realigned

south of Arroya Lane and east of Vollmer Road are mainly covered with native grasses with few or no pine trees. The Sand Creek channel bisects this part of the property from north-south with various natural ravine tributary fingers. A wedands delineation has been prepared for the property (See Appendix) and reflects some wetlands throughout the Sand Creek channel. Upon determination of exact channel improvements as a part of development and final platting of the site, the appropriate permitting will be prepared for and reviewed/approved by US Fish and Wildlife. Arroya Lane exists along the northern portion of the site. The westerly portion of this road is public ROW with the remainder of the road heading further east being private. A portion of this existing ROW may need to be vacated with the final plat in this area given the planned re-alignment of the Arroya Lane and Vollmer intersection. An existing 60" CMP culvert currently conveys the low flows from Sand Creek under Arroya Lane.

Portions of this site have been previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Engineering Corporation, March 1996. The portion of Sand Creek that traverses the site is defined as Reach SC-9 in the DBPS. Approximately 1000+ acres north of this property is tributary to this reach of the channel. (See Off-site Drainage Map in Appendix) According to the DBPS, this reach of Sand Creek all contained within the channel has the following flow characteristics: $Q_{10} = 630$ cfs $Q_{100} = 2170$ cfs. However, the 100 yr. flow recognized by FEMA in the LOMR 08-08-0541P with effective date of July 23, 2009, equals nearly $Q_{100} = 2600$ cfs. The majority of these off-site flows enter the property at the north end of the site conveying flows from the northwest (Black Forest area) and the off-site stock ponds to the north (both tributary to hundreds of acres of property in Black Forest). There are multiple existing culvert crossings of Vollmer Rd. just north of Arroya Lane to facilitate these historic flow patterns. The following are the few key culverts that directly feed the Sand Creek channel north of Arroya Lane: Approximately 1,000 feet north of Arroya Lane, an existing 36" CMP crosses Vollmer Road (Basin SC-1 on Off-site Drainage Map). A small basin and natural ravine just west of Vollmer feeds this facility. From a recent field visit, this small facility seems to be in good working condition, however, not labeled in the DBPS. Another 700 feet+ north along Vollmer a much larger basin exists west of the roadway. This off-site basin is approximately 350+ acres northwest of Vollmer Road (Basin SC-2 on Off-site Drainage Map). As shown within the DBPS, this existing crossing is a 60" CMP with some very dense and tall vegetation

at both the entrance and exit of this facility. But, based on a recent field visit this facility seems to be in good working condition. The DBPS depicts this facility and recommends an additional 60" CMP at this location. However, there are no signs of erosion or over topping the road at this location at this time based on the current development within the tributary area to this facility. Based on the existing surrounding topography and roadway configuration, the 100 yr. historic flows at this location would appear to spill over the roadway and continue in their historic drainage pattern downstream within the upper reach of Sand Creek.

The following descriptions represent the pre-development flow design points for the property excluding the major off-site flows within Sand Creek just described:

EX DP-1 ($Q_2 = 5.6$ cfs $Q_5 = 36.0$ cfs, $Q_{100} = 281.7$ cfs) This does not include the major off-site channel flows but reflects only the on-site and off-site flows that travel across the property and have a direct effect on the development. This total represents the allowed developed release off-site at this location. This total pre-development flow includes the flowing basins: EX-1, EX-4, OS-1, OS-3, OS-4 and OS-5. Basin EX-1 ($Q_2 = 2.6$ cfs $Q_5 = 17.7$ cfs, $Q_{100} = 140.3$ cfs) consists of the majority of the site proposed for development. This basin contains areas of sheet flow that eventually travel within various natural ravines created within the site. These ravines then route the predevelopment flows directly into Sand Creek in the form of concentrated flows at multiple locations along the Creek. Basins OS-4 ($Q_2 = 0.6$ cfs $Q_5 = 3.4$ cfs, $Q_{100} = 20.7$ cfs) and EX-4 ($Q_2 = 1.3$ cfs $Q_5 = 6.9$ cfs, $Q_{100} = 20.7$ cfs) 41.8 cfs) consists of the northeasterly portion of the property north of Arroya Lane that drains in a southwesterly direction into Sand Creek. These combined flows total ($Q_2 = 1.6$ cfs $Q_5 = 9.8$ cfs, Q_{100} 60.1 cfs) and travel directly towards the existing 60" CMP under Arroya Lane. Details for these basins and Pond A are part of the Preliminary Drainage Report for north of Arroya Lane, prepared by Terra Nova Engineering. Basin EX-5 is not used in this report. Basin OS-5 ($Q_2 = 1.0$ cfs $Q_5 =$ 5.2 cfs, $Q_{100} \neq 32.1$ cfs) consists off-site property northwest of Vollmer Road that drains under Vollmer through an existing 48" CMP culvert directly on-site. Basin OS-1 ($Q_2 = 0.9$ cfs $Q_5 = 7.0$ cfs, $Q_{100} = 53.9$ cfs) consists of an off-site basin to the east within the Sterling Ranch property that sheet flows directly on-kite. Basin OS-3 ($Q_2 = 0.6$ cfs $Q_5 = 2.1$ cfs, $Q_{100} = 9.9$ cfs) consists of the public ROW portion of Arroya Lane that sheet flows directly on-site.

this location. Thus, moving the junction point for these flows to intercept Sand Creek further north within the property will have no significant impact to Sand Creek.

Basin OS-3 ($Q_2 = 1$ cfs $Q_5 = 2$ cfs, $Q_{100} = 11$ cfs) represents the north half of the proposed realignment and improvements to Arroya Lane along with the undeveloped property north of the roadway. These flows will continue to travel in a side road ditch to be collected by a proposed 24" RCP culvert crossing of Arroya Lane just west of Sand Creek. These flows will then enter Basin A-1 and travel towards Design Point 3. Basins A1 ($Q_2 = 1.8 \text{ cfs} Q_5 = 5 \text{ cfs}, Q_{100} = 25 \text{ cfs}$), A2 ($Q_2 = 1.0 \text{ cfs}$) $cfs \; Q_5 = 3 \; cfs, \; Q_{100} = 14 \; cfs), \qquad A3 \; (Q_2 = 0.8 \; cfs \; Q_5 = 2 \; cfs, \; Q_{100} = 11 \; cfs) \; and \; A4 \; (Q_2 = 0.7 \; cfs) \; ds \; A3 \; (Q_2 = 0.8 \; cfs \; Q_5 = 2 \; cfs) \; ds \; A4 \; (Q_2 = 0.7 \; cfs) \; ds \; A4 \; (Q_2 = 0.7 \; cfs) \; ds \; A4 \; (Q_2 = 0.7 \; cfs) \; ds \; A4 \; (Q_3 = 0.7 \; cfs) \; ds \; A4 \; (Q_4 = 0.7 \; cfs) \; ds \; A4 \; (Q_5 = 0.7 \; cfs) \; ds \; (Q_5 = 0.7 \; cfs) \; ds \; (Q_5 = 0.7 \; cfs) \; ds \; (Q_$ $Q_5 = 1$ cfs, $Q_{100} = 5$ cfs) are all tributary to the proposed Pond B. These basins collect flows from a portion of the rural 2.5 ac. lot development on the property with various culvert crossings designed to convey the proposed ditch flows towards Pond B. Design Point 6 ($Q_5 = 13$ cfs, $Q_{100} = 60$ cfs) represents the total developed flows entering **Pond B.** A proposed full-spectrum EDB is proposed at this location to release less than the pre-development flows currently seen. (See UD Detention Spreadsheet – Pond B for anticipated outlet structure and release levels) At this point, we have also shown a possible alternate/additional location for this facility. (See Drainage Map) With the Final Plat and Drainage Report it will be determined which or both locations work best from a lotting and development standpoint. Maintenance access to this facility will be directly from the adjacent public roadway.

roadway. Basins B1 ($Q_2 = 2.2 \text{ cfs } Q_5 = 6 \text{ cfs}, Q_{100} = 30 \text{ cfs}$), B2 ($Q_2 = 1.2 \text{ cfs } Q_5 = 3 \text{ cfs}, Q_{100} = 17 \text{ cfs}$) and B3 ($Q_2 = 2.8 \text{ cfs } Q_5 = 5 \text{ cfs}, Q_{100} = 14 \text{ cfs}$) are tributary to the proposed Pond C. These basins collect flows from the rest of the portion of the rural 2.5 ac. lot development west of Sand Creek with various culvert crossings designed to convey the proposed ditch flows towards Pond C. **Design Point 9 (Q_5 = 12 \text{ cfs}, Q_{100} = 52 \text{ cfs})** represents the total developed flows entering **Pond C.** A proposed full-spectrum EDB is proposed at this location to release less than the pre-development flows currently seen. (See UD Detention Spreadsheet – Pond C for anticipated outlet structure and release levels) Maintenance access to this facility will be directly from the adjacent public roadway. Basins A5 ($Q_2 = 0.8 \text{ cfs } Q_5 = 2 \text{ cfs}, Q_{100} = 12 \text{ cfs}$) and B4 ($Q_2 = 1.9 \text{ cfs } Q_5 = 6 \text{ cfs}, Q_{100} = 27 \text{ cfs}$) represent portions of the rural 2.5 ac. lots west of Sand Creek outside the proposed roadway

improvements that cannot reasonably be collected into the two facilities just described. With the minimal impervious areas anticipated on these large lots, these basins will continue to sheet flow towards Sand Creek. Per the ECM Section I.7.1.B, WQCV is not required for these lots given their size (2.5 Ac.). Also, the City owned regional facility downstream of this property (Sand Creek #3) is an in-line facility that provides stormwater quality. Basin H ($Q_2 = 0.8 \text{ cfs } Q_5 = 2 \text{ cfs}, Q_{100} = 11 \text{ cfs}$) is proposed for two large lots averaging 3.5 ac. each west of Vollmer. Again, per the ECM Section I.7.1.B, WQCV is not required for these lots given their size (2.5 Ac. +). However, sediment control will be provided on each individual lot. After this sediment control, the minimal developed flow from these lots will be allowed to continue to sheet flow directly into the side road ditch along Vollmer Road.

The following represent the basins east of Sand Creek:

Basins OS-4 and EX-4 calculations are included in this report but details for these basins and Pond A are part of the Preliminary Drainage Report for north of Arroya Lane, prepared by Terra Nova Engineering.

Basins C1 ($Q_2 = 2.7$ cfs $Q_5 = 6$ cfs, $Q_{100} = 26$ cfs) and OS-1A ($Q_2 = 0.4$ cfs $Q_5 = 1$ cfs, $Q_{100} = 9$ cfs) are tributary to the Design Point 10. These basins represent on-site 2.5 ac. – 1.0 ac. lots and off-site future Sterling Ranch development which is planned to continue to sheet flow on-site through the proposed lots. A 30" RCP culvert will collect the flows at this location and route them further downstream within the on-site storm system. Basins C2 ($Q_2 = 1.4$ cfs $Q_5 = 3$ cfs, $Q_{100} = 11$ cfs) and OS-1B ($Q_2 = 1.6$ cfs $Q_5 = 6$ cfs, $Q_{100} = 41$ cfs) are tributary to the Design Point 11 and the on-site storm system. These basins represent on-site 1.0 ac. lots and off-site flows at this location. In the interim, prior to on-site development in this phase (Phase 4 as shown on the Preliminary Plan), the existing on-site stock pond will remain in place and continue to act as a sediment facility for the off-site flows. Upon development in this phase, the stock pond will be removed and storm system provided to handle these off-site flows. Off-site grading will be required to allow for the capture of these off-site flows within the proposed storm sever system. An off-site easement to

Basins D5 ($Q_2 = 5.6$ cfs $Q_5 = 10$ cfs, $Q_{100} = 31$ cfs) and OS-2E ($Q_2 = 0.2$ cfs $Q_5 = 0.9$ cfs, $Q_{100} = 6$ cfs) are tributary to the Design Point 15. These basins represent on-site 1/3 ac. – 1/4 ac. lots and off-site future Sterling Ranch development which is planned to continue to sheet flow on-site through the proposed lots. At this location, assuming an even split of flows at this time, 10' Type R sump inlets will collect the developed flows and route them along with the upstream flows directly into Pond D. The Final Drainage Report will further detail the exact inlet design.

Basin D4 ($Q_2 = 3.6$ cfs $Q_5 = 6$ cfs, $Q_{100} = 18$ cfs) is tributary to Design Point 16. This basin represents on-site 1/4 ac. lots. At this location, assuming an even split of flows at this time, 5' Type R sump inlets will collect the developed flows and route them further downstream in a 24" RCP storm system. The Final Drainage Report will further detail the exact inlet design.

Basin D6 ($Q_2 = 6.5$ cfs $Q_5 = 11$ cfs, $Q_{100} = 36$ cfs) is tributary to Design Point 17. This basin represents on-site 1/4 ac. lots. At this location, assuming an even split of flows at this time, 10' Type R sump inlets will collect the developed flows and route them along with the upstream flows directly into Pond D. The Final Drainage Report will further detail the exact inlet design.

Design Point 18 (Q₅ = 59 cfs, Q_{100} = 237 cfs) represents the total developed flows entering Pond **D**. A proposed full-spectrum EDB is proposed at this location to release less than the predevelopment flows currently seen. (See UD Detention Spreadsheet – Pond D for anticipated outlet structure and release levels) Maintenance access to this facility will be directly from the adjacent public roadway.

Basin D10 ($Q_2 = 1.1 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 6 \text{ cfs}$) represents the rear yards of proposed lots that cannot reasonably be collected by the proposed Pond D and will then continue to sheet flow offsite. Basins C3 ($Q_2 = 2.1 \text{ cfs } Q_5 = 5 \text{ cfs}$, $Q_{100} = 21 \text{ cfs}$), D8 ($Q_2 = 1.3 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 7 \text{ cfs}$) and D9 ($Q_2 = 1.0 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 5 \text{ cfs}$) represent portions of the rear yards that are adjacent to Sand Creek that cannot reasonably be collected into the proposed Pond D just described. With the minimal impervious areas anticipated on the rear of these lots, these basins will continue to sheet flow towards Sand Creek. However, ss mentioned earlier, the City owned regional facility

Address basin E including WQCV WQCV is required prior to flows entering waters of the state.

downstream of this property (Sand Creek #3) is an in-line facility that provides stormwater quality for this minimal area. Basins F1 ($Q_2 = 1.0 \text{ cfs } Q_5 = 4 \text{ cfs}$, $Q_{100} = 24 \text{ cfs}$) and F2 ($Q_2 = 0.3 \text{ cfs } Q_5 = 1 \text{ cfs}$, $Q_{100} = 8 \text{ cfs}$) represent the Sand Creek Channel corridor. This area will not have any development take place in it other than the required channel improvements per the DBPS and the proposed roadway crossings.

Both the Poco Road extension and Arroya Lane are proposed to cross Sand Creek. At both these locations a triple cell 6'x12' CBC is proposed to handle the 100 yr. off-site flows. (See culvert calculations in Appendix) Both locations will require the acquisition of off-site easements for grading and construction of these facilities. These easements will be required prior to construction. Address sizing of culverts needed to meet DCM bridge criteria for DETENTION FACILITIES / STORMW FIEMAN ADAMS or LOMR to reduce flows.

Final design of these recommended facilities that include planning for water quality management of storm water runoff features will be designed during final platting of this development. As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to the multiple Full Spectrum Extended Detention Basins. Site Planning and design techniques for the large lot, rural areas should limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to decrease the rate and volume of stormwater runoff. Urban areas that require detention will provide a Water Quality Capture Volume (WQCV) and Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the property. These measures will be taken into consideration upon final design of the individual detention facilities as well as the development of the individual land uses within the site.

MAINTENANCE

The proposed detention/SWQ facilities are to be private facilities with ownership and maintenance by the local Metropolitan District or Homeowners Association. After completion of construction and upon the Board of County Commissioners acceptance, the Sand Creek channel will be owned and maintained by the El Paso County along with all drainage facilities within the public Right of Way.

type of drop concrete, riprap, or TBD?

SAND CREEK CHANNEL IMPROVEMENTS

As stated in the Sand Creek DBPS, this Reach SC-9 is recommended as a floodplain preservation design concept. Given the fact of the current requirements for detention/SWQ facilities planned for the property with designed release below pre-development flows, the existing Sand Creek drainageway is expected to remain stable. However, localized channel improvements are proposed in any steeply incised channel locations and to limit erosion caused by flow concentrations at culverts and storm sewers outfalls. Existing FEMA FIS channel velocities as found in the LOMR 08-080541P seem to exceed recommended allowable velocities. Although, based on the findings from the CORE Consultants, Inc. Impact Identification Report, no significant erosion or channel degradation through this property currently exists at this time. Specifically located grade control and/or drop structures (See Appendix) were specified in the DBPS through this reach in order to slow the cannel velocity to the DBPS recommended 7 feet per second and to prevent localized and long-term stream degradation from affecting channel linings and overbanks. The allowable velocity will var depending upon the existing riparian vegetation found within the bankfull channel and floodplain terrace areas. Where channel velocities exceed the recommended allowable velocities, 36" vertical drop structures will be installed based on Urban Drainage Criteria Manual Vol. 2. (See Appendix) These facilities will incorporate and help protect the native wetland vegetation from detrimental effects of stream invert head cutting. Concept locations for these facilities are shown on the developed drainage map as recommended in the DBPS. Revegetation would occur wherever the native vegetation is disturbed by channel construction. Selectively located rip-rap bank protection will be installed in steeply incised areas, outside bends or the natural channel and detention pond/culvert outlets. (See Appendix) Also, based on the wetland delineations prepared by CORE Consultants, Inc., likely impacts to jurisdictional waters would trigger permitting under Section 404 of the Clean Water Act. This coordination and permitting would be completed along with the approval process of the final construction plans for the associated channel improvements.

Per the approved DBPS, the anticipated developed flows just upstream of this project are $Q_{10} = 630$ cfs and $Q_{100} = 2170$ cfs as depicted within segment no. 171. The anticipated developed flows exiting this property are $Q_{10} = 670$ cfs and $Q_{100} = 2260$ cfs as depicted within segment no. 170. The FEMA FIS flows appear to be slightly higher than those presented in the DBPS. However, given the

Culvert Report

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

= 7233.50 = 115.00

= 7234.65

= 1.00

= 72.0 = Box = 144.0

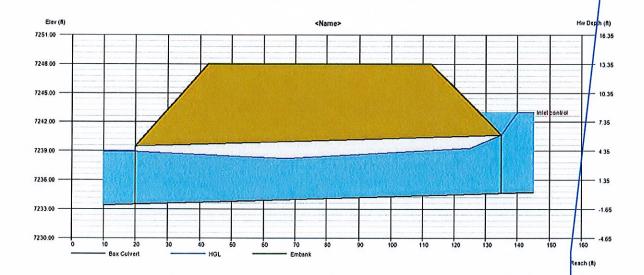
= 0.013

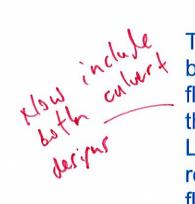
= Flared Wingwalls

= 30D to 75D wingwall flares = 0.026, 1, 0.0347, 0.81, 0.4

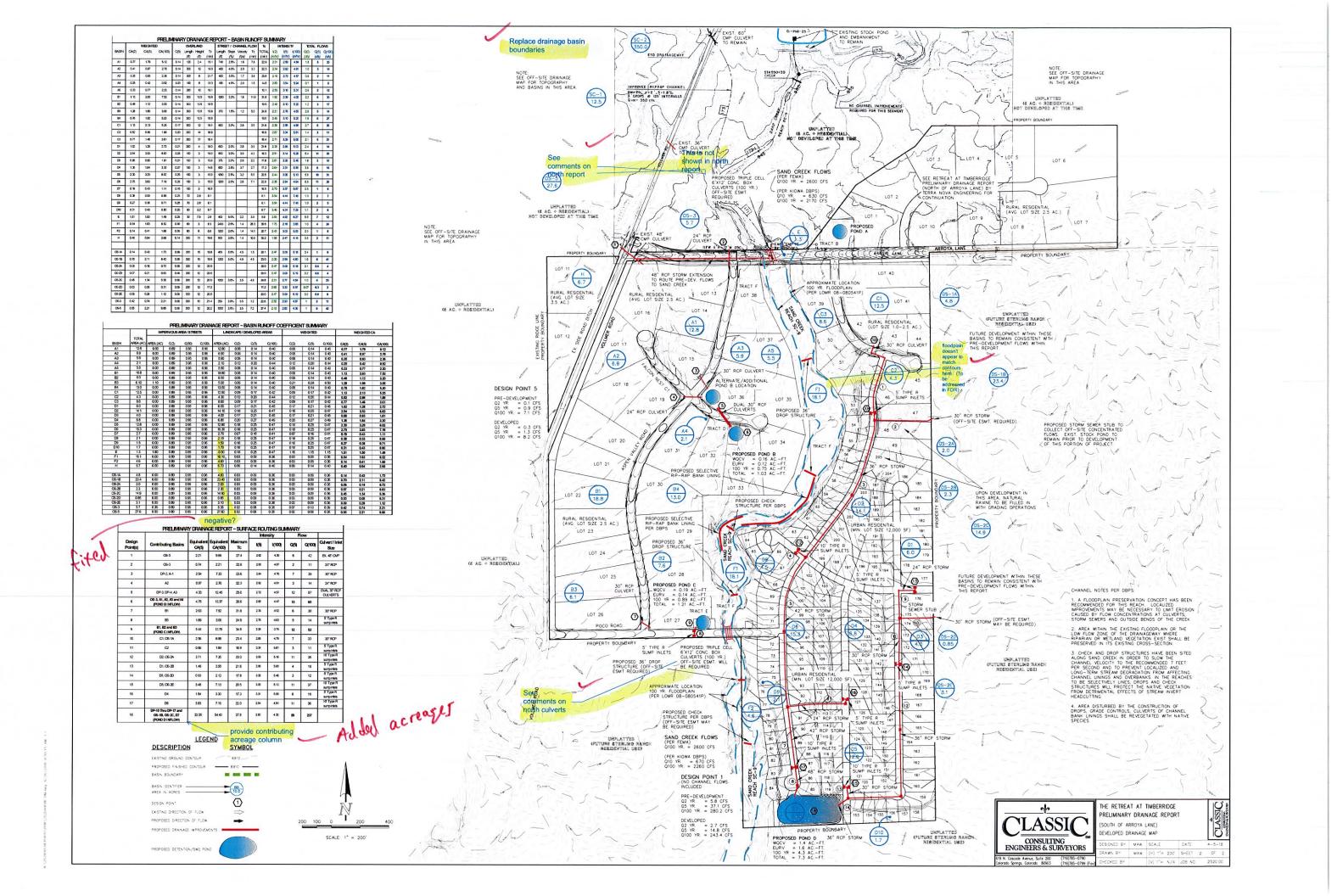
= 3

Tuesday, Mar 14 2017


Box Culvert (Arroya Lare & prop. collector Rd.)


Invert Elev Dn (ft)
Pipe Length (ft)
Slope (%)
Invert Elev Up (ft)
Rise (in)
Shape
Span (in)
No. Barrels
n-Value
Culvert Type
Culvert Entrance
Coeff. K,M,c,Y,k

Embankment


Top Elevation (ft) Top Width (ft) Crest Width (ft) = 7248.00 = 70.00 = 70.00

= 630.00
= 2170.00
= (dc+D)/2
= 2170. 0 0
= 2170.00
= 0.00
= 11.13
= 12.49
= 7238.91
= 7239.48
= 7242.98
= 1.39
= Inlet Control

This needs to be for FEMA flows unless there is a LOMR reducing the flows. Provide for both.

INNOVATIVE DESIGN. CLASSIC RESULTS.

PRELIMINARY DRAINAGE REPORT

FOR

THE RETREAT AT TIMBERRIDGE PRELIMINARY PLAN (South of Arroya Lane)

Prepared for: **ARROYA INVESTMENTS LLC** 1283 KELLY JOHNSON BLVD. COLORADO SPRINGS CO 80920 (719) 447-8773

Prepared by: CLASSIC CONSULTING ENGINEERS & SURVEYORS 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

SP-18-002

Job No. 2520.20

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

PRELIMINARY DRAINAGE REPORT FOR THE RETREAT AT TIMBERRIDGE PRELIMINARY PLAN (South of Arroya Lane)

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Marc A. Whorton Colorado P.E. #37155

Date

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:	ARROYA INVESTMENTS LLC
By:	
Title:	
Address:	1271 Kelly Johnson Blvd., Suite 100
	Colorado Springs, CO 80920

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, El Paso County Engineer

Date

Conditions:

PRELIMINARY DRAINAGE REPORT FOR THE RETREAT AT TIMBER RIDGE PRELIMINARY PLAN (South of Arroya Lane)

TABLE OF CONTENTS:

PURPOSE	Page	1
GENERAL DESCRIPTION	Page	1
EXISTING DRAINAGE CONDITIONS	Page	1
PROPOSED DRAINAGE CONDITIONS	Page	7
DETENTION/SWQ FACILITIES	Page	13
SAND CREEK CHANNEL IMPROVEMENTS	Page	14
DRAINAGE CRITERIA	Page	15
FLOODPLAIN STATEMENT	Page	16
DRAINAGE AND BRIDGE FEES	Page	16
SUMMARY	Page	18
REFERENCES	Page	20

APPENDICES

VICINITY MAP SOILS MAP (WEB SOIL SURVEY) F.E.M.A. MAP / LOMR (08-08-0541P) RECOMMENDATIONS PER SAND CREEK DBPS PRELIMINARY WETLANDS MAPPING HYDROLOGIC CALCULATIONS STORMWATER QUALITY CALCULATIONS DETENTION POND CALCULATIONS DRAINAGE MAPS

PURPOSE

The purpose of this Preliminary Drainage Report, as part of the Retreat at TimberRidge Preliminary Plan, is to identify specific drainage features and facilities and to estimate peak rates of stormwater runoff, from onsite and off-site sources. Also the purpose is to outline the necessary improvements to safely route developed storm water runoff to adequate outfall facilities. The drainage improvements proposed in this report are preliminary in nature and final drainage reports are required upon any development within the site that detail the 'to be constructed' drainage systems and detention/SWQ ponds. This report covers the major portion of the Preliminary Plan area south of Arroya Lane. The 10 lots north of Arroya Lane can be found in "Preliminary Drainage Report for TimberRidge Estates Preliminary Plan (North of Arroya Lane)" prepared by Terra Nova Engineering, Inc., dated April 2018.

GENERAL DESCRIPTION

The Retreat at TimberRidge entire development is a 234.1-acre site located in portions sections 21, 22, 27 and 28, township 12 south, range 65 west of the sixth principal meridian. This specific report covers 196.7 acres and does not include Arroya Lane or the 10 residential lots north of Arroya Lane. The site is bounded on the north by various unplatted parcels (zoned for 5 ac. residential), to the south and east by Sterling Ranch property (zoned for future urban development) and to the west by Vollmer Road and unplatted parcels (zoned for 5 ac. residential). The site is in the upper portion of the Sand Creek Drainage Basin. Both large lot rural single family residential and urban single family residential are proposed in the Preliminary Plan for this site.

The average soil condition reflects Hydrologic Group "B" (Pring coarse sandy loam and Kettle gravelly loamy sand) as determined by the "Web Soil Survey of El Paso County Area," prepared by the Natural Resources Conservation Service (see map in Appendix).

EXISTING DRAINAGE CONDITIONS

The Retreat at TimberRidge property is located in the upper portion of the Sand Creek drainage basin on the south edge of Black Forest. The overall property was recently acquired in numerous parcels. The parcels west of Vollmer Road are on the fringe of Black Forest and contains some sparsely scattered pine trees with the majority of the parcel being native grasses. The northeast parcel, north of Arroya Lane again is on the fringe of Black Forest and contains some sparsely scattered pine trees with the majority of the parcel being native grasses. The parcel at the southeast corner of Vollmer Road and Arroya Lane also contains some sparsely scattered pine trees with native grasses and natural ravines tributary to the Sand Creek channel. The remaining larger parcels south of Arroya Lane and east of Vollmer Road are mainly covered with native grasses with few or no pine trees. The Sand Creek channel bisects this part of the property from north-south with various natural ravine tributary fingers. A wetlands delineation has been prepared for the property (See Appendix) and reflects some wetlands throughout the Sand Creek channel. Upon determination of exact channel improvements as a part of development and final platting of the site, the appropriate permitting will be prepared for and reviewed/approved by US Fish and Wildlife. Arroya Lane exists along the northern portion of the site. The westerly portion of this road is public ROW with the remainder of the road heading further east being private. A portion of this existing ROW may need to be realigned with the final plat in this area given the planned re-alignment of the Arroya Lane and Vollmer intersection. An existing 60" CMP culvert currently conveys the low flows from Sand Creek under Arroya Lane.

Portions of this site have been previously studied in the "Sand Creek Drainage Basin Planning Study" (DBPS) prepared by Kiowa Engineering Corporation, March 1996. The portion of Sand Creek that traverses the site is defined as Reach SC-9 in the DBPS. Approximately 1000+ acres north of this property is tributary to this reach of the channel. (See Off-site Drainage Map in Appendix) According to the DBPS, this reach of Sand Creek all contained within the channel has the following flow characteristics: $Q_{10} = 630$ cfs $Q_{100} = 2170$ cfs. However, the 100 yr. flow recognized by FEMA in the LOMR 08-08-0541P with effective date of July 23, 2009, equals nearly $Q_{100} = 2600$ cfs. Also, Sterling Ranch is in the process of finalizing their MDDP which includes modeling of this property as well as the large acreage north up to the top of the Sand Creek Basin. M&S Civil Consultants, Inc. is currently addressing County comments on this MDDP and it will likely be approved prior to submittal of any Final Drainage Reports on the TimberRidge property. The MDDP proposes developed flows within Sand Creek that are significantly lower than both the DBPS and FEMA currently show. These flows are as follows: At Arroya Lane crossing $Q_{10} = 430$ cfs $Q_{100} = 1487$ cfs and TimberRidge south property line $Q_{10} = 452$ cfs $Q_{100} = 1523$ cfs. Even with the anticipated County approval of the MDDP and these adjusted flows, a CLOMR/LOMR will be required to be prepared, submitted and approved by FEMA prior to utilizing these flows in any Final Drainage Reports within this development.

> (as may be revised as the MDDP is reviewed and approved)

The majority of these off-site flows enter the property at the north end of the site conveying flows from the northwest (Black Forest area) and the off-site stock ponds to the north (both tributary to hundreds of acres of property in Black Forest). There are multiple existing culvert crossings of Vollmer Rd. just north of Arroya Lane to facilitate these historic flow patterns. The following are the few key culverts that directly feed the Sand Creek channel north of Arroya Lane: Approximately 1,000 feet north of Arroya Lane, an existing 36" CMP crosses Vollmer Road (Basin SC-1 on Off-site Drainage Map). A small basin and natural ravine just west of Vollmer feeds this facility. From a recent field visit, this small facility seems to be in good working condition, however, not labeled in the DBPS. Another 700 feet+ north along Vollmer a much larger basin exists west of the roadway. This off-site basin is approximately 350+ acres northwest of Vollmer Road (Basin SC-2 on Off-site Drainage Map). As shown within the DBPS, this existing crossing is a 60" CMP with some very dense and tall vegetation at both the entrance and exit of this facility. But, based on a recent field visit this facility seems to be in good working condition. The DBPS depicts this facility and recommends an additional 60" CMP at this location. However, there are no signs of erosion or over topping the road at this location at this time based on the current development within the tributary area to this facility. Based on the existing surrounding topography and roadway configuration, the 100 yr. historic flows at this location would appear to spill over the roadway and continue in their historic drainage pattern downstream within the upper reach of Sand Creek.

The following descriptions represent the pre-development flow design points for the property excluding the major off-site flows within Sand Creek just described:

EX DP-1 (Q₂ = 5.6 cfs Q₅ = 36.0 cfs, Q₁₀₀ = 281.7 cfs) This does not include the major off-site channel flows but reflects only the on-site and off-site flows that travel across the property and have a direct effect on the development. This total represents the allowed developed release off-site at this location. This total pre-development flow includes the flowing basins: EX-1, EX-4, OS-1, OS-3, OS-4 and OS-5. Basin EX-1 (Q₂ = 2.6 cfs Q₅ = 17.7 cfs, Q₁₀₀ = 140.3 cfs) consists of the majority of the site proposed for development. This basin contains areas of sheet flow that eventually travel within various natural ravines created within the site. These ravines then route the predevelopment flows directly into Sand Creek in the form of concentrated flows at multiple locations along the Creek.

Basins OS-4 ($Q_2 = 0.6$ cfs $Q_5 = 3.4$ cfs, $Q_{100} = 20.7$ cfs) and EX-4 ($Q_2 = 1.3$ cfs $Q_5 = 6.9$ cfs, $Q_{100} = 41.8$ cfs) consists of the northeasterly portion of the property north of Arroya Lane that drains in a southwesterly direction into Sand Creek. These combined flows total ($Q_2 = 1.6$ cfs $Q_5 = 9.8$ cfs, $Q_{100} = 60.1$ cfs) and travel directly towards the existing 60" CMP under Arroya Lane. Details for these basins and Pond A are part of the Preliminary Drainage Report for north of Arroya Lane, prepared by Terra Nova Engineering. Basin EX-5 is not used in this report. Basin OS-5 ($Q_2 = 1.0$ cfs $Q_5 = 5.2$ cfs, $Q_{100} = 32.1$ cfs) consists off-site property northwest of Vollmer Road that drains under Vollmer through an existing 48" CMP culvert directly on-site. Basin OS-1 ($Q_2 = 0.9$ cfs $Q_5 = 7.0$ cfs, $Q_{100} = 53.9$ cfs) consists of an off-site basin to the east within the Sterling Ranch property that sheet flows directly on-site. Basin OS-3 ($Q_2 = 0.6$ cfs $Q_5 = 2.1$ cfs, $Q_{100} = 9.9$ cfs) consists of the public ROW portion of Arroya Lane that sheet flows directly on-site.

EX DP-2 (Q₂ = 0.2 cfs Q₅ = 2.0 cfs, Q₁₀₀ = 14.7 cfs) consists of combined flows from on-site Basin EX-2 (Q₂ = 0.2 cfs Q₅ = 1.7 cfs, Q₁₀₀ = 12.2 cfs) and Basin OS-2 (Q₂ = 0.04 cfs Q₅ = 0.3 cfs, Q₁₀₀ = 2.5 cfs). These combined pre-development flows travel off-site directly onto Sterling Ranch property prior to eventually entering the Sand Creek channel.

EX DP-3 ($Q_2 = 0.4$ cfs $Q_5 = 3.0$ cfs, $Q_{100} = 23.7$ cfs) consists of flows from on-site Basin EX-3 that travel off-site directly onto Sterling Ranch property prior to eventually entering the Sand Creek channel.

EX DP-4 (Q₂ = 0.1 cfs Q₅ = 0.9 cfs, Q₁₀₀ = 7.1 cfs) consists of on-site flows from Basin EX-6 that travel in a southeasterly direction towards the existing roadside ditch along the north side of Vollmer Road. These flows will travel in a southerly direction within the roadside ditch to a release point at the corner of the property. This to flow represents the allowed developed release at this location.

PROPOSED DRAINAGE CONDITIONS

Proposed development within the Retreat at TimberRidge will consist of a variety of different residential lot sizes ranging from 1.0 - 2.5 acre large rural lots to 12,000 SF min. urban lots. The rural

lots will have paved streets and roadside ditches while the urban lots paved streets with County standard curb, gutter and sidewalk. Development of the urban lots proposed will consist of overlot grading for the planned roadways and lots. Development of rural lots proposed within the site will be limited to roadways and building pads, conserving the natural feature areas. Individual home sites on these lots are to be left generally in their natural condition with minimal disturbance to existing conditions per individual lot construction. Per the El Paso County ECM, Section I.7.1.B, rural lots of 2.5 ac. and larger are not required to provide Water Quality Capture Volume (WQCV). However, based on the current County/Urban Drainage stormwater quality standards, a WQCV component is automatically built into the UD Detention spreadsheet utilized in the detention basin design. Thus, the proposed facilities within both the rural and urban portions of this development will provide WQCV along with an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2 year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of development. Prior to development within the Retreat at TimberRidge property, final drainage reports and construction plans will be required detailing the requirements and specifics of proposed facilities. To the greatest extent possible, WQCV will be provided for all new roads and urban lots.

The following describes how this development proposes to handle both the off-site and on-site drainage conditions:

As mentioned previously, the majority of the off-site flows are already within the Sand Creek channel prior to entering the property. However the few off-site basins that must travel through the proposed site development areas prior to entering Sand Creek have been accounted for.

The following represent the basins west of Sand Creek:

Basin OS-5 ($Q_2 = 1$ cfs $Q_5 = 6$ cfs, $Q_{100} = 42$ cfs) represents off-site semi-forested, undeveloped property zoned for 5 ac. residential that is currently tributary to this site via an existing 48" CMP culvert under Vollmer. If future development occurs on this property, any developed flows must be detained beyond this pre-development quantity. A 48" RCP extension of this culvert is planned with the improvements of Arroya Lane to route these off-site pre-development flows directly to Sand Creek and by-pass the proposed development. These flows are anticipated to tie directly into the proposed triple cell box culvert crossing of Arroya Lane. These pre-developed off-site flows historically reached Sand Creek via a natural channel through the proposed development approximately 2,000 LF south of Arroya Lane. Channel improvements are proposed within this stretch of Sand Creek and these flows are only less than 2% of the overall flow within Sand Creek at this location. Thus, moving the junction point for these flows to intercept Sand Creek further north within the property will have no significant impact to Sand Creek.

Basin OS-3 ($Q_2 = 1$ cfs $Q_5 = 2$ cfs, $Q_{100} = 11$ cfs) represents the north half of the proposed realignment and improvements to Arroya Lane along with the undeveloped property north of the roadway. These flows will continue to travel in a side road ditch to be collected by a proposed 24" RCP culvert crossing of Arroya Lane just west of Sand Creek. These flows will then enter Basin A-1 and travel towards Design Point 3. Basins A1 ($Q_2 = 1.8$ cfs $Q_5 = 5$ cfs, $Q_{100} = 25$ cfs), A2 ($Q_2 = 1.0$ cfs $Q_5 = 3$ cfs, $Q_{100} = 14$ cfs), A3 ($Q_2 = 0.8$ cfs $Q_5 = 2$ cfs, $Q_{100} = 11$ cfs) and A4 ($Q_2 = 0.7$ cfs $Q_5 = 1$ cfs, $Q_{100} = 5$ cfs) are all tributary to the proposed Pond B. These basins collect flows from a portion of the rural 2.5 ac. lot development on the property with various culvert crossings designed to convey the proposed ditch flows towards Pond B. Design Point 6 ($Q_5 = 13 \text{ cfs}$, $Q_{100} = 60 \text{ cfs}$) represents the total developed flows entering **Pond B.** A proposed full-spectrum EDB is proposed at this location to release less than the pre-development flows currently seen. (See UD Detention Spreadsheet – Pond B for anticipated outlet structure and release levels) At this point, we have also shown a possible alternate/additional location for this facility. (See Drainage Map) With the Final Plat and Drainage Report it will be determined which or both locations work best from a lotting and development standpoint. Maintenance access to this facility will be directly from the adjacent public roadway.

Basins B1 ($Q_2 = 2.2 \text{ cfs } Q_5 = 6 \text{ cfs}$, $Q_{100} = 30 \text{ cfs}$), B2 ($Q_2 = 1.2 \text{ cfs } Q_5 = 3 \text{ cfs}$, $Q_{100} = 17 \text{ cfs}$) and B3 ($Q_2 = 2.8 \text{ cfs } Q_5 = 5 \text{ cfs}$, $Q_{100} = 14 \text{ cfs}$) are tributary to the proposed Pond C. These basins collect flows from the rest of the portion of the rural 2.5 ac. lot development west of Sand Creek with various culvert crossings designed to convey the proposed ditch flows towards Pond C.

Design Point 9 ($Q_5 = 12 \text{ cfs}$, $Q_{100} = 52 \text{ cfs}$) represents the total developed flows entering Pond C. A proposed full-spectrum EDB is proposed at this location to release less than the pre-development flows currently seen. (See UD Detention Spreadsheet - Pond C for anticipated outlet structure and release levels) Maintenance access to this facility will be directly from the adjacent public roadway. Basins A5 ($Q_2 = 0.8$ cfs $Q_5 = 2$ cfs, $Q_{100} = 12$ cfs) and B4 ($Q_2 = 1.9$ cfs $Q_5 = 6$ cfs, $Q_{100} = 27$ cfs) represent portions of the rural 2.5 ac. lots west of Sand Creek outside the proposed roadway improvements that cannot reasonably be collected into the two facilities just described. With the minimal impervious areas anticipated on these large lots, these basins will continue to sheet flow towards Sand Creek. Per the ECM Section I.7.1.B, WQCV is not required for these lots given their size (2.5 Ac.). Also, the City owned regional facility downstream of this property (Sand Creek #3) is an in-line facility that provides stormwater quality. Basin H ($Q_2 = 0.8$ cfs $Q_5 = 2$ cfs, $Q_{100} = 11$ cfs) is proposed for two large lots averaging 3.5 ac. each west of Vollmer. Again, per the ECM Section I.7.1.B, WQCV is not required for these lots given their size (2.5 Ac. +). However, sediment control will be provided on each individual lot, as appropriate. After this sediment control, the minimal developed flow from these lots will be allowed to continue to sheet flow directly into the side road ditch along Vollmer Road.

