

FINAL DRAINAGE REPORT FOR ESTATES AT CATHEDRAL PINES, EL PASO COUNTY, COLORADO PCD File No. SF23-XXX

October 2023

Prepared For:

Gregg & Elaine Cawlfield Villagree Development, LLC 5710 Vessey Road Colorado Springs, CO 80908 (719) 413-6900

Prepared By:

JR ENGINEERING

5475 Tech Center Drive Colorado Springs, CO 80919 (719) 593-2593

Job No. 25260.00

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Ryan Burns, Colorado P.E. # 0054412	
For and On Behalf of JR Engineering, LLC	

Date

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

Villagree Development, LLC

By:

Gregg & Elaine Cawlfield

Title: Address:

5710 Vessey Road Colorado Springs CO 80908

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

Joshua Palmer, P.E. County Engineer/ ECM Administrator

Conditions:

Date

CONTENTS

PURPOSE	1
GENERAL LOCATION AND DESCRIPTION	1
GENERAL LOCATION DESCRIPTION OF PROPERTY FLOODPLAIN STATEMENT	1
EXISTING DRAINAGE CONDITIONS	2
Major Basin Descriptions Proposed Conveyance Proposed Sub-basin Drainage	4
DRAINAGE DESIGN CRITERIA	9
Development Criteria Reference Hydrologic Criteria Hydraulic Criteria	9
DRAINAGE FACILITY DESIGN	10
GENERAL CONCEPT. SPECIFIC DETAILS Four Step Process to Minimize Adverse Impacts of Urbanization Water Quality Erosion Control Plan Operation & Maintenance Drainage and Bridge Fees. Construction Cost Opinion	10 11 11 13 13 13
SUMMARY	14
REFERENCES:	15

APPENDICES

- A. Figures and Exhibits
- B. Hydrologic Calculations
- C. Hydraulic Calculations
- D. Reference Materials
- E. Drainage Maps

Purpose

This document is the Final Drainage Report for Estates at Cathedral Pines. The purpose of this report is to identify on-site and off-site drainage patterns, culverts, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities.

GENERAL LOCATION AND DESCRIPTION

General Location

The proposed Estates at Cathedral Pines development, hereby known as "the site", is located within the southeast quarter of Section 2, Township 12 South, Range 66 West of the 6th Prime Meridian, El Paso County, Colorado. The proposed development is 35.09 acres containing approximately 8 - 2.7 to 4.1 acre single-family lots, 2.5 acres of open space, and associated infrastructure. The site is bounded on the east by Winslow Drive, by Cathedral Pines Subdivision Filing No. 1 to the east and north, properties at 13855 Highway 83 and 13580 Bridle Bit Road to the west, and by Falcon Forest Subdivision Filing No. 2 to the south. A vicinity map of the area is presented in Appendix A.

Description of Property

The site is currently covered by an existing forested area with a large portion that has suffered damage from a fire. There is an existing grove of trees in the middle of the property that are healthy with little to no fire damage. The proposed development will save as many healthy trees as possible. Multiple natural drainage paths run through the site and range from poorly-defined to well-defined. The existing ground cover is sparse vegetation and open space with slopes that range from 3% to 30% generally draining from east to west.

Soils located within the site as shown on the USDA Natural Resources Conservation Service Soil Survey Map are kettle gravelly loamy sand. These soils are characterized as Hydrologic Soil Group B, which have a moderate infiltration rate when thoroughly wet and have a moderate rate of water transmission. A soils map is included in Appendix A of this report.

There are no major drainageways or known irrigation facilities located on the project site. There are no known utilities located within the project boundary. There is an existing trail that borders the property to the east.

Floodplain Statement

The FEMA Flood Insurance Rate Map (FIRM) Panel No. 08041C0315G, dated December 7, 2018 is the best representation of the project site. The site is located within Zone X which is defined as areas determined to be outside the 0.2% annual chance floodplain, and therefore there is little threat of a flood. See the FIRM map in Appendix A.

EXISTING DRAINAGE CONDITIONS

Major Basin Descriptions

The site lies within the Black Squirrel Creek Drainage Basin. The DPBS for this basin was prepared by URS Corporation and dated January 1989. See excerpts in Appendix D for more information. The Black Squirrel Creek DBPS modeled the site assuming residential development of 5-acre single-family lots. The proposed development is composed of 2.7 to 4.1 acre single-family lots, which is denser than was originally assumed. This site will detain major runoff to historic rates to prevent any negative impacts to the existing downstream drainage. The DBPS identified major channel system improvements with grade control structures within the reaches adjacent to the site. There are no proposed major DBPS improvements proposed within the project site.

Existing Sub-basin Drainage

Existing basin drainage patterns are generally from east to west by way of sheet flow overland and then concentrated flow within natural channels. There are two locations where off-site flows enters onto the site. First, off-site flows enter the property at design point (DP) P1 via an 18" RCP pipe from an existing pond part of the Cathedral Pines Subdivision Filing No.1 development, and flows east to west through an existing natural channel. A 24" RCP pipe adjacent to the existing Cathedral Pines Subdivision Filing No. 1 pond crosses onto the site, which conveys the pond emergency flows from the spillway onto the site. See excerpts of the Cathedral Pines Subdivision Filing No. 1 FDR and as-built construction drawings in Appendix D. From a visual inspection during a site visit, the existing pond and outfall onto the site appears to be functioning as intended. Second, off-site flows enter the site along the southern property line and are routed through the site via an existing natural channel. The off-site basin is a large lot residential single-family home and is predominantly composed of undeveloped land. Large portions of these basins are heavily wooded.

The existing basin delineation as shown in the existing drainage map in Appendix E is as follows:

Basin EX-1 is approximately 0.84 acres and in its existing condition is undeveloped land. Runoff $(Q_5=0.3 \text{ cfs}, Q_{100}=1.8 \text{ cfs})$ flows overland towards DP1 and off-site onto the adjacent Cathedral Pines Subdivision Filing No. 1 property to the north. For applicable excerpts from the Drainage Report and Plan for Cathedral Pines Subdivision Filing No. 1, refer to Appendix D.

Basin EX-2 is approximately 3.16 acres and in its existing condition is undeveloped land. Runoff $(Q_5=0.8 \text{ cfs}, Q_{100}=5.6 \text{ cfs})$ flows overland towards DP2 and off-site onto the adjacent Cathedral Pines Subdivision Filing No. 1 property to the north. For applicable excerpts from the Drainage Report and Plan for Cathedral Pines Subdivision Filing No. 1, refer to Appendix D.

Basin EX-3 is approximately 4.89 acres and in its existing condition is undeveloped land, and existing drainageways (both poorly and well-defined). Runoff flows will follow the historic path east

to west overland and in swales towards DP3 ($Q_5=1.1$ cfs, $Q_{100}=7.5$ cfs). Flows continue off-site onto the property at 13855 Highway 83 to the west.

Basin EX-4 is approximately 2.67 acres and in its existing condition is undeveloped land, and existing drainageways (both poorly and well-defined). Runoff flows will follow the historic path east to west overland towards DP4 ($Q_5=0.7$ cfs, $Q_{100}=4.6$ cfs). Flows continue off-site onto the property at 13580 Bridle Bit Road to the west.

Basin EX-5 is approximately 8.29 acres and in its existing condition is undeveloped land, existing drainageways (both poorly and well-defined), and a portion of Winslow Drive. Runoff flows will follow the historic path east to west overland towards DP5 ($Q_5=2.3$ cfs, $Q_{100}=14.4$ cfs). Flows continue off-site onto the property at 13580 Bridle Bit Road to the west.

Basin EX-6 is approximately 4.74 acres and in its existing condition is undeveloped land, existing drainageways (both poorly and well-defined), and a portion of Winslow Drive. Runoff flows will follow the historic path east to west overland towards DP6 ($Q_5=1.5$ cfs, $Q_{100}=9.6$ cfs). Flows continue off-site onto the property at 13580 Bridle Bit Road to the west.

Basin EX-7 is approximately 8.06 acres and in its existing condition is undeveloped land, existing drainageways (both poorly and well-defined), and a portion of Winslow Drive. Runoff flows will follow the historic path east to west overland towards DP7 ($Q_5=2.3 \text{ cfs}$, $Q_{100}=14.0 \text{ cfs}$). The existing Cathedral Pines Subdivision Filing No. 1 pond located to the east of Winslow Drive releases flows within the existing 18" RCP at DPP1 ($Q_5=3.7 \text{ cfs}$, $Q_{100}=10.9 \text{ cfs}$). Flows from DPP1 enters the existing swale and combines with DP7 at DP7.1 ($Q_5=6.0 \text{ cfs}$, $Q_{100}=24.9 \text{ cfs}$). DP7.1 flows continue off-site onto the property at 13580 Bridle Bit Road to the west and combine at DP8.2. As mentioned above, the 24" RCP emergency spillway overflow culvert from Cathedral Pines Subdivision Filing No. 1 also enters the existing swale through the site should the exiting pond overflow.

Basin OS-1 is approximately 2.44 acres and in its existing condition is comprised of part of a singlefamily lot with a house, asphalt drive, and a portion of Winslow Drive. This is an off-site basin to the south, a part of the Falcon Forest Subdivision Filing No. 2 development. Due to the basin location off-site, no work is proposed within this basin. Runoff flows will follow the historic path east to west overland to the existing natural channel at DPO1 ($Q_5=1.7$ cfs, $Q_{100}=6.7$ cfs) where it will enter Basin EX-8 and follow the drainage patterns of the basin as described below. Flows will combine with DP8 at DP8.1.

Basin EX-8 is approximately 3.64 acres and in its existing condition is undeveloped land, existing drainageways (both poorly and well-defined), and a portion of Winslow Drive. Runoff flows will follow the historic path east to west overland towards DP8 ($Q_5=1.1 \text{ cfs}$, $Q_{100}=6.5 \text{ cfs}$). DP8 flows will combine with DPO1 at DP8.1 ($Q_5=2.3 \text{ cfs}$, $Q_{100}=11.5 \text{ cfs}$) and continue off-site onto the property at 13580 Bridle Bit Road to the west and combines at DP8.2 ($Q_5=8.2 \text{ cfs}$, $Q_{100}=36.1 \text{ cfs}$). Flows continue within the existing swale flowing west.

Proposed Conveyance

Developed flows are collected in existing natural swales, proposed roadside ditches, and proposed culverts which convey water to the proposed detention areas on the north and south ends of the site. As previously noted, there are large portions of the site that have experienced fire damage. A grove of trees located centrally on the site are considered healthy due to them having little to no fire damage. Therefore, a design goal of the proposed drainage conveyance was to limit the disturbance to the healthy trees and natural aesthetics of the site.

Roadside swales will be designed per the typical county rural roadside ditch section. Proposed swale sections will be designed to ensure they are stable and have required capacity to satisfy criteria. A swale is considered stable with a velocity of 5 ft/s or less. Where velocities exceed 5 ft/s, swales will be reinforced with the specified SC250 VMax TRM (turf reinforcement mat) product (or approved equivalent) shown in Appendix C. Specific locations where the TRM is required in swale sections is shown in the Grading and Erosion Control Construction Documents. To ensure capacity, swales will have a minimum of 1-ft. of freeboard over the water surface for flows anticipated in a 100-year storm event. Natural drainage swales are analyzed by the tributary flows and physical geometry to ensure stability and sufficient capacity for the proposed flows. Detailed swale calculations, sections, and TRM specifications can all be found in Appendix C.

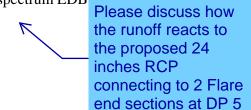
In addition to the swales, proposed culverts also convey flows under roadways. Culverts under proposed local paved roadways will be sized to ensure that flows will not over-top the roadway. The outlets of the proposed culverts will be protected with riprap to limit potential erosion. The riprap protection sizing calculations for the proposed culverts are located in Appendix C.

Proposed Sub-basin Drainage

In the proposed condition, the site will be developed into eight 2.5-acre minimum single-family lots, proposed roadways, proposed swales, proposed roadside swales, undeveloped land, existing drainageways (both well and poorly defined), culverts, and two proposed full-spectrum extended detention basins (EDBs). The drainage design is intended to limit the impacts of development and impact to the natural landscape and the healthy tree grove by utilizing the existing well-vegetated natural drainage paths as much as possible. In general, the proposed drainage conditions follow the historic path from east to west utilizing pervious surfaces and the existing natural channels. Flows will then follow the historic paths in proposed or existing natural channels onto the unplatted properties to the west.

Proposed hydrologic analysis was performed utilizing the Rational Method calculations for the onsite drainage basins. Proposed imperviousness in the 2.5-acre (minimum) residential lots will be limited to a maximum of 10%, in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. See the proposed water quality map in Appendix E. If development in any of the residential lots exceeds 10% impervious, a lot specific drainage report must be submitted to address the additional imperviousness, water quality/detention requirements, and additional anticipated runoff. Runoff from these single-family lots does not include any proposed roadway flows and therefore follows the historic drainage patterns flowing off-site undetained or treated.

The proposed basin delineation as shown in proposed drainage map in Appendix E is as follows;


Basin A is approximately 0.84 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lot 8. Runoff from this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the north undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=0.4$ cfs, $Q_{100}=1.8$ cfs) sheet flows generally northwest to DP1 and onto the adjacent Cathedral Pines Subdivision Filing No. 1 property to the north. For applicable excerpts from the Drainage Report and Plan for Cathedral Pines Subdivision Filing No. 1, refer to Appendix D.

Basin B is approximately 2.36 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lots 7 and 8. Runoff from this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the north undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=1.1$ cfs, $Q_{100}=4.8$ cfs) sheet flows generally northwest to DP2 and onto the adjacent Cathedral Pines Subdivision Filing No. 1 property to the north. For applicable excerpts from the Drainage Report and Plan for Cathedral Pines Subdivision Filing No. 1, refer to Appendix D.

Basin C is approximately 2.06 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lot 7 and existing drainageways (both poorly and well-defined). Runoff from this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the northwest undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=1.0$ cfs, $Q_{100}=4.2$ cfs) sheet flows generally northwest to DP3 and onto the unplatted adjacent property to the west.

Basin D is approximately 4.49 acres and in its proposed condition is comprised of a portion of existing Winslow Drive, a portion of the proposed roadways, parts of 2.5-acre developed Lots 6-8, proposed roadside swales, and existing undeveloped landscaping areas. Runoff generated by this basin ($Q_5=2.9$ cfs, $Q_{100}=10.3$ cfs) sheets flows into the roadside swales and flows north to DP4. Flows are combined with DP5 at the 24" FES located at DP5.1.

Basin E is approximately 0.65 acres and in its proposed condition is comprised of a portion of the proposed roadways and proposed roadside swales. Runoff generated by this basin ($Q_5=1.1$ cfs, $Q_{100}=2.6$ cfs) sheets flows into the roadside swales and flows north to DP5. Flows are combined with DP4 at DP5.1 ($Q_5=3.8$ cfs, $Q_{100}=12.4$ cfs), the 24" FES. Flows are then piped via a 24" RCP storm sewer into the forebay within the full-spectrum EDB within Pooin E

Final Drainage Report for Estates at Cathedral Pines

For the sump inlet, please discuss an emergency path for the runoff flow in case it gets clogged. This comment is applied to all sump inlets.

Basin F is approximately 0.31 acres and in its proposed condition is comprised of a proposed fullspectrum EDB (North Pond) and associated/infrastructure. Runoff generated by this basin ($Q_5=0.4$ cfs, $Q_{100}=1.2$ cfs) sheets flows to the North/Pond at DP6. Flow at DP6.1 ($Q_5=4.1$ cfs, $Q_{100}=13.1$ cfs) combines the flow of DP5.1 (the Type C sump inlet) and DP6, representing the total inflow into the North Pond. Flows will be released through the outlet structure at DP6.2 ($Q_5=1.2$ cfs, $Q_{100}=7.9$ cfs). Flows will then enter Basin G and follow the drainage patterns of the basin as described below. Flows will combine with DP7 at DP7.1.

Basin G is approximately 2.08 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lots 6 and 7 and a proposed swale. Runoff from this basin does not include any

Please discuss west suitability of the Ouali downstream area to to the accept these new Pond concentrated flow at $(Q_5=2)$ **DP7.1**

proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the s is in accordance with Section I.7.1.B.5 of the ECM Stormwater unoff generated by this basin ($Q_5=1.0$ cfs, $Q_{100}=4.2$ cfs) sheet flows from the North Rond berm to the west to DR7. Elows from the North this basin at DP6.2. Flows from DP6.2 and DP7 combine at DP7.1 continue off-site onto the property at 13855 Highway 83 to the west. ***

Basin H is approximately 1.94 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lots 5 and 6. Runoff from this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the west undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=0.9$ cfs, $Q_{100}=3.9$ cfs) sheet flows generally follows the historic drainage pattern of east to west to DP8 and continue off-site onto the property at 13580 Bridle Bit Road to the west.

Basin I is approximately 5.01 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lots 4-6 and existing drainageways (both poorly and well-defined). Runoff from this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the west undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=2.7$ cfs, Q_{100} =11.6 cfs) sheet flows to an existing natural channel and generally follows the historic drainage pattern from east to west to DP9 and continue off-site onto the property at 13580 Bridle Bit Road to the west.

Basin J is approximately 0.82 acres and in its proposed condition is comprised of part of proposed landscaping and undeveloped land. Runoff from this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the west undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=0.4$ cfs, $Q_{100}=2.2$ cfs) sheet flows to the existing natural channel and generally follows the historic drainage pattern of east to west to DP10, a

Please discuss how the runoff reacts to the proposed 18"

proposed culvert. Flows from DP10 enter into Basin K and RCP from DP 10 to as described below. Flows will combine with DP11 at DP basin K.

rns of the basin

Basin K is approximately 3.48 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lots 3 and 4 and existing drainageways (both poorly and well-defined). Runoff from this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the west undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=1.9$ cfs, $Q_{100}=8.1$ cfs) sheet flows to an existing natural channel and generally follows the historic drainage pattern from east to west to DP11. Flows from DP10 and DP11 combine at DP11.1 ($Q_5=2.3$ cfs, $Q_{100}=9.9$ cfs) and continue off-site onto the property at 13580 Bridle Bit Road to the west.

Please discuss where

the runoff from DP12 Basin L is app in its proposed condition is comprised of a portion of flows to existing Winslo proposed roadways, parts of 2.5-acre developed Lots 1-2, proposed roadside swales, and existing undeveloped landscaping areas. Runoff generated by this basin ($Q_5=2.6$ cfs, $Q_{100}=7.6$ cfs) sheets flows into the roadside swales and flows south to DP12. The existing Cathedral Pines Subdivision Filing No. 1 pond located to the east of Winslow Drive releases flows within the existing 18" RCP at DPP1 ($Q_5=3.7$ cfs, $Q_{100}=10.9$ cfs). Flows from DPP1 enters the existing swale to the proposed convergence within the roadside swale at DP12.1 ($Q_5=6.3$ cfs, Q₁₀₀=18.5 cfs). DP12.1 then combines flows with DP13 at the Type C sump inlet located at DP13.1. As mentioned above, the 24" RCP emergency spillway overflow culvert from Cathedral Pines Subdivision Filing No. 1 also enters the existing swale through the site should the exiting pond overflow. For more information on the emergency overl Please discuss how e the end of this the runoff reacts to section below and Appendix C for calculations. the proposed 12"

Basin M is approximately 0.45 acres and in its proposed RCP at basin M. a portion of the proposed roadways and proposed roadside swales. Ru $(Q_5=0.9 \text{ cfs}, Q_{100}=2.1 \text{ cfs})$ sheets flows into the roadside swales and flows south to DP13. Flows are combined with DP12.1 at DP13.1 ($Q_5=7.1 \text{ cfs}, Q_{100}=20.2 \text{ cfs}$), the Type C sump inlet. Flows are then piped via a 24" RCP storm sewer into the forebay within the full-spectrum EDB within Basin N.

Basin N is approximately 0.75 acres and in its proposed condition is comprised of a proposed fullspectrum EDB (South Pond), associated infrastructure, and lawn areas. Runoff generated by this basin ($Q_5=0.6$ cfs, $Q_{100}=2.5$ cfs) sheets flows to the South Pond at DP14. Flow at DP14.1 ($Q_5=7.6$ cfs, $Q_{100}=22.0$ cfs) combines the flow of DP13.1 (the Type C sump inlet) and DP14, representing the total inflow into the South Pond. Flows will be released through the outlet structure at DP14.2 ($Q_5=0.6$ cfs, $Q_{100}=4.3$ cfs). Flows will then enter Basin O and follow the drainage patterns of the basin as described below. Flows will combine with DP15 at DP15.1.

Basin O is approximately 4.83 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lots 2-4 and existing drainageways (both poorly and well-defined). Runoff from

this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the west undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=2.5$ cfs, $Q_{100}=10.7$ cfs) sheets flows to the existing natural channel that flows to the west to DP15. Flows from South Pond's outlet structure outfall to this basin at DP14.2. Flows from DP14.2 and DP15 combine at DP15.1 ($Q_5=3.1$ cfs, $Q_{100}=15.0$ cfs) and continue onto the property at 13580 Bridle Bit Road to the west and combine at DP16.2.

Basin OS-1 is approximately 0.13 acres and in its existing condition is comprised of a portion of Winslow Drive. The basin is off-site and therefore no work is proposed within this basin. Runoff from this basin does not include any modification to existing roadway flows and therefore follows the historic drainage pattern flowing off-site to the west undetained or treated. This is in accordance with Section I.7.1.B.3 of the ECM Stormwater Quality Policy and Procedure. Runoff generated by this basin ($Q_5=0.3$ cfs, $Q_{100}=0.7$ cfs) will follow the historic path east to west overland to the existing natural channel at DPO1. Flows will then enter Basin P and follow the drainage patterns of the basin as described below. Flows will combine with DPO2 and DP16 at DP16.1.

Basin OS-2 is approximately 2.44 acres and in its existing condition is comprised of part of a singlefamily lot with a house, asphalt drive, and a portion of Winslow Drive. This is an off-site basin to the south, a part of the Falcon Forest Subdivision Filing No. 2 development. Due to the basin location off-site, no work is proposed within this basin. Runoff generated by this basin ($Q_5=1.7$ cfs, $Q_{100}=6.7$ cfs) will follow the historic path east to west overland to the existing natural channel at DPO2. Flows will then enter Basin P and follow the drainage patterns of the basin as described below. Flows will combine with DPO1 and DP16 at DP16.1.

Basin P is approximately 3.51 acres and in its proposed condition is comprised of part of proposed 2.5-acre developed Lots 1 and 2 and existing drainageways (both poorly and well-defined). Runoff from this basin does not include any proposed roadway flows and therefore follows the historic drainage pattern flowing off-site to the west undetained or treated. This is in accordance with Section I.7.1.B.5 of the ECM Stormwater Quality Policy and his basin Runoff flow comparisons $(Q_5=1.6 \text{ cfs}, Q_{100}=6.8 \text{ cfs})$ sheet flows to an existing llows the leaving the site should be historic drainage pattern from east to west to DP16. DP nd DPO2 conducted for each design at DP16.1 ($Q_5=2.9$ cfs, $Q_{100}=12.0$ cfs) continue off-site c point instead of the entire t Road to the west and combines at DP16.2 ($Q_5=5.6$ cfs, $Q_{100}=2$ site. existing swale flowing west.

In the existing condition, the total released flows off-site are from DP 1-6 and 8.2 for a total flow of $Q_5=14.9$ cfs and $Q_{100}=79.5$ cfs flowing north and west to adjacent properties. In the proposed condition, the total released flows off-site are from DP 1-3, 7.1, 8-9, 11, 1, and 16.2 for a total flow of $Q_5=16.2$ cfs and $Q_{100}=73.4$ cfs. The flows follow the historic pattern released off-site to the north and west. Comparing the existing and proposed total flows released off-site, the major flows released in the proposed condition are less than the existing condition. Therefore, there are no

For the proposed DP 11.1 and existing DP 6, the proposed runoff exceeds the existing flow. Please explain the impact of this increase on the adjacent property. negative impacts anticipated to downstream conveyances or properties with the development of the site.

In the case where the existing pond part of Cathedral Pines Subdivision Filing No. 1 overtops, the proposed conveyance was analyzed to ensure emergency flows would get to the desired location. The existing pond would overtop the emergency spillway and flow to the existing 24" RCP culvert before crossing onto the site. Flows (Q_{100} =35.6 cfs) would then enter the existing swale to the combination with the proposed roadside swale at DP12.1. The total flow within the proposed Basin L roadside swale would be Q_{100} =43.2 cfs. The Basin L emergency overflow swale calculation shows that flows would stay within the proposed swale to the Type C inlet at DP13.1. The inlet calculation shows that the flows would overtop the proposed Type C inlet at DP13.1 and flow into the South Pond. For the South Pond emergency spillway, the total flow would be the existing pond emergency overflow (Q_{100} =35.6 cfs) as well as the South Pond emergency overflow $(Q_{100}=22.0 \text{ cfs})$ for a total flow of $Q_{100}=57.6 \text{ cfs}$. The spillway weir calculation shows that the South Pond spillway would direct flows to the Basin O existing swale. Flows would then combine with DP15 at DP15.1, the existing swale with a total flow of Q_{100} =68.3 cfs. The Basin O emergency overflow swale calculation shows that the existing swale would contain the flows and convey them off-site following the historic path west. See the end of Appendix C for applicable emergency overflow conveyance calculation

Please include ECM - El Paso County Criteria Manual, October DRAINAGE DESIGN 14, 2020 in the Drainage Design Criteria.

Development Criteria Reference

Storm drainage analysis and design criteria for the project were taken from the "City of Colorado Spring/El Paso County Drainage Criteria Manual" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "Urban Storm Drainage Criteria Manual" Volumes 1 - 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "Colorado Springs Drainage Criteria Manual (CCSDCM)", dated May 2014, as adopted by El Paso County, as well as the July 2019 El Paso County Engineering Criteria Manual update.

Hydrologic Criteria

All hydrologic data was obtained from the "City of Colorado Springs Drainage Criteria Manual" Volumes 1 and 2, and the "Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual" Volumes 1, 2, and 3. On-site drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Figure 6-5 Intensity Duration Frequency Curve of the Colorado Springs DCM. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the DCM. Time of concentrations were developed using equations from the DCM. The flows for the offsite pond released flows at DP-P1 was routed into the Rational Method calculations by taking the released flows and dividing by the adjacent basin intensity to calculate C*A. Then the routing continued using the standard calculations per the Rational Method to the next design point. All runoff calculations and applicable charts and graphs are included in Appendix B.

Hydraulic Criteria

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site. Autodesk Inc.'s Hydraflow Express Extension (Volume 10.5) was used to size the roadside ditches and drainage swales per criteria. Hydraflow Express was also used to analyze the proposed culverts within the Estates at Cathedral Pines development. Per Section 6.4.1 of the EPCDCM, culverts were sized as to not overtop the road in the 100-year storm. UDFCD Volume 2 Chapter 9 Figure 9-35 will be used to size the riprap protection around the proposed culverts. The MHFD-Detention_v4.06 spreadsheet was utilized for evaluating proposed detention and water quality for the North and South Ponds. Required detention volumes and allowable release rates were designed per USDCM and CCS/EPCDCM. Bentley StormCAD v8i was used to analyze the hydraulic grade lines and energy grade lines for the storm sewer network. See Appendix C for calculations.

DRAINAGE FACILITY DESIGN

General Concept

The combination of the proposed and existing stormwater conveyance system was designed to convey the developed Estates at Cathedral Pines flows to one of two full-spectrum EDB via roadside ditches and swales. The drainage design is intended to utilize the existing well-vegetated natural drainage paths on-site and reduce the impacts of development. The proposed full-spectrum EDBs will be located at the northern and southern ends of the proposed main roadway. The North Pond will outfall to a proposed swale that will route flow to follow the historic drainage path of east to west between Lots 6 and 7. The South Pond will utilize an existing natural channel to outfall flows on the adjacent unplatted property. Development of the 2.5 acre (min.) single-family lots in basins A-C, G-K, and O-P will be limited to 10% or less for areas that do not have a water quality feature downstream in order to satisfy Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure. Impacts to adjacent properties will be limited as proposed developed flows will be released at below existing rates of flow.

Specific Details

 Discuss the impacts of changing the runoff from sheet flow to concentrated. Runoff needs a suitable outfall.

All proposed drainage items in this report will be designed to accept both 5-year and 100-year flows. All culverts will have a flared end section (FES) on both sides of the pipe. All culverts will have riprap protection downstream as a method of erosion protection prior to the stormwater entering the proposed swales. The proposed forebays will have a concrete bottom leading to the soil riprap berm. The proposed pond forebays and weir contain 1% of the required Water Quality Capture Volume (WQCV). The forebays weir will release 2% of the undetained peak 100-year inflow into the fullspectrum EDB via a notch in the berm and onto the proposed concrete trickle channel. The trickle channel will direct flows into the proposed full-spectrum EDB outlet structure, which will detain water per times specified by criteria.

Four Step Process to Minimize Adverse Impacts of Urbanization

In accordance with the El Paso County Drainage Criteria Manual, Volume 2 this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes; stabilizing drainageways, treating the water quality capture volume (WQCV), and consider the need for Industrial Commercial BMP's.

Step 1, Reducing Runoff Volumes: The development of the project site is proposed as single-family residential (2.5 acre min.) with lawn areas interspersed within the development which helps disconnect impervious areas and reduce runoff volumes. The development is intended to limit the impact to the natural landscape and preserve the existing healthy tree grove by creating an open space preservation easement for this area. Roadways will utilize roadside ditches to further disconnect impervious areas. Proposed flow in general follows the historic path over pervious surfaces into existing drainage paths. These practices will also allow for increased infiltration and reduce runoff volume.

Step 2, Stabilize Drainageways: This site utilizes roadside ditches with culvert crossings throughout the site. These roadside ditches will then direct the applicable on-site and off-site development flows to a proposed full-spectrum EDB within the project. The proposed full-spectrum EDB's will be designed to release flows at or below historic rates. Roadside ditches will be stabilized by keeping velocities below 5 ft/s, or providing additional erosion protection. Developed flows leaving the site are limited to below existing rates, and therefore no impact to downstream drainageways is anticipated.

Step 3, Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV in the two on-site proposed permanent full-spectrum EDBs that are be designed per current El Paso County drainage criteria. The 2.5-acre (minimum) residential lots will be limited to a maximum of 10% imperviousness to meet the requirements of Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure for water quality through a plat note. Should any lot exceed 10% imperviousness, a lot specific drainage report addressing the increased imperviousness must be submitted.

Step 4, Consider the need for Industrial and Commercial BMP's: No industrial or commercial uses are proposed within this development. Site specific temporary source control BMPs as well as permanent BMP's will be detailed in this plan and narrative to protect receiving waters.

Water Quality

In accordance with Section 13.3.2.1 of the CCS/EPCDCM, full-spectrum water quality and detention will be provided for all of the development site not meeting exclusions present in the ECM - Stormwater Quality Policy and Procedures Section I.7.1.B. As previously stated, the applicable

exclusions for Basins A-C, G-K, and O-P fall under Section I.7.1.B.5 of the ECM Stormwater Quality Policy and Procedure for areas with large single-family lots (2.5-acre min.). In addition, one of the basins J is an proposed open space tract that is excluded under the Section I.7.1.B.7 of the ECM Stormwater Quality Policy and Procedure for land disturbance to undeveloped land that will remain undeveloped. The proposed roadway will be treated within the proposed full-spectrum EDBs. Outlet structure release rates will be limited to less than historic rates to minimize adverse impacts to downstream stormwater facilities.

Proposed Full-Spectrum EDBs

Water quality is provided for the site by two private full-spectrum detention and water quality extended detention basins. The proposed North Pond is sized to provide water quality and detention for a total of 5.5 acres at 21.5% impervious. The proposed South Pond is sized to provide water quality and detention for a total of 4.0 acres at 27% impervious. Table 1 below shows the basin parameters for both ponds. Refer to Appendix C for the UD-Detention design sheets that include the tributary basin parameters as well as the stage-storage table and outlet structure design. The outlet structure includes an orifice plate, overflow grate, and restrictor plate to release stormwater at the appropriate rates. The WQCV will be released within 40 hours, the EURV will be released within 72 hours, and the minor and major flows will be released at or below the pre-development flow rate. Table 2 below gives the design storm results for the North and South Ponds.

A broad-crested weir lined with Type L buried soil riprap is provided as an emergency spillway along the western embankment of both ponds. The North Pond emergency flows are conveyed via a proposed drainage swale to the properties to the west per historic drainage patterns. The South Pond emergency flows are conveyed via an existing drainage swale to the properties to the west per historic drainage patterns. A separate analysis for the existing Cathedral Pines Subdivision Filing No. 1 pond emergency overflow shows that the South Pond spillway would direct flows to the desired location to the existing swale within Basin O.

Name	Watershed Area	Percent Impervious	Watershed Slope
North Pond	5.5 AC	21.5%	0.040 ft/ft
South Pond	4.0 AC	27.0%	0.045 ft/ft

Name	RequiredProvidedVolumeVolume(ac-ft)(ac-ft)		WQCV (ac-ft)	EURV (ac-ft)	5-year Release (cfs)	100-year Release (cfs)
North	0.30	0.42	0.06	0.12	1.2	7.9
South	0.25	0.28	0.05	0.11	0.6	4.3

Table 2- Full-spectrum EDB Design for both EDBs

Calculations and pond design parameters are presented in Appendix C.

Erosion Control Plan

It is the policy of El Paso County that a Final Grading and Erosion Control Plan be submitted with the Final Drainage Report, construction drawings, and plat prior to obtaining a grading permit.

Operation & Maintenance

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. All proposed drainage structures within any platted County R.O.W. (roadside ditches and local road culverts) will be owned and maintained by El Paso County. All proposed drainage structures within easements or tracts (full-spectrum water quality ponds, drainageway culverts and drainageway improvements) will be owned and maintained by the property owner unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. The proposed local road is private and therefore also maintained by the property owner. Inspection access for El Paso County will be provided through a maintenance easement.

Drainage and Bridge Fees

The proposed site lies within the Black Squirrel Drainage Basin. The drainage fee associated with the Black Squirrel Drainage Basin is \$10,478 per impervious acre and the bridge fee is \$660 per impervious acre. Anticipated drainage and bridge fees are presented below and will be due at time of platting (depending on date of plat submittal):

\mathcal{C}	2023 DRAINAGE AND BRIDGE FEES – ESTATES AT CATHEDRAL PINES														
3	Impervious	Drainage Fee	Bridge Fee	Cathedral Pines	Cathedral Pines										
6	Acres (ac)	(Per Imp. Acre)	(Per Imp. Acre)	Drainage Fee	Bridge Fee										
2	4.8	\$10,478	\$660	\$ <mark>50,295</mark>	\$ <mark>3,168</mark>										
4.				···/=/=/0	, -1.00										

Construction Cost Opinion

A construction cost opinion for the drainage infrastructure has been provided below. The below cost opinion is only an estimate of facility and drainage infrastructure cost and may vary.

Provide breakout for this value between lots and roads. 2.5ac lots 11% imper and % for road acreage This is a first submittal 2024 basin and bridge fees will apply Black Squirrel \$11275 and \$710 per imper ac

Provide cost estimate for ponds separately. Include a cost estimate for each PBMP with line items for all components (ex: riprap, road base, forebay, trickle channel, outlet structure, outlet pipe, spillway, etc). Input the total value into the FAE form under "Permanent Pond/BMP (provide engineer's estimate)" in Section 1. The total should not include grading, which is a separate line item in Section 1: "Earthwork." The cost estimate should include labor costs (as a separate line item or added into the cost of each component).

	Estates at Cathedral Pines (Public Non-Reimbursable)-Construction Documents													
Item	Description	Quantity	Unit	Unit Price	Cost									
1	12" RCP	72	LF	\$ 60.00	\$ 4,320.00									
2	12" FES	4	EA	\$ 300.00	\$ 1,200.00									
3	18" RCP	254	LF	\$ 75.00	\$ 19,050.00									
4	18" FES	2	EA	\$ 450.00	\$ 900.00									
5	24" RCP	105	LF	\$ 100.00	\$ 10,500.00									
6	24" FES	1	EA	\$ 690.00	\$ 690.00									
7	Type C Inlet	2	EA	\$ 8,000.00	\$ 8,000.00									
8	Concrete Forebay	. 2	EA	\$12,000.00	\$ 24,000.00									
9	Outlet Structure	2	EA	\$15,000.00	\$ 30,000.00									
10	Type L Soil Riprap	102	СҮ	\$ 70.00	\$ 7,140.00									
11	Concrete Pavement (6") Trickle Channel-2' Wide	69	LF	\$ 40.00	\$ 2,760.00									
12	Concrete Pavement (6") Trickle Channel-6' Wide	98	LF	\$ 60.00	\$ 5,880.00									
				Sub-Total	\$114,440.00									

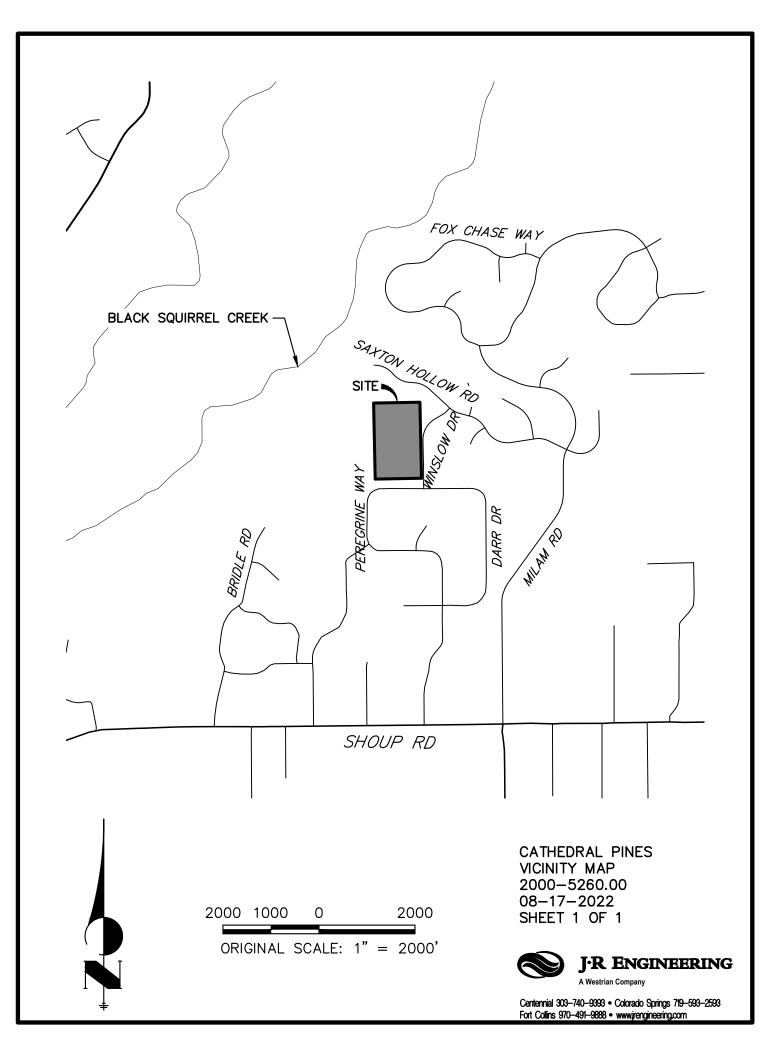
SUMMARY

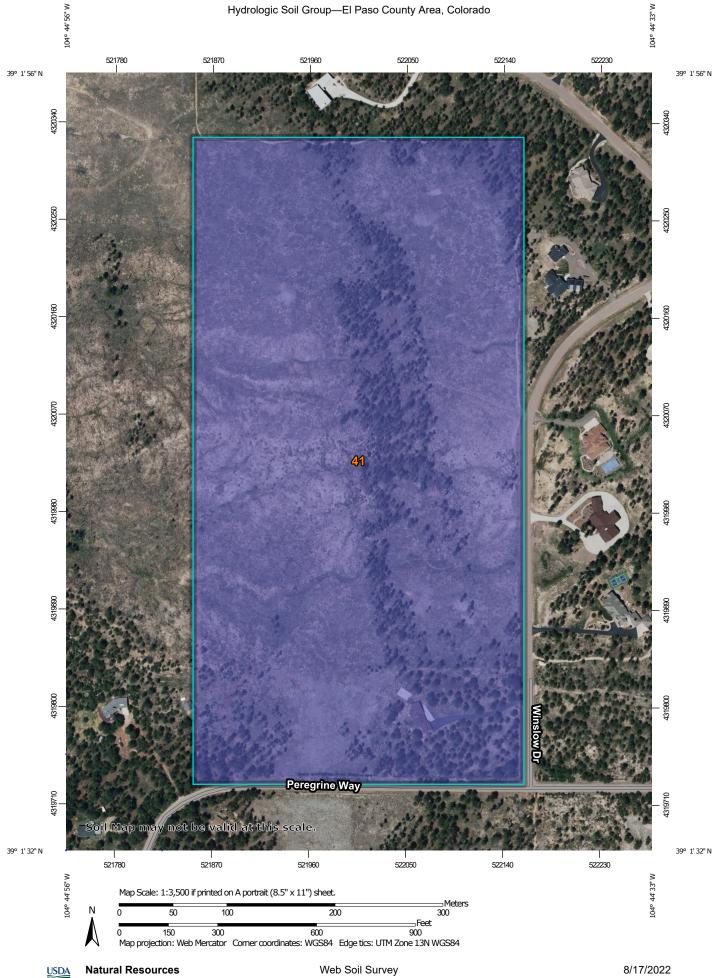
There is more than 1 inlet as discussed in

The Final Drainage Report for Estates at Cathedral the text. Ind off-site drainage patterns, storm sewer, culvert locations, areas tributary to the site, and safely routes developed storm water to adequate outfall facilities. The proposed Estates at Cathedral Pines development will not adversely affect the off-site major drainageways or surrounding development. This report meets the latest El Paso County Drainage Criteria requirements for this site.

