        | - 0.8      | - 2.3       | 30.8                 | - 73.9           | OS-2-K<br>OS-2-K      |
| 2-K                 | 1.58                 | 2.7        | 5.9         | -                    | -                | OS-2-K<br>OS-2-K      |
| OS-2-K              | 23.02                | -          | -           | 33.3                 | 81.2             | OS-12-K               |
| 3+4-K               | 1.23                 | 2.9        | 6.3         | -                    | -                | 3-4-K                 |
| OS-4-K<br>5-K       | 24.25<br>0.95        | - 2.0      | - 4.4       | 35.2                 | - 85.4           | OS-12-K<br>6-K        |
| <u> </u>            | 0.95                 | 2.0        | 4.4         | - 3.4                | - 7.6            | 0-K<br>5-8-K          |
| 7-K                 | 3.26                 | 2.9        | 7.9         | -                    | -                | 5-8-K                 |
| 8-K                 | 0.15                 | 0.5        | 0.9         | -                    | -                | 5-8-K                 |
| 5-8-K               | 5.08                 | -          | -           | 5.2                  | 12.0             | 5-10-K                |
| <u>9-K</u><br>10-K  | 1.16                 | 2.1        | 4.7         | -                    | -                | 9-10-K<br>9-10-K      |
| <u> </u>            | 2.26                 |            | - +./       | - 4.0                | - 8.8            | 9-10-K<br>5-10-K      |
| 5-10-K              | 7.34                 | -          | -           | 7.8                  | 18.0             | 5-12-K                |
| 11-K                | 1.39                 | 2.6        | 5.8         | -                    | -                | 5-12-K                |
| 12-K                | 0.67                 | 1.4        | 3.0         | -                    | -                | 5-12-K                |
| 5-12-K<br>OS-12-K   | 9.40<br>33.65        | -          | -           | 10.3<br>36.9         | 23.6<br>89.9     | OS-12-K<br>OS-14-K    |
| <u> </u>            | 0.09                 | 0.3        | - 0.6       | -                    | -                | OS-14-K<br>OS-14-K    |
| OS-E                | 4.15                 | 3.1        | 3.4         |                      | _                | 14-K                  |
| 14 <b>-</b> K       | 2.78                 | 5.0        | 11.0        | 5.1                  | 11.0             | OS-14-K               |
| OS-14-K             | 36.52                | -          | -           | 43.6                 | 100.9            | K                     |
| K                   | 40.23                | -          | -           | 48.0                 | 110.6            | 3-I                   |
| 1-I                 | 3.13                 | 6.9        | 12.3        | -                    | -                | К                     |
|                     |                      |            |             |                      |                  |                       |
| 2-I                 | 0.59 4.18            | 2.3<br>9.3 | 4.1         | - 8.7                | -<br>15.5        | K<br>M                |
| <b>3</b> _ <b>I</b> |                      | 12.0       | 10.0        |                      |                  |                       |
| <u>3-I</u><br>I     | 44.42                | -          | -           | 52.0                 | 120.3            | Μ                     |
| Ι                   | 44.42                | -          | -           |                      |                  | East Pond             |
|                     |                      | -          | -           | 52.0<br><b>154.5</b> | <b>383.7</b>     |                       |