The following represent the basins east of Sand Creek:

Basins OS-4 and EX-4 calculations are included in this report but details for these basins and Pond A are part of the Preliminary Drainage Report for north of Arroya Lane, prepared by Terra Nova Engineering.

Basins C1 ($Q_2 = 2.7$ cfs $Q_5 = 6$ cfs, $Q_{100} = 26$ cfs) and OS-1A ($Q_2 = 0.4$ cfs $Q_5 = 1$ cfs, $Q_{100} = 9$ cfs) are tributary to the Design Point 10. These basins represent on-site 2.5 ac. -1.0 ac. lots and off-site

future Sterling Ranch development which is planned to continue to sheet flow on-site through the proposed lots. A 30" RCP culvert will collect the flows at this location and route them further downstream within the on-site storm system. Basins C2 ($Q_2 = 1.4 \text{ cfs } Q_5 = 3 \text{ cfs}$, $Q_{100} = 11 \text{ cfs}$) and OS-1B ($Q_2 = 1.6 \text{ cfs } Q_5 = 6 \text{ cfs}$, $Q_{100} = 41 \text{ cfs}$) are tributary to the Design Point 11 and the on-site storm system. These basins represent on-site 1.0 ac. lots and off-site future Sterling Ranch development. A 30" RCP storm stub is proposed to collect the future off-site flows at this location. In the interim, prior to on-site development in this phase (Phase 4 as shown on the Preliminary Plan), the existing on-site stock pond will remain in place and continue to act as a sediment facility for the off-site flows. Upon development in this phase, the stock pond will be removed and storm system provided to handle these off-site flows. Off-site grading will be required to allow for the capture of these off-site flows within the proposed storm sewer system. An off-site easement to allow for this grading and storm construction will be acquired prior to construction in this area. Future off-site Sterling Ranch development in this basin will need to meet these pre-development flows at this location.

At Design Point 11, assuming an even split of flows at this time, 5' Type R sump inlets will collect the developed flows and route them further downstream in a 36" RCP storm system. The Final Drainage Report will further detail the exact inlet design. Basins D2 ($Q_2 = 6.4 \text{ cfs } Q_5 = 11 \text{ cfs}$, $Q_{100} = 35 \text{ cfs}$) and OS-2A ($Q_2 = 0.1 \text{ cfs } Q_5 = 0.6 \text{ cfs}$, $Q_{100} = 4 \text{ cfs}$) are tributary to the Design Point 12. These basins represent on-site 1.0 ac. -1/3 ac. lots and off-site future Sterling Ranch development which is planned to continue to sheet flow on-site through the proposed lots. At this location, assuming an even split of flows at this time, 10' Type R sump inlets will collect the developed flows and route them further downstream in a 42" RCP storm system. The Final Drainage Report will further detail the exact inlet design.

Basins D1 ($Q_2 = 2.4$ cfs $Q_5 = 4$ cfs, $Q_{100} = 14$ cfs) and OS-2B ($Q_2 = 0.2$ cfs $Q_5 = 0.6$ cfs, $Q_{100} = 4$ cfs) are tributary to the Design Point 13. These basins represent on-site 1/3 ac. lots and off-site future Sterling Ranch development which is planned to continue to sheet flow on-site through the proposed lots. At this location, assuming an even split of flows at this time, 5' Type R sump inlets

will collect the developed flows and route them further downstream in a 24" RCP storm system. The Final Drainage Report will further detail the exact inlet design.

Basins D3 ($Q_2 = 1.8 \text{ cfs } Q_5 = 3 \text{ cfs}$, $Q_{100} = 10 \text{ cfs}$), OS-2C ($Q_2 = 1 \text{ cfs } Q_5 = 4 \text{ cfs}$, $Q_{100} = 25 \text{ cfs}$) and OS-2D ($Q_2 = 0.07 \text{ cfs } Q_5 = 0.3 \text{ cfs}$, $Q_{100} = 2 \text{ cfs}$) are tributary to the Design Point 14 and the on-site storm system. These basins represent on-site 1/3 ac. lots and off-site future Sterling Ranch development. A 30" RCP storm stub is proposed to collect the future off-site flows at this location. Future off-site Sterling Ranch development in this basin will need to meet these pre-development flows at this location. At Design Point 14, assuming an even split of flows at this time, 5' Type R sump inlets will collect the developed flows and route them further downstream in a 36" RCP storm system. The Final Drainage Report will further detail the exact inlet design.

Basins D5 ($Q_2 = 5.6$ cfs $Q_5 = 10$ cfs, $Q_{100} = 31$ cfs) and OS-2E ($Q_2 = 0.2$ cfs $Q_5 = 0.9$ cfs, $Q_{100} = 6$ cfs) are tributary to the Design Point 15. These basins represent on-site 1/3 ac. – 1/4 ac. lots and off-site future Sterling Ranch development which is planned to continue to sheet flow on-site through the proposed lots. At this location, assuming an even split of flows at this time, 10' Type R sump inlets will collect the developed flows and route them along with the upstream flows directly into Pond D. The Final Drainage Report will further detail the exact inlet design.

Basin D4 ($Q_2 = 3.6$ cfs $Q_5 = 6$ cfs, $Q_{100} = 18$ cfs) is tributary to Design Point 16. This basin represents on-site 1/4 ac. lots. At this location, assuming an even split of flows at this time, 5' Type R sump inlets will collect the developed flows and route them further downstream in a 24" RCP storm system. The Final Drainage Report will further detail the exact inlet design.

Basin D6 ($Q_2 = 6.5$ cfs $Q_5 = 11$ cfs, $Q_{100} = 36$ cfs) is tributary to Design Point 17. This basin represents on-site 1/4 ac. lots. At this location, assuming an even split of flows at this time, 10' Type R sump inlets will collect the developed flows and route them along with the upstream flows directly into Pond D. The Final Drainage Report will further detail the exact inlet design.

Design Point 18 (Q⁵ = 59 cfs, Q_{100} = 237 cfs) represents the total developed flows entering Pond **D**. A proposed full-spectrum EDB is proposed at this location to release less than the predevelopment flows currently seen. (See UD Detention Spreadsheet – Pond D for anticipated outlet structure and release levels) Maintenance access to this facility will be directly from the adjacent public roadway.

Basin D10 ($Q_2 = 1.1 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 6 \text{ cfs}$) represents the rear yards of proposed lots that cannot reasonably be collected by the proposed Pond D and will then continue to sheet flow offsite. Basins C3 ($Q_2 = 2.1 \text{ cfs } Q_5 = 5 \text{ cfs}$, $Q_{100} = 21 \text{ cfs}$), D8 ($Q_2 = 1.3 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 7 \text{ cfs}$) and D9 ($Q_2 = 1.0 \text{ cfs } Q_5 = 2 \text{ cfs}$, $Q_{100} = 5 \text{ cfs}$) represent portions of the rear yards that are adjacent to Sand Creek that cannot reasonably be collected into the proposed Pond D just described. With the minimal impervious areas anticipated on the rear of these lots, these basins will continue to sheet flow towards Sand Creek. However, ss mentioned earlier, the City owned regional facility downstream of this property (Sand Creek #3) is an in-line facility that provides stormwater quality for this minimal area. Basins F1 ($Q_2 = 1.0 \text{ cfs } Q_5 = 4 \text{ cfs}$, $Q_{100} = 24 \text{ cfs}$) and F2 ($Q_2 = 0.3 \text{ cfs } Q_5 =$ 1 cfs, $Q_{100} = 8 \text{ cfs}$) represent the Sand Creek Channel corridor. This area will not have any development take place in it other than the required channel improvements per the DBPS and the proposed roadway crossings. Basin E ($Q_2 = 4.5 \text{ cfs } Q_5 = 6 \text{ cfs}$, $Q_{100} = 10 \text{ cfs}$) represents a small portion of the proposed improved Arroya Lane near the lowpoint of the roadway. These minor flows will be captured in a small SWQ facility north of Arroya Lane and be treated prior to release into Sand Creek. This facility would likely be incorporated into the box culvert crossing design.

Both the Poco Road extension and Arroya Lane are proposed to cross Sand Creek. Timing of the design and construction of these facilities will determine what developed flows will be used. If construction of these facilities is proposed prior to the CLOMR/LOMR being approved by FEMA, then the higher FEMA flows will be used. However, if the construction is proposed after the CLOMR/LOMR approval, then the anticipated lower Sterling Ranch MDDP flows will likely be utilized for road crossing design. At this stage, this report provides all three preliminary design scenarios for the road crossing to include developed flows from the DBPS, FEMA and Sterling Ranch MDDP. The future Final Drainage Reports will provide the design using the appropriate

Address whether a deviation will be requested if FEMA flows are required and/or if freeboard requirements are not met.

developed flow quantities as approved by County. (See culvert calculations for both in Appendix) Both locations will require the acquisition of off-site easements for grading and construction of these facilities. These easements will be required prior to construction.

DETENTION FACILITIES / STORMWATER QUALITY

Final design of these recommended facilities that include planning for water quality management of storm water runoff features will be designed during final platting of this development. As required, storm water quality measures will be utilized in order to reduce the amount of sediment, debris and pollutants that are allowed to enter Sand Creek. These features include but are not limited to the multiple Full Spectrum Extended Detention Basins. Site Planning and design techniques for the large lot, rural areas should limit impervious area, minimize directly impervious area, lengthen time of travel and increase infiltration in order to decrease the rate and volume of stormwater runoff. Urban areas that require detention will provide a Water Quality Capture Volume (WQCV) and Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume that will release the more frequent storms at a slower rate to help minimize the effects of development of the property. These measures will be taken into consideration upon final design of the individual detention facilities as well as the development of the individual land uses within the site.

MAINTENANCE

The proposed detention/SWQ facilities are to be private facilities with ownership and maintenance by the local Metropolitan District or Homeowners Association. After completion of construction and upon the Board of County Commissioners acceptance, the Sand Creek channel will be owned and maintained by the El Paso County along with all drainage facilities within the public Right of Way.

SAND CREEK CHANNEL IMPROVEMENTS

As stated in the Sand Creek DBPS, this Reach SC-9 is recommended as a floodplain preservation design concept. Given the fact of the current requirements for detention/SWQ facilities planned for the property with designed release below pre-development flows, the existing Sand Creek drainageway is expected to remain stable. However, localized channel improvements are proposed in any steeply incised channel locations and to limit erosion caused by flow concentrations at culverts and storm

sewers outfalls. Existing FEMA FIS channel velocities as found in the LOMR 08-080541P seem to exceed recommended allowable velocities. Although, based on the findings from the CORE Consultants, Inc. Impact Identification Report, no significant erosion or channel degradation through this property currently exists at this time. Specifically located grade control and/or drop structures (See Appendix) were specified in the DBPS through this reach in order to slow the cannel velocity to the DBPS recommended 7 feet per second and to prevent localized and long-term stream degradation from affecting channel linings and overbanks. The allowable velocity will vary depending upon the existing riparian vegetation found within the bankfull channel and floodplain terrace areas. Where channel velocities exceed the recommended allowable velocities, 36" vertical drop structures (specific design to be determined with Final Drainage Report) will be installed based on Urban Drainage Criteria Manual Vol. 2. (See Appendix) These facilities will incorporate and help protect the native wetland vegetation from detrimental effects of stream invert head cutting. Concept locations for these facilities are shown on the developed drainage map as recommended in the DBPS. Revegetation would occur wherever the native vegetation is disturbed by channel construction. Selectively located rip-rap bank protection will be installed in steeply incised areas, outside bends or the natural channel and detention pond/culvert outlets. (See Appendix) Also, based on the wetland delineations prepared by CORE Consultants, Inc., likely impacts to jurisdictional waters would trigger permitting under Section 404 of the Clean Water Act. This coordination and permitting would be completed along with the approval process of the final construction plans for the associated channel improvements.

Per the approved DBPS, the anticipated developed flows just upstream of this project are $Q_{10} = 630$ cfs and $Q_{100} = 2170$ cfs as depicted within segment no. 171. The anticipated developed flows exiting this property are $Q_{10} = 670$ cfs and $Q_{100} = 2260$ cfs as depicted within segment no. 170. As discussed earlier, the FEMA FIS flows appear to be higher than those presented in the DBPS and the Sterling Ranch MDDP flows proposed are lower. At this stage, we have utilized the flows as determined by the DBPS and have followed that reports preliminary design for Sand Creek improvements with the understanding that the ultimate design flows will likely be adjusted based on the anticipated Sterling Ranch MDDP and CLOMR/LOMR approvals. The northern portion of Sterling Ranch is immediately downstream of this property. This portion of their development appears to be in the later phases and as such has not yet been analyzed for specific channel improvements. However, per

the approved DBPS, similar grade control and check structures are shown in Sterling Ranch within Reach SC-8 as are recommended in Reach SC-9 through the TimberRidge property. Based on these anticipated flows, two proposed roadway crossings of Sand Creek are planned for this site. (Arroya Lane and the proposed east-west connector road) The current crossing of Arroya Lane is with a 60" CMP culvert. Upon development, the proposed crossing may consist of a triple cell 6'x12' CBC to facilitate the conveyance of the 100 yr. flow. This same structure is proposed at the crossing with the collector roadway as well. These facilities, along with all proposed channel improvements would be designed to contain the 100 yr. flows within the current floodplain as defined by the LOMR 08-080541P, unless updated as proposed in the Sterling Ranch MDDP and associated Upon final design of these culvert crossings and anticipated channel CLOMR/LOMR. improvements, further floodplain analysis will be required to either suggest a no-rise certification or prepare an updated CLOMR/LOMR for associated improvements affecting the current 100 yr. floodplain. The Arroya Lane proposed culvert crossing is described in the DBPS as a single 6'x12' concrete box culvert (10 yr.) design. However, based on the DBPS flows, a triple cell 6'x12' box culvert at this location, designed to convey the 100 yr. developed flows. Based on the proposed 100 yr. design we would request this facility be eligible towards this developments drainage fee obligation. (Reference the Drainage and Bridge Fees)

DRAINAGE CRITERIA

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014. The overall pre-development design model was calculated using PondPack V8i with time of concentrations estimated using NRCS Unit Hydrograph procedures described in the DCM based upon the hydrologic soil type and runoff ARC II curve numbers (CN) chart (Table 6-10) with a 24 hour NRCS Type II distribution. Individual on-site developed basin design used for inlet sizing and storm system routing was calculated using the Rational Method. Runoff Coefficients are based on the imperviousness of the particular land use and the hydrologic soil type in accordance with Table 6-6. The average rainfall intensity, by recurrence interval found in the Intensity-Duration-Frequency (IDF) curves in Figure 6-5. (See Appendix)

FLOODPLAIN STATEMENT

Portions of this site are located within a floodplain as determined by the Flood Insurance Rate Maps (F.I.R.M.) Map Number 08041C 0535F and the previously mentioned LOMR 08-08-0541P both with effective date of July 23, 2009. (See Appendix).

DRAINAGE AND BRIDGE FEES

Any applicable fees shall be provided in the Final Drainage Report(s) prior to final plat recordation of any development within this site. The following represents the anticipated overall fees for this site:

Sand Creek Drainage Basin

This site lies entirely within the Sand Creek Drainage Basin boundaries.

The fees are calculated using the following impervious acreage method approved by El Paso County. The Retreat at TimberRidge site has a total area of 234.1 acres (including the 10 lots north of Arroya Lane which are not a part of this report) with the following different land uses proposed:

22.4 Ac.	Sand Creek Drainage corridor – Basins F1 and F2)
94.8 Ac.	2.5 Ac. lots
13.4 Ac.	1.0 Ac. lots
42.8 Ac.	1/3 Ac. lots
24.4 Ac.	1/4 Ac. lots

The percent imperviousness for this subdivision is calculated as follows:

Fees for Sand Creek Drainage Corridor

(Per El Paso County Percent Impervious Chart: 2%)

22.4 Ac. x 2% = 0.45 Impervious Ac.

Fees for 2.5 Ac. lots

(Per El Paso County Percent Impervious Chart: 11% with 25% fee reduction for 2.5 ac. lots planned)
94.8 Ac. x 11% x 75% = 7.82 Impervious Ac.

Fees for 1.0 Ac. lots

(Per El Paso County Percent Impervious Chart: 20%) 13.4 Ac. x 20% = 2.68 Impervious Ac.

Fees for 1/3 Ac. lots

(Per El Paso County Percent Impervious Chart: 30%)
42.8 Ac. x 30% = 12.84 Impervious Ac.

Fees for 1/4 Ac. lots

(Per El Paso County Percent Impervious Chart: 40%) 24.4 Ac. x 40% = 9.76 Impervious Ac. Total Impervious Acreage: 33.55 Imp. Ac.

The following calculations are based on the 2018 drainage/bridge fees:

ESTIMATED FEE TOTALS (prior to reduction):

Bridge Fees		
\$ 5,210.00 x 33.55 Impervious Ac.	=	<u>\$ 174,795.50</u>
Drainage Fees		
\$17,197.00 x 33.55 Impervious Ac.	=	<u>\$ 576,959.35</u>

Per the ECM 3.10.4a and 3.10.5.a, this development requests a reduction of drainage fees based on the on-site full spectrum detention/SWQ facilities and regional channel improvements for this stretch of Sand Creek as shown in the DBPS. The following facilities within the Sand Creek Drainage Basin seem to meet the criteria for this reduction:

Detention Pond B	5.3 ac-ft. full spectrum	\$	50,000 x 50%	∕₀ =	\$ 25,000.00
Detention Pond C	5.3 ac-ft. full spectrum	\$	50,000 x 50%	∕₀ =	\$ 25,000.00
Detention Pond D	5.3 ac-ft. full spectrum	\$	90,000 x 50%	∕₀ =	\$ 45,000.00
Triple Cell 6'x12' CB0	C Crossing Arroya Lane	\$	250,000	=	\$ 250,000.00
Sand Creek Channel I	Improvements per DBPS	\$	175,000	=	\$ 175,000.00
(Exact facility costs of	norridad with final drainage non	ant ()))		

(Exact facility costs provided with final drainage report(s))

ESTIMATED FEE TOTALS (with reduction):

Bridge Fees		
\$ 5,210.00 x 33.55 Impervious Ac.	=	<u>\$ 174,795.50</u>
Drainage Fees		
\$ 576,959.35 - 520,000.00	=	<u>\$ 56,959.35</u>

SUMMARY

The proposed Retreat at TimberRidge Preliminary Plan is within the Sand Creek Drainage Basin. Recommendations are made within this report concerning necessary improvements that may be required as a result of development of this property. The points of storm water release from the proposed site are required to be at or below the calculated historic flow quantities. The development of the proposed site does not significantly impact any downstream facility or property to an extent greater than that which currently exists in the 'historic' conditions. All drainage facilities within this report were sized according to the Drainage Criteria Manuals and the full-spectrum storm water quality requirements. Upon development of the individual parcels within the site, separate Final Drainage Reports will be required to be submitted and approved by El Paso County that details all storm systems, pond design and fee calculation.

PREPARED BY:

Classic Consulting Engineers & Surveyors, LLC

Marc A. Whorton, P.E. Project Manager

maw/252000/MDDP.doc

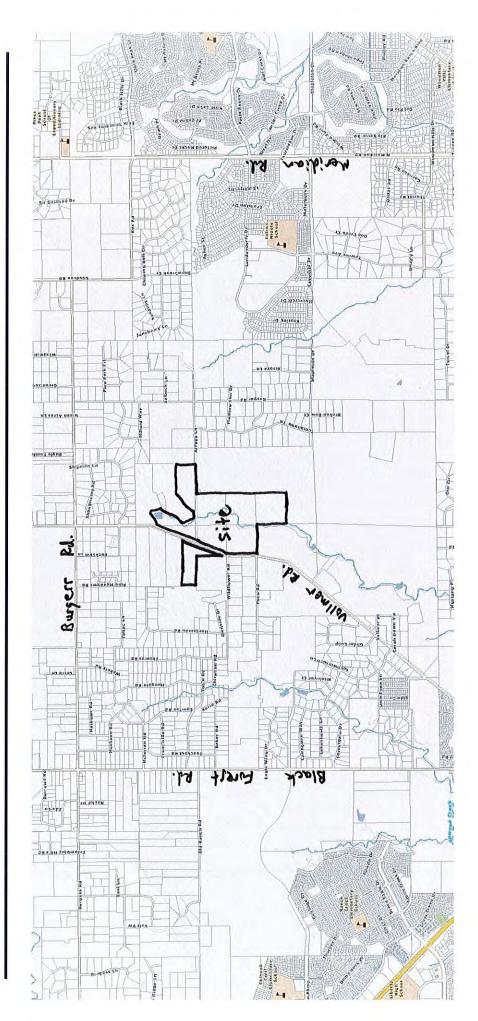
REFERENCES

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
- 2. "Urban Storm Drainage Criteria Manual Volume 1, 2 & 3" Urban Drainage and Flood Control District, dated January 2016.
- 3. "Final Drainage Report for Forest Gate Subdivision" Law & Mariotti Consultants, Inc. dated October 2004.
- 4. "Sand Creek Drainage Basin Planning Study," Kiowa Engineering Corporation, dated March 1996.
- 5. "Master Development Drainage Plan for The Retreat at TimberRidge", Classic Consulting, approved March 2018.
- 6. "2018 Sterling Ranch MDDP", M&S Civil Consultants, Inc., June 2018

APPENDIX

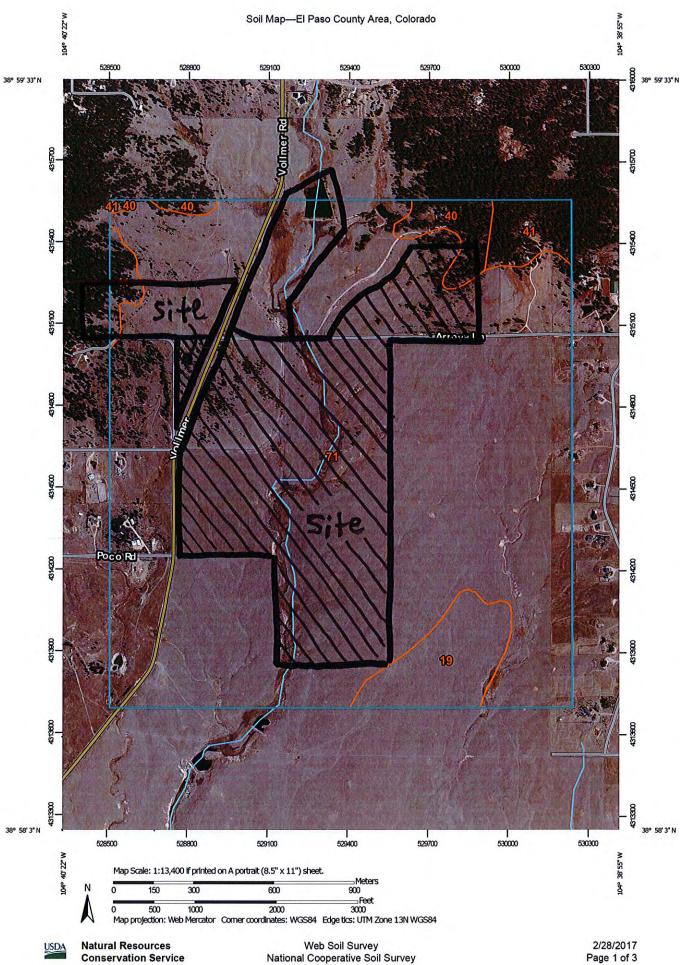
VICINITY MAP

El Paso County Assessor's Office


specific written approval of the Board of County Commissionee, El Paso County, Colorado. This document was prepared from the best data available at the time of plotting and is for internal use only. El Paso County, Colorado, makes no claim as

to the completeness or accuracy of the data contained hereon.

COPYRIGHT 2010 by the Board of County Commissioners, El Paso County, Colorado. All rights reserved. No part of this document or data contained hereon may be reproduced; used to prepare derivative products; or distributed without the


Vicinity Map

SOILS MAP (S.C.S SURVEY)

Conservation Service

National Cooperative Soil Survey

Soil Map-El Paso County Area, Colorado

L

Area of Interest (AOI)	Spoil Area	The soil surveys that comprise your AOI were mapped at
Area of Interest (AOI)		1:24,000.
Soil Map Unit Polygons	-	Please rely on the bar scale on each map sheet for map measurements.
Soil Map Unit Lines	Voet Spot	Source of Map: Natural Resources Conservation Service
Soil Map Unit Points	△ Other	Web Soil Survey URL: Coordinate System: Web Mercator (FPSG:3857)
	Special Line Features	
Special Point Features	Water Features	Maps from the Web Soil Survey are based on the Web Mercator
Bowout	Streams and Canals	projection, which preserves uncount and shape but usuals distance and area. A projection that preserves area, such as the
BORTOW PIL	Transportation	Albers equal-area conic projection, should be used if more
Clay Spot	H Rails	accurate calculations of distance or area are required.
Closed Depression		This product is generated from the USDA-NRCS certified data as of the version data collisted helow
K Gravel Pit	US Routes	Soil Survey Area: El Daso County Area Colorado
Gravelly Spot	Major Roads	Survey Area Data: Version 14, Sep 23, 2016
Landfill	Local Roads	Soil map units are labeled (as space allows) for map scales
Lava Flow	Background	1:50,000 or larger.
Marsh or swamp	Aerial Photography	Date(s) aerial images were photographed: Apr 15, 2011—Sep 22, 2011
Mine or Quarry		The orthonhoto or other base map on which the soil lines were
Miscellaneous Water		compiled and digitized probably differs from the background
Perennial Water		imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
Rock Outcrop		
Saline Spot		
Sandy Spot		
Severely Eroded Spot		
Sinkhole		
Slide or Slip		
Sodic Spot		

USDA Natural Resources Conservation Service

2/28/2017 Page 2 of 3

Web Soil Survey National Cooperative Soil Survey

	El Paso County Area, O	Colorado (CO625)	
Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	36.5	4.6%
40	Kettle gravelly loamy sand, 3 to 8 percent slopes	19.0	2.4%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	24.8	3.1%
71	Pring coarse sandy loam, 3 to 8 percent slopes	719.1	90.0%
Totals for Area of Interest		799.4	100.0%

Map Unit Legend

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Loamy Park (R048AY222CO) Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes Other soils Percent of map unit: Hydric soil rating: No

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

El Paso County Area, Colorado

40-Kettle gravelly loamy sand, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 368g Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam *C - 40 to 60 inches:* extremely gravelly loamy sand

Properties and qualities

Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No Pleasant Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

El Paso County Area, Colorado

41—Kettle gravelly loamy sand, 8 to 40 percent slopes

Map Unit Setting

National map unit symbol: 368h Elevation: 7,000 to 7,700 feet Farmland classification: Not prime farmland

Map Unit Composition

Kettle and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Kettle

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose

Typical profile

E - 0 to 16 inches: gravelly loamy sand *Bt - 16 to 40 inches:* gravelly sandy loam *C - 40 to 60 inches:* extremely gravelly loamy sand

Properties and qualities

Slope: 8 to 40 percent
Depth to restrictive feature: More than 80 inches
Natural drainage class: Somewhat excessively drained
Runoff class: Medium
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water storage in profile: Low (about 3.4 inches)

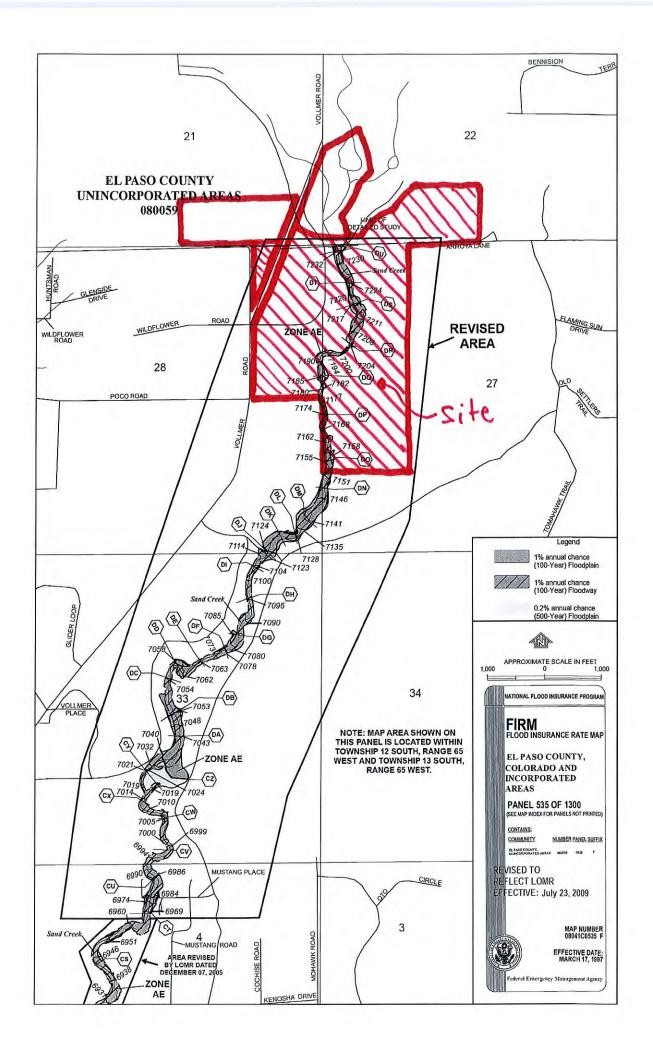
Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: B Hydric soil rating: No

Minor Components

Other soils

Percent of map unit: Hydric soil rating: No Pleasant Percent of map unit: Landform: Depressions Hydric soil rating: Yes


Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 14, Sep 23, 2016

F.E.M.A. MAP / LOMR (08-08-0541P)

Page 1 of 4	Issue Date: March 6, 2009	Effective Dat	e: July 23, 2009	Case No.:	08-08-0541P	LOMR-APP
	Feder		gency Mana hington, D.C. 2047	0	Agency	
			MAP REVISION ON DOCUMEN	г		
	COMMUNITY AND REVISION INFORMATI	ION	PROJECT DESCR	IPTION	BASIS OF R	EQUEST
COMMUNITY	El Paso County Colorado (Unincorporated Are	as)	NO PROJECT		YDRAULIC ANAI EW TOPOGRAPI	
	COMMUNITY NO.: 080059			-		
IDENTIFIER	Sand Creek Letter of Map Revision, Mustang Place to Arroya Lane		APPROXIMATE LATITUE SOURCE: USGS QUADE		38.971, -104.668 I: NAD 27	
	ANNOTATED MAPPING ENCLOSURES		ANN	IOTATED STUDY	ENCLOSURES	
TYPE: FIRM*	ct changes to flooding sources affected by this	arch 17, 1997 s revision.	DATE OF EFFECTIVE FL PROFILE(S): 204P(a), FLOODWAY DATA TAI	204P(b), 204P(c) A 3LE: 5		3, 1999
* FIRM - Flood In	surance Rate Map; ** FBFM - Flood Boundar	ALCOL MANAGEMENT	o; *** FHBM - Flood Hazard E	Boundary Map		
Sand Creek - froi	m approximately 360 feet downstream of Mus					
Flooding Source			OF REVISIONS			
Sand Creek		Effective Floo Zone A No BFEs* No Floodway	oding Revised Flooding Zone AE BFEs Floodway	I Increases YES YES YES	Decreases YES NONE NONE	
* BFEs - Base Flo	ood Elevations					
		DETERM	MINATION			
regarding a rec a revision to the warranted. Thi panels revised This determinatic any questions ab		R) for the area des surance Study (Fi nap, as indicated in nt purposes and fo ole. The enclosed de Map Assistance Cer 4. Additional Inform	scribed above. Using the S) report and/or National I n the attached documents or all flood insurance polic ocuments provide additional i nter toll free at 1-877-336-262 ation about the NFIP is available.	information subn Flood Insurance I ation. Please use ies and renewals nformation regardir 7 (1-877-FEMA M/	hitted, we have de Program (NFIP) n e the enclosed an in your communi in your communi g this determination AP) or by letter addr	termined that hap is notated map ty.
	E	David N. Bascom, Pr Engineering Manage Aitigation Directorate	ment Branch	112553	0.3.1.08080541	102-I-A-C

Page 2 of 4	Issue Date: March 6, 2009	Effective Date: July 23, 2009	Case No.: 08-08-0541P	LOMR-APF
	Fede	eral Emergency Man Washington, D.C. 204		
		ETTER OF MAP REVISION		

COMMUNITY INFORMATION

APPLICABLE NFIP REGULATIONS/COMMUNITY OBLIGATION

We have made this determination pursuant to Section 206 of the Flood Disaster Protection Act of 1973 (P.L. 93-234) and in accordance with the National Flood Insurance Act of 1968, as amended (Title XIII of the Housing and Urban Development Act of 1968, P.L. 90-448), 42 U.S.C. 4001-4128, and 44 CFR Part 65. Pursuant to Section 1361 of the National Flood Insurance Act of 1968, as amended, communities participating in the NFIP are required to adopt and enforce floodplain management regulations that meet or exceed NFIP criteria. These criteria, including adoption of the FIS report and FIRM, and the modifications made by this LOMR, are the minimum requirements for continued NFIP participation and do not supersede more stringent State/Commonwealth or local requirements to which the regulations apply.

We provide the floodway designation to your community as a tool to regulate floodplain development. Therefore, the floodway revision we have described in this letter, while acceptable to us, must also be acceptable to your community and adopted by appropriate community action, as specified in Paragraph 60.3(d) of the NFIP regulations.

COMMUNITY REMINDERS

We based this determination on the 1-percent-annual-chance flood discharges computed in the FIS for your community without considering subsequent changes in watershed characteristics that could increase flood discharges. Future development of projects upstream could cause increased flood discharges, which could cause increased flood hazards. A comprehensive restudy of your community's flood hazards would consider the cumulative effects of development on flood discharges subsequent to the publication of the FIS report for your community and could, therefore, establish greater flood hazards in this area.

Your community must regulate all proposed floodplain development and ensure that permits required by Federal and/or State/Commonwealth law have been obtained. State/Commonwealth or community officials, based on knowledge of local conditions and in the interest of safety, may set higher standards for construction or may limit development in floodplain areas. If your State/Commonwealth or community has adopted more restrictive or comprehensive floodplain management criteria, those criteria take precedence over the minimum NFIP requirements.

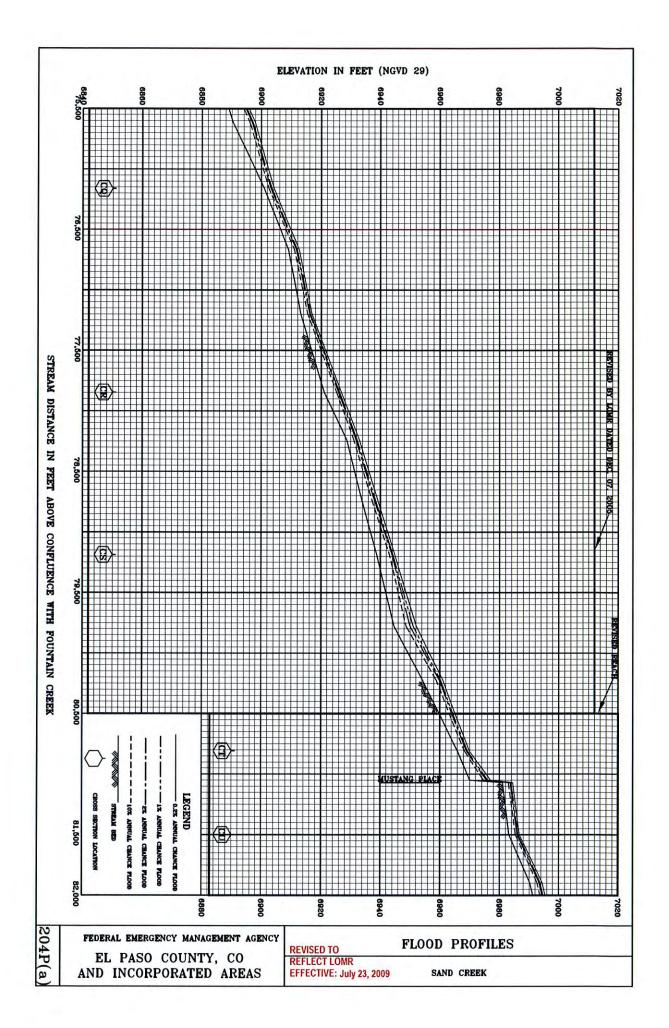
We will not print and distribute this LOMR to primary users, such as local insurance agents or mortgage lenders; instead, the community will serve as a repository for the new data. We encourage you to disseminate the information in this LOMR by preparing a news release for publication in your community's newspaper that describes the revision and explains how your community will provide the data and help interpret the NFIP maps. In that way, interested persons, such as property owners, insurance agents, and mortgage lenders, can benefit from the information.

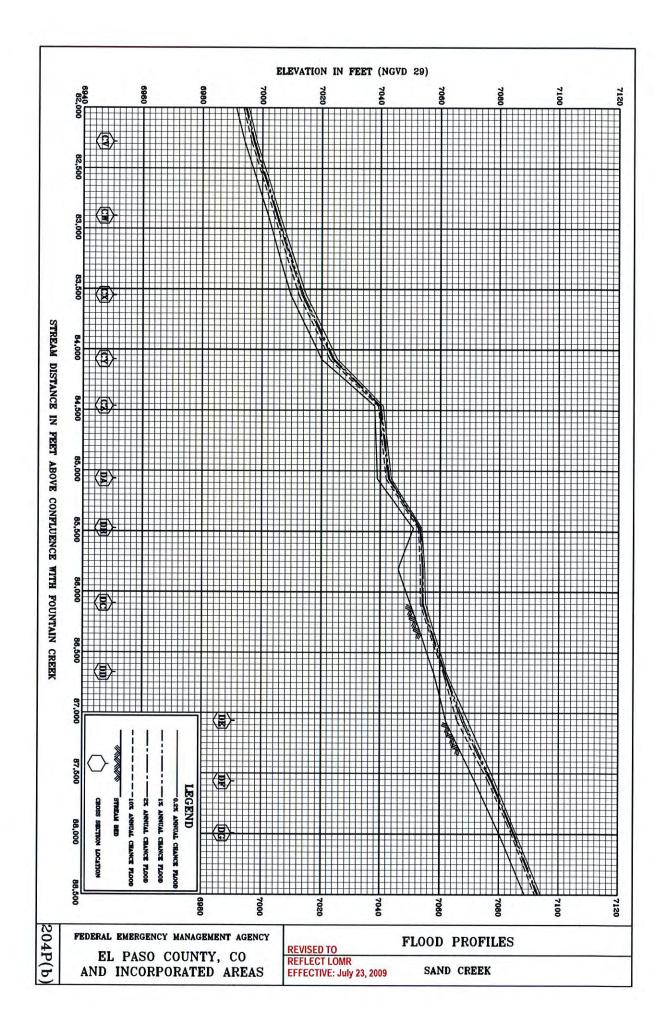
This determination is based on the flood data presently available. The enclosed documents provide additional information regarding this determination. If you have any questions about this document, please contact the FEMA Map Assistance Center toll free at 1-877-336-2627 (1-877-FEMA MAP) or by letter addressed to the LOMR Depot, 3601 Eisenhower Avenue, Alexandria, VA 22304. Additional Information about the NFIP is available on our website at http://www.fema.gov/nfip.