The other "inlets" discussed seem to be the Type C modified inlets that are the pond outlet structures. Please clarify throughout the text on what is a standard inlet and what is an outlet structure.

REFERENCES:

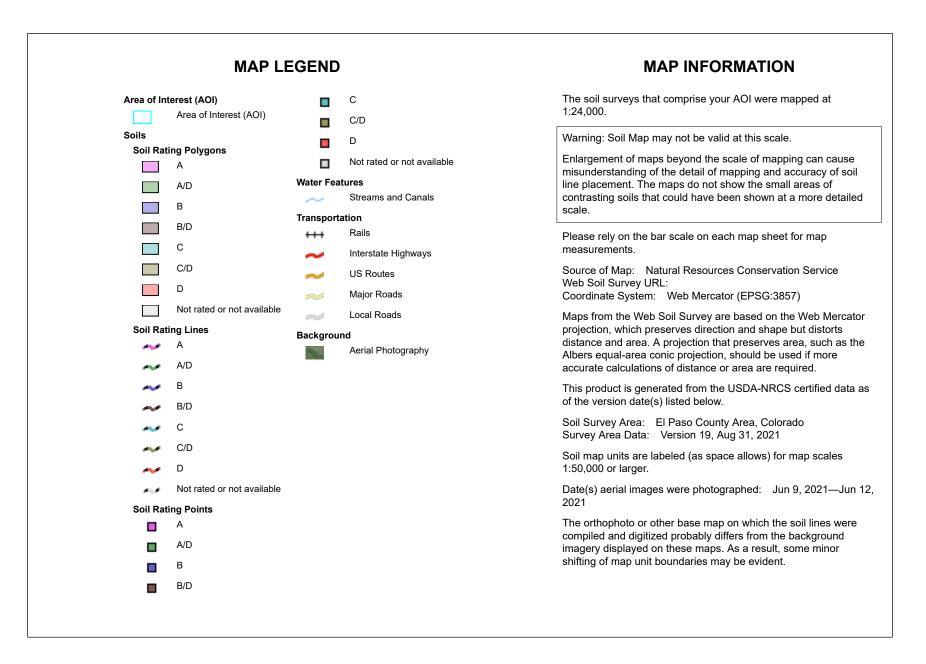

Please include ECM in the reference.


- <u>City of Colorado Springs Drainage Criteria Manual Volume 1</u>, City of Colorado Springs, CO, May 2014.
- <u>Urban Storm Drainage Criteria Manual</u>, Urban Drainage and Flood Control District, Latest Revision.
- FEMA Flood Insurance Rate Map (F.I.R.M.) Panel No. 08041C0535G, effective date December 7, 2018.
- 4. "Soil Survey of El Paso County Area, Colorado," by the USDA Natural Resources Conservation Service.
- 5. <u>Black Squirrel Creek Drainage Basin Planning Study</u>, prepared by URS Corporation and dated January, 1989.
- 6. <u>Final Drainage Report and Plan for Cathedral Pines Subdivision Filing No. 1</u>, prepared by Leigh Whitehead & Associates, Inc. and dated January 2005.
- 7. <u>Cathedral Pines Subdivision Filing No. 1-As-Built Construction Drawings</u>, prepared by Stillwater Engineering and dated October 8, 2008.

Final Drainage Report for Estates at Cathedral Pines

APPENDIX A

FIGURES AND EXHIBITS



National Cooperative Soil Survey

Conservation Service

8/17/2022 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	p unit symbol Map unit name		Acres in AOI	Percent of AOI
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	В	45.5	100.0%
Totals for Area of Intere	st	45.5	100.0%	

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition

Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12

National Geodetic Survey SSMC-3, #9202

1315 East-West Highway Silver Spring, MD 20910-3282

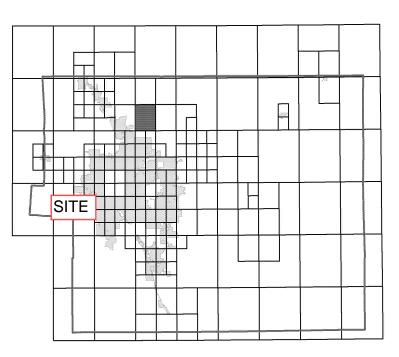
To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile paselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

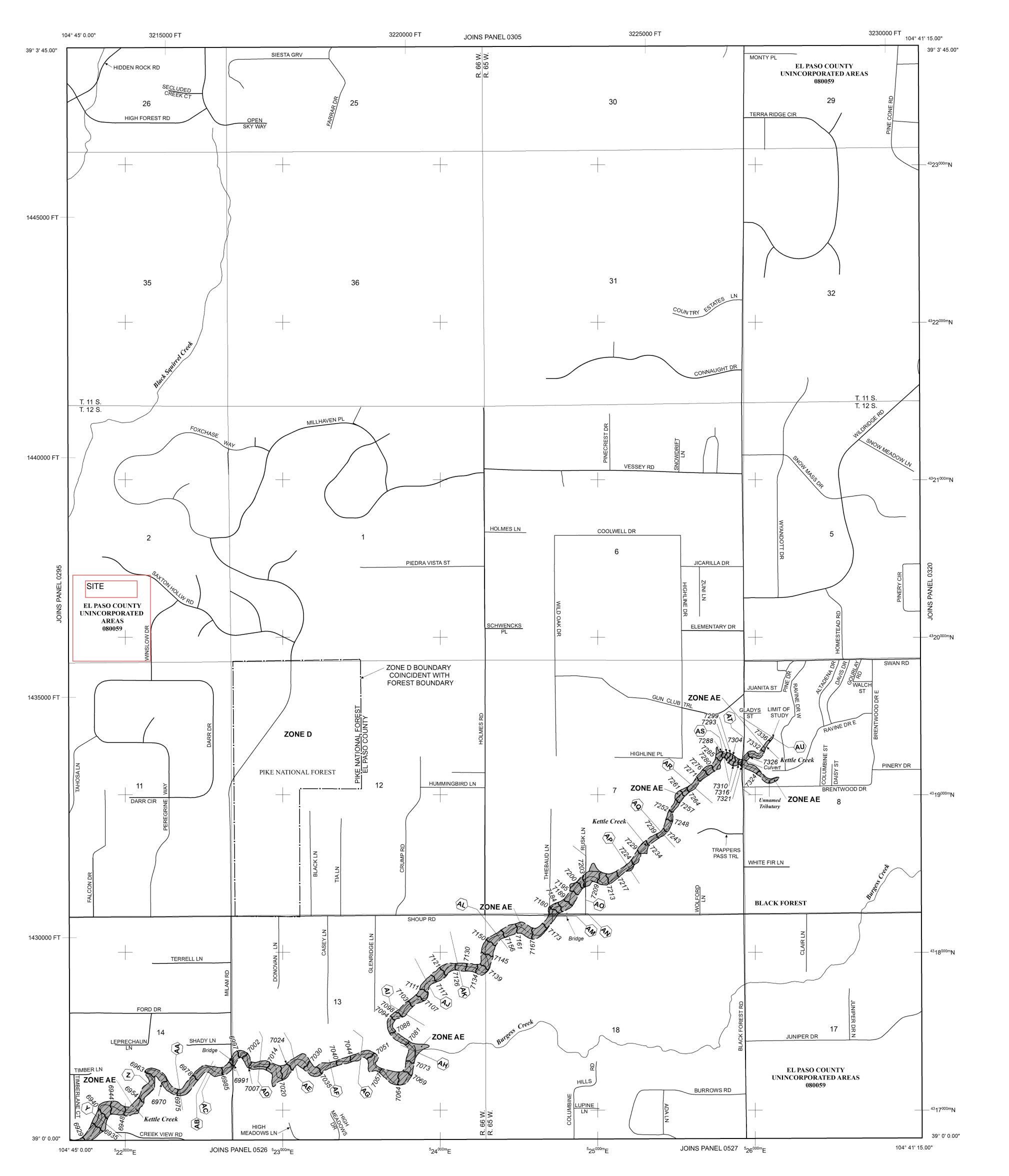
Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.


Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

> El Paso County Vertical Datum Offset Table **Vertical Datum** Flooding Source Offset (ft)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

		LEGEND HAZARD AREAS (SEHAS) SUBJECT TO												
	INUNDATION BY	HAZARD AREAS (SFHAS) SUBJECT TO THE 1% ANNUAL CHANCE FLOOD												
that has a 1% Hazard Area Special Flood	6 chance of being equa is the area subject to Hazard include Zones	rear flood), also known as the base flood, is the flood aled or exceeded in any given year. The Special Flood o flooding by the 1% annual chance flood. Areas of A, AE, AH, AO, AR, A99, V, and VE. The Base Flood												
Elevation is the ZONE A	he water-surface elevat No Base Flood Elevat	ion of the 1% annual chance flood. ions determined.												
ZONE AE ZONE AH	Base Flood Elevations Flood depths of 1	s determined. to 3 feet (usually areas of ponding); Base Flood												
ZONE AO		d. 3 feet (usually sheet flow on sloping terrain); average For areas of alluvial fan flooding, velocities also												
ZONE AR	determined.	Area Formerly protected from the 1% annual chance												
	flood by a flood con AR indicates that th	trol system that was subsequently decertified. Zone the former flood control system is being restored to form the 1% annual chance or greater flood.												
ZONE A99	Area to be protected	d from 1% annual chance flood by a Federal flood under construction; no Base Flood Elevations												
ZONE V	determined.	with velocity hazard (wave action); no Base Flood												
ZONE VE		with velocity hazard (wave action); Base Flood												
	FLOODWAY AREA													
kept free of		ream plus any adjacent floodplain areas that must be the 1% annual chance flood can be carried without 5.												
	OTHER FLOOD A													
ZONE X	average depths of le	I chance flood; areas of 1% annual chance flood with ess than 1 foot or with drainage areas less than 1												
	square mile; and area	as protected by levees from 1% annual chance flood.												
ZONE X	OTHER AREAS Areas determined to	be outside the 0.2% annual chance floodplain.												
ZONE D		hazards are undetermined, but possible.												
	COASTAL BARRIE	ER RESOURCES SYSTEM (CBRS) AREAS												
		DTECTED AREAS (OPAs)												
CBRS areas a	CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.													
	Floodplain boundary Floodway boundary Zone D Boundary													
••••••		Boundary nd OPA boundary												
		y dividing Special Flood Hazard Areas of different Base evations, flood depths or flood velocities.												
513 (EL 987	7) Base Flo	ood Elevation line and value; elevation in feet* ood Elevation value where uniform within zone;												
	elevation	n in feet* Vertical Datum of 1988 (NAVD 88)												
A	- A Cross se	action line												
23		t line												
97° 07' 30 32° 22' 30	Jh	ohic coordinates referenced to the North American of 1983 (NAD 83)												
⁴² 75 ^{000m}	N 1000-me zone 13	0-meter Universal Transverse Mercator grid ticks,												
6000000	system,	ot grid ticks: Colorado State Plane coordinate central zone (FIPSZONE 0502),												
DX5510	Lambert	c Conformal Conic Projection												
	5	M panel)												
•	• M1.5 River Mile													
		MAP REPOSITORIES Iap Repositories list on Map Index TIVE DATE OF COUNTYWIDE												
		DD INSURANCE RATE MAP MARCH 17, 1997												
	BER 7, 2018 - to update lood Hazard Areas, to ι	TE(S) OF REVISION(S) TO THIS PANEL e corporate limits, to change Base Flood Elevations and update map format, to add roads and road names, and to												
For communi		viously issued Letters of Map Revision. prior to countywide mapping, refer to the Community												
Map History	Table located in the Floo	od Insurance Study report for this jurisdiction.												
		available in this community, contact your insurance irance Program at 1-800-638-6620.												
	M/ 500 0	AP SCALE 1" = 1000' 1000 2000												
3	00 0	300 600												
ĺ	NED	PANEL 0315G												
		FIRM												
		FLOOD INSURANCE RATE MAP												
	Ð	EL PASO COUNTY,												
		COLORADO												
		AND INCORPORATED AREAS												
		PANEL 315 OF 1300												
		(SEE MAP INDEX FOR FIRM PANEL LAYOUT)												
		<u>CONTAINS:</u> <u>COMMUNITY NUMBER PANEL SUFFIX</u>												
		EL PASO COUNTY 080059 0315 G												
		Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject community.												
		MAP NUMBER												
)JAL	08041C0315G												
		MAP REVISED												
		DECEMBER 7, 2018												
		Federal Emergency Management Agency												
I														

Final Drainage Report for Estates at Cathedral Pines

APPENDIX B

HYDROLOGIC CALCULATIONS

EXISTING COMPOSITE % IMPERVIOUS/C VALUE CALCULATIONS

Subdivision: Cathedral Pines

Location: El Paso County

Project Name: Estates at Cathedral Pines

Project No.: 25260.00

Calculated By: GAG

Checked By:

Date: 9/8/23

			cape/Wat Impervio		2.5 Acre Lots (10% Impervious)					(2%	Lawns Impervious		Total nted C	Basins Total Weighted %		
Basin ID	Total Area (ac)	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.		C ₁₀₀	Imp.
EX-1	0.84	0.90	0.96	0.00	0.0%	0.16	0.41	0.00	0.0%	0.09	0.36	0.84	2.0%	0.09	0.36	2.0%
EX-2	3.16	0.90	0.96	0.00	0.0%	0.16	0.41	0.00	0.0%	0.09	0.36	3.16	2.0%	0.09	0.36	2.0%
EX-3	4.89	0.90	0.96	0.00	0.0%	0.16	0.41	0.00	0.0%	0.09	0.36	4.89	2.0%	0.09	0.36	2.0%
EX-4	2.67	0.90	0.96	0.00	0.0%	0.16	0.41	0.00	0.0%	0.09	0.36	2.67	2.0%	0.09	0.36	2.0%
EX-5	8.29	0.90	0.96	0.07	0.9%	0.16	0.41	0.00	0.0%	0.09	0.36	8.22	2.0%	0.10	0.37	2.9%
EX-6	4.74	0.90	0.96	0.05	1.0%	0.16	0.41	0.00	0.0%	0.09	0.36	4.69	2.0%	0.10	0.37	3.0%
EX-7	8.06	0.90	0.96	0.10	1.2%	0.16	0.41	0.00	0.0%	0.09	0.36	7.96	2.0%	0.10	0.37	3.2%
EX-8	3.64	0.90	0.96	0.05	1.4%	0.16	0.41	0.00	0.0%	0.09	0.36	3.59	2.0%	0.10	0.37	3.4%
OS-1	2.44	0.90	0.96	0.05	2.0%	0.16	0.41	2.39	9.8%	0.09	0.36	0.00	0.0%	0.17	0.42	11.8%
TOTAL	38.73															3.3%

EXISTING STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Cathedral Pines

Location: El Paso County

Project Name:	Estates at Cathedral Pines
Project No.:	25260.00
Calculated By:	GAG
Checked By:	
Date:	9/8/23

		SUB	-BASIN			INITI	AL/OVERI	AND		Т	RAVEL TIM	E					
		D	ATA				(T _i)			(T _t)					JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t _c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
EX-1	0.84	В	2%	0.09	0.36	255	7.3%	15.1	0	0.0%	7.0	0.0	0.0	15.1	255.0	25.7	15.1
EX-2	3.16	В	2%	0.09	0.36	300	5.6%	17.9	400	5.3%	7.0	1.6	4.1	22.0	700.0	28.8	22.0
EX-3	4.89	В	2%	0.09	0.36	300	4.4%	19.4	850	4.6%	7.0	1.5	9.4	28.8	1150.0	32.8	28.8
EX-4	2.67	В	2%	0.09	0.36	300	4.3%	19.5	370	4.9%	7.0	1.5	4.0	23.5	670.0	28.7	23.5
EX-5	8.29	В	3%	0.10	0.37	300	7.4%	16.2	780	5.9%	7.0	1.7	7.6	23.8	1080.0	31.2	23.8
EX-6	4.74	В	3%	0.10	0.37	110	12.0%	8.4	975	6.4%	7.0	1.8	9.2	17.6	1085.0	32.3	17.6
EX-7	8.06	В	3%	0.10	0.37	220	9.4%	12.8	1,035	4.9%	7.0	1.5	11.1	23.9	1255.0	33.7	23.9
EX-8	3.64	В	3%	0.10	0.37	150	6.2%	12.1	1,020	5.0%	7.0	1.6	10.9	23.0	1170.0	33.5	23.0
OS-1	2.44	В	12%	0.17	0.42	180	6.9%	11.8	0	0.0%	7.0	0.0	0.0	11.8	180.0	24.0	11.8

NOTES:

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$ $t_c = t_i + t_t$ Equation 6-Equation 6-3 Table 6-2. NRCS Conveyance factors, K Where: Where: Type of Land Surface Conveyance Factor, K te = computed time of concentration (minutes) Heavy meadow 2.5 ti = overland (initial) flow time (minutes) ti = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4) Tillage/field 5 $L_i =$ length of overland flow (ft) Short pasture and lawns 7 t_t = channelized flow time (minutes). S_0 = average slope along the overland flow path (ft/ft). Nearly bare ground 10 Equation 6-4 $l_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$ $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$ Equation 6-5 Grassed waterway 15 Paved areas and shallow paved swales 20 Where: Where:

 $L_t =$ length of channelized flow path (ft)

i = imperviousness (expressed as a decimal)

 $S_t =$ slope of the channelized flow path (ft/ft).

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1.

 t_t = channelized flow time (travel time, min) L_t = waterway length (ft) S_o = waterway slope (ft/ft) V_r = travel time velocity (ft/sec) = K $\sqrt{S_o}$

K = NRCS conveyance factor (see Table 6-2).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

X:\2520000.all\2526000\Excel\Drainage\FDR\2526000_Ex_Drainage_Calcs_v2.07.xlsm

EXISTING STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Estates at Cathedral Pines Project No.: 25260.00 Calculated BP: GAG

Subdivision: Cathedral Pines Location: El Paso County Design Storm: 5-Year

Checked By:

Date: 9/8/23

				DIRE	CT RUN	NOFF			TC	DTAL R	UNOF	F	,	STREET	Γ		Р	IPE		TRAV	/EL TI	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EX-1	0.84	0.09	15.1	0.08	3.51	0.3															Sheet flows overland to DP1 Flows off-site onto Cathedral Pines Sub. Filing No. 1 Tract 1
	† ·		0.04	0.07	10.1	0.00	5.51	0.5															Sheet flows overland to DP2
	2	EX-2	3.16	0.09	22.0	0.28	2.94	0.8															Flows off-site onto Cathedral Pines Sub. Filing No. 1 Lot 30
	3	EX-3	4.89	0.09	28.8	0.44	2.54	1.1															Sheet flows overland to existing swale to DP3 Flows off-site onto property at 13855 Highway 83
	5	LKJ	4.07	0.07	20.0	0.77	2.54	1.1															Sheet flows overland to DP4
	4	EX-4	2.67	0.09	23.5	0.24	2.85	0.7															Flows off-site onto property at 13580 Bridle Bit Road
	5	EX-5	8.29	0.10	23.8	0.81	2.83	2.3															Sheet flows overland to DP5 Flows off-site onto property at 13580 Bridle Bit Road
	6	EX-6	4.74	0.10	17.6	0.46	3.28	1.5															Sheet flows overland to DP6 Flows off-site onto property at 13580 Bridle Bit Road
	P1	-	15.50	-	-	1.31	-	3.7															Released flows from off-site pond via 18" RCP culvert Enters Basin EX-7 and combines at DP7.1
	7	EX-7	8.06	0.10	23.9	0.80	2.82	2.3															Sheet flows overland to existing swale to DP7 Combines in existing swale at DP7.1
	7.1				_				23.9	2.11	2.82	6.0											Combines flows of DPP1 and DP7 in existing swale Combines flows in existing swale at DP8.2
	01	OS-1	2.44	0.17	11.8	0.43	3.87	1.7															Sheet flows overland to existing swale to DPO1 Combines in existing swale at DP8.1
	8	EX-8	3.64	0.10	23.0	0.37	2.88	1.1															Sheet flows overland to existing swale to DP8 Combines in existing swale at DP8.1
	8.1								23.0	0.80	2.88	2.3											Combines flows of DPO1 and DP8 in existing swale Combines flows in existing swale at DP8.2
	8.2								23.9	2.91	2.82	8.2											Combines flows of DP7.1 and DP8.1 in existing swale Flows off-site onto property at 13580 Bridle Bit Road
Notes: Street and Pipe C*A valu	Jes are	determ	ined by	Q/i usi	ng the c	atchme	ent's int	ensity	/alue.				-										• • • •

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. Values in blue indicate that they are from "Cathedral Pines Subdivision Filing No. 1 Drainage Report & Plan"

EXISTING STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Cathedral Pines Location: El Paso County Design Storm: 100-Year

Project Name: Estates at Cathedral Pines Project No.: 25260.00 Calculated By: GAG Checked By:

Date: 9/8/23

				DIRE	CT RUI	NOFF			T	DTAL F	UNOFF		0,	STREE	Г		PI	PE		TRAV	'EL TIN	ΛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	EX-1	0.84	0.36	15.1	0.30	5.90	1.8															Sheet flows overland to DP1 Flows off-site onto Cathedral Pines Sub. Filing No. 1 Tract 1
	2	EX-2			22.0	1.14	4.94	5.6															Sheet flows overland to DP2 Flows off-site onto Cathedral Pines Sub. Filing No. 1 Lot 30
	3	EX-3	4.89	0.36	28.8	1.76	4.26	7.5															Sheet flows overland to existing swale to DP3 Flows off-site onto property at 13855 Highway 83
	4	EX-4	2.67	0.36	23.5	0.96	4.78	4.6															Sheet flows overland to DP4 Flows off-site onto property at 13580 Bridle Bit Road
	5	EX-5	8.29	0.37	23.8	3.03	4.74	14.4															Sheet flows overland to DP5 Flows off-site onto property at 13580 Bridle Bit Road
	6	EX-6	4.74	0.37	17.6	1.73	5.51	9.5															Sheet flows overland to DP6 Flows off-site onto property at 13580 Bridle Bit Road
	P1	-	15.50	-	-	2.30	-	10.9															Released flows from off-site pond via 18" RCP culvert Enters Basin EX-7 and combines at DP7.1
	7	EX-7	8.06	0.37	23.9	2.96	4.73	14.0															Sheet flows overland to existing swale to DP7 Combines in existing swale at DP7.1
	7.1								23.9	5.26	4.73	24.9											Combines flows of DPP1 and DP7 in existing swale Combines flows in existing swale at DP8.2
	01	OS-1	2.44	0.42	11.8	1.03	6.51	6.7															Sheet flows overland to existing swale to DPO1 Combines in existing swale at DP8.1
	8	EX-8	3.64	0.37	23.0	1.34	4.83	6.5															Sheet flows overland to existing swale to DP8 Combines in existing swale at DP8.1
	8.1								23.0	2.37	4.83	11.5											Combines flows of DPO1 and DP8 in existing swale Combines flows in existing swale at DP8.2
	8.2								23.9	7.63	4.73	36.1											Combines flows of DP7.1 and DP8.1 in existing swale Flows off-site onto property at 13580 Bridle Bit Road

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. Values in blue indicate that they are from "Cathedral Pines Subdivision Filing No. 1 Drainage Report & Plan"

PROPOSED COMPOSITE % IMPERVIOUS/C VALUE CALCULATIONS

Subdivision: Cathedral Pines

Location: El Paso County

Project Name: Estates at Cathedral Pines Project No.: 25260.00 Calculated By: GAG Checked By: Date: 10/24/23

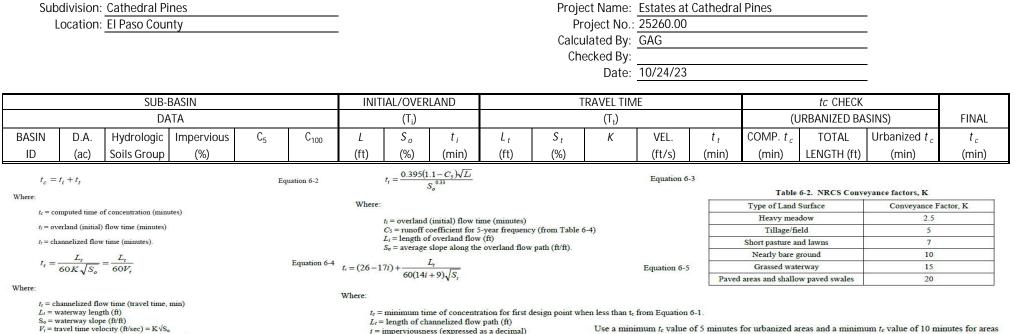
				ape/Wate				lardscape pervious)				cre Lots pervious)				pen Space pervious)		Basin Weigl	Total	Basins Total
Basin ID	Total Area (ac)	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Weighted % Imp.
А	0.84	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	0.84	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
В	2.36	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	2.36	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
С	2.06	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	2.06	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
D	4.49	0.90	0.96	0.46	10.2%	0.59	0.70	0.07	1.2%	0.16	0.41	2.32	5.2%	0.09	0.36	1.64	0.7%	0.22	0.45	17.4%
E	0.65	0.90	0.96	0.24	36.9%	0.59	0.70	0.03	3.7%	0.16	0.41	0.38	5.8%	0.09	0.36	0.00	0.0%	0.45	0.63	46.5%
F	0.31	0.90	0.96	0.02	6.5%	0.59	0.70	0.04	10.3%	0.16	0.41	0.25	8.1%	0.09	0.36	0.00	0.0%	0.26	0.48	24.8%
G	2.08	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	2.08	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
Н	1.94	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	1.94	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
I	5.01	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	5.01	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
J	0.82	0.90	0.96	0.04	4.9%	0.59	0.70	0.00	0.0%	0.16	0.41	0.00	0.0%	0.09	0.36	0.78	1.9%	0.13	0.39	6.8%
К	3.48	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	3.48	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
L	2.58	0.90	0.96	0.44	17.1%	0.59	0.70	0.04	1.2%	0.16	0.41	2.10	8.1%	0.09	0.36	0.00	0.0%	0.29	0.51	26.4%
М	0.45	0.90	0.96	0.19	42.2%	0.59	0.70	0.03	5.3%	0.16	0.41	0.23	5.1%	0.09	0.36	0.00	0.0%	0.50	0.66	52.7%
Ν	0.75	0.90	0.96	0.01	1.3%	0.59	0.70	0.07	7.5%	0.16	0.41	0.23	3.1%	0.09	0.36	0.44	1.2%	0.17	0.42	13.0%
0	4.83	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	4.83	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
Р	3.51	0.90	0.96	0.00	0.0%	0.59	0.70	0.00	0.0%	0.16	0.41	3.51	10.0%	0.09	0.36	0.00	0.0%	0.16	0.41	10.0%
OS-1	0.13	0.90	0.96	0.05	37.6%	0.59	0.70	0.00	0.0%	0.16	0.41	0.00	0.0%	0.09	0.36	0.08	1.2%	0.39	0.59	38.9%
OS-2	2.44	0.90	0.96	0.05	2.0%	0.59	0.70	0.00	0.0%	0.16	0.41	2.39	9.8%	0.09	0.36	0.00	0.0%	0.17	0.42	11.8%
TOTAL N. POND	5.45																			21.3%
TOTAL S. POND	3.78																			26.9%

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Cathedral Pines

Location: El Paso County

Project Name: Estates at Cathedral Pines


Project No.: 25260.00

Calculated By: GAG

Checked By: Date: 10/24/23

		SUB-I	BASIN			INITI	AL/OVERI	AND		Т	RAVEL TIM	E			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	JRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t _i	L _t	S _t	К	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
А	0.84	В	10%	0.16	0.41	300	5.0%	17.3	80	5.0%	7.0	1.6	0.9	18.1	380.0	24.9	18.1
В	2.36	В	10%	0.16	0.41	300	5.5%	16.7	500	5.5%	7.0	1.6	5.1	21.8	800.0	27.7	21.8
С	2.06	В	10%	0.16	0.41	200	5.7%	13.5	680	4.2%	7.0	1.4	7.9	21.4	880.0	29.6	21.4
D	4.49	В	17%	0.22	0.45	190	4.5%	13.4	590	3.5%	7.0	1.3	7.5	20.9	780.0	27.6	20.9
E	0.65	В	46%	0.45	0.63	26	2.0%	4.7	605	3.8%	7.0	1.4	7.4	12.1	631.0	21.4	12.1
F	0.31	В	25%	0.26	0.48	50	15.0%	4.4	70	0.5%	7.0	0.5	2.4	6.7	120.0	23.1	6.7
G	2.08	В	10%	0.16	0.41	300	4.7%	17.7	395	4.3%	7.0	1.5	4.5	22.2	695.0	27.4	22.2
Н	1.94	В	10%	0.16	0.41	300	4.3%	18.2	370	4.9%	7.0	1.5	4.0	22.1	670.0	27.0	22.1
I	5.01	В	10%	0.16	0.41	155	6.5%	11.4	565	6.9%	7.0	1.8	5.1	16.6	720.0	27.8	16.6
J	0.82	В	7%	0.13	0.39	100	8.4%	8.7	180	6.0%	7.0	1.7	1.7	10.4	280.0	26.1	10.4
К	3.48	В	10%	0.16	0.41	145	12.0%	9.0	700	5.0%	7.0	1.6	7.5	16.5	845.0	29.3	16.5
L	2.58	В	26%	0.29	0.51	26	2.0%	5.9	800	3.8%	7.0	1.4	9.8	15.7	826.0	26.9	15.7
М	0.45	В	53%	0.50	0.66	26	2.0%	4.4	470	3.8%	7.0	1.4	5.7	10.1	496.0	19.5	10.1
Ν	0.75	В	13%	0.17	0.42	55	27.0%	4.2	90	0.8%	7.0	0.6	2.5	6.7	145.0	25.4	6.7
0	4.83	В	10%	0.16	0.41	235	11.9%	11.5	645	4.8%	7.0	1.5	7.0	18.5	880.0	29.0	18.5
Р	3.51	В	10%	0.16	0.41	150	6.0%	11.5	1180	5.0%	7.0	1.6	12.6	24.1	1330.0	32.8	24.1
OS-1	0.13	В	39%	0.39	0.59	12	2.0%	3.5	20	14.0%	7.0	2.6	0.1	3.6	32.0	19.5	5.0
OS-2	2.44	В	12%	0.17	0.42	185	6.9%	12.0	0	0.0%	7.0	0.0	0.0	12.0	185.0	24.0	12.0

PROPOSED STANDARD FORM SF-2 TIME OF CONCENTRATION

K = NRCS conveyance factor (see Table 6-2).

 $S_t =$ slope of the channelized flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Estates at Cathedral Pines Project No.: 25260.00 Calculated By: GAG Checked By:

Date: 10/24/23

		1	[DIREC	T RUN	IOFF			TO	TAL RI	JNOFF	-	S	TREE	T		PI	PE		TRAV	EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	1	А		0.16	18.1	0 13	3.24	0.4															Sheet flows overland to DP1 Flows off-site onto Cathedral Pines Sub. Filing No. 1 Tract 1
	2	В			21.8																		Sheet flows overland to DP2 Flows off-site onto Cathedral Pines Sub. Filing No. 1 Lot 30
	3	С			21.4																		Sheet flows overland to existing swale to DP3 Flows off-site onto property at 13855 Highway 83
	4	D	4.49	0.22	20.9	0.97	3.02	2.9															Sheet flows overland to proposed swale to DP4 Combines with DP5 at DP5.1
	5	E	0.65	0.45	12.1	0.29	3.84	1.1															Flows to proposed swale to DP5 Combines with DP4 at DP5.1
	5.1								20.9	1.26	3.02	3.8											Combines flows of DP4 and DP5 Piped to North Pond forebay and combines at DP6.1
	6	F	0.31	0.26	6.7	0.08	4.72	0.4															Sheet flows overland to DP6 Combines with DP5.1 at DP6.1
	6.1								20.9	1.34	3.02	4.1											Combines flows of DP5.1 and DP6 North Pond flows, released through outlet at DP6.2
	6.2								-	0.41	-	1.2											North Pond outlet structure controlled release Combines with DP7 at DP7.1
	7	G	2.08	0.16	22.2	0.33	2.93	1.0															Sheet flows overland to proposed swale to DP7 Combines flow at DP7.1
	7.1								22.2	0.74	2.93	2.2											Combines flow of DP6.2 and DP7 Flows off-site onto property at 13580 Bridle Bit Road
	8	Н	1.94	0.16	22.1	0.31	2.94	0.9															Sheet flows overland to existing swale at DP8 Flows off-site onto property at 13580 Bridle Bit Road

Subdivision: Cathedral Pines Location: El Paso County

Design Storm: 5-Year

PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Estates at Cathedral Pines Project No.: 25260.00 Calculated By: GAG Checked By:

Date: 10/24/23

			[DIREC	t rui	NOFF			TO	TAL R	JNOFF	-	S	TREET	I	PI	PE		TRAV	'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac) Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	9		5.01	0.16	16.6	0.80	3.37	2.7														Sheet flows overland to ex. natural channel at DP9 Flows off-site onto property at 13580 Bridle Bit Road
	10					0.11									1				1			Flows in existing swale to proposed culvert at DP10 Flows onto Basin K and combines at DP11.1
	11	ĸ				0.56																Flows in existing swale to DP11 Combines flow at DP11.1
	11.1		0110						16.5	0.67	3.38	2.3										Combines flows of DP10 and DP11 Flows off-site onto property at 13580 Bridle Bit Road
	P1	-	15.50	-	-	1.07	-	3.7														Released flows from off-site pond via 18" RCP culvert Enters Basin L and combines at DP13.1
	12	L	2.58	0.29	15.7	0.76	3.45	2.6														Sheet flows overland to proposed swale to DP12 Combines with DPP1 at DP12.1
	12.1								15.7	1.83	3.45	6.3										Combines flows of DPP1 and DP12 Continues in proposed swale to DP13.1
	13	М	0.45	0.50	10.1	0.23	4.11	0.9														Flows to proposed swale to DP13 Combines with DP12.1 at DP13.1
	13.1								15.7	2.06	3.45	7.1										Combines flows of DP12.1 and DP13 Piped to South Pond forebay and combines at DP14.1
	14	N	0.75	0.17	6.7	0.13	4.74	0.6														Sheet flows overland to DP14 Combines with DP13.1 at DP14.1
	14.1								15.7	2.19	3.45	7.6										Combines flows of DP13.1 and DP14 South Pond flows, released through outlet at DP14.2
	14.2								-	0.19	-	0.6										South Pond outlet structure controlled release Combines with DP15 at DP15.1
	15	0	4.83	0.16	18.5	0.77	3.21	2.5														Sheet flows overland to existing swale to DP15 Combines flow at DP15.1
	15.1								18.5	0.96	3.21	3.1										Combines flow of DP14.2 and DP15 Combines flow in existing swale at DP16.2

Subdivision: Cathedral Pines Location: El Paso County

Design Storm: 5-Year

PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Estates at Cathedral Pines

Subdivision: Cathedral Pines

Location: El Paso County

Design Storm: 5-Year

Project No.:	25260.00
Calculated By:	GAG
Checked By:	

Date: 10/24/23

			[DIRE	CT RU	NOFF			TO	TAL R	JNOFF		S	TREE	Т		PI	PE		TRAV	'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	\mathbf{t}_{t} (min)	REMARKS
	01	OS-1	0.13	0.3	9 5.0	0.05	5.17	0.3															Sheet flows overland to DPO1 Enters Basin P and combines at DP16.1
	02	OS-2	2.44	0.1	7 12.0	0.43	3.85	5 1.7															Sheet flows overland to DPO2 Enters Basin P and combines at DP16.1
	16	Р	3.51	0.1	6 24.1	0.56	5 2.81	1.6															Sheet flows overland to existing swale to DP16 Combines flow at DP16.1
	16.1								24.1	1.04	2.81	2.9											Combines flow of DPO1, DPO2, and DP16 Combines flow in existing swale at DP16.2
	16.2								24.1	2.00	2.81	5.6											Combines flow of DP15.1 and DP16.1 Flows off-site onto property at 13580 Bridle Bit Road
otes: treet and Pipe alues in blue ir	C*A va ndicate	lues are that th	e deter ey are	rmine fron	ed by (n "Cath	2/i usi nedral	ing the Pines	e catch Subdi	ment's in vision Fili	ntensity ng No.	value. 1 Draii	nage R	eport	& Pla	an"								

PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Estates at Cathedral Pines Project No.: 25260.00 Calculated By: GAG Checked By:

Subdivision: Cathedral Pines

Location: El Paso County

Design Storm: 100-Year

Date: 10/24/23

				DIRE	CT RU	NOFF			TO	AL RU	INOF	F	S	TREE	Т		PI	PE		TRAV	EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1	А	0.84	0.41	18.1	0.34	5.43	1.8															Sheet flows overland to DP1 Flows off-site onto Cathedral Pines Sub. Filing No. 1 Tract 1
	2	В	2.36	0.41	21.8	0.97	4.97	4.8															Sheet flows overland to DP2 Flows off-site onto Cathedral Pines Sub. Filing No. 1 Lot 30
	3	С	2.06				5.01																Sheet flows overland to existing swale to DP3 Flows off-site onto property at 13855 Highway 83
	4	D	4.49				5.08																Sheet flows overland to proposed swale to DP4 Combines with DP5 at DP5.1
	5	E	0.65		12.1		6.45																Flows to proposed swale to DP5 Combines with DP4 at DP5.1
	5.1								20.9	2.44	5.08	12.4											Combines flows of DP4 and DP5 Piped to North Pond forebay and combines at DP6.1
	6	F	0.31	0.48	6.7	0.15	7.93	1.2															Sheet flows overland to DP6 Combines with DP5.1 at DP6.1
	6.1								20.9	2.59	5.08	13.1											Combines flows of DP5.1 and DP6 North Pond flows, released through outlet at DP6.2
	6.2								-	1.61	-	7.9											North Pond outlet structure controlled release Combines with DP7 at DP7.1
	7	G	2.08	0.41	22.2	0.85	4.92	4.2															Sheet flows overland to proposed swale to DP7 Combines flow at DP7.1
	7.1								22.2	2.46	4.92	12.1											Combines flow of DP6.2 and DP7 Flows off-site onto property at 13580 Bridle Bit Road
	8	Н	1.94	0.41	22.1	0.80	4.93	3.9															Sheet flows overland to existing swale at DP8 Flows off-site onto property at 13580 Bridle Bit Road

PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Estates at Cathedral Pines

Subdivision: Cathedral Pines

Location: El Paso County

Design Storm: 100-Year

Project Name: Estates at Project No.: 25260.00 Calculated By: GAG Checked By:

Date: 10/24/23

				DIRE	CT RU	NOFF			TO	TAL RU	JNOFF		STE	REET			PIPE		TRAV	/EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street} (cfs)	C*A (ac)	olupe (<i>N</i>) O _{cine} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	9	I	5.01	0.41	16.6	2.05	5.66	11.6														Sheet flows overland to ex. natural channel at DP9 Flows off-site onto property at 13580 Bridle Bit Road
	10	J	0.82	0.39	10.4	0.32	6.83	2.2														Flows in existing swale to proposed culvert at DP10 Flows onto Basin K and combines at DP11.1
	11	к	3.48	0.41	16.5	1.43	5.68	8.1														Flows in existing swale to DP11 Combines flow at DP11.1
	11.1								16.5	1.75	5.68	9.9										Combines flows of DP10 and DP11 Flows off-site onto property at 13580 Bridle Bit Road
	P1	-	15.50	-	-	1.88	-	10.9														Released flows from off-site pond via 18" RCP culvert Enters Basin L and combines at DP13.1
	12	L	2.58	0.51	15.7	1.31	5.80	7.6														Sheet flows overland to proposed swale to DP12 Combines with DPP1 at DP12.1
	12.1								15.7	3.19	5.80	18.5										Combines flows of DPP1 and DP12 Continues in proposed swale to DP13.1
	13	М	0.45	0.66	10.1	0.30	6.90	2.1														Flows to proposed swale to DP13 Combines with DP12.1 at DP13.1
	13.1								15.7	3.49	5.80	20.2										Combines flows of DP12.1 and DP13 Piped to South Pond forebay and combines at DP14.1
	14	N	0.75	0.42	6.7	0.31	7.95	2.5														Sheet flows overland to DP14 Combines with DP13.1 at DP14.1
	14.1								15.7	3.80	5.80	22.0										Combines flows of DP13.1 and DP14 South Pond flows, released through outlet at DP14.2
	14.2								-	0.80	-	4.3										South Pond outlet structure controlled release Combines with DP15 at DP15.1
	15	0	4.83	0.41	18.5	1.98	5.38	10.7														Sheet flows overland to existing swale to DP15 Combines flow at DP15.1
	15.1								18.5	2.78	5.38	15.0										Combines flow of DP14.2 and DP15 Combines flow in existing swale at DP16.2