|                                                                            | n nuge -                                                                                       | Filing No.                                                                            | . 6                                                  |
|----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                            | sed Condi<br>asin Sum                                                                          |                                                                                       |                                                      |
| Basin                                                                      | Area                                                                                           | Q5                                                                                    | Q100                                                 |
|                                                                            | acres                                                                                          | cfs                                                                                   | cfs                                                  |
| WEST FORK J                                                                | IMMY C                                                                                         | AMP CRI                                                                               | EEK                                                  |
| J1                                                                         | 5.89                                                                                           | 10.2                                                                                  | 23.5                                                 |
| J2                                                                         | 0.90                                                                                           | 1.7                                                                                   | 3.8                                                  |
| J3                                                                         | 1.81                                                                                           | 3.7                                                                                   | 8.1                                                  |
| J4                                                                         | 0.56                                                                                           | 1.2                                                                                   | 2.6                                                  |
| K15                                                                        | 1.65                                                                                           | 3.0                                                                                   | 6.6                                                  |
| K16                                                                        | 1.20                                                                                           | 2.4                                                                                   | 5.4                                                  |
| K17                                                                        | 0.41                                                                                           | 0.9                                                                                   | 1.9                                                  |
| K18                                                                        | 1.90                                                                                           | 3.5                                                                                   | 7.8                                                  |
| K19                                                                        | 0.93                                                                                           | 1.8                                                                                   | 4.0                                                  |
| K20                                                                        | 2.78                                                                                           | 5.4                                                                                   | 11.8                                                 |
| K21                                                                        | 0.44                                                                                           | 0.9                                                                                   | 2.0                                                  |
| K22                                                                        | 2.18                                                                                           | 3.7                                                                                   | 9.2                                                  |
|                                                                            |                                                                                                | MAKI                                                                                  |                                                      |
| TRAILS AT ASPE<br>(INTER<br>MARKSHE)<br>TO JIMM                            | N RIDGI<br>NAL PH<br>FFEL TR                                                                   | ASE 6)<br>IBUTAR                                                                      |                                                      |
| (INTER<br>MARKSHE                                                          | N RIDGI<br>NAL PH<br>FFEL TR                                                                   | E FILINC<br>ASE 6)<br>IBUTAR                                                          | Y                                                    |
| (INTER<br>MARKSHE<br>TO JIMM                                               | N RIDG<br>NAL PH<br>FFEL TR<br>Y CAMP                                                          | E FILINO<br>ASE 6)<br>IBUTAR<br>CREEK                                                 |                                                      |
| (INTER<br>MARKSHE<br>TO JIMM                                               | N RIDG<br>NAL PH<br>FFEL TR<br>Y CAMP<br>Area                                                  | E FILING<br>ASE 6)<br>IBUTAR<br>CREEK<br>Q5                                           | Y<br>Q100                                            |
| (INTER<br>MARKSHE<br>TO JIMM<br><b>Basin</b>                               | N RIDG<br>NAL PH<br>FFEL TR<br>Y CAMP<br>Area<br>acres                                         | E FILING<br>ASE 6)<br>IBUTAR<br>CREEK<br>Q5<br>cfs                                    | Y<br>Q100<br>cfs                                     |