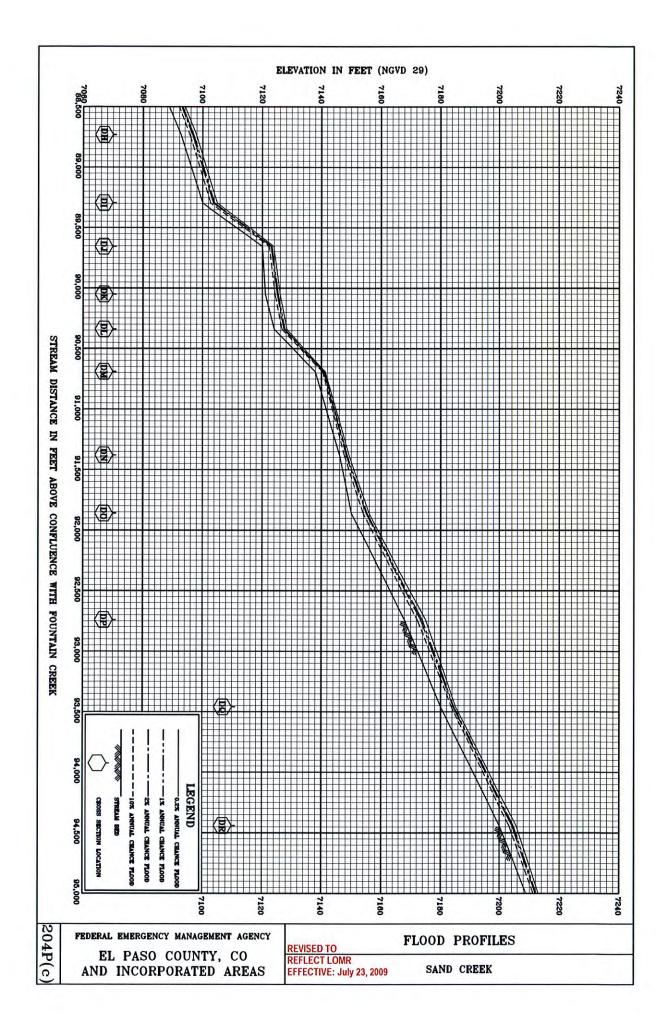
wid 1. Baycon

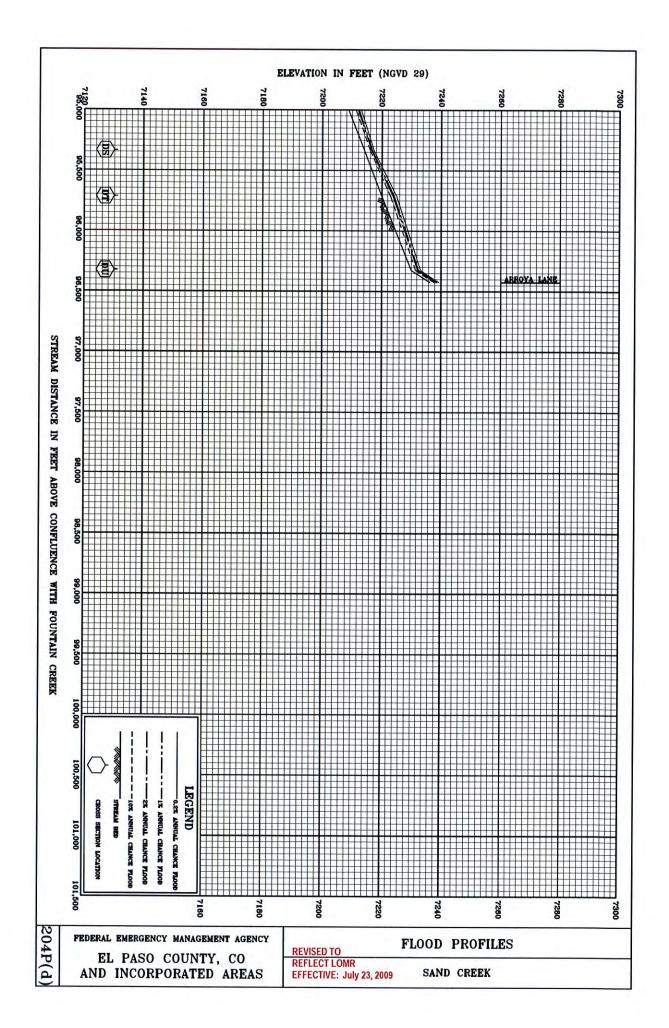
David N. Bascom, Program Specialist Engineering Management Branch Mitigation Directorate

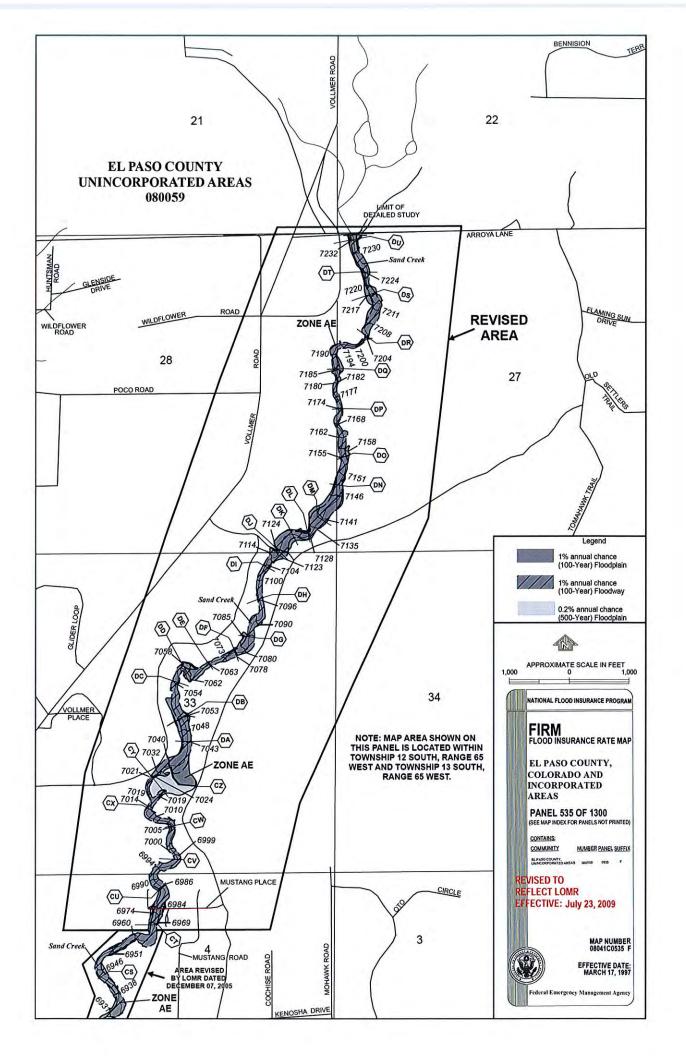
112553 10.3.1.08080541

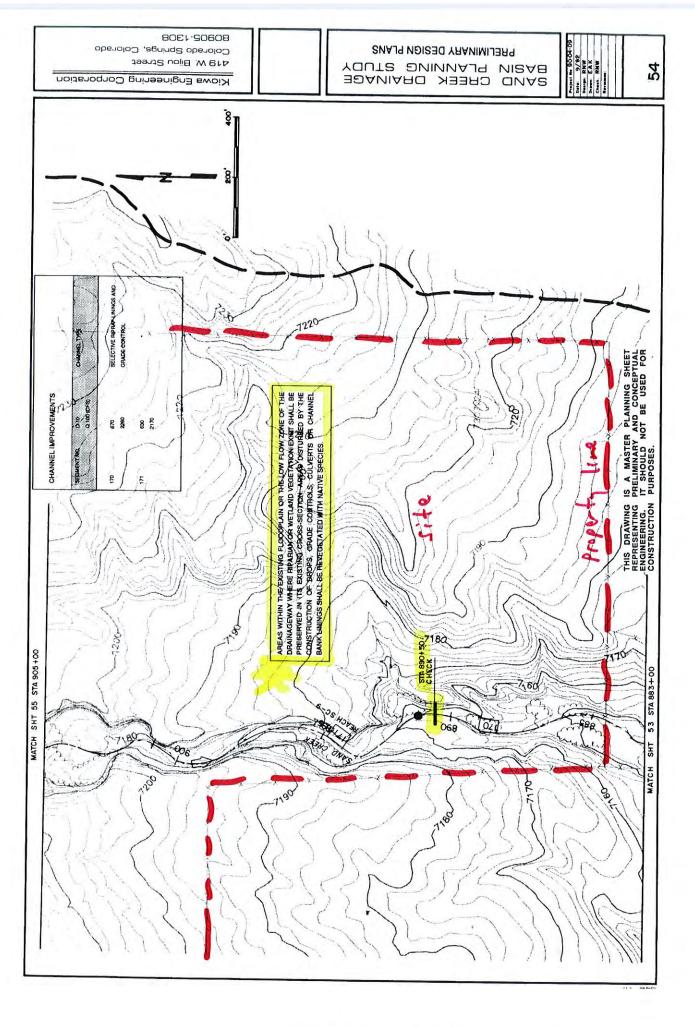

102-I-A-C

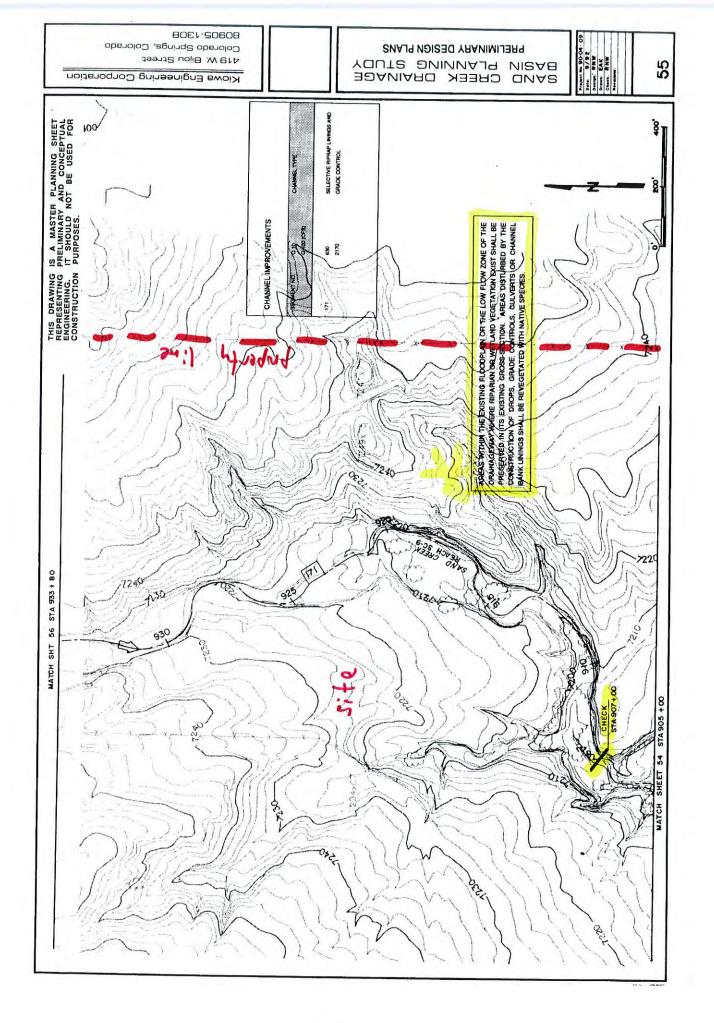

Page 3 of 4	Issue Date: March 6, 2009	Effective Date: July 23, 2009	Case No.: 08-08-0541P	LOMR-APP
Fage 5 01 4	1350e Date. March 0, 2005	Ellective Date. July 23, 2009	Case No 00-00-0341F	LOWIK-AFF
	Fede	eral Emergency Mar Washington, D.C. 20	• • •	
	L	ETTER OF MAP REVISIO	N	
	DETERMI	NATION DOCUMENT (CO	NTINUED)	
	signated a Consultation Coordination unity and FEMA. For information reg	Officer (CCO) to assist your communit garding your CCO, please contact:	y. The CCO will be the primary	liaison between
	Federal	Ms. Jeanine D. Petterson Director, Mitigation Division Emergency Management Agency, Reg Denver Federal Center, Building 710 P.O. Box 25267 Denver, CO 80225-0267 (303) 235-4830	ion VIII	
STATUS O	F THE COMMUNITY NFIP MAP	s		
LOMR at the		IRM and FIS report for your community isly cited FIRM panel(s) and FIS report made by this LOMR at that time.		
any questions a	about this document, please contact the FEM	ilable. The enclosed documents provide additio IA Map Assistance Center toll free at 1-877-336 304. Additional Information about the NFIP is a <i>Jurid A. Bascom</i>	-2627 (1-877-FEMA MAP) or by letter ad	dressed to the
		David N. Bascom, Program Specialist Engineering Management Branch Mitigation Directorate	112553 10.3.1.08080541	102-I-A-C
			12000 10.0.1.00000041	102-1-1-0

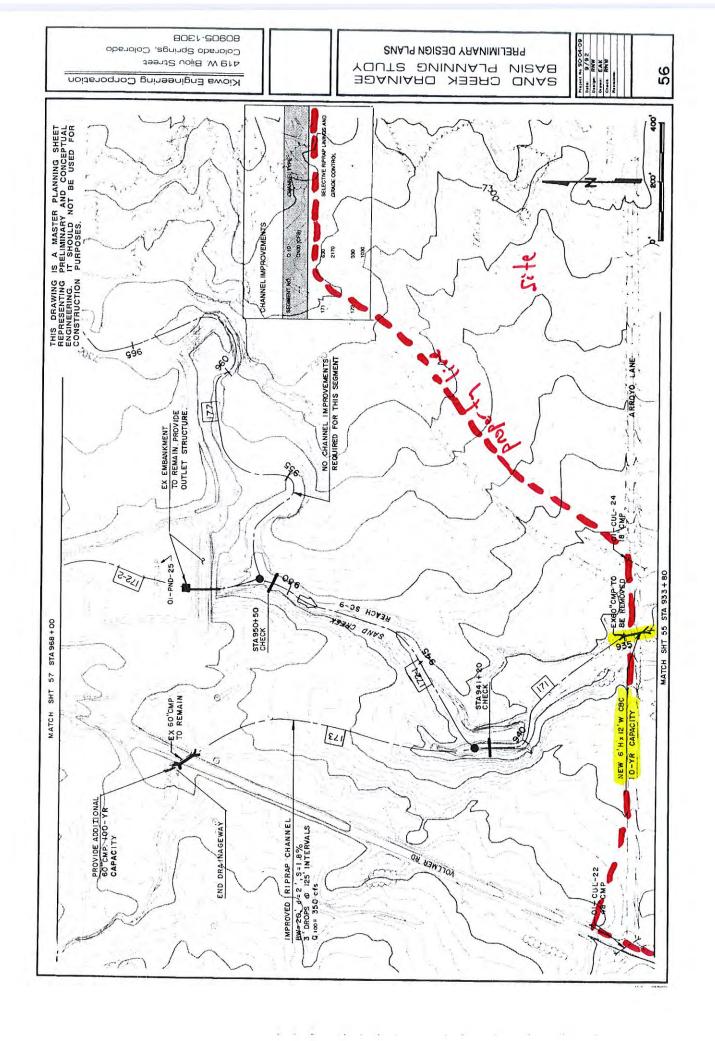

		March 6, 2009	Effective Date: July 23,	, 2009	Case No.: 08-08-0541P	LOMR-APP
	ST HOLENAND	Federa	al Emergency Washington,	U	ement Agenc	у
			TER OF MAP RI TION DOCUMEN		NUED)	
		PUBLIC	NOTIFICATION O	F REVISION		
			PUBLIC NOTIFICAT	ION		
FLOODI	NG SOURCE	LOCATION OF REFE	RENCED ELEVATION	BFE (FEET NGVD 29)	MAP PANEL
				EFFECTIVE	REVISED	NUMBER(S)
Sand Creek		Just upstream of Mustang		None	6,984	08041C0535 F
		Just downstream of Arroya		None	7,238 reconsider this determina	08041C0535 F
LOCAL NEV	WSPAPER	Name: <i>El Paso Coun.</i> Dates: 03/18/09	ty News 03/25/09			


	S SNTOODTA	SOURCE		FLOODWAY		M	- A	<u>б</u> Ш	2
	CROSS SECTION	DISTANCE ¹	WIDTH (Feet)	SECTION AREA (SQUARE FEET)	MEAN VELOCITY (FEET PER SECOND)	REGULATORY	WITHOUT FLOODWAY FEET	NUT WITH WAY FLOODWAY FEET (NGVD)	INCREASE
	Sand Creek (cont'd)								
	CA	65,292	164	427	6.1	6,748.7	6,748.7	6,749.4	0.7
	CB	66,092	41	223	11.7	6,761.2	6,761.2	6,762.2	1.0
	CC	66,247	90	270	9.6	6,773.6		6,773.7	0.1
	Ð	67,647	50	218	11.9	782.		783	•
	CE	68,297	65	284	8.8	79	6,793.9	79	0.5
	CF	69,147	50	213	11.7	6,804.5	6,804.5	6,804.5	
	CG	70,157	50	213	11.7		-	815.	0.2
Revised	CH	70,577	205	4	7.2	, 82	6,823.9	6,824.5	0.6
-	CI	70,627	180	267	9.4	6,826.7	6,826.7	6,827.7	1.0
	CJ	70,727	210	340		6,831.1	6,831.1	6,831.1	0.0
LOMR	CK	70,807	195	334	7.5	332		6,832.5	0.0
-	IJ	71,162	06	255	9.8	88.	6,838.0	6,839.0	
Dec. 7,	CM	71,977	226	503	5.2	6,847.4	6,847.4	6,848.3	0.9
-	CN	73,052	174	328	7.9	6,861.1	6,861.1	6,861.2	0.1
1	CO	73,644	237	364	7.1	6,870.2	6,870.2	6,870.2	0.0
	CP	75,142	172	324	8.0	6,888.5	6,888.5	6,888.7	0.2
	cõ	76,161	109	283	9.2	6,903.5	6,903.5	6,903.7	0.2
Revised	ß	77,846	100	272	9.6	6,926.1	6,926.1	6,926.7	0.6
-	CS	79,187	117	287	9.1	6,944.1	6,944.1	6,944.1	0.0
1	CT	80,808	142	310	8.4	6,969.2	6,969.2	6,969.2	0.0
	CU	81,501	120	342	7.6	6,986.1	6,986.1	6,986.5	0.4
-	CV	82,281	124	295	8.8	6,997.4	6,997.4	6,997.4	0.0
	CW	82,897	64	237	11.0	7,005.3	7,005.3	7,006.1	0.8
-	C	83,517	90	266	9.8	7,013.9	7,013.9	7,013.9	0.0
-	CY	84,087	70	244	10.7		7,024.3	4	0.0
-	CZ	84,473	160	322	8.1	7,040.2	7,040.2	7,040.2	0.0
					REVISED TO	D T 0			
					REFLEC	REFLECT LOMR			
-	Feet Above Confl	Confluence With	Fountain	Creek	EFFECI	EFFECTIVE: July 23, 2009	600		
	FEDERAL EM	FEDERAL EMERGENCY MANAGEMENT AGENCY	EMENT AGE	VCY		Н	FLOODWAY DATA	DATA	
		AND INCORPORATED AREAS	D AREAS				SAND CREEK	2	


FLOODING SO	CROSS SECTION	Sand Creek	(cont'd)	DA	DB	DC	DD	DE	DF	DG	HD	DI	DJ	DK	DL	MQ	DN	DO	DP	QQ	DR	DS	DT	DU		Feet Above Confluence	FEDERAL EMEF	
SOURCE	DISTANCE ¹			85,073	85,483	86,103	86,673	87,073	87,573	•	8	89,303	89,663	-	90,348	~	38	91,868	,74		,44	95,343	95,723	96,333		With	FEDERAL EMERGENCY MANAGEMENT AGENCY	
	WIDTH (FEET)			139	170	100	197	83	98	135	89	74	143	140	102	300	120	105	65	117	81	100	77	90		Fountain		ADEAS
FLOODWAY	SECTION AREA (SQUARE FEET)			456	328	274	434	270	325	304	263	249	309	426	276	398	292	313	239	288	260	274	252	266		Creek E	ICY	
	MEAN VELOCITY (FEET PER SECOND)			5.7	7.9	9.5	6.0	9.6	8.0	8.6	9.9	10.4	8.4	6.1	9.4	6.5	8.9	8.3	10.9	9.0	10.0	9.5	10.3	9.8	REVISED TO REFLECT LOMR	EFFECTIVE: July 23, 2009		
M	REGULATORY			7,043.0	7,053.4	7,054.4	7,061.7	7,068.2	7,077.7	085	7,096.9	7,104.1	7,123.2	7,125.1	7,127.6	7,141.0	7,148.5	155.	7,173.8	7,184.6		7,216.8	7,224.2	7,232.5		/ 23, 2009	F	
BASE FI WATER SURFACE	WITHOUT FLOODWAY FEET			7,043.0	7,053.4	7,054.4	7,061.7	7,068.2	7.077.7	7,085.1	7,096.9	7,104.1	7,123.2	7,125.1	7,127.6	7,141.0	7,148.5	155.	7,173.8	7,184.6	7,204.5	7,216.8	7,224.2	7,232.5			FLOODWAY DATA	
FLOOD CE ELEVATION	1 14 (9			7,043.1	053.			068.	. 770	085.	.960	,104.	7,123.2	7,125.2	7,127.8	7,141.0	7,148.6	155.	173.	7,184.6	204.	7,217.2	7,224.3	233.			DATA	1
7	INCREASE		ľ	0.1	•	•	0.3		•					0.1	0.2	0.0	•			0.0	0.1	0.4	0.1					9




RECOMMENDATIONS PER SAND CREEK DBPS


.

e i

.

et -

VI. DEVELOPMENT OF ALTERNATIVES AND RECOMMENDED PLAN The concepts which are available for handling stormwater runoff within the Sand Creek basin have been presented and discussed in detail in the Sand Creek Drainage Basin Planning Study Development of Alternatives Report and the draft East Fork Sand Creek Drainage Basin Planning Study. The process of combining the various channel treatment options, detention schemes and roadway crossing structures into a contiguous plan for all of the reaches is presented in this chapter of the report. As a result of the evaluation of the flood control, environmental, open space, operations and maintenance, and implementation concerns within the Sand Creek basin, the following concepts were identified as having sufficient feasibility to warrant furture evaluation and review:

Channel Concepts: Floodplain Preservation Channelization, 10- or 100-year Selective Improvements Detention: Regional detention systems **Channel Concepts**: The channel concepts listed above have been evaluated with respect to the parameters listed in the previous chapter. A concept's feasibility depends upon its impact, positive or negative, upon the evaluation parameters. *The floodplain preservation* concept has been considered to be the same as the "*do-nothing*" alternative. The floodplain preservation concept would involve the regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain limits, generally as depicted on the effective City of Colorado Springs and El Paso County Flood Insurance Rate Maps. Regulation of the floodplain so that future encroachments are minimized and the floodprooffing of structures which are currently within the 100-year floodplain would presumably be the methods used to address the flood hazard concerns along Sand Creek. In the upper reaches of Sand Creek, the ownership or easements associated with the 100-year floodplain (or greater limits to allow for an erosion buffer zone) would be a primary issue in regards to implementation of such a concept. Detention in the upper reaches of the basin Sand Creek basin and in the East Fork Sand Creek basin will maintain the 100-year floodplain at existing limits within the lower reaches of Sand Creek. The "do-nothing" concept is feasible wherver

the existing drainageway improvements are of adequate capacity to convey flood flows. *Charmelization* would involve the lining of the Creek into a more confined flow area, and could be done for either the *100-year or 10-year* flood discharges. Several typical channel concepts have been presented. The primary bank lining material would probably be riprap. Grade control and/or drop structures would be required in a channelization concepts so that the flood velocities could be controlled to a level requiring medium to heavy riprap. Soli centent offers an alternative to riprap and concrete for the construction of drops or grade control structures. Revegetation would occur wherever the native vegetation was disturbed by the channel construction. Willows at the toe of the riprap banks would be a minimum replacement. *Selective linings* would involve the construction of grade controls, drop structures, bank linings, storm sever outlet control structures selectively sited to resist stream erosion or to reduce potential flooding damages. Areas of future concern such as at the outside bends of the creek, or at the outlets of bridges or culverts which will cross the drainageway would be subject to selective improvements.

Detention Concepts: The two general detention concepts evaluated were onsite versus regional detention. During the evaluation process, it was determined that the onsite detention concept has a low feasibility relative to a regional concept. This is because, (1) onsite detention has a unpredictable impact upon lowering peak discharges from urbanized areas to historic conditions (reference, Urbonas and Glidden, "Effect of Detention on Flows in Major Drainageways" ASCE Water Forum '81, 1981), (2) an onsite concept has little impact upon maintaining or enhancing water quality, (3) the number of onsite detention basins, their locations and size cannot be accurately determined in the undeveloped portions of the basin at this time, and (4) onsite detention would present a substantial maintenance responsibility to the jurisdictions involved. For these reasons the onsite detention concept was eliminated and regional detention basin concepts were developed. In the analysis of the channel concepts, regional detention facilities were assumed to be in place.

Channel Alternatives

Presented on Table VI-1 is a matrix of channel alternatives which were evaluated. All reaches of Sand Creek and the East Fork of Sand Creek had at least three alternatives analyzed. Presented on Tables VI-2 through VI-6 are comparative evaluations of the floodplain preservation (do-nothing), channelization and selective lining concepts, for the mainstem Sand Creek basin, by reach. The purpose of the evaluation process was to identify the relative advantages and disadvantages of each concept within each reach.

100-year peak discharge to levels. This will allow for the channel improvements to be constructed within the existing right-of way.

Reaches SC-5 and SC-6: A selective channel improvement concept has been recommended for these reaches. Detention in Reach SC-8 of the basin will maintain flows to historic peak discharge levels, however the low flows will increase in frequency and volume. For this reason it has been recommended to provide riprap channel linings and volume. For this reason it has been recommended to provide riprap controls. This will prevent the long-term degradation of the invert. A residual 100-year floodplain will remain and will offer opportunities for habitat replacement and open space preservation. Land adjacent to the drainageway is currently undeveloped or unplated at this time which makes the feasibility of implementing this concept greater in comparison to the urbanized reaches of the creek.

Reaches SC-7 and SC-8: A selective improvement concept involving the localized liming of channel banks and grade control construction has been recommended for these reaches. The feasibility of this concept stems from the fact that flows will be reduced because of detention. Numerous individual rural ownerships cross the drainageway, however no habitable structures lie within the 100-year floodplain. Because of this, the economic feasibility of channelization concepts is low. Non-structural measures can be used to limit encroachments into floodprone areas. Additionally, the City of Colorado Springs Comprehensive plan recommended that the floodplains be maintained as open space. Potential habitat disturbances can be avoided with a selective plan, or simply replaced as part of the particular construction activity which caused the disturbance.

Reach SC-9: A floodplain preservation concept has been recommended for this reason the reach. Little increase in urbanization is anticipated in this reach, and for this reason the existing drainageway is expected to remain stable. Localized improvements may be necessary to limit erosion caused by flow concentrations at culverts or storm sewers. Private ownership of the drainageway is anticipated to continue which lower the feasibility of channel concepts which require permanent right-of-ways or easements for construction and maintenance.

Reaches WF-1 through WF-3: A 100-year channel concept has been recommended for these reaches primarily because of the potential for flooding damages. Several roadway crossings are in need of replacement because of the flood hazard the constrictions create. Some open space enhancement potential exists for this concept since these reaches have been degraded visually by debris accumulation, bank sloughing and sedimentation. Little opportunity exists for widening the drainageway because the

Development of the Recommended Plan

Presented on Table VI-7 is a matrix representing the recommended plan for each major drainageway reach. The selection of a recommended channel treatment scheme has been based upon the qualitative and quantitative information presented in the Sand Creek Drainage Basin Planning Study Development of Alternatives report and the draft East Fork Sand Creek Drainage Basin Planning Study. Contained within the Technical Addendum to the Sand Creek Drainage Basin Planning Study Development of Alternatives report, is the alternative hydrologic, hydraulic and conceptual cost data used in the evaluation and comparison of each of the alternatives within the mainstern Sand Creek basin.

Discussion of Recommended Plan

The recommendation of a particular channel treatment or detention scheme has been based upon the qualitative and quantitative data presented. For each reach the flood hazard, environmental, cost, operations and maintenance and open space aspects of the drainageway were weighed for each alternative concept.

Reach SC-1: For this reach a 10-year channel section was recommended for further evaluation. With the implementation of regional detention in the upper basin, the 100-year floodplain will generally be confined within the existing banks, excepting at roadway crossings lacking 100-year capacity. It is recommended that a 10-year low flow channel be constructed within the invert of the existing channel through the construction of benches and sand bars. As urbanization continues towards the full development scenario, the base flow and annual flows will increase in volume and frequency. For this reason, the low flow area must be stabilized to protect the existing channel banks from underrnining and subsequent bank sloughing. The benched areas offer an opportunity for habitat replacement and enhancement. At some locations within this reach, a residual 100-year floodplain will remain which will have to be regulated. The residual 100-year floodplain offers some potential for open space preservation and enhancement. This is particularly true in the portion of the reach downstream of Hancock Expressway.

Reaches SC-2 through SC-4: A 100-year channel concept has been recommended primarily because of the potential for flooding damages which exists in these reaches. Habitat disturbed by the construction of channel linings and grade control structures could be replaced along the channel toes and on the overbanks. The replacement of the Waynoka Road crossing will reduce the potential for flood damages in areas adjacent to these roadways. The detention within the upper reaches will limit the

VII. PRELIMINARY DESIGN

The results of the preliminary design analysis are summarized in this section. The alternative improvements have been quantitatively and qualitatively evaluated, and presented to the City of Colorado Springs and other interested agencies and individuals. Field review of specific areas of concern have been conducted in order to refine the channel treatments suggested for use along Sand Creek, East Fork Sand Creek and their major tributaries. The preliminary plan for the recommended alternative is shown on the drawings contained at the rear of this report.

Criteria

The City of Colorado Springs, El Paso County Drainage Criteria Manual was used in the development of the typical sections and plans for the major drainageways within the Basin. The City/County manual was supplemented by various criteria manuals with more specific application. These were:

- "Design Guidelines and Criteria for Channels and Hydraulic Structures on Sandy Soils," prepared by Simons, Li & Associates, Inc., 1981.
- Urban Storm Drainage Criteria Manual, Volumes I, II, and III, prepared by the Urban Drainage and Flood Control District.

Various design plans for roadway and channel improvement projects, either proposed or already constructed were reviewed in order to prepare the preliminary design plans. Specifically, the project design plans for the Las Vegas Street and Galley Road bridge replacement projects were reviewed and the improvements incorporated in the preliminary design. The **proposed** Sand Creek Stabilization Project, AT&SF Railroad to Hancock Expressway and the **proposed** Sand Creek Stabilization Project at Fountain Boulevard design plans have been reviewed and incorporated into the preliminary design have been reviewed and incorporated into the preliminary

Hydrology

Presented on Table VII-1 is selected hydrologic data to be used for the sizing of major drainageway improvements within the Basin. Peak flow rates for the 10- and 100-year frequency incorporating and the selected detention alternatives for the Sand Creek and East Fork Sand Creek Basin are summarized for key points along the major drainageways.

Contained within the The technical addenda of this report contains a complete listing of peak discharges for all the sub-basins, stream segments and design points shown on Exhibit 1.

The sizing the drainageway improvements for the tributaries will need to be verified during the final design and layout of the proposed drainageway facilities. Land development activities may alter the location of design points along the tributaries, and therefore slight alteration in a sub-basin's length, slope and area may occur. The methods outlined in the City/County Drainage Criteria Manual should be applied during final design analysis. The rational method should be used to check the peak flow rates for all tributary drainageways and storm sewers draining areas less than 100 acres in size.

Channels

The recommended channel sections for each reach of drainageway has been outlined in Section VI of this report. In general, the banks of Sand Creek channel, from the confluence with Fountain Creek to the proposed Sand Creek Detention Basin No. 2 are to be lined, or in some cases relined, with ripra to either a 10-year or 100-year flow depth, as shown on the preliminary design plans. Above the Sand Creek Detention Basin No. 2, selectively located riprap bank protection such as at outside bends, at bridge or culvert outlets, and at confluences with side tubutaries have been recommended. In conjunction with the selective improvement measures, and the 10-year low flow concept, the 100-year floodplain should be preserved and regulated. Wherever existing bank linings were judged to be adequate, no improvements have been recommended at this time. For the West Fork Sand Creek, 100-year riprap bank linings have been recommended in order to address the 100-year flooding hazard which exists at numerous locations along the West Fork. The final design improvements shown in the Palmer Park Bridge Replacement project drawings have been incorporated into the preliminary design plans. In the uppermost reaches of the West Fork, a short segment of rectangular concrete channel has been recommended because of right-of-way constraints. For the Center Tributary of Sand Creek, 100-year riprap lined channels have been recommended from the confluence with East Fork to Platte Avenue. Above Platte Avenue, the existing concrete channels have adequate capacity except where the drainageway channel has yet to be improved. The final design plans for the US 24 Bypass Project, Phase II have been incorporated into the plans. As part of the bypass construction, it is proposed to line the Center Tributary using riprap. The location of the proposed roadway, new crossings, drops and channel as shown on the Phase II Bypass plans have been reflected on the preliminary design drawings.

For the East Fork Sand Creek drainageway, riprap lined channel banks have been recommended for the majority of the reaches. This is mainly because of the high level of development predicted for the basin in the area known as the Banning-Lewis Ranch development. Open space to accommodate the 100-year floodplains should be allowed for as the East Fork Sand Creek drainageways develop. This is consistent with the Banning-Lewis Ranch master development plan which was approved at the time of annexation of this property. Above Woodmen Road, selective channel lining improvements and grade control structures have been recommended.

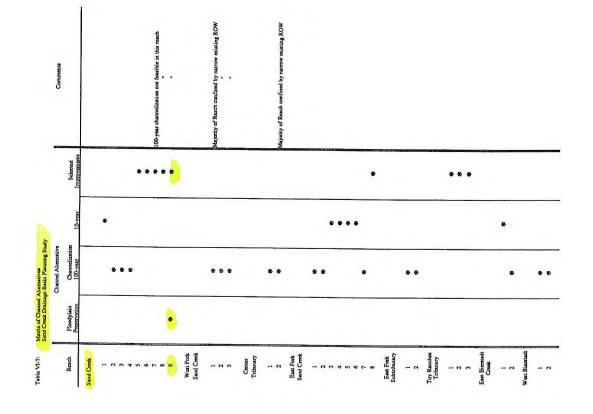
For the most part the side tributaries have been recommended to be lined with riprap, however there are some locations in the upper basin which have been proposed to be grasslined. The location of the side drainageways should be considered approximate and may very likely be modified in the future because of land development. The primary criteria used when sizing the proposed channel sections has been velocity. For all riprap lined channels, the average design velocity should be no greater than 9 feet per second. This criteria allows for the use of Type H riprap within the main flow area of the drainageway. For the case of a 10-year channel with an overall floodplain section, limiting the main channel velocity to 9 feet per second will result in overbank velocities in the five feet per second range. At this level of overbank velocity, native vegetation will be able to withstand the erosive forces which might result in a 100-year flow event. Velocities approaching 10 feet per second could occur at constrictions such as at roadway crossings and at culvert outlets.

Drop Structures and Check Structures

Drop and check structures have been sited along Sand Creek in order to slow the channel velocity to the recommended 7 feet per second, and to prevent localized and long-term stream degradation from affecting channel linings and overbanks. In the reaches to be selectively lined, drops and check structures will protect the native vegetation from the detrimental effects of stream invert headcutting. Several types of structures could be considered for the Sand Creek Basin. For channel bottom widths in excess of fifty feet, soil cement or sheet piling drops/checks are feasible. For channels narower than this, reinforced concrete structures are probably the best alternative. A maximum drop height of three feet is recommended. The methodology recommended for use when designing vertical structures is contained with volume II of the Urban Storm Drainage Criteria Manual.

Detention

The recommended plan calls for the construction of six regional detention basins within the Sand Creek basin, and six regional basins within the East Fork Sand Creek basin. The


purpose of the Sand Creek detention basins is to limit peak discharges at Powers Boulevard to existing development condition levels. The detention basins in the upper portions of the Sand Creek basin will keep the majority of the existing channel sections and bridges below Powers Boulevard with adequate flow capacity in the future development condition. The detention basins within the East Fork Sand Creek basin have been sized to maintain the flow outfalling from the Banning-Lewis Ranch property at existing levels. This in turn will help to reduce flow to the mainstem of Sand Creek Basin Nos. 2 and 6, and East Fork Sand Creek Basin Nos. 1, 2, and 3 will be classified as jurisdictional structures, and their design and operation would be subject to State Engineer's office criteria. Sand Creek basins number 1 and 3 should be edsigned to accommode the troadway embankments, and therefore classifying as incidental storage and not subject State Engineer's regulations.

At Stetson Hills Boulevard, the roadway embankment has created a 2 acre open water wetland which was identified during the environmental review of the basin. It is recommended that this wetland be preserved. Accordingly, an outlet control structure will have to be constructed to pass the 100-year discharge to the downstream channel without overtopping the roadway. No floodwater storage or routing has been accounted for in the hydrology modelling at this roadway for the selected detention plan.

For the East Fork Sand Creek detention basin numbers 2, and 3, the existing embankment and outlet structure act to maintain a permanent pool at this time. It is recommended that the design of these detention basins be directed at maintaining the permanent pool when the flood control storage is to be added. The existence of a permanent pool may enhance the water quality aspects of these basins, and offer the opportunity of open space development conducive with open water.

Water Ouality

Improvement of urban stormwater quality has become and important issue in drainage basin planning. Many pollutants are naturally associated with sediments that enter sensitive receiving waters. The pollutants are naturally occurring compounds that are carried to the drainageways in storm runoff. Other pollutants are the result of urbanization such as lawn chemicals, oil and grease, pet feces, lawn clippings and other items. Many pollutants can be limited by programs such as erosion control at construction sites, educational programs to inform the public as to the proper use of lawn chemicals, oil recycling programs and street sweeping programs. Even with these programs in place, erosion along the drainageways can generate large quantities of sediment that can settle out along the downstream channel bottorns.