PROPOSED STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Estates at Cathedral Pines Project No.: 25260.00

Subdivision: Cathedral Pines

Location: El Paso County

Design Storm: 100-Year

Project No.:	2020
Calculated By:	GAG
Checked By:	

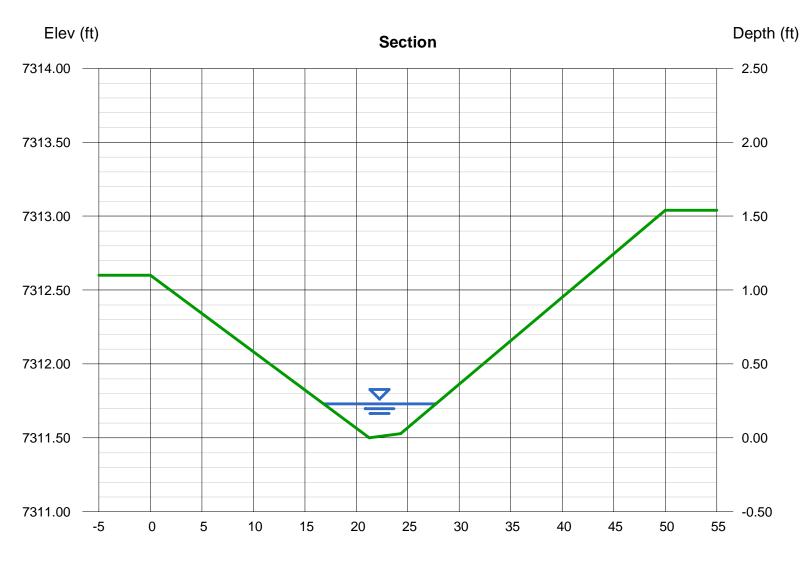
Date: 10/24/23

				DIRE	ECT RU	NOFF			TOT	AL RUNO	FF		STREE	ET		PI	PE		TRAV	'EL TIN	ЛE	
STREET	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac) I (in/hr)	Q (cfs)	Q _{street} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t_t (min)	REMARKS
	01	OS-1	0.13	0.59	5.0	0.08	8.68	0.7														Sheet flows overland to DPO1 Enters Basin P and combines at DP16.1
	02	OS-2	2.44	0.42	12.0	1.03	6.47	6.7														Sheet flows overland to DPO2 Enters Basin P and combines at DP16.1
	16	Р			24.1																	Sheet flows overland to existing swale to DP16 Combines flow at DP16.1
	16.1								24.1	2.55 4.7	2 12.	0										Combines flow of DPO1, DPO2, and DP16 Combines flow in existing swale at DP16.2
	16.2								24.1	5.33 4.7	2 25.	1										Combines flow of DP15.1 and DP16.1 Flows off-site onto property at 13580 Bridle Bit Road
Notes: Street and Pipe Values in blue in	C*A va ndicate	lues ar that th	e deter ney are	rmined from '	by Q/i	using t dral Pin	the cato es Subo	hment	's intensit Filing No	y value. 1 Drainad	ie Repo	ort & F	Plan"	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>	Į	<u> </u>		<u>I</u>

Final Drainage Report for Estates at Cathedral Pines

APPENDIX C

HYDRAULIC CALCULATIONS

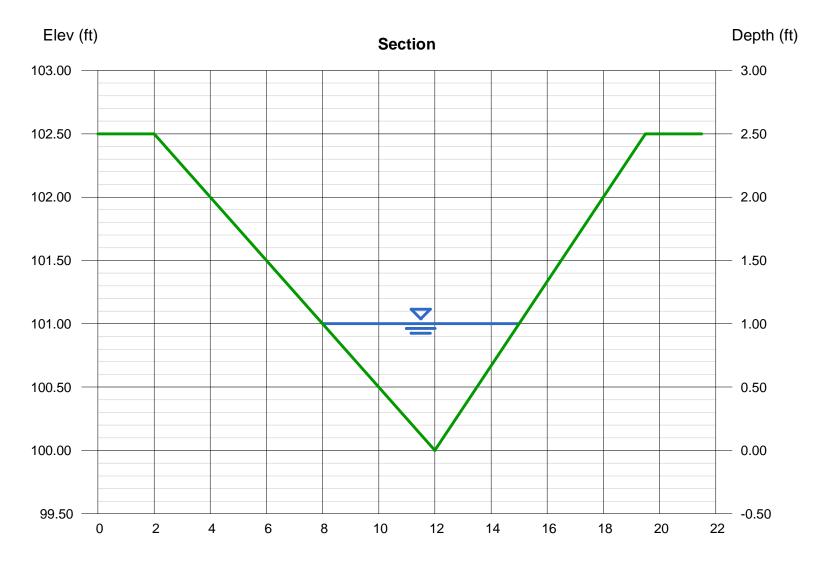

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 24 2023

Basin C Existing Swale

User-defined		Highlighted	
Invert Elev (ft)	= 7311.50	Depth (ft)	= 0.23
Slope (%)	= 6.00	Q (cfs)	= 4.500
N-Value	= 0.030	Area (sqft)	= 1.51
		Velocity (ft/s)	= 2.98
Calculations		Wetted Perim (ft)	= 10.92
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.28
Known Q (cfs)	= 4.50	Top Width (ft)	= 10.91
		EGL (ft)	= 0.37

(Sta, El, n)-(Sta, El, n)... (0.00, 7312.60) -(21.25, 7311.50, 0.030) -(24.31, 7311.53, 0.030) -(50.00, 7313.04, 0.030)

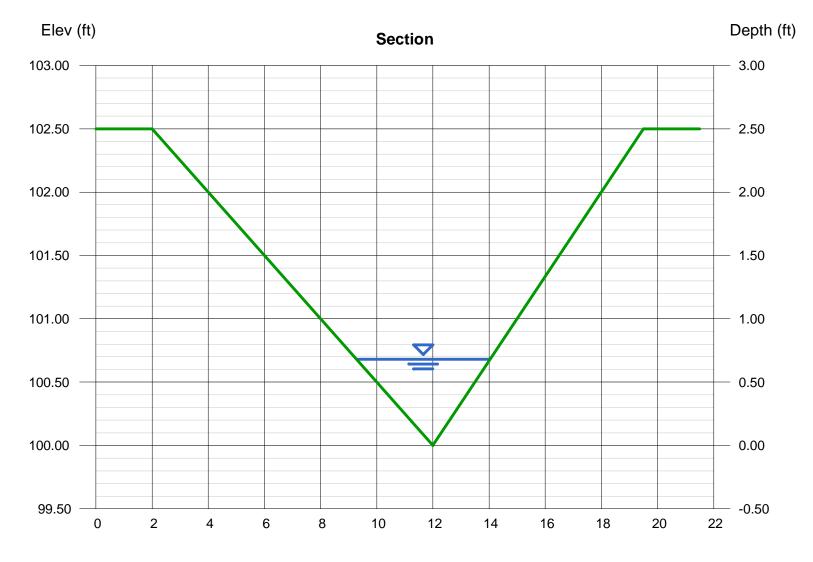

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 18 2023

Basin D Roadside Swale-Capacity

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.00
Total Depth (ft)	= 2.50	Q (cfs)	= 10.50
		Area (sqft)	= 3.50
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.00
Slope (%)	= 1.00	Wetted Perim (ft)	= 7.29
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.90
		Top Width (ft)	= 7.00
Calculations		EGL (ft)	= 1.14
Compute by:	Known Q		
Known Q (cfs)	= 10.50		



Reach (ft)

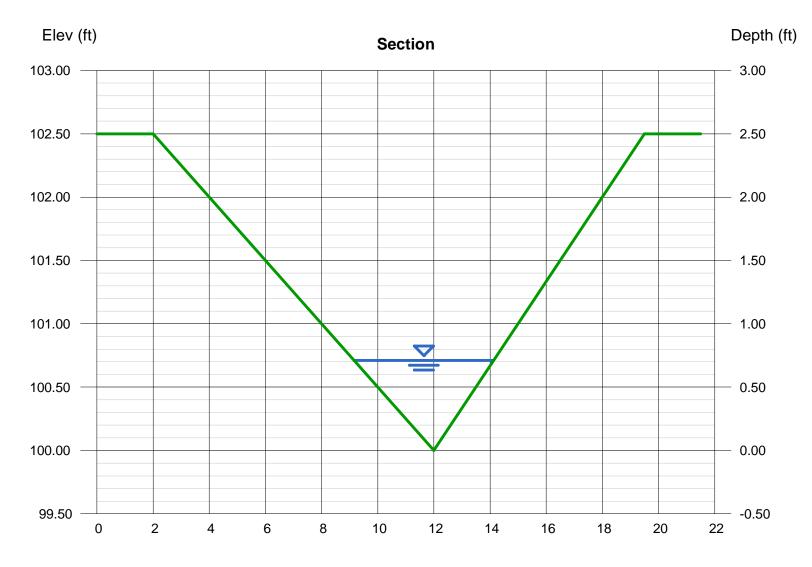
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Basin D Roadside Swale-Velocity

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.68
Total Depth (ft)	= 2.50	Q (cfs)	= 10.50
		Area (sqft)	= 1.62
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 6.49
Slope (%)	= 8.00	Wetted Perim (ft)	= 4.95
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.90
	· · · · · ·	Top Width (ft)	= 4.76
Calculations		EGL (ft)	= 1.33
Compute by:	Known Q		
Known Q (cfs)	= 10.50		
		Slopes over 3.9% for this section will	
		require TRM as the velocity > 5 ft/s	

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Wednesday, Oct 18 2023

Basin E Roadside Swale-Capacity

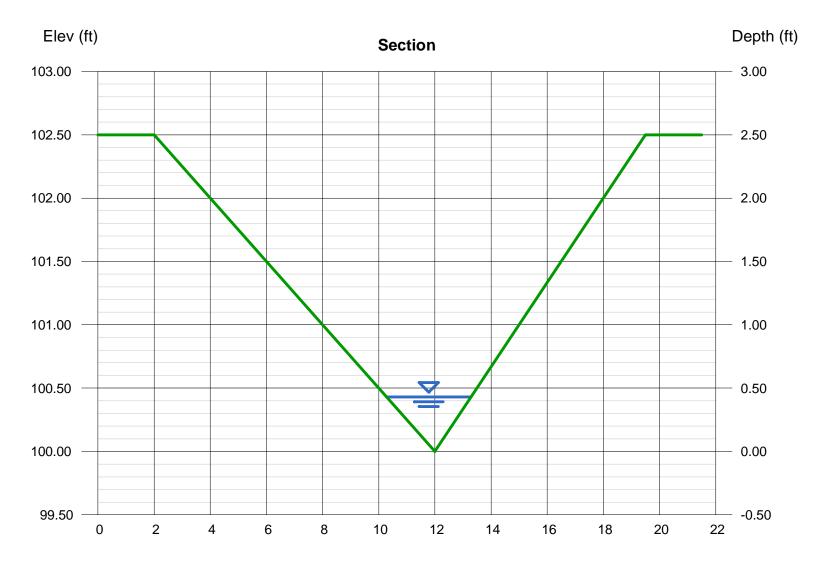
Triangular

Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.71
Total Depth (ft)	= 2.50	Q (cfs)	= 3.000
		Area (sqft)	= 1.76
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 1.70
Slope (%)	= 0.50	Wetted Perim (ft)	= 5.17
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.54
		Top Width (ft)	= 4.97
Calculations		EGL (ft)	= 0.75
Compute by:	Known Q		
Known Q (cfs)	= 3.00		

Highlighted

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

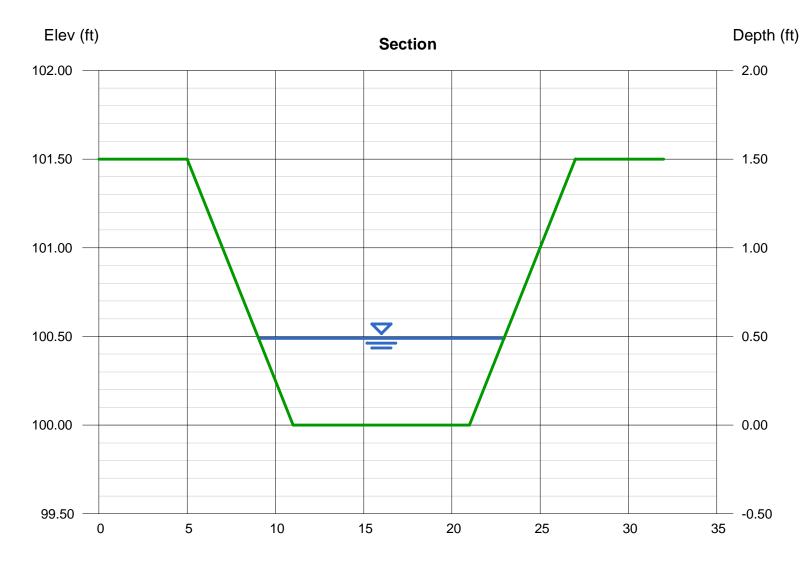

Wednesday, Oct 18 2023

Basin E Roadside Swale-Velocity

Triangular

Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.43
Total Depth (ft)	= 2.50	Q (cfs)	= 3.000
		Area (sqft)	= 0.65
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.64
Slope (%)	= 8.00	Wetted Perim (ft)	= 3.13
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.54
		Top Width (ft)	= 3.01
Calculations		EGL (ft)	= 0.76
Compute by:	Known Q		
Known Q (cfs)	= 3.00		

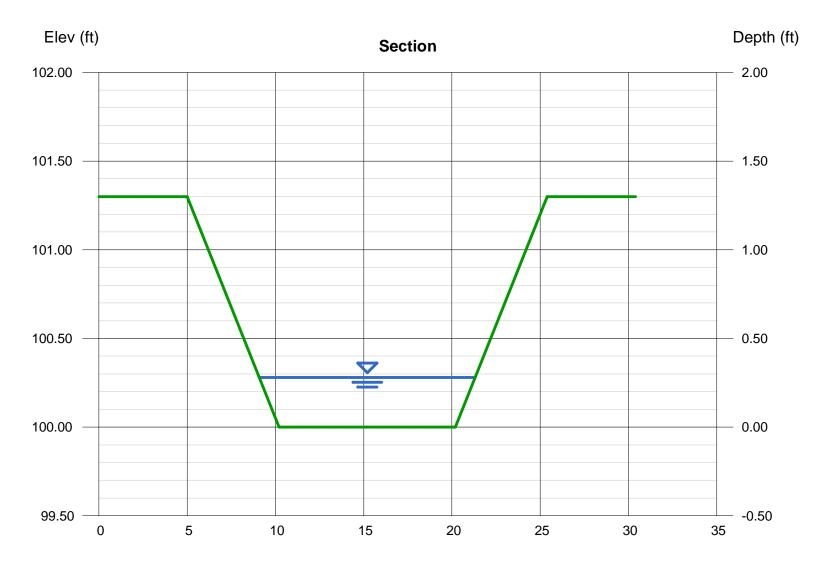
Highlighted


Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 24 2023

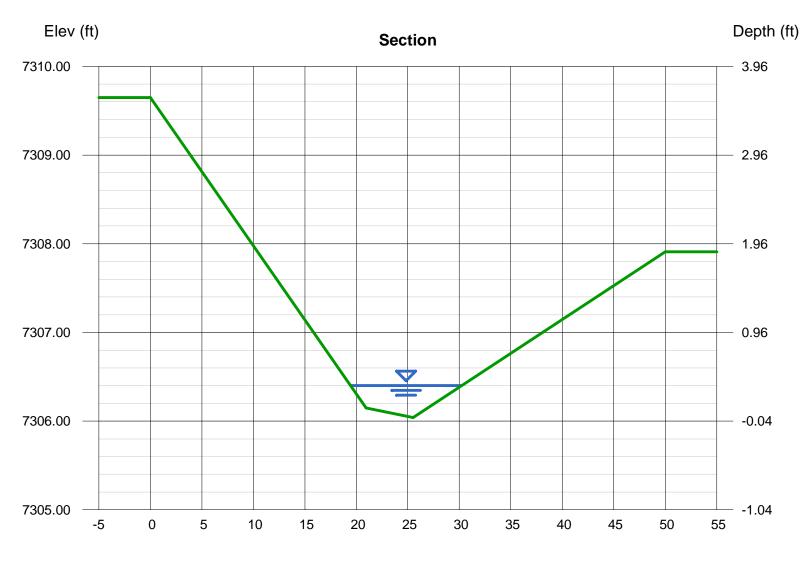
Basin G-Proposed Swale (Flatter)


Trapezoidal		Highlighted	
Bottom Width (ft)	= 10.00	Depth (ft)	= 0.49
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 12.50
Total Depth (ft)	= 1.50	Area (sqft)	= 5.86
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.13
Slope (%)	= 0.60	Wetted Perim (ft)	= 14.04
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.35
		Top Width (ft)	= 13.92
Calculations		EGL (ft)	= 0.56
Compute by:	Known Q		
Known Q (cfs)	= 12.50		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Basin G-Proposed Swale (Steeper)

Trapezoidal		Highlighted	
Bottom Width (ft)	= 10.00	Depth (ft)	= 0.28
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 12.50
Total Depth (ft)	= 1.30	Area (sqft)	= 3.11
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.01
Slope (%)	= 4.20	Wetted Perim (ft)	= 12.31
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.35
		Top Width (ft)	= 12.24
Calculations		EGL (ft)	= 0.53
Compute by:	Known Q		
Known Q (cfs)	= 12.50		

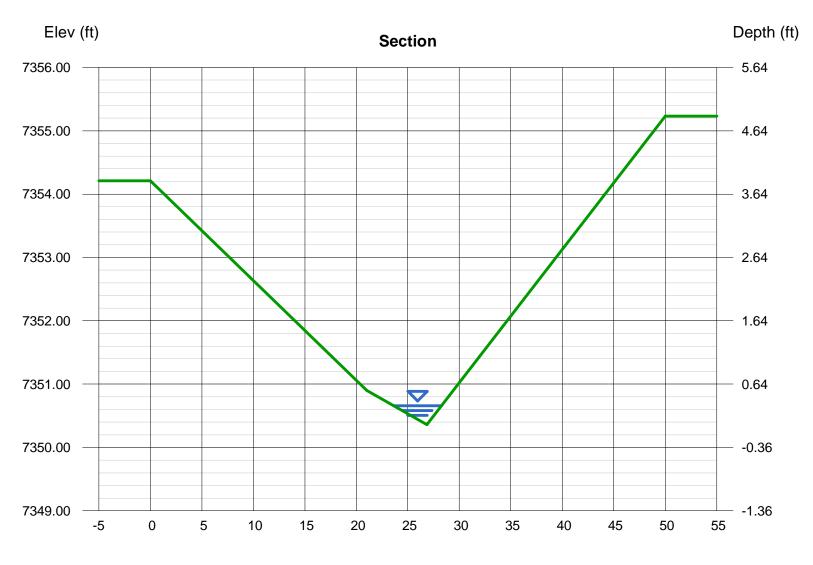

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 24 2023

Basin I Existing Swale

User-defined		Highlighted	
Invert Elev (ft)	= 7306.04	Depth (ft)	= 0.36
Slope (%)	= 8.00	Q (cfs)	= 12.00
N-Value	= 0.030	Area (sqft)	= 2.42
		Velocity (ft/s)	= 4.95
Calculations		Wetted Perim (ft)	= 10.80
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.49
Known Q (cfs)	= 12.00	Top Width (ft)	= 10.76
		EGL (ft)	= 0.74

(Sta, El, n)-(Sta, El, n)... (0.00, 7309.65) -(20.95, 7306.15, 0.030) -(25.50, 7306.04, 0.030) -(50.00, 7307.91, 0.030)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 24 2023

Basin J Existing Swale

User-defined Invert Elev (ft) Slope (%)	= 7350.36 = 7.50	Highlighted Depth (ft) Q (cfs)	= 0.30 = 2.500
N-Value	= 0.030	Area (sqft) Velocity (ft/s)	= 0.70 = 3.58
Calculations		Wetted Perim (ft)	= 4.71
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.37
Known Q (cfs)	= 2.50	Top Width (ft) EGL (ft)	= 4.66 = 0.50

(Sta, El, n)-(Sta, El, n)... (0.00, 7354.21) -(21.02, 7350.90, 0.030) -(26.85, 7350.36, 0.030) -(50.00, 7355.23, 0.030)

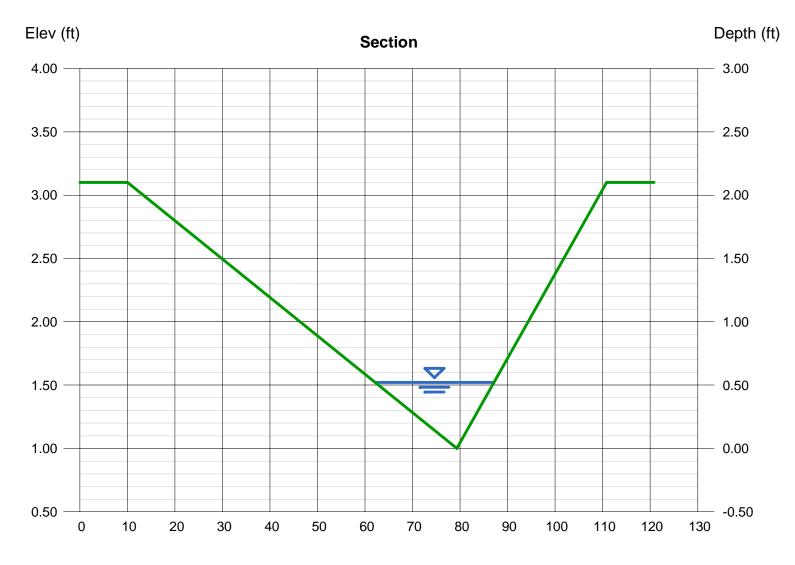
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 24 2023

Basin K Existing Swale

User-defined		Highlighted	
Invert Elev (ft)	= 7305.29	Depth (ft)	= 0.16
Slope (%)	= 6.50	Q (cfs)	= 8.500
N-Value	= 0.030	Area (sqft)	= 2.66
		Velocity (ft/s)	= 3.20
Calculations		Wetted Perim (ft)	= 18.76
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.21
Known Q (cfs)	= 8.50	Top Width (ft)	= 18.74
		EGL (ft)	= 0.32

(Sta, El, n)-(Sta, El, n)... (0.00, 7307.87) -(17.79, 7305.31, 0.030) -(34.47, 7305.29, 0.030) -(50.00, 7307.58, 0.030)

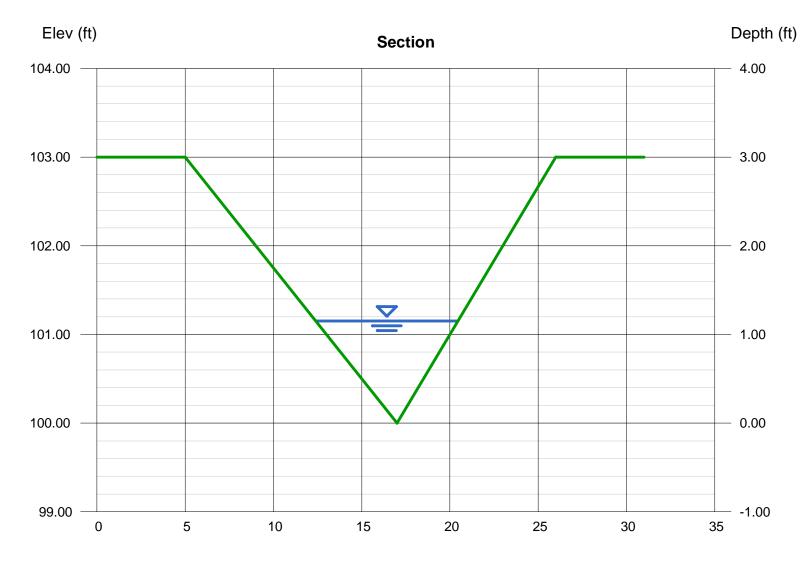

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Tuesday, Oct 24 2023

P1 Swale to Combination

Triangular

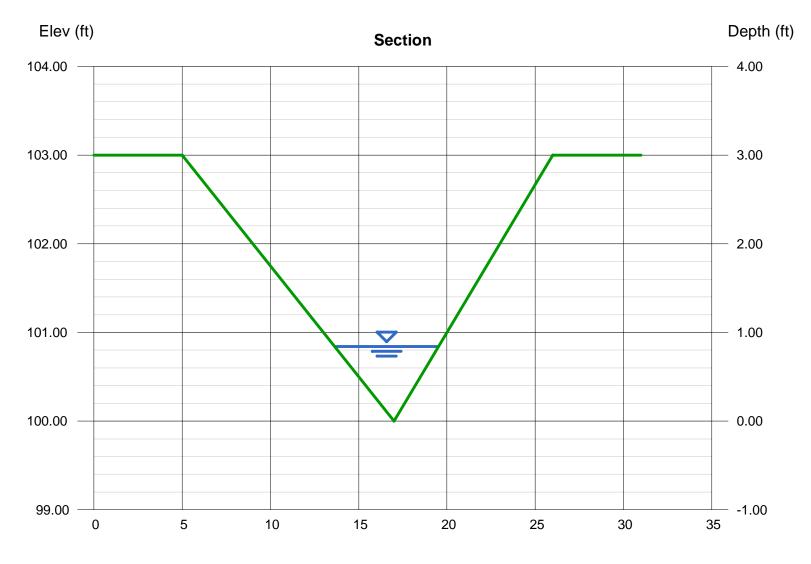
Triangular		Highlighted	
Side Slopes (z:1)	= 33.00, 15.00	Depth (ft)	= 0.52
Total Depth (ft)	= 2.10	Q (cfs)	= 11.00
		Area (sqft)	= 6.49
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 1.70
Slope (%)	= 1.00	Wetted Perim (ft)	= 24.99
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.42
		Top Width (ft)	= 24.96
Calculations		EGL (ft)	= 0.56
Compute by:	Known Q		
Known Q (cfs)	= 11.00		


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Oct 23 2023

Basin L Roadside Swale-Capacity

Triangular

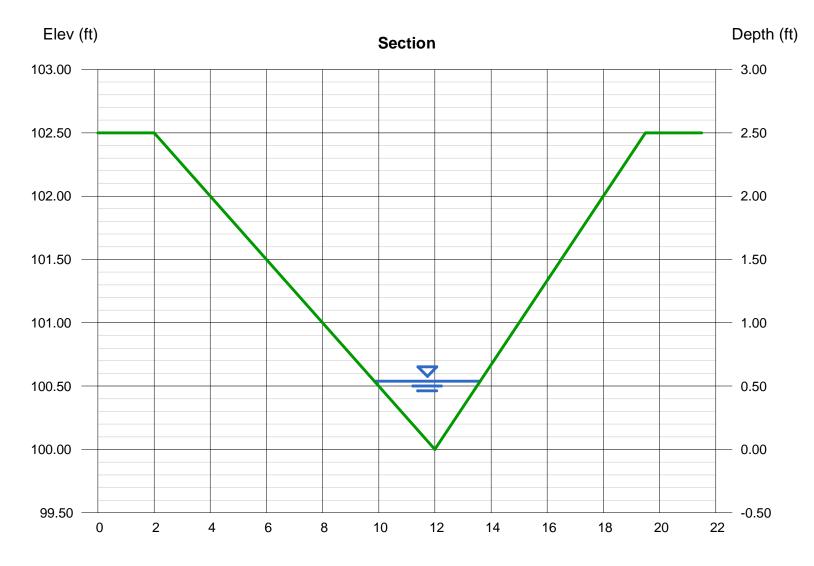

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 1.15
Total Depth (ft)	= 3.00	Q (cfs)	= 18.50
		Area (sqft)	= 4.63
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.00
Slope (%)	= 1.50	Wetted Perim (ft)	= 8.38
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.12
		Top Width (ft)	= 8.05
Calculations		EGL (ft)	= 1.40
Compute by:	Known Q		
Known Q (cfs)	= 18.50		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Basin L Roadside Swale-Velocity

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.84
Total Depth (ft)	= 3.00	Q (cfs)	= 18.50
		Area (sqft)	= 2.47
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 7.49
Slope (%)	= 8.00	Wetted Perim (ft)	= 6.12
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.12
		Top Width (ft)	= 5.88
Calculations		EGL (ft)	= 1.71
Compute by:	Known Q		
Known Q (cfs)	= 18.50		
		Slopes over 2.7% for this section will	
	<u> </u>	require TRM as the velocity > 5 ft/s	
		· · ·	

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Monday, Oct 23 2023

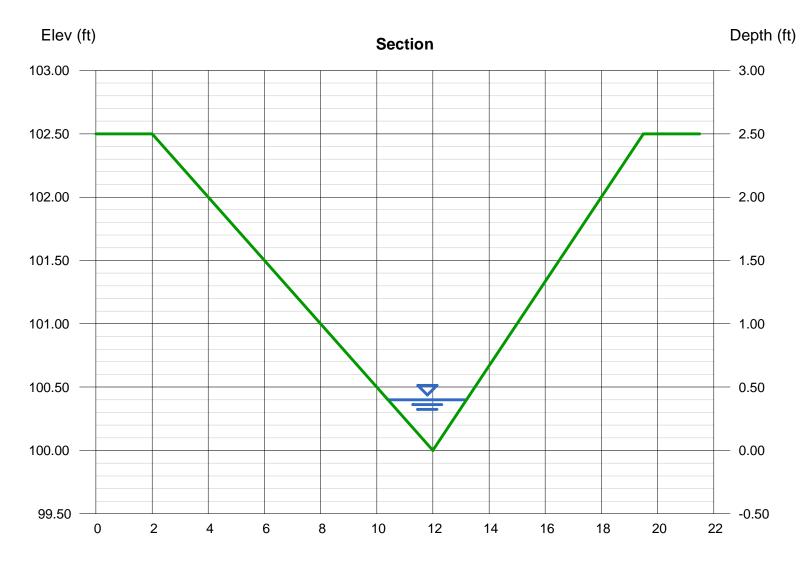
Basin M Roadside Swale-Capacity

Triangular

J		J J	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.54
Total Depth (ft)	= 2.50	Q (cfs)	= 2.500
		Area (sqft)	= 1.02
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.45
Slope (%)	= 1.50	Wetted Perim (ft)	= 3.93
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.51
		Top Width (ft)	= 3.78
Calculations		EGL (ft)	= 0.63
Compute by:	Known Q		
Known Q (cfs)	= 2.50		

Highlighted

Reach (ft)

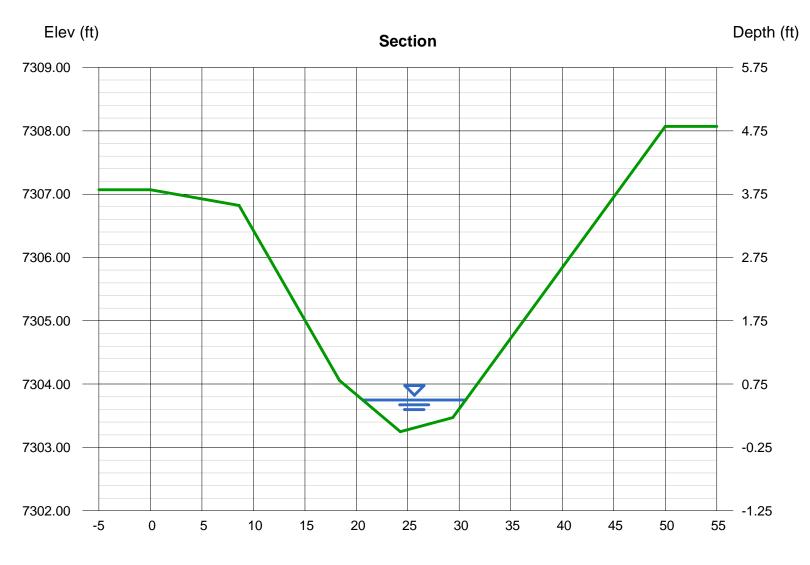

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Oct 23 2023

Basin M Roadside Swale-Velocity

Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 3.00	Depth (ft)	= 0.40
Total Depth (ft)	= 2.50	Q (cfs)	= 2.500
		Area (sqft)	= 0.56
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.46
Slope (%)	= 8.00	Wetted Perim (ft)	= 2.91
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.51
		Top Width (ft)	= 2.80
Calculations		EGL (ft)	= 0.71
Compute by:	Known Q		
Known Q (cfs)	= 2.50		


Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Basin O Existing Swale

User-defined		Highlighted	
Invert Elev (ft)	= 7303.25	Depth (ft)	= 0.50
Slope (%)	= 5.00	Q (cfs)	= 15.00
N-Value	= 0.030	Area (sqft)	= 3.08
		Velocity (ft/s)	= 4.87
Calculations		Wetted Perim (ft)	= 10.08
Compute by:	Known Q	Crit Depth, Yc (ft)	= 0.62
Known Q (cfs)	= 15.00	Top Width (ft)	= 10.01
		EGL (ft)	= 0.87
	-		

(Sta, El, n)-(Sta, El, n)... (0.00, 7307.07) - (8.60, 7306.82, 0.030) - (18.35, 7304.06, 0.030) - (24.28, 7303.25, 0.030) - (29.38, 7303.47, 0.030) - (50.00, 7308.07, 0.030)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Thursday, Sep 7 2023

Basin P Existing Swale

	Highlighted	
= 7297.91	Depth (ft)	= 0.27
= 6.50	Q (cfs)	= 12.00
= 0.030	Area (sqft)	= 3.30
	Velocity (ft/s)	= 3.63
	Wetted Perim (ft)	= 20.00
Known Q	Crit Depth, Yc (ft)	= 0.34
= 12.00	Top Width (ft)	= 19.99
	EGL (ft)	= 0.48
	= 6.50 = 0.030 Known Q	= 7297.91 Depth (ft) = 6.50 Q (cfs) = 0.030 Area (sqft) Velocity (ft/s) Wetted Perim (ft) Known Q Crit Depth, Yc (ft) = 12.00 Top Width (ft)

(Sta, El, n)-(Sta, El, n)...

(0.00, 7299.49) -(12.62, 7298.17, 0.030) -(20.94, 7297.91, 0.030) -(30.32, 7298.03, 0.030) -(50.00, 7299.38, 0.030)

VMax[®] TRMs

ROLLED EROSION CONTROL

A Permanent Turf Reinforcement Mat Solution for Every Design

The VMax system of permanent TRMs are ideal for high-flow channels, streambanks, shorelines, and other areas needing permanent vegetation reinforcement and protection from water and wind. Our VMax TRMs combine a three-dimensional matting and a fiber matrix material for allout erosion protection, vegetation establishment and reinforcement. The VMax TRMs are available with various performance capabilities and support reinforced vegetative lining development from germination to maturity.

VMax[®] Unique Three-Dimensional Design

North American Green VMax TRMs are each designed to maximize performance through all development phases of a reinforced vegetative lining. The corrugated matting structure lends a true reinforcement zone for vegetation entanglement, especially compared to flat net mats. The unique design of the corrugated matting also helps to create a shear plane that deflects flowing water away from the soil surface. And the incorporation of a fiber matrix supplements the 3-D structure by creating a ground cover that blocks soil movement and aids in vegetation establishment.

	S200	SC250	C350	P550
Matrix Fiber	100% Straw	70% Straw / 30% Coconut	100% Coconut	100% Polypropylene
Netting Types	Top and Bottom light-weight UV-stabilized PP, Crimped PP center net	Top and Bottom UV-stabilized PP, Crimped PP center net	Top and Bottom heavy-weight UV-stabilized PP, Crimped PP center net	Top and Bottom ultra heavy- weight UV-stabilized PP, Crimped PP center net
Typical Slope Applications (H:V)	1:1 and greater	1:1 and greater	1:1 and greater	1:1 and greater
Channel Shear Stress Threshold	Unvegetated: 2.3 psf Vegetated: 10.0 psf	Unvegetated: 3.0 psf Vegetated: 10.0 psf	Unvegetated: 3.2 psf Vegetated: 12.0 psf	Unvegetated: 4.0 psf Vegetated: 14.0 psf
Channel Velocity Threshold	Unvegetated: 8.5 fps Vegetated: 18 fps	Unvegetated: 9.5 fps Vegetated: 15 fps	Unvegetated: 10.5 fps Vegetated: 20 fps	Unvegetated: 12.5 fps Vegetated: 25 fps

Four VMax Turf Reinforcement Mats Designed for Every Level of Performance

Selected product that will work for all swales above 5 ft/s. Has maximum of 15 ft/s. Copyright 2021.

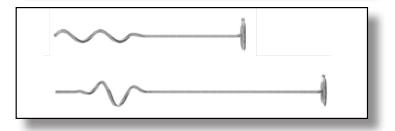
North American Green, LLC. 4609 E. Boonville-New Harmony Rd., Evansville, IN (800) 772-2040 | www.nagreen.com

VMax[®] TRMs cont.

Selecting the Right VMax TRM

Choosing the right VMax TRM can be made easy by utilizing our Erosion Control Materials Design Software (www.ecmds.com), which allows users to input project specific parameters for channels, slopes, spillways, and more and ensures proper evaluation, design, and product selection in return. Our four VMax TRMs offer varying performance values, fiber matrix longevities, and price points, to help you meet your project specific goals.

Twist Pin + VMax TRM - an Ideal Installation


Utilizing the VMax TRMs in conjunction with Twist Pin fastener technology can result in an installed system that pushes TRM performance with increased factors of safety. The combined system has been shown to have superior pullout strength performance up to 200 lbs when compared to installation with traditional wire staples and pins. This is up to 10x the pullout resistance of wire staples and pins. Additionally, the use of the twist pins provides intimate contact between the TRM and the soil, and have been shown to be effective in a wide range of soil types. With a quick and easy installation using an electric drill and custom chuck, the TRM+Twist Pin system can eliminate time and labor costs from day 1 through project release.

VMax turf reinforcement mat being installed on a channel application (top right), twist pins installed with TRMs can have increased system performance and pullout resistance (middle right), twist pins are available in 8" and 12" lengths and two coil configurations designed for hard or soft soil types (lower right).

Comparison of common TRM fasteners based on pullout performance and typical application (below).

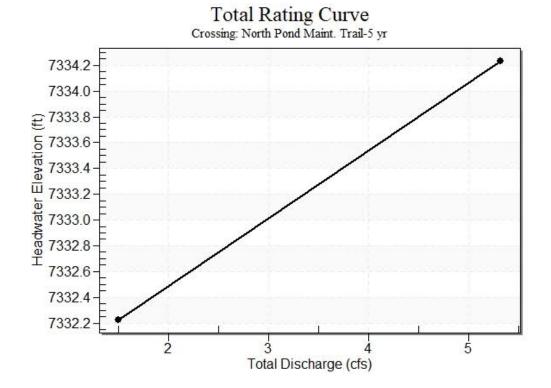
Fastener	Pullout Resistance (lb)	Comment	
6" Round Top Pin	14	Best for hardened soils where other fasteners are damaged during installation.	
6" Regular U-staple	42	Standard fastener that develops additional pullout as legs may deflect and add friction during installation.	
12" Pin with Washer	35	Standard fastener good for soils where staples can be bent frequently and are too difficult to install.	
18" Pin with Washer	27	Standard fastener good for soils where staples are frequently bent and 12" straight pins fail to provide sufficient pullout because surface soil is wet or loose.	
Twist Pin	170	Upgraded fastener that provides high pullout and ideal for loose or soft soils.	

Copyright 2021.