| (INTER<br>MARKSHE<br>TO JIMM<br><b>Basin</b><br>L1                         | N RIDG<br>NAL PH<br>FFEL TR<br>Y CAMP<br>Area<br>acres<br>2.23                                 | E FILING<br>ASE 6)<br>IBUTAR<br>CREEK<br>Q5<br>cfs<br>4.1                             | Y<br>Q100<br>cfs<br>9.2                              |
| (INTER<br>MARKSHE<br>TO JIMM<br>Basin<br>L1<br>L2                          | N RIDG<br>NAL PH<br>FFEL TR<br>Y CAMP<br>Area<br>acres<br>2.23<br>2.91                         | E FILING<br>ASE 6)<br>IBUTAR<br>CREEK<br>Q5<br>cfs<br>4.1<br>5.9                      | Y<br>Q100<br>cfs<br>9.2<br>13.0                      |
| (INTER<br>MARKSHE<br>TO JIMM<br>Basin<br>L1<br>L2<br>L3                    | N RIDG<br>NAL PH<br>FFEL TR<br>Y CAMP<br>Area<br>acres<br>2.23<br>2.91<br>1.43                 | E FILING<br>ASE 6)<br>IBUTAR<br>CREEK<br>Q5<br>cfs<br>4.1<br>5.9<br>3.0               | Y<br>Q100<br>cfs<br>9.2<br>13.0<br>6.6               |
| (INTER<br>MARKSHEL<br>TO JIMM<br>Basin<br>L1<br>L2<br>L3<br>L4             | N RIDG<br>NAL PH<br>FFEL TR<br>Y CAMP<br>Area<br>acres<br>2.23<br>2.91<br>1.43<br>1.70         | E FILING<br>ASE 6)<br>IBUTAR<br>CREEK<br>Q5<br>cfs<br>4.1<br>5.9<br>3.0<br>3.3        | Y<br>Q100<br>cfs<br>9.2<br>13.0<br>6.6<br>7.6        |
| (INTER<br>MARKSHEL<br>TO JIMM<br>Basin<br>L1<br>L2<br>L3<br>L3<br>L4<br>L5 | N RIDG<br>NAL PH<br>FFEL TR<br>Y CAMP<br>Area<br>acres<br>2.23<br>2.91<br>1.43<br>1.70<br>0.10 | E FILING<br>ASE 6)<br>IBUTAR<br>CREEK<br>Q5<br>cfs<br>4.1<br>5.9<br>3.0<br>3.3<br>0.2 | Y<br>Q100<br>cfs<br>9.2<br>13.0<br>6.6<br>7.6<br>0.5 |

| TRAILS AT    | PROPOSED DESIGN POINT SUMMARY<br>ASPEN RIDGE FILING NO. 4 (INTERNAL | PHASE 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |               |                 |
|--------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-----------------|
| Design Point | Sub-Basins                                                          | Total<br>Area (ac.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Q(5)<br>(cfs) | Q(100)<br>(cfs) |
|              | Marksheffel Tributary to Jimmy Camp Creek                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |
| SUB-BASIN L5 | SUB-BASIN L5                                                        | 0.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.23          | 0.50            |
| SUB-BASIN L6 | SUB-BASIN L6                                                        | 0.05                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.11          | 0.24            |
| 1-L          | SUB-BASINS L5 & L6                                                  | 0.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.34          | 0.74            |
| SUB-BASIN L2 | SUB-BASIN L2                                                        | 2.91                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.90          | 12.99           |
| 2-L          | -                                                                   | 3.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.19          | 13.64           |
| 3-L          |                                                                     | 1.43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.98          | 6.57            |
| 4-L          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |
| 5-L          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |
| 6-L          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |
| 7-L          |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               |                 |
| 8-L          |                                                                     | 9.30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.39          | 8.77            |