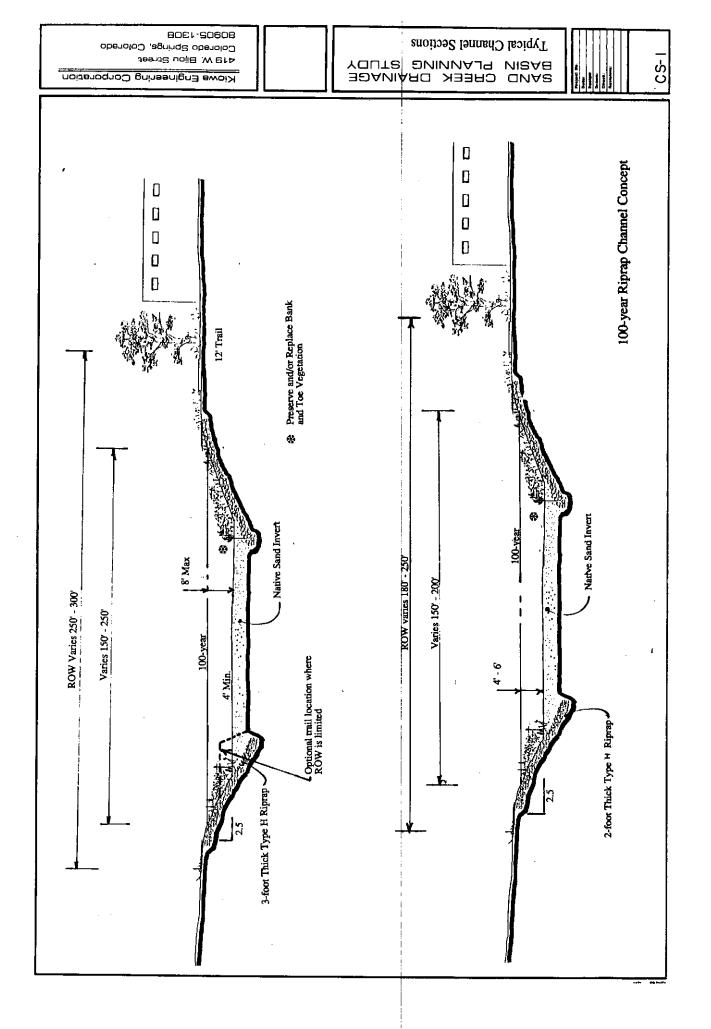
SAND CREEK DRAINAGE BASIN PLANNING STUDY	DRAINAGEWAY CONVEYANCE COST ESTIMATE	WITH SEI ECTED DETENTION AT TERNATIVES
TABLE VIII-2:		

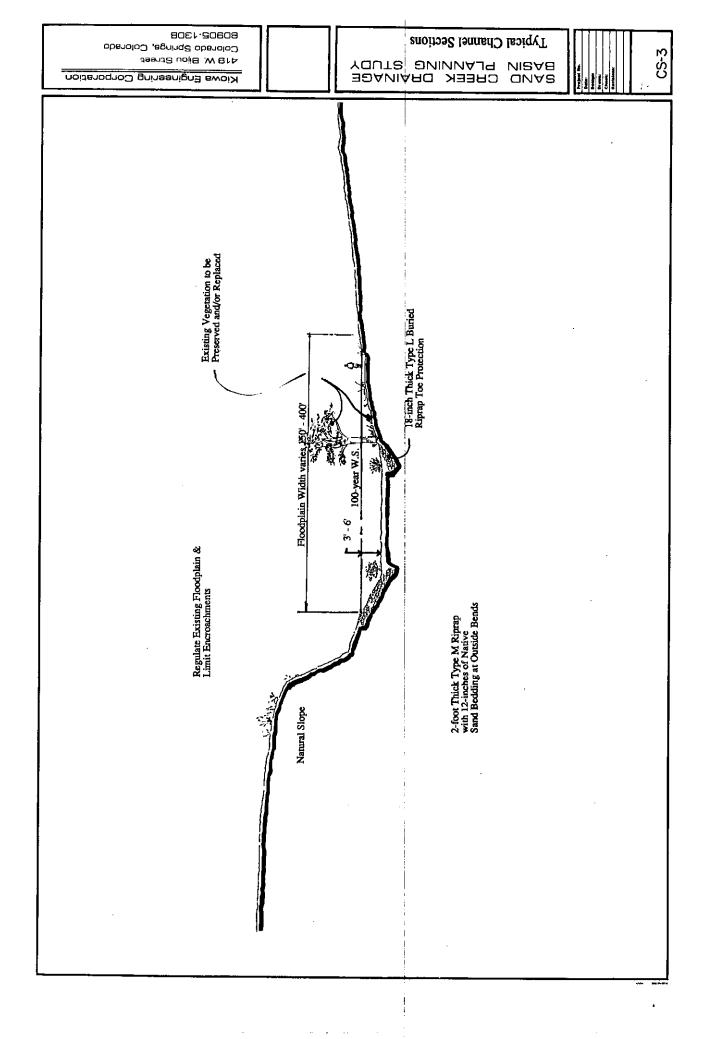
	(FT) 2500 - 2500 - 2500 - 2500 - 2500 - 2500 - 2500 551 - 2500 550 550 550 550 550 550 - 2500 550 5500 550	 INPROVEMENT TYPE - - - - - - - - - - - - - - - - - - -
2 4 4 4 4 4		 LR RUP RUPRA RUPRA RUPRA RUPRA

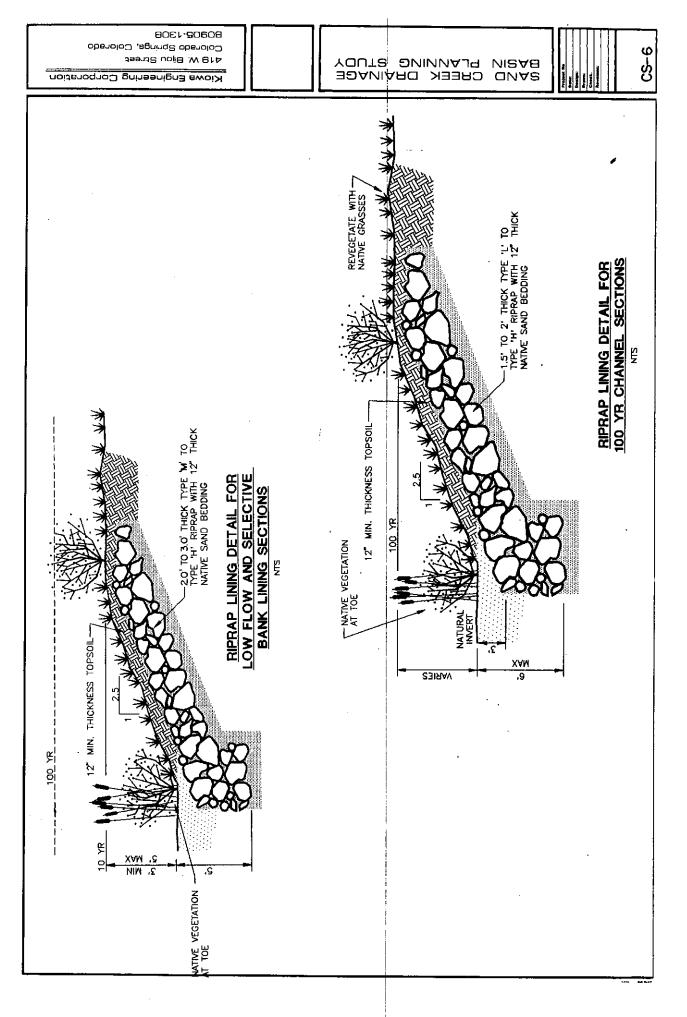
\$15,560,220 \$18,279,420

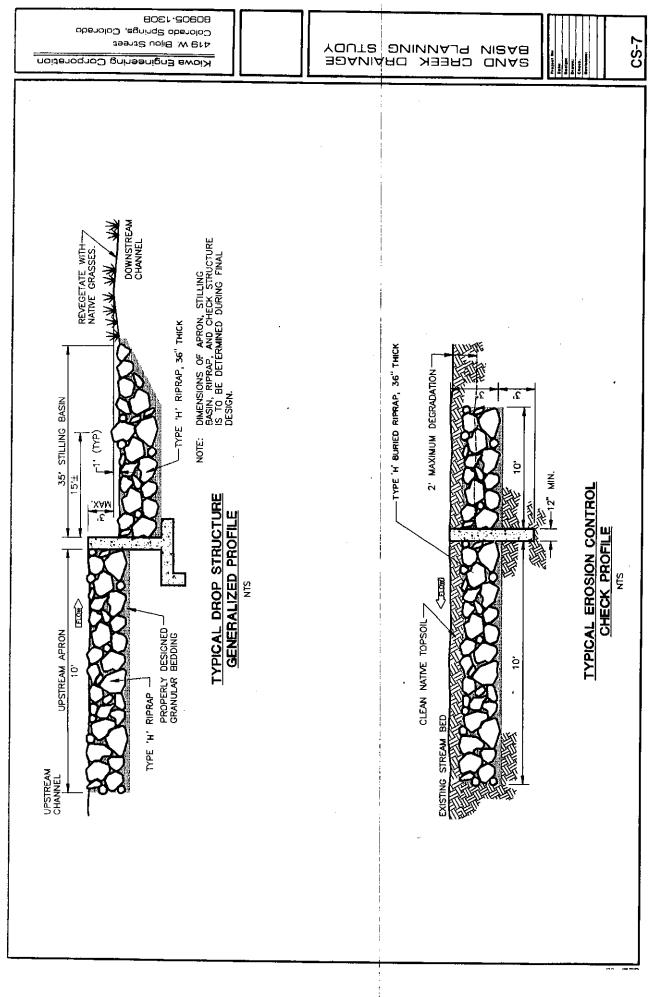
TOTAL SAND CREEK DRAINAGEWAY

64

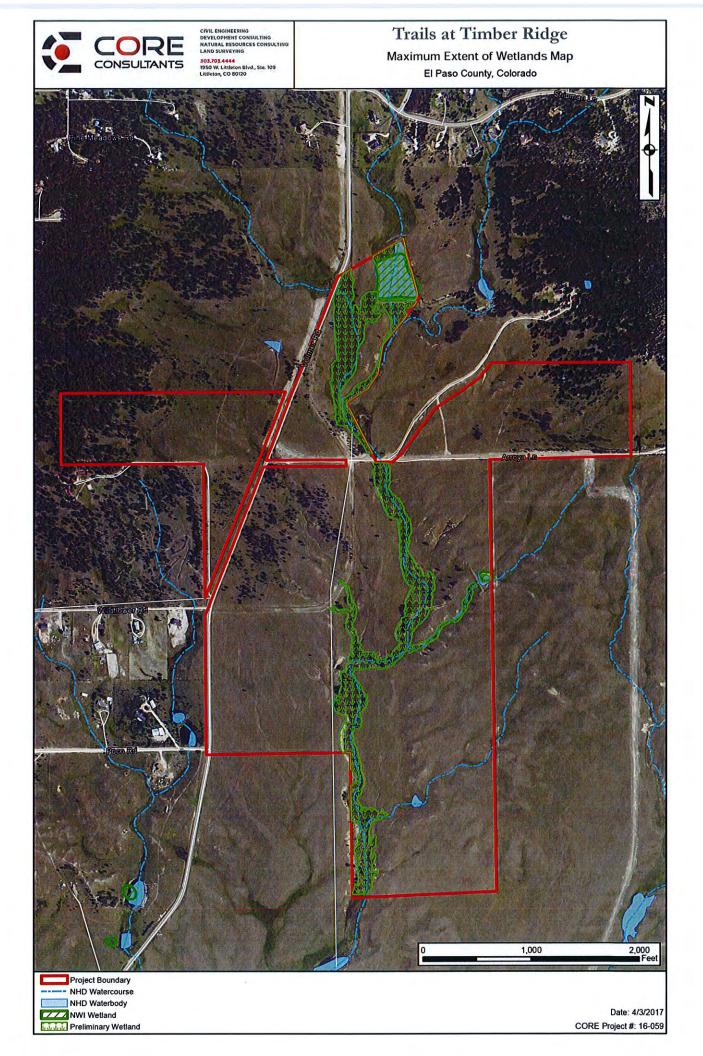

		SAND CREEK, CENTER TRIBUTARY AND WEST FORK SAND CREEK	ARY AND WEST P	ORK SAND CREE	X			
SEGMENT NUMBER	REACH NUMBER	IMPROVEMENT TYPE	IMP. LENGTH (FT)	UNIT COST (S/LF)	NUMBER OF GRADE CONTROLS	LENGTH OF TOTAL GRADE CONTROL REIMBURSABLE (FT) COSTS	TOTAL REIMBURSABLE COSTS	TOTAL COST
147-2	•		1150	200		90	\$235,400	\$235,400
153-1		•	009	150	0	0	290,000	000'065
153-2			450	150	0	0	\$67,500	867,500
152-1	SC-7	100-YEAR GRASSLINED	1650	150	0	0	\$247,500	\$247,500
152-2			800	150	2	100	\$138,000	\$138,000
150-1		100-YEAR STORM SEWER	800	58	0	0	\$46,400	\$46,400
		36" RCP						
150-2	•	100-YEAR RIPRAP	2400	200	0	0	\$480,000	\$480,000
1-191	•	100-YEAR GRASSLINED	550	150	0	0	\$82,500	\$82,500
154	SC-8		2100	200	10	009	\$528,000	\$528,000
151	•	,	2400	200	13	520	\$573,600	\$573,600
155-1	•	100-YEAR GRASSLINED	550	175	4	140	\$121,450	\$121,450
159	•	100-YEAR RIPRAP	3450	200	14	840	\$841,200	\$841,200
164			1350	200	s	200	\$306,000	\$306,000
186			2250	200	S	200	\$486,000	\$486,000
169	•	•	650	175	1	04	\$120,950	\$120,950
173	SC-9	•	950	5/1	80	320	058'EZZS	\$223,850
WEST FORK SAND CREEK	ND CREEK							
1541	WF-1	100-YEAR RIPRAP	1550	223	2	100	8	\$363,650
161			009	223	2	80	8	\$148,200
164-2	•	100-YEAR GRASSLINED	500	150	0	0	8	\$75,000
1644	•	100-YEAR RIPRAP	2500	175	6	280	8	\$487,900
165-1	•		1350	175	0	0	95	\$236.250


73


•


	ROADWAY CULVERT SAND CREEK BASINS	ROADWAY CULVERT CROSSING COST ESTIMATE SAND CREEK BASINS	r estimate					
ROADWAY	REACH NUMBER	DRAINAGEWAY SEGMENT	CROSSING TYPE	HLDNET	UNIT	UNIT COST	TOTAL COST	TOTAL REIMBURSABLE COST
BANNING-LEWIS PRKW	SC-8	186	6'Hk10'W CBC	120	5	S390	. \$46,800	\$46,800
ARROYO LANE	SC-9	171	6'Hx12'W CBC	80	5	\$510	\$40,800	8
VOLLMER ROAD	SC-8	169	60-INCH CMP	8	5	\$120	29,600	8
	SC-9	173		80	5	\$120	29,600	8
BURGESS ROAD	SC-9	176	42-INCH CMP	8	3	\$75	\$6,000	8
•	SC-9	178	2-42-INCH CMP	80	Ч	\$150	\$12,000	8
		CENTER TRIBUTARY						
TERMINAL AVENUE	CT-2	144	4-5'Hx8'W CBC	99	3	\$1,200	\$72,000	8
OMAHA BOULEVARD	CT-2	146-2	3-4'Hx9'W CBC	98	5	20065	\$72,000	8
	41	WEST FORK SAND CREEK	EK					
WOOTEN ROAD	WF-I	153	2-4'Hx6'W CBC	100	5	\$480	\$48,000	8
EDISON AVENUE	NF-1	153	2-4'Hx6'W CBC	98	5	\$240	\$14,400	8
PALMER PARK BLVD.	WF-1	154-2	2-4'Hx10'W CBC	80	5	\$540	\$43,200	S
CHICAGO RI RR	WF-1	165-1	4'Hx8'W CBC	220	5	\$270	\$59,400	8
HALF MOON DRIVE	WF-1	165-2	4'Hx6'W CBC	8	Ц	\$240	\$14,400	S

.....



:

PRELIMINARY WETLANDS MAPPING

HYDROLOGIC CALCULATIONS

For Colorado Springs and much of the Fountain Creek watershed, the 1-hour depths are fairly uniform and are summarized in Table 6-2. Depending on the location of the project, rainfall depths may be calculated using the described method and the NOAA Atlas maps shown in Figures 6-6 through 6-17.

Return	1-Hour	6-Hour	24-Hour							
Period	Depth	Depth	Depth							
2	1.19	1.70	2.10							
5	1.50	2.10	2.70							
10	1.75	2.40	3.20							
25	2.00	2.90	3.60							
50	2.25	3.20	4.20							
100	2.52	3.50	4.60							
Where Z= 6,840 ft/100										

Table 6-2. Rainfall Depths for Colorado Springs

These depths can be applied to the design storms or converted to intensities (inches/hour) for the Rational Method as described below. However, as the basin area increases, it is unlikely that the reported point rainfalls will occur uniformly over the entire basin. To account for this characteristic of rain storms an adjustment factor, the Depth Area Reduction Factor (DARF) is applied. This adjustment to rainfall depth and its effect on design storms is also described below. The UDFCD UD-Rain spreadsheet, available on UDFCD's website, also provides tools to calculate point rainfall depths and Intensity-Duration-Frequency curves² and should produce similar depth calculation results.

2.2 Design Storms

Design storms are used as input into rainfall/runoff models and provide a representation of the typical temporal distribution of rainfall events when the creation or routing of runoff hydrographs is required. It has long been observed that rainstorms in the Front Range of Colorado tend to occur as either shortduration, high-intensity, localized, convective thunderstorms (cloud bursts) or longer-duration, lowerintensity, broader, frontal (general) storms. The significance of these two types of events is primarily determined by the size of the drainage basin being studied. Thunderstorms can create high rates of runoff within a relatively small area, quickly, but their influence may not be significant very far downstream. Frontal storms may not create high rates of runoff within smaller drainage basins due to their lower intensity, but tend to produce larger flood flows that can be hazardous over a broader area and extend further downstream.

• **Thunderstorms**: Based on the extensive evaluation of rain storms completed in the Carlton study (Carlton 2011), it was determined that typical thunderstorms have a duration of about 2 hours. The study evaluated over 300,000 storm cells using gage-adjusted NEXRAD data, collected over a 14-year period (1994 to 2008). Storms lasting longer than 3 hours were rarely found. Therefore, the results of the Carlton study have been used to define the shorter duration design storms.

To determine the temporal distribution of thunderstorms, 22 gage-adjusted NEXRAD storm cells were studied in detail. Through a process described in a technical memorandum prepared by the City of Colorado Springs (City of Colorado Springs 2012), the results of this analysis were interpreted and normalized to the 1-hour rainfall depth to create the distribution shown in Table 6-3 with a 5 minute time interval for drainage basins up to 1 square mile in size. This distribution represents the rainfall

Land Use or Surface	Percent						Runoff Co	efficients		-			
Characteristics	Impervious	2-1	/ear	5-y	ear	10-1	year	25-1	year	50-year		100-	year
		HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D	HSG A&B	HSG C&D
Business													
Commercial Areas	95	0.79	0.80	0.81	0.82	0.83	0.84	0.85	0.87	0.87	0.88	0.88	0.89
Neighborhood Areas	70	<u>0.4</u> 5	0.49	0.49	0.53	0.53	0.57	0.58	0.62	0.60	0.65	0.62	0.68
Residential					<u> </u>								
1/8 Acre or less	65	0.41	0,45	0.45	0.49	0.49	0,54	0.54	0.59	0.57	0.62	0.59	0.65
1/4 Acre	40	0.23	0.28	0,30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
1/3 Acre	30	0.18	0.22	0.25	0.30	0.32	0.38	0.39	0.30	0.43	0.52	0.33	0.58
1/2 Acre	25	0.15	0.20	0.22	0.28	0.30	0.36	0.37	0.46	0.41	0.52	0.46	0.56
1 Acre	20	0.12	0.17	0.20	0.26	0.27	0.34	0.35	0.44	0.40	0.50	0.44	0.55
Industrial						<u> </u>							
Light Areas				***				_					
	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
Heavy Areas	90	0.71	0.73	0.73	0.75	0.75	0. <u>7</u> 7	0.78	0.80	0.80	0.82	0.81	0.83
Parks and Cemeteries	7	0.05	0.09	0.12	0.19	0.20	0.29	0.30	0.40	0.34	0.46	0.39	0.52
Playgrounds	13	0.07	0.13	0.16	0.23	0.24	0.31	0.32	0.42	0.37	0.48	0.41	0.54
Railroad Yard Areas	40	0.23	0.28	0.30	0.35	0.36	0.42	0.42	0.50	0.46	0.54	0.50	0.58
Undeveloped Areas											. –		
Historic Flow Analysis								_					
Greenbelts, Agriculture	2	0.03	0.05	0.09	0.46		0.00						
Pasture/Meadow	0	0.03	0.05		0.16	0.17	0.26	0.26	0.38	0.31	0.45	0.36	0.51
Forest		0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Exposed Rock	100	0.02	0.04	0.08	0.15	0.15 0.92	0.25	0.25	0.37	0.30	0.44	0.35	0.50
Offsite Flow Analysis (when	100 -	0.63	0.65	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
landuse is undefined)	45	0.26	0.31	0.32	0.37	0.38	0.44	0.44	0.51	0.48	0.55	0.51	0.59
						0.00		0.44		0.40		0.51	0.55
Streets													
Paved	100	0.89	0.89	0.90	D.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Gravel	80	0.57	0.60	0.59	0.63	0.63	0.66	0.66	0.70	0.68	0.72	0.70	0.74
	· ·												
Drive and Walks	100	0.89	0.89	0.90	0.90	0.92	0.92	0.94	0.94	0.95	0.95	0.96	0.96
Roofs	90	0.71	0.73	0.73	0.75	0.75	0.77	0.78	0.80	0.80	0.82	0.81	0.83
Lawns	0 ·	0.02	0.04	0.08	0.15	0.15	0.25	0.25	0.37	0.30	0.44	0.35	0.50

Table 6-6. Runoff Coefficients for Rational Method (Source: UDFCD 2001)

3.2 Time of Concentration

One of the basic assumptions underlying the Rational Method is that runoff is a function of the average rainfall rate during the time required for water to flow from the hydraulically most remote part of the drainage area under consideration to the design point. However, in practice, the time of concentration can be an empirical value that results in reasonable and acceptable peak flow calculations.

For urban areas, the time of concentration (t_c) consists of an initial time or overland flow time (t_i) plus the travel time (t_i) in the storm sewer, paved gutter, roadside drainage ditch, or drainage channel. For nonurban areas, the time of concentration consists of an overland flow time (t_i) plus the time of travel in a concentrated form, such as a swale or drainageway. The travel portion (t_i) of the time of concentration can be estimated from the hydraulic properties of the storm sewer, gutter, swale, ditch, or drainageway. Initial time, on the other hand, will vary with surface slope, depression storage, surface cover, antecedent rainfall, and infiltration capacity of the soil, as well as distance of surface flow. The time of concentration is represented by Equation 6-7 for both urban and non-urban areas.

í

					Pre-Devel	opment CN	4
Fully Developed Urban Areas (vegetation established) ¹	Treatment	Hydrologic Condition	%1	HSG A	HSG B	HSG C	HSG D
Open space (lawns, parks, golf courses, cemeteries, etc.):							
Poor condition (grass cover < 50%)				68	79	86	89
Fair condition (grass cover 50% to 75%)				49	69	79	84
Good condition (grass cover > 75%)				39	61	74	80
Impervious areas:							
Paved parking lots, roofs, driveways, etc. (excluding right-of-way				98	98	98	98
Streets and roads:							
Paved; curbs and storm sewers (excluding right-of-way)				98	98	98	98
Paved; open ditches (Including right-of-way)				83	89	92	93
Gravel (including right-of-way)				76	85	89	91
Dirt (including right-of-way)				72	82	87	89
Western desert urban areas:				<u> </u>	77		
Natural desert landscaping (pervious areas only)			•	63	77	85	88
Artificial desert landscaping (impervious weed barrier, desert shrub with 1- to 2-inch sand or gravel mulch and basin borders)				96	96	96	96
Urban districts:							
Commercial and business			85	89	92	94	95
Industrial			72	81	88	91	93
Residential districts by average lot size:							l
1/8 acre or less (town houses)			65	77	85	90	92
1/4 acre			38	61	75	83	87
1/3 acre			30	57	72	81	86
1/2 acre			25	54	70	80	85
1 acre			20	51	68	79	84
2 acres			12	46	65	77	82
Developing Urban Areas ¹	Treatment ²	Hydrologic Condition ³	%1	HSG A	HSG B	HSG C	HSG D
Newly graded areas (pervious areas only, no vegetation)				77	86	91	94
Cultivated Agricultural Lands ¹	Treatment	Hydrologic Condition	%1	HSG A	HSG B	HSG C	HSG D
	Bare soil			77	86	91	94
Fallow	Crop residue	Poor		76	85	90	93
	cover (CR)	Good		74	83	88	90
	Straight row	Poor		72	81	88	91
	(SR)	Good		67	78	85	89
		Poor		71	80	87	90
	SR + CR	Good	+	64	75	82	85
		Poor		70	79	84	88
D	Contoured (C)	Good		65	75	82	86
Row crops	C + CD	Poor		69	78	83	87
	C+CR	Good		64	74	81	85
	Contoured &	Poor		66	74	80	82
	terraced (C&T)	Good		62	71	78	81
	C&T+CR	Poor		65	73	79	81
		Good		61	70	77	80
	SR	Poor		65	76	84	88
	35	Good		63	75	83	87
	SR + CR	Poor		64	75	83	86
	JNYCN	Good		60	72	80	84
	с	Poor		63	74	82	85
small grain		Good		61	73	81	84
annon Brann	C + CR Poor	Poor		62	73	81	84
		Good		60	72	80	83
		0		61	72	79	82
	СВТ	Poor		**			
	C&T	Good		59	70	78	81
	C&T C&T+ CR						81 81

Table 6-10. NRCS Curve Numbers for Frontal Storms & Thunderstorms for Developed Conditions (ARCII)

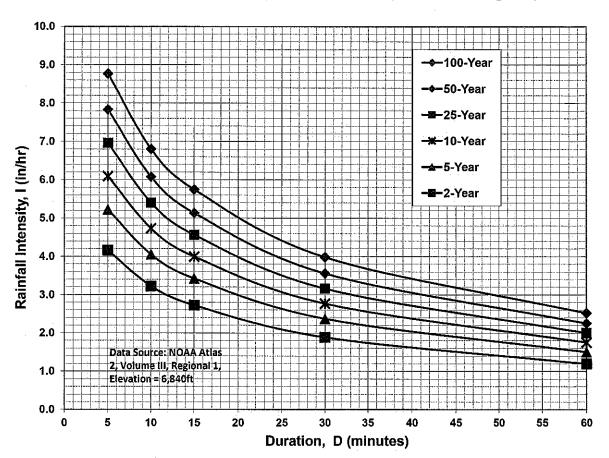


Figure 6-5. Colorado Springs Rainfall Intensity Duration Frequency

IDF Equations $I_{100} = -2.52 \ln(D) + 12.735$ $I_{50} = -2.25 \ln(D) + 11.375$ $I_{25} = -2.00 \ln(D) + 10.111$ $I_{10} = -1.75 \ln(D) + 8.847$ $I_5 = -1.50 \ln(D) + 7.583$ $I_2 = -1.19 \ln(D) + 6.035$ Note: Values calculated by
equations may not precisely
duplicate values read from figure.

UNDEVELOPED LAND ASSUMED TO BE ONE OF THE FOLLOWING: PASTURE, GRASSLAND, RANGE - POOR HERBACEOUS MIXTURE OF GRASS WEEDS AND LOW GROWING BRUSH WITH BRUSH MINOR ELELMENT - POOR WOODS - GRASS COMBINATION - POOR

BASIN	BASIN	SOI	L TYPE B	WEIGHTED
(label)	AREA			CN
	(Ac)	CN	AREA	
			(Ac.)	
EX-1	156.9	61	156.9	61
EX-2	9.2	61	9.2	61
EX-3	24.9	61	24.9	61
EX-4	35.2	63	35.2	63
EX-6	6.7	61	6.7	61
SC-1	12.5	63	12.5	63
SC-2	350.0	63	350.0	63
OS-1	49.1	61	49.1	61
OS-2	2.1	61	2.1	61
OS-3	5.7	65	5.7	65
OS-4	16.1	63	16.1	63
OS-5	27.6	63	27.6	63

CN VALUES - EXISTING CONDITIONS

TIME OF CONCENTRATION - EXISTIN	3 CONDITIONS
---------------------------------	---------------------

				OVERLAND			STREET / CH	IANNEL FLOV	V	Tc	Tc	Tc
BASIN	Cn	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	LAG	LAG
			(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
EX-1	61.0	0.08	300	8	23.1	1600	1.8%	1.3	20.5	43.6	26.2	0.44
EX-2	61.0	0.08	300	10	21.4					21.4	12.9	0.21
EX-3	61.0	0.08	300	8	23.1	1500	4.0%	1.5	16.7	39.7	23.8	0.40
EX-4	63.0	0.08	300	24	16.1	1900	6.0%	1.8	17.6	33.7	20.2	0.34
EX-6	61.0	0.08	300	14	19.2	800	1.0%	1.0	13.3	32.5	19.5	0.33
SC-1	63.0	0.08	200	6	18.1	500	2.0%	1.2	6.9	25.1	15.0	0.25
SC-2	63.0	0.08	300	12	20.2	3500	1.8%	1.3	44.9	65.1	39.0	0.65
OS-1	61.0	0.08	300	22	16.5	1300	4.0%	1.5	14.4	31.0	18.6	0.31
OS-2	61.0	0.08	300	12	20.2	550	5.0%	1.7	5.4	25.6	15.3	0.26
OS-3	65.0	0.08	300	10	21.4	250	3.0%	3.5	1.2	22.6	13.6	0.23
OS-4	63.0	0.08	300	22	16.5	1100	4.0%	1.4	13.1	29.6	17.8	0.30
OS-5	63.0	0.08	300	10	21.4	1300	3.0%	1.2	18.1	39.5	23.7	0.39

BASIN	TOTAL	WEIGHTED	TOTAL	Q	Q	Q
	BASIN	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
	AREA					
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
EX-1	156.9	61	0.44	2.6	17.7	140.3
EX-2	9.2	61	0.21	0.2	1.7	12.2
EX-3	24.9	61	0.40	0.4	3.0	23.7
EX-4	35.2	63	0.34	1.3	6.9	41.8
EX-6	6.7	61	0.33	0.1	0.9	7.1
SC-1	12.5	63	0.25	0.5	3.0	17.3
SC-2	350.0	63	0.65	9.9	44.2	275.3
OS-1	49.1	61	0.31	0.9	7.0	53.9
OS-2	2.1	61	0.26	0.04	0.3	2.5
OS-3	5.7	65	0.23	0.6	2.1	9.9
OS-4	16.1	63	0.30	0.6	3.4	20.7
OS-5	27.6	63	0.39	1.0	5.2	32.1

BASIN SUMMARY - EXISTING CONDITIONS

Design Point	Contributing Basins	Q 2 Yr. Q (cfs)	Q 5 Yr. Q (cfs)	Q 100 Yr. Q (cfs)
(label)				
EX DP-1	BASINS OS-1, OS-3, OS-4, OS-5, EX-1, EX-4, EX-5, EX-6	5.6	36.0	281.7
EX DP-2	BASINS OS-2, EX-2	0.2	2.0	14.7
EX DP-3	BASIN EX-3	0.4	3.0	23.7
EX-DP-4	BASIN EX-6	0.1	1.0	7.1
Ex. 36" CMP at Vollmer	SC-1	0.5	3.0	17.3
Ex. 60" CMP at Vollmer	SC-2	9.88	44.2	275.3

DESIGN POINTS SURFACE ROUTING SUMMARY - EXISTING CONDITIONS

JOB NUMBER: 2520.00 DATE: 08/13/18	eliminary Plan)
DATE. 00/13/10	
CALCULATED BY: MAW	

PRELIMINARY DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY

		IMPERVIOUS AREA / STREETS			ETS	LAN	DSCAPE / D	EVELOPED	AREAS		WEIGHTED		WEIGHTED CA			
BASIN		AREA (AC)	C(2)	C(50)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100	
A1	12.8	0.00	0.89	0.95	0.96	12.80	0.06	0.14	0.40	0.06	0.14	0.40	0.77	1.79	5.12	
A2	6.9	0.00	0.89	0.95	0.96	6.90	0.06	0.14	0.40	0.06	0.14	0.40	0.41	0.97	2.76	
A3	5.9	0.00	0.89	0.95	0.96	5.90	0.06	0.14	0.40	0.06	0.14	0.40	0.35	0.83	2.36	
A4	2.1	0.00	0.89	0.95	0.96	2.10	0.12	0.20	0.44	0.12	0.20	0.44	0.25	0.42	0.92	
A5	5.5	0.00	0.89	0.95	0.96	5.50	0.06	0.14	0.40	0.06	0.14	0.40	0.33	0.77	2.20	
B1	18.8	0.00	0.89	0.95	0.96	18.80	0.06	0.14	0.40	0.06	0.14	0.40	1.13	2.63	7.52	
B2	8.0	0.00	0.89	0.95	0.96	8.00	0.06	0.14	0.40	0.06	0.14	0.40	0.48	1.12	3.20	
B3	6.10	1.10	0.89	0.95	0.96	5.00	0.06	0.14	0.40	0.21	0.28	0.50	1.28	1.69	3.06	
B4	13.0	0.00	0.89	0.95	0.96	13.00	0.06	0.14	0.40	0.06	0.14	0.40	0.78	1.82	5.20	
C1	12.5	0.00	0.89	0.95	0.96	12.50	0.09	0.17	0.42	0.09	0.17	0.42	1.13	2.13	5.25	
C2	4.3	0.00	0.89	0.95	0.96	4.30	0.12	0.20	0.44	0.12	0.20	0.44	0.52	0.86	1.89	
C3	8.6	0.00	0.89	0.95	0.96	8.60	0.09	0.17	0.42	0.09	0.17	0.42	0.77	1.46	3.6	
D1	6.0	0.00	0.89	0.95	0.96	6.00	0.17	0.21	0.45	0.17	0.21	0.45	1.02	1.28	2.7	
D2	14.1	0.00	0.89	0.95	0.96	14.10	0.18	0.25	0.47	0.18	0.25	0.47	2.54	3.53	6.6	
D3	4.0	0.00	0.89	0.95	0.96	4.00	0.17	0.21	0.45	0.17	0.21	0.45	0.68	0.85	1.8	
D4	6.8	0.00	0.89	0.95	0.96	6.80	0.20	0.27	0.49	0.20	0.27	0.49	1.36	1.84	3.3	
D5	12.8	0.00	0.89	0.95	0.96	12.80	0.18	0.25	0.47	0.18	0.25	0.47	2.30	3.20	6.0	
D6	15.3	0.00	0.89	0.95	0.96	15.30	0.18	0.25	0.47	0.18	0.25	0.47	2.75	3.83	7.1	
D7	2.7	0.00	0.89	0.95	0.96	2.70	0.07	0.16	0.41	0.07	0.16	0.41	0.19	0.43	1.1	
D8	1.6	0.00	0.89	0.95	0.96	1.60	0.18	0.25	0.47	0.18	0.25	0.47	0.29	0.40	0.7	
D9	2.1	0.00	0.89	0.95	0.96	2.10	0.18	0.25	0.47	0.18	0.25	0.47	0.38	0.53	0.9	
D10	1.7	0.00	0.89	0.95	0.96	1.70	0.18	0.25	0.47	0.18	0.25	0.47	0.31	0.43	0.8	
E	1.3	1.30	0.89	0.95	0.96	0.00	0.18	0.25	0.47	0.89	0.90	0.96	1.16	1.17	1.2	
F1	18.1	0.00	0.89	0.95	0.96	18.10	0.03	0.09	0.36	0.03	0.09	0.36	0.54	1.63	6.5	
F2	4.6	0.00	0.89	0.95	0.96	4.60	0.03	0.09	0.36	0.03	0.09	0.36	0.14	0.41	1.6	
Н	6.7	0.00	0.89	0.95	0.96	6.70	0.06	0.14	0.40	0.06	0.14	0.40	0.40	0.94	2.6	
OS-1A	4.8	0.00	0.89	0.95	0.96	4.80	0.03	0.09	0.36	0.03	0.09	0.36	0.14	0.43	1.7	
OS-1B	23.4	0.00	0.89	0.95	0.96	23.40	0.03	0.09	0.36	0.03	0.09	0.36	0.70	2.11	8.4	
OS-2A	2.0	0.00	0.89	0.95	0.96	2.00	0.03	0.09	0.36	0.03	0.09	0.36	0.06	0.18	0.7	
OS-2B	2.3	0.00	0.89	0.95	0.96	2.30	0.03	0.09	0.36	0.03	0.09	0.36	0.07	0.21	0.8	
OS-2C	14.9	0.00	0.89	0.95	0.96	14.90	0.03	0.09	0.36	0.03	0.09	0.36	0.45	1.34	5.3	
OS-2D	0.85	0.00	0.89	0.95	0.96	0.85	0.03	0.09	0.36	0.03	0.09	0.36	0.03	0.08	0.3	
OS-2E	3.1	0.00	0.89	0.95	0.96	3.10	0.03	0.09	0.36	0.03	0.09	0.36	0.09	0.28	1.12	
OS-3	5.7	0.35	0.89	0.95	0.96	5.35	0.02	0.08	0.35	0.07	0.13	0.39	0.42	0.74	2.2	
OS-5	27.6	0.00	0.89	0.95	0.96	27.60	0.02	0.08	0.35	0.02	0.08	0.35	0.55	2.21	9.66	

Job Nam	E:	The Retrea	t at Timber	Ridge (1	Prelimir	ary Pla	n)												
JOB NUM	BER:	2520.00											Table 6	-7. Con	iveyance	e Coeffi	cient, C	v	
DATE: CALC'D B	Y:	08/13/18 MAW													d Surfac	e		C _v	
													y meadow ge/field		1		_	2.5 5	
												Ripra	p (not bu	ried)*	$t_{c} = \frac{1}{18}$	$\frac{1}{30} + 10$	1	5.5	
				1 - (0.395(1	$\frac{1-C_5}{5^{0.33}}$	\sqrt{L}	I	Z = C	S	Tc=I /V	Short	pasture a	and lawn				7	
				$l_i = -$		S ^{0.33}		,	-v.	w	L/V		Nearly bare ground Grassed waterway					10	
												Paved areas and shallow paved swales For buried riprap, select C _v value based on type of v						20	
			DDELL		חם ער										value based	i on type o	f vegetativ	e cover.	
		WEIGHTEI		MINAI			JE RE	PORT ~ BASIN RUNOFF											
BASIN	CA(2)	CA(5)	CA(100)	C(5)		RLAND Height	Тс	Length		Velocity	-	TC Total	l(2)	16031 I(5)	I(100)	Q(2)	AL FLC	Q(100)	
DAGIN	07(2)	UA(U)	CA(100)	0(3)	(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(in/hr)	(cfs)	(cfs)	(cfs)	
A1	0.77	1.79	5.12	0.14	120	2.4	15.1	740	2.5%	1.6	7.8	22.9	2.31	2.89	4.84	1.8	5	25	
A2	0.41	0.97	2.76	0.14	300	12	19.0	400	4.0%	2.0	3.3	22.3	2.34	2.92	4.91	1.0	3	14	
A3	0.35	0.83	2.36	0.14	300	8	21.7	400	3.0%	1.7	3.8	25.6	2.18	2.72	4.57	0.8	2	11	
A4	0.25	0.42	0.92	0.20	180	8	13.3	180	4.0%	2.0	1.5	14.8	2.83	3.54	5.94	0.7	1	5	
A5	0.33	0.77	2.20	0.14	280	10	19.1					19.1	2.53	3.16	5.31	0.8	2	12	
B1	1.13	2.63	7.52	0.14	300	10.5	19.9	1280	3.2%	1.8	11.9	31.8	1.92	2.39	4.02	2.2	6	30	
B2	0.48	1.12	3.20	0.14	300	10.5	19.9					19.9	2.48	3.10	5.20	1.2	3	17	
B3	1.28	1.69	3.06	0.14	300	10.5	19.9	370	1.5%	1.2	5.0	24.9	2.21	2.76	4.63	2.8	5	14	
B4	0.78	1.82	5.20	0.14	300	10.5	19.9					19.9	2.48	3.10	5.20	1.9	6	27	
C1	1.13	2.13	5.25	0.17	300	12	18.4	600	2.0%	2.8	3.5	21.9	2.36	2.95	4.95	2.7	6	26	
C2	0.52	0.86	1.89	0.20	300	14	16.9					16.9	2.67	3.34	5.61	1.4	3	11	
C3	0.77	1.46	3.61	0.17	300	17	16.4					16.4	2.71	3.39	5.68	2.1	5	21	
D1	1.02	1.28	2.72	0.21	200	4	18.0	600	2.0%	2.8	3.5	21.6	2.38	2.98	5.00	2.4	4	14	
D2	2.54	3.53	6.63	0.25	150	3	15.0	900	3.0%	3.5	4.3	19.3	2.51	3.14	5.28	6.4	11	35	
D3	0.68	0.85	1.81	0.21	150	3	15.6	375	2.0%	2.8	2.2	17.8	2.61	3.26	5.48	1.8	3	10	
D4	1.36	1.84	3.30	0.27	150	3	14.6	600	3.5%	3.7	2.7	17.3	2.64	3.31	5.56	3.6	6	18	
D5	2.30	3.20	6.02	0.25	150	3	15.0	1050	2.5%	3.2	5.5	20.5	2.44	3.05	5.13	5.6	10	31	
D6	2.75	3.83	7.19	0.25	150	3	15.0	1200	2.0%	2.8	7.1	22.0	2.36	2.94	4.94	6.5	11	36	
D7	0.19	0.43	1.11	0.16	150	3	16.5					16.5	2.70	3.37	5.67	0.5	1	6	
D8	0.29	0.40	0.75	0.25	70	2.8	8.1					8.1	3.54	4.44	7.46	1.0	2	6	
D9	0.23	0.53	0.99	0.25	70	2.8	8.1					8.1	3.54	4.44	7.46	1.3	2	7	
D9			0.99	0.25	80	3.2											<u> </u>	6	
	0.31	0.43					8.7	400	E 00/		2.0	8.7	3.46	4.34	7.29 8.27	1.1	2		
E E1	1.16	1.17	1.25	0.25	30	7.5	2.9	400	5.0%	2.2	3.0	5.9	3.93	4.92	8.27	4.5	6	10	
F1	0.54	1.63	6.52	0.09	60	3	8.3	2400	2.0%	1.4	28.3	36.6	1.75	2.18	3.66	1.0	4	24	
F2	0.14	0.41	1.66	0.09	60	6	6.6	1200	2.0%	1.4	14.1	20.7	2.43	3.03	5.09	0.3	1	8	
Н	0.40	0.94	2.68	0.14	300	11	19.6	900	2.0%	1.4	10.6	30.2	1.98	2.47	4.15	0.8	2	11	
	• • •		. =-														<u> </u>		
OS-1A	0.14	0.43	1.73	0.09	300	15	18.6	400	5.0%	4.5	1.5	20.1	2.47	3.08	5.18	0.4	1	9	
OS-1B	0.70	2.11	8.42	0.09	300	15	18.6	1200	5.0%	4.5	4.5	23.0	2.30	2.88	4.83	1.6	6	41	
OS-2A	0.06	0.18	0.72	0.09	300	12	20.0					20.0	2.47	3.09	5.19	0.1	0.6	4	
OS-2B	0.07	0.21	0.83	0.09	300	12	20.0					20.0	2.47	3.09	5.19	0.2	0.6	4	
OS-2C	0.45	1.34	5.36	0.09	300	12	20.0	1000	3.0%	3.5	4.8	24.8	2.21	2.77	4.64	1.0	4	25	
OS-2D	0.03	0.08	0.31	0.09	250	12	17.2					17.2	2.65	3.32	5.57	0.07	0.3	2	
OS-2E	0.09	0.28	1.12	0.09	300	12	20.0					20.0	2.47	3.09	5.19	0.2	0.9	6	
OS-3	0.42	0.74	2.21	0.08	300	10	21.4	250	3.0%	3.5	1.2	22.6	2.32	2.90	4.87	1	2	11	
OS-5	0.55	2.21	9.66	0.08	300	12	20.2	1500	3.0%	3.5	7.2	27.4	2.10	2.62	4.39	1	6	42	

JOB NAME:The Retreat at TimberRidge (Preliminary Plan)JOB NUMBER:2520.00DATE:08/13/18CALCULATED BY:MAW

PRELIMINARY DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

					Inten	sity	FI	ow	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Culvert / Inlet Size
1	OS-5 (27.6 ac.)	2.21	9.66	27.4	2.62	4.39	6	42	EX. 48" CMP
2	OS-3 (5.7 ac.)	0.74	2.21	22.6	2.90	4.87	2	11	24" RCP
3	DP-2, A-1 (18.5 ac.)	2.54	7.33	23.6	2.84	4.76	7	35	30" RCP
4	A2 (6.9 ac.)	0.97	2.76	22.3	2.92	4.91	3	14	24" RCP
5	DP-3, DP-4, A3 (31.3 ac.)	4.33	12.45	25.6	2.72	4.57	12	57	DUAL 30" RCP CULVERTS
6	OS-3, A1, A2, A3 and A4 (POND B INFLOW - 33.4 ac.)	4.75	13.37	26.6	2.66	4.47	13	60	
7	B1 (18.8 ac.)	2.63	7.52	31.8	2.39	4.02	6	30	30" RCP
8	B3 (6.1 ac.)	1.69	3.06	24.9	2.76	4.63	5	14	5' Type R sump inlets
9	B1, B2 and B3 (POND C INFLOW - 32.9ac.)	5.44	13.78	34.8	2.26	3.79	12	52	
10	C1, OS-1A (17.3 ac.)	2.56	6.98	23.4	2.85	4.79	7	33	30" RCP
11	C2 (4.3 ac.)	0.86	1.89	16.9	3.34	5.61	3	11	5' Type R sump inlets
12	D2, OS-2A (16.1 ac.)	3.71	7.35	20.0	3.09	5.19	11	38	10' Type R sump inlets
13	D1, OS-2B (8.3 ac.)	1.49	3.55	21.6	2.98	5.00	4	18	5' Type R sump inlets
14	D3, OS-2D (4.85 ac.)	0.93	2.12	17.8	3.26	5.48	3	12	5' Type R sump inlets
15	D5, OS-2E (15.9 ac.)	3.48	7.13	20.5	3.05	5.13	11	37	10' Type R sump inlets
16	D4 6.8 ac.)	1.84	3.30	17.3	3.31	5.56	6	18	5' Type R sump inlets
17	D6 (15.3 ac.)	3.83	7.19	22.0	2.94	4.94	11	36	10' Type R sump inlets
18	DP-10 Thru DP-17 and OS-1B, OS-2C, D7 (POND D INFLOW - 129.9 ac.)	22.55	54.40	27.8	2.60	4.36	59	237	