North American Green, LLC. 4609 E. Boonville-New Harmony Rd., Evansville, IN (800) 772-2040 | www.nagreen.com

HY-8 Culvert Analysis Report

North Pond Maintenance Trail 5-yr


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 1.5 cfs Design Flow: 1.5 cfs Maximum Flow: 1.5 cfs

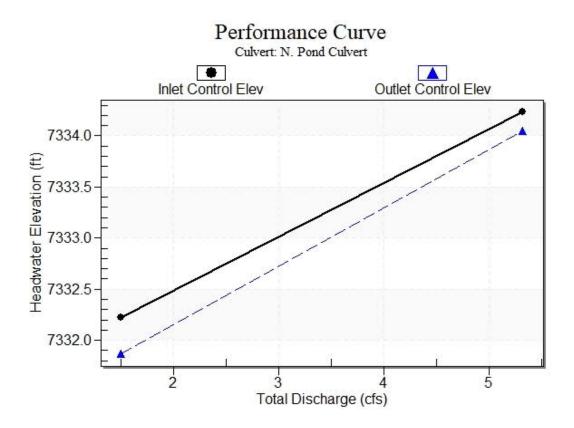
Table 1 - Summary of Culvert Flows at Crossing: North Pond Maint. Trail-5 yr

Headwater Elevation (ft)	Total Discharge (cfs)	N. Pond Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7332.23	1.50	1.50	0.00	1
7334.23	5.17	5.17	0.00	Overtopping

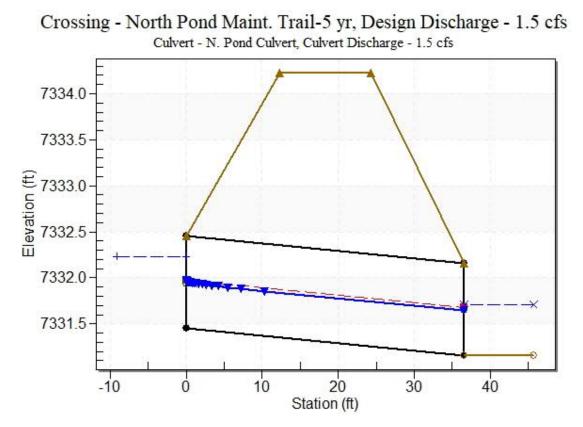
Rating Curve Plot for Crossing: North Pond Maint. Trail-5 yr

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436
1.50	1.50	7332.23	0.777	0.417	1-S2n	0.483	0.519	0.483	0.546	3.988	1.436

Table 2 - Culvert Summary Table: N. Pond Culvert



Straight Culvert


Inlet Elevation (invert): 7331.45 ft, Outlet Elevation (invert): 7331.16 ft

Culvert Length: 36.60 ft, Culvert Slope: 0.0079

Culvert Performance Curve Plot: N. Pond Culvert

Site Data - N. Pond Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7331.45 ft Outlet Station: 36.60 ft Outlet Elevation: 7331.16 ft Number of Barrels: 1

Culvert Data Summary - N. Pond Culvert

Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48
1.50	7331.71	0.55	1.44	0.17	0.48

Table 3 - Downstream Channel Rating Curve (Crossing: North Pond Maint. Trail-5 yr)

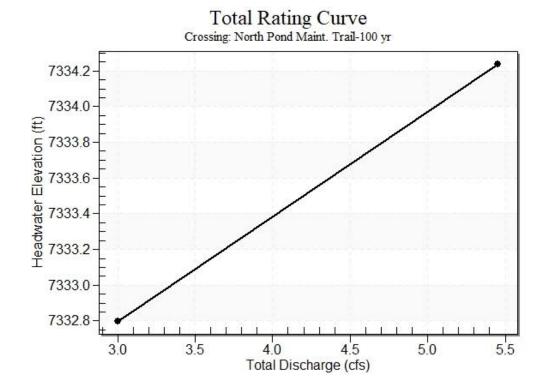
Tailwater Channel Data - North Pond Maint. Trail-5 yr

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 3.50 (_:1) Channel Slope: 0.0050 Channel Manning's n: 0.0300 Channel Invert Elevation: 7331.16 ft

Roadway Data for Crossing: North Pond Maint. Trail-5 yr

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 7334.23 ft Roadway Surface: Gravel Roadway Top Width: 12.00 ft

HY-8 Culvert Analysis Report North Pond Maintenance Trail 100-yr


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 3 cfs Design Flow: 3 cfs Maximum Flow: 3 cfs

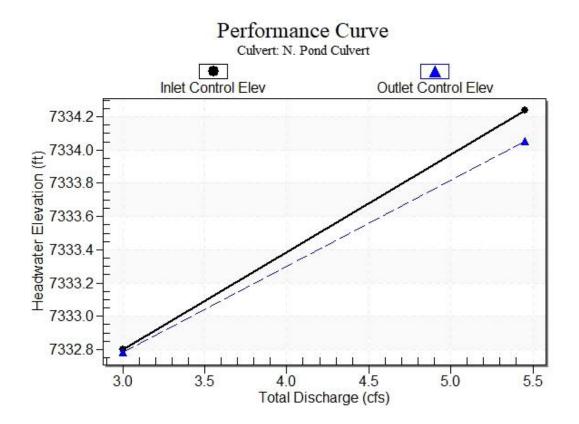
Table 1 - Summary of Culvert Flows at Crossing: North Pond Maint. Trail-100 yr

Headwater Elevation (ft)	Total Discharge (cfs)	N. Pond Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7332.80	3.00	3.00	0.00	1
7334.23	5.17	5.17	0.00	Overtopping

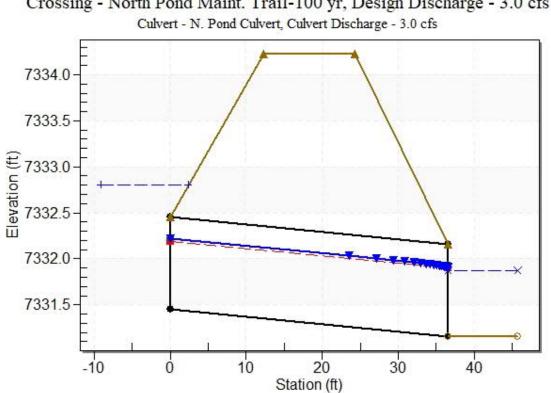
Rating Curve Plot for Crossing: North Pond Maint. Trail-100 yr

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708
3.00	3.00	7332.80	1.350	1.333	7-M2c	0.774	0.742	0.742	0.708	4.798	1.708

Table 2 - Culvert Summary Table: N. Pond Culvert


Straight Culvert


Inlet Elevation (invert): 7331.45 ft, Outlet Elevation (invert): 7331.16 ft


Culvert Length: 36.60 ft, Culvert Slope: 0.0079

Culvert Performance Curve Plot: N. Pond Culvert

Crossing - North Pond Maint. Trail-100 yr, Design Discharge - 3.0 cfs

Site Data - N. Pond Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7331.45 ft Outlet Station: 36.60 ft Outlet Elevation: 7331.16 ft Number of Barrels: 1

Culvert Data Summary - N. Pond Culvert

Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51
3.00	7331.87	0.71	1.71	0.22	0.51

Table 3 - Downstream Channel Rating Curve (X-ing: North Pond Maint. Trail-100 yr)

Tailwater Channel Data - North Pond Maint. Trail-100 yr

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 3.50 (_:1) Channel Slope: 0.0050 Channel Manning's n: 0.0300 Channel Invert Elevation: 7331.16 ft

Roadway Data for Crossing: North Pond Maint. Trail-100 yr

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 7334.23 ft Roadway Surface: Gravel Roadway Top Width: 12.00 ft

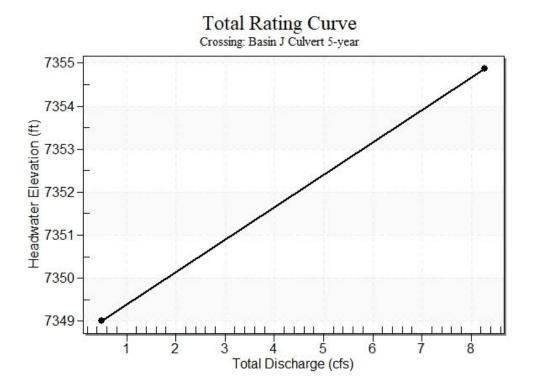
HY-8 Culvert Analysis Report

Basin J Culvert 5-year

Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow

Minimum Flow: 0.5 cfs


Design Flow: 0.5 cfs

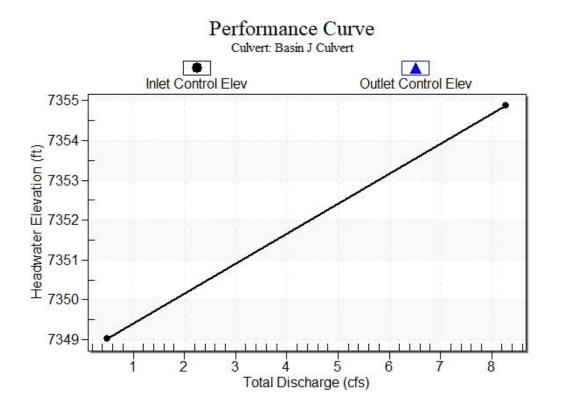
Maximum Flow: 0.5 cfs

Table 1 - Summary of Culvert Flows at Crossing: Basin J Culvert 5-year

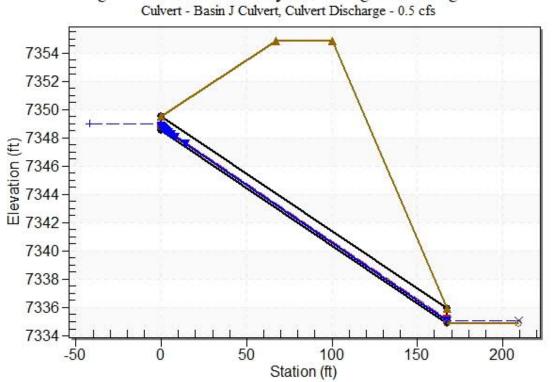
Headwater Elevation (ft)	Total Discharge (cfs)	Basin J Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7349.02	0.50	0.50	0.00	1
7354.88	8.23	8.23	0.00	Overtopping

Rating Curve Plot for Crossing: Basin J Culvert 5-year

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851
0.50	0.50	7349.02	0.466	0.0*	1-S2n	0.150	0.293	0.150	0.187	6.735	2.851


Table 2 - Culvert Summary Table: Basin J Culvert

* Full Flow Headwater elevation is below inlet invert.


Straight Culvert Inlet Elevation (invert): 7348.55 ft, Outlet Elevation (invert): 7334.90 ft Culvert Length: 167.96 ft, Culvert Slope: 0.0815

Culvert Performance Curve Plot: Basin J Culvert

Design Point (DP4)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs

Crossing - Basin J Culvert 5-year, Design Discharge - 0.5 cfs

Site Data - Basin J Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7348.55 ft Outlet Station: 167.40 ft Outlet Elevation: 7334.90 ft Number of Barrels: 1

Culvert Data Summary - Basin J Culvert

Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64
0.50	7335.09	0.19	2.85	0.93	1.64

Table 3 - Downstream Channel Rating Curve (Crossing: Basin J Culvert 5-year)

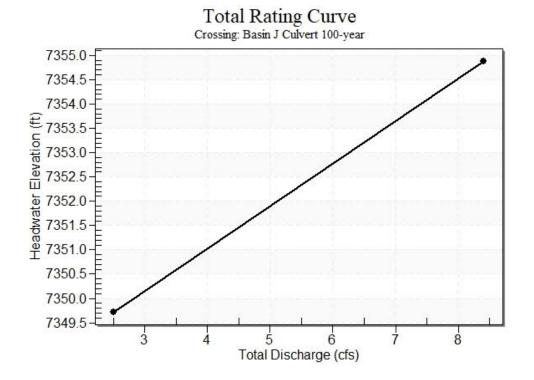
Tailwater Channel Data - Basin J Culvert 5-year

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 5.00 (_:1) Channel Slope: 0.0800 Channel Manning's n: 0.0300 Channel Invert Elevation: 7334.90 ft

Roadway Data for Crossing: Basin J Culvert 5-year

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 7354.88 ft Roadway Surface: Paved Roadway Top Width: 33.00 ft

HY-8 Culvert Analysis Report Basin J Culvert 100-year


Crossing Discharge Data

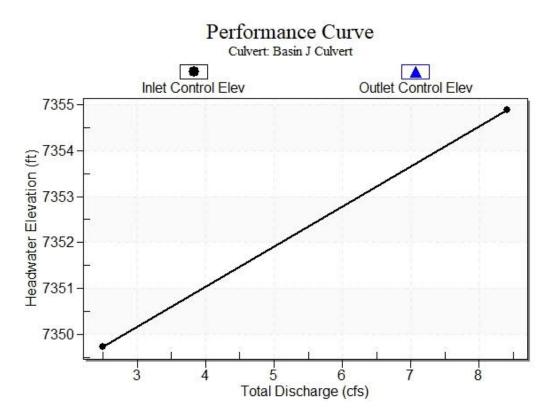
Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 2.5 cfs Design Flow: 2.5 cfs Maximum Flow: 2.5 cfs

Table 1 - Summary of Culvert Flows at Crossing: Basin J Culvert 100-year

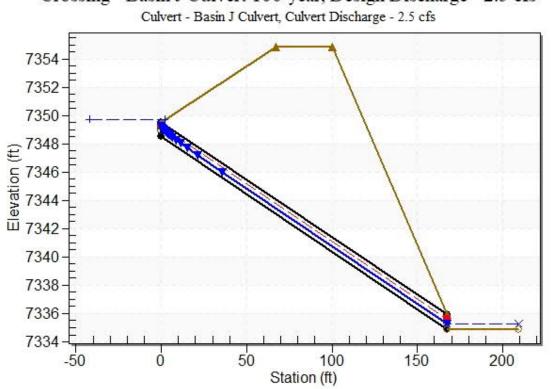
Headwater Elevation (ft)	Total Discharge (cfs)	Basin J Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7349.73	2.50	2.50	0.00	1
7354.88	8.23	8.23	0.00	Overtopping

Rating Curve Plot for Crossing: Basin J Culvert 100-year

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264
2.50	2.50	7349.73	1.175	0.0*	5-S2n	0.337	0.677	0.337	0.342	10.734	4.264


Table 2 - Culvert Summary Table: Basin J Culvert

* Full Flow Headwater elevation is below inlet invert.


Straight Culvert Inlet Elevation (invert): 7348.55 ft, Outlet Elevation (invert): 7334.90 ft Culvert Length: 167.96 ft, Culvert Slope: 0.0815

Culvert Performance Curve Plot: Basin J Culvert

Design Point (DP4)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs

Crossing - Basin J Culvert 100-year, Design Discharge - 2.5 cfs

Site Data - Basin J Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7348.55 ft Outlet Station: 167.40 ft Outlet Elevation: 7334.90 ft Number of Barrels: 1

Culvert Data Summary - Basin J Culvert

Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82
2.50	7335.24	0.34	4.26	1.71	1.82

Table 3 - Downstream Channel Rating Curve (Crossing: Basin J Culvert 100-year)

Tailwater Channel Data - Basin J Culvert 100-year

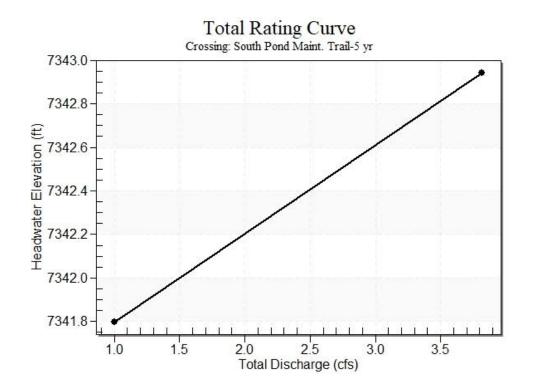
Tailwater Channel Option: Triangular Channel Side Slope (H:V): 5.00 (_:1) Channel Slope: 0.0800 Channel Manning's n: 0.0300 Channel Invert Elevation: 7334.90 ft

Roadway Data for Crossing: Basin J Culvert 100-year

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 7354.88 ft Roadway Surface: Paved Roadway Top Width: 33.00 ft

HY-8 Culvert Analysis Report

South Pond Maintenance Trail 5-yr


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 1 cfs Design Flow: 1 cfs Maximum Flow: 1 cfs

Table 1 - Summary of Culvert Flows at Crossing: South Pond Maint. Trail-5 yr

Headwater Elevation (ft)	Total Discharge (cfs)	S. Pond Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7341.80	1.00	1.00	0.00	1
7342.94	3.73	3.73	0.00	Overtopping

Rating Curve Plot for Crossing: South Pond Maint. Trail-5 yr

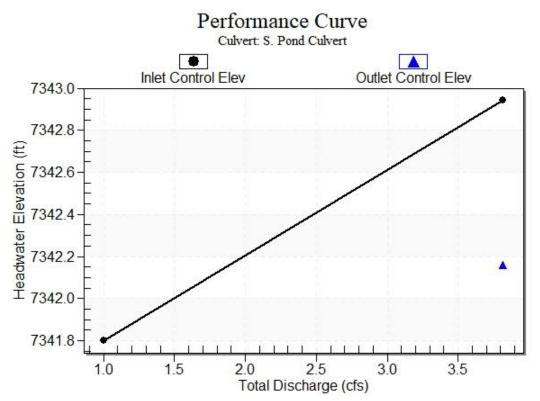
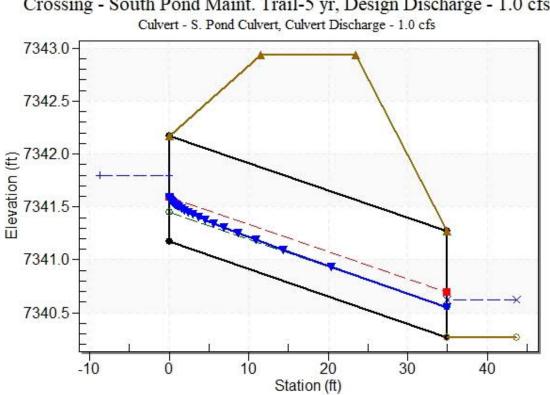

Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337
1.00	1.00	7341.80	0.630	0.0*	1-S2n	0.283	0.420	0.285	0.350	5.429	2.337

Table 2 - Culvert Summary Table: S. Pond Culvert

* Full Flow Headwater elevation is below inlet invert.


Straight Culvert Inlet Elevation (invert): 7341.17 ft, Outlet Elevation (invert): 7340.27 ft Culvert Length: 35.01 ft, Culvert Slope: 0.0257

Culvert Performance Curve Plot: S. Pond Culvert

Water Surface Profile Plot for Culvert: S. Pond Culvert

Design Point (DP1)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs

Crossing - South Pond Maint. Trail-5 yr, Design Discharge - 1.0 cfs

Site Data - S. Pond Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7341.17 ft Outlet Station: 35.00 ft Outlet Elevation: 7340.27 ft Number of Barrels: 1

Culvert Data Summary - S. Pond Culvert

Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99
1.00	7340.62	0.35	2.34	0.52	0.99

Table 3 - Downstream Channel Rating Curve (Crossing: South Pond Maint. Trail-5 yr)

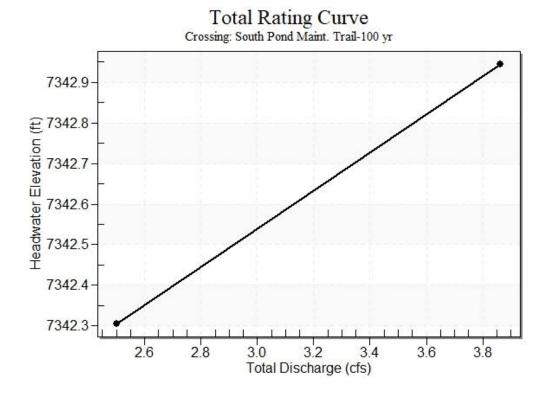
Tailwater Channel Data - South Pond Maint. Trail-5 yr

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 3.50 (_:1) Channel Slope: 0.0240 Channel Manning's n: 0.0300 Channel Invert Elevation: 7340.27 ft

Roadway Data for Crossing: South Pond Maint. Trail-5 yr

Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 7342.94 ft Roadway Surface: Gravel Roadway Top Width: 12.00 ft

HY-8 Culvert Analysis Report South Pond Maintenance Trail 100-yr


Crossing Discharge Data

Discharge Selection Method: Specify Minimum, Design, and Maximum Flow Minimum Flow: 2.5 cfs Design Flow: 2.5 cfs Maximum Flow: 2.5 cfs

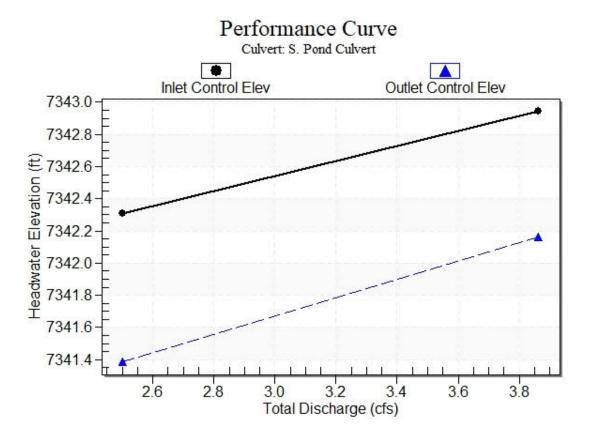
Table 1 - Summary of Culvert Flows at Crossing: South Pond Maint. Trail-100 yr

Headwater Elevation (ft)	Total Discharge (cfs)	S. Pond Culvert Discharge (cfs)	Roadway Discharge (cfs)	Iterations
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.31	2.50	2.50	0.00	1
7342.94	3.73	3.73	0.00	Overtopping

Rating Curve Plot for Crossing: South Pond Maint. Trail-100 yr

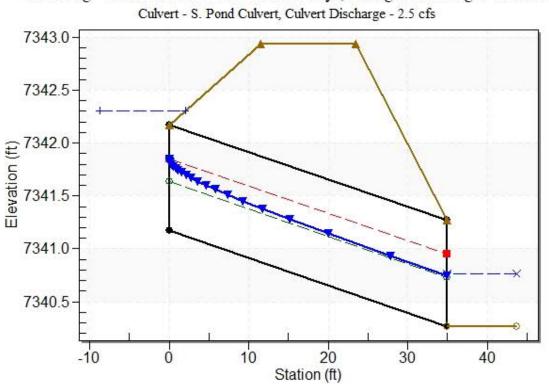
Total Discharge (cfs)	Culvert Discharge (cfs)	Headwater Elevation (ft)	Inlet Control Depth (ft)	Outlet Control Depth (ft)	Flow Type	Normal Depth (ft)	Critical Depth (ft)	Outlet Depth (ft)	Tailwater Depth (ft)	Outlet Velocity (ft/s)	Tailwater Velocity (ft/s)
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939
2.50	2.50	7342.31	1.136	0.216	5-S2n	0.462	0.677	0.474	0.493	6.824	2.939

Table 2 - Culvert Summary Table: S. Pond Culvert



Straight Culvert

Inlet Elevation (invert): 7341.17 ft, Outlet Elevation (invert): 7340.27 ft


Culvert Length: 35.01 ft, Culvert Slope: 0.0257

Culvert Performance Curve Plot: S. Pond Culvert

Water Surface Profile Plot for Culvert: S. Pond Culvert

Design Point (DP1)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs

Crossing - South Pond Maint. Trail-100 yr, Design Discharge - 2.5 cfs

Site Data - S. Pond Culvert

Site Data Option: Culvert Invert Data Inlet Station: 0.00 ft Inlet Elevation: 7341.17 ft Outlet Station: 35.00 ft Outlet Elevation: 7340.27 ft Number of Barrels: 1

Culvert Data Summary - S. Pond Culvert

Barrel Shape: Circular Barrel Diameter: 1.00 ft Barrel Material: Concrete Embedment: 0.00 in Barrel Manning's n: 0.0130 Culvert Type: Straight Inlet Configuration: Mitered to Conform to Slope Inlet Depression: None

Flow (cfs)	Water Surface Elev (ft)	Depth (ft)	Velocity (ft/s)	Shear (psf)	Froude Number
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04
2.50	7340.76	0.49	2.94	0.74	1.04

Table 3 - Downstream Channel Rating Curve (Crossing: South Pond Maint. Trail-100

yr)

Tailwater Channel Data - South Pond Maint. Trail-100 yr

Tailwater Channel Option: Triangular Channel Side Slope (H:V): 3.50 (_:1) Channel Slope: 0.0240 Channel Manning's n: 0.0300 Channel Invert Elevation: 7340.27 ft

Roadway Data for Crossing: South Pond Maint. Trail-100 yr

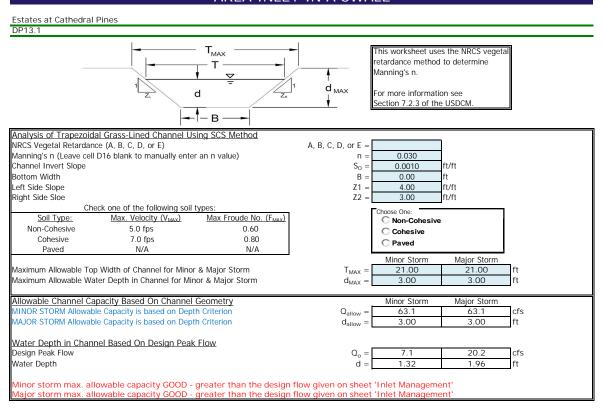
Roadway Profile Shape: Constant Roadway Elevation Crest Length: 100.00 ft Crest Elevation: 7342.94 ft Roadway Surface: Gravel Roadway Top Width: 12.00 ft

MHFD-Inlet, Version 5.02 (August 2022)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	<u>DP13.1</u>
Site Type (Urban or Rural)	RURAL
Inlet Application (Street or Area)	AREA
Hydraulic Condition	Swale
Inlet Type	CDOT Type C


USER-DEFINED INPUT

User-Defined Design Flows	
Minor Q _{Known} (cfs)	7.1
Major Q _{Known} (cfs)	20.2
Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstream (
Receive Bypass Flow from:	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0
Watershed Characteristics	
Subcatchment Area (acres)	
Percent Impervious	
NRCS Soil Type	
Watershed Profile	
Overland Slope (ft/ft)	
Overland Length (ft)	
Channel Slope (ft/ft)	
Channel Length (ft)	
Minor Storm Rainfall Input	
Design Storm Return Period, T _r (years)	
One-Hour Precipitation, P_1 (inches)	
one-nour recipitation, r ₁ (incres)	
Major Storm Rainfall Input	
Design Storm Return Period, T _r (years)	

CALCULATED OUTPUT

7.1
20.2
0.0
0.0

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE

MHFD-Inlet, Version 5.02 (August 2022) AREA INLET IN A SWALE Estates at Cathedral Pines Inlet Design Information (Input) Type of Inlet CDOT Type C -Inlet Type = CDOT Type C Angle of Inclined Grate (must be <= 30 degrees) Width of Grate θ 0.00 degrees W = 3.00 ft Length of Grate L : 3.00 ft Open Area Ratio A_{RATIO} = 0.70 Height of Inclined Grate H_B 0.00 ft Clogging Factor $C_f =$ 0.50 Grate Discharge Coefficient C_{d} 0.96 Orifice Coefficient C_{o} 0.64 Weir Coefficient Cw 2.05 W FLOW MINOR MAJOR Water Depth at Inlet (for depressed inlets, 1 foot is added for depression) d 1.32 1.96 Q_a = Q_b = Total Inlet Interception Capacity (assumes clogged condition) 22.6 cfs 18.6 Bypassed Flow cfs 0.0 0.0 Capture Percentage = Qa/Qo C% = % 100 100

Please include inlet calculation at DP 5.1 as discussed in the text.

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

e in parantheses add the CDs	El Paso County	-	Project No.: Calculated By: Checked By:	
on ie (DP1) etc. So it is easier	10/24/23			
between the two			Date.	10/24/23
		STORM DRAIN SYSTEM	Λ	
	N. Pond Culvert	Design Point-10	S. Pond Culvert	Notes
Q ₁₀₀ (cfs):	3.0	2.5	2.5	
Conduit	Pipe	Pipe	Pipe	
D _c , Pipe Diameter (in):	12	18	12	
W, Box Width (ft):	N/A	N/A	N/A	
H, Box Height (ft):	N/A	N/A	N/A	
Y_t , Tailwater Depth (ft):	0.40	0.60	0.40	If unknown, use Y_t/D_c (or H)=
Y_t/Dc or Y_t/H	0.40	0.40	0.40	
Q/D ^{2.5} or Q/(WH ^{3/2})	3.00	0.91	2.50	
Supercritical?	No	No	No	
Y_n , Normal Depth (ft) [Supercritical]:				
D_a , H_a (in) [Supercritical]:	N/A	N/A	N/A	$D_a = (D_c + Y_n)/2$
Riprap <i>d</i> 50 (in) [Supercritical]:	N/A	N/A	N/A	
Riprap <i>d</i> 50 (in) [Subcritical]:	2.49	1.13	2.07	
Required Riprap Size:	L	L	L	Fig. 9-38 or Fig. 9-36
<i>d</i> ₅₀ (in):	9	9	9	
Expansion Factor, $1/(2 \tan \theta)$:	4.40	6.80	4.80	Read from Fig. 9-35 or 9-36
<i>θ</i> :	0.11	0.07	0.10	
Erosive Soils?	No	No	No	
Area of Flow, A_t (ft ²):	0.43	0.36	0.36	$A_t = Q/V$
Length of Protection, L_p (ft):	0.3	-6.2	-0.5	L=(1/(2 tan θ))(At/Yt - D)
Min Length (ft)	3.0	4.5	3.0	Min L=3D or 3H
Max Length (ft)	10.0	15.0	10.0	Max L=10D or 10H
Min Bottom Width, T (ft):	1.1	0.6	0.9	T=2*(L _p *tanθ)+W
Design Length (ft)	3.0	4.5	3.0	
Design Width (ft)	1.1	0.6	0.9	
Riprap Depth (in)	18	18	18	Depth=2(d ₅₀)
Type II Bedding Depth (in)*	6	6	6	*Not used if Soil Riprap
Cutoff Wall	No	No	No	
Cutoff Wall Depth (ft)				Depth of Riprap and Base
Cutoff Wall Width (ft)				

Note: No Type II Base to be used if Soil Riprap is specified within the plans * For use when the flow in the culvert is supercritical (and less than full).

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Cathedral Pines Location: El Paso County

	Estates at Cathedral Pines
Project No.:	
Calculated By:	GAG
Checked By:	
Date:	10/24/23

	9	STORM DRAIN SYSTEM	N			
	N. Pond Release	S. Pond Release		Notes		
Q ₁₀₀ (cfs):	8.0	4.5				
Conduit	Pipe	Pipe				
D_c , Pipe Diameter (in):	18	18				
W, Box Width (ft):	N/A	N/A				
H, Box Height (ft):	N/A	N/A				
Y_t , Tailwater Depth (ft):	0.60	0.60	I	f unknown, use Y_t/D_c (or H)=0.4		
Y_t/Dc or Y_t/H	0.40	0.40				
Q/D ^{2.5} or Q/(WH ^{3/2})	2.90	1.63				
Supercritical?	No	No				
Y _n , Normal Depth (ft) [Supercritical]:						
D_a , H_a (in) [Supercritical]:	N/A	N/A		$D_a = (D_c + Y_n)/2$		
Riprap d_{50} (in) [Supercritical]:	N/A	N/A				
Riprap <i>d</i> 50 (in) [Subcritical]:	3.61	2.03				
Required Riprap Size:	L	L	F	Fig. 9-38 or Fig. 9-36		
d ₅₀ (in):	9	9				
Expansion Factor, $1/(2 \tan \theta)$:	4.50	6.10	F	Read from Fig. 9-35 or 9-36		
<i>θ</i> :	0.11	0.08				
Erosive Soils?	No	No				
Area of Flow, A_t (ft ²):	1.14	0.64	,	A _t = Q/V		
Length of Protection, L_p (ft):	1.8	-2.6	l	_=(1/(2 tan θ))(At/Yt - D)		
Min Length (ft)	4.5	4.5	1	Vin L=3D or 3H		
Max Length (ft)	15.0	15.0	1	Max L=10D or 10H		
Min Bottom Width, 7 (ft):	1.9	1.1	٦	$\Gamma=2^{*}(L_{p}^{*}tan\theta)+W$		
Design Length (ft)	4.5	4.5				
Design Width (ft)	1.9	1.1				
Riprap Depth (in)	18	18	[Depth=2(d ₅₀)		
Type II Bedding Depth (in)*	6	6	,	*Not used if Soil Riprap		
Cutoff Wall	No	No				
Cutoff Wall Depth (ft)			[Depth of Riprap and Base		
Cutoff Wall Width (ft)						

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

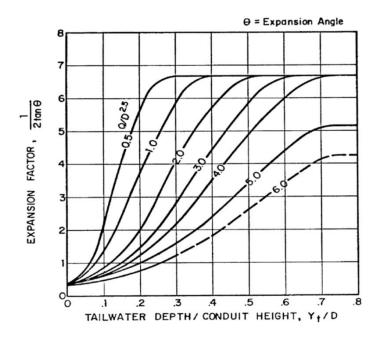


Figure 9-35. Expansion factor for circular conduits

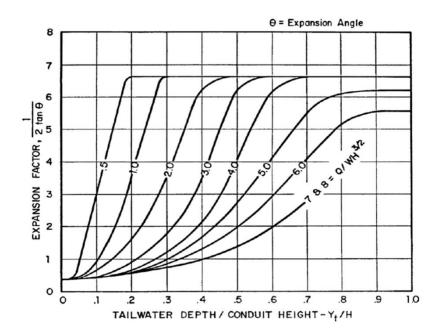
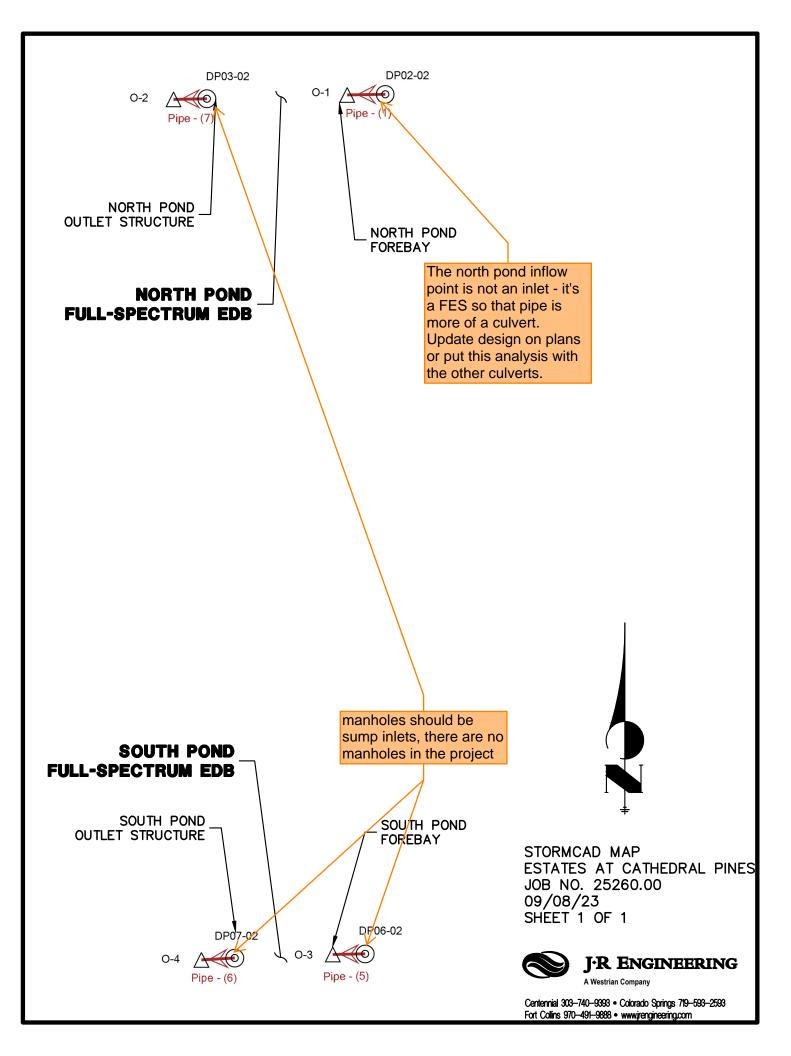
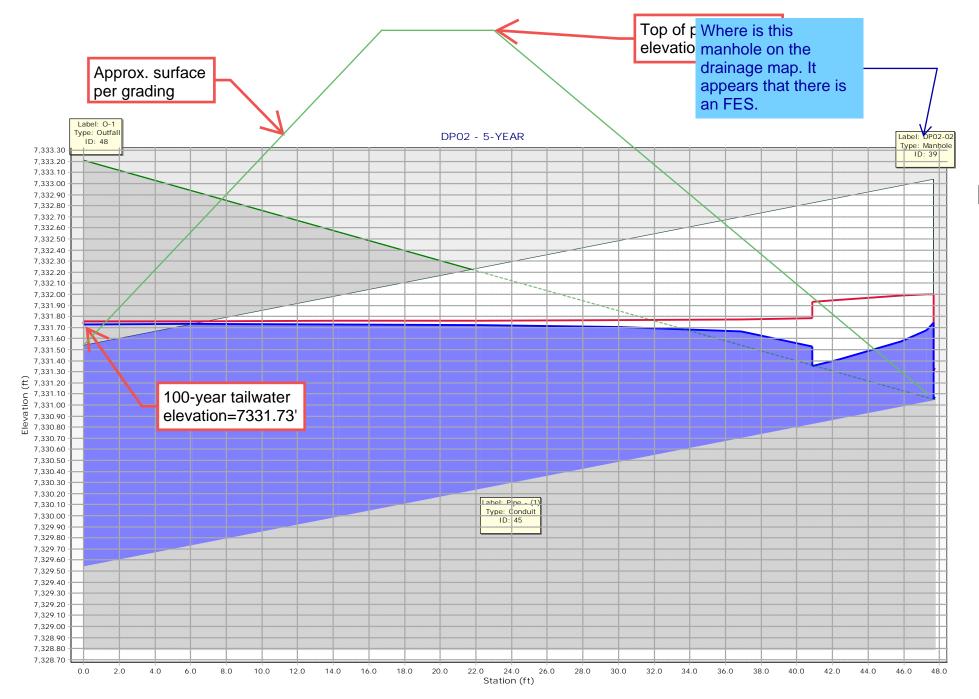
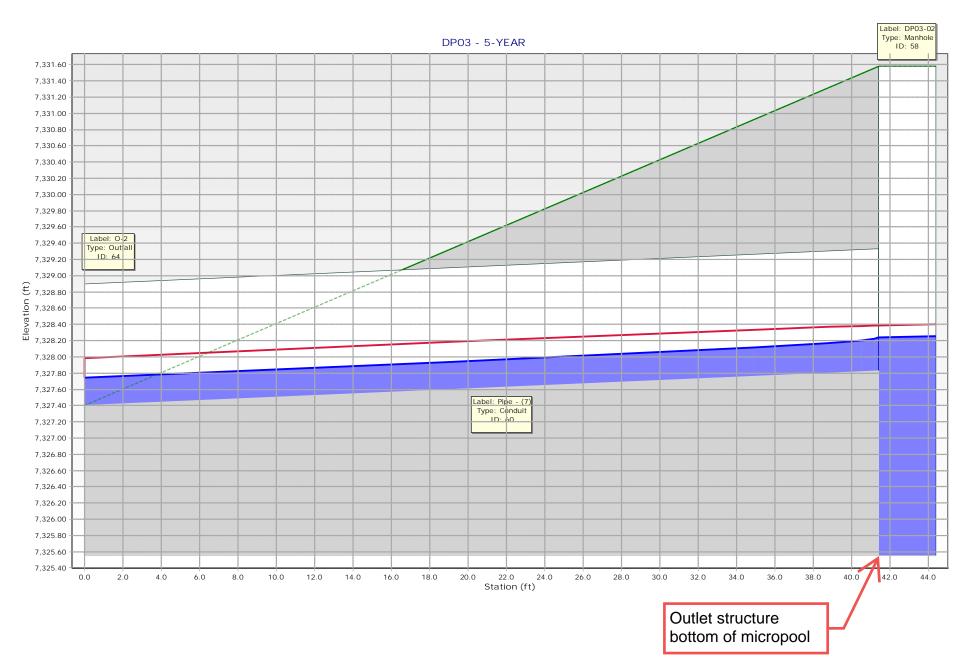
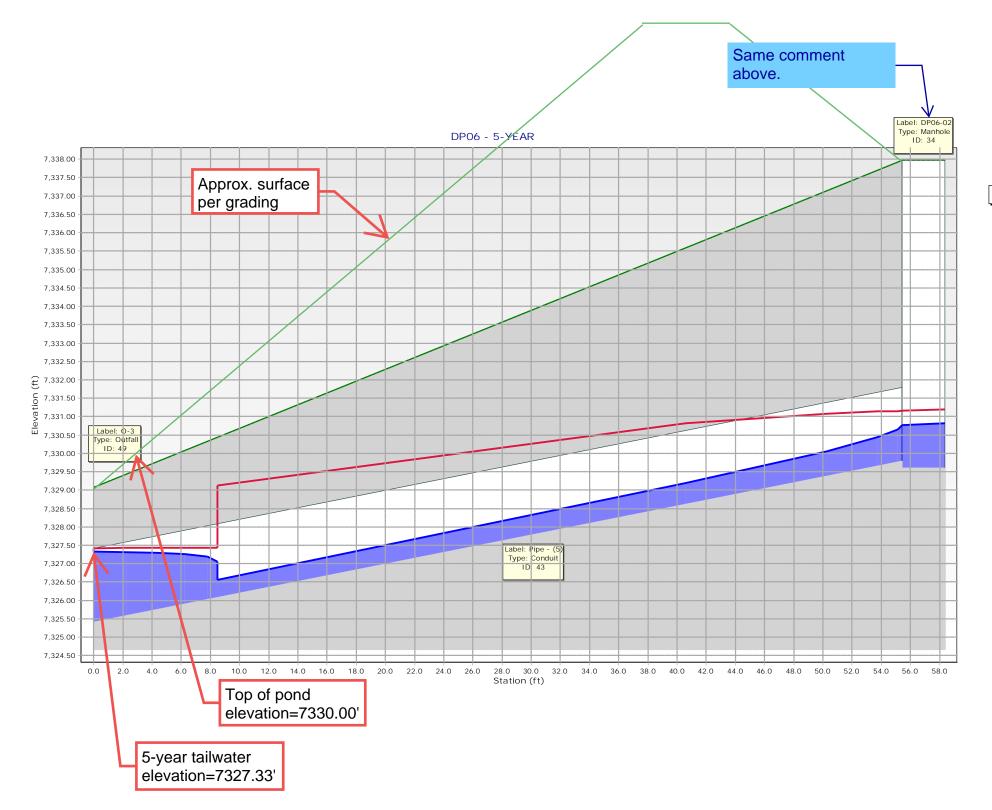
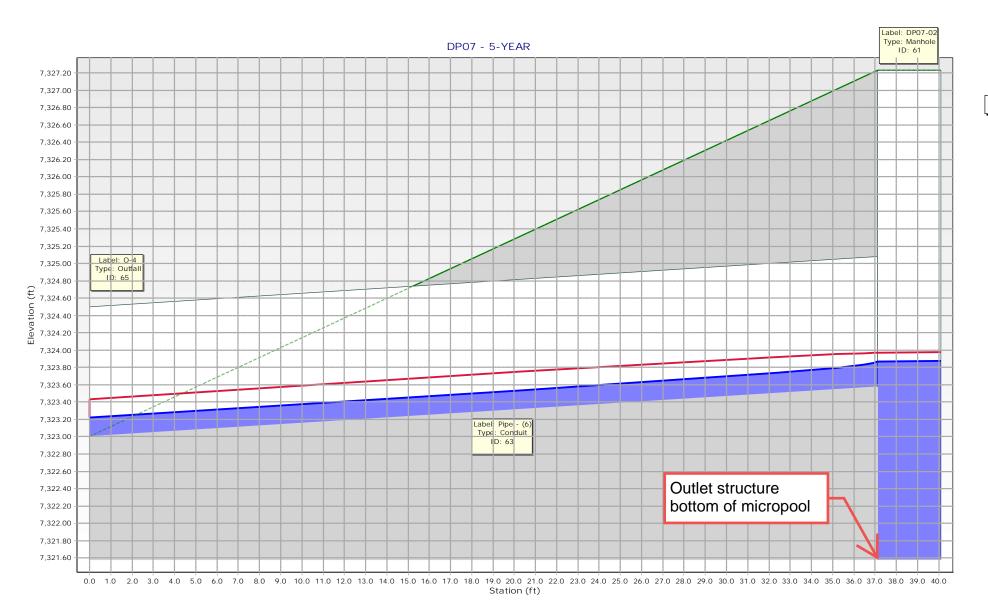