| 1 1          |                                                                     | <b>-</b> 00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 10.01         | 00.54           |
| <u>1-J</u>   |                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |               | -               |
| 2-Ј          | 5                                                                   | 0.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.72          | 3.78            |
| 1-2-J        | SUB-BASINS J1 & J2                                                  | 6.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 11.87         | 27.20           |
| 3-J          | SUB-BASIN J3                                                        | 1.81                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.68          | 8.10            |
| 4-J          | SUB-BASIN J4                                                        | 0.56                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.16          | 2.55            |
| 1-4-J        | SUB-BASINS J1 TO J4                                                 | Sub-Basins         Total<br>Area (ac.)         Q(5<br>(cfs)           ssheffel Tributary to Jimmy Camp Creek         0.10         0.22           SUB-BASIN L5         0.10         0.22           SUB-BASIN L5         0.10         0.23           SUB-BASIN L6         0.05         0.11           SUB-BASIN L2         2.91         5.91           SUB-BASIN L2         2.92         9           SUB-BASIN L2         1.43         2.99           SUB-BASIN L3, 1.5 & L6         3.06         6.19           SUB-BASINS L2, L3, 1.5 & L6         4.49         9.06           SUB-BASINS L1-L6         8.44         9.00           SUB-BASINS L1-L6         8.44         9.00           SUB-BASINS L1-L6         8.49         9.00           SUB-BASIN S L1-L6         8.49         9.00           SUB-BASIN S L1-L7         9.09         15.5           NE POND (SUB-BASIN S L1-L7)         9.09         0.20           SITE DISCHARGE         9.00         1.72           SUB-BASIN J1         5.89         10.2           SUB-BASIN J2         0.90         1.72           SUB-BASIN S J1 & J2         6.79         11.8           SUB-BASIN S J1 & J2         6.79 | 14.63         | 33.18           |
| 15-K         | SUB-BASIN K15                                                       | 1.65                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.99          | 6.59            |
| 16-K         | SUB-BASIN K16                                                       | 1.20                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.44          | 5.37            |
| 15-16-K      | SUB-BASINS K15 & K16                                                | 2.85                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 5.79          | 12.76           |
| 17-K         | SUB-BASIN K17                                                       | 0.41                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.87          | 1.91            |
| 18-K         | SUB-BASIN K18                                                       | 1.90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.54          | 7.80            |
| 15-18-K      | SUB-BASINS K15 & K18                                                | 5.17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 10.49         | 23.11           |