JOB NAME:The Retreat at TimberRidge (Preliminary Plan)JOB NUMBER:2520.00DATE:08/13/18CALCULATED BY:MAW

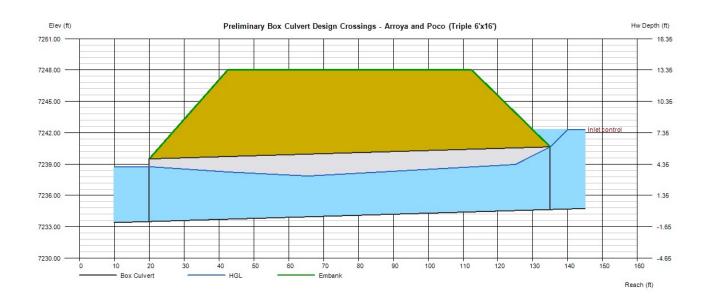
* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

					Intensity		FI	ow	
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Pipe Size'
1	DP-10	2.56	6.98	23.4	2.85	4.79	7	33	30" RCP
2	OS-1B	2.11	8.42	23.0	2.88	4.83	6	41	30" RCP
3	PR-1, PR-2, DP-11	5.52	17.29	25.4	2.73	4.58	15	79	36" RCP
4	DP-12	3.71	7.35	20.0	3.09	5.19	11	38	30" RCP
5	PR-3, PR-4	9.23	24.64	27.1	2.63	4.42	24	109	42" RCP
6	DP-16	1.84	3.30	17.3	3.31	5.56	6	18	24" RCP
7	PR-5, PR-6	11.06	27.94	27.1	2.63	4.42	29	123	42" RCP
8	PR-7, DP-17	14.89	35.13	27.8	2.59	4.35	39	153	48" RCP
9	DP-13	1.49	3.55	21.6	2.98	5.00	4	18	24" RCP
10	OS-2C	1.34	5.36	24.8	2.77	4.64	4	25	30" RCP
11	PR-9, PR-10	2.83	8.91	25.3	2.74	4.59	8	41	30" RCP
12	PR-11, DP-14	3.75	11.03	27.3	2.62	4.40	10	49	36" RCP
13	DP-15	3.48	7.13	20.5	3.05	5.13	11	37	30" RCP
14	PR-12, PR-13	7.23	18.16	27.6	2.61	4.37	19	79	36" RCP

PRELIMINARY DRAINAGE REPORT ~ PIPE ROUTING SUMMARY

Classic Consulting CALCS-MSTR-WQCV 2017 PDR.xlsx

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Preliminary Box Culvert Design Crossings - Arroya and Poco (Triple 6'x16')

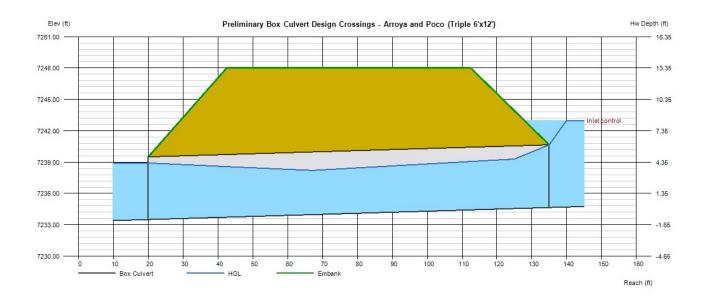
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 7233.50 = 115.00 = 1.00 = 7234.65	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 2600.00 = (dc+D)/2
Rise (in)	= 72.0		
Shape	= Box	Highlighted	
Span (in)	= 192.0	Qtotal (cfs)	= 2600.00
No. Barrels	= 3	Qpipe (cfs)	= 2600.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Flared Wingwalls	Veloc Dn (ft/s)	= 10.32
Culvert Entrance	= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 12.05
Coeff. K,M,c,Y,k	= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 7238.75
		HGL Up (ft)	= 7239.15
Embankment		Hw Elev (ft)	= 7242.31
Top Elevation (ft)	= 7248.00	Hw/D (ft)	= 1.28

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7248.00
=	70.00
=	70.00

Qpipe (cfs)	= 2600.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 10.32
Veloc Up (ft/s)	= 12.05
HGL Dn (ft)	= 7238.75
HGL Up (ft)	= 7239.15
Hw Elev (ft)	= 7242.31
Hw/D (ft)	= 1.28
Flow Regime	= Inlet Control

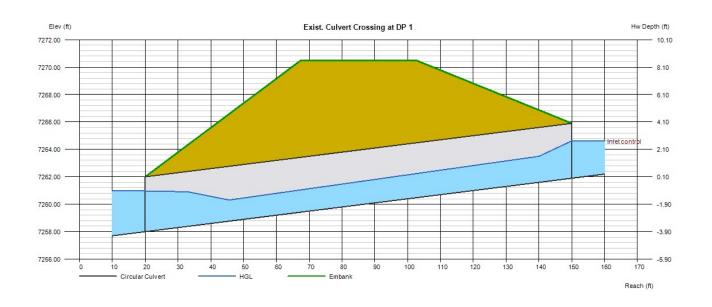
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Preliminary Box Culvert Design Crossings - Arroya and Poco (Triple 6'x12')

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 7233.50 = 115.00 = 1.00 = 7234.65	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 2170.00 = (dc+D)/2
Rise (in)	= 72.0		
Shape	= Box	Highlighted	
Span (in)	= 144.0	Qtotal (cfs)	= 2170.00
No. Barrels	= 3	Qpipe (cfs)	= 2170.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Flared Wingwalls	Veloc Dn (ft/s)	= 11.13
Culvert Entrance	= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 12.49
Coeff. K,M,c,Y,k	= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 7238.91
		HGL Up (ft)	= 7239.48
Embankment		Hw Elev (ft)	= 7242.98
Top Elevation (ft)	= 7248.00	Hw/D (ft)	= 1.39

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7248.00
=	70.00
=	70.00


Highlighted	
Qtotal (cfs)	= 2170.00
Qpipe (cfs)	= 2170.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 11.13
Veloc Up (ft/s)	= 12.49
HGL Dn (ft)	= 7238.91
HGL Up (ft)	= 7239.48
Hw Elev (ft)	= 7242.98
Hw/D (ft)	= 1.39
Flow Regime	= Inlet Control

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Exist. Culvert Crossing at DP 1

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7258.00 = 130.00 = 3.00 = 7261.90 = 48.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 42.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 48.0	Qtotal (cfs)	= 42.00
No. Barrels	= 1	Qpipe (cfs)	= 42.00
n-Value	= 0.024	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Corrugate Metal Pipe	Veloc Dn (ft/s)	= 4.20
Culvert Entrance	= Headwall	Veloc Up (ft/s)	= 6.98
Coeff. K,M,c,Y,k	= 0.0078, 2, 0.0379, 0.69, 0.5	HGL Dn (ft)	= 7260.97
		HGL Up (ft)	= 7263.83
Embankment		Hw Elev (ft)	= 7264.62
Top Elevation (ft)	= 7270.50	Hw/D (ft)	= 0.68
Top Width (ft)	= 35.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 150.00	-	

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Culvert Crossing at DP 2

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7250.00 = 115.00 = 1.00 = 7251.15 = 24.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 11.00 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 11.00
No. Barrels	= 1	Qpipe (cfs)	= 11.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 4.10
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.66
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7251.59
		HGL Up (ft)	= 7252.34
Embankment		Hw Elev (ft)	= 7252.95
Top Elevation (ft)	= 7254.00	Hw/D (ft)	= 0.90

Top Elevation (ft) Top Width (ft) Crest Width (ft)

=	7254.00
=	35.00
=	150.00

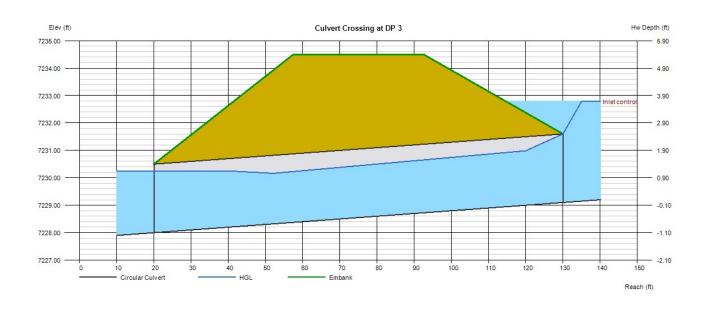
=	11.00
=	0.00
=	4.10
=	5.66
=	7251.59
=	7252.34
=	7252.95
=	0.90
=	0.90

= Inlet Control

Flow Regime

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Culvert Crossing at DP 3


Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7228.00 = 110.00 = 1.00 = 7220.10	Calculations Qmin (cfs) Qmax (cfs)	= 0.00 = 35.00
Invert Elev Up (ft) Rise (in)	= 7229.10 = 30.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 35.00
No. Barrels	= 1	Qpipe (cfs)	= 35.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.51
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 8.28
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7230.25
		HGL Up (ft)	= 7231.11
Embankment		Hw Elev (ft)	= 7232.79
Top Elevation (ft)	= 7234.50	Hw/D (ft)	= 1.47
Top Width (ft)	= 35.00	Flow Regime	= Inlet Contro
		-	

Top Width (ft) Crest Width (ft)

=	7234.50
=	35.00
=	150.00

150.00

- - = Inlet Control

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Culvert Crossing at DP 4

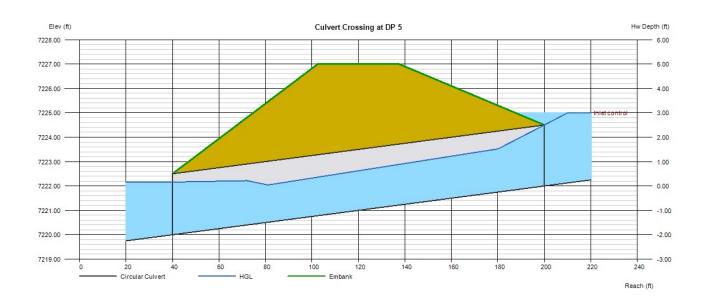
Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7230.00 = 140.00 = 1.43	Calculations Qmin (cfs) Qmax (cfs)	= 0.00 = 14.00
Invert Elev Up (ft) Rise (in)	= 7232.00 = 24.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 14.00
No. Barrels	= 1	Qpipe (cfs)	= 14.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 4.99
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 6.22
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7231.67
		HGL Up (ft)	= 7233.35
Embankment		Hw Elev (ft)	= 7234.13
Top Elevation (ft)	- 7236.00		- 1.06

Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 7236.00 = 80.00 = 150.00

Qtotal (cfs)	=	14.00
Qpipe (cfs)	=	14.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	4.99
Veloc Up (ft/s)	=	6.22
HGL Dn (ft)	=	7231.67
HGL Up (ft)	=	7233.35
Hw Elev (ft)	=	7234.13
Hw/D (ft)	=	1.06
Flow Regime	=	Inlet Control

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Culvert Crossing at DP 5

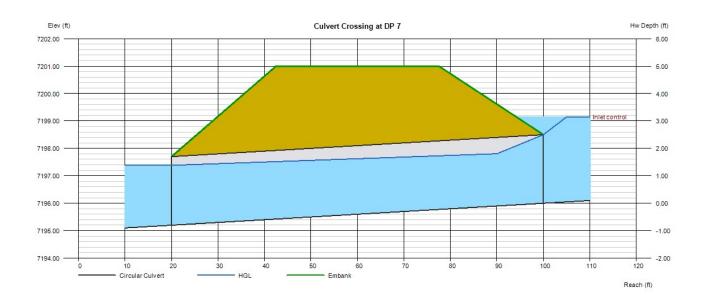
Invert Elev Dn (ft) Pipe Length (ft)	= 7220.00 = 160.00	Calculations Qmin (cfs)	= 0.00
Slope (%)	= 1.25	Qmax (cfs)	= 57.00
Invert Elev Up (ft)	= 7222.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 30.0		(, ,
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 57.00
No. Barrels	= 2	Qpipe (cfs)	= 57.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.32
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.45
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7222.16
		HGL Up (ft)	= 7223.82
Embankment		Hw Elev (ft)	= 7225.00
Top Elevation (ft)	= 7227.00	Hw/D (ft)	= 1.20

I op Elevation (ft) Top Width (ft) Crest Width (ft)

/22/.00 = 35.00 = 50.00

Qtotal (cfs)	=	57.00
Qpipe (cfs)	=	57.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	6.32
Veloc Up (ft/s)	=	7.45
HGL Dn (ft)	=	7222.16
HGL Up (ft)	=	7223.82
Hw Elev (ft)	=	7225.00
Hw/D (ft)	=	1.20
Flow Regime	=	Inlet Control

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


Culvert Crossing at DP 7

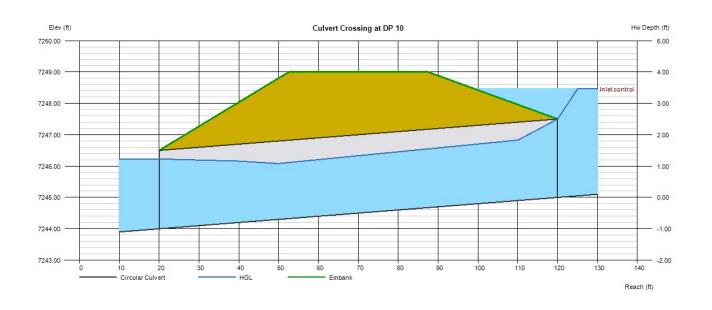
Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7195.20 = 80.00 = 1.00	Calculations Qmin (cfs) Qmax (cfs)	= 0.00 = 30.00
Invert Elev Up (ft)	= 7196.00	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 30.0		
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 30.00
No. Barrels	= 1	Qpipe (cfs)	= 30.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.60
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 7.64
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7197.38
		HGL Up (ft)	= 7197.87
Embankment		Hw Elev (ft)	= 7199.15
Top Elevation (ft)	= 7201 00	Hw/D (ft)	= 1 26

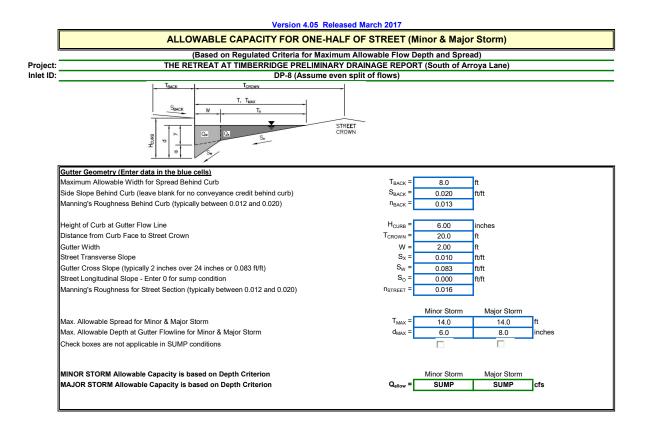
Top Elevation (ft) Top Width (ft) Crest Width (ft)

7201.00 = = 35.00 = 50.00

Qtotal (cfs)	=	30.00
Qpipe (cfs)	=	30.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	6.60
Veloc Up (ft/s)	=	7.64
HGL Dn (ft)	=	7197.38
HGL Up (ft)	=	7197.87
Hw Elev (ft)	=	7199.15
Hw/D (ft)	=	1.26
Flow Regime	=	Inlet Control

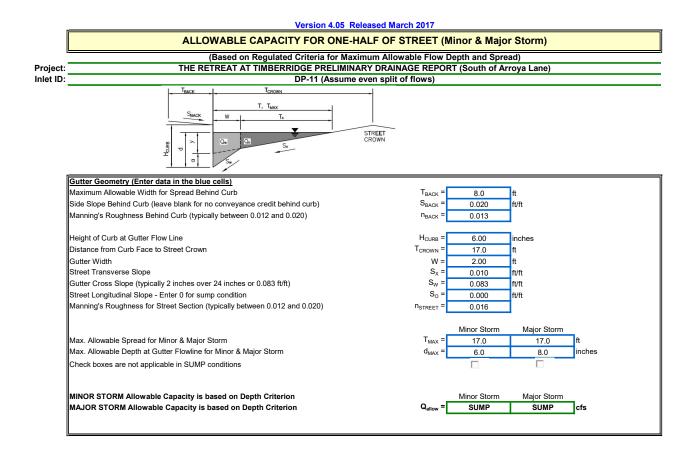
Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

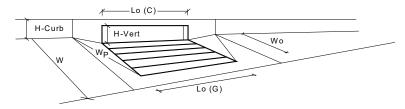

Culvert Crossing at DP 10

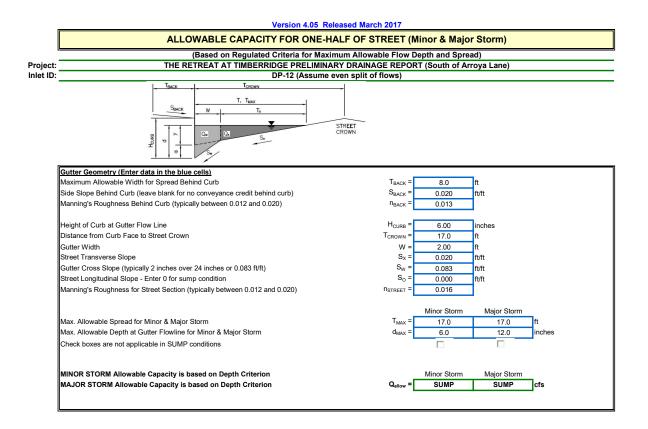

Invert Elev Dn (ft) Pipe Length (ft) Slope (%)	= 7244.00 = 100.00 = 1.00	Calculations Qmin (cfs) Qmax (cfs)	= 0.00 = 33.00
Invert Elev Up (ft) Rise (in)	= 7245.00 = 30.0	Tailwater Elev (ft)	= (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 30.0	Qtotal (cfs)	= 33.00
No. Barrels	= 1	Qpipe (cfs)	= 33.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.15
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 8.02
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7246.23
		HGL Up (ft)	= 7246.95
Embankment		Hw Elev (ft)	= 7248.46
Top Elevation (ft)	- 7249.00		- 138

Top Elevation (ft) Top Width (ft) Crest Width (ft)

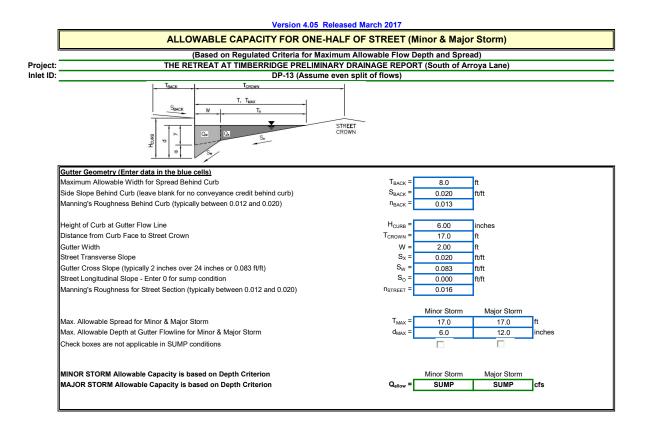
= 7249.00 = 35.00 = 50.00


5 5		
Qtotal (cfs)	=	33.00
Qpipe (cfs)	=	33.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	7.15
Veloc Up (ft/s)	=	8.02
HGL Dn (ft)	=	7246.23
HGL Up (ft)	=	7246.95
Hw Elev (ft)	=	7248.46
Hw/D (ft)	=	1.38
Flow Regime	=	Inlet Control

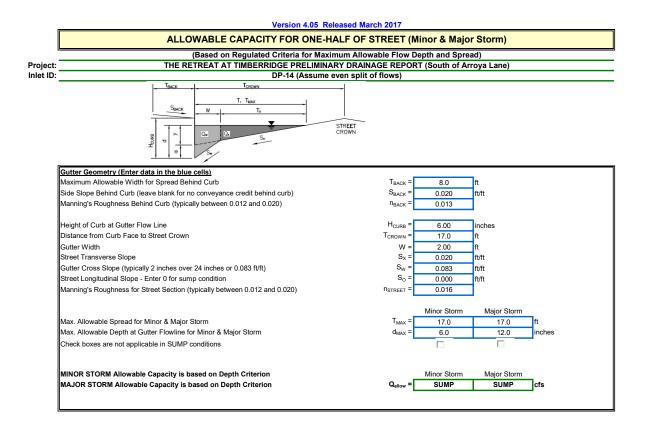




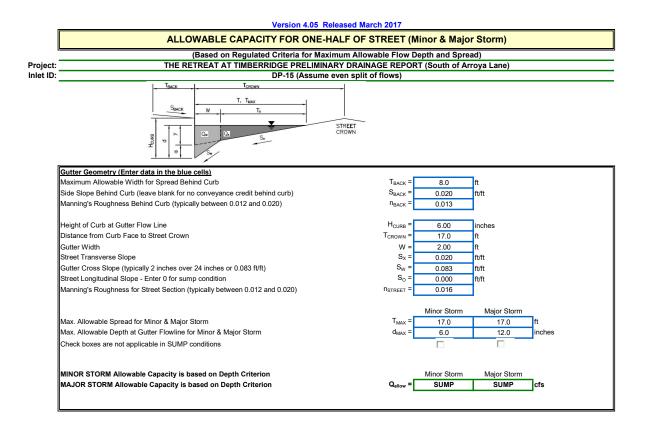
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	7.0	cfs



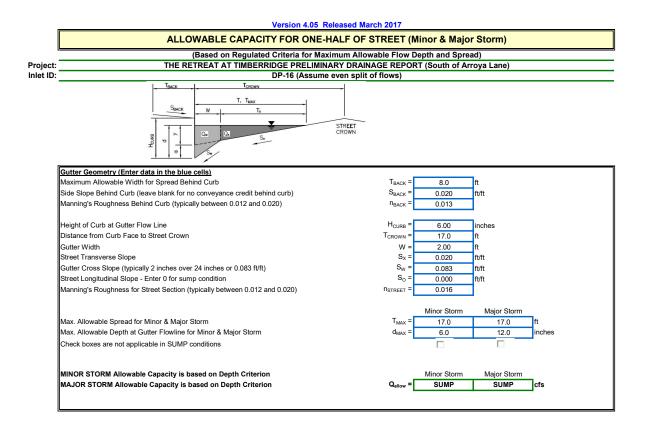
CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	6.0	cfs



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.0	16.0	cfs

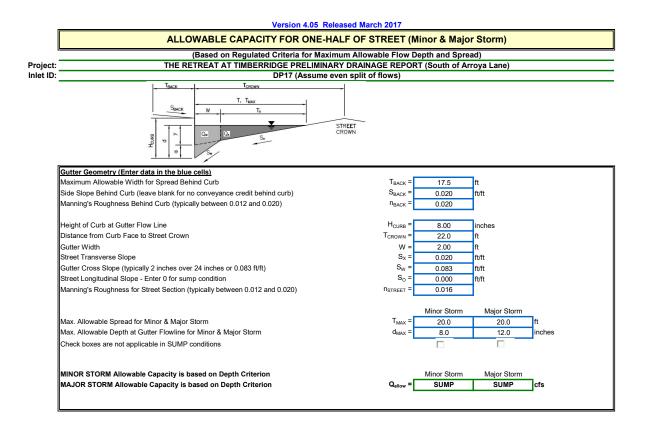


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	9.0	cfs



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.0	6.0	cfs

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.57	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	25.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.0	16.0	cfs



INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.0	9.0	cfs

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	1.00	1.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	8.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	7
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	10.00	10.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	7
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	7
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.50	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.75	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	16.0	23.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	6.0	18.0	cfs

Engineer	Lane)	
	MAW	
Company	CCES	
Date	6/20/2018	

EX 2yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 8

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 2 years	3
EX DP-1		
	Addition Summary, 2 years	4
EX DP-2		
	Addition Summary, 2 years	5
EX DP-3		
	Addition Summary, 2 years	6
EX DP-4		
	Addition Summary, 2 years	7

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX-1	Pre-Development 2 YEAR	2	1.203	12.650	2.61
EX-2	Pre-Development 2 YEAR	2	0.071	12.300	0.17
EX-3	Pre-Development 2 YEAR	2	0.191	12.600	0.42
EX-4	Pre-Development 2 YEAR	2	0.366	12.250	1.29
EX-6	Pre-Development 2 YEAR	2	0.052	12.450	0.12
OS-1	Pre-Development 2 YEAR	2	0.379	12.400	0.86
OS-2	Pre-Development 2 YEAR	2	0.016	12.350	0.04
OS-3	Pre-Development 2 YEAR	2	0.077	12.100	0.55
OS-4	Pre-Development 2 YEAR	2	0.167	12.200	0.62
OS-5	Pre-Development 2 YEAR	2	0.287	12.300	0.97
SC-1	Pre-Development 2 YEAR	2	0.130	12.150	0.53
SC-2	Pre-Development 2 YEAR	2	3.593	12.550	9.88

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX DP-1	Pre-Development 2 YEAR	2	2.456	12.600	5.61
EX DP-2	Pre-Development 2 YEAR	2	0.087	12.350	0.21
EX DP-3	Pre-Development 2 YEAR	2	0.191	12.600	0.42
EX DP-4	Pre-Development 2 YEAR	2	0.052	12.450	0.12
EX. 60" CMP at Arroya	Pre-Development 2 YEAR	2	0.610	12.200	2.24
Ex. 36" CMP at Vollmer	Pre-Development 2 YEAR	2	0.130	12.150	0.53
Ex. 60" CMP at Vollmer	Pre-Development 2 YEAR	2	3.593	12.550	9.88

EX 2yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 2 of 8

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR				
Label	TYPE II 24 HOUR			
Start Time	0.000 hours			
Increment	0.250 hours			
End Time	24.000 hours			
Return Event	2 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time (hours)	Dep (in		Depth (in)	Depth (in)	Depth (in)	Depth (in)
0.0	00	0.0	0.0	0.0	0.0	0.0
1.2	50	0.0	0.0	0.0	0.0	0.1
2.5	00	0.1	0.1	0.1	0.1	0.1
3.7	50	0.1	0.1	0.1	0.1	0.1
5.0	00	0.1	0.1	0.2	0.2	0.2
6.2	50	0.2	0.2	0.2	0.2	0.2
7.5	00	0.2	0.2	0.3	0.3	0.3
8.7	50	0.3	0.3	0.3	0.3	0.4
10.0	00	0.4	0.4	0.4	0.5	0.5
11.2	50	0.5	0.6	0.8	1.4	1.5
12.5	00	1.5	1.6	1.6	1.7	1.7
13.7	50	1.7	1.7	1.8	1.8	1.8
15.0	00	1.8	1.8	1.8	1.9	1.9
16.2	50	1.9	1.9	1.9	1.9	1.9
17.5	00	1.9	1.9	1.9	1.9	2.0
18.7	50	2.0	2.0	2.0	2.0	2.0
20.0	00	2.0	2.0	2.0	2.0	2.0
21.2		2.0	2.0	2.0	2.1	2.1
22.5	00	2.1	2.1	2.1	2.1	2.1
23.7	50	2.1	2.1	(N/A)	(N/A)	(N/A)

Subsection: Addition Summary Label: EX DP-1

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node
REACH SC-9	EX. 60" CMP at Arroya
<catchment node="" outflow="" to=""></catchment>	EX-1
<catchment node="" outflow="" to=""></catchment>	OS-1
<catchment node="" outflow="" to=""></catchment>	OS-5

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft ³ /s)
Flow (From)	REACH SC-9	0.587	12.750	1.46
Flow (From)	EX-1	1.203	12.650	2.61
Flow (From)	OS-1	0.379	12.400	0.86
Flow (From)	OS-5	0.287	12.300	0.97
Flow (In)	EX DP-1	2.456	12.600	5.61

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 8

Subsection: Addition Summary Label: EX DP-2

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link	Upstream Node	
<catchment node="" outflow="" to=""></catchment>	EX-2	
<catchment node="" outflow="" to=""></catchment>	OS-2	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-2	0.071	12.300	0.17
Flow (From)	OS-2	0.016	12.350	0.04
Flow (In)	EX DP-2	0.087	12.350	0.21

EX 2yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 8

Subsection: Addition Summary Label: EX DP-3

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-3	0.191	12.600	0.42
Flow (In)	EX DP-3	0.191	12.600	0.42

EX 2yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 6 of 8

Subsection: Addition Summary Label: EX DP-4

Return Event: 2 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link		Upstream Node	
<catchment node="" outflow="" to=""></catchment>	EX-6		

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-6	0.052	12.450	0.12
Flow (In)	EX DP-4	0.052	12.450	0.12

EX 2yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 7 of 8

Index

Colo Springs 2015 (Time-Depth Curve, 2 years)...3

Е

С

EX DP-1 (Addition Summary, 2 years)...4

EX DP-2 (Addition Summary, 2 years)...5

EX DP-3 (Addition Summary, 2 years)...6

EX DP-4 (Addition Summary, 2 years)...7

М

Master Network Summary...2

EX 2yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 8

Project Summary		
Title	Retreat at TimberRidge Preliminary Drainage Report (South of Arroya Lane)	
Engineer	MAW	
Company	CCES	
Date	6/20/2018	
Notes	Pre-Dev 5 year SCS Model	

EX 5yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 8

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 5 years	3
EX DP-1		
	Addition Summary, 5 years	4
EX DP-2		
	Addition Summary, 5 years	5
EX DP-3		
	Addition Summary, 5 years	6
EX DP-4		
	Addition Summary, 5 years	7

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX-1	Pre-Development 5 YEAR	5	3.342	12.250	17.71
EX-2	Pre-Development 5 YEAR	5	0.197	12.100	1.70
EX-3	Pre-Development 5 YEAR	5	0.531	12.250	2.97
EX-4	Pre-Development 5 YEAR	5	0.916	12.150	6.87
EX-6	Pre-Development 5 YEAR	5	0.143	12.150	0.91
OS-1	Pre-Development 5 YEAR	5	1.050	12.150	7.03
OS-2	Pre-Development 5 YEAR	5	0.045	12.100	0.33
OS-3	Pre-Development 5 YEAR	5	0.178	12.050	2.07
OS-4	Pre-Development 5 YEAR	5	0.419	12.150	3.41
OS-5	Pre-Development 5 YEAR	5	0.717	12.200	5.15
SC-1	Pre-Development 5 YEAR	5	0.326	12.100	3.04
SC-2	Pre-Development 5 YEAR	5	9.021	12.400	44.17

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX DP-1	Pre-Development 5 YEAR	5	6.589	12.250	36.03
EX DP-2	Pre-Development 5 YEAR	5	0.242	12.100	2.04
EX DP-3	Pre-Development 5 YEAR	5	0.531	12.250	2.97
EX DP-4	Pre-Development 5 YEAR	5	0.143	12.150	0.91
EX. 60" CMP at Arroya	Pre-Development 5 YEAR	5	1.513	12.150	11.81
Ex. 36" CMP at Vollmer	Pre-Development 5 YEAR	5	0.326	12.100	3.04
Ex. 60" CMP at Vollmer	Pre-Development 5 YEAR	5	9.021	12.400	44.17

EX 5yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 2 of 8

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR				
Label	TYPE II 24 HOUR			
Start Time	0.000 hours			
Increment	0.250 hours			
End Time	24.000 hours			
Return Event	5 years			

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

Time	Depth	Depth	Depth	Depth	Depth	
(hours)	(in)	(in)	(in)	(in)	(in)	
0.000	0.0	0.0	0.0	0.0	0.0	
1.250	0.0	0.0	0.1	0.1	0.1	
2.500	0.1	0.1	0.1	0.1	0.1	
3.750	0.1	0.1	0.1	0.2	0.2	
5.000	0.2	0.2	0.2	0.2	0.2	
6.250	0.2	0.2	0.3	0.3	0.3	
7.500	0.3	0.3	0.3	0.3	0.4	
8.750	0.4	0.4	0.4	0.4	0.5	
10.000	0.5	0.5	0.5	0.6	0.6	
11.250	0.7	0.8	1.0	1.8	1.9	
12.500	2.0	2.0	2.1	2.1	2.2	
13.750	2.2	2.2	2.3	2.3	2.3	
15.000	2.3	2.3	2.3	2.4	2.4	
16.250	2.4	2.4	2.4	2.4	2.5	
17.500	2.5	2.5	2.5	2.5	2.5	
18.750	2.5	2.5	2.5	2.6	2.6	
20.000	2.6	2.6	2.6	2.6	2.6	
21.250	2.6	2.6	2.6	2.6	2.6	
22.500	2.7	2.7	2.7	2.7	2.7	
23.750	2.7	2.7	(N/A)	(N/A)	(N/A)	

Subsection: Addition Summary Label: EX DP-1

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node
REACH SC-9	EX. 60" CMP at Arroya
<catchment node="" outflow="" to=""></catchment>	EX-1
<catchment node="" outflow="" to=""></catchment>	OS-1
<catchment node="" outflow="" to=""></catchment>	OS-5

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	REACH SC-9	1.479	12.300	7.91
Flow (From)	EX-1	3.342	12.250	17.71
Flow (From)	OS-1	1.050	12.150	7.03
Flow (From)	OS-5	0.717	12.200	5.15
Flow (In)	EX DP-1	6.589	12.250	36.03

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 4 of 8

Subsection: Addition Summary Label: EX DP-2

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link	Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-2
<catchment node="" outflow="" to=""></catchment>	OS-2

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-2	0.197	12.100	1.70
Flow (From)	OS-2	0.045	12.100	0.33
Flow (In)	EX DP-2	0.242	12.100	2.04

EX 5yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 8

Subsection: Addition Summary Label: EX DP-3

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-3	0.531	12.250	2.97
Flow (In)	EX DP-3	0.531	12.250	2.97

EX 5yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 6 of 8

Subsection: Addition Summary Label: EX DP-4

Return Event: 5 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-6	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-6	0.143	12.150	0.91
Flow (In)	EX DP-4	0.143	12.150	0.91

EX 5yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 7 of 8

Index

Colo Springs 2015 (Time-Depth Curve, 5 years)...3

Е

С

EX DP-1 (Addition Summary, 5 years)...4

EX DP-2 (Addition Summary, 5 years)...5

EX DP-3 (Addition Summary, 5 years)...6

EX DP-4 (Addition Summary, 5 years)...7

М

Master Network Summary...2

EX 5yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 8

Pre-Dev	100	Year	Routing
---------	-----	------	---------

Title	Retreat at TimberRidge Preliminary Drainage Report (South of Arroya Lane)	
Engineer	MAW	
Company	CCES	
Date	6/20/2018	
Notes	Pre-Dev 100 year SCS Model	

EX 100yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 1 of 8

Table of Contents

	Master Network Summary	2
Colo Springs 2015	Time-Depth Curve, 100 years	3
EX DP-1		
	Addition Summary, 100 years	4
EX DP-2		
	Addition Summary, 100 years	5
EX DP-3		
	Addition Summary, 100 years	6
EX DP-4		
	Addition Summary, 100 years	7

Subsection: Master Network Summary

Catchments Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft³/s)
EX-1	Pre-Development 100 YEAR	100	14.733	12.200	140.28
EX-2	Pre-Development 100 YEAR	100	0.868	12.050	12.19
EX-3	Pre-Development 100 YEAR	100	2.340	12.150	23.71
EX-4	Pre-Development 100 YEAR	100	3.684	12.100	41.75
EX-6	Pre-Development 100 YEAR	100	0.631	12.100	7.12
OS-1	Pre-Development 100 YEAR	100	4.622	12.100	53.88
OS-2	Pre-Development 100 YEAR	100	0.198	12.100	2.53
OS-3	Pre-Development 100 YEAR	100	0.660	12.050	9.91
OS-4	Pre-Development 100 YEAR	100	1.685	12.100	20.68
OS-5	Pre-Development 100 YEAR	100	2.887	12.150	32.06
SC-1	Pre-Development 100 YEAR	100	1.309	12.100	17.33
SC-2	Pre-Development 100 YEAR	100	36.376	12.300	275.26

Node Summary

Label	Scenario	Return Event (years)	Hydrograph Volume (ac-ft)	Time to Peak (hours)	Peak Flow (ft ³ /s)
EX DP-1	Pre-Development 100 YEAR	100	28.208	12.150	281.74
EX DP-2	Pre-Development 100 YEAR	100	1.065	12.050	14.65
EX DP-3	Pre-Development 100 YEAR	100	2.340	12.150	23.71
EX DP-4	Pre-Development 100 YEAR	100	0.631	12.100	7.12
EX. 60" CMP at Arroya	Pre-Development 100 YEAR	100	6.029	12.100	71.16
Ex. 36" CMP at Vollmer	Pre-Development 100 YEAR	100	1.309	12.100	17.33
Ex. 60" CMP at Vollmer	Pre-Development 100 YEAR	100	36.376	12.300	275.26

EX 100yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 2 of 8

Subsection: Time-Depth Curve Label: Colo Springs 2015

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Time-Depth Curve: TYPE II 24 HOUR		
Label	TYPE II 24 HOUR	
Start Time	0.000 hours	
Increment	0.250 hours	
End Time	24.000 hours	
Return Event	100 years	

CUMULATIVE RAINFALL (in) Output Time Increment = 0.250 hours Time on left represents time for first value in each row.