Figure 9-36. Expansion factor for rectangular conduits

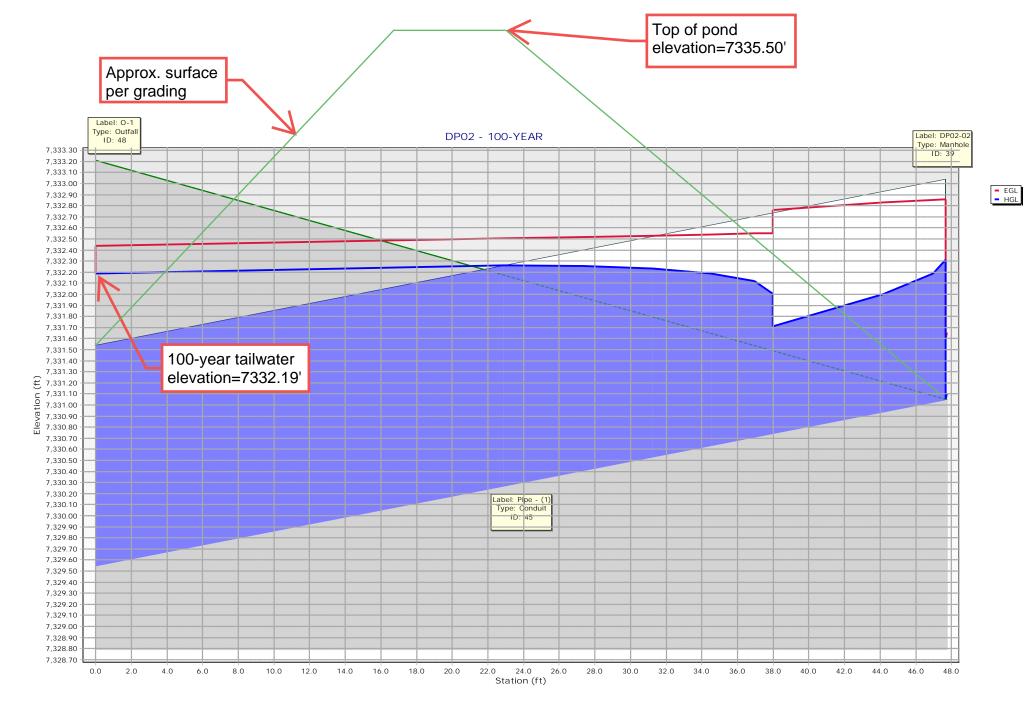


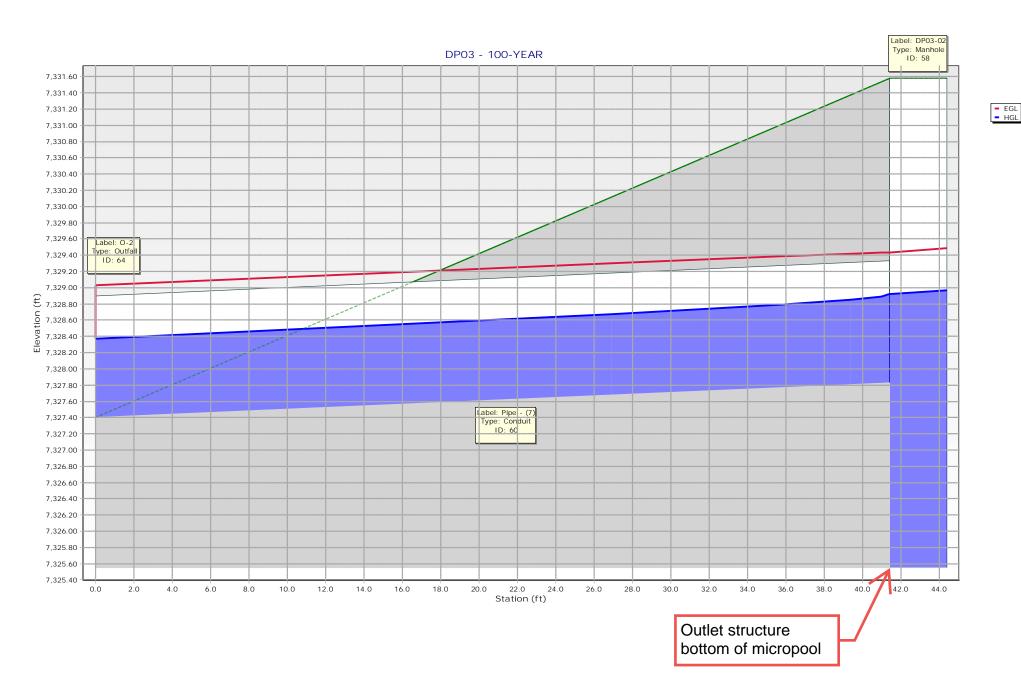

Scenario: 5-YEAR Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report

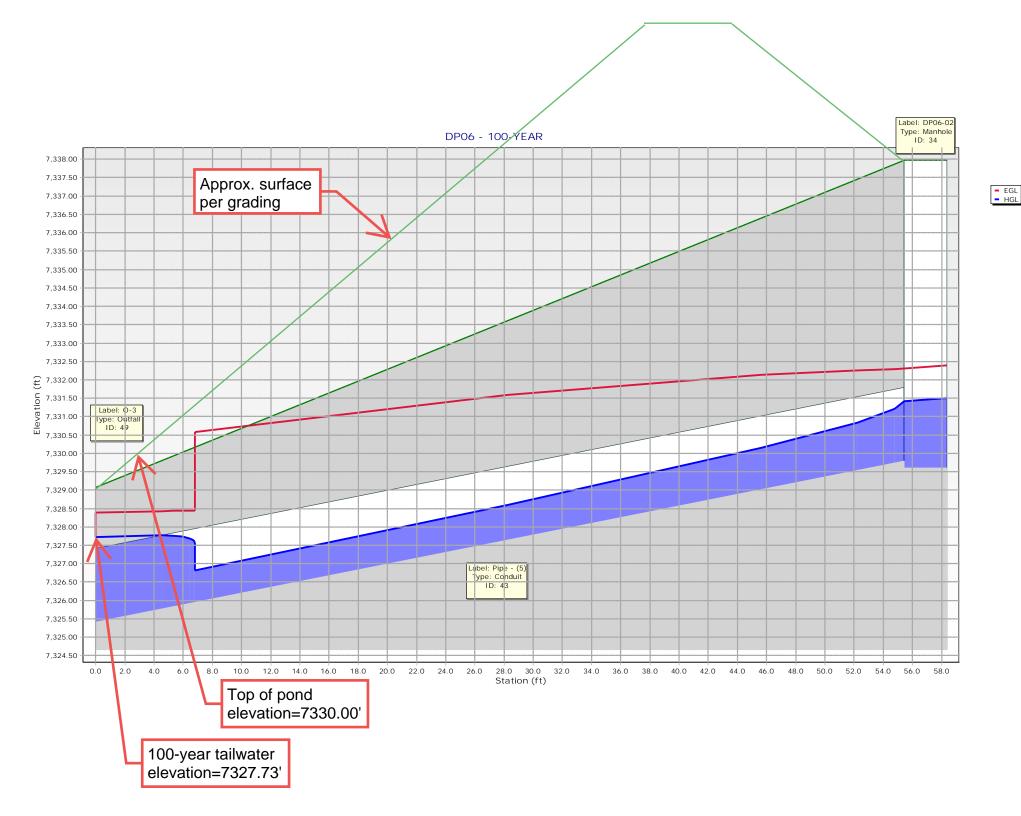

Label	Upstream Structure	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In) (ft)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Upstream Structure Headloss Coefficient	Manning's n
Pipe - (1)	DP02-02	4.00	40.11	24.0	47.7	0.031	8.16	7,331.04	7,329.54	7,331.05	7,333.21	7,331.74	7,331.73	7,332.00	7,331.76	0.100	0.013
Pipe - (5)	DP06-02	7.50	62.83	24.0	56.9	0.077	13.48	7,329.80	7,325.41	7,337.97	7,329.08	7,330.77	7,327.33	7,331.15	7,327.42	0.100	0.013
Pipe - (6)	DP07-02	0.60	12.88	18.0	38.6	0.015	3.72	7,323.58	7,323.00	7,327.23	7,323.00	7,323.87	7,323.22	7,323.97	7,323.44	0.100	0.013
Pipe - (7)	DP03-02	1.20	10.52	18.0	42.9	0.010	3.95	7,327.83	7,327.40	7,331.58	7,327.40	7,328.24	7,327.74	7,328.39	7,327.99	0.100	0.013

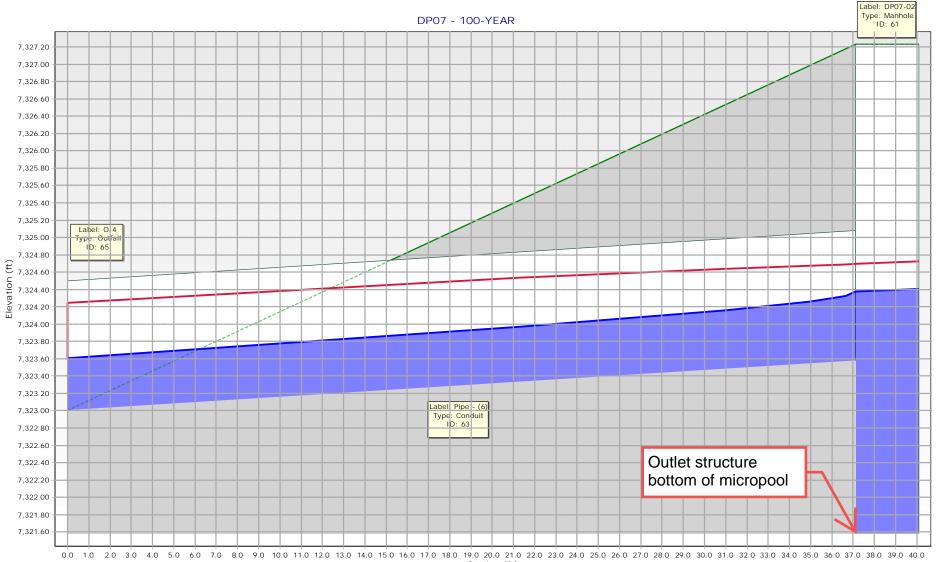

X:\2520000.all\2526000\StormCAD\2526000 StormCAD Model.stsw

For DP3 and 5 - tailwater does not appear to be modeled based on the HGLs shown on the profiles. Verify. Tailwater for those outfalls should be normal depth in the downstream ditches.

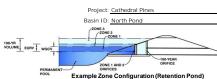



Scenario: 100-YEAR Current Time Step: 0.000 h Conduit FlexTable: Combined Pipe/Node Report


Label	Upstream Structure	Flow (cfs)	Capacity (Full Flow) (cfs)	Diameter (in)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Velocity (ft/s)	Invert (Start) (ft)	Invert (Stop) (ft)	Elevation Ground (Start) (ft)	Elevation Ground (Stop) (ft)	HGL (In) (ft)	HGL (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Upstream Structure Headloss Coefficient	Manning's n
Pipe - (1)	DP02-02	12.50	40.11	24.0	47.7	0.031	11.28	7,331.04	7,329.54	7,331.05	7,333.21	7,332.31	7,332.19	7,332.86	7,332.44	0.100	0.013
Pipe - (5)	DP06-02	20.50	62.83	24.0	56.9	0.077	17.89	7,329.80	7,325.41	7,337.97	7,329.08	7,331.42	7,327.73	7,332.30	7,328.39	0.100	0.013
Pipe - (6)	DP07-02	4.30	12.88	18.0	38.6	0.015	6.56	7,323.58	7,323.00	7,327.23	7,323.00	7,324.38	7,323.61	7,324.69	7,324.25	0.100	0.013
Pipe - (7)	DP03-02	7.90	10.52	18.0	42.9	0.010	6.53	7,327.83	7,327.40	7,331.58	7,327.40	7,328.92	7,328.37	7,329.43	7,329.03	0.100	0.013


X:\2520000.all\2526000\StormCAD\2526000 StormCAD Model.stsw

For DP3 and 5 - tailwater does not appear to be modeled based on the HGLs shown on the profiles. Verify. Tailwater for those outfalls should be normal depth in the downstream ditches.



DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Watershed Information

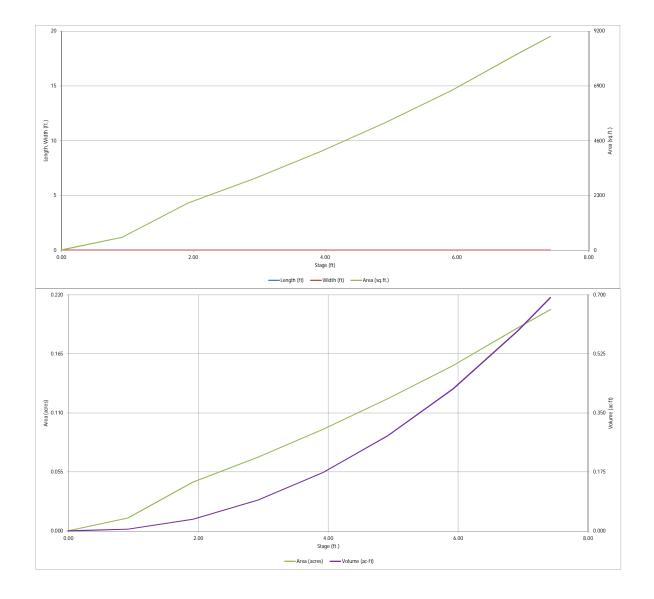
tersnea miornation		
Selected BMP Type =	EDB	
Watershed Area =	5.50	acres
Watershed Length =	795	ft
Watershed Length to Centroid =	350	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	21.50%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orban nyare	graphinoceae	
Water Quality Capture Volume (WQCV) =	0.056	acre-feet
Excess Urban Runoff Volume (EURV) =	0.118	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.126	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.224	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.317	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.467	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.575	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.725	acre-feet
500-yr Runoff Volume (P1 = 4 in.) =	1.405	acre-feet
Approximate 2-yr Detention Volume =	0.082	acre-feet
Approximate 5-yr Detention Volume =	0.120	acre-feet
Approximate 10-yr Detention Volume =	0.190	acre-feet
Approximate 25-yr Detention Volume =	0.233	acre-feet
Approximate 50-yr Detention Volume =	0.246	acre-feet
Approximate 100-yr Detention Volume =	0.300	acre-feet

Dofino	Zones	and	Rasin	Geometry

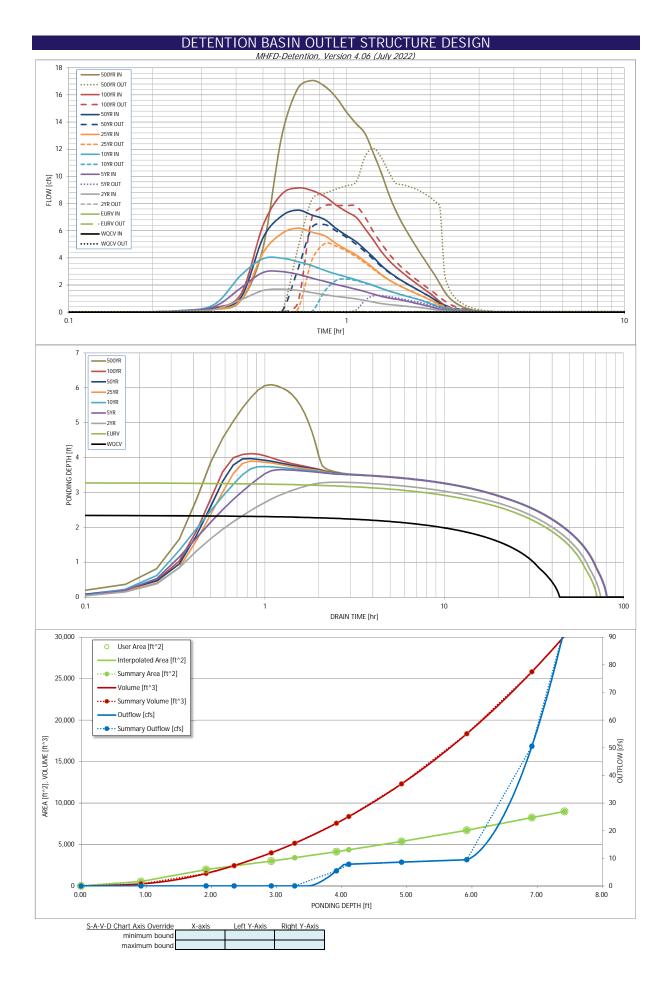
Define Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.056	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.062	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.182	acre-feet
Total Detention Basin Volume =	0.300	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	


ft ²	user	Initial Surcharge Area (A _{ISV}) =
ft	user	Surcharge Volume Length (L_{ISV}) =
ft	user	Surcharge Volume Width (W_{ISV}) =
ft	user	Depth of Basin Floor $(H_{FLOOR}) =$
ft	user	Length of Basin Floor (L_{FLOOR}) =
ft	user	Width of Basin Floor (W_{FLOOR}) =
ft ²	user	Area of Basin Floor (A _{FLOOR}) =
ft ³	user	Volume of Basin Floor (V_{FLOOR}) =
ft	user	Depth of Main Basin (H _{MAIN}) =
ft	user	Length of Main Basin (L_{MAIN}) =
ft	user	Width of Main Basin (W_{MAIN}) =
ft 2	user	Area of Main Basin (A _{MAIN}) =
ft 3	user	Volume of Main Basin (VMAN) =

Volume of in (V_M Calculated Total Basin Volume (V_{total}) = User acre-feet

		Depth Increment = Stage - Storage Description	Stage (ft)	ft Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volum (ac-ft)
		Top of Micropool		0.00				10	0.000		
		7329		0.92				537	0.012	252	0.006
		7330		1.92				1,979	0.045	1,510	0.035
		7331		2.92				3,000	0.069	3,999	0.092
		7332		3.92				4,130	0.095	7,564	0.174
		7333		4.92				5,368	0.123	12,313	0.283
		7334-Crest		5.92				6,715	0.154	18,355	0.421
		7335		6.92				8,247	0.189	25,836	0.593
		7335.5-Top		7.42				8,984	0.206	30,143	0.692
ptional Use	er Overrides										
	acre-feet										
	acre-feet										
1.19	inches										
1.50	inches										
1.75	inches										
2.00	inches										
2.25	inches										
2.52	inches										
4.00	inches										1
1.50	1.101.03										
									-	1	
									-	1	
											1
					** ** ** ** ** **						
							• • • • • • • • • • • • • • • • • • •				
						••• •• •• •• •• •• •• •• •• •• •• •• ••					
						••• •• •• •• •• •• •• •• •• •• •• •• ••					
						••• •• •• •• •• •• •• •• •• •• •• •• ••					

DETENTION BASIN STAGE-STORAGE TABLE BUILDER


MHFD-Detention, Version 4.06 (July 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

		Λ	NHFD-Detention, V	ersion 4.06 (July	2022)				
	Cathedral Pines			. ,					
	North Pond								
ZONE 3 ZONE 2 ZONE 2 ZONE 1				Estimated	Estimated				
100-YR				Stage (ft)	Volume (ac-ft)	Outlet Type	_		
			Zone 1 (WQCV)	2.34	0.056	Orifice Plate			
	100-YEAR ORIFICE		Zone 2 (EURV)	3.28	0.062	Orifice Plate			
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)	5.06	0.182	Weir&Pipe (Restrict)			
	Configuration (Re	etention Pond)	Lone e (ree jour)	Total (all zones)	0.300		1		
User Input: Orifice at Underdrain Outlet (typicall	vused to drain WO	CV in a Filtration B	MP)	Total (all 20103)	0.500	1	Calculated Parame	ters for Underdrain	,
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)	Underd	Irain Orifice Area =	N/A	ft ²	<u>.</u>
Underdrain Orifice Diameter =	N/A	inches		Sundoby		Orifice Centroid =	N/A	feet	
		linoitob			ondorardi			1001	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WQCV and	d/or EURV in a sedi	mentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	0.00		n bottom at Stage =			ice Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	3.50		n bottom at Stage =			, ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches	Ū.			ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	Iliptical Slot Area =	N/A	ft ²	
		-						-	
User Input: Stage and Total Area of Each Orifice	e Row (numbered f	rom lowest to high	est)					-	-
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.80	2.80						
Orifice Area (sq. inches)	0.25	0.25	0.25						
					1				-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
Here broot Monthed Orifice (Oliverian en Destant							O-louisted Demons		16
User Input: Vertical Orifice (Circular or Rectang			٦				Calculated Parame		ifice
Invent of Vertical Orifica	Not Selected	Not Selected	ft (relative to begin	hattam at Class	0.61) \/ar	tical Orifica Area	Not Selected	Not Selected	c.2
Invert of Vertical Orifice =	N/A N/A	N/A N/A	ft (relative to basin	•		tical Orifice Area =	N/A N/A	N/A N/A	ft ² feet
Depth at top of Zone using Vertical Orifice = Vertical Orifice Diameter =	N/A N/A	N/A N/A	inches	bottom at Stage =	= 0 TL) Vertica	I Orifice Centroid =	IN/A	IN/A	leet
ventical Office Diameter =	IN/A	IN/A	Inches						
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	al Weir and No Out	let Pine)		Calculated Parame	ters for Overflow \	Veir
<u></u>	Zone 3 Weir	Not Selected]				Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	3.50	N/A	ft (relative to basin b	oottom at Stage = 0	(t) Height of Grate	e Upper Edge, H _t =	3.50	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet	5		/eir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gr	ate Open Area / 10	0-yr Orifice Area =	8.67	N/A	
Horiz. Length of Weir Sides =	3.00	N/A	feet	O	verflow Grate Open	Area w/o Debris =	7.12	N/A	ft ²
Overflow Grate Type =	Close Mesh Grate	N/A		(Overflow Grate Ope	n Area w/ Debris =	3.56	N/A	ft ²
Debris Clogging % =	50%	N/A	%						-
			-						
User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or F	Rectangular Orifice)		Ca	Iculated Parameter	s for Outlet Pipe w/	Flow Restriction P	late
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below ba	asin bottom at Stage	= 0 ft) Of	utlet Orifice Area =	0.82	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches			t Orifice Centroid =	0.41	N/A	feet
Restrictor Plate Height Above Pipe Invert =	8.50		inches	Half-Cen	tral Angle of Restric	tor Plate on Pipe =	1.52	N/A	radians
User Input: Emergency Spillway (Rectangular or		1					Calculated Parame		
Spillway Invert Stage=	5.91		n bottom at Stage =	0 ft)		esign Flow Depth=	0.41	feet	
Spillway Crest Length =	10.00	feet			•	op of Freeboard =	7.32	feet	
Spillway End Slopes =	4.00	H:V				op of Freeboard =	0.20	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at T	op of Freeboard =	0.67	acre-ft	
Routed Hydrograph Results	The user can over	ride the default CU	HP hydrographs and	d runoff volumes by	/ entering new value	es in the Inflow Hvo	drographs table (Co	lumns W through A	4 <i>F</i>).

Routed Hydrograph Results	The user can over	ride the default CUP	HP hydrographs and	d runoff volumes by	entering new value	es in the Inflow Hyd	lrographs table (Col	umns W through A	F).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	4.00
CUHP Runoff Volume (acre-ft) =	0.056	0.118	0.126	0.224	0.317	0.467	0.575	0.725	1.405
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.126	0.224	0.317	0.467	0.575	0.725	1.405
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.7	1.9	2.8	4.9	6.2	7.7	15.2
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.12	0.34	0.51	0.90	1.13	1.41	2.76
Peak Inflow Q (cfs) =	N/A	N/A	1.7	3.0	4.0	6.2	7.5	9.1	17.1
Peak Outflow Q (cfs) =	0.0	0.0	0.0	1.2	2.4	5.0	6.5	7.9	12.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.7	0.9	1.0	1.0	1.0	0.8
Structure Controlling Flow =	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.2	0.3	0.7	0.9	1.1	1.3
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	63	66	68	66	62	60	57	44
Time to Drain 99% of Inflow Volume (hours) =	42	68	71	75	73	71	69	68	62
Maximum Ponding Depth (ft) =	2.35	3.28	3.29	3.65	3.74	3.90	3.97	4.11	6.09
Area at Maximum Ponding Depth (acres) =	0.06	0.08	0.08	0.09	0.09	0.09	0.10	0.10	0.16
Maximum Volume Stored (acre-ft) =	0.056	0.118	0.119	0.149	0.157	0.171	0.177	0.192	0.448

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can over	ride the calcul	lated inflow hy	drographs from	this workbook w	ith inflow hydro	graphs develope	d in a separate pr	ogram.

	Inflow Hydrog The user can o		lated inflow hyc	Irographs from t	his workbook w	ith inflow hydrog	graphs develope	d in a separate p	rogram.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.05
	0:15:00	0.00	0.00	0.06	0.09	0.11	0.08	0.09	0.09	0.19
	0:20:00	0.00	0.00	0.20	0.41	0.56	0.20	0.25	0.32	0.88
	0:25:00	0.00	0.00	0.92	1.79	2.73	0.89	1.10	1.35	4.75
	0:30:00	0.00	0.00	1.60	2.92	3.94	4.36	5.46	6.38	12.90
	0:35:00	0.00	0.00	1.69	2.99	3.98	5.78	7.08	8.67	16.46
	0:40:00	0.00	0.00	1.61	2.79	3.72	6.19 5.89	7.51	9.15	17.05
	0:50:00	0.00	0.00	1.44	2.51	3.43	5.62	7.15 6.83	8.53	16.64 15.82
	0:55:00	0.00	0.00	1.16	2.04	2.81	5.06	6.16	7.88	14.73
	1:00:00	0.00	0.00	1.06	1.86	2.59	4.60	5.63	7.39	13.88
	1:05:00	0.00	0.00	0.97	1.68	2.38	4.21	5.18	6.98	13.13
	1:10:00	0.00	0.00	0.85	1.51	2.17	3.72	4.60	6.13	11.68
	1:15:00	0.00	0.00	0.74	1.33	1.97	3.25	4.03	5.30	10.26
	1:20:00	0.00	0.00	0.64	1.16	1.75	2.77	3.44	4.48	8.72
	1:25:00	0.00	0.00	0.57	1.05	1.56	2.40	2.99	3.83	7.52
	1:30:00	0.00	0.00	0.51	0.96	1.41	2.10	2.62	3.34	6.57
	1:35:00	0.00	0.00	0.47	0.88	1.27	1.86 1.64	2.31	2.93 2.57	5.77 5.06
	1:45:00	0.00	0.00	0.42	0.78	1.14	1.64	1.80	2.37	4.41
	1:50:00	0.00	0.00	0.38	0.89	0.90	1.44	1.80	1.93	3.80
	1:55:00	0.00	0.00	0.29	0.50	0.77	1.07	1.34	1.64	3.23
	2:00:00	0.00	0.00	0.24	0.41	0.64	0.90	1.13	1.37	2.69
	2:05:00	0.00	0.00	0.19	0.32	0.49	0.70	0.88	1.07	2.09
	2:10:00	0.00	0.00	0.13	0.23	0.36	0.51	0.64	0.78	1.54
	2:15:00	0.00	0.00	0.10	0.16	0.28	0.35	0.44	0.54	1.10
	2:20:00	0.00	0.00	0.08	0.13	0.22	0.25	0.32	0.38	0.82
	2:25:00	0.00	0.00	0.06	0.10	0.18	0.18	0.24	0.28	0.61
	2:30:00	0.00	0.00	0.05	0.09	0.15	0.14	0.18	0.20	0.45
	2:35:00 2:40:00	0.00	0.00	0.04	0.07	0.12	0.10	0.13	0.14	0.33
	2:45:00	0.00	0.00	0.03	0.03	0.09	0.06	0.08	0.10	0.23
	2:50:00	0.00	0.00	0.02	0.04	0.05	0.00	0.06	0.05	0.10
	2:55:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.09
	3:00:00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.03	0.07
	3:05:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.06
	3:10:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.04
	3:15:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.03
	3:20:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.02
	3:25:00 3:30:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

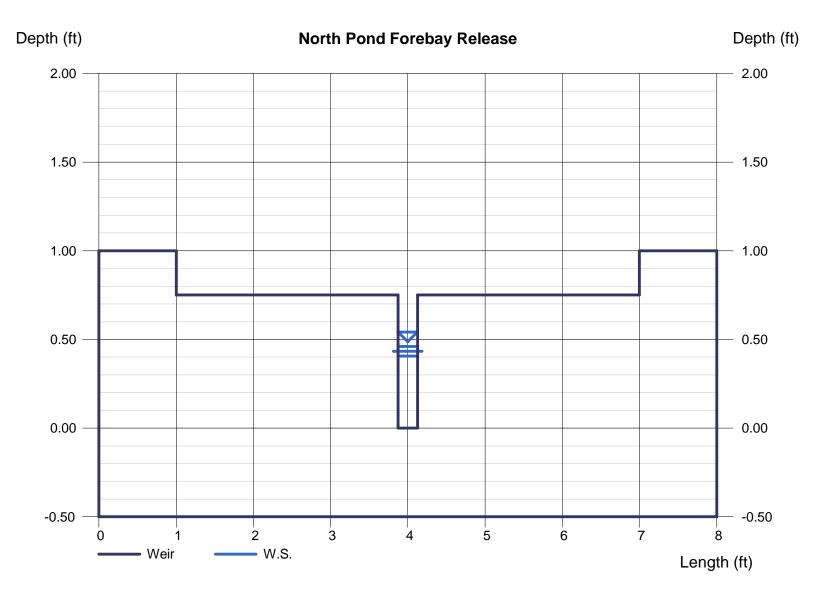
MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

7328.08-Top of Micropool 7329 7330 7330.43-WQCV 7331	[ft] 0.00 0.92 1.92	[ft ²] 10 537 1,979	0.000	[ft ³] 0 252	[ac-ft] 0.000 0.006	[cfs] 0.00 0.01	For best results, include the stages of all grade slope
7329 7330 7330.43-WQCV	0.92 1.92	537	0.012				
7330 7330.43-WQCV	1.92						stages of all grade slope changes (e.g. ISV and Flo from the S-A-V table on Sheet 'Basin'.
7330.43-WQCV			0.045	1,510	0.035	0.02	
	2.35	2,418	0.056	2,455	0.056	0.02	
	2.92	3,000	0.069	3,999	0.092	0.03	
7331.36-EURV	3.28	3,407	0.078	5,152	0.118	0.03	Also include the inverts of
7332	3.92	4,130	0.095	7,564	0.174	5.47	outlets (e.g. vertical orific
7332.19-100 yr	4.11	4,365	0.100	8,371	0.192	7.86	overflow grate, and spillw
7333	4.92	5,368	0.123	12,313	0.283	8.63	where applicable).
7334.00-Spillway Crest	5.92	6,715	0.154	18,355	0.421	9.52	_
7335	6.92	8,247	0.189	25,836	0.593	50.57	-
7335.50-Top of Pond	7.42	8,984	0.206	30,143	0.692	93.22	-
							-
							-
							-
							_
							-
							-
							-
					ļ'		-
							-
					ļ'		-
							-
							-
							-
							-
							-
							-
							-
							-
				-			-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
							-
					1		-
							-
							-
							-
]
]
							-
							-
							-
]
							_
							-
							1
					-		1
]
					I	I	
						ł	-
							-
							-
							- - - -

Design Procedure Form: Extended Detention Basin (EDB)						
	UD-	BMP (Version 3.07, March 2018) Sheet 1 of 3				
Designer:	Gabe Gonzales					
Company:	JR Engineering, LLC					
Date:	October 23, 2023					
Project:	Cathedral Pines					
Location:	North Pond					
1 Pasia Storage	Volume					
1. Basin Storage						
A) Effective In	nperviousness of Tributary Area, I _a	I _a = <u>21.5</u> %				
B) Tributary A	rea's Imperviousness Ratio (i = I _a / 100)	i = 0.215				
C) Contributir	ng Watershed Area	Area = 5.500 ac				
D) For Waters	sheds Outside of the Denver Region, Depth of Average	d ₆ = in				
Runoff Pro	oducing Storm	Choose One				
E) Design Co		Water Quality Capture Volume (WQCV)				
(Select EU	RV when also designing for flood control)	Water Guarry Capital Volume (VGCV) Excess Urban Runoff Volume (EURV)				
F) Desian Vol	lume (WQCV) Based on 40-hour Drain Time	V _{DESIGN} =0.056 ac-ft				
	$(1.0 * (0.91 * i^3 - 1.19 * i^2 + 0.78 * i) / 12 * Area)$					
G) For Water	sheds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft				
Water Qua	ality Capture Volume (WQCV) Design Volume					
(Vwqcv oth	$_{\text{HER}} = (d_6^*(V_{\text{DESIGN}}/0.43))$					
	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} =ac-ft				
(Only if a c	different WQCV Design Volume is desired)					
	rologic Soil Groups of Tributary Watershed					
	tage of Watershed consisting of Type A Soils ntage of Watershed consisting of Type B Soils	$HSG_{A} = 0 \%$ $HSG_{B} = 100 \%$				
	ntage of Watershed consisting of Type C/D Soils	$HSG_{C/D} = 0 \%$				
I) Excess Lirk	pan Runoff Volume (EURV) Design Volume					
For HSG	A: $EURV_{A} = 1.68 * i^{1.28}$	EURV _{DESIGN} = 0.119 ac-f t				
For HSG	B: EURV _B = $1.36 * i^{1.08}$ C/D: EURV _{C/D} = $1.20 * i^{1.08}$					
	of Excess Urban Runoff Volume (EURV) Design Volume different EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-f t				
(0)	,					
2. Basin Shape:	Length to Width Ratio	L : W = 2.0 : 1				
(A basin lengt	h to width ratio of at least 2:1 will improve TSS reduction.)					
3. Basin Side Slo	opes					
	imum Side Slopes	$Z = \frac{4.00}{ft / ft}$				
(Horizonta	Il distance per unit vertical, 4:1 or flatter preferred)					
4. Inlet						
 A) Describe means of providing energy dissipation at concentrated inflow locations: 						
5. Forebay						
A) Minimum F	Forebay Volume	V _{FMN} = 0.001 ac-ft				
	$_{\rm N} = \frac{1\%}{100}$ of the WQCV)					
B) Actual For	ebay Volume	V _F = 0.002 ac-ft				
,						
C) Forebay De (D	epth ⊧⊧ = <u>12</u> inch maximum)	D _F = 12.0 in				
	· /					
D) Forebay Di	scharge					
i) Undetained 100-year Peak Discharge		Q ₁₀₀ = 13.10 cfs				
ii) Forebay Discharge Design Flow		Q _F = 0.26 cfs				
(Q _F = 0.	.02 * Q ₁₀₀)					
E) Forebay Di	scharge Design	Choose One				
		O Berm With Pipe Flow too small for berm w/ pipe				
		Wall with Rect. Notch Wall with V-Notch Weir Does not match the				
F) Discharge F	Pipe Size (minimum 8-inches)	Calculated D _p =inother forebay calcs or				
G) Rectangula	ar Notch Width	Calculated W _N = 3.3 Tm plans.				
.,						

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer:	Gabe Gonzales	Sheet 2 of 3
Company:	JR Engineering, LLC	
Date:	October 23, 2023	
Project:	Cathedral Pines	
Location:	North Pond	
Location.		
		Choose One
Trickle Channe	4	Concrete
A) Type of Tric	ckle Channel	Soft Bottom
., ., .,		O Soft Boltom
F) Slope of Trie	ckle Channel	S = 0.0050 ft / ft
7. Micropool and (Outlet Structure	
A) Depth of Mi	icropool (2.5-feet minimum)	D _M = 2.5 ft
B) Surface Are	ea of Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft
C) Outlet Type		Choose One
		Orifice Plate
		O Other (Describe):
D) Smallest Di	mension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Deten		D _{orifice} = 0.56 inches
E) Total Outlat	Area	
E) Total Outlet	Alea	A _{ot} = 0.75 square inches
8. Initial Surcharg	e Volume	
	itial Surcharge Volume ecommended depth is 4 inches)	$D_{IS} = 4$ in
(1111111111111111		
	tial Surcharge Volume	V _{IS} = cu ft
(Minimum vo	lume of 0.3% of the WQCV)	
C) Initial Surcha	arge Provided Above Micropool	V _s = <u>3.3</u> cu ft
9. Trash Rack		
A) Water Quali	ity Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t = 27 square inches
B) Type of Scre	een (If specifying an alternative to the materials	S.S. Well Screen with 60% Open Area
recommended	in the USDCM, indicate "other" and enter the ratio of the total	
open are to the	total screen are for the material specified.)	
	Other (Y/N): N	
	· · · · · · · · · · · · · · · · · · ·	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water	Quality Screen Area (based on screen type)	A _{total} = 46 sq. in.
E) Depth of Design Volume (EURV or WQCV)		H= 3.28 feet
	design concept chosen under 1E)	H= 3.28 feet
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} = 67.36 inches
G) Width of Wa	ater Quality Screen Opening (W _{opening})	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.
(Minimum of 12	2 inches is recommended)	WiDTH HAS BEEN SET TO 12 INCHES.