| 19-K         | SUB-BASIN K19                                                       | SUB-BASIN J3         1.81         3.68         8.10           SUB-BASIN J4         0.56         1.16         2.55           SUB-BASINS J1 TO J4         9.16         14.63         33.18           SUB-BASIN K15         1.65         2.99         6.59           SUB-BASIN K15         1.65         2.99         6.59           SUB-BASIN K16         1.20         2.44         5.37           SUB-BASIN K16         2.85         5.79         12.76           SUB-BASIN K16         2.85         5.79         12.76           SUB-BASIN K17         0.41         0.87         1.91           SUB-BASIN K18         1.90         3.54         7.80           SUB-BASIN K18         5.17         10.49         23.11           SUB-BASIN K19         0.93         1.82         4.02           SUB-BASIN K20         2.78         5.35         11.79           SUB-BASIN K19 & K20         3.71         7.15         15.74                                                                                                                                                                                                                                               |               |                 |
| 20-K         | SUB-BASIN K20                                                       | 2, L3, L5 & L64.499.0820.01NS L1-L6 $8.42$ $15.64$ $34.94$ -BASINS L1-L7) $9.09$ $15.53$ $35.92$ DISCHARGE $9.09$ $0.20$ $7.90$ CHARGE $9.09$ $0.20$ $7.90$ CHARGE $9.09$ $0.20$ $7.90$ CHARGE $9.30$ $0.39$ $8.77$ mmy Camp Creek $SIN J1$ $5.89$ $10.21$ $23.54$ SIN J1 $5.89$ $10.21$ $23.54$ SIN J2 $0.90$ $1.72$ $3.78$ NS J1 & J2 $6.79$ $11.87$ $27.20$ SIN J3 $1.81$ $3.68$ $8.10$ SIN J4 $0.56$ $1.16$ $2.55$ SJ 1 TO J4 $9.16$ $14.63$ $33.18$ SIN K15 $1.65$ $2.99$ $6.59$ SIN K16 $1.20$ $2.44$ $5.37$ SIN K16 $1.20$ $2.44$ $5.37$ SIN K17 $0.41$ $0.87$ $1.91$ SIN K18 $1.90$ $3.54$ $7.80$ SIN K18 $5.17$ $10.49$ $23.11$ SIN K19 $0.93$ $1.82$ $4.02$ SIN K20 $2.78$ $5.35$ $11.79$ SIN K21 $0.44$ $0.93$ $2.04$ SIN K22 $2.18$ $3.67$ $9.23$ -J4 & K15-K20 $12.87$ $21.48$ $48.30$ -J4 & K15-K20 $12.87$ $21.48$ $48.30$                                                                                                                                                                                                                                                                                                                               |               |                 |
| 19-20-K      | SUB-BASINS K19 & K20                                                | 3.71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7.15          | 15.74           |
| 21-K         | SUB-BASIN K21                                                       | 0.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.93          | 2.04            |
| 22-K         | SUB-BASIN K22                                                       | 2.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.67          | 9.23            |
| 5-J          | SUB-BASINS J1-J4, K19 & K20                                         | 12.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 21.48         | 48.30           |
| 6-J          | SUB-BASINS J1-J4 & K15-K20                                          | 18.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 26.65         | 59.57           |
| 7-J          | SUB-BASINS J1-J4 & K15-K22                                          | 20.66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 30.05         | 67.92           |

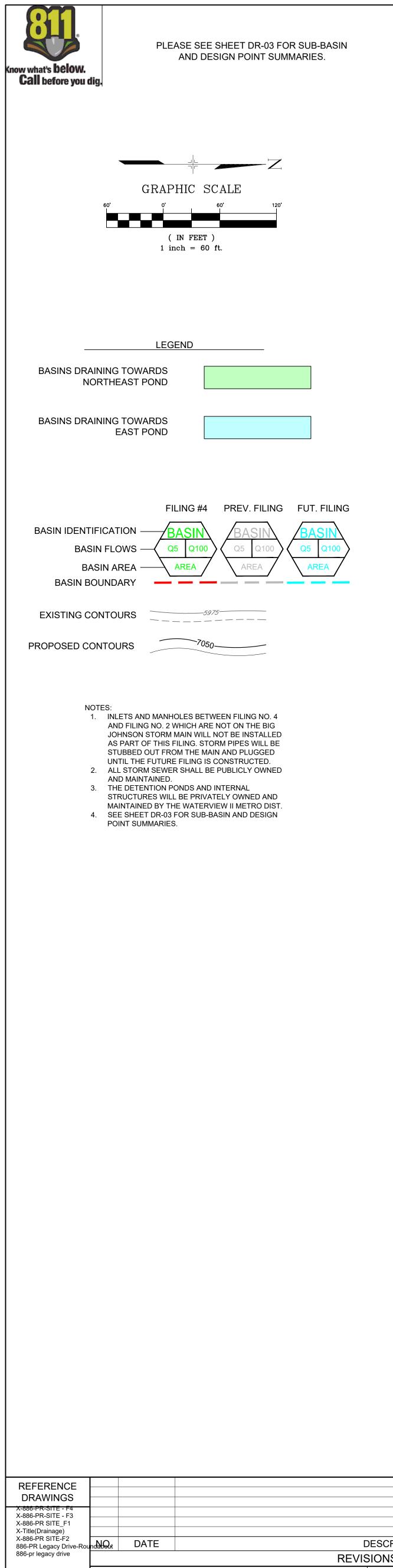


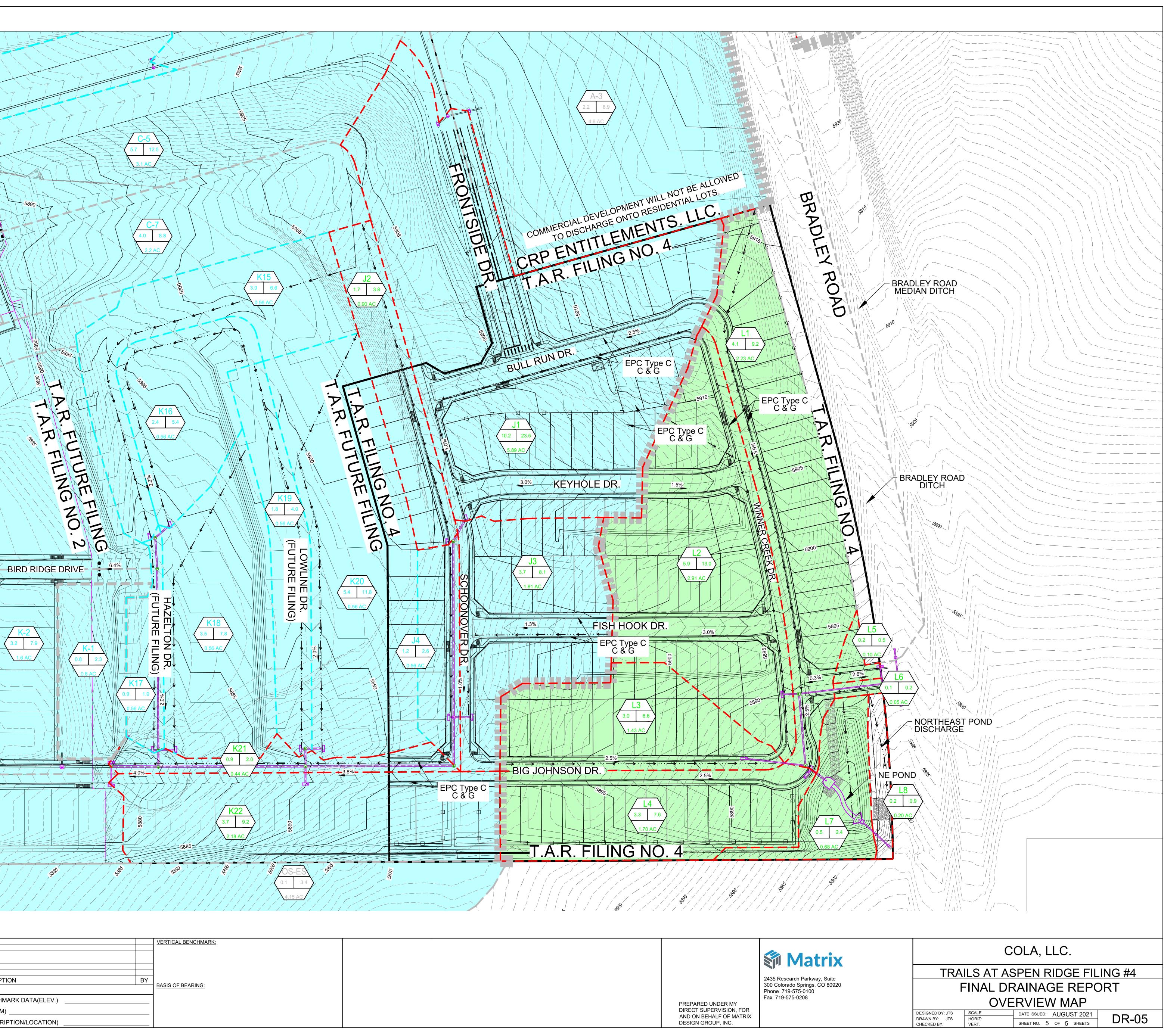
COLA, L TRAILS AT ASPEN R FINAL DRAINAG SUB-BASIN & DESIGN DESIGNED BY: JTSSCALEDRAWN BY:JTSHORIZ:HORIZ:CHECKED BY:VERT: DATE ISSUED: SHEET NO. 3 


PREPARED UNDER MY DIRECT SUPERVISION, FOR AND ON BEHALF OF MATRIX DESIGN GROUP, INC.