	Time on left represents time for hist value in cach row.					
	Time (hours)	Depth (in)	Depth (in)	Depth (in)	Depth (in)	Depth (in)
Г	0.000	0.0	0.0	0.0	0.0	0.1
	1.250	0.1	0.1	0.1	0.1	0.1
	2.500	0.1	0.1	0.2	0.2	0.2
	3.750	0.2	0.2	0.2	0.3	0.3
	5.000	0.3	0.3	0.3	0.3	0.4
	6.250	0.4	0.4	0.4	0.5	0.5
	7.500	0.5	0.5	0.6	0.6	0.6
	8.750	0.6	0.7	0.7	0.7	0.8
	10.000	0.8	0.9	0.9	1.0	1.1
	11.250	1.2	1.3	1.8	3.0	3.3
	12.500	3.4	3.5	3.6	3.6	3.7
	13.750	3.7	3.8	3.8	3.9	3.9
	15.000	3.9	4.0	4.0	4.0	4.1
	16.250	4.1	4.1	4.1	4.2	4.2
	17.500	4.2	4.2	4.2	4.3	4.3
	18.750	4.3	4.3	4.3	4.4	4.4
	20.000	4.4	4.4	4.4	4.4	4.4
	21.250	4.5	4.5	4.5	4.5	4.5
	22.500	4.5	4.5	4.5	4.6	4.6
	23.750	4.6	4.6	(N/A)	(N/A)	(N/A)

Subsection: Addition Summary Label: EX DP-1

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-1'

Upstream Link	Upstream Node
REACH SC-9	EX. 60" CMP at Arroya
<catchment node="" outflow="" to=""></catchment>	EX-1
<catchment node="" outflow="" to=""></catchment>	OS-1
<catchment node="" outflow="" to=""></catchment>	OS-5

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	REACH SC-9	5.967	12.200	61.74
Flow (From)	EX-1	14.733	12.200	140.28
Flow (From)	OS-1	4.622	12.100	53.88
Flow (From)	OS-5	2.887	12.150	32.06
Flow (In)	EX DP-1	28.208	12.150	281.74

Subsection: Addition Summary Label: EX DP-2

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-2'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-2	
<catchment node="" outflow="" to=""></catchment>	OS-2	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-2	0.868	12.050	12.19
Flow (From)	OS-2	0.198	12.100	2.53
Flow (In)	EX DP-2	1.065	12.050	14.65

EX 100yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 5 of 8

Subsection: Addition Summary Label: EX DP-3

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-3'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-3	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-3	2.340	12.150	23.71
Flow (In)	EX DP-3	2.340	12.150	23.71

EX 100yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 6 of 8

Subsection: Addition Summary Label: EX DP-4

Return Event: 100 years Storm Event: TYPE II 24 HOUR

Summary for Hydrograph Addition at 'EX DP-4'

Upstream Link		Upstream Node
<catchment node="" outflow="" to=""></catchment>	EX-6	

Node Inflows

Inflow Type	Element	Volume (ac-ft)	Time to Peak (hours)	Flow (Peak) (ft³/s)
Flow (From)	EX-6	0.631	12.100	7.12
Flow (In)	EX DP-4	0.631	12.100	7.12

EX 100yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 7 of 8

Index

С

Colo Springs 2015 (Time-Depth Curve, 100 years)...3

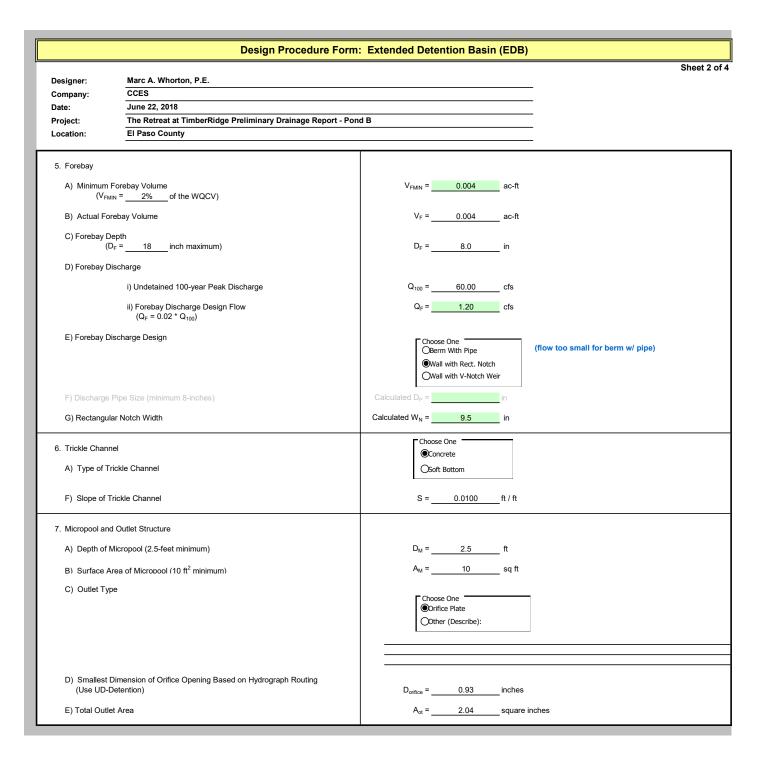
Е

EX DP-1 (Addition Summary, 100 years)...4

EX DP-2 (Addition Summary, 100 years)...5

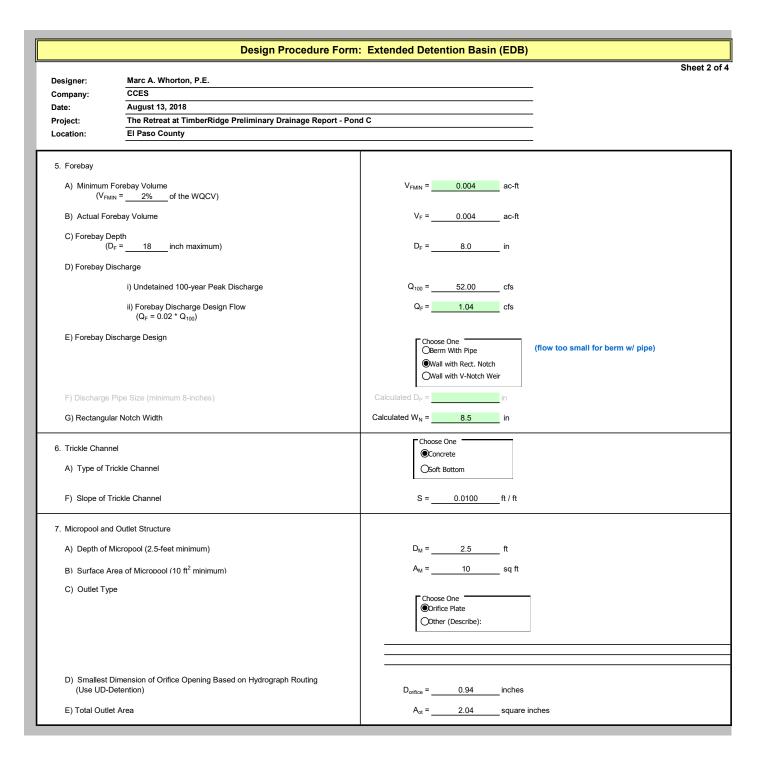
EX DP-3 (Addition Summary, 100 years)...6

EX DP-4 (Addition Summary, 100 years)...7


М

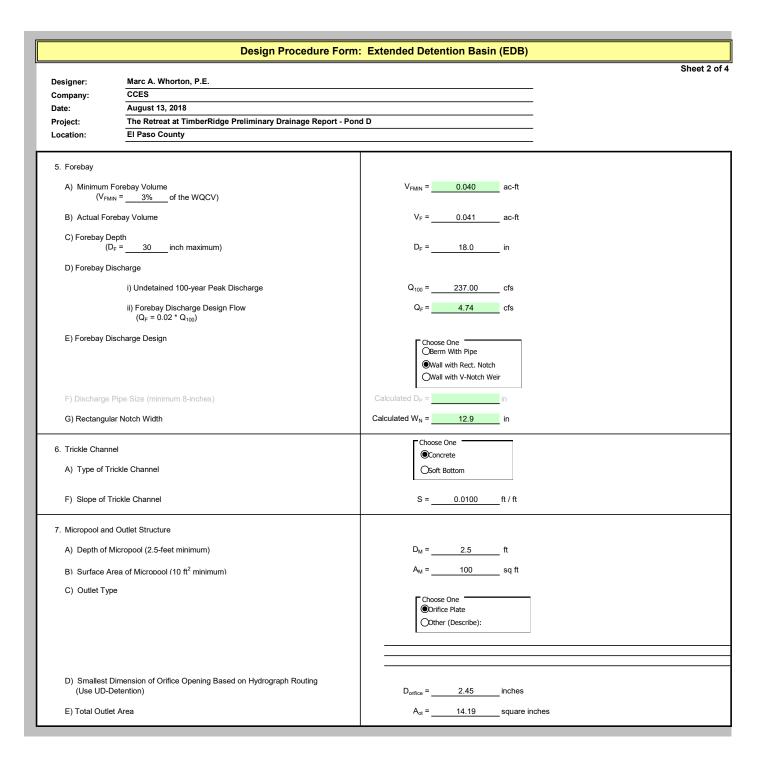
Master Network Summary...2

EX 100yr SCS.ppc 6/22/2018 Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 Bentley PondPack V8i [08.11.01.56] Page 8 of 8 STORMWATER QUALITY CALCULATIONS


	Design Procedure Forn	n: Extended Detention Basin (EDB)				
	UD-BM	P (Version 3.06, November 2016)	Sheet 1 of 4			
Designer:	Marc A. Whorton, P.E.					
Company: CCES						
Date: June 22, 2018						
Project: Location:	The Retreat at TimberRidge Preliminary Drainage Report - Po					
Location.						
1. Basin Storage ∖	/olume					
A) Effective Imp	perviousness of Tributary Area, I _a	l _a =%				
B) Tributary Are	a's Imperviousness Ratio (i = $I_a/100$)	i = <u>0.110</u>				
C) Contributing	Watershed Area	Area = <u>33.400</u> ac				
	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in				
E) Design Cond	cent	Choose One				
	V when also designing for flood control)	OWater Quality Capture Volume (WQCV)				
		Excess Urban Runoff Volume (EURV)				
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.202 ac-ft				
Water Quali	neds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{\rm R}$ = (d_e^*(V_{\rm DESIGN}/0.43))	V _{DESIGN OTHER} = 0.197 ac-ft				
	of Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft				
I) Predominant	Watershed NRCS Soil Group	Choose One QA ©B QC / D				
J) Excess Urba	an Runoff Volume (EURV) Design Volume					
	$: EURV_A = 1.68 * i^{1.28}$	EURV = 0.349 ac-f t				
	: EURV _B = 1.36 * i ^{1.08} /D: EURV _{CD} = 1.20 * i ^{1.08}					
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1				
3. Basin Side Slop	les					
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft				
4. Inlet		Rip-Rap Forebays				
A) Describe me	eans of providing energy dissipation at concentrated					
inflow location						
l						

	Design Procedure Form	: Extended Deter	tion Basi	n (EDB)		
Designer: Company: Date: Project: Location:	Marc A. Whorton, P.E. CCES June 22, 2018 The Retreat at TimberRidge Preliminary Drainage Report - Pond B El Paso County					
8. Initial Surcharge	e Volume					
	tial Surcharge Volume commended depth is 4 inches)	D _{IS} =	6	in		
	ial Surcharge Volume lume of 0.3% of the WQCV)	$V_{IS} =$		cu ft		
C) Initial Surcha	arge Provided Above Micropool	V _s =	5.0	cu ft		
9. Trash Rack A) Water Quali	ty Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t =	72	square inches		
in the USDCM,	B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)		Well Screen wi	th 60% Open Area	_	
	Other (Y/N): N				_	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =				
D) Total Water	Quality Screen Area (based on screen type)	A _{total} =	120	sq. in.		
	sign Volume (EURV or WQCV) esign concept chosen under 1E)	H=	3.25	feet		
F) Height of Wa	ater Quality Screen (H_{TR})	H _{TR} =	67	inches		
	ter Quality Screen Opening (W _{opening}) 12 inches is recommended)	W _{opening} =	12.0	inches		

	Design Procedure Form: Extended Detention Basin (EDB)					
Designer: Company: Date: Project: Location:	CCES Date: June 22, 2018 Project: The Retreat at TimberRidge Preliminary Drainage Report - Pond B					
 10. Overflow Embankment A) Describe embankment protection for 100-year and greater overtopping: B) Slope of Overflow Embankment (Horizontal distance per unit vertical, 4:1 or flatter preferred) 		Erosion Control Blanket				
11. Vegetation		Choose One Otrrigated ©Not Irrigated				
12. Access A) Describe Sediment Removal Procedures		Per IM Plan				
Notes:						


	Design Procedure Form	: Extended Detention Basin (EDB)	
Designer: Company:	UD-BMF Marc A. Whorton, P.E. CCES	P (Version 3.06, November 2016)	Sheet 1 of 4
Date: Project: Location:	August 13, 2018 The Retreat at TimberRidge Preliminary Drainage Report - Por El Paso County	nd C	
	februari.		
 Basin Storage \ A) Effective Imp 	zoiume perviousness of Tributary Area, I _a	l _a = 11.0 %	
, .	erviousness of findulary Area, I_a	$i_{a} = \frac{11.0}{0.110}$	
	Watershed Area	Area = 32.900 ac	
D) For Watersh	neds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in	
E) Design Cono (Select EUR	cept V when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) ©Excess Urban Runoff Volume (EURV)	
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = 0.199 ac-ft	
Water Quali	reds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume $_{\rm R} = (d_o^*(V_{\rm DESIGN}/0.43))$	V _{DESIGN OTHER} = 0.194 ac-ft	
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft	
I) Predominant	Watershed NRCS Soil Group	Choose One A B Cc / D	
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08} /D: EURV _{C/D} = 1.20 * i ^{1.08}	EURV = <u>0.344</u> ac-f t	
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1	
3. Basin Side Slop	ves		
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft	
4. Inlet		Rip-Rap Forebays	
A) Describe me inflow locatio	eans of providing energy dissipation at concentrated ons:		

	Design Procedure Form	: Extended Deter	ition Basi	in (EDB)	
Designer: Company: Date: Project: Location:	Marc A. Whorton, P.E. CCES August 13, 2018 The Retreat at TimberRidge Preliminary Drainage Report - Pon El Paso County	d C			Sheet 3 c
8. Initial Surcharge	e Volume				
	tial Surcharge Volume commended depth is 4 inches)	D _{IS} =	6	in	
	ial Surcharge Volume lume of 0.3% of the WQCV)	V _{IS} =		cu ft	
C) Initial Surcha	arge Provided Above Micropool	V _s =	5.0	cu ft	
	ty Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D}) een (If specifying an alternative to the materials recommended	A _t =	72 Well Screen wi	square inches	
	indicate "other" and enter the ratio of the total open are to the for the material specified.)				_
	Other (Y/N): N				_
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =			
D) Total Water	Quality Screen Area (based on screen type)	A _{total} =	120	sq. in.	
	sign Volume (EURV or WQCV) esign concept chosen under 1E)	H=	3.25	feet	
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} =	67	inches	
	ter Quality Screen Opening (W _{opening}) 12 inches is recommended)	W _{opening} =	12.0	inches	

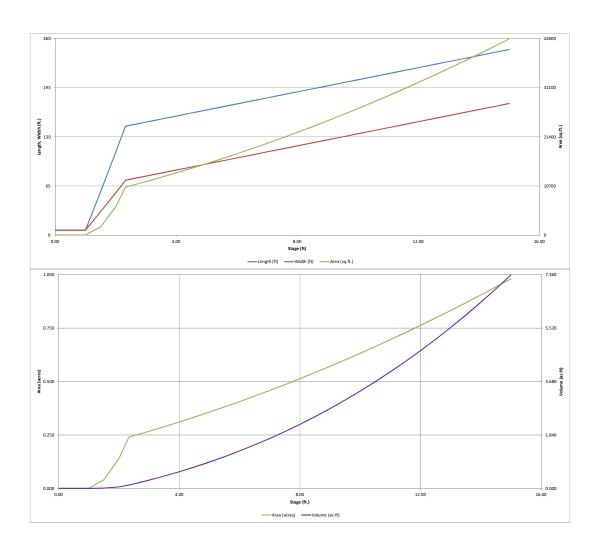
	Design Procedure Form	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Marc A. Whorton, P.E. CCES August 13, 2018 The Retreat at TimberRidge Preliminary Drainage Report - Pon El Paso County	Sheet 4 of 4
B) Slope of Ov	nkment nbankment protection for 100-year and greater overtopping: erflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Erosion Control Blanket
11. Vegetation		Choose One Olrrigated ©Not Irrigated
12. Access A) Describe Se	ediment Removal Procedures	Per IM Plan
Notes:		

	Design Procedure Form: Extended Detention Basin (EDB)							
		P (Version 3.06, November 2016)	Sheet 1 of 4					
Designer:	Marc A. Whorton, P.E.							
Company:	CCES							
Date:	August 13, 2018							
Project:	The Retreat at TimberRidge Preliminary Drainage Report - Por							
Location:	El Paso County							
1. Basin Storage ∖	/olume							
A) Effective Imp	erviousness of Tributary Area, I_a	I _a = <u>23.0</u> %						
B) Tributary Are	a's Imperviousness Ratio (i = l _a / 100)	i =						
C) Contributing	Watershed Area	Area = <u>129.900</u> ac						
	eds Outside of the Denver Region, Depth of Average ucing Storm	d ₆ = <u>0.42</u> in						
E) Design Cond	cept	Choose One						
	V when also designing for flood control)	OWater Quality Capture Volume (WQCV)						
		Excess Urban Runoff Volume (EURV)						
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} = <u>1.380</u> ac-ft						
Water Quali	neds Outside of the Denver Region, ty Capture Volume (WQCV) Design Volume $_{R} = (d_{e}^{*}(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} = <u>1.348</u> ac-ft						
	f Water Quality Capture Volume (WQCV) Design Volume ferent WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft						
I) Predominant	Watershed NRCS Soil Group	Choose One A B C / D						
For HSG A For HSG B	in Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08} /D: EURV _{CD} = 1.20 * i ^{1.08}	EURV = <u>3.010</u> ac-f t						
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1						
3. Basin Side Slop	es							
	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = ft / ft						
4. Inlet		<u>Rip-Rap Forebays</u>						
	ans of providing energy dissipation at concentrated							
inflow location	ons:							
		1						

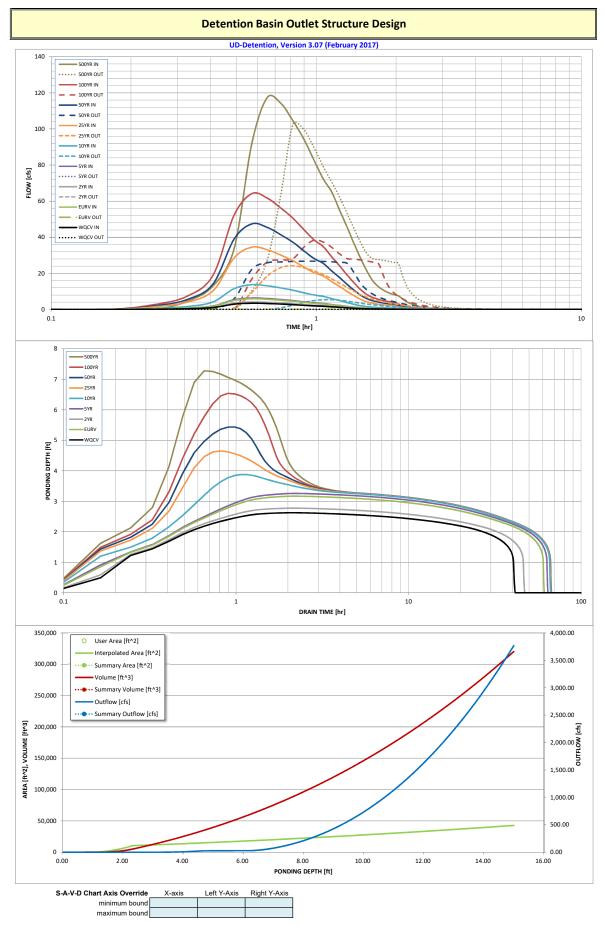
	Design Procedure Form	: Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Marc A. Whorton, P.E. CCES August 13, 2018 The Retreat at TimberRidge Preliminary Drainage Report - Pon El Paso County	Sheet 3 of 4
8. Initial Surcharge	e Volume	
	ial Surcharge Volume commended depth is 4 inches)	D _{is} =6 in
	ial Surcharge Volume lume of 0.3% of the WQCV)	V _{IS} = <u>176.2</u> cu ft
C) Initial Surcha	rge Provided Above Micropool	V _s =50.0 cu ft
9. Trash Rack		
A) Water Quali	ty Screen Open Area: A _t = A _{ot} * 38.5*(e ^{-0.095D})	A _t = square inches
in the USDCM,	en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 2" O.C.
	Other (Y/N): N	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water	Quality Screen Area (based on screen type)	A _{total} = <u>610</u> sq. in.
	sign Volume (EURV or WQCV) esign concept chosen under 1E)	H= <u>5</u> feet
F) Height of Wa	ter Quality Screen (H _{TR})	H _{TR} = 88 inches
	ter Quality Screen Opening (W _{opening}) 12 inches is recommended)	W _{opening} = <u>12.0</u> inches

	Design Procedure Form	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	Marc A. Whorton, P.E. CCES August 13, 2018 The Retreat at TimberRidge Preliminary Drainage Report - Pon El Paso County	Sheet 4 of
B) Slope of Ov	nkment nbankment protection for 100-year and greater overtopping: erflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Erosion Control Blanket
11. Vegetation		Choose One Orrigated ©Not Irrigated
12. Access A) Describe Se	ediment Removal Procedures	Per IM Plan
Notes:		

DETENTION POND CALCULATIONS


DETENTION	BASIN STAG	F-STORAGE 1	ABLE BUILDER

110/000	METHEAT A		OL TIGELIN		ANAOL NEI O
Basin ID:	POND B				
	2				
100-YB	ONE 1	1			
VOLUME EURV WOCV		-		-	
	/"	100-YEAJ ORIFICE	1		Depth Inc
PERMANENT	1 AND 2	OHIFICE			
POOL Example Zone	Configuration	on (Retentio	n Pond)		Stage - S Descrip
Required Volume Calculation		-			Top of Mi
Selected BMP Type =	EDB				IS\
Watershed Area =	33.40	acres			
Watershed Length =	1,650	ft			
Watershed Slope =	0.020	ft/ft			
Watershed Imperviousness =	11.00%	percent			Floo
Percentage Hydrologic Soil Group A =	0.0%	percent			
Percentage Hydrologic Soil Group B =	100.0%	percent			Zone 1 (V
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			
Desired WQCV Drain Time =	40.0	hours			Zone 2 (I
Location for 1-hr Rainfall Depths =	User Input	_			
Water Quality Capture Volume (WQCV) =	0.202	acre-feet	Optional Use		
Excess Urban Runoff Volume (EURV) =	0.348	acre-feet	1-hr Precipita	ition	
2-yr Runoff Volume (P1 = 1.19 in.) =	0.241	acre-feet	1.19	inches	
5-yr Runoff Volume (P1 = 1.5 in.) =	0.373	acre-feet	1.50	inches	
10-yr Runoff Volume (P1 = 1.75 in.) =	0.813	acre-feet	1.75	inches	Zone 3 (10
25-yr Runoff Volume (P1 = 2 in.) =	2.066	acre-feet	2.00	inches	
50-yr Runoff Volume (P1 = 2.25 in.) =	2.851	acre-feet	2.25	inches	
100-yr Runoff Volume (P1 = 2.52 in.) =	3.877	acre-feet	2.52	inches	
500-yr Runoff Volume (P1 = 3.85 in.) =	7.196	acre-feet	3.85	inches	
Approximate 2-yr Detention Volume =	0.224	acre-feet			
Approximate 5-yr Detention Volume =	0.349	acre-feet			
Approximate 10-yr Detention Volume =	0.696	acre-feet			
Approximate 25-yr Detention Volume =	0.957	acre-feet			
Approximate 50-yr Detention Volume =	1.003	acre-feet			
Approximate 100-yr Detention Volume =	1.289	acre-feet			
Stage-Storage Calculation		1			
Zone 1 Volume (WQCV) =	0.202	acre-feet			
Zone 2 Volume (EURV - Zone 1) =	0.146	acre-feet			
Zone 3 Volume (100-year - Zones 1 & 2) =	0.941	acre-feet			
Total Detention Basin Volume =	1.289	acre-feet			
Initial Surcharge Volume (ISV) =	21	ft^3			
Initial Surcharge Depth (ISD) =	0.50	ft			
Total Available Detention Depth (H _{total}) =	6.00	ft			
Depth of Trickle Channel (H _{TC}) =	0.50	ft			
Slope of Trickle Channel (S _{TC}) =	0.010	ft/ft			
Slopes of Main Basin Sides (S _{main}) =	4	H:V			
Basin Length-to-Width Ratio (R _{t/W}) =	2	J			
		1			
Initial Surcharge Area (A _{ISV}) =	42	ft^2			


Initial Surcharge Area (A _{ISV}) =	42	ft^2
Surcharge Volume Length (L _{ISV}) =	6.5	ft
Surcharge Volume Width (W _{ISV}) =	6.5	ft
Depth of Basin Floor (H _{FLOOR}) =	1.32	ft
Length of Basin Floor (L _{FLOOR}) =	144.0	ft
Width of Basin Floor (W _{FLOOR}) =	72.6	ft
Area of Basin Floor (A _{FLOOR}) =	10,459	ft^2
Volume of Basin Floor (V _{FLOOR}) =	4,922	ft^3
Depth of Main Basin (H _{MAIN}) =	3.68	ft
Length of Main Basin (L _{MAIN}) =	173.4	ft
Width of Main Basin (W _{MAIN}) =	102.0	ft
Area of Main Basin (A _{MAIN}) =	17,699	ft^2
Volume of Main Basin (V _{MAIN}) =	51,199	ft^3
Calculated Total Basin Volume (V _{total}) =	1.289	acre-feet

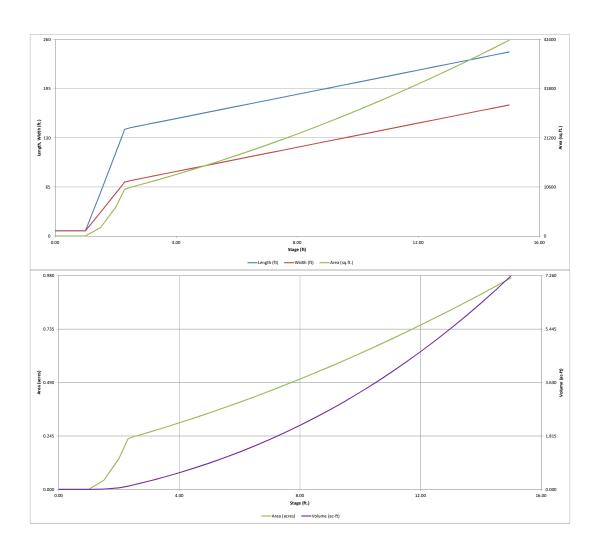
Г		1							
Depth Increment =	0.5	ft Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description Top of Micropool	(ft) 0.00	Stage (ft)	(ft) 6.5	(ft) 6.5	(ft^2) 42	Area (ft^2)	(acre) 0.001	(ft^3)	(ac-ft)
ISV	0.50		6.5	6.5	42		0.001	21	0.000
	1.00		6.5	6.5	42		0.001	42	0.001
	1.50		57.5	31.0	1,782		0.041	387	0.009
	2.00		109.5	56.0	6,132		0.141	2,258	0.052
Floor	2.32		143.8	72.5	10,427		0.239	4,959	0.114
	2.50		145.4	74.0	10,769		0.247	6,869	0.158
Zone 1 (WQCV)	2.68		146.9	75.5	11,087		0.255	8,836	0.203
	3.00		149.4	78.0	11,663		0.268	12,475	0.286
Zone 2 (EURV)	3.23		151.3	79.9	12,085		0.277	15,206	0.349
	3.50		153.4	82.0	12,589		0.289	18,537	0.426
	4.00		157.4	86.0	13,547		0.311	25,070	0.576
	4.50		161.4	90.0	14,537		0.334	32,089	0.737
	5.00		165.4	94.0	15,559		0.357	39,612	0.909
	5.50		169.4	98.0	16,613		0.381	47,654	1.094
Zone 3 (100-year)	6.00		173.4	102.0	17,699		0.406	56,230	1.291
	6.50		177.4	106.0	18,817		0.432	65,358	1.500
	7.00		181.4	110.0	19,967		0.458	75,052	1.723
	7.50		185.4	114.0	21,149		0.486	85,330	1.959
	8.00		189.4	118.0	22,363		0.513	96,206	2.209
	8.50		193.4	122.0	23,609		0.542	107,698	2.472
	9.00		197.4	126.0	24,886		0.571	119,820	2.751
	9.50		201.4	130.0	26,196		0.601	132,589	3.044
	10.00		205.4	134.0	27,538		0.632	146,022	3.352
	10.50		209.4	138.0	28,912		0.664	160,133	3.676
	11.00		213.4	142.0	30,318		0.696	174,939	4.016
	11.50		217.4	146.0	31,756		0.729	190,457	4.372
	12.00		217.4	150.0	33,226		0.763	206,701	4.745
	12.00		221.4	150.0	33,228		0.797	223,688	5.135
	13.00		229.4	154.0	34,728		0.832	241,434	5.543
	13.00		229.4	158.0	36,262		0.868	241,434 259,955	5.968
	13.50		233.4	162.0	37,828		0.905	279,268	6.411
					41.056				
	14.50		241.4	170.0			0.943	299,387	6.873
	15.00		245.4	174.0	42,718		0.981	320,329	7.354
								<u> </u>	
								L	
								-	

		Dete	ention Basin (Dutlet Struct	ure Design				
Project:		ER RIDGE - PRELIN	UD-Detention, Ve MINARY DRAINAGE	rsion 3.07 (Februar REPORT	ry 2017)				
Basin ID:	POND B								
				Stage (ft)	Zone Volume (ac-ft)	Outlet Type	1		
			Zone 1 (WQCV)	2.68	0.202	Orifice Plate			
ZONE 1 AND 2-	-100-YEAI ORIFICE	3	Zone 2 (EURV)	3.23	0.146	Orifice Plate			
PERMANENT ORIFICES POOL Example Zone	Configuration (Re	tention Pond)	'one 3 (100-year)	6.00	0.941	Weir&Pipe (Restrict)			
	• ·	-			1.289	Total	10		
er Input: Orifice at Underdrain Outlet (typically u Underdrain Orifice Invert Depth =	N/A	1	ne filtration media su	rface)	Unde	rdrain Orifice Area =	ed Parameters for Ur N/A		
Underdrain Orifice Diameter =	N/A	inches		10007		in Orifice Centroid =	N/A	feet	
er Input: Orifice Plate with one or more orifices	or Elliptical Slot Wei	(typically used to d	rain WQCV and/or EL	JRV in a sedimentati	ion BMP)	Calcu	lated Parameters for	r Plate	
Invert of Lowest Orifice =	0.00		bottom at Stage = 0 ft			ifice Area per Row =	4.722E-03	ft ²	
Depth at top of Zone using Orifice Plate =	3.25		bottom at Stage = 0 ft	:)		liptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	13.00 0.68	inches	= 1E/16 inch)		Ellip	tical Slot Centroid =	N/A N/A	feet ft ²	
Orifice Plate: Orifice Area per Row =	0.68	sq. inches (diameter	= 15/16 inch)			Elliptical Slot Area =	N/A]# ⁻	
er Input: Stage and Total Area of Each Orifice	Row (numbered fro	m lowest to highest)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	1.10	2.20						
Orifice Area (sq. inches)	0.68	0.68	0.68						1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)									1
					1				
User Input: Vertical Orifice (Circ	ular or Rectangular) Not Selected	Not Selected	1			Calculated	Parameters for Ver	tical Orifice Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	ottom at Stage = 0 f	t) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b			al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches		.,		,	,	
User Input: Overflow Weir (Dropbox) and G	Zone 3 Weir	Not Selected	1			Calculated	Parameters for Ove		1
Overflow Weir Front Edge Height, Ho =	3.25	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H _t =	Zone 3 Weir 4.25	Not Selected N/A	feet
Overflow Weir Front Edge Length =	4.00	N/A	feet	alon de stage - o rej		Weir Slope Length =	4.12	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for fl	at grate)	Grate Open Area /		5.99	N/A	should be \geq 4
Horiz. Length of Weir Sides =	4.00	N/A	feet		Overflow Grate Ope	en Area w/o Debris =	12.37	N/A	ft ²
Overflow Grate Open Area % =	75%	N/A	%, grate open area/t	otal area	Overflow Grate Op	en Area w/ Debris =	6.18	N/A	ft ²
Debris Clogging % =	50%	N/A	%						
ser Input: Outlet Pipe w/ Flow Restriction Plate (C	ircular Orifice, Restr	ictor Plate, or Rectar	ngular Orifice)			alculated Parameter	s for Outlet Pine w/	Flow Restriction Pla	te
	Zone 3 Restrictor	Not Selected]		-		Zone 3 Restrictor	Not Selected	1
Depth to Invert of Outlet Pipe =	2.50	N/A	ft (distance below bas	in bottom at Stage = 0	ft)	Outlet Orifice Area =	2.07	N/A	ft ²
Outlet Pipe Diameter =	24.00	N/A	inches						feet
Restrictor Plate Height Above Pipe Invert =									radians
		I	inches	Half-0			1.82	N/A	
User Input: Emergency Spillway (Rectang			inches	Half-(ictor Plate on Pipe =	1.82 ted Parameters for S		
User Input: Emergency Spillway (Rectang Spillway Invert Stage=	gular or Trapezoidal) 6.25		inches bottom at Stage = 0 ft		Central Angle of Restr Spillway	ictor Plate on Pipe = Calcula Design Flow Depth=	ted Parameters for S 0.79	Spillway feet	
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	gular or Trapezoidal) 6.25 20.00	feet			Central Angle of Restr Spillway Stage a	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	ted Parameters for S 0.79 8.04	Spillway feet feet	
User Input: Emergency Spillway (Rectang Spillway Invert Stage=	gular or Trapezoidal) 6.25				Central Angle of Restr Spillway Stage a	ictor Plate on Pipe = Calcula Design Flow Depth=	ted Parameters for S 0.79	Spillway feet	
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	gular or Trapezoidal) 6.25 20.00 4.00	feet H:V			Central Angle of Restr Spillway Stage a	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	ted Parameters for S 0.79 8.04	Spillway feet feet	
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	gular or Trapezoidal) 6.25 20.00 4.00	feet H:V			Central Angle of Restr Spillway Stage a	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	ted Parameters for S 0.79 8.04	Spillway feet feet	500 Yea
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	zular or Trapezoidal) 6.25 20.00 4.00 1.00 <u>WQCV</u> 0.53	feet H:V feet EURV 1.07	bottom at Stage = 0 ft 2 Year 1.19	5 Year 1.50	Central Angle of Restr Spillway Stage a Basin Area a <u>10 Year</u> 1.75	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Top of Freeboard = 25 Year 2.00	ted Parameters for 9 0.79 8.04 0.52 50 Year 2.25	Spillway feet feet acres <u>100 Year</u> 2.52	3.85
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	gular or Trapezoidal) 6.25 20.00 4.00 1.00 WQCV	feet H:V feet EURV	bottom at Stage = 0 ft 2 Year	:) 5 Year	Central Angle of Restr Spillway Stage a Basin Area a 10 Year	ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = t Top of Freeboard = 25 Year	ted Parameters for 5 0.79 8.04 0.52 50 Year	Spillway feet feet acres 100 Year	
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	201ar or Trapezoidal) 6.25 20.00 4.00 1.00 WQCV 0.53 0.202	feet H:V feet EURV 1.07	bottom at Stage = 0 ft 2 Year 1.19	5 Year 1.50	Central Angle of Restr Spillway Stage a Basin Area a <u>10 Year</u> 1.75	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.066	ted Parameters for 9 0.79 8.04 0.52 50 Year 2.25	Spillway feet feet acres <u>100 Year</u> 2.52	3.85
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	zular or Trapezoidal) 6.25 20.00 4.00 1.00 <u>WQCV</u> 0.53	feet H:V feet <u>EURV</u> 1.07 0.348	2 Year 1.19 0.241	5 Year 1.50 0.373	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.813	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Top of Freeboard = 25 Year 2.00	ted Parameters for 5 0.79 8.04 0.52 50 Year 2.25 2.851	Spillway feet feet acres <u>100 Year</u> 2.52 3.877	3.85 7.196
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	wular or Trapezoidal) 6.25 20.00 4.00 1.00 0.53 0.202 0.201 0.00 0.00	feet H:V feet <u>EURV</u> 1.07 0.348 0.347 0.00 0.0	2 Year 1.19 0.241 0.241 0.01 0.4	5 Year 1.50 0.373 0.372 0.02 0.7	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.813 0.812 0.21 6.9	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.066 2.065 0.68 22.7	ted Parameters for S 0.79 8.04 0.52 50 Year 2.25 2.851 2.851 2.850 0.94 31.5	Spillway feet feet acres 100 Year 2.52 3.877 3.876 1.27 42.3	3.85 7.196 7.191 2.29 76.6
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	201ar or Trapezoidal) 6.25 20.00 4.00 1.00 WQCV 0.53 0.202 0.201 0.00 0.0 3.5	feet H:V feet <u>EURV</u> 1.07 0.348 0.347 0.00 0.0 0.0 5.9	2 Year 1.19 0.241 0.241 0.01 0.4 4.1	5 Year 1.50 0.373 0.372 0.02 0.7 6.4	Central Angle of Restr Spillway Stage a Basin Area a 1.75 0.813 0.812 0.21 6.9 1.3.7	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 2.066 2.065 0.68 22.7 34.5	ted Parameters for 5 0.79 8.04 0.52 50 Year 2.25 2.851 2.850 0.94 31.5 47.4	Spillway feet feet acres 100 Year 2.52 3.877 	3.85 7.196 7.191 2.29 76.6 117.4
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfail Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Riow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Notflow Q (cfs) = Peak Outflow Q (cfs) =	work work 0.25 20.00 4.00 1.00 1.00 0.201 0.201 0.201 0.00 3.5 0.1 0.1	feet H:V feet 1.07 0.348 0.347 0.00 0.0 5.9 0.1	2 Year 1.19 0.241 0.01 0.4 4.1 0.1	5 Year 1.50 0.373 0.372 0.02 0.7 6.4 0.1	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.813 0.812 0.21 6.9 13.7 5.4	ictor Plate on Pipe = Calcula Design Flow Depth= i Top of Freeboard = Cop of Freeboard = 25 Year 2.00 2.065 0.68 22.7 34.5 24.2	ted Parameters for \$ 0.79 8.04 0.52 50 Year 2.25 2.851 2.850 0.94 31.5 47.4 26.7	Spillway feet	3.85 7.196 7.191 2.29 76.6 117.4 102.7
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	201ar or Trapezoidal) 6.25 20.00 4.00 1.00 WQCV 0.53 0.202 0.201 0.00 0.0 3.5	feet H:V feet <u>EURV</u> 1.07 0.348 0.347 0.00 0.0 0.0 5.9	2 Year 1.19 0.241 0.241 0.01 0.4 4.1	5 Year 1.50 0.373 0.372 0.02 0.7 6.4	Central Angle of Restr Spillway Stage a Basin Area a 1.75 0.813 0.812 0.21 6.9 1.3.7	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 2.066 2.065 0.68 22.7 34.5	ted Parameters for 5 0.79 8.04 0.52 50 Year 2.25 2.851 2.850 0.94 31.5 47.4	Spillway feet feet acres 100 Year 2.52 3.877 	3.85 7.196 7.191 2.29 76.6 117.4 102.7 1.3
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	2014r or Trapezoidal) 6.25 20.00 4.00 1.00 WQCV 0.53 0.202 0.201 0.00 0.0 3.5 0.1 N/A Plate N/A	feet H:V feet 0.347 0.00 0.0 0.0 5.9 0.1 N/A Plate N/A	2 Year 1.19 0.241 0.241 0.1 0.4 4.1 0.1 N/A Plate N/A	5 Year 1.50 0.373 0.372 0.02 0.7 6.4 0.1 0.1 Overflow Grate 1 0.0	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.813 0.812	ictor Plate on Pipe = Calcula Design Flow Depth= Top of Freeboard = Cop of Freeboard = 25 Year 2.006 2.066 2.065 0.68 22.7 34.5 24.2 1.1 Overflow Grate 1 1.9	ted Parameters for 5 0.79 8.04 0.52 50 Year 2.25 2.851 2.850 0.94 31.5 47.4 26.7 0.8 0.0ttlet Plate 1 2.2	Spillway feet feet acres 2.52 3.877 2.52 3.876 1.27 42.3 64.2 38.4 0.9 5pillway 2.3	3.85 7.196 7.191 2.29 76.6 117.4 102.7 1.3 Spillway 2.4
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Untflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	xular or Trapezoidal) 6.25 20.00 4.00 1.00 0.53 0.202 0.201 0.00 0.00 0.0 3.5 0.1 N/A Plate N/A N/A	feet H:V feet 1.07 0.348 0.347 0.00 0.0 5.9 0.1 N/A Plate N/A N/A	2 Year 1.19 0.241 0.241 0.01 0.4 4.1 0.1 N/A Plate N/A N/A	5 Year 1.50 0.373 0.372 0.02 0.7 6.4 0.1 0.1 0.0 0.1 0.0 N/A	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.813 0.812 0.21 6.9 13.7 5.4 0.8 0.8 13.7 5.4 0.8 0.4 0.4 N/A	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Cop of Freeboard = 25 Year 2.00 2.065 0.68 22.7 34.5 24.2 1.1 Overflow Grate 1 1.9 N/A	ted Parameters for S 0.79 8.04 0.52 2.25 2.851 2.850 0.94 31.5 47.4 26.7 0.8 Outlet Plate 1 2.2 N/A	Spillway feet feet acres 100 Year 2.52 3.876 1.27 42.3 64.2 38.4 0.9 Spillway 2.3 N/A	3.85 7.196 7.191 2.29 76.6 117.4 102.7 1.3 Spillway 2.4 N/A
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Rlow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	wular or Trapezoidal) 6.25 20.00 4.00 1.00 wQCV 0.53 0.201 0.00 0.00 0.01 N/A Plate N/A 39	feet H:V feet 1.07 0.348 0.347 0.00 0.0 0.0 5.9 0.1 N/A Plate N/A N/A N/A 57	2 Year 1.19 0.241 0.241 0.01 0.4 4.1 0.1 N/A Plate N/A N/A 44	5 Year 1.50 0.373 0.372 0.02 0.7 6.4 0.1 0.1 0.1 0.1 Overflow Grate 1 0.0 N/A 60	Central Angle of Restr Spillway Stage a Basin Area a 0.812 0.21 6.9 13.7 5.4 0.21 6.9 13.7 5.4 0.21 0.21 6.9 13.7 5.4 0.21 0.21 6.9 13.7 5.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.5 9	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.066 0.68 22.7 34.5 24.2 1.1 Overflow Grate 1 1.9 N/A 51	ted Parameters for S 0.79 8.04 0.52 2.25 2.851 2.850 0.94 31.5 47.4 26.7 0.8 Outlet Plate 1 2.2 N/A 46	Spillway feet feet feet acres acres acres 100 Year 2.52 3.876 acres 3.876 1.27 42.3 64.2 38.4 0.9 Spillway 2.3 Spillway 2.3 N/A 40 Acres Acres	3.85 7.196 7.191 2.29 76.6 117.4 102.7 1.3 Spillway 2.4 N/A 24
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	xular or Trapezoidal) 6.25 20.00 4.00 1.00 0.53 0.202 0.201 0.00 0.00 0.0 3.5 0.1 N/A Plate N/A N/A	feet H:V feet 1.07 0.348 0.347 0.00 0.0 5.9 0.1 N/A Plate N/A N/A	2 Year 1.19 0.241 0.241 0.01 0.4 4.1 0.1 N/A Plate N/A N/A	5 Year 1.50 0.373 0.372 0.02 0.7 6.4 0.1 0.1 0.0 0.1 0.0 N/A	Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.813 0.812 0.21 6.9 13.7 5.4 0.8 0.8 13.7 5.4 0.8 0.4 0.4 N/A	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Cop of Freeboard = 25 Year 2.00 2.065 0.68 22.7 34.5 24.2 1.1 Overflow Grate 1 1.9 N/A	ted Parameters for S 0.79 8.04 0.52 2.25 2.851 2.850 0.94 31.5 47.4 26.7 0.8 Outlet Plate 1 2.2 N/A	Spillway feet feet acres 100 Year 2.52 3.876 1.27 42.3 64.2 38.4 0.9 Spillway 2.3 N/A	3.85 7.196 7.191 2.29 76.6 117.4 102.7 1.3 Spillway 2.4 N/A
User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) =	ular or Trapezoidal) 6.25 20.00 4.00 1.00 0.53 0.202 0.201 0.00 0.0 0.0 3.5 0.1 N/A Plate N/A N/A 39 40	feet H:V feet 0.347 0.347 0.00 0.0 5.9 0.1 N/A Plate N/A N/A N/A S7 60	2 Year 1.19 0.241 0.241 0.01 0.4 4.1 0.1 N/A Plate N/A N/A 44 46	5 Year 1.50 0.373 0.372 0.02 0.7 6.4 0.1 0.1 Overflow Grate 1 0.0 N/A 60 63	Central Angle of Restr Spillway Stage a Basin Area a 0.812 0.21 6.9 13.7 5.4 0.8 0.8 13.7 5.4 0.8 0.9 13.7 5.4 0.8 0.9 13.7 5.4 0.8 0.9 13.7 5.4 0.8 0.9 13.7 5.4 0.8 0.8 12 0.4 0.4 0.4 0.4 0.4 59 64	ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.000 2.066 2.065 0.68 22.7 34.5 24.2 1.1 Overflow Grate 1 1.9 N/A 51 60	ted Parameters for S 0.79 8.04 0.52 0.52 2.25 2.851 2.850 0.94 31.5 47.4 26.7 0.8 Outlet Plate 1 2.2 N/A 46 59	Spillway feet feet acres 100 Year 2.52 3.876 1.27 42.3 64.2 38.4 0.9 Spillway 2.3 N/A 40 56	7.196 7.191 2.29 76.6 117.4 102.7 1.3 Spillway 2.4 N/A 24 49