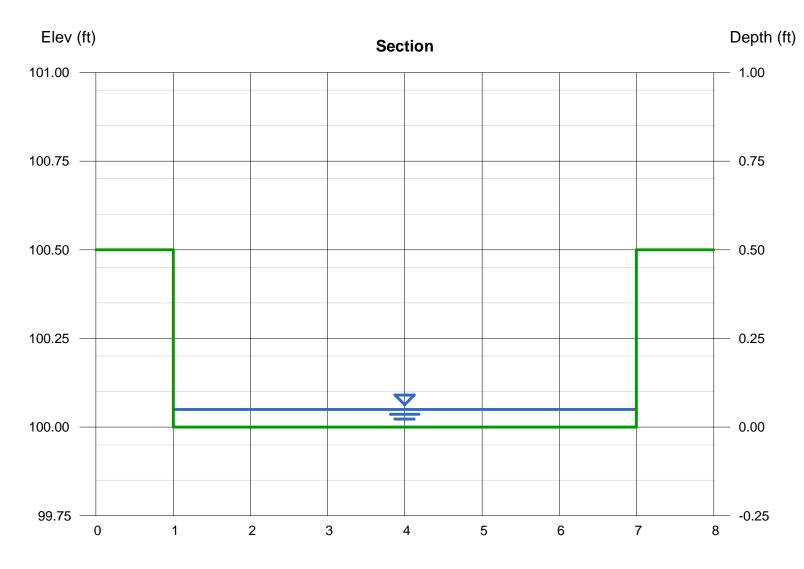

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Oct 23 2023

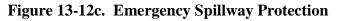
North Pond Forebay Release

Compound Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.46
Bottom Length (ft)	= 6.00	Q (cfs)	= 0.260
Total Depth (ft)	= 1.00	Area (sqft)	= 0.12
Length, x (ft)	= 0.25	Velocity (ft/s)	= 2.26
Depth, a (ft)	= 0.75	Top Width (ft)	= 0.25
Calculations Weir Coeff. Cw Compute by: Known Q (cfs)	= 3.33 Known Q = 0.26	3.3" per the previous forebay calculations	


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Oct 23 2023


N. Pond Trickle Channel

Rectangular		Highlighted	
Bottom Width (ft)	= 6.00	Depth (ft)	= 0.05
Total Depth (ft)	= 0.50	Q (cfs)	= 0.260
		Area (sqft)	= 0.30
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 0.87
Slope (%)	= 0.50	Wetted Perim (ft)	= 6.10
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.04
		Top Width (ft)	= 6.00
Calculations		EGL (ft)	= 0.06
Compute by:	Known Q		
Known Q (cfs)	= 0.26		

Reach (ft)

NORTH POND

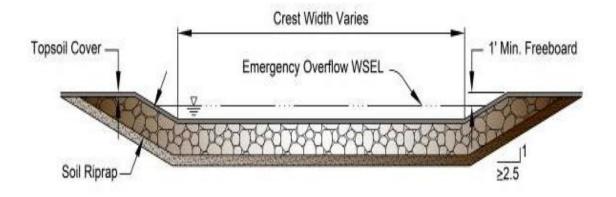
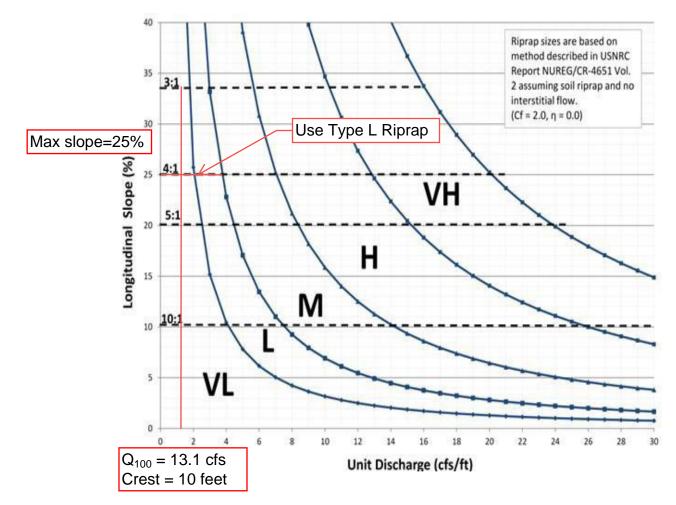



Figure 13-12d. Riprap Types for Emergency Spillway Protection

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment =

Stage - Storage Stage Override

Project: Estates at Cathedral Pines
Basin ID: South Pond
POOL Example Zone Configuration (Retention Pond)

Watershed Information

atershed Information		
Selected BMP Type =	EDB	
Watershed Area =	4.00	acres
Watershed Length =	955	ft
Watershed Length to Centroid =	450	ft
Watershed Slope =	0.045	ft/ft
Watershed Imperviousness =	27.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

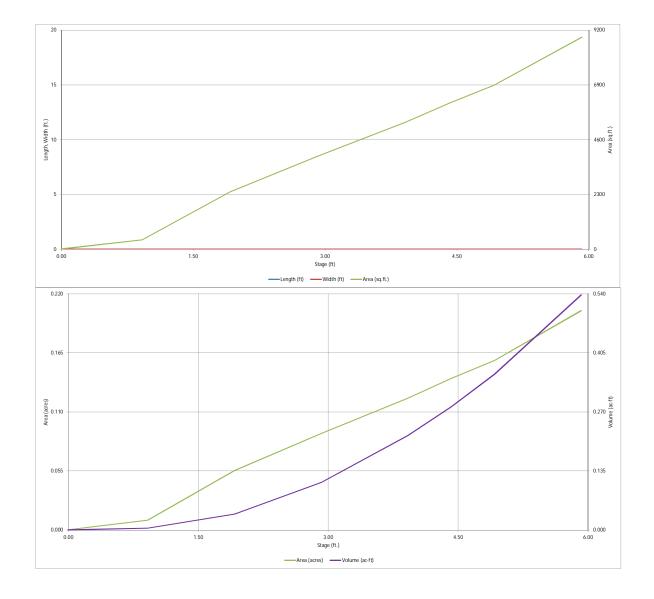
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orban nyare	graphinoceae	
Water Quality Capture Volume (WQCV) =	0.047	acre-feet
Excess Urban Runoff Volume (EURV) =	0.110	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.112	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.187	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.257	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	0.365	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	0.446	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	0.554	acre-feet
500-yr Runoff Volume (P1 = 4 in.) =	1.055	acre-feet
Approximate 2-yr Detention Volume =	0.078	acre-feet
Approximate 5-yr Detention Volume =	0.112	acre-feet
Approximate 10-yr Detention Volume =	0.168	acre-feet
Approximate 25-yr Detention Volume =	0.198	acre-feet
Approximate 50-yr Detention Volume =	0.208	acre-feet
Approximate 100-yr Detention Volume =	0.249	acre-feet

Define	Zones	and	Basin	Geometry

e Zones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.047	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.063	acre-feet
ne 3 Volume (100-year - Zones 1 & 2) =	0.139	acre-feet
Total Detention Basin Volume =	0.249	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
tal Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S _{TC}) =	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio ($R_{L/W}$) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (WISV) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLODR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft ²
Volume of Basin Floor (V_{FLODR}) =	user	ft ³
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L_{MAIN}) =	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet


tion Pond)	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				10	0.000		
	7325		0.92				396	0.009	187	0.004
	7326		1.92				2,414	0.055	1,592	0.037
	7327		2.92				3,918	0.090	4,758	0.109
	7328		3.92				5,342	0.123	9,388	0.216
	7328.50-Crest		4.42				6,150	0.141	12,261	0.281
	7329		4.92				6,882	0.158	15,519	0.356
	7330		5.92				8,899	0.204	23,409	0.537
Optional User Overrides										
acre-feet										
acre-feet										
1.19 inches										
1.50 inches										
1.75 inches										
2.25 inches										
2.52 inches										
4.00 inches										
-										
				-				-		
				-				-		
									-	
				-						
				-	~				-	
								_		
				1 1						
				-						
								_		

Length Width Area Override Area Volume Volume

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

		М	HFD-Detention, V	ersion 4.06 (July .	2022)				
	Estates at Cathed	ral Pines							
	South Pond								
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
	1		Zone 1 (WQCV)	2.11	0.047	Orifice Plate			
	100-YEAR		Zone 2 (EURV)	2.93	0.063	Orifice Plate			
ZONE 1 AND 2	ORIFICE						-		
PERMANENT ORIFICES POOL Example Zone	Configuration (R	etention Pond)	Zone 3 (100-year)	4.19	0.139	Weir&Pipe (Restrict)			
	• •			Total (all zones)	0.249				
User Input: Orifice at Underdrain Outlet (typical	·						Calculated Parame		n
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)		rain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orifi							Calculated Parame		
Centroid of Lowest Orifice =	0.00		n bottom at Stage =			ce Area per Row =	1.944E-03	ft ²	
Depth at top of Zone using Orifice Plate =	3.71		n bottom at Stage =	^{= 0 ft)} 3.15'		ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				cal Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.28	sq. inches (diamet	ter = 9/16 inch)		E	lliptical Slot Area =	N/A	ft ²	
			0	.25					
				1.25					
User Input: Stage and Total Area of Each Orific	ce Row (numbered				1		1	1	-
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.50	2.25						
Orifice Area (sq. inches)	0.28	0.28	0.28						
									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectang	<u>ular)</u>	-	-				Calculated Parame	ters for Vertical O	rifice
	Not Selected	Not Selected					Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin	n bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin	n bottom at Stage =	= 0 ft) Vertical	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox with Flat	or Sloped Grate and	d Outlet Pipe OR Re	ectangular/Trapezoi	dal Weir and No O	utlet Pipe)		Calculated Parame	ters for Overflow	Weir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	3.15	N/A	ft (relative to basin b	oottom at Stage = 0	ft) Height of Grate	e Upper Edge, $H_t =$	3.15	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet		Overflow W	eir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V	Gra	ate Open Area / 10	0-yr Orifice Area =	15.57	N/A	
Horiz. Length of Weir Sides =	3.00	N/A	feet	Ov	erflow Grate Open	Area w/o Debris =	7.12	N/A	ft ²
Overflow Grate Type =	Close Mesh Grate	N/A		0	verflow Grate Oper	n Area w/ Debris =	3.56	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
User Input: Outlet Pipe w/ Flow Restriction Plat	e (Circular Orifice, I	Restrictor Plate, or	Rectangular Orifice)	Cal	culated Parameters	s for Outlet Pipe w/	Flow Restriction F	Plate
	Zone 3 Restrictor	Not Selected					Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.50	N/A	ft (distance below ba	asin bottom at Stage	= 0 ft) Ou	utlet Orifice Area =	0.46	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches		Outlet	Orifice Centroid =	0.27	N/A	feet
Restrictor Plate Height Above Pipe Invert =	5.50		inches	Half-Centr	ral Angle of Restric	tor Plate on Pipe =	1.17	N/A	radians
User Input: Emergency Spillway (Rectangular o	r Trapezoidal)	_					Calculated Parame	ters for Spillway	
Spillway Invert Stage=	4.42	ft (relative to basin	n bottom at Stage =	= 0 ft)	Spillway D	esign Flow Depth=	0.27	feet	
Spillway Crest Length =	10.00	feet			Stage at T	op of Freeboard =	5.69	feet	
Spillway End Slopes =	4.00	H:V			Basin Area at T	op of Freeboard =	0.19	acres	
Freeboard above Max Water Surface =	1.00	feet			Basin Volume at T	op of Freeboard =	0.49	acre-ft	
		-						-	
Routed Hydrograph Results			IHP hydrographs an		, <u> </u>			· · · · · ·	
Design Storm Return Period =	WQCV N/A	EURV	2 Year	5 Year	10 Year	25 Year 2.00	50 Year 2.25	100 Year	500 Year
One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	0.047	N/A 0.110	1.19 0.112	1.50 0.187	1.75 0.257	0.365	0.446	2.52 0.554	4.00 1.055
Inflow Hydrograph Volume (acte-ft) =		0.110	0.112	0.107	0.201	0.000	0.440	0.004	1.033
	N/A	N/A	0.112	0.187	0.257	0.365	0.446	0.554	1.055
CUHP Predevelopment Peak Q (cfs) =	N/A N/A	N/A N/A	0.112 0.4	0.187 1.0	0.257 1.5	0.365 2.8	0.446 3.5	0.554 4.5	1.055 8.8
CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =									

Peak Inflow Q (cfs)

Peak Outflow Q (cfs)

Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow

Time to Drain 97% of Inflow Volume (hours) Time to Drain 99% of Inflow Volume (hours)

Maximum Ponding Depth (ft) Area at Maximum Ponding Depth (acres)

Max Velocity through Grate 1 (fps)

Max Velocity through Grate 2 (fps)

Maximum Volume Stored (acre-ft) =

N/A

0.0

N/A Plate

N/A

N/A

40

42

2.10

0.06

0.047

N/A

0.0

N/A

Plate

N/A

N/A

64

68

2.93

0.09

0.110

1.2

0.0

N/A

Plate

N/A

N/A

66

69

2.87

0.09

0.105

1.9

0.6

0.6 Overflow Weir 1

0.1

N/A

72

77

3.25

0.10

0.140

2.5

1.4

0.9

0.2

N/A

69

76

3.32

0.10

0.147

3.8

2.8

1.0

Overflow Weir 1 Overflow Weir 1 Overflow Weir 1

0.4

N/A

65

74

3.42

0.11

0.157

4.7

3.7

1.1

0.5

N/A

63

73

3.48

0.11

0.164

5.7

4.3

1.0

Outlet Plate 1

0.6

N/A

59

72

3.65

0.11

0.184

10.6

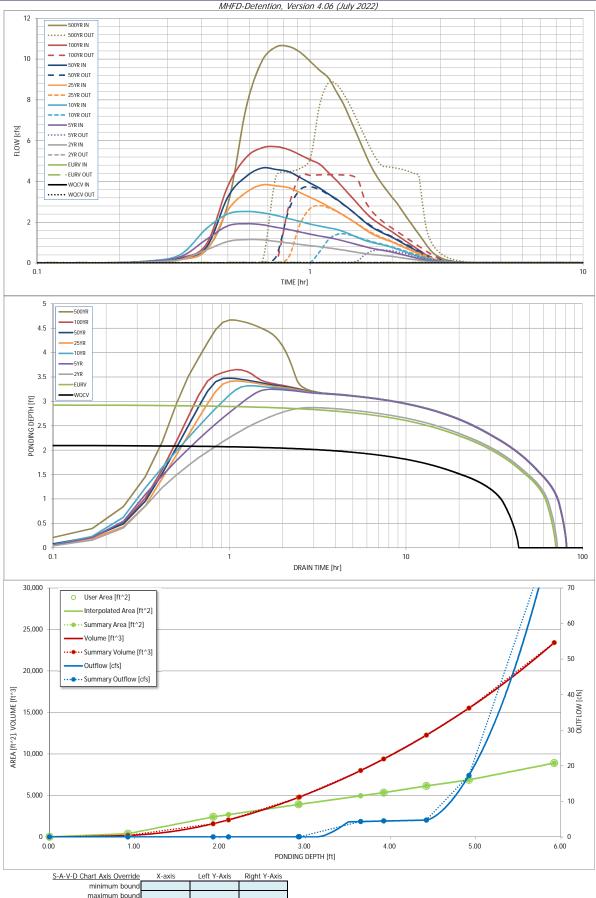
8.8

1.0

Spillway

0.7

N/A


48

66

4.67

0.15

0.316

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calcu	ulated inflow hy	drographs from	this workbook	with inflow hydr	ographs develop	oed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.00 1111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	0:15:00	0.00	0.00	0.05	0.08	0.10	0.07	0.08	0.08	0.17
	0:20:00	0.00	0.00	0.18	0.31	0.41	0.18	0.21	0.25	0.65
	0:25:00	0.00	0.00	0.65	1.17	1.70	0.64	0.79	0.94	2.92
	0:30:00	0.00	0.00	1.07	1.83	2.42	2.61	3.26	3.80	7.65
	0:35:00	0.00	0.00	1.15	1.93	2.53	3.47	4.25	5.19	9.92
	0:40:00	0.00	0.00	1.15	1.88	2.47	3.84	4.66	5.65	10.60
	0:45:00	0.00	0.00	1.06	1.76	2.34	3.79	4.59	5.71	10.62
	0:50:00	0.00	0.00	0.99	1.65	2.19	3.70	4.49	5.57	10.35
	0:55:00 1:00:00	0.00	0.00	0.92	1.53	2.05	3.46	4.20	5.32	9.89
	1:05:00	0.00	0.00	0.86	1.42	1.92 1.82	3.23 3.01	3.93 3.68	5.07 4.85	9.45 9.08
	1:10:00	0.00	0.00	0.81	1.35	1.74	2.77	3.39	4.65	8.39
	1:15:00	0.00	0.00	0.69	1.17	1.66	2.55	3.13	4.05	7.72
	1:20:00	0.00	0.00	0.63	1.08	1.53	2.33	2.85	3.64	6.92
	1:25:00	0.00	0.00	0.58	0.99	1.39	2.11	2.58	3.25	6.16
	1:30:00	0.00	0.00	0.52	0.90	1.25	1.88	2.29	2.88	5.43
	1:35:00	0.00	0.00	0.47	0.81	1.12	1.66	2.03	2.53	4.78
	1:40:00	0.00	0.00	0.43	0.74	1.03	1.47	1.80	2.24	4.28
	1:45:00	0.00	0.00	0.41	0.68	0.97	1.33	1.63	2.02	3.88
	1:50:00	0.00	0.00	0.39	0.63	0.91	1.22	1.50	1.84	3.53
	1:55:00	0.00	0.00	0.36	0.59	0.84	1.12	1.38	1.68	3.22
	2:00:00 2:05:00	0.00	0.00	0.33	0.54	0.77	1.03 0.93	1.27 1.13	1.53 1.36	2.93 2.59
	2:10:00	0.00	0.00	0.29	0.48	0.69	0.93	1.13	1.30	2.39
	2:15:00	0.00	0.00	0.23	0.43	0.53	0.73	0.88	1.06	1.98
	2:20:00	0.00	0.00	0.20	0.32	0.46	0.63	0.76	0.92	1.69
	2:25:00	0.00	0.00	0.17	0.27	0.39	0.54	0.65	0.78	1.42
	2:30:00	0.00	0.00	0.14	0.23	0.32	0.45	0.54	0.65	1.15
	2:35:00	0.00	0.00	0.11	0.18	0.26	0.37	0.44	0.52	0.89
	2:40:00	0.00	0.00	0.09	0.14	0.20	0.29	0.33	0.39	0.66
	2:45:00	0.00	0.00	0.07	0.10	0.15	0.21	0.24	0.27	0.48
	2:50:00	0.00	0.00	0.05	0.08	0.12	0.15	0.17	0.19	0.36
	2:55:00 3:00:00	0.00	0.00	0.04	0.06	0.10	0.11	0.13	0.14	0.27
	3:05:00	0.00	0.00	0.03	0.05	0.08	0.08	0.10	0.10	0.20
	3:10:00	0.00	0.00	0.03	0.04	0.07	0.05	0.07	0.08	0.15
	3:15:00	0.00	0.00	0.02	0.03	0.05	0.03	0.05	0.00	0.08
	3:20:00	0.00	0.00	0.02	0.02	0.04	0.03	0.04	0.03	0.06
	3:25:00	0.00	0.00	0.01	0.02	0.03	0.02	0.03	0.02	0.05
	3:30:00	0.00	0.00	0.01	0.01	0.02	0.02	0.02	0.02	0.04
	3:35:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.03
	3:40:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:45:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.02
	3:50:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:55:00 4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00 6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	0.00.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

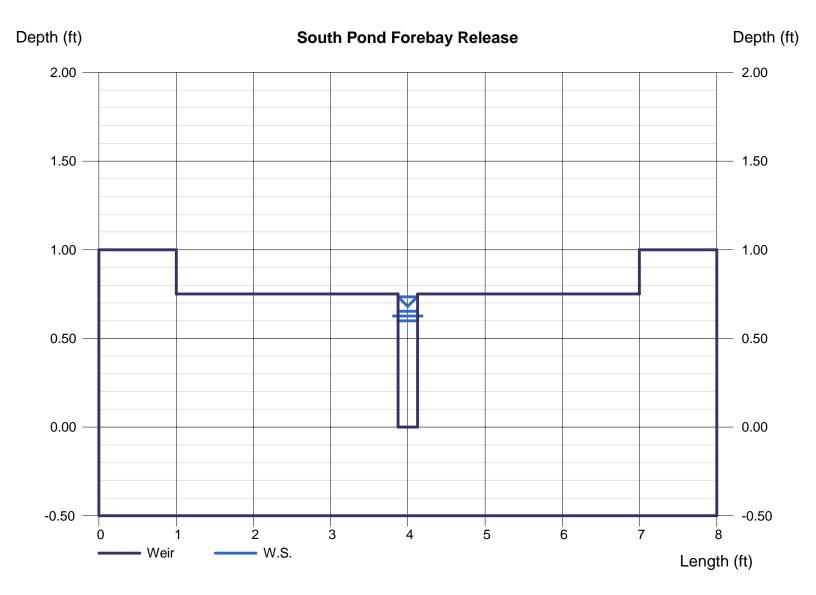
MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Outflow [cfs]	
7324.08-Top of Micropool	0.00	10	0.000	0	0.000	0.00	For best results, include th
7325	0.92	396	0.009	187	0.004	0.01	stages of all grade slope
7326	1.92	2,414	0.055	1,592	0.037	0.02	changes (e.g. ISV and Flo
7326.18-WQCV	2.10	2,685	0.062	2,051	0.047	0.02	from the S-A-V table on
7327	2.92	3,918	0.090	4,758	0.109	0.03	Sheet 'Basin'.
7327.01-EURV	2.93	3,932	0.090	4,797	0.110	0.03	Also include the inverts of
7327.73-100 yr	3.65	4,958	0.114	7,997	0.184	4.34	outlets (e.g. vertical orific
7328	3.92	5,342	0.123	9,388	0.216	4.49	overflow grate, and spillw
7328.50-Crest	4.42	6,150	0.141	12,261	0.281	4.75	where applicable).
7329	4.92	6,882	0.158	15,519	0.356	17.30	
7330.00-Top of Pond	5.92	8,899	0.204	23,409	0.537	87.03	
]
							1
							-
							-
							-
							1
							}
]
							1
							-
							1
							}
							}
			1				4
							-

	Design Procedure For	m: Extended Detention Basin (EDB)
	UD-	BMP (Version 3.07, March 2018) Sheet 1 of 3
Designer:	Gabe Gonzales	
Company:	JR Engineering, LLC	
Date:	October 23, 2023	
Project:	Cathedral Pines	
Location:	South Pond	
4. Dania Otaman	. V	
1. Basin Storage		
A) Effective In	nperviousness of Tributary Area, I _a	l _a = <u>27.0</u> %
B) Tributary A	rea's Imperviousness Ratio (i = I _a / 100)	i = 0.270
C) Contributir	ng Watershed Area	Area = 4.000 ac
D) For Water	sheds Outside of the Denver Region, Depth of Average	d _e =
	oducing Storm	
E) Design Co	oncept	Choose One
	IRV when also designing for flood control)	Water Quality Capture Volume (WQCV)
		Excess Urban Runoff Volume (EURV)
	lume (MOCV) Record on 40 hour Drain Time	
	Jume (WQCV) Based on 40-hour Drain Time : (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.047 ac-ft
	rsheds Outside of the Denver Region,	V _{DESIGN OTHER} = ac-ft
Water Qua	ality Capture Volume (WQCV) Design Volume	VDESIGN OTHER= ac-ft
	$_{\text{HER}} = (d_6^*(V_{\text{DESIGN}}/0.43))$	
	t of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} =ac-ft
(Only if a	different WQCV Design Volume is desired)	
I) NRCS Hyd	rologic Soil Groups of Tributary Watershed	
	ntage of Watershed consisting of Type A Soils ntage of Watershed consisting of Type B Soils	$HSG_{A} = 0 \%$ $HSG_{B} = 100 \%$
	intage of Watershed consisting of Type B Solis	$HSG_{CD} = \frac{100}{0} \%$
	ban Runoff Volume (EURV) Design Volume	
For HSG	A: $EURV_{A} = 1.68 * i^{1.28}$	EURV _{DESIGN} = 0.110 ac-f t
For HSG	B: $EURV_B^{0} = 1.36 * i^{1.08}$ C/D: $EURV_{C/D} = 1.20 * i^{1.08}$	
	t of Excess Urban Runoff Volume (EURV) Design Volume different EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-f t
(2)	,	
2. Basin Shape:	Length to Width Ratio	L : W = 2.0 : 1
(A basin lengt	th to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Sk	opes	
	kimum Side Slopes	Z = 4.00 ft / ft
(Horizonta	al distance per unit vertical, 4:1 or flatter preferred)	
4. Inlet		
A) Describe r inflow loca	neans of providing energy dissipation at concentrated ations:	
5. Forebay		
A) Minimum F	Forebay Volume	V _{FMIN} = 0.000 ac-ft
	IN = 1% of the WQCV)	
B) Actual For	rebay Volume	V _F = 0.002 ac-ft
,		
C) Forebay Do (D	eptn ₽ _F =12inch maximum)	D _F = 12.0 in
D) Forebay Di	ischarge	
	-	
i) Undeta	ined 100-year Peak Discharge	$Q_{100} = 22.00$ cfs
	y Discharge Design Flow	Q _F = 0.44 cfs
(Q _F = 0	.02 * Q ₁₀₀)	
E) Forebay Di	ischarge Design	Choose One
		Berm With Pipe Flow too small for berm w/ pipe Well with Part Natah
		Wall with Rect. Notch Wall with V-Notch Weir Does not match the
		other ferebay cales or
F) Discharge	Pipe Size (minimum 8-inches)	
G) Rectangula	ar Notch Width	Calculated W _N = 4.0 m plans.

	Design Procedure Form: E	xtended Detention Basin (EDB)
Designer: Gab	e Gonzales	Sheet 2 of 3
·	Engineering, LLC	
· · · · · · · · · · · · · · · · · · ·	ober 23, 2023	
	hedral Pines	
	th Pond	
6. Trickle Channel		Choose One Choose One Choose One
A) Type of Trickle Ch	annel	Soft Bottom
F) Slope of Trickle Ch	nannel	S = 0.0050 ft / ft
7. Micropool and Outlet	Structure	
A) Depth of Micropoo	l (2.5-feet minimum)	$D_{\rm M} = \frac{2.5}{ft}$
	icropool (10 ft ² minimum)	$A_{\rm M} = 10$ sq ft
C) Outlet Type		Choose One Orifice Plate Other (Describe):
D) Smallest Dimensio (Use UD-Detention)	on of Orifice Opening Based on Hydrograph Routing	D _{orffice} = 0.56 inches
E) Total Outlet Area		A _{ot} = 0.84 square inches
8. Initial Surcharge Volur	me	
 A) Depth of Initial Sur (Minimum recommendation) 	rcharge Volume ended depth is 4 inches)	D _{IS} = in
B) Minimum Initial Sur (Minimum volume o	charge Volume f 0.3% of the WQCV)	V _{IS} = cu ft
C) Initial Surcharge Pr	rovided Above Micropool	V _s =cu ft
9. Trash Rack		
A) Water Quality Scre	een Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	At = 31 square inches
recommended in the L	specifying an alternative to the materials JSDCM, indicate "other" and enter the ratio of the total creen are for the material specified.)	S.S. Well Screen with 60% Open Area
	Other (Y/N): N	
C) Ratio of Total Oper	n Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water Quality	/ Screen Area (based on screen type)	A _{total} = sq. in.
	plume (EURV or WQCV) concept chosen under 1E)	H= 2.93 feet
F) Height of Water Qu	uality Screen (H _{TR})	H _{TR} = 63.16 inches
G) Width of Water Qu (Minimum of 12 inches	ality Screen Opening (W _{opening}) s is recommended)	Wopening 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH. WIDTH HAS BEEN SET TO 12 INCHES. WIDTH HAS BEEN SET TO 12 INCHES.

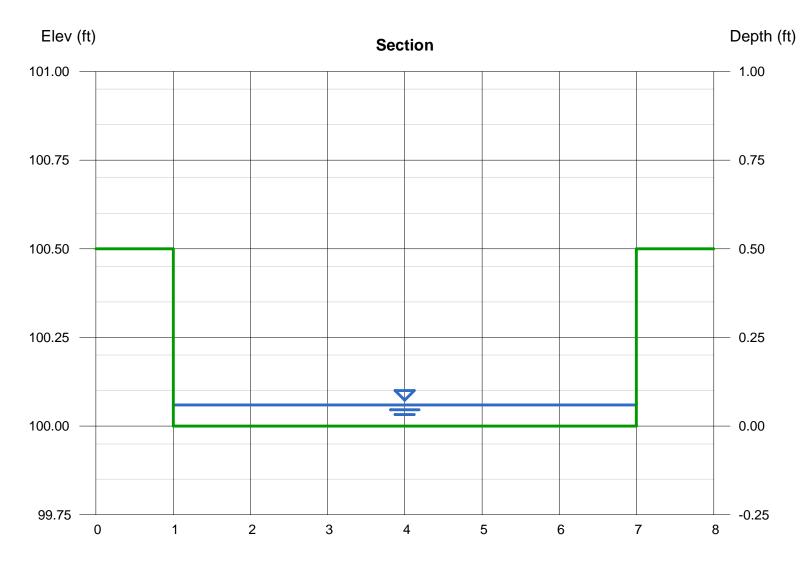

Weir Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Monday, Oct 23 2023

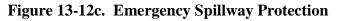
South Pond Forebay Release

Compound Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 0.65
Bottom Length (ft)	= 6.00	Q (cfs)	= 0.440
Total Depth (ft)	= 1.00	Area (sqft)	= 0.16
Length, x (ft)	= 0.25	Velocity (ft/s)	= 2.69
Depth, a (ft)	= 0.75	Top Width (ft)	= 0.25
Calculations Weir Coeff. Cw Compute by: Known Q (cfs)	= 3.33 Known Q = 0.44	4" per the previous forebay calculations	



Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Monday, Oct 23 2023

S. Pond Trickle Ch	annel Provide trickle channel calca 2' trickle channel.	s for	
Rectangular		Highlighted	
Bottom Width (ft)	= 6.00	Depth (ft)	= 0.06
Total Depth (ft)	= 0.50	Q (cfs)	= 0.440
		Area (sqft)	= 0.36
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 1.22
Slope (%)	= 0.75	Wetted Perim (ft)	= 6.12
N-Value	= 0.013	Crit Depth, Yc (ft)	= 0.06
		Top Width (ft)	= 6.00
Calculations		EGL (ft)	= 0.08
Compute by:	Known Q		
Known Q (cfs)	= 0.44		

Reach (ft)

SOUTH POND

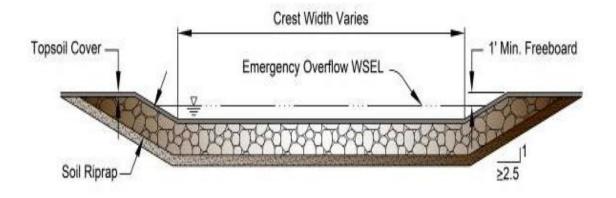
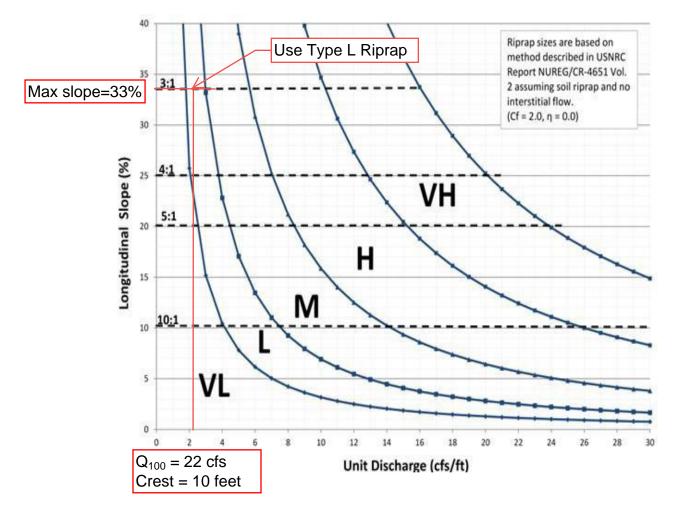
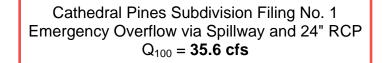
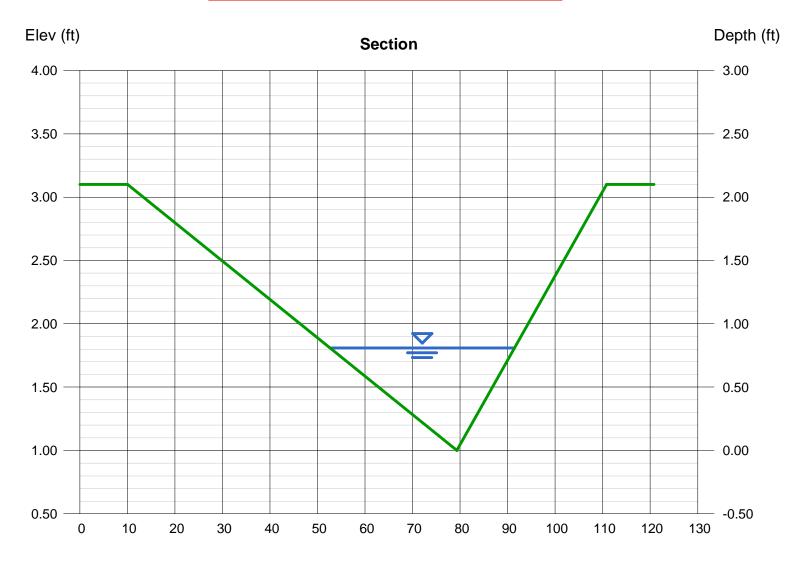



Figure 13-12d. Riprap Types for Emergency Spillway Protection

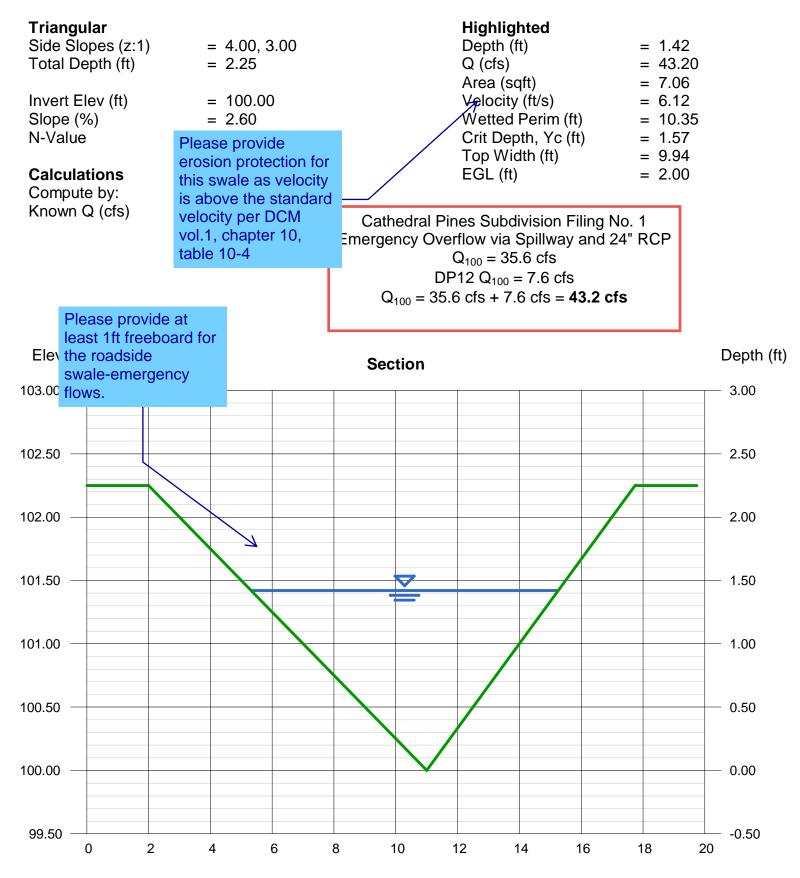

Channel Report


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

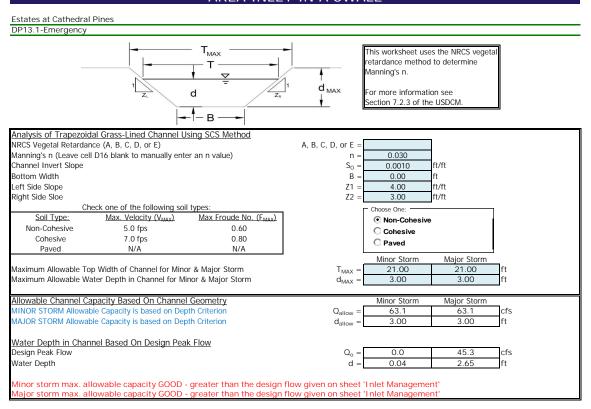
Thursday, Sep 14 2023

P1 Swale to Combination-Emergency Overflow

Triangular		Highlighted	
Side Slopes (z:1)	= 33.00, 15.00	Depth (ft)	= 0.81
Total Depth (ft)	= 2.10	Q (cfs)	= 35.60
		Area (sqft)	= 15.75
Invert Elev (ft)	= 1.00	Velocity (ft/s)	= 2.26
Slope (%)	= 1.00	Wetted Perim (ft)	= 38.92
N-Value	= 0.035	Crit Depth, Yc (ft)	= 0.68
		Top Width (ft)	= 38.88
Calculations		EGL (ft)	= 0.89
Compute by:	Known Q		
Known Q (cfs)	= 35.60		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Thursday, Sep 14 2023

Basin L Roadside Swale-Emergency Flows

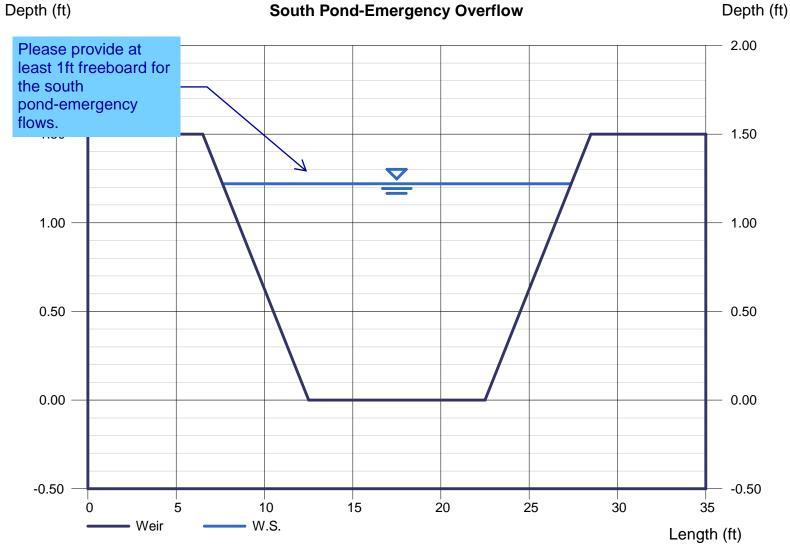
Reach (ft)

MHFD-Inlet, Version 5.02 (August 2022) AREA INL<u>ET IN A SWALE</u>

Emergency Overflow DP12.1 Q_{100} = 43.2 cfs DP13 Q_{100} = 2.1 cfs Q_{100} = 43.2 cfs + 2.1 cfs = **45.3 cfs**

Flows would stay within Basin L roadway swale and then overtop the proposed inlet depression.

Overtopped flows enter into the proposed South Pond.


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

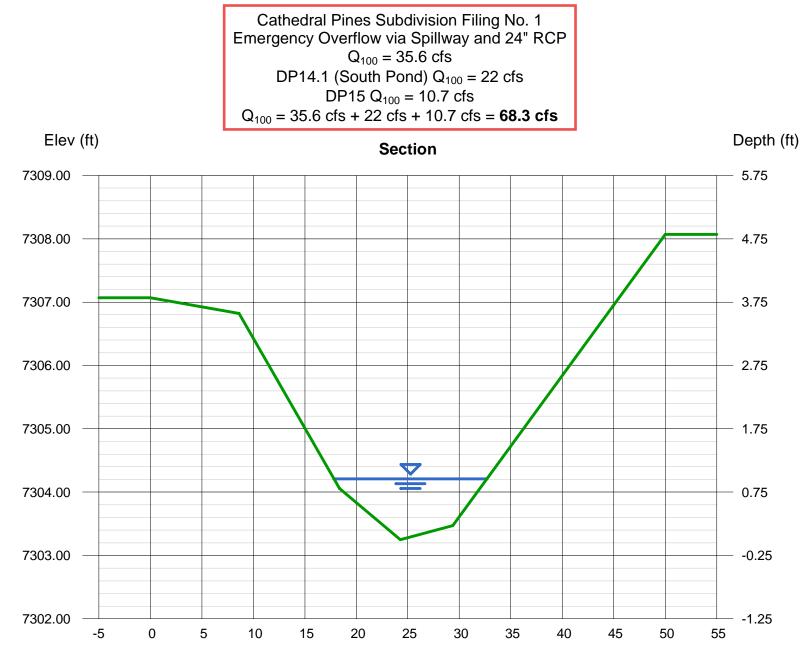
South Pond-Emergency Overflow

Trapezoidal Weir		Highlighted	
Crest	= Sharp	Depth (ft)	= 1.22
Bottom Length (ft)	= 10.00	Q (cfs)	= 57.60
Total Depth (ft)	= 1.50	Area (sqft)	= 18.15
Side Slope (z:1)	= 4.00	Velocity (ft/s)	= 3.17
,		Top Width (ft)	= 19.76
Calculations			
Weir Coeff. Cw	= 3.10		
Compute by:	Known Q		
Known Q (cfs)	= 57.60		
		Cathedral Pines Subdivision Filing No Emergency Overflow via Spillway and 24 $Q_{100} = 35.6$ cfs DP14.1 (South Pond) $Q_{100} = 22$ cfs $Q_{100} = 35.6$ cfs + 22 cfs = 57.6 cfs	" RCP

Depth (ft)

South Pond-Emergency Overflow

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Thursday, Sep 14 2023

Basin O Existing Swale-Emergency Overflow

User-defined		Highlighted	
Invert Elev (ft)	= 7303.25	Depth (ft)	= 0.96
Slope (%)	= 5.00	Q (cfs)	= 68.30
N-Value	= 0.030	Area (sqft)	= 8.89
		Velocity (ft/s)	= 7.68
Calculations		Wetted Perim (ft)	= 15.04
Compute by:	Known Q	Crit Depth, Yc (ft)	= 1.26
Known Q (cfs)	= 68.30	Top Width (ft)	= 14.88
		EGL (ft)	= 1.88

(Sta, El, n)-(Sta, El, n) ...