| LLC.                         |         |
|------------------------------|---------|
| RIDGE FIL                    | .ING #4 |
| GE REPO                      | DRT     |
| POINT S                      | SUMMARY |
| AUGUST 2021<br>3 OF 5 SHEETS | DR-03   |
|                              |         |




| PIPE SUMMARY TABLE PIPE NAME PIPE DESCRIPTION PIPE SLOPE PIPE LENGTH CHORD LENGTH |                  |            |             |              |  |  |  |  |  |
|-----------------------------------------------------------------------------------|------------------|------------|-------------|--------------|--|--|--|--|--|
| PIPE NAME                                                                         | PIPE DESCRIPTION | PIPE SLOPE | PIPE LENGTH | CHORD LENGTH |  |  |  |  |  |
| PIPE - 81                                                                         | 30" RCP          | 1.00%      | 44.70       | 44.70        |  |  |  |  |  |
| PIPE - 82                                                                         | 30" RCP          | 1.00%      | 294.47      | 294.47       |  |  |  |  |  |
| PIPE - 83                                                                         | 18" RCP          | 0.98%      | 9.99        | 9.99         |  |  |  |  |  |
| PIPE - 84                                                                         | 24" RCP          | 2.00%      | 27.54       | 27.54        |  |  |  |  |  |
| PIPE - 85                                                                         | 24" RCP          | 1.67%      | 303.98      | 303.98       |  |  |  |  |  |
| PIPE - 86                                                                         | 24" RCP          | 2.00%      | 52.01       | 52.01        |  |  |  |  |  |
| PIPE - 87                                                                         | 24" RCP          | 1.00%      | 33.27       | 33.27        |  |  |  |  |  |
| PIPE - 88                                                                         | 24" RCP          | 0.99%      | 10.05       | 10.05        |  |  |  |  |  |
| PIPE - 89                                                                         | 18" RCP          | 4.99%      | 9.26        | 9.26         |  |  |  |  |  |
| PIPE - 90                                                                         | 18" RCP          | 4.97%      | 29.17       | 29.17        |  |  |  |  |  |
| PIPE - 91                                                                         | 36" RCP          | 2.83%      | 78.84       | 78.84        |  |  |  |  |  |
| PIPE - 92                                                                         | 24" RCP          | 1.00%      | 30.14       | 30.14        |  |  |  |  |  |
| PIPE - 93                                                                         | 24" RCP          | 1.88%      | 29.46       | 29.46        |  |  |  |  |  |
| PIPE - 94                                                                         | 24" RCP          | 1.06%      | 8.17        | 8.17         |  |  |  |  |  |
| PIPE - 104                                                                        | 18" RCP          | 2.00%      | 7.01        | 7.01         |  |  |  |  |  |
| PIPE - 105                                                                        | 18" RCP          | 0.99%      | 31.32       | 31.32        |  |  |  |  |  |
| PIPE - 107                                                                        | 24" RCP          | 0.97%      | 29.72       | 29.72        |  |  |  |  |  |
| PIPE - 235                                                                        | 24" RCP          | 4.08%      | 30.14       | 30.14        |  |  |  |  |  |
| PIPE - 236                                                                        | 30" RCP          | 1.00%      | 80.81       | 80.81        |  |  |  |  |  |
| PIPE - 238                                                                        | 24" RCP          | 3.71%      | 8.20        | 8.20         |  |  |  |  |  |
| PIPE - 2000                                                                       | 30" RCP          | 3.21%      | 248.03      | 248.03       |  |  |  |  |  |
| PIPE - 2001                                                                       | 30" RCP          | 3.90%      | 246.18      | 246.18       |  |  |  |  |  |


| <b></b>    |                    |            |             |              |  |  |  |  |  |
|------------|--------------------|------------|-------------|--------------|--|--|--|--|--|
|            | PIPE SUMMARY TABLE |            |             |              |  |  |  |  |  |
| PIPE NAME  | PIPE DESCRIPTION   | PIPE SLOPE | PIPE LENGTH | CHORD LENGTH |  |  |  |  |  |
| PIPE - 98  | 18" RCP            | 0.50%      | 29.04       | 29.04        |  |  |  |  |  |
| PIPE - 99  | 18" RCP            | 0.50%      | 140.10      | 140.10       |  |  |  |  |  |
| PIPE - 100 | 24" RCP            | 0.66%      | 120.47      | 120.47       |  |  |  |  |  |
| PIPE - 101 | 30" RCP            | 0.50%      | 10.03       | 10.03        |  |  |  |  |  |
| PIPE - 102 | 30" RCP            | 3.44%      | 29.75       | 29.75        |  |  |  |  |  |
| PIPE - 103 | 18" RCP            | 0.49%      | 9.31        | 9.31         |  |  |  |  |  |
| PIPE - 104 | 18" RCP            | 3.91%      | 28.13       | 28.13        |  |  |  |  |  |
| PIPE - 105 | 18" RCP            | 0.50%      | 103.39      | 103.39       |  |  |  |  |  |