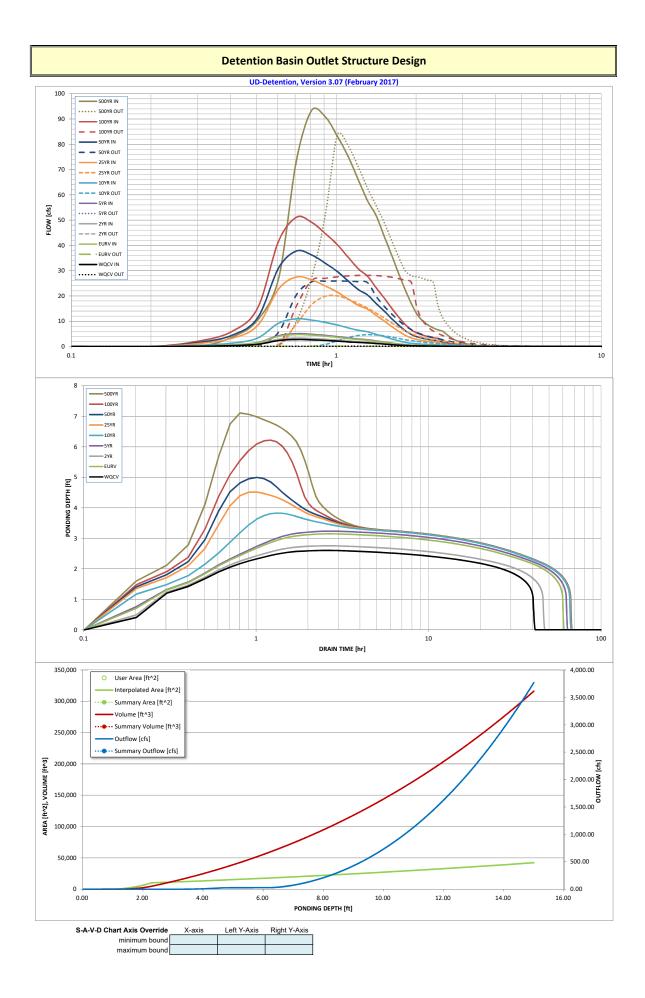
Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

	The user can o	verride the calc			n 3.07 (Februa this workbook w		graphs develop	ed in a separate j	program.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.90 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
4.00 11111	0:04:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:09:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:14:42	0.16	0.27	0.19	0.28	0.61	1.48	2.01	2.68	4.57
1.020	0:19:36	0.42	0.71	0.50	0.76	1.63	4.05	5.53	7.42	13.09
	0:24:30	1.08	1.83	1.28	1.96	4.20	10.40	14.21	19.05	33.62
	0:29:24	2.96	5.04	3.52	5.39	11.53	28.55	38.98	52.25	92.02
	0:34:18	3.46	5.93	4.13	6.35	13.73	34.51	47.42	64.17	117.38
	0:39:12	3.29	5.65	3.93	6.05	13.11	33.05	45.47	61.68	114.23
	0:44:06	3.00	5.14 4.58	3.57	5.51	11.94	30.08	41.38	56.15	104.53
	0:53:54	2.66	3.93	3.18	4.90	10.67 9.23	27.02 23.49	37.22 32.46	50.57 44.22	94.27 82.80
	0:58:48	1.99	3.43	2.38	3.68	8.04	20.42	28.28	38.59	72.44
	1:03:42	1.80	3.11	2.15	3.33	7.28	18.51	25.58	34.85	65.11
	1:08:36	1.47	2.55	1.76	2.74	6.02	15.44	21.38	29.19	54.96
	1:13:30	1.19	2.07	1.42	2.22	4.93	12.73	17.67	24.18	45.66
	1:18:24	0.89	1.58	1.08	1.70	3.81	9.99	13.93	19.14	36.49
	1:23:18	0.65	1.16	0.79	1.25	2.85	7.62	10.69	14.77	28.39
	1:28:12	0.48	0.85	0.58	0.91	2.06	5.61	7.92	11.02	21.41
	1:33:06 1:38:00	0.38	0.66	0.45	0.71	1.59	4.25	5.98	8.27	15.91
	1:38:00	0.31	0.54	0.37	0.59	1.31	3.46	4.84	6.66 5.60	12.68
	1:47:48	0.28	0.46	0.32	0.30	0.97	2.92	3.56	4.88	9.23
	1:52:42	0.21	0.37	0.25	0.39	0.88	2.29	3.18	4.36	8.23
	1:57:36	0.20	0.34	0.23	0.37	0.81	2.10	2.92	4.00	7.52
	2:02:30	0.14	0.25	0.17	0.27	0.59	1.55	2.16	2.98	5.70
	2:07:24	0.10	0.18	0.13	0.20	0.43	1.13	1.57	2.16	4.11
	2:12:18	0.08	0.13	0.09	0.14	0.32	0.83	1.16	1.59	3.05
	2:17:12	0.06	0.10	0.07	0.11	0.23	0.62	0.86	1.19	2.27
	2:22:06 2:27:00	0.04	0.07	0.05	0.07	0.17	0.45	0.63	0.87	1.67
	2:31:54	0.03	0.05	0.03	0.05	0.12	0.32	0.45	0.62	0.87
	2:31:54	0.02	0.03	0.02	0.04	0.09	0.25	0.33	0.45	0.62
	2:41:42	0.01	0.01	0.01	0.01	0.03	0.10	0.14	0.20	0.41
	2:46:36	0.00	0.01	0.00	0.01	0.02	0.05	0.08	0.12	0.24
	2:51:30	0.00	0.00	0.00	0.00	0.01	0.02	0.03	0.05	0.11
	2:56:24	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.04
	3:01:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:06:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:11:06 3:16:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:12 4:00:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:09:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:14:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:19:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:24:36 4:29:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:29:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:39:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:44:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:49:06 4:54:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:54:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:03:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:08:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:13:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:18:30 5:23:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:28:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:33:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:38:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:43:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:47:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


DETENTION	BASIN STAG	F-STORAGE 1	ABLE BUILDER

Basin ID:	POND C				
	2				
		1			
VOLUME EURY WOCY					
	/	100-YEAI	R		Depth In
PERMANENT ORIFIC					
POOL Example Zone	Configuration	on (Retentio	on Pond)		Stage - S Descri
Required Volume Calculation					Top of M
Selected BMP Type =	EDB	1			IS
Watershed Area =	32.90	acres			
Watershed Length =	2.250	ft			
Watershed Slope =	0.018	ft/ft			
Watershed Imperviousness =	11.00%	percent			Flo
Percentage Hydrologic Soil Group A =	0.0%	percent			
Percentage Hydrologic Soil Group B =	100.0%	percent			Zone 1 (
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			20110 1 (
Desired WQCV Drain Time =	40.0	hours			Zone 2
Location for 1-hr Rainfall Depths =		India			Lone L
Water Quality Capture Volume (WQCV) =	0.199	acre-feet	Optional Use	r Override	
Excess Urban Runoff Volume (EURV) =	0.343	acre-feet	1-hr Precipita		
2-yr Runoff Volume (P1 = 1.19 in.) =	0.238	acre-feet	1.19	linches	
5-yr Runoff Volume (P1 = 1.5 in.) =	0.367	acre-feet	1.50	inches	
10-yr Runoff Volume (P1 = 1.75 in.) =	0.801	acre-feet	1.75	inches	Zone 3 (1
25-yr Runoff Volume (P1 = 2 in.) =	2.035	acre-feet	2.00	inches	
50-yr Runoff Volume (P1 = 2.25 in.) =	2.809	acre-feet	2.25	inches	
100-yr Runoff Volume (P1 = 2.52 in.) =	3.819	acre-feet	2.52	inches	
500-yr Runoff Volume (P1 = 3.85 in.) =	7.088	acre-feet	3.85	inches	
Approximate 2-yr Detention Volume =	0.221	acre-feet		1	
Approximate 5-yr Detention Volume =	0.344	acre-feet			
Approximate 10-yr Detention Volume =	0.685	acre-feet			
Approximate 25-yr Detention Volume =	0.942	acre-feet			
Approximate 50-yr Detention Volume =	0.988	acre-feet			
Approximate 100-yr Detention Volume =	1.270	acre-feet			
Stage-Storage Calculation					
Zone 1 Volume (WQCV) =	0.199	acre-feet			
Zone 2 Volume (EURV - Zone 1) =	0.144	acre-feet			
Zone 3 Volume (100-year - Zones 1 & 2) =	0.927	acre-feet			
Total Detention Basin Volume =	1.270	acre-feet			
Initial Surcharge Volume (ISV) =	25	ft^3			
Initial Surcharge Depth (ISD) =	0.50	ft			
Total Available Detention Depth (H _{total}) =	6.00	ft			
Depth of Trickle Channel (H _{TC}) =	0.50	ft			
Slope of Trickle Channel (S _{TC}) =	0.010	ft/ft			
Slopes of Main Basin Sides (Smain) =	4	H:V			
Basin Length-to-Width Ratio (R _{L/W}) =	2				
Initial Surcharge Area (A _{ISV}) =	50	ff^2			1

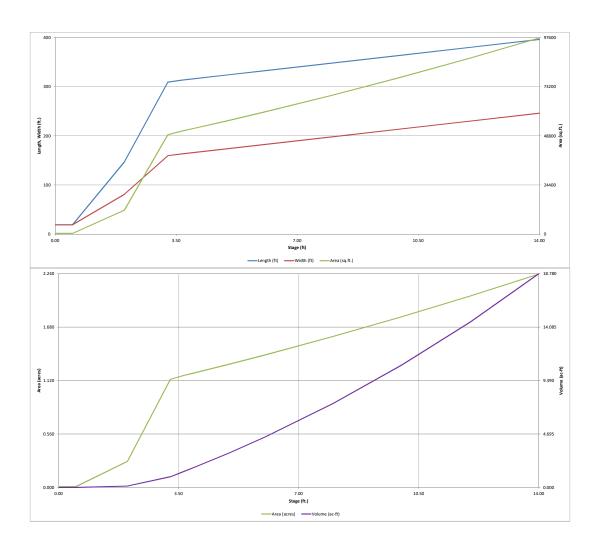

Initial Surcharge Area (A _{ISV}) =	50	ft^2
Surcharge Volume Length (L _{ISV}) =	7.0	ft
Surcharge Volume Width (W _{ISV}) =	7.0	ft
Depth of Basin Floor (H _{FLOOR}) =	1.30	ft
Length of Basin Floor (L _{FLOOR}) =	141.9	ft
Width of Basin Floor (W _{FLOOR}) =	71.9	ft
Area of Basin Floor (A _{FLOOR}) =	10,199	ft^2
Volume of Basin Floor (V _{FLOOR}) =	4,737	ft^3
Depth of Main Basin (H _{MAIN}) =	3.70	ft
Length of Main Basin (L _{MAIN}) =	171.5	ft
Width of Main Basin (W _{MAIN}) =	101.5	ft
Area of Main Basin (A _{MAIN}) =	17,411	ft^2
Volume of Main Basin (V _{MAIN}) =	50,533	ft^3
Calculated Total Basin Volume (V _{total}) =	1.270	acre-feet

Depth Increment =	0.5	ft Optional				Optional			
Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft^2)	Area (acre)	Volume (ft^3)	Volume (ac-ft)
Top of Micropool	0.00	Stage (II)	7.0	7.0	50	Alea (IC2)	0.001	(11:5)	(ac-it)
ISV	0.50		7.0	7.0	50		0.001	24	0.001
134									
	1.00		7.0	7.0	50		0.001	49	0.001
	1.50		58.0	31.5 56.5	1,830		0.042	408 2,312	0.009
	2.00		110.0 141.2	56.5	6,220		0.143	2,312	0.053
Floor					10,102				
7	2.50		143.5	73.5	10,550		0.242	6,914	0.159
Zone 1 (WQCV)	2.67		144.9	74.9	10,847		0.249	8,733	0.200
7	3.00		147.5	77.5	11,434		0.262	12,408	0.285
Zone 2 (EURV)	3.22		149.3	79.3	11,833		0.272	14,968	0.344
	3.50		151.5 155.5	81.5 85.5	12,350		0.284	18,353	0.421
					13,298			24,764	
	4.50		159.5	89.5	14,278		0.328	31,657	0.727
	5.00		163.5	93.5	15,290		0.351	39,047	0.896
7	5.50		167.5	97.5	16,334		0.375	46,952	1.078
Zone 3 (100-year)	6.00 6.50		171.5 175.5	101.5	17,411 18,519		0.400	55,387 64,368	
	7.00		175.5	105.5			0.425		1.478
					19,659			73,911	
	7.50		183.5	113.5	20,831		0.478	84,032	1.929
	8.00		187.5	117.5	22,035		0.506	94,747	2.175
	8.50		191.5	121.5	23,271		0.534	106,073	2.435
	9.00		195.5	125.5	24,539		0.563	118,024	2.709
	9.50		199.5	129.5	25,839		0.593	130,617	2.999
	10.00		203.5	133.5	27,172		0.624	143,869	3.303
	10.50		207.5	137.5	28,536		0.655	157,794	3.622
	11.00		211.5	141.5	29,932		0.687	172,410	3.958
	11.50		215.5	145.5	31,360		0.720	187,731	4.310
	12.00		219.5	149.5	32,820		0.753	203,775	4.678
	12.50		223.5	153.5	34,312		0.788	220,557	5.063
	13.00		227.5	157.5	35,836		0.823	238,092	5.466
	13.50		231.5	161.5	37,392		0.858	256,398	5.886
	14.00		235.5	165.5	38,981		0.895	275,490	6.324
	14.50		239.5	169.5	40,601		0.932	295,384	6.781
	15.00		243.5	173.5	42,253		0.970	316,096	7.257
	_							<u> </u>	_
								<u> </u>	
						-			
						1			_

		Dete	ention Basin C	Dutlet Struct	ure Design				
-		ER RIDGE - PRELIN	UD-Detention, Ve MINARY DRAINAGE		ry 2017)				
Basin ID:	POND C								
			7	Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
TT Mach			Zone 1 (WQCV)	2.67	0.199	Orifice Plate			
ZONE 1 AND 2- ORIFICES	0RIFICE	4	Zone 2 (EURV)	3.22	0.144	Orifice Plate			
PERMANENT CITILITY	Configuration (Re	tention Pond)	'one 3 (100-year)	6.00	0.927	Weir&Pipe (Restrict)			
ser Input: Orifice at Underdrain Outlet (typically u	•	-			1.270	Total	ed Parameters for Ur	derdrain	
Underdrain Orifice Invert Depth =	N/A	1	ne filtration media sur	face)	Unde	rdrain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	in Orifice Centroid =	N/A	feet	
ser Input: Orifice Plate with one or more orifices of	or Elliptical Slot Wei	r (typically used to d	rain WQCV and/or EL	JRV in a sedimentat	on BMP)	Calcu	lated Parameters for	Plate	
Invert of Lowest Orifice =	0.00		bottom at Stage = 0 ft			ifice Area per Row =	4.722E-03	ft²	
Depth at top of Zone using Orifice Plate =	3.25	ft (relative to basin l	bottom at Stage = 0 ft	:)	E	liptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	13.00	inches				otical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	r = 0.68 sq. inches (diameter = 15/16 inch) Elliptical Slot Area = N/A ft ²								
ser Input: Stage and Total Area of Each Orifice I	Row (numbered fro	m lowest to highest)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	1.10 0.68	2.20 0.68						-
Orifice Area (sq. inches)	0.68	0.08	0.08						1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)]
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)									-
									1
User Input: Vertical Orifice (Circ		Net Calented	1			Calculated	Parameters for Ver		1
Invert of Vertical Orifice =	Not Selected	Not Selected	ft (relative to basin b	ottom at Stage = 0 f	+) //	ertical Orifice Area =	Not Selected N/A	Not Selected N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b			al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches		,			,	1
User Input: Overflow Weir (Dropbox) and G	rate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir	
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	()
Overflow Weir Front Edge Height, Ho =	3.25	N/A N/A	ft (relative to basin bo feet	ttom at Stage = 0 ft)	Height of Gr	ate Upper Edge, H _t =	4.25	N/A	feet
()vertion Meir Front Edge Length -		IN/A			Over Flow		4.12		foot
Overflow Weir Front Edge Length = Overflow Weir Slope =		N/A	+	at grate)		Weir Slope Length =	4.12	N/A	feet should be > 4
Overflow Weir Front Edge Length = Overflow Weir Slope = Horiz. Length of Weir Sides =	4.00	N/A N/A	H:V (enter zero for fl feet	at grate)	Over Flow Grate Open Area / 2 Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area =	4.12 5.99 12.37		feet should be ≥ 4 ft ²
Overflow Weir Slope =	4.00		H:V (enter zero for fl		Grate Open Area / : Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area =	5.99	N/A N/A N/A	should be \geq 4
Overflow Weir Slope = Horiz. Length of Weir Sides =	4.00 4.00	N/A	H:V (enter zero for fl feet		Grate Open Area / : Overflow Grate Ope	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris =	5.99 12.37	N/A N/A N/A	should be ≥ 4 ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	4.00 4.00 75% 50%	N/A N/A N/A	H:V (enter zero for fl feet %, grate open area/t %		Grate Open Area / Overflow Grate Ope Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.99 12.37 6.18	N/A N/A N/A N/A	should be ≥ 4 ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % =	4.00 4.00 75% 50% ircular Orifice, Restr	N/A N/A N/A ictor Plate, or Rectar	H:V (enter zero for fl feet %, grate open area/t %		Grate Open Area / Overflow Grate Ope Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.99 12.37 6.18 s for Outlet Pipe w/	N/A N/A N/A N/A	should be ≥ 4 ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % =	4.00 4.00 75% 50%	N/A N/A N/A	H:V (enter zero for fl feet %, grate open area/t % gular Orifice)	otal area	Grate Open Area / Overflow Grate Ope Overflow Grate Op	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris =	5.99 12.37 6.18	N/A N/A N/A N/A	should be ≥ 4 ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor	N/A N/A N/A ictor Plate, or Rectar Not Selected	H:V (enter zero for fl feet %, grate open area/t %	otal area	Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op ft)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = alculated Parameter	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A N/A N/A Flow Restriction Plat	should be ≥ 4 ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A	H:V (enter zero for fl feet %, grate open area/t % gular Orifice) ft (distance below bas	otal area in bottom at Stage = 0	Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op ft)	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid =	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07	N/A N/A N/A Flow Restriction Plat Not Selected N/A	should be ≥ 4 ft ² ft ² te
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A	H:V (enter zero for fl feet %, grate open area/t % sular Orifice) ft (distance below basi inches	otal area in bottom at Stage = 0	Grate Open Area / : Overflow Grate Ope Overflow Grate Op C ft) Outl	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe =	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	should be ≥ 4 ft ² ft ² te ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	H:V (enter zero for fl feet %, grate open area/t % sular Orifice) ft (distance below basi inches	otal area in bottom at Stage = 0 Half-1	Grate Open Area / : Overflow Grate Ope Overflow Grate Op (t) ft) Central Angle of Restr	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe =	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A	should be ≥ 4 ft ² ft ² te ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 ullar or Trapezoidal)	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	otal area in bottom at Stage = 0 Half-1	Grate Open Area / : Overflow Grate Ope Overflow Grate Op (C (ft) Central Angle of Restr Spillway	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for 5	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway	should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 iular or Trapezoidal) 6.25 20.00 4.00	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	otal area in bottom at Stage = 0 Half-1	Grate Open Area / : Overflow Grate Ope Overflow Grate Op (C t) ft) Central Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth=	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet	should be ≥ 4 ft ² ft ² te ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = err Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 igular or Trapezoidal) 6.25 20.00	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	otal area in bottom at Stage = 0 Half-1	Grate Open Area / : Overflow Grate Ope Overflow Grate Op (C t) ft) Central Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet	should be ≥ 4 ft ² ft ² te ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 (15.00 6.25 20.00 4.00 1.00	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin l feet H:V feet	H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft	otal area in bottom at Stage = 0 Half-I	Grate Open Area / Overflow Grate Ope Overflow Grate Op (C (t) Central Angle of Restr Spillway Stage a Basin Area a	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= i Top of Freeboard = t Top of Freeboard =	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for 5 0.79 8.04 0.51	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres	should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 iular or Trapezoidal) 6.25 20.00 4.00	N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches	otal area in bottom at Stage = 0 Half-1	Grate Open Area / : Overflow Grate Ope Overflow Grate Op (C t) ft) Central Angle of Restr Spillway Stage at	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A Spillway feet feet	should be ≥ 4 ft ² ft ² ft ² ft ²
Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 15.00 (ular or Trapezoidal) 6.25 20.00 4.00 1.00	N/A N/A N/A N/A NOT Selected N/A N/A ft (relative to basin I feet H:V feet EURV	H:V (enter zero for fl feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft	otal area in bottom at Stage = 0 Half-I ;) 5 Year	Grate Open Area / : Overflow Grate Ope Overflow Grate Op (C (t) Central Angle of Restr Spillway Stage at Basin Area at 10 Year	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/ Debris = alculated Parameter Dutlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04 0.51 50 Year	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A feet feet feet acres	should be ≥ 4 ft ² ft ² te ft ² feet radians
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restricter Plate Height More Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 (c.25 20.00 4.00 1.00 (c.25 20.00 4.00 1.00	N/A N/A N/A N/A NA Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 0.343	H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.238	otal area in bottom at Stage = 0 Half-1) <u>5 Year 1.50 0.367</u>	Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C ft) Central Angle of Restr Spillway Stage ar Basin Area ar 10 Year 1.75 0.801	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.035	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04 0.51 50 Year 2.25 2.809	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.819	should be ≥ 4 ft ² ft ² ft ² fte feet radians <u>500 Year</u> <u>3.85</u> 7.088
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = er Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict above Max Water Surface = Calculated Runoff Volume (acre-ft) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 iular or Trapezoidal) 6.25 20.00 4.00 1.00 WQCV 0.53 0.199 0.198	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 0.343 0.342	H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below bas inches inches bottom at Stage = 0 ft 0.238 0.238	otal area in bottom at Stage = 0 Half-1 .) <u>5 Year</u> 1.50 0.367 0.366	Grate Open Area / : Overflow Grate Ope Overflow Grate Op Overflow Grate Op (C (t) Central Angle of Restr Spillway Stage at Basin Area at 0.801 0.800	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.035	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04 0.51 50 Year 2.25 2.809 2.806	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A ipillway feet feet acres 100 Year 2.52 3.819 3.816	should be \geq 4 ft ² ft ² fte feet radians 500 Year 3.85 7.088 7.077
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restricter Plate Height More Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 (c.25 20.00 4.00 1.00 (c.25 20.00 4.00 1.00	N/A N/A N/A N/A NA Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 0.343	H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.238	otal area in bottom at Stage = 0 Half-1) <u>5 Year 1.50 0.367</u>	Grate Open Area / Overflow Grate Ope Overflow Grate Op Overflow Grate Op C ft) Central Angle of Restr Spillway Stage ar Basin Area ar 10 Year 1.75 0.801	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 2.035	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04 0.51 50 Year 2.25 2.809	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.819	should be ≥ 4 ft ² ft ² ft ² fte feet radians <u>500 Year</u> <u>3.85</u> 7.088
Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = err Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	4.00 4.00 75% 50% ircular Orifice, Restr 2.50 24.00 15.00 24.00 15.00 200 4.00 1.00 0.53 0.199 0.198 0.00 0.0 2.8	N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin I feet H:V feet EURV 1.07 0.343 0.342 0.00 0.0 4.7	H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches inches bottom at Stage = 0 ft 0.238 0.238 0.01 0.3 3.3	otal area in bottom at Stage = 0 Half-1 5 Year 1.50 0.366 0.02 0.5 5.1	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op C ft) Central Angle of Restr Spillway Stage ar Basin Area ar 10 Year 1.75 0.801 0.800 0.15 5.0 10.9	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = lean Area w/ Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.00 2.035 2.033 0.53 17.4 27.5	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04 0.51 50 Year 2.25 2.809 2.806 0.73 2.4.1 37.8	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.819 3.816 0.99 3.2.7 51.1	should be ≥ 4 ft ² ft ² te ft ² feet radians <u>500 Year</u> 3.85 7.088 <u>7.077</u> 1.81 <u>59.5</u> 93.4
Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrict Plate Height Above Pipe Invert 5 Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Notflow Q (cfs) = Peak Outflow Q (cfs) =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 (ular or Trapezoidal) 6.25 20.00 4.00 1.00 0.00 0.53 0.199 0.198 0.00 0.0 2.8 0.1	N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ht (relative to basin I feet H:V feet H:O 0.343 0.342 0.00 0.0 4.7 0.1	H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.238 0.238 0.01 0.3 3.3 0.1	5 Year 1.50 0.367 0.366 0.02 0.5 5.1 0.1	Grate Open Area / : Overflow Grate Ope Overflow Grate Ope C ft) C ft) Central Angle of Restr Spillway Stage a: Basin Area at 0.800 0.15 5.0 0.800 0.15 5.0 10.9 4.7	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = en Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = Con of Freeboard = 25 Year 2.00 2.035 2.033 0.53 17.4 27.5 20.0	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04 0.51 50 Year 2.25 2.809 2.806 0.73 24.1 37.8 25.9	N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A Spillway feet acres 100 Year 2.52 3.819 3.816 0.99 32.7 51.1 28.1	should be ≥ 4 ft ² ft ² ft ² feet radians <u>500 Yea</u> <u>7.077</u> <u>1.81</u> <u>59.5</u> <u>93.4</u> 83.8
Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Expresses Freeboard above Max Water Surface = Rector Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Nufflow Q (cfs) = Peak Nufflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 4.00 4.00 4.00 1.00 0.00 0.198 0.00 0.0 2.8 0.1 N/A	N/A N/A N/A N/A N/A N/A N/A ft (relative to basin l feet H:V feet H:V feet 0.0343 0.342 0.00 0.0 4.7 0.1 N/A	H:V (enter zero for fi feet %, grate open area/t % ngular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 1.19 0.238 0.01 0.3 3.3 0.1 N/A	otal area in bottom at Stage = 0 Half-1 1.50 0.367 0.366 0.02 0.5 5.1 0.1 0.1 0.2	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op C ft) Central Angle of Restr Spillway Stage a Basin Area a 0.800 0.15 5.0 10.9 4.7 0.9	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.000 2.035 2.033 0.53 17.4 27.5 20.0 1.2	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for 5 0.79 8.04 0.51 50 Year 2.25 2.809 2.806 0.73 24.1 37.8 25.9 1.1	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A Spillway feet feet 3.816 0.99 32.7 51.1 28.1 0.9	should be ≥ 4 ft ² ft ² ft ² feet radians 7.088 7.088 7.077 1.81 59.5 93.4 83.8 1.4
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = Ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Calculated Runoff Volume (acre-ft) = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 6.25 20.00 4.00 1.00 WQCV 0.53 0.199 0.198 0.00 0.0 2.8 0.1 N/A Plate	N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin l feet H:V feet L.07 0.343 0.342 0.00 0.0 4.7 0.1 N/A Plate	H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below basi inches inches inches bottom at Stage = 0 ft 0.238 0.01 0.3 3.3 0.1 N/A Plate	otal area in bottom at Stage = 0 Half-1 1.50 0.367 0.366 0.02 0.5 5.1 0.1 0.2 Plate	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Op C ft) Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 0.801 0.15 5.0 10.9 4.7 0.9 Overflow Grate 1	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.000 2.035 2.035 2.033 0.53 1.7.4 2.7.5 20.0 1.2 Overflow Grate 1	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04 0.51 50 Year 2.25 2.809 2.806 0.73 2.4.1 37.8 25.9 1.1 Outlet Plate 1	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A Selected N/A N/A N/A N/A N/A Selected acres 100 Year 2.52 3.819 3.816 0.99 32.7 51.1 28.1 0.9 Outlet Plate 1	should be ≥ 4 ft ² ft ² ft ² te ft ² feet radians <u>500 Year</u> <u>3.85</u> 7.088 <u>7.088</u> <u>7.077</u> <u>1.81</u> <u>59.5</u> <u>93.4</u> <u>83.8</u> <u>1.4</u> Spillway
Overflow Weir Slope = Horiz. Length of Weir Sldes = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway Expresses Freeboard above Max Water Surface = Rector Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Nufflow Q (cfs) = Peak Nufflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 4.00 1.00 4.00 1.00 0.53 0.199 0.198 0.00 0.0 2.8 0.1 N/A Plate N/A N/A	N/A N/A N/A N/A N/A Selected N/A N/A ft (relative to basin l feet H:V feet EURV 1.07 0.343 0.00 0.342 0.00 0.04.7 4.7 0.1 N/A Plate N/A N/A	H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft 0.238 0.01 0.238 0.01 0.3 3.3 0.1 N/A Plate N/A N/A	otal area in bottom at Stage = 0 Half-1 1.50 0.367 0.366 0.02 0.5 5.1 0.1 0.1 0.2	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope C ft) Central Angle of Restr Spillway Stage a Basin Area a 0.800 0.15 5.0 10.9 4.7 0.9 Overflow Grate 1 0.4 N/A	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.000 2.035 2.033 0.53 17.4 27.5 20.0 1.2	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for 5 0.79 8.04 0.51 50 Year 2.25 2.809 2.806 0.73 24.1 37.8 25.9 1.1	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A Spillway feet feet 3.816 0.99 32.7 51.1 28.1 0.9	should be ≥ 4 ft ² ft ² ft ² feet radians
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Rester Varface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 24.00 6.25 20.00 4.00 1.00 WQCV 0.53 0.199 0.198 0.00 0.0 2.8 0.1 N/A Plate N/A 39	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet H:V feet 0.342 0.00 0.0 0.1 N/A Plate N/A N/A	H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 0.238 0.01 0.3 3.3 0.1 N/A Plate N/A N/A 44	otal area in bottom at Stage = 0 Half-1 1.50 0.367 0.367 0.367 0.367 0.367 0.1 0.2 Plate N/A N/A 60	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope () () () () () () () () () ()	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.000 2.035 	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for 9 0.79 8.04 0.51 50 Year 2.25 2.809 2.809 2.806 0.73 24.1 37.8 25.9 1.1 Outlet Plate 1 2.1 N/A 46	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.816 0.99 32.7 51.1 28.1 0.9 Outlet Plate 1 2.3 N/A 40	should be ≥ 4 ft ² ft ² ft ² feet radians 7.088 7.088 7.088 7.088 7.077 1.81 59.5 93.4 83.8 1.4 Spillway 2.4 N/A 25
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs)= Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow C (cfs) = Ratio Peak Outflow C (cfs) = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 6.25 20.00 4.00 1.00 0.100 0.199 0.198 0.00 0.0 2.8 0.199 0.198 0.00 0.0 2.8 0.19 10,198 0.00 0.0 2.8 0.19 0.198 0.00 0.0 2.8 0.19 0.198 0.00 0.0 2.8 0.199 0.198 0.00 0.0 2.8 0.199 0.198 0.00 0.0 2.8 0.199 0.00 0.0 2.8 0.199 0.00 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 2.8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	N/A N/A N/A N/A NA Selected N/A N/A If (relative to basin I feet H:V feet EURV 1.07 0.343 0.342 0.00 4.7 0.1 N/A Plate N/A 57 59	H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below basi inches inches inches bottom at Stage = 0 ft 0.238 0.238 0.238 0.238 0.238 0.3 3.3 0.1 N/A Plate N/A N/A 44 46	otal area in bottom at Stage = 0 Half-1 1.50 0.366 0.02 0.5 5.1 0.2 Plate N/A N/A N/A 60 60 62	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope (C ft) Central Angle of Restr Spillway Stage ar Basin Area ar 10 Year 1.75 0.801 0.800 0.15 5.0 10.9 4.7 0.9 Overflow Grate 1 0.4 N/A 59 64	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/ o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 2.003 2.035 2.035 2.033 0.53 17.4 2.7.5 20.0 1.2 Overflow Grate 1 1.6 N/A 51 61	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for S 0.79 8.04 0.51 50 Year 2.25 2.809 2.806 0.73 2.4.1 37.8 25.9 1.1 Outlet Plate 1 2.1 N/A 46 59	N/A N/A N/A N/A N/A Not Selected N/A N/A N/A N/A N/A N/A Selected N/A N/A Selected N/A N/A Selected IOO Year 2.52 3.819 3.816 0.99 32.7 51.1 28.1 0.9 Outlet Plate 1 2.3 N/A 40 57	should be ≥ 4 ft ² ft ² ft ² te ft ² feet radians <u>500 Year</u> <u>3.85</u> 7.088 <u>7.077</u> <u>1.81</u> <u>59.5</u> <u>93.4</u> 83.8 <u>1.4</u> Spillway <u>2.4</u> N/A <u>25</u> 49
Overflow Weir Slope = Horiz. Length of Weir Sides = Overflow Grate Open Area % = Debris Clogging % = ser Input: Outlet Pipe w/ Flow Restriction Plate (C Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Rester Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours)	4.00 4.00 75% 50% ircular Orifice, Restr Zone 3 Restrictor 2.50 24.00 15.00 24.00 6.25 20.00 4.00 1.00 WQCV 0.53 0.199 0.198 0.00 0.0 2.8 0.1 N/A Plate N/A 39	N/A N/A N/A N/A N/A ictor Plate, or Rectar Not Selected N/A N/A ft (relative to basin I feet H:V feet H:V feet 0.342 0.00 0.0 0.1 N/A Plate N/A N/A	H:V (enter zero for fi feet %, grate open area/t % rgular Orifice) ft (distance below basi inches inches bottom at Stage = 0 ft <u>2 Year</u> 0.238 0.01 0.3 3.3 0.1 N/A Plate N/A N/A 44	5 Year In bottom at Stage = 0 Half-1 1.50 0.367 0.366 0.02 0.5 5.1 0.1 0.2 Plate N/A 60	Grate Open Area / Overflow Grate Ope Overflow Grate Ope Overflow Grate Ope () () () () () () () () () ()	Weir Slope Length = 100-yr Orifice Area = en Area w/o Debris = ben Area w/o Debris = alculated Parameter Outlet Orifice Area = et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.000 2.035 	5.99 12.37 6.18 s for Outlet Pipe w/ Zone 3 Restrictor 2.07 0.71 1.82 ted Parameters for 9 0.79 8.04 0.51 50 Year 2.25 2.809 2.809 2.806 0.73 24.1 37.8 25.9 1.1 Outlet Plate 1 2.1 N/A 46	N/A N/A N/A N/A N/A Flow Restriction Plat Not Selected N/A N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 3.816 0.99 32.7 51.1 28.1 0.9 Outlet Plate 1 2.3 N/A 40	should be ≥ 4 ft ² ft ² ft ² feet radians 7.088 7.088 7.088 7.088 7.077 1.81 59.5 93.4 83.8 1.4 Spillway 2.4 N/A 25

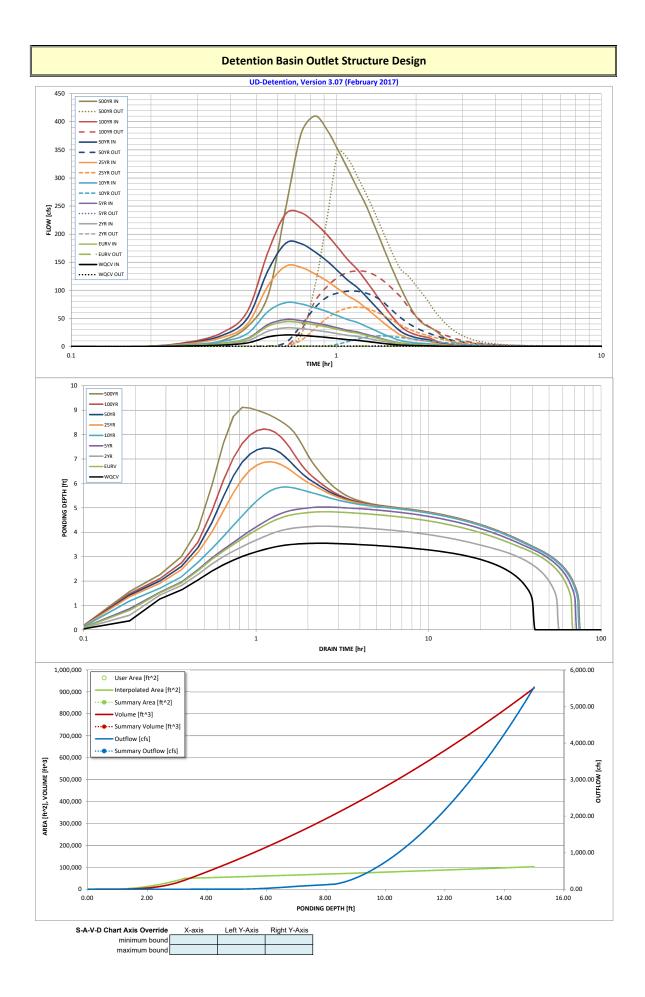
Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:


	Storm Inflow H	lydrographs	UD-Det	ention, Versio	n 3.07 (Februa	ry 2017)				
	The user can c	verride the calc	ulated inflow hy	drographs from	this workbook v	vith inflow hydro	graphs develop	ed in a separate	program.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
6.06 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:06:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:12:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:18:11	0.13	0.21	0.15	0.23	0.48	1.18	1.60	2.13	3.65
0.825	0:24:14	0.33	0.57	0.40	0.61	1.30	3.23	4.41	5.91	10.43
	0:30:18	0.86	1.46 4.01	1.02 2.81	1.56 4.29	3.34 9.19	8.28 22.74	11.32 31.05	15.18 41.63	26.79 73.34
	0:42:25	2.30	4.01	3.30	5.05	10.94	27.47	37.76	51.10	93.44
	0:48:29	2.62	4.50	3.14	4.81	10.44	26.31	36.20	49.11	90.89
	0:54:32	2.39	4.10	2.85	4.38	9.51	23.95	32.95	44.70	83.16
	1:00:36	2.12	3.65	2.54	3.90	8.50	21.50	29.63	40.26	75.00
	1:06:40	1.81	3.13	2.17	3.36	7.35	18.70	25.84	35.20	65.86
	1:12:43	1.59	2.74	1.90	2.93	6.40	16.25	22.51	30.72	57.62
	1:18:47	1.43	2.48	1.72	2.65	5.80	14.73	20.37	27.74	51.79
	1:24:50	1.17 0.94	2.03	1.40	2.18	4.80 3.92	12.29	17.02	23.23	43.71
	1:36:58	0.94	1.65	1.14 0.86	1.77	3.92	10.13 7.95	14.07 11.08	19.24 15.23	36.32 29.01
	1:43:01	0.52	0.93	0.63	0.99	2.27	6.06	8.50	11.75	22.57
	1:49:05	0.38	0.68	0.46	0.72	1.64	4.46	6.30	8.76	17.01
	1:55:08	0.30	0.53	0.36	0.56	1.27	3.38	4.76	6.58	12.65
	2:01:12	0.25	0.43	0.30	0.47	1.04	2.75	3.85	5.30	10.08
	2:07:16	0.21	0.37	0.25	0.40	0.88	2.32	3.24	4.46	8.46
	2:13:19	0.19	0.32	0.22	0.35	0.77	2.03	2.83	3.88	7.34
	2:19:23	0.17	0.29	0.20	0.31	0.70	1.82	2.53	3.47	6.55
	2:25:26	0.16	0.27	0.19	0.29	0.64	1.67 1.23	2.32	3.18	5.98 4.53
	2:37:34	0.08	0.20	0.14	0.21	0.47	0.90	1.72	1.71	3.27
	2:43:37	0.06	0.15	0.10	0.10	0.25	0.66	0.92	1.27	2.42
	2:49:41	0.04	0.08	0.05	0.08	0.19	0.49	0.68	0.94	1.80
	2:55:44	0.03	0.06	0.04	0.06	0.13	0.36	0.50	0.69	1.33
	3:01:48	0.02	0.04	0.03	0.04	0.09	0.25	0.36	0.49	0.96
	3:07:52	0.02	0.03	0.02	0.03	0.07	0.18	0.26	0.36	0.69
	3:13:55	0.01	0.02	0.01	0.02	0.04	0.13	0.18	0.25	0.49
	3:19:59 3:26:02	0.01	0.01	0.01	0.01	0.03	0.08	0.11	0.16	0.32
	3:32:06	0.00	0.00	0.00	0.01	0.01	0.04	0.06	0.09	0.19
	3:38:10	0.00	0.00	0.00	0.00	0.00	0.02	0.03	0.04	0.09
	3:44:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:56:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:02:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:08:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:14:31 4:20:35	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:26:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:38:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:44:49	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:56:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:03:00 5:09:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:07	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:21:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:27:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:33:18 5:39:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:39:22	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:51:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:57:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:03:36 6:09:40	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:15:43	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:21:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:27:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:33:54 6:39:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:39:58	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:52:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:58:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:04:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	7:10:16 7:16:19	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
I	/.10.15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION	BASIN STAGE	STORAGE TAR	