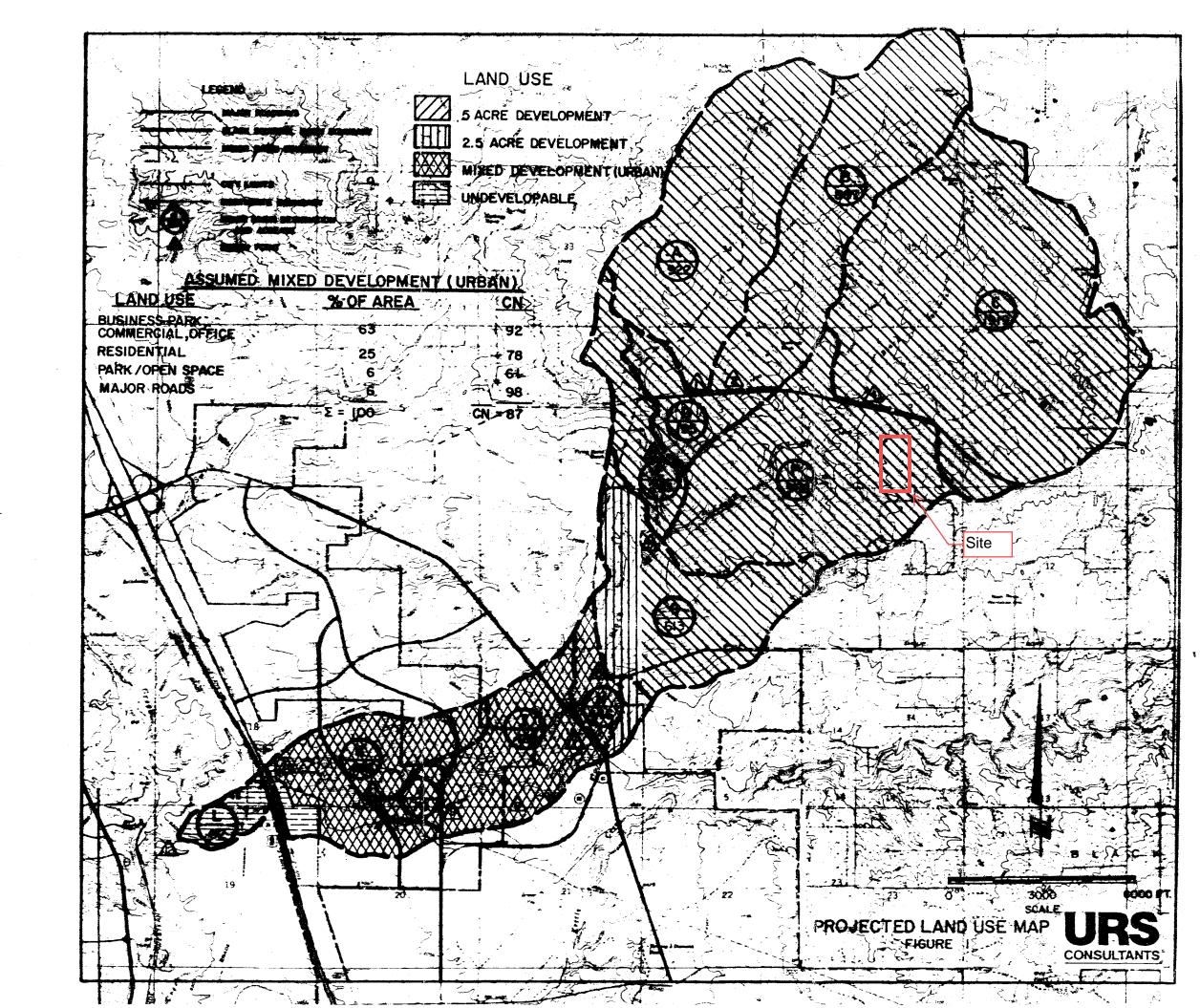
(0.00, 7307.07) - (8.60, 7306.82, 0.030) - (18.35, 7304.06, 0.030) - (24.28, 7303.25, 0.030) - (29.38, 7303.47, 0.030) - (50.00, 7308.07, 0.030)

Final Drainage Report for Estates at Cathedral Pines

APPENDIX D

REFERENCE MATERIALS

Approved El Paso County Planning Commission ISULTANTS This 11 day of Jan. 1989 AKING TECHNOLOGY WORK" ben, Secretary hairman

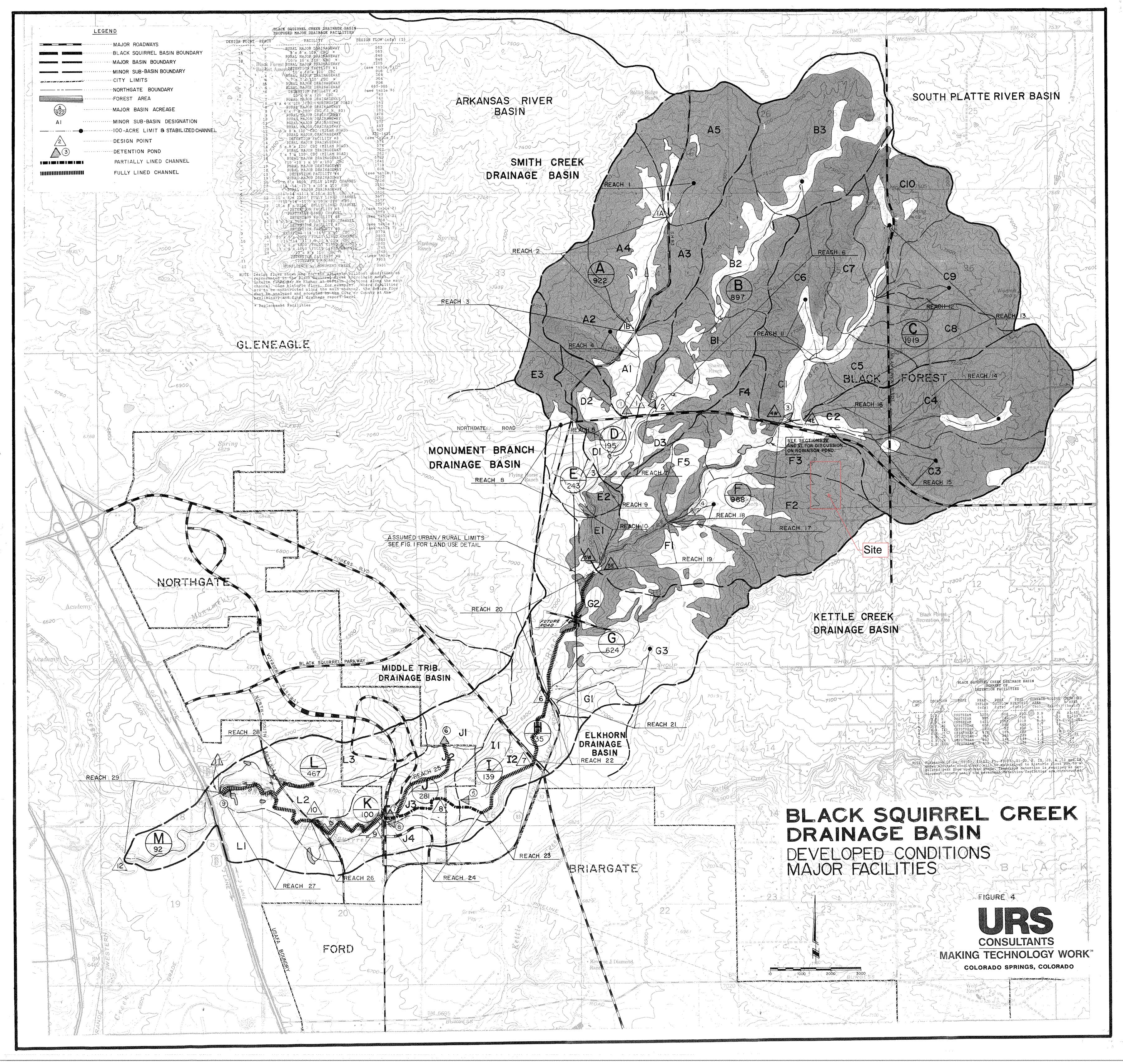

Black Squirrel Creek Drainage Basin Planning Study

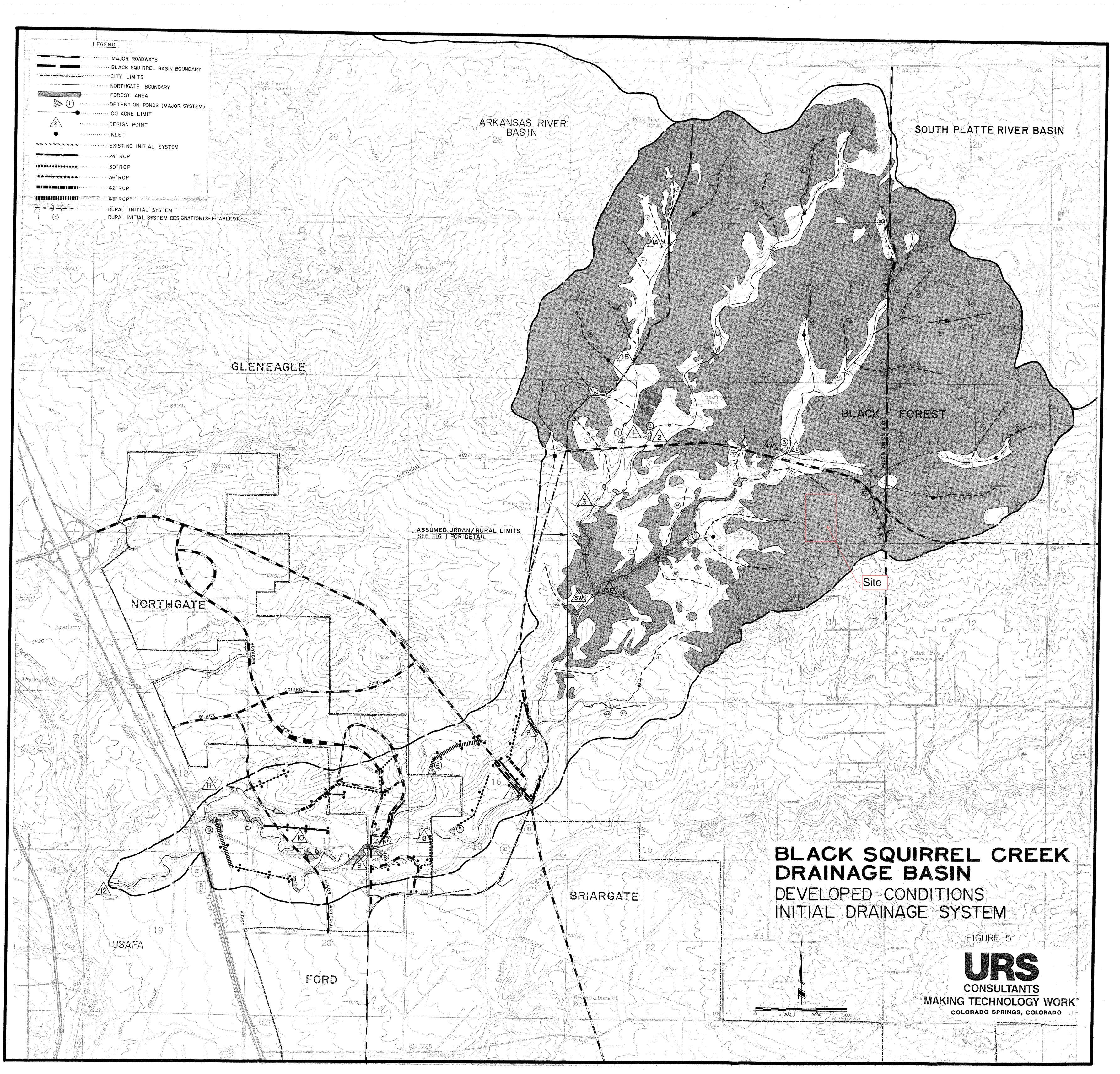
City of Colorado Springs

and El Paso County

January, 1989

Department, the City Public Works Department, the City Planning Department, along with the aid of the Black Forest Preservation Study, the Urban Planning Area Map, and the Northgate Master Plan. The area between Interstate 25 and State Highway 83 (Downstream of D.P. #6)was assumed to be developed as if it was an urban type development. A buffer area was also assumed along State Highway 83 consisting of 2.5 acre development. This buffer area was assumed to be included within the urban development. The remaining area was assumed to be developed in a rural type development with an average lot size of 5 acres per current zoning and presently platted subdivisions within the basin. This was assumed to be appropriate due to the limiting density where City services are anticipated to be available and the desirability of maintaining the forest area in a more rural type setting. The Air Force Academy land was assumed to remain undeveloped and was not included in the drainage and bridge fee calculations. Future changes in land use beyond this concept would require a revision to this study. Land use assumptions for the basin are depicted on Figure 1.


Curve number development for the rural area was generated by assuming five acre type development. The five acre parcel was assumed to consist of approximately 16% developed area (CN=93) with the remaining 84% being split based on percentage of forest (CN=63) and range (CN=69) land in the subbasin. The developed area, within the five acre parcel, was assumed to include approximately 7% of impervious area (CN=98) and 9% of gravel driveway and adjacent road (CN=89). The curve numbers presented are intended to be conservative to allow for uncertainties in land use predictions, present and future paved driveways and roads, and assuming "fair" to "poor" hydrological conditions for range and forest land uses due to a general lack of ground cover.


Drainage facilities are designed and constructed according to the City/County Criteria Manual. Other possible requirements may be imposed through the Corps of Engineers 404 permit process and through the Flood Plain Administrator concerning current FEMA mapping, map revisions, and amendments in conjunction with the planning process. Additional costs associated with these processes have not been included here.

MAJOR CHANNEL SYSTEM

Í

Reaches 1 through 19 and 21 are primarily located in the upper reaches of the basin. These reaches are proposed to remain as natural as possible except for the addition of grade control structures and riprap at sharp horizontal bends for the purpose of stabilizing the channel. A total of 136 grade control

FINAL DRAINAGE REPORT AND PLAN FOR CATHEDRAL PINES SUBDIVISION FILING NO. 1

January, 2005

Leigh & Whitehead Associates, Inc.

CONSULTING CIVIL ENGINEERS & SURVEYORS 2906 BEACON STREET COLORADO SPRINGS, CO 80907-6192 LWA Project No. 04040.62

TA	BL	E	1

BAS	BASIN ID		AREA		fs	Q100 cfs		
Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	Exist.	Prop.	
DP-1	DP-1	0.22 sm.	0.36 sm.	40.0	57.0	175.0	189.0	
DP-2	DP-2	1.02 sm.	0.87 sm.	68.0	141.0	335.0	465.0	
DP-3	DP-3	1.24 sm.	1.43 sm.	76.0	218.0	385.0	733.0	
D	D	8.61 Ac.	5.06 Ac.	1.8	5.0	4.9	12.3	
Е	E	20.20 Ac.	15.50 Ac.	4.2	13.4	11.3	32.8	
F	F	2.79 Ac.	2.79 Ac.	0.9	0.9	2.5	2.5	
	4 <u></u>	A	TABI	Е 1				

sm = Square Miles Ac. = Acres

Culverts have been sized in accordance with the requirements of the Bureau of Public Roads, nomographs, and the City of Colorado Springs/El Paso County Drainage Criteria Manual. The computer program "Culvert Master for Windows", Culvert Design and Analysis Software, Version 1.0, developed by Haestad Methods, was used in the computations for sizing of culverts. This software program is in accordance with the Bureau of Public Road's standards for developing culvert sizes. The culverts have been sized as R.C.P., using a Manning's roughness coefficient of 0.013. The culvert design data computations are in the back of this report. The rip-rap at the outlet of the culverts, have been designed in accordance with CDOT Std. M-601-12, and a copy of this standard is located in the back of this report. These rip-rap pads are shown on the detailed street plan and profiles and the calculations are in the back of this report. These rip-rap pads have been sized in accordance with the appropriate requirements.

There are plans to construct 2-detention facilities. One is located at design point 3 (DP-3) in basin B, and the other one is located at Winslow Drive in basin E. These detention facilities release runoff at or below historic rates.

The detention pond at DP-3 has been sized to accept runoff from Filing No. 1, which contributes 381.67 acres. This does include basins B21 and D. The remaining 413.6 undeveloped acres from the adjacent portion will sheet flow westerly to Black Squirrel Creek, and will not be intercepted by this detention facility. Developed peak flow at DP-3 for the 381.67 acres is 142.0 cfs for the 5 year event, and 444.0 cfs for the 100 year event.

10

Historic flows at this location are 44.0 cfs for the 5 year event and 219.0 cfs for the 100 year event. This detention facility will release flows of 41.8 cfs for the 5 year event and 192.6 cfs for the 100 year event. These flows are below historic runoff. This detention pond will detain 5.84 acre feet (100.2 cfs) for the 5 year event and 17.26 acre (251.4 cfs) for the 100 year event. When the remaining portion of this basin is developed, detailed evaluation will be required to determine the best solution to reduce developed runoff from exiting the property.

The detention pond at Basin E has been sized to accept runoff from 15.50 acres, which generates a peak developed flow of 13.4 cfs for the 5 year event and 32.8 cfs for the 100 year event. Historic flows at this location are 4.2 cfs for the 5 year event and 11.3 cfs for the 100 year event. This detention facility will release runoff of 3.7 cfs for the 5 year event and 10.9 cfs for the 100 year event. These flows are below historic runoff. This detention pond will detain 0.25 acre feet (9.7 cfs) for the 5 year event and0.56 acre feet (21.9 cfs) for the 100 year event

Detention facilities were analyzed using Haestad methods "Pond Pack-Detention Pond Design and Analysis" computer program for both the 5 year and 100 year events. Pond volumes were determined by conic method. The detention ponds are private drainage facilities and will be maintained by the homeowners association. Calculations for the two detention ponds are included in the back of this report. These ponds will have adequate maintenance access.

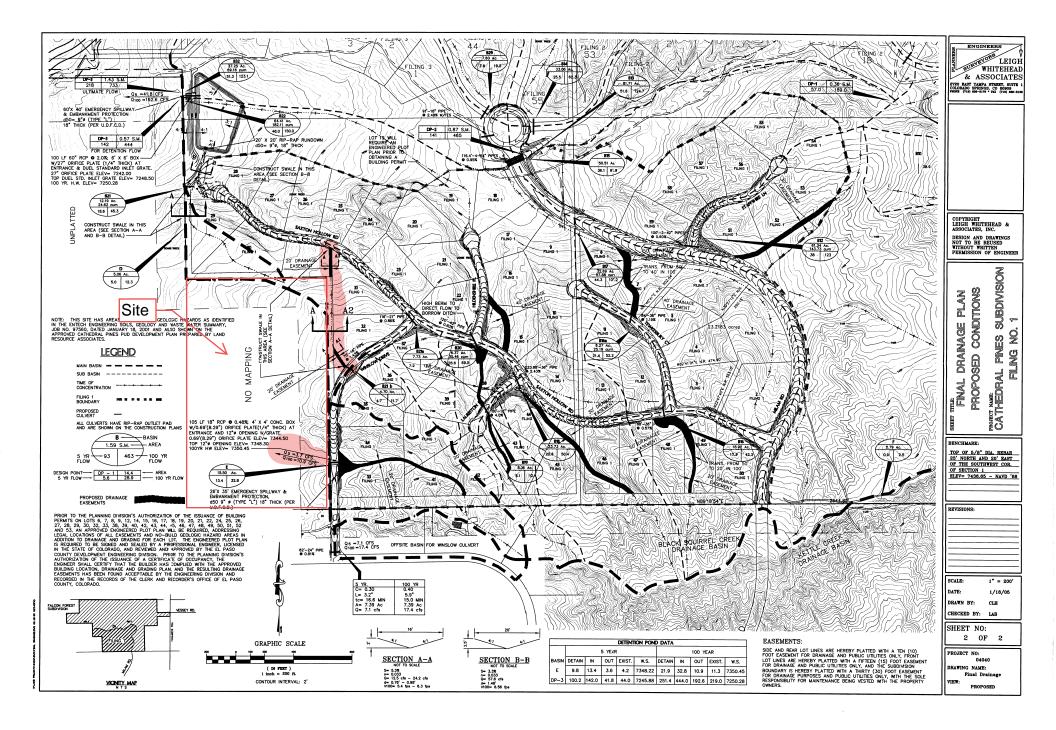
The proposed detention facilities include outlet structures that will control both the minor and major storms. The are dual-stage outlet facilities. The calculations for the emergency spillway are shown on the construction documents. Any seeding that is developed in the detention pond areas will be in accordance with the NRCS specifications that are shown on sheet 2 of the construction documents.

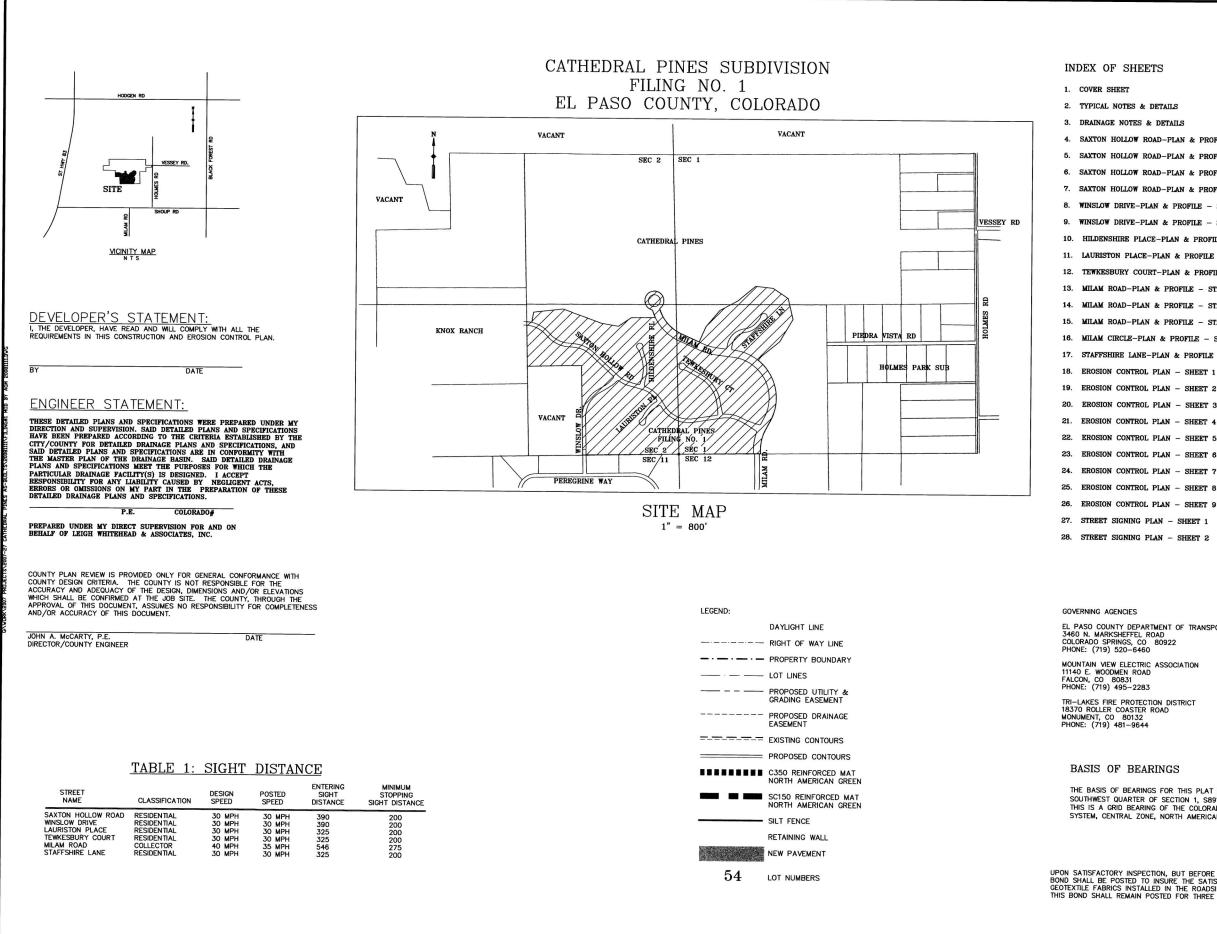
Located throughout the property are small stock or ranch ponds that are currently in existence. These ponds will be removed and regraded, and will not be part of the storm drainage system. All runoff calculations for this development did not take into account these stock ponds. Grades for the proposed roads may cause high storm water flow velocities and create the need for roadside ditch protection. The roadside ditches generate

]	}	1 1	1	1)	,)	1)	1)	1 1	1	1 1 1
	CATHEDRA HOLMES R	CIMPUTATION METHOD AI. PINES SUB CIAD, Sec.'s 1 COUNTY, COLO	DIVISION F & 2, T12S, F					<u>an 1997 - 12 - 14 - 15 - 14 - 15 - 16 - 16 - 16 - 16 - 16 - 16 - 16</u>				Engineers, Sui 2906 BEACON	PRINGS, COLO	rs
	TABLE A: PROPOSE		S	LWA # 0404	0.62							16-Nov-04		SHEET 4 OF 4
BASIN	AREA	SOIL TYPE	C 5 C 100	LENGTH	EOMETRY HE SLOPE	IGHT	Tt 5 Tt 100	V Tt		tc 5 tc 100	i 5 i 100	Q5	Q100	COMMENTS
B29	7.60	B 26/40	0.30 0.40	300	4	2.0	10.85 9,49	3.95		14.31 12.95	<u>3.45</u> 6.32	7.9	19.2	
B30	8.85	B 26	0.30	300		8.0	10.38 9.08	3.37	7	14.29 12.99	3.45 6.31	9.2	22.3	
B31	15.46	B 26/40	0.30	300		8.0	9.08 11.21 9.81	3.60)	<u>12.39</u> 18.38 16.98	3.05	14.1	34.3	
B32	37.25	B 26/40/71	0.30	300		2.0	<u> </u>	4.01	1	29.68	2.33	26.1	63.3	
B32 (cum.)	69.16	<u>B</u> 26/40/71	0.40	300		2.0	14.35 10.85 9.49	Varie 16.02	es	26.87 25.51	2.47	51.3	123.1	B29 through B32
DP-3	916.42	B 26/40/41/71	0.29	300	· · · ·	5.0	<u>9.49</u> 15.43 13.52	Varie 50.82	es	<u>66.25</u> 64.34	<u>1.39</u> 2.48	370.2	887.2	Rational; OS-B1 B32
DP-3	1.4319	<u>26/40/41/71</u> <u>B</u> 26/40/41/71	CN	· · · · · · · · · · · · · · · · · · ·	3.00		13.32	50.8		04.04	2.40	218	733	HEC-1; OS-B1 B32 (Ultimate Condition)
DP-3	381.67	В	<u>64.51</u> 0.29	300	· · · · · · · · · · · · · · · · · · ·	5.0	15.43	Varie		46.05	1.78	196.6	474.7	Rational Analysis
DP-3	0.5964	26/40/41/71 B	0.39 CN		5.00		13.52			44.14	3.19	142		HEC-1; OS-B1 B32 (I ⁻ or Detention Purposes)
D	5.06	:26/40/41/71 B	<u>64.51</u> 0.30	300		3.0	13.23	3.81		15.77	3.29	5.0	444	
E	15.50	41 B	0.40	300		7.0	11.58	2 54	1	<u>14.12</u> 20.37	<u>6.07</u> 2.89	13.4	12.3	
F	2.79	<u>41</u> <u>B</u>	0.40	350		0.0	12.79 15.66	5.75		18.54	5.30 3.30	0.9	32.8	Undisturbed
Milam Cir.	1.22	41 B 41	0.15 0.40 0.50	200	<u>11.43</u> <u>s</u> 4.50	9.0	14.88 11.27 9.66		\leq	14.88 11.27 9.66	5.92 3.85 7.18	1.9	2.5	
										3.00	7.10			

Culvert Designer/Analyzer Report Winslow Drive - 2

Design Discharge	4.7	cfs	Check Discharge		11.7	cfs
Grades Model: Inverts		·····				
Invert Upstream	7,365.00	ft	Invert Downstream	<u> </u>	7,364.00	#
Length	70.00	ft	Slope		0.014286	
Drop	1.00	ft	-		0.014200	
leadwater Model: Ma	ximum Allowable HW	······				
Headwater Elevation	7,368.00	ft				<u> </u>
Failwater properties: T	riangular Channel		······			
Slope	0.020000	ft/ft	Mannings Coefficient	·····	0.035	
Depth	0.78	ft	Left Side Slope			H : V
Right Side Slope	6	H : V				
ailwater conditions fo	r Design Storm.		- <u>**</u>			
Discharge	4.7	cfs	Bottom Elevation	<u></u>	7,364.00	ft
Depth	0.56	ft	Velocity	••	2.53	
ailwater conditions for	r Check Storm.					
Discharge	11.7	cfs	Bottom Elevation		7,364.00	ft
Depth	0.78	ft	Velocity		3.18	
Name	Desc	Discharge	e HW Elev	Velocity		
Trial-1	1-18 inch Circular	4.7 cfs	7,366.34 ft	6.59 ft/s	-	
c Trial-2	1-18 inch Circular	11.7 cfs	•	8.06 ft/s		


	Culve	ert Designer/Analyzer R Winslow Drive - 2	leport	
Design:Trial-1				
olve For: Headwater Elevat	ion			
Culvert Summary			<u></u>	
Allowable HW Elevation	7,368.00 ft	Storm Event	Design	
Computed Headwater Elevation	7,366.34 ft	Discharge	4.7 c	fs
Headwater Depth/ Height	0.89	Tailwater Elevation	7,364.56 ft	
Inlet Control HW Elev	7,366.23 ft	Control Type	Outlet Control	
Outlet Control HW Elev	7,366.34 ft			·
Grades			······	
	7 005 00 6			
Upstream Invert	7,365.00 ft	Downstream Invert	7,364.00 ft	
Length	70.00 ft	Constructed Slope	0.014286 ft/	/ft
Hydraulic Profile	<u> </u>	· · · · · · · · · · · · · · · · · · ·		
Profile		Depth, Downstream	0.64 ft	
Slope Type	Steep	Normal Depth	0.64 ft	
Flow Regime	Supercritical	Critical Depth	0.83 ft	
Velocity Downstream	6.59 ft/s	Critical Slope		
	0.00 103		0.005655 ft/	π
Section				····
Section Shape	Circular	Mannings Coefficient	0.013	
Section Material	Concrete	Span	1.50 ft	
Section Size	18 inch	Rise	1.50 ft	
Number Sections	1			
Outlet Control Properties	·····			
Outlet Control HW Elev	7,366.34 ft	Upstream Velocity Head	0.34 ft	
Ke	0.50	Entrance Loss	0.17 ft	
Inlet Control Properties				
Inlet Control HW Elev	7,366.23 ft	Flow Control	Unsubmerged	
Inlet Type End-Section Confor		Area Full	1.8 ft ²	
κ	0.00980	HDS 5 Chart	1.0 n.~ 1	
M	2.00000	HDS 5 Scale	1	
	0.03980	Equation Form	i 1	
С				


Culvert Designer/Analyzer Report Winslow Drive - 2

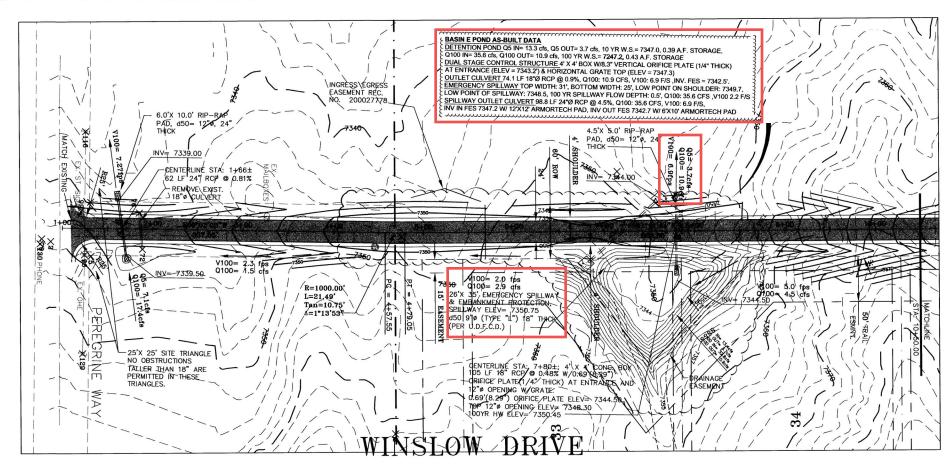
Design:Trial-2

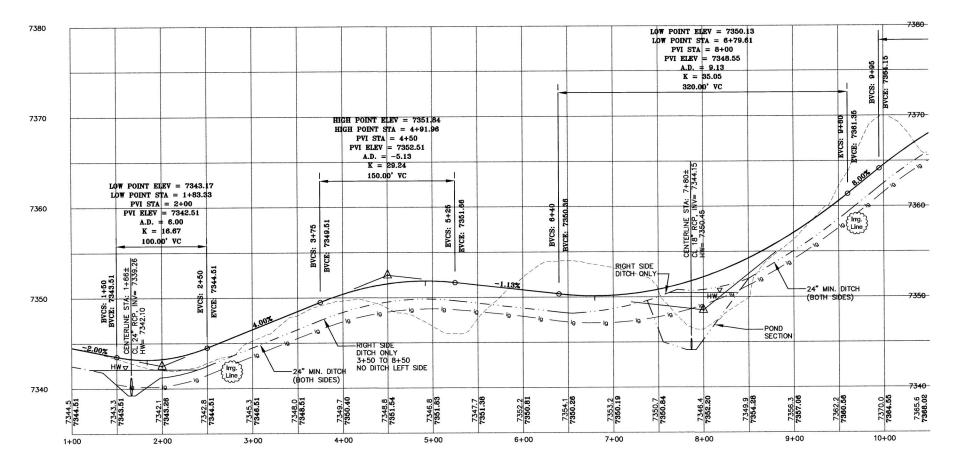
Solve For: Headwater Elevation

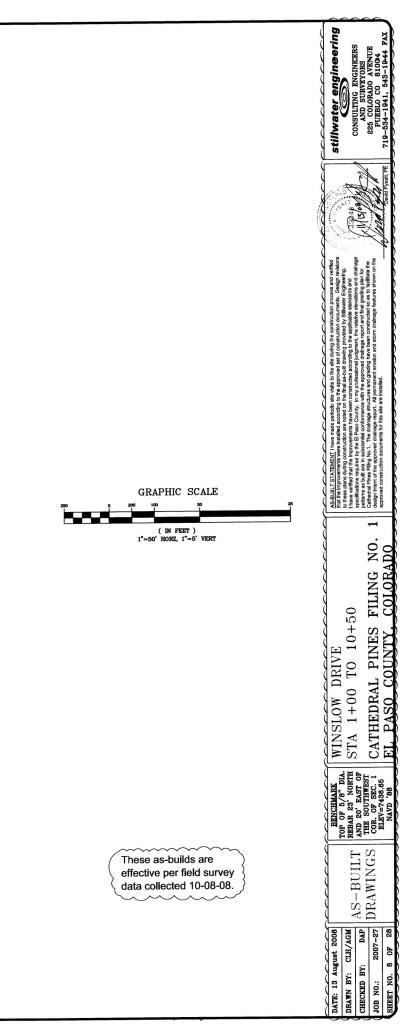
Allowable HW Elevation	7,368.00	ft	Storm Event	Check	·
Computed Headwater Elevation	7,367.74	ft	Discharge	11.7	
Headwater Depth/ Height	1.83		Tailwater Elevation	7.364.78	
Inlet Control HW Elev	7,367.74	ft	Control Type	Inlet Control	
Outlet Control HW Elev	7,367.50	ft	······		
Grades	····			· · · · · · · · · · · · · · · · · · ·	
Upstream Invert	7,365.00	ft	Downstream Invert	7,364.00	ft
Length	70.00	ft	Constructed Slope	0.014286	
Hydraulic Profile			······································	<u> </u>	
Profile	S2		Depth, Downstream	1.15	ft
Slope Type	Steep		Normal Depth	1.15	
Flow Regime	Supercritical		Critical Depth	1.30	
Velocity Downstream	8.06	ft/s	Critical Slope	0.011352	ft/ft
Section Shape	Circular		Mannings Coefficient	0.013	
Section Material	Concrete		Span	1.50	ft
Section Size	18 inch		Rise	1.50	
Number Sections	1				
Outlet Control Properties		<u></u>	<u> </u>		;
Outlet Control HW Elev	7,367.50	ft	Upstream Velocity Head	0.80	ft
Ке	0.50		Entrance Loss	0.40	ft
nlet Control Properties					
Inlet Control HW Elev	7,367.74	ft	Flow Control	Submerged	
Inlet Type End-Section Conform	ing to fill slope		Area Full	1.8	ft²
к	0.00980		HDS 5 Chart	1	
м	2.00000		HDS 5 Scale	1	
С	0.03980		Equation Form	1	
Y	0.67000				

4. SAXTON HOLLOW ROAD-PLAN & PROFILE - STA: 1+00.00 TO 14+50.00 5. SAXTON HOLLOW ROAD-PLAN & PROFILE - STA: 14+50.00 TO 28+00.00 6. SAXTON HOLLOW ROAD-PLAN & PROFILE - STA: 28+00.00 TO 44+00.00 7. SAXTON HOLLOW ROAD-PLAN & PROFILE - STA: 44+00.00 TO 47+31.44 8. WINSLOW DRIVE-PLAN & PROFILE - STA: 1+00.00 TO 10+50.00 WINSLOW DRIVE-PLAN & PROFILE - STA: 10+50.00 TO 20+32.84 10. HILDENSHIRE PLACE-PLAN & PROFILE - STA: 1+00.00 TO 8+85.78 11. LAURISTON PLACE-PLAN & PROFILE - STA: 1+00.00 TO 6+45.18 12. TEWKESBURY COURT-PLAN & PROFILE - STA: 1+00.00 TO 13+22.24 13. MILAM ROAD-PLAN & PROFILE - STA: 10+00.00 TO 23+50.00 14. MILAM ROAD-PLAN & PROFILE - STA: 23+50.00 TO 37+50.00 15. MILAM ROAD-PLAN & PROFILE - STA: 37+50.00 TO 46+88.43 16. MILAM CIRCLE-PLAN & PROFILE - STA: 1+00.00 TO 9+16.79 17. STAFFSHIRE LANE-PLAN & PROFILE - STA: 1+00.00 TO 11+01.49 EROSION CONTROL PLAN - SHEET 6

EL PASO COUNTY DEPARTMENT OF TRANSPORTATION

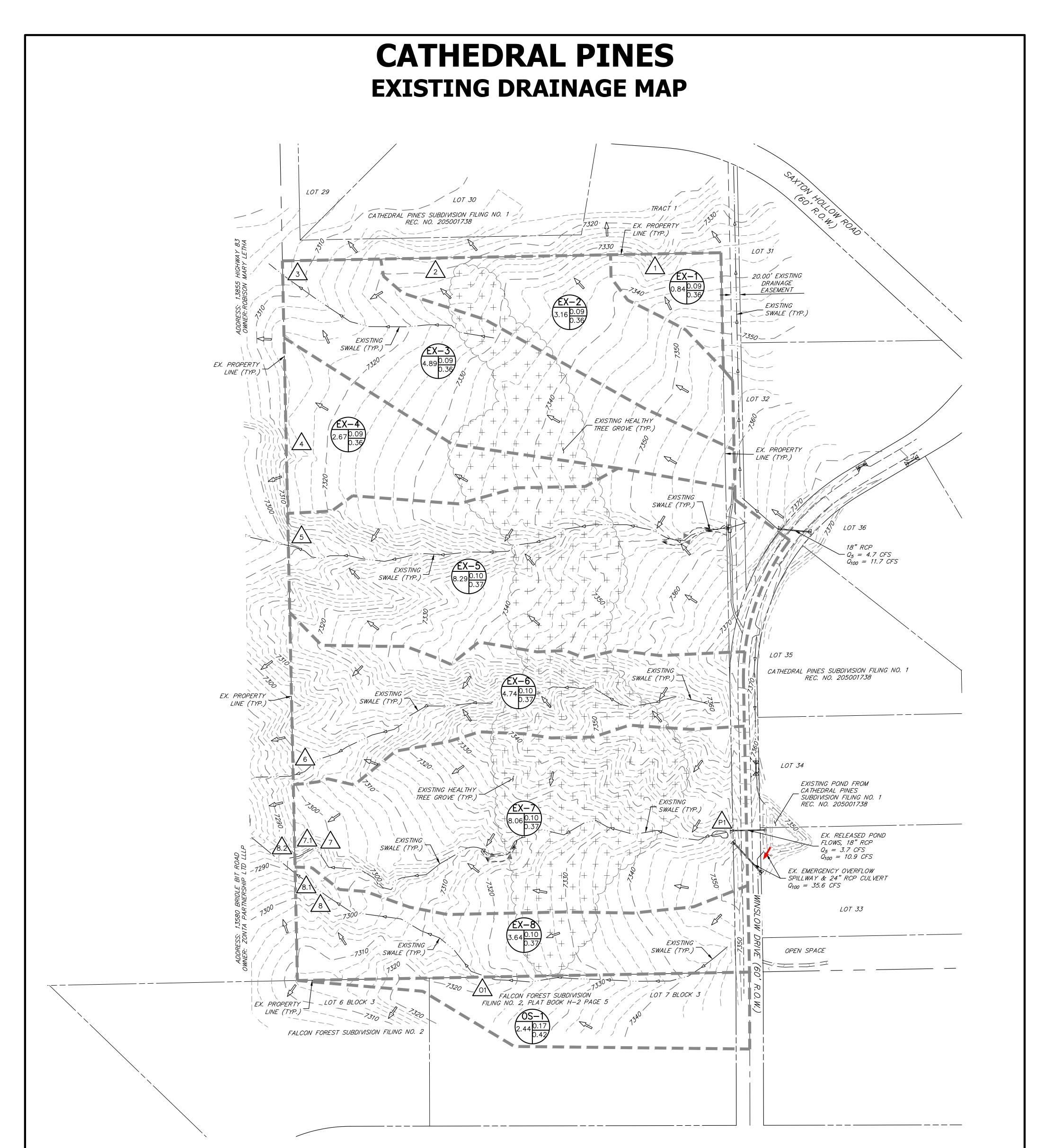

THE BASIS OF BEARINGS FOR THIS PLAT IS THE SOUTH LINE OF THE SOUTHWEST QUARTER OF SECTION 1, SB9'B'49'E - 2644.82 FEET. THIS IS A GRID BEARING OF THE COLORADO STATE PLANE COORDINATE SYSTEM, CENTRAL ZONE, NORTH AMERICAN DATUM 1983.