| PIPE - 106 | 24" RCP            | 5.78%      | 12.85       | 12.85        |  |  |  |  |  |
| PIPE - 108 | 18" RCP            | 0.49%      | 54.77       | 54.77        |  |  |  |  |  |



| REFERENCE<br>DRAWINGS                                                                   |                                                                               |                                 |  | VERTICAL BENCHMARK: |  |
|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|---------------------------------|--|---------------------|--|
| X-886-PR-SITE - F4<br>X-886-PR-SITE - F3<br>X-886-PR SITE F1                            |                                                                               |                                 |  |                     |  |
| X-Title(Drainage)<br>X-886-PR SITE-F2<br>886-PR Legacy Drive-Roi<br>886-pr legacy drive | Dundabout DATE                                                                | t DATE DESCRIPTION              |  | BASIS OF BEARING:   |  |
|                                                                                         | NAME: S:\21.886.038 (Trails F6)\200 Drainage\201 Drainage Reports\FDR\DWG\DR- | REVISIONS BENCHMARK DATA(ELEV.) |  |                     |  |
|                                                                                         | PCP: Matrix.ctb<br>PLOT DATE: Thu Aug 26, 2021 11:19am                        |                                 |  |                     |  |

|        |                                                    | <b>Matrix</b>                                                                                            | COLA, I                                                                        |
|--------|----------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|
| PREPAF | PREPARED UNDER MY                                  | 2435 Research Parkway, Suite<br>300 Colorado Springs, CO 80920<br>Phone 719-575-0100<br>Fax 719-575-0208 | TRAILS AT ASPEN F<br>FINAL DRAINA<br>STORM SEWER MA                            |
|        | DIRECT SUPERVISION, FOR<br>AND ON BEHALF OF MATRIX |                                                                                                          | DESIGNED BY: JTS     SCALE     DATE ISSUED:       DRAWN BY:     JTS     HORIZ: |





| REFERENCE<br>DRAWINGS                                                                                                                                    |                                                                                                                                                                                                              |      |              |                        |    | VERTICAL BENCHMARK: |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|--------------|------------------------|----|---------------------|--|
| X-886-PR-SITE - F4<br>X-886-PR-SITE - F3<br>X-886-PR SITE_F1<br>X-Title(Drainage)<br>X-886-PR SITE-F2<br>886-PR Legacy Drive-Roun<br>886-pr legacy drive |                                                                                                                                                                                                              |      |              |                        |    |                     |  |
| 886-PR Legacy Drive-Rour                                                                                                                                 | dabQut                                                                                                                                                                                                       | DATE |              | DESCRIPTION            | BY |                     |  |
| 886-pr legacy drive                                                                                                                                      | REVISIONS                                                                                                                                                                                                    |      |              |                        |    | BASIS OF BEARING:   |  |
|                                                                                                                                                          |                                                                                                                                                                                                              |      |              | BENCHMARK DATA(ELEV.)  |    |                     |  |
|                                                                                                                                                          | NAME: S:\21.886.038 (Trails F6)\200 Drainage\201 Drainage Reports\FDR\DWG\DR-05.dwg       (DATUM)         PCP: Matrix.ctb       (DATUM)         PLOT DATE: Thu Aug 26, 2021 11:24am       (DESCRIPTION/LOCA) |      |              | (DATUM)                |    |                     |  |
|                                                                                                                                                          |                                                                                                                                                                                                              |      | 2021 11:24am | (DESCRIPTION/LOCATION) |    |                     |  |