UPON SATISFACTORY INSPECTION, BUT BEFORE ACCEPTANCE BY THE COUNTY, A BOND SHALL BE POSTED TO INSURE THE SATISFACTORY PERFORMANCE OF GEOTEXTILE FABRICS INSTALLED IN THE ROADSIDE DITCHES CALLED OUT HEREIN. THIS BOND SHALL REMAIN POSTED FOR THREE YEARS.


These as-builds are effective per field survey data collected 10-08-08. m

~ ~

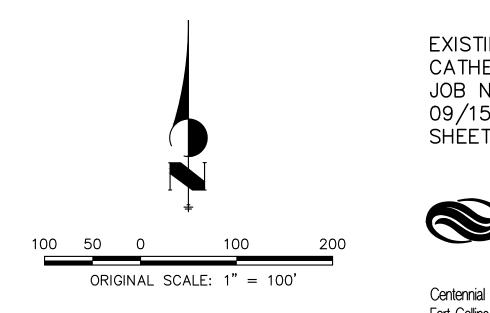
20000000	000000				/	
DATE: 13 August 2008		BENCHMARK	STREET DI AN & DDOFTER		مومومومول	
DRAWN BY: CLH/AGM		TOP OF 5/8" DIA. REBAR 23' NORTH		that the Improvements were installed according to the approved set of construction occuments. Design revisions to these plans during construction are noted on the final as-built drawing provided by Sillwater Engineering.		stillwater engineering
CHECKED BY: DAP	AS-BUILI	DAP AS-BUILI AND 20' EAST OF		I have verified that the improvements have been constructed according to the applicable standards and specifications required by the EI Paso County. In my professional judgment, the relative elevations and drahage	C.LLAN	CONSULTING ENGINEERS
JOB NO.: 2007-27 DRAWINGS COR. OF SEC. 1	DRAWINGS	COR. OF SEC. 1	CATHEDRAL PINES FILING NO. 1	parterns as out are in substantial conformance with the approved drainage report and final grading plan for Catabodia Pinas Filling No.1. The drainage structures and grading have been constructed so as to facilitate the deethn interver the service drainance and anticures and grading have been constructed so as to facilitate the	1/ 1/ Achil	AND SURVEYORS
SHEET NO. 1 OF 28		ELEV=7430.65 NAVD '88	FI DASO COUNTV	access means of the approved one report and permanent enclosed and south or analytic realized electrices shown on the approved construction documents for this site are installed.	VASIA PULOW	PUEBLO CO 81004
					6 Sevid Pyeatt, PE	719-534-1941, 543-1944 FAX



Final Drainage Report for Estates at Cathedral Pines

APPENDIX E

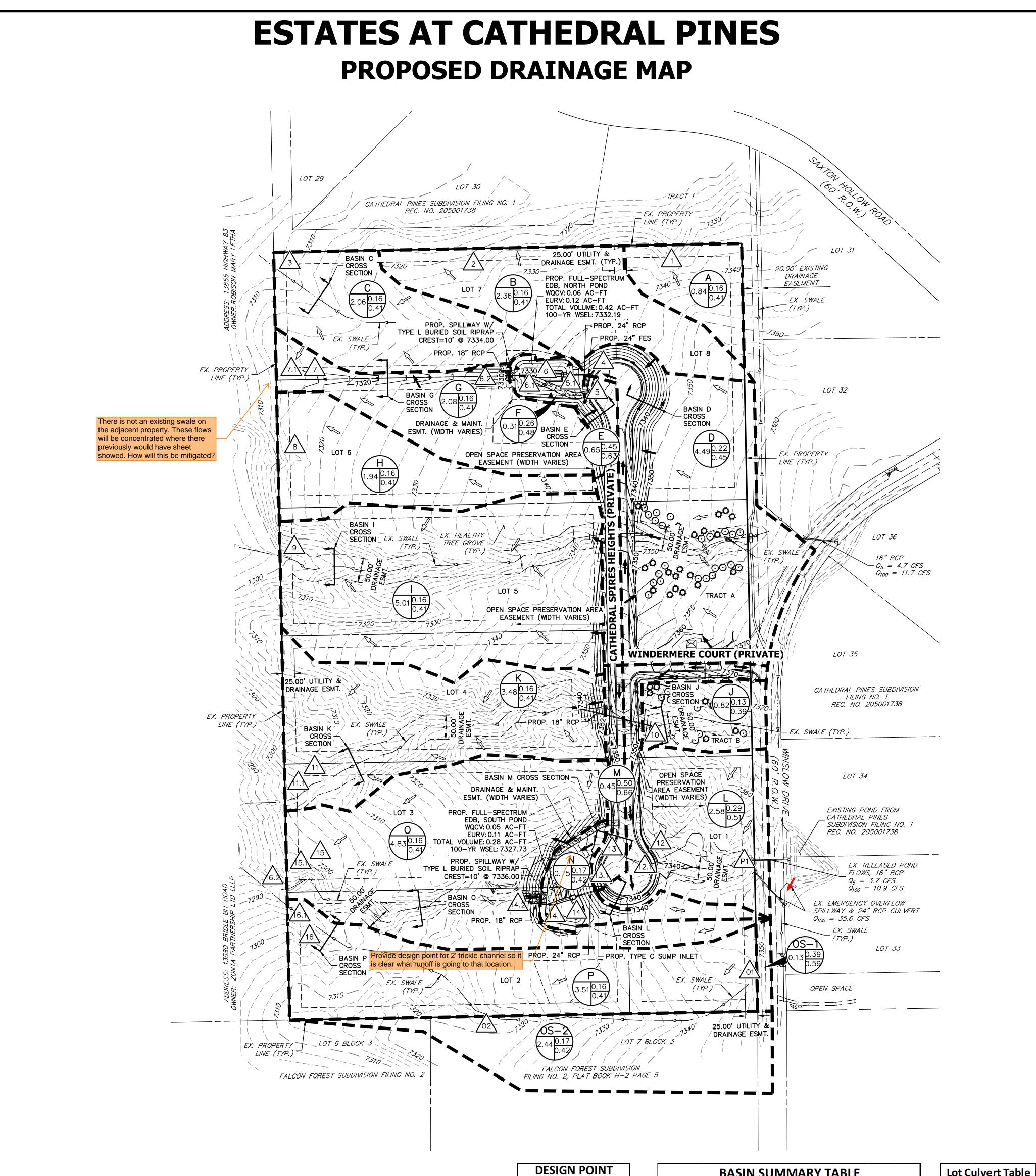
DRAINAGE MAPS

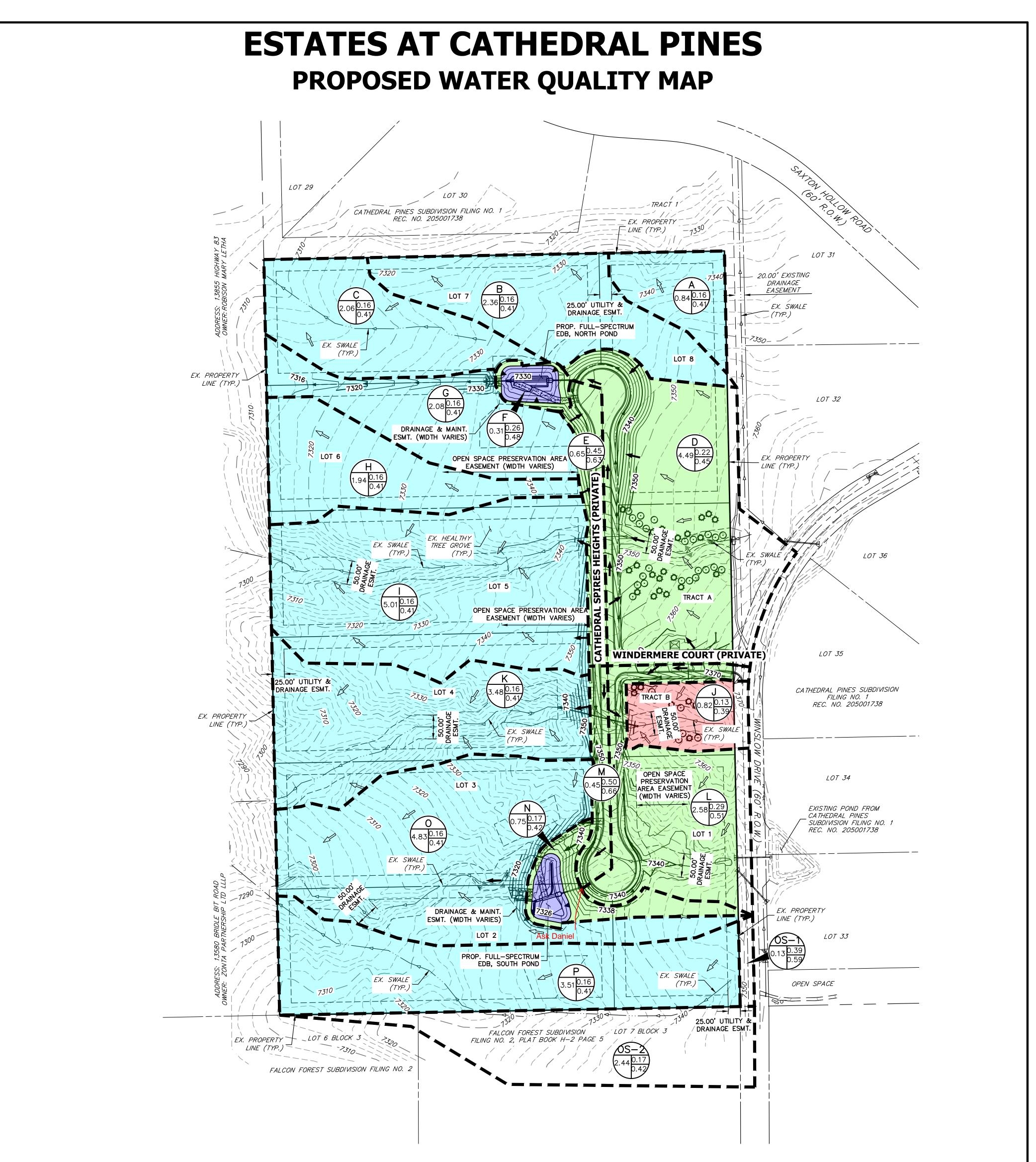


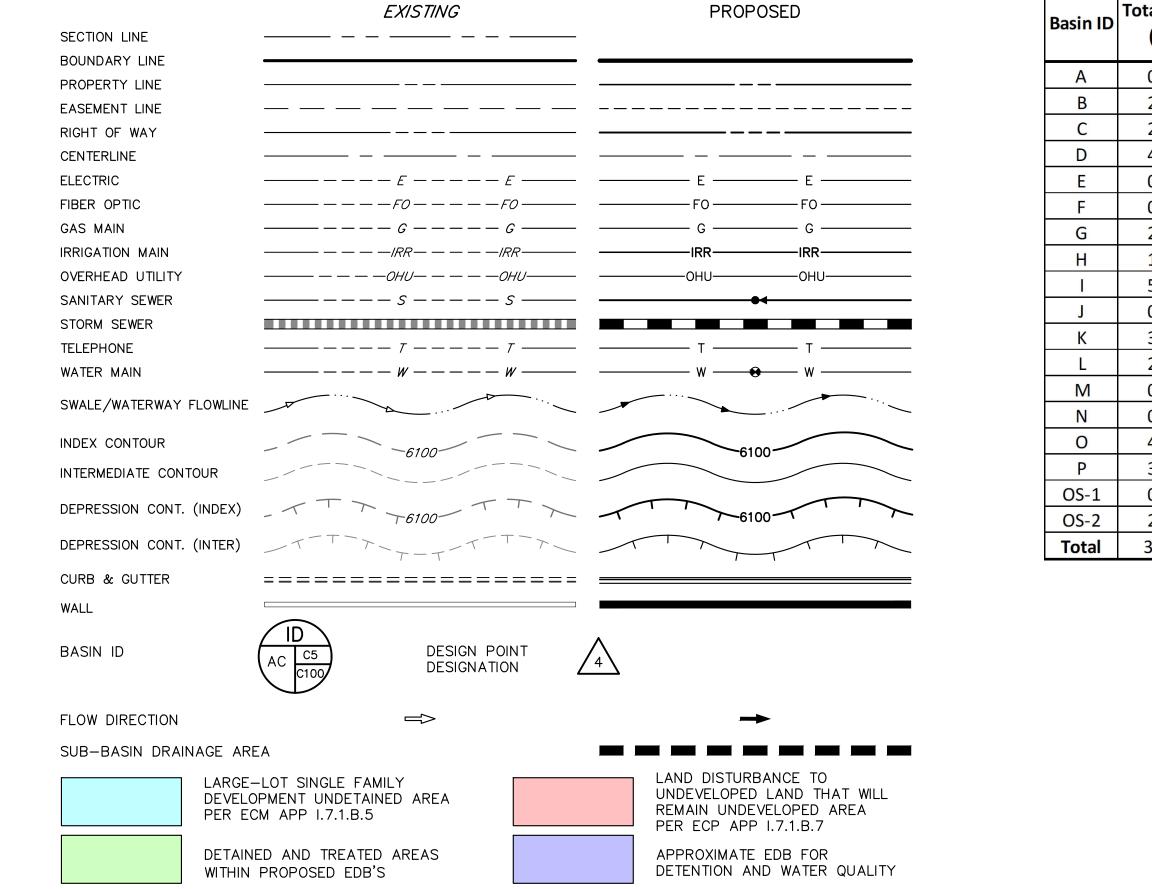
LAYER LINETYPE LEGEND

ECTION LINE				
OUNDARY LINE				
ROPERTY LINE				
ASEMENT LINE				
IGHT OF WAY				
ENTERLINE				
LECTRIC		——— <i>Е</i> ———		
IBER OPTIC		F0		
AS MAIN		G		
RRIGATION MAIN		— — — <i>IRR</i> — — —		
VERHEAD UTILITY		- — <i>— ОНU</i> — — —		
ANITARY SEWER		<i>s</i>		
TORM SEWER				
ELEPHONE			· — — 7 —	
ATER MAIN		W	· — — W ——	
WALE/WATERWAY FLOWLINE			···.	<u> </u>
NDEX CONTOUR		6100	·	
NTERMEDIATE CONTOUR				`
EPRESSION CONT. (INDEX)	$- \prec \top$	7 76100	TT	
EPRESSION CONT. (INTER)	TT		$\tau^{-}\tau^{-}\tau^{-}\tau^{-}$	<u> </u>
URB & GUTTER	=====	======	=====	==
/ALL				
ASIN ID	$ \begin{array}{c c} AC & C5 \\ C100 \\ \end{array} $		GN POINT GNATION	Z

DESIGN POINT					
SUMMARY TABLE					
DP#	Q_5	Q ₁₀₀			
1	0.3	1.8			
2	0.8	5.6			
3	1.1	7.5			
4	0.7	4.6			
5	2.3	14.4			
6	1.5	9.5			
P1	3.7	10.9			
7	2.3	14.0			
7.1	6.0	24.9			
01	1.7	6.7			
8	1.1	6.5			
8.1	2.3	11.5			
8.2	8.2	36.1			
Values in blue indicate that					
they are from "Cathedral					
Pines Sul	odivision F	iling No.			
1 Draina	ige Report	& Plan".			


BASIN SUMMARY TABLE							
Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
EX-1	0.84	2%	0.09	0.36	15.1	0.3	1.8
EX-2	3.16	2%	0.09	0.36	22.0	0.8	<mark>5.6</mark>
EX-3	4.89	2%	0.09	0.36	28.8	1.1	7.5
EX-4	2.67	2%	0.09	0.36	23.5	0.7	4.6
EX-5	8.29	3%	0.10	0.37	23.8	2.3	14.4
EX-6	4.74	3%	0.10	0.37	17.6	1.5	9.5
EX-7	8.06	3%	0.10	0.37	23.9	2.3	14.0
EX-8	3.64	3%	0.10	0.37	23.0	1.1	<mark>6.5</mark>
OS-1	2.44	12%	0.17	0.42	11.8	1.7	6.7


EXISTING DRAINAGE MAP CATHEDRAL PINES JOB NO. 25260.00 09/15/2023 SHEET 1 OF 1

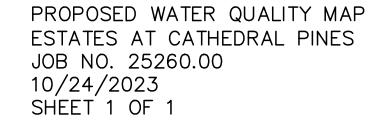

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

			DESIGN POINT			BASIN SUMMARY TA			ABLE			Lot C	ulvert lable			
			SUM	MARY 1	TABLE		Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀	Lot #	Culvert Size
	<u>LAYER LINETYPE LEGEND</u>		DP#	Q_5	Q ₁₀₀		Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)	1	24" RCP
	EXISTING	PROPOSED	1	0.4	1.8		А	0.84	10%	0.16	0.41	18.1	0.4	1.8	2	24" RCP
SECTION LINE			2	1.1	4.8		В	2.36	10%	0.16	0.41	21.8	1.1	4.8	3	12" RCP
BOUNDARY LINE			3	1.0	4.2		C	2.06		0.16	0.41	21.4	1.0	4.2	4	12" RCP
PROPERTY LINE			4	2.9	10.3		D	4.49			0.45		2.9	10.3	5	12" RCP
EASEMENT LINE			5	1.1	2.6		E	0.65			0.63		1.1	2.6		
RIGHT OF WAY CENTERLINE			5.1	3.8	12.4		F	0.31	25%		0.48		0.4	1.2	6	12" RCP
ELECTRIC		F F	6	0.4	1.2	-	G	2.08	10%		0.41		1.0	4.2	7	24" RCP
FIBER OPTIC	<i>LL</i>	FOFO	6.1	4.1	13.1	-	H	1.94			0.41		0.9	3.9	8	24" RCP
GAS MAIN	<i>GG</i>	G G	6.2	1.2	7.9	-	1	5.01	10%		0.41			11.6		
IRRIGATION MAIN		IRR	7	1.0	4.2	-	J	0.82			0.39		0.4	2.2		
OVERHEAD UTILITY		OHUOHU	7.1 8	2.2 0.9	12.1 3.9		K	3.48	10%		0.41		1.9	8.1		
SANITARY SEWER	<i>ss</i>	••	9	2.7	11.6		L	2.58	26%		0.51		2.6	7.6		
STORM SEWER			10	0.4	2.2	-	M	0.45	53%		0.66		0.9	2.1		
TELEPHONE	<i>T T T</i>	——— т ———— т ———	10	1.9	8.1	-	N	0.75	13%		0.42		0.6	2.5		
WATER MAIN	<i>W W</i>	———— W ————— W —————	11.1	2.3	9.9	-	0	4.83	10%		0.41		2.5	10.7		
SWALE/WATERWAY FLOWLINE			P1	3.7	10.9	-	Р	3.51			0.41		1.6	6.8		
INDEX CONTOUR			12	2.6	7.6		OS-1	0.13	39%		0.59		0.3	0.7		
	-6100	6100	12.1	6.3	18.5		OS-2	2.44	12%	0.17	0.42	12.0	1.7	6.7		
INTERMEDIATE CONTOUR			13	0.9	2.1											
DEPRESSION CONT. (INDEX)	- ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	6100	13.1	7.1	20.2											
DEPRESSION CONT. (INTER)			14	0.6	2.5											
			14.1	7.6	22.0											
CURB & GUTTER			14.2	0.6	4.3	-									NAGE M	
WALL			15	2.5	10.7									25260.		L PINES
BASIN ID	DESIGN POINT		15.1	3.1	15.0	-							24/20		00	
BASIN ID	AC C5 DESIGN POINT C4		01	0.3	0.7	-						•	ET 1			
			02	1.7	6.7	-							_ · ·			
			16 16.1	1.6 2.9	6.8 12.0	-										
FLOW DIRECTION (PROPOSE	D)		16.1	5.6	25.1	-		ŧ						I.R I	NCIN	EERING
FLOW DIRECTION (EXISTING)				n blue indi		100	0 50 0		100	200		C		~		
SUB-BASIN DRAINAGE ARE				e from "Ca										A Westrian C	ompany	
			Pines Sul				ORIGINA	L SCALE	: 1" = 100'			Centenr	nial 303-74	40—9393 • C	olorado Sprina	s 719-593-2593
				ige Report											ww.jrengineerir	
			- Diama	oc nepon												

LAYER LINETYPE LEGEND

Basin ID	Total Area (ac)	Area Tributary to Ponds (ac)	Area Excluded from WQ Per ECM App I.7.1.B.5 (ac)	Area Excluded from WQ Per ECM App I.7.1.B.7 (ac)	Applicable WQ Exclusions
Α	0.84	-	0.84	-	ECM App I.7.1.B.5
В	2.36	-	2.36	-	ECM App I.7.1.B.5
С	2.06	-	2.06	-	ECM App I.7.1.B.5
D	4.49	4.49	-	-	-
E	0.65	0.65	-	-	-
F	0.31	0.31	T	-	-
G	2.08	-	2.08	-	ECM App I.7.1.B.5
Н	1.94	-	1.94	-	ECM App I.7.1.B.5
I	5.01	-	5.01	-	ECM App I.7.1.B.5
J	0.82	-		0.82	ECM App I.7.1.B.7
K	3.48	-	3.48	-	ECM App I.7.1.B.5
L	2.58	2.58	-	-	-
M	0.45	0.45	-	-	-
N	0.75	0.75	-	-	-
0	4.83	-	4.83	-	ECM App I.7.1.B.5
Р	3.51	_	3.51	-	ECM App I.7.1.B.5
OS-1	0.13	_	-	-	-
OS-2	2.44	-	-	2.44	ECM App I.7.1.B.5
Total	38.73	9.23	26.11	3.26	

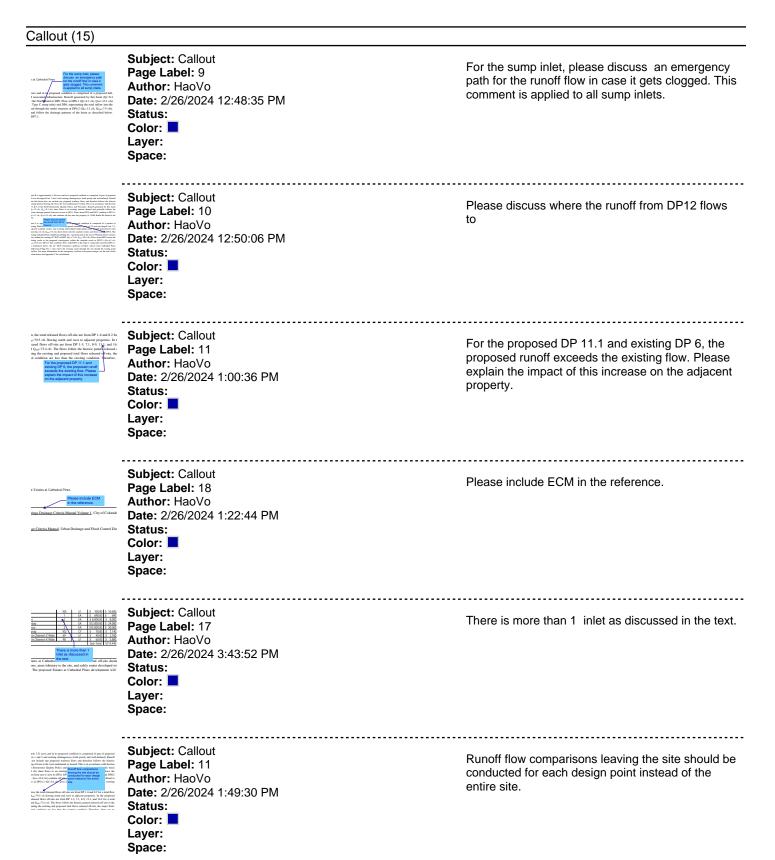
100

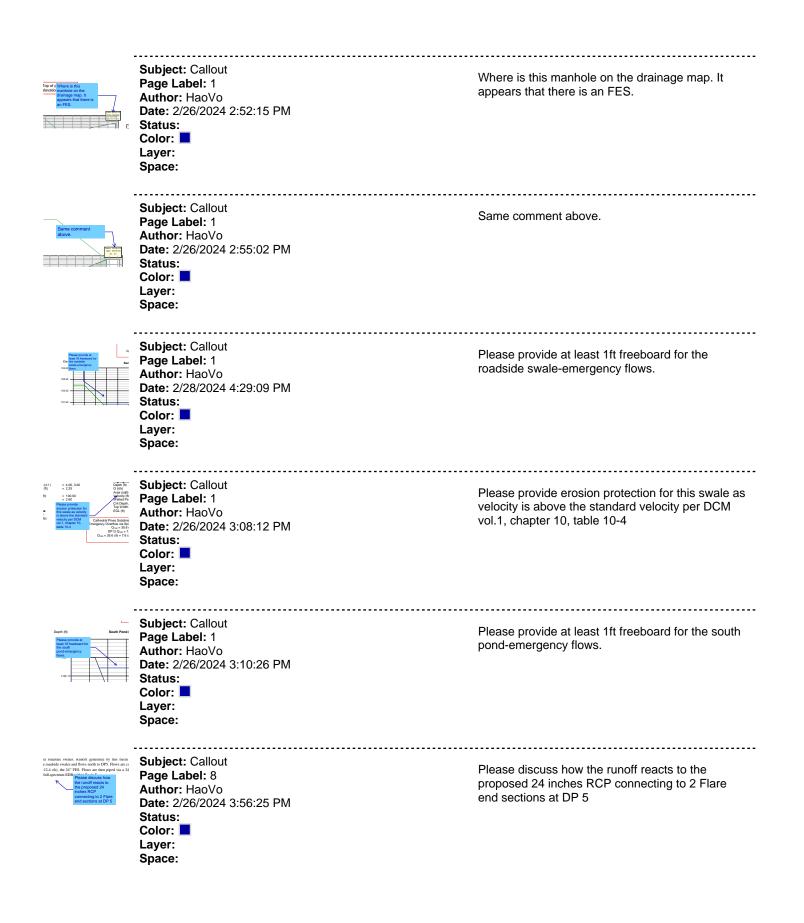

50

0

100

ORIGINAL SCALE: 1" = 100'


200



Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com

V1_Drainage Report - Final_comments.pdf Markup Summary

al Calhoda (Proc. Process frames frames from the process for the standard frames for the stan	Subject: Callout Page Label: 10 Author: HaoVo Date: 2/26/2024 3:56:11 PM Status: Color: Layer: Space:	Please discuss how the runoff reacts to the proposed 18" RCP from DP 10 to basin K.
In the second s	Subject: Callout Page Label: 10 Author: HaoVo Date: 2/26/2024 4:11:11 PM Status: Color: Layer: Space:	Please discuss how the runoff reacts to the proposed 12" RCP at basin M.
	Subject: Callout Page Label: [1] DR01 Author: HaoVo Date: 2/28/2024 4:28:38 PM Status: Color: Layer: Space:	Ask Daniel
Cloud+ (3)		
ATES AT CATHEDRAL PINES, PASO COUNTY, COLORADO PCD File NGSTAXX 5F2234 October 2023	Subject: Cloud+ Page Label: 1 Author: eschoenheit Date: 2/26/2024 10:01:58 AM Status: Color: Layer: Space:	SF2234
Provide statute Provi	Subject: Cloud+ Page Label: 16 Author: eschoenheit Date: 2/28/2024 7:34:55 AM Status: Color: Layer: Space:	Provide breakout for this value between lots and roads. 2.5ac lots 11% imper and % for road acreage

Highlight (8)

223 DRAINAGE AND BRIDGE FEES – ESTATE Drainage fee (Drainage fee) (Drainage	Subject: Highlight Page Label: 16 Author: eschoenheit Date: 2/26/2024 10:22:44 AM Status: Color: Layer: Space:	
ATES AT CATHEDRAL PINES Cathedral Pines Cathedral Pines Drainage Fee Bridge Fee 590255 \$ 8,188 I has been provided below. The below cost recture cost and may vary.	Subject: Highlight Page Label: 16 Author: eschoenheit Date: 2/26/2024 10:22:45 AM Status: Color: Layer: Space:	
2023 DRAIN	Subject: Highlight Page Label: 16 Author: eschoenheit Date: 2/26/2024 10:23:00 AM Status: Color: Layer: Space:	
I in its proposed condition is completed of part of programs integrates proposed on the party of a set of adduced Read of the party of the party of the set of adduced Read of the party of the party of the party of the party of the set of the party of	Subject: Highlight Page Label: 10 Author: HaoVo Date: 2/26/2024 12:40:22 PM Status: Color: Layer: Space:	
• Particular Structures and a structure structure of the structure structure structure structure structure structure structure structure structures and structures structures and structures structures and structure	Subject: Highlight Page Label: 10 Author: HaoVo Date: 2/26/2024 12:40:25 PM Status: Color: Layer: Space:	d continue off-site onto the property at 13580 Bridle Bit Road to the
(Q ₅ =2.3 west.	Subject: Highlight Page Label: 10 Author: HaoVo Date: 2/26/2024 12:40:27 PM Status: Color: Layer: Space:	west.

0.31 acres and in its proposed cc	Subject: Highlight	the Type C sump inlet)
and associated infrastructure. s to the North Pond at DP6. F	Page Label: 9 Author: HaoVo	the Type C sump inlet)
(the Type C sump inlet) and E eleased through the outlet struc G and follow the drainage p	Date: 2/26/2024 12:46:58 PM	
7 at DP7.1.	Status:	
	Color: Layer:	
	Space:	
ed to the east of Winslow I	Subject: Highlight	Type C sump inlet
=10.9 cfs). Flows from DI badside swale at DP12.1 e Type C sump inlet locat	Page Label: 10 Author: HaoVo	Type C sump met
overflow culvert from Ca rough the site should the	Date: 2/26/2024 12:48:49 PM	
	Status: Color:	
	Layer:	
	Space:	
amp - Stormw	ater Comment Legend (1)	
	Subject: Stamp - Stormwater Comment Legend	
ENG STOMMANTER REVEW COMMENTER	Page Label: 1 Author: Mikayla Hartford	
	Date: 2/26/2024 2:45:06 PM	
	Status: Color:	
	Layer:	
	Space:	
V - Highlight (2	2)	
much to popular distant. The MRPEREMENT, 2018, speakfore taxe atteast to extend popular distance of time apply for the Soft and Amb Han. Report and the strength of the strength of the strength of the strength strength strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength of the strength strength of the strength of	Subject: SW - Highlight	The North Pond will
Distantized is Accurry Determined formed Connegative and the second second second second second in contactual or the part of an annual partners on a mixed optime that is also where or mixed and the second second second second second second second mixed optimes and a second second second second second second second second are unable and second second second second second second second are unables and second and the paperate and second second second second are unables and second and the paperate and second second second second are unables and second and are paperate and second second second are unables and second and the paperate and second second second second are unables and second and are paperate and second second second are unables and second se	Page Label: 13 Author: Mikayla Hartford	outfall to a proposed swale that will route flow to
Sector of the se	Date: 2/28/2024 10:01:16 AM	follow the historic drainage path of east to west between Lots 6 and 7.
The parameters of the parameters of the second seco	Status: Color:	
	Layer:	
	Space:	
	Subject: SW - Highlight	2.2
2.2	Page Label: 1	3.3
3.3	Author: Mikayla Hartford Date: 2/28/2024 12:56:44 PM	
	Status:	
	Color: <mark>—</mark> Layer:	
	Laver:	

Subject: SW - Textbox Page Label: 16 Author: Mikayla Hartford Date: 2/26/2024 2:45:00 PM Status: Color: ■ Layer: Space:

Provide cost estimate for ponds separately. Include a cost estimate for each PBMP with line items for all components (ex: riprap, road base, forebay, trickle channel, outlet structure, outlet pipe, spillway, etc). Input the total value into the FAE form under "Permanent Pond/BMP (provide engineer's estimate)" in Section 1. The total should not include grading, which is a separate line item in Section 1: "Earthwork." The cost estimate should include labor costs (as a separate line item or added into the cost of each component).

Dange Fund (244) Use Of nation to the parameter is downish downer goly and the grant and is to enquere the COL grant of the COL grant of the COL the CO	Subject: SW - Textbox Page Label: 3 Author: Mikayla Hartford Date: 2/28/2024 10:24:21 AM Status: Color: Layer: Space:	Design Point (DP4)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs
Dauge Futz (DFc) 1 Las DF instances to lesses it is class which characteristic bits of the second second second second second sign Discharge - 1.5 cfs second second second second second second second second second second second second second second second second second second secon	Subject: SW - Textbox Page Label: 3 Author: Mikayla Hartford Date: 2/28/2024 10:23:57 AM Status: Color: Layer: Layer: Space:	Design Point (DP5)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs
Samp Foot (PSY) Use Providers (c) proved in solar which calves gay and end of the solar which calves gay and end of the solar solar solar solar solar end of the solar solar solar solar solar end of the solar so	Subject: SW - Textbox Page Label: 3 Author: Mikayla Hartford Date: 2/28/2024 10:24:01 AM Status: Color: ■ Layer: Space:	Design Point (DP5)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs
Seegr Float (FM) foe DP rocesor to by an activity the down of the Com- paration of the second of the Com- go Dacktrys - 2.5 cfs gr-33 db	Subject: SW - Textbox Page Label: 3 Author: Mikayla Hartford Date: 2/28/2024 10:24:27 AM Status: Color: Layer: Space:	Design Point (DP4)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs
Sharp Part (PP17) Las Proston to benefit and the courts approximate benefit and the court of the court sign Discharge - 1.0 cft re-1.4 d	Subject: SW - Textbox Page Label: 3 Author: Mikayla Hartford Date: 2/28/2024 10:24:55 AM Status: Color: Layer: Space:	Design Point (DP1)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs
Swag Pinel (2411 Use Of instants to instant it along which charter approximation in the cost response of the cost of of t	Subject: SW - Textbox Page Label: 3 Author: Mikayla Hartford Date: 2/28/2024 10:25:00 AM Status: Color: ■ Layer: Space:	Design Point (DP1)? Use DP notation to ensure it is clear which culverts apply and they can easily be compared to the CDs

For DP3 and 5 - tailwater does not appear to be modelet based on the very tailwater for those outfails should be normal depth in the downstream ditches.	Subject: SW - Textbox Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 10:32:20 AM Status: Color: ■ Layer: Space:	For DP3 and 5 - tailwater does not appear to be modeled based on the HGLs shown on the profiles. Verify. Tailwater for those outfalls should be normal depth in the downstream ditches.
For DP3 and 5- tailwater does not appear to be modelet based on the HGLs shown on the profiles. Verify, Tailwater for mose badfalls should be normal outfalls should be normal disting.	Subject: SW - Textbox Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 10:32:39 AM Status: Color: ■ Layer: Space:	For DP3 and 5 - tailwater does not appear to be modeled based on the HGLs shown on the profiles. Verify. Tailwater for those outfalls should be normal depth in the downstream ditches.
) 3 .15'	Subject: SW - Textbox Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 12:35:19 PM Status: Color: ■ Layer: Space:	3.15'
1 Cel 308 try Autoen, tec. Provide tinckle channel calcs for i toxide channel. 1 Solo Depth 3,50 O(beth) Area (s	Subject: SW - Textbox Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 1:48:23 PM Status: Color: ■ Layer: Space:	Provide trickle channel calcs for 2' trickle channel.

SW - Textbox with Arrow (12)

Subject: SW - Textbox with Arrow Page Label: 13 Author: Mikayla Hartford Date: 2/28/2024 10:01:55 AM Status: Color: ■ Layer: Space:

Subject: SW - Textbox with Arrow Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 10:27:16 AM Status: Color: ■ Layer: Space:

.....

Discuss the impacts of changing the runoff from sheet flow to concentrated. Runoff needs a suitable outfall.

Please in parantheses add the CDs notation ie (DP1) etc. So it is easier to match between the two

	Subject: SW - Textbox with Arrow Page Label: [1] 8.5x11 Portrait Author: Mikayla Hartford Date: 2/28/2024 10:29:34 AM Status: Color: ■ Layer: Space:	manholes should be sump inlets, there are no manholes in the project
The second secon	Subject: SW - Textbox with Arrow Page Label: [1] 8.5x11 Portrait Author: Mikayla Hartford Date: 2/28/2024 10:30:14 AM Status: Color: ■ Layer: Space:	The north pond inflow point is not an inlet - it's a FES so that pipe is more of a culvert. Update design on plans or put this analysis with the other culverts.
A Contract of the second	Subject: SW - Textbox with Arrow Page Label: [1] DR01 Author: Mikayla Hartford Date: 2/28/2024 10:49:04 AM Status: Color: Layer: Space:	There is not an existing swale on the adjacent property. These flows will be concentrated where there previously would have sheet showed. How will this be mitigated?
	Subject: SW - Textbox with Arrow Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 12:33:22 PM Status: Color: Layer: Space:	0.25
where it force in the problem is a set of the matrix force in the problem is a set of the matrix force in the problem is a set of the set of the problem is a set of the probl	Subject: SW - Textbox with Arrow Page Label: 17 Author: Mikayla Hartford Date: 2/28/2024 1:08:09 PM Status: Color: Layer: Space:	The other "inlets" discussed seem to be the Type C modified inlets that are the pond outlet structures. Please clarify throughout the text on what is a standard inlet and what is an outlet structure.
A remain the state of the state	Subject: SW - Textbox with Arrow Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 1:13:48 PM Status: Color: Layer: Space:	Does not match the other forebay calcs or plans.

In the set of the set	Subject: SW - Textbox with Arrow Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 1:14:12 PM Status: Color: Layer: Space:	Does not match the other forebay calcs or plans.
Highlighted D (Pa) = 0.45 = 0.52 = 0.52 Area (pa) = 0.52 = 0.52 Top Wath (N) = 0.52 3.7 Briel spream Endoy exclusion = 0.52	Subject: SW - Textbox with Arrow Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 1:22:44 PM Status: Color: ■ Layer: Space:	3.3" per the previous forebay calculations
Highlighted Depth 0.05 Depth 0.10 Depth 0.10 <t< th=""><th>Subject: SW - Textbox with Arrow Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 1:22:59 PM Status: Color: ■ Layer: Space:</th><th>4" per the previous forebay calculations</th></t<>	Subject: SW - Textbox with Arrow Page Label: 1 Author: Mikayla Hartford Date: 2/28/2024 1:22:59 PM Status: Color: ■ Layer: Space:	4" per the previous forebay calculations
	Subject: SW - Textbox with Arrow Page Label: [1] DR01 Author: Mikayla Hartford Date: 2/28/2024 1:49:06 PM Status: Color: ■ Layer: Space:	Provide design point for 2' trickle channel so it is clear what runoff is going to that location.
Text Box (3)		
a for the damage influencement has been provided below. The set facility and sharings influencements are and may vary. This is a strong anomenial 2024 them is the set of the	Subject: Text Box Page Label: 16 Author: eschoenheit Date: 2/28/2024 7:39:28 AM Status: Color: Layer: Space:	This is a first submittal 2024 basin and bridge fees will apply Black Squirrel \$11275 and \$710 per imper ac
tes innes a ser ment of obsequences exerce stand ment of the standard of the second of the second as does had the existing work would contain the flow ment path vert. See the end of Appendix C for ap minimi- construction of the barrange of the second of the Construction of the barrange of the second Construction of the second of the second of the values of circuit Manual? Volumes 1 or 3 (ISDCM) Dammer Criteria Manual? Volumes 1 - 3 (ISDCM)	Subject: Text Box Page Label: 12 Author: HaoVo Date: 2/26/2024 1:07:16 PM Status: Color: Layer: Space:	Please include ECM - El Paso County Criteria Manual, October 14, 2020 in the Drainage Design Criteria.

Outlined Tout Day

Please include inlet calculation at DP 5.1 as discussed in the text. Subject: Text Box Page Label: 3 Author: HaoVo Date: 2/28/2024 1:00:45 PM Status: Color: Layer: Space:

Please include inlet calculation at DP 5.1 as discussed in the text.