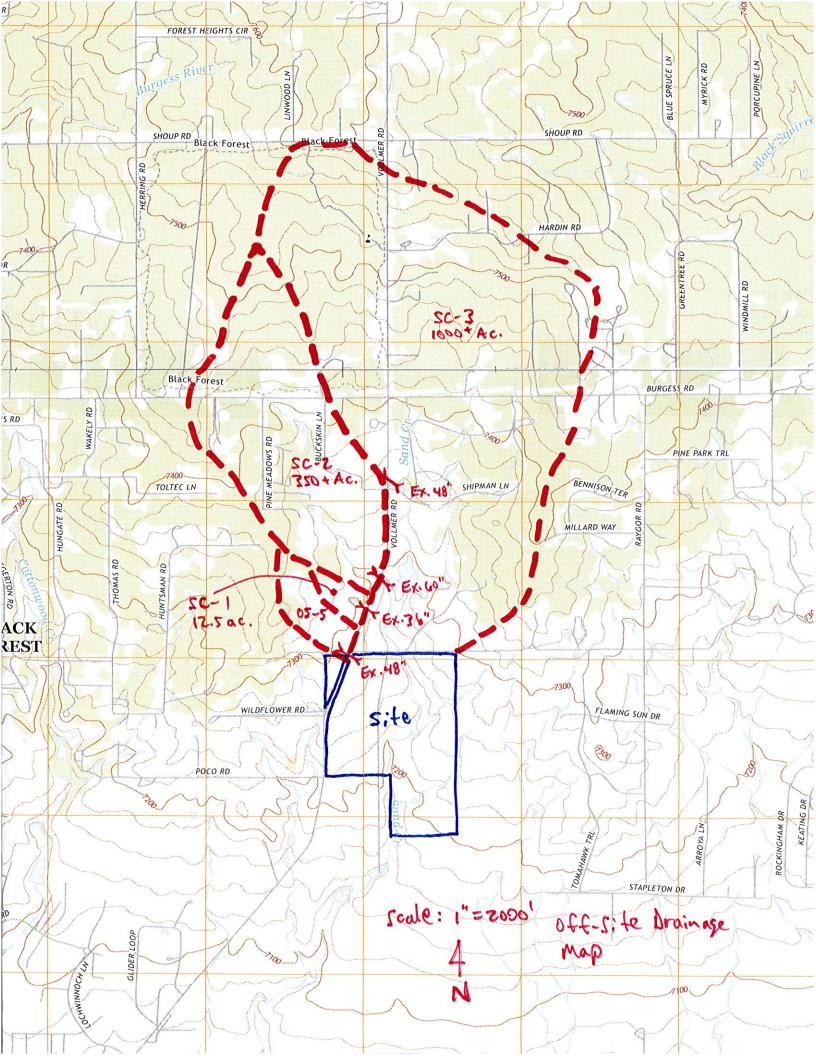
POND D					
TONE 1		~			
	1	_	-		
	<u>k</u>				
1 AND 2	ORIFICE	R		Depth Increment =	
		- Dend			~
Configuratio	on (Retentio	on Pona)			Sta (f
					0.
EDB	1				0
	-			154	
					2.
,					3.
	ft/ft			Zone 1 (WQCV)	3.
23.00%	percent				4.
0.0%	percent			Zone 2 (EURV)	4.9
100.0%	percent				6.
0.0%	percent			Zone 3 (100-year)	8.
40.0	hours				10
	1				12
	acre.feet	Onternelling			14
		1-hr Precipita	ation		14
			-		
			-		
			-		
16.885	acre-feet	2.52	inches		
30.147	acre-feet	3.85	inches		
2.089	acre-feet				
3.057	acre-feet				
4.755	acre-feet				
5.748	acre-feet				
	acre-feet				
	acre-feet				
1 000	1				
	1				
	1				
	acre-feet				
	acre-feet				
	ft^3				
0.50	ft				
8.00	ft				
0.50	ft				
0.008	ft/ft				
	H:V				
	1				
359					
	1				
	ft				
	ft^2				
	ft^3				
4.74	ft				
348.0	ft				
197.9	ft				
	acte-teet				
	EDB 129.00 4.200 0.025 23.00% 0.0% 40.0 User Input 1.380 1.380 2.241 3.280 5.372 10.000 12.983 16.885 5.788 8.069 7.367 1.380 1.621 4.355 7.367 1.800 0.50 8.009 0.50 8.009 0.50	EDB acres 129.90 acres 4.200 t 0.025 wither 23.00% percent 0.025 wither 1.300 percent 0.00% percent 0.00% percent 0.00% percent 0.00% percent 0.00% percent 0.00% percent 3.002 acre-feet 2.201 acre-feet 3.002 acre-feet 3.007 acre-feet 3.0147 acre-feet 3.0147 acre-feet 3.0147 acre-feet 3.0147 acre-feet 3.027 acre-feet 3.057 acre-feet 3.057 acre-feet 1.800 acre-feet 7.367 acre-feet 7.367 acre-feet 7.367 acre-feet 9.500 t 9.500 t 9.5	Configuration (Retention Pond) EDB 129 90 acres 4.200 ft 129 90 acres 4.200 ft 23.00% percent 0.025 ftf 23.00% percent 0.00% percent 0.00% percent 1.300 acre-feet 1.300 acre-feet 1.300 acre-feet 2.241 acre-feet 1.300 acre-feet 2.241 acre-feet 1.300 acre-feet 2.251 3.855 3.002 acre-feet 2.269 acre-feet 3.007 acre-feet 3.0147 acre-feet 3.057 acre-feet 1.621 acre-feet 1.621 acre-feet 1.621 acre-feet 1.621 acre-feet 1.621 acre-feet 1.621 acre-feet 1.621	Configuration (Retention Pond) EDB 129 90 4 200 0 025 123 00% percent 0 00% percent 0 00% percent 100.0% percent 100.0% percent 100.0% percent 100.0% percent 100.0% percent 100.0% percent 100.0% percent 100.0% percent 100.0% percent 100.0% percent 119 0 acre-feet 119 100 acre-feet 119 100 acre-feet 123 2240 acre-feet 123 2241 acre-feet 12383 acre-feet 12885 acre-feet 12885 acre-feet 200 acre-feet 200 acre-feet 200 acre-feet 13885 acre-feet 13885 acre-feet 100.00 acre-feet 13885 acre-feet 13885 acre-feet 100.00 acre-feet 100.00 acre-feet 100.00 acre-feet 100.00 acre-feet 100.00 acre-feet 100.00 acre-feet 100.00 n 100.00 1	Depth Increment I Depth Increment I Source Storage Description EDB acres 4.200 acres 0.055 percent 0.005 percent 0.007% percent 0.008 percent 0.009% percent 0.000 acre-feet 1.19 nches 0.2240 acre-feet 1.283 acre-feet 2.059 acre-feet 3.057 acre-feet 1.283 acre-feet 1.283 acre-feet 1.201 acre-feet 1.202 acre-feet 1.203 acre-feet 1.204 acre-fe


Depth Increment =	2	ft				Optional			r
Stage - Storage	Stage	Optional Override	Length	Width	Area	Override	Area	Volume	Volum
Description Top of Micropool	(ft) 0.00	Stage (ft)	(ft) 19.0	(ft) 19.0	(ft^2) 359	Area (ft^2)	(acre) 0.008	(ft^3)	(ac-ft)
ISV	0.50		19.0	19.0	359		0.008	176	0.004
134	2.00		146.7	80.8	11,854		0.272	5,101	0.117
Floor	3.26		309.2	159.6	49,342		1.133	40,967	0.940
Zone 1 (WQCV)	3.64		313.1	163.1	51,060		1.172	60,591	1.391
	4.00		316.0	165.9	52,440		1.204	79,220	1.819
Zone 2 (EURV)	4.95		323.6	173.5	56,161		1.289	130,796	3.003
	6.00		332.0	181.9	60,407		1.387	191,982	4.407
Zone 3 (100-year)	8.00		348.0	197.9	68,887		1.581	321,191	7.374
	10.00		364.0	213.9	77,878		1.788	467,870	10.741
	12.00 14.00		380.0 396.0	229.9 245.9	87,381 97,397		2.006 2.236	633,044 817,737	14.533 18.773
	14.00		330.0	243.8	81,581		2.230	011,131	10.775
			-						
									-

		Dete	ention Basin (Outlet Struct	ure Design				
Project:		BER RIDGE - PRELIN		rsion 3.07 (Februa REPORT	ry 2017)				
Basin ID: ,zone 3	POND D								
		<u> </u>		Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
OLUME EURY WOCY			Zone 1 (WQCV)	3.64	1.380	Orifice Plate	1		
	100-YEA	R	Zone 2 (EURV)	4.95	1.621	Orifice Plate			
ZONE 1 AND 2" ORIFICES	ORIFICE		lone 3 (100-year)	8.00	4.365	Weir&Pipe (Restrict)			
	Configuration (Re	tention Pond)	.one 5 (100-year)	8.00	7.367	Total]		
er Input: Orifice at Underdrain Outlet (typically u	used to drain WOCV i	n a Filtration BMP)			7.507	1	ed Parameters for Ur	nderdrain	
Underdrain Orifice Invert Depth =	N/A	1	ne filtration media su	rface)	Unde	rdrain Orifice Area =	N/A	lft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdra	in Orifice Centroid =	N/A	feet	
		-							
ser Input: Orifice Plate with one or more orifices	r	1					lated Parameters for	7	
Invert of Lowest Orifice =	0.00		pottom at Stage = 0 f			ifice Area per Row =	3.285E-02	ft ²	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	5.00	inches	oottom at Stage = 0 fl	L)		lliptical Half-Width = ptical Slot Centroid =	N/A N/A	feet	
Orifice Plate: Orifice Area per Row =	4.73	sq. inches (use recta	ngular openings)			Elliptical Slot Area =	N/A N/A	ft ²	
		lod: meneo (abe reeta	ngului openings)			Emptical bloc / lica		lic	
ser Input: Stage and Total Area of Each Orifice	Row (numbered fro)	I	1		I	,	1
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	-
Stage of Orifice Centroid (ft)	0.00	1.70	3.40						+
Orifice Area (sq. inches)	4.73	4.73	4.73						1
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)	(optional)	(optional)	(optional)	(optional)	(optional)	(optional)	(optional)	(optional)	1
Orifice Area (sq. inches)]
									-
User Input: Vertical Orifice (Circ			1			Calculated	Parameters for Ver		1
Invest of Vestical Orifica -	Not Selected	Not Selected	ft (anlative to basis b			antiant Orifing Area -	Not Selected	Not Selected	c.2
Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	N/A N/A	N/A N/A	ft (relative to basin b ft (relative to basin b	-		ertical Orifice Area = al Orifice Centroid =	N/A N/A		ft ² feet
Vertical Orifice Diameter =	N/A	N/A	inches	ottom at Stage – o i	() Vertice		N/A	N/A	licer
			1						
User Input: Overflow Weir (Dropbox) and G			1			Calculated	Parameters for Ove	rflow Weir	1
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.00	N/A N/A	ft (relative to basin bo	ottom at Stage = 0 ft)		ate Upper Edge, H _t =	6.00		feet
Overflow Weir Front Edge Length = Overflow Weir Slope =	4.00	N/A N/A	feet H:V (enter zero for fl	lat grate)		Weir Slope Length = 100-yr Orifice Area =	3.21		feet should be ≥ 4
Horiz. Length of Weir Sides =	4.00	N/A	feet	argiate)		en Area w/o Debris =	30.92		ft ²
Overflow Grate Open Area % =	75%	N/A	%, grate open area/1	total area	Overflow Grate Op	oen Area w/ Debris =	15.46		ft ²
Debris Clogging % =	50%	N/A	%						
ser Input: Outlet Pipe w/ Flow Restriction Plate (C			ngular Orifice)		c	alculated Parameter		Flow Restriction Plat	te 1
Depth to Invert of Outlet Pipe =	Zone 3 Restrictor 2.50	Not Selected N/A							
			6 / K		0	Outlet Orifice Area -	Zone 3 Restrictor	Not Selected	
				in bottom at Stage = 0		Outlet Orifice Area =	9.62	N/A	ft ²
Outlet Pipe Diameter =	42.00	N/A N/A	inches		Outl	et Orifice Centroid =	9.62 1.75	N/A N/A	feet
						et Orifice Centroid =	9.62	N/A N/A	1
Outlet Pipe Diameter =	42.00 42.00		inches		Outl	et Orifice Centroid = ictor Plate on Pipe =	9.62 1.75	N/A N/A N/A	feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	42.00 42.00	N/A	inches	Half-I	Outl Central Angle of Restr	et Orifice Centroid = ictor Plate on Pipe =	9.62 1.75 3.14	N/A N/A N/A	feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	42.00 42.00 gular or Trapezoidal) 8.25 80.00	N/A ft (relative to basin l feet	inches inches	Half-I	Outl Central Angle of Restr Spillway Stage a	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	9.62 1.75 3.14 ted Parameters for 5 0.96 10.21	N/A N/A N/A Spillway feet feet	feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	42.00 42.00 gular or Trapezoidal) 8.25 80.00 4.00	N/A ft (relative to basin l feet H:V	inches inches	Half-I	Outl Central Angle of Restr Spillway Stage a	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth=	9.62 1.75 3.14 ted Parameters for \$ 0.96	N/A N/A N/A Spillway feet	feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length =	42.00 42.00 gular or Trapezoidal) 8.25 80.00	N/A ft (relative to basin l feet	inches inches	Half-I	Outl Central Angle of Restr Spillway Stage a	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	9.62 1.75 3.14 ted Parameters for 5 0.96 10.21	N/A N/A N/A Spillway feet feet	feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	42.00 42.00 gular or Trapezoidal) 8.25 80.00 4.00	N/A ft (relative to basin l feet H:V	inches inches	Half-I	Outl Central Angle of Restr Spillway Stage a	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard =	9.62 1.75 3.14 ted Parameters for 5 0.96 10.21	N/A N/A N/A Spillway feet feet	feet
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	42.00 42.00 gular or Trapezoidal) 8.25 80.00 4.00 1.00	N/A ft (relative to basin l feet H:V	inches inches	Half-I	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	9.62 1.75 3.14 ted Parameters for 5 0.96 10.21	N/A N/A N/A Soillway feet feet acres	feet radians
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	42.00 42.00 8.25 8.25 80.00 4.00 1.00 WQCV 0.53	N/A ft (relative to basin l feet H:V feet <u>EURV</u> 1.07	inches inches pottom at Stage = 0 fr 2 Year 1.19	t) 5 Year 1.50	Outl Central Angle of Restr Spillway Stage a Basin Area a <u>10 Year</u> 1.75	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00	9.62 1.75 3.14 ted Parameters for 5 0.96 10.21 1.81 50 Year 2.25	N/A N/A N/A Spillway feet feet acres 100 Year 2.52	feet radians 500 Yea 3.85
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) =	42.00 42.00 gular or Trapezoidal) 8.25 80.00 4.00 1.00	N/A ft (relative to basin l feet H:V feet EURV	inches inches pottom at Stage = 0 fi 2 Year	t) 5 Year	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year	9.62 1.75 3.14 ted Parameters for S 0.96 10.21 1.81 50 Year	N/A N/A N/A Soillway feet feet acres	feet radians 500 Yea 3.85
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	42.00 42.00 8.25 8.25 80.00 4.00 1.00 WQCV 0.53	N/A ft (relative to basin l feet H:V feet <u>EURV</u> 1.07	inches inches pottom at Stage = 0 fr 2 Year 1.19	t) 5 Year 1.50	Outl Central Angle of Restr Spillway Stage a Basin Area a <u>10 Year</u> 1.75	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00	9.62 1.75 3.14 ted Parameters for 5 0.96 10.21 1.81 50 Year 2.25	N/A N/A N/A Spillway feet feet acres 100 Year 2.52	feet radians <u>500 Yea</u> <u>3.85</u> <u>30.147</u>
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	42.00 42.00 8.25 80.00 4.00 1.00 WQCV 0.53 1.380 	N/A ft (relative to basin l feet H:V feet <u>EURV</u> 1.07 3.002 3.003 0.00	inches inches bottom at Stage = 0 fr 2 Year 1.19 2.241 	t) 5 Year 1.50 3.260 	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 10.000 <u>10.006</u> 0.59	9.62 1.75 3.14 ted Parameters for \$ 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81	N/A N/A N/A Spillway feet feet acres	feet radians 500 Yea 3.85 30.147
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Routed Hydrograph Results OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	42.00 42.00 8.25 80.00 4.00 1.00 0.53 1.380 0.00 0.0	N/A ft (relative to basin l feet H:V feet EURV 1.07 3.002 3.003 0.00 0.0	inches inches bottom at Stage = 0 ff 2 Year 1.19 2.241 2.242 0.01 1.4	Half- Half- 1.50 3.260 	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17 22.4	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 10.000 <u>10.006</u> 0.59 76.1	9.62 1.75 3.14 ted Parameters for 9 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81 105.3	N/A N/A N/A N/A Spillway feet feet feet 100 Year 2.52 16.885 1.6.885 1.10 142.5	feet radians 500 Yea 3.85 30.147
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) =	42.00 42.00 8.25 80.00 4.00 1.00 WQCV 0.53 1.380 1.381 0.00 0.0 20.5	N/A ft (relative to basin l feet H:V feet EURV 1.07 3.002 3.003 0.00 0.0 44.2	inches inches pottom at Stage = 0 ff 2 Year 1.19 2.241 2.242 0.01 1.4 33.1	Half- t) 5 Year 1.50 3.260 3.261 0.02 2.4 47.9	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17 22.4 78.2	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> <u>2.00</u> <u>10.000</u> <u>10.006</u> <u>0.59</u> <u>76.1</u> <u>143.1</u>	9.62 1.75 3.14 ted Parameters for S 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81 105.3 184.0	N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 16.885 16.885 1.10 142.5 237.8	feet radians 500 Yea 3.85 30.147
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) =	42.00 42.00 8.25 80.00 4.00 1.00 0.53 1.380 0.00 0.0	N/A ft (relative to basin l feet H:V feet EURV 1.07 3.002 3.003 0.00 0.0	inches inches bottom at Stage = 0 ff 2 Year 1.19 2.241 2.242 0.01 1.4	Half- Half- 1.50 3.260 	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17 22.4	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = <u>25 Year</u> 2.00 10.000 <u>10.006</u> 0.59 76.1	9.62 1.75 3.14 ted Parameters for 9 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81 105.3	N/A N/A N/A N/A Spillway feet feet feet 100 Year 2.52 16.885 1.6.885 1.10 142.5	feet radians 500 Yea 3.85 30.147
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow =	42.00 42.00 8.25 80.00 4.00 1.00 0.53 1.380 0.00 0.0 20.5 0.6 N/A Plate	N/A ft (relative to basin l feet H:V feet EURV 1.07 3.002 3.003 0.00 0.0 44.2 0.8 N/A Plate	2 Year 1.19 2.241 2.242 0.01 1.4 33.1 0.7 N/A Plate	Half- t) 5 Year 1.50 3.260 3.261 0.02 2.4 47.9 0.9 0.9 0.4 Overflow Grate 1	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 0.17 22.4 78.2 18.8 0.8 Overflow Grafe 1	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 10.000 10.006 0.59 76.1 143.1 70.1	9.62 1.75 3.14 ted Parameters for 9 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81 105.3 184.0 98.4	N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 16.885 1.10 142.5 237.8 134.4 0.9 Overflow Grade 1	feet radians 500 Yea 3.85 30.147
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	42.00 42.00 8.25 80.00 4.00 1.00 0.53 1.380 0.0 0.0 20.5 0.6 N/A Plate N/A	N/A ft (relative to basin l feet H:V feet EURV 1.07 3.002 3.003 0.00 0.0 44.2 0.8 N/A Plate N/A	inches inches bottom at Stage = 0 ff 1.19 2.241 2.242 0.01 1.4 33.1 0.7 N/A Plate N/A	Half- t) 5 Year 1.50 3.260 2.4 47.9 0.9 0.4 Overflow Grate 1 0.0	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17 22.4 78.2 18.8 0.8 0.8 Overflow Grate 1 0.6	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 10.000 10.006 0.59 76.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 143.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.1 70.	9.62 1.75 3.14 ted Parameters for S 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81 105.3 184.0 98.4 0.9 Overflow Crate 1 3.1	N/A N/A N/A Soillway feet feet acres 100 Year 2.52 16.885 16.885 1.10 142.5 237.8 134.4 0.9 Overflow Grate 1 4.3	feet radians 3.85 30.147 30.157 1.99 258.8 410.3 345.2 1.3 Spillway 4.7
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Riow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Untflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	42.00 42.00 8.25 80.00 4.00 1.00 0.53 1.380 1.381 0.00 0.0 20.5 0.6 N/A Plate N/A N/A	N/A ft (relative to basin l feet H:V feet	inches inches bottom at Stage = 0 ff 1.19 2.241 2.242 0.01 1.4 33.1 0.7 N/A Plate N/A N/A	Half- t) 5 Year 1.50 3.260 3.261 0.02 2.4 47.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17 22.4 78.2 18.8 0.8 Overflow Grafe 1 0.6 N/A	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 10.000 10.000 10.006 0.59 76.1 143.1 70.1 0.9 Dverflow Grate 1 2.2 N/A	9.62 1.75 3.14 ted Parameters for \$ 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81 105.3 184.0 98.4 0.9	N/A N/A N/A Soillway feet feet acres 100 Year 2.52 16.885 16.885 1.10 142.5 237.8 134.4 0.9 Overflow Grate 1 4.3	feet radians 500 Yea 3.85 30.147 30.157 1.99 258.8 410.3 345.2 1.3 \$pillway 4.7 N/A
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (nours)	42.00 42.00 8.25 80.00 4.00 1.00 0.53 1.380 0.0 0.0 20.5 0.6 N/A Plate N/A	N/A ft (relative to basin l feet H:V feet EURV 1.07 3.002 3.003 0.00 0.0 44.2 0.8 N/A Plate N/A	inches inches bottom at Stage = 0 ff 2 Year 1.19 2.241 2.242 0.01 1.4 3.3.1 0.7 N/A Plate N/A N/A 52	Half- t) 5 Year 1.50 3.260 2.4 47.9 0.9 0.4 Overflow Grate 1 0.0	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17 22.4 78.2 18.8 0.8 0.8 Overflow Grate 1 0.6	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = 10.000 10.000 10.006 0.59 76.1 143.1 70.1 70.	9.62 1.75 3.14 ted Parameters for S 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81 105.3 184.0 98.4 0.9 Overflow Crate 1 3.1	N/A N/A N/A N/A N/A Spillway feet feet acres 100 Year 2.52 16.885 1.10 142.5 237.8 134.4 0.9 Overflow Grade 1	feet radians 3.85 30.147 30.157 1.99 258.8 410.3 345.2 1.3 Spillway 4.7
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Riow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) =	42.00 42.00 8.25 80.00 4.00 1.00 0.53 1.380 0.00 0.0 20.5 0.6 N/A Plate N/A N/A 38	N/A ft (relative to basin l feet H:V feet EURV 1.07 3.002 3.003 0.00 0.0 44.2 0.8 N/A Plate N/A N/A 63	inches inches bottom at Stage = 0 ff 1.19 2.241 2.242 0.01 1.4 33.1 0.7 N/A Plate N/A N/A	Half- t) 5 Year 1.50 3.260 3.261 0.02 2.4 47.9 0.9 0.9 0.4 Overflow Grate 1 0.0 N/A 66	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17 22.4 78.2 18.8 0.8 Overflow Grate 1 0.6 N/A 66	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 10.006 0.59 76.1 143.1 70.1 0.9 Dverflbw Grate 1 2.2 N/A 62	9.62 1.75 3.14 ted Parameters for \$ 0.96 10.21 1.81 50 Year 2.25 12.983 12.987 0.81 105.3 184.0 98.4 0.9 Overflow Crate 1 3.1 N/A 59	N/A N/A N/A Spillway feet feet acres 100 Year 2.52 16.885 1.6.885 1.10 142.5 237.8 134.4 0.9 Overflow Grate 1 4.3 N/A	feet radians 3.85 30.147 30.157 1.99 258.8 410.3 345.2 1.3 Spillway 4.7 N/A 46
Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectang Spillway Invert Stage- Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Peak O (cfs) = Predevelopment Deak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow to Predevelopment Peak Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	42.00 42.00 8.25 80.00 4.00 1.00 0.53 1.380 1.381 0.00 0.0 20.5 0.6 N/A Plate N/A N/A N/A 38 40	N/A ft (relative to basin l feet H:V feet EURV 1.07 3.002 3.003 0.00 0.0 44.2 0.8 N/A Plate N/A N/A A N/A 63 66	inches inches pottom at Stage = 0 fr 2 Year 1.19 2.241 2.241 2.242 0.01 1.4 33.1 0.7 N/A Plate N/A N/A N/A 52 55	Half- t) 5 Year 1.50 3.261 0.02 2.4 47.9 0.9 0.4 Overflow Grate 1 0.0 N/A 00 N/A 66 70	Outl Central Angle of Restr Spillway Stage a Basin Area a 10 Year 1.75 5.372 5.375 0.17 22.4 78.2 18.8 0.8 0.8 Overflow Grafe 1 0.6 N/A 0.6 N/A 1 0.6 71	et Orifice Centroid = ictor Plate on Pipe = Calcula Design Flow Depth= t Top of Freeboard = t Top of Freeboard = t Top of Freeboard = 25 Year 2.00 10.000 10.006 0.59 76.1 143.1 70.1 0.9 Dverflbw Grate 1 2.2 N/A 62 69	9.62 1.75 3.14 ted Parameters for 9 0.96 10.21 1.81 50 Year 2.25 12.987 0.81 105.3 184.0 98.4 0.9 Overflow & Frate 1 3.1 N/A N/A 59 68	N/A N/A N/A N/A N/A N/A Spillway feet feet feet acres 100 Year 2.52 16.885 1.10 142.5 237.8 134.4 0.9 Overflow Grate 1 4.3 N/A 56 67	feet radians 500 Yea 3.85 30.147 30.157 1.99 258.8 410.3 345.2 1.3 Spillway 4.7 N/A 46 63

High velocity = potential safety issue.

Detention Basin Outlet Structure Design


Outflow Hydrograph Workbook Filename:

	The user can c	verride the calc	ulated inflow hy	drographs from	this workbook w	ith inflow hydro	graphs develop	ed in a separate	program.	
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.54 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:11:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:16:37	0.89	1.87	1.42	2.02	3.16	5.26	6.39	7.69	10.19
0.903	0:22:10	2.42	5.15	3.88	5.57	8.90	15.49	19.38	24.12	34.95
	0:27:42	6.22	13.21	9.96	14.30	22.84	39.81	49.82	62.10	91.89
	0:33:14	17.09	36.26	27.34	39.24	62.58	108.79	135.93	169.13	248.65
	0:38:47	20.52	44.15 42.35	33.10 31.71	47.89 45.96	78.16 75.54	143.07 140.65	184.02 182.71	236.66 237.79	380.32 410.27
	0:49:52	17.86	38.54	28.87	43.30	68.94	129.18	168.36	219.98	385.68
	0:55:24	16.01	34.68	25.93	37.65	62.14	116.58	152.02	198.71	349.84
	1:00:56	13.89	30.25	22.57	32.87	54.46	102.66	134.14	175.72	315.24
	1:06:29	12.07	26.36	19.63	28.66	47.59	89.90	117.54	154.04	281.88
	1:12:01	10.95	23.85	17.78	25.91	42.88	80.54	105.02	137.22	252.10
	1:17:34	9.10	19.93	14.84	21.67	36.05	68.36	89.57	117.64	218.39
	1:23:06	7.48	16.48	12.25	17.93	29.91	56.88	74.60	98.09	185.86
	1:34:11	5.83	13.00 9.99	9.62 7.35	14.16 10.89	23.79 18.44	45.69 35.68	60.18 47.13	79.48 62.42	155.34 127.61
	1:39:43	3.22	7.41	5.42	8.10	18.44	27.03	35.85	47.73	103.47
	1:45:16	2.46	5.59	4.10	6.10	10.33	19.98	26.46	35.40	81.97
	1:50:48	2.01	4.52	3.33	4.92	8.28	15.84	20.87	27.69	63.28
	1:56:20	1.70	3.81	2.81	4.15	6.96	13.27	17.43	23.02	49.31
	2:01:53	1.49	3.32	2.46	3.61	6.04	11.47	15.04	19.81	40.99
	2:07:25	1.34	2.97	2.20	3.23	5.40	10.22	13.37	17.58	35.53
	2:12:58	1.23	2.72	2.02	2.96	4.94	9.32	12.18	15.98	31.68
	2:18:30	0.90	2.02	1.49	2.20	3.71	7.17	9.48	12.61	25.95
	2:24:02 2:29:35	0.66	1.47	1.09 0.80	1.60 1.18	2.68 1.98	5.16 3.83	6.83 5.07	9.10 6.74	19.37 14.08
	2:35:07	0.36	0.80	0.59	0.88	1.98	2.85	3.76	5.00	14.08
	2:40:40	0.26	0.59	0.43	0.64	1.08	2.10	2.79	3.70	7.90
	2:46:12	0.18	0.42	0.31	0.46	0.78	1.52	2.02	2.69	5.92
	2:51:44	0.13	0.30	0.22	0.33	0.57	1.10	1.46	1.94	4.41
	2:57:17	0.09	0.21	0.15	0.23	0.40	0.78	1.05	1.40	3.29
	3:02:49	0.06	0.13	0.10	0.15	0.26	0.52	0.70	0.95	2.43
	3:08:22	0.03	0.08	0.05	0.08	0.15	0.31	0.42	0.58	1.70
	3:13:54	0.01	0.03	0.02	0.04	0.07	0.15	0.21	0.30	1.10
	3:19:26 3:24:59	0.00	0.01	0.00	0.01	0.02	0.05	0.07	0.11 0.01	0.63
	3:30:31	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.23
	3:36:04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:41:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:47:08	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:41	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:58:13	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:03:46	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:09:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:14:50	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:55	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:31:28	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:42:32	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:48:05	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:53:37 4:59:10	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:04:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:14	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:47	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:21:19 5:26:52	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:32:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:37:56	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:43:29	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:49:01 5:54:34	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:05:38	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:11:11	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:16:43 6:22:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:22:16	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:33:20	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:38:53	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DRAINAGE MAPS

:

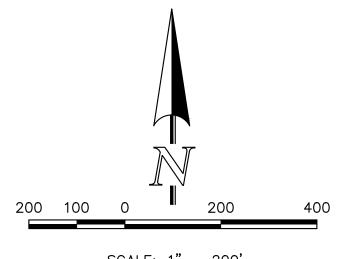
CN VALUES - EXISTING CONDITIONS

BASIN	BASIN	SOI	L TYPE B	WEIGHTED
(label)	AREA			C∾
	(Ac)	CN	AREA	
			(Ac.)	
EX-1	156.9	61	156.9	<mark>61</mark>
EX-2	9.2	61	9.2	61
EX-3	24.9	61	24.9	61
EX-4	35.2	63	35.2	63
EX-6	6.7	61	6.7	61
SC-1	12.5	63	12.5	63
SC-2	350.0	63	350.0	63
OS-1	49.1	61	49.1	61
OS-2	2.1	61	2.1	61
OS-3	5.7	65	5.7	65
OS-4	16.1	63	16.1	63
OS-5	27.6	63	27.6	63

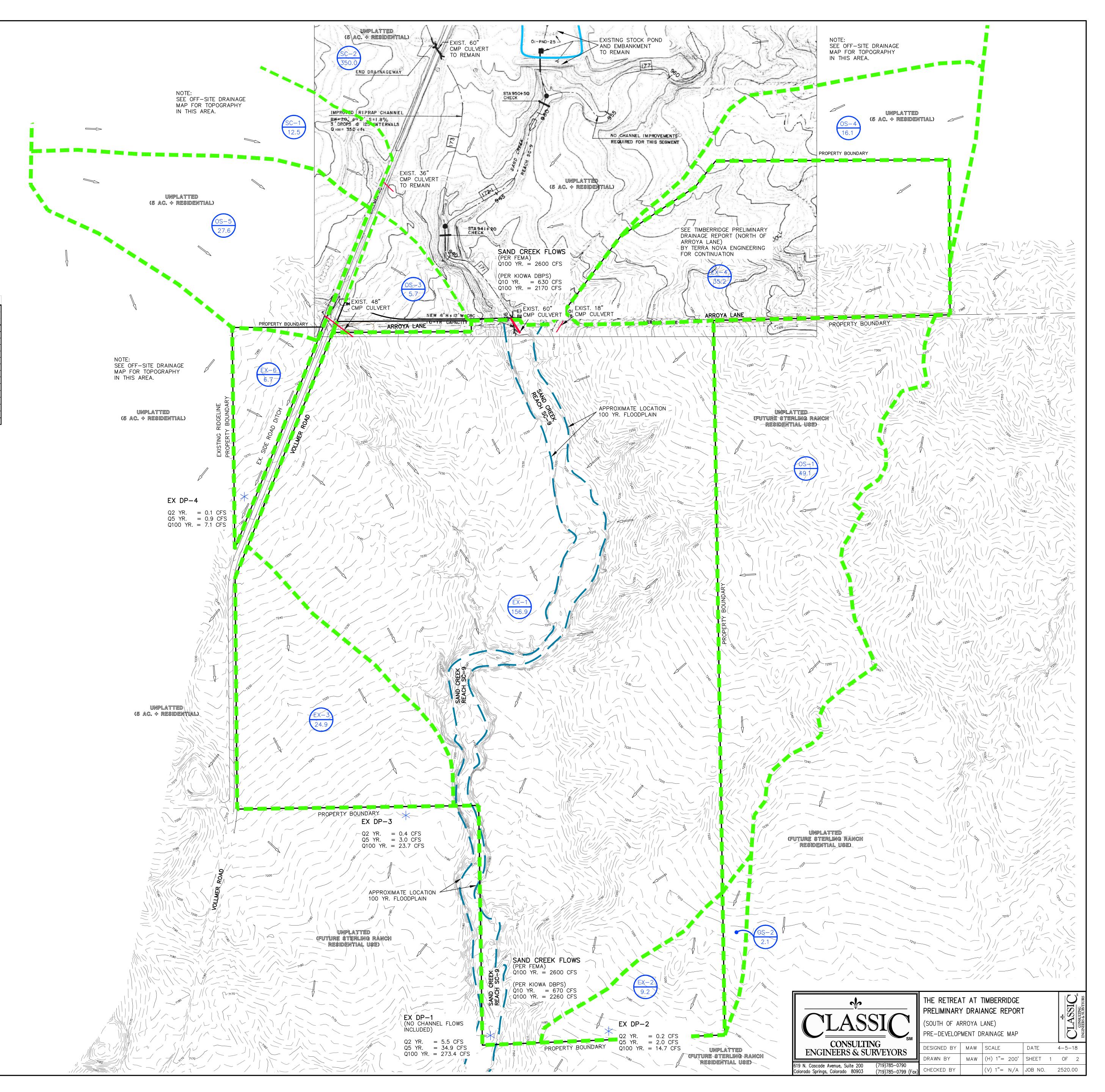
	TIME OF CONCENTRATION - EXISTING CONDITIONS											
				OVERLAND		S	TREET / Ch	HANNEL FLO	W	Tc	Tc	Tc
BASIN	Cn	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	LAG	LAG
			(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
EX-1	61.0	0.08	300	8	23.1	1600	1.8%	1.3	20.5	43.6	26.2	0.44
EX-2	61.0	0.08	300	10	21.4					21.4	12.9	0.21
EX-3	61.0	0.08	300	8	23.1	1500	4.0%	1.5	16. <mark>7</mark>	<mark>39.7</mark>	23.8	0.40
EX-4	63.0	0.08	300	24	16.1	1900	6.0%	1.8	17.6	33.7	20.2	0.34
EX-6	61.0	0.08	300	14	19.2	800	1.0%	1.0	13.3	32.5	19.5	0.33
SC-1	63.0	0.08	200	6	18.1	500	2.0%	1.2	6.9	25.1	15.0	0.25
SC-2	63.0	0.08	300	12	20.2	3500	1.8%	1.3	44.9	<mark>65.1</mark>	39.0	0.65
OS-1	61.0	0.08	300	22	16.5	1300	4.0%	1.5	14.4	31.0	18.6	0.31
OS-2	61.0	0.08	300	12	20.2	550	5.0%	1.7	5.4	25.6	15.3	0.26
OS-3	65.0	0.08	300	10	21.4	250	3.0%	3.5	1.2	22.6	13.6	0.23
OS-4	63.0	0.08	300	22	16.5	1100	4.0%	1.4	13.1	29.6	17.8	0.30
OS-5	63.0	0.08	300	10	21.4	1300	3.0%	1.2	18.1	39.5	23.7	0.39

BASIN SUMMARY - EXISTING CONDITIONS

BASIN	TOTAL	WEIGHTED	TOTAL	Q	Q	Q
	BASIN	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
	AREA					
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
EX-1	156.9	61	0.44	2.6	17.7	140.3
EX-2	9.2	61	0.21	0.2	1.7	12.2
EX-3	24.9	61	0.40	0.4	3.0	23.7
EX-4	35.2	63	0.34	1.3	6.9	41.8
EX-6	6.7	61	0.33	0.1	0.9	7.1
SC-1	12.5	63	0.25	0.5	3.0	17.3
SC-2	350.0	63	0.65	9.9	44.2	275.3
OS-1	49.1	61	0.31	0.9	7.0	53.9
OS-2	2.1	61	0.26	0.04	0.3	2.5
OS-3	5.7	65	0.23	0.6	2.1	9.9
OS-4	16.1	63	0.30	0.6	3.4	20.7
OS-5	27.6	63	0.39	1.0	5.2	32.1


DESIGN POINTS SURFACE ROUTING SUMMARY - EXISTING CONDITIONS

Design Point	Contributing Basins	Q	Q	Q
		2 Yr.	5 Yr.	100 Yr.
		Q (cfs)	Q (cfs)	Q (cfs)
(label)				
EX DP-1	BASINS OS-1, 05-3, 05-4, OS-5, EX-1, EX-4, EX-5, EX-6	5.6	36.0	281.7
EX DP-2	BASINS OS-2, EX-2	0.2	2.0	14.7
EX DP-3	BASIN EX-3	0.4	3.0	23.7
EX-DP-4	BASIN EX-6	0.1	1.0	7.1
Ex. 36" CMP at Vollmer	SC-1	0.5	3.0	17.3
Ex. 60" CMP at Vollmer	SC-2	9.88	44.2	275.3


Delete?

Provide column with design point contributing area

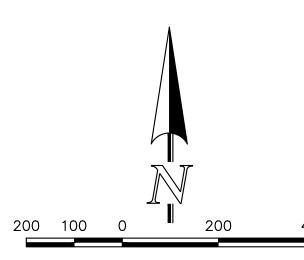
LEGE	ND
DESCRIPTION	SYMBOL
EXISTING GROUND CONTOUR	6910
PROPOSED FINISHED CONTOUR	— 6910 —
BASIN BOUNDARY	
DESIGN POINT	*
BASIN IDENTIFIER	BB 10.0
EXISTING DIRECTION OF FLOW	
STORM SEWER	

SCALE: 1" = 200'

			PRELIN	INAR	YDR	AINAC	ERE	PORT	[~ B 4	SINF	ONUS	FSU	MMA	RY				
		WEIGHTE	Ð	OVERLAND				STREET / CHANNEL FLOW				Tc	П	NTENSI	TY	TOTAL F		LOWS
BASIN	CA(2)	CA(5)	CA(100)	C(5)	•	Height	Tc	Length		Velocity		TOTAL	I(2)	l(5) (in/hr)	l(100) (in/hr)	Q(2)	Q(5)	Q(10
A1	0.77	1.79	5.12	0.14	(ft) 120	(ft) 24	(<i>min</i>) 15.1	(ft) 740	(%) 2.5%	(fps) 1.6	(<i>min</i>) 7.8	(<i>min</i>) 22.9	(in/hr) 2.31	2.89	4.84	(<i>dfs</i>) 1.8	(đs) 5	(đs) 25
A2	0.41	0.97	2.76	0.14	300	12	19.0	400	4.0%	20	3.3	22.3	2.34	2.92	4.91	1.0	3	14
A3	0.35	0.83	2.36	0.14	300	8	21.7	400	3.0%	1.7	3.8	25.6	2.18	2.72	4.57	0.8	2	11
A4	0.25	0.42	0.92	0.20	180	8	13.3	180	4.0%	20	1.5	14.8	2.83	3.54	5.94	0.7	1	5
A5	0.33	0.77	2.20	0.14	280	10	19.1					19.1	2.53	3.16	5.31	0.8	2	12
B1	1.13	2.63	7.52	0.14	300	10.5	19.9	1280	3.2%	1.8	11.9	31.8	1.92	2.39	4.02	2.2	6	30
B2	0.48	1.12	3.20	0.14	300	10.5	19.9					19.9	2.48	3.10	5.20	1.2	3	17
B3	1.28	1.69	3.06	0.14	300	10.5	19.9	370	1.5%	1.2	5.0	24.9	2.21	2.76	4.63	2.8	5	14
B4	0.78	1.82	5.20	0.14	300	10.5	19.9					19.9	2.48	3.10	5.20	1.9	6	27
C1	1.13	2.13	5.25	0.17	300	12	18.4	600	2.0%	28	3.5	21.9	2.36	2.95	4.95	2.7	6	26
C2	0.52	0.86	1.89	0.20	300	14	16.9					16.9	267	3.34	5.61	1.4	3	11
C3	0.77	1.46	3.61	0.17	300	17	16.4					16.4	271	3.39	5.68	2.1	5	21
D1	1.02	1.28	2.72	0.21	200	4	<u>18.0</u>	600	2.0%	28	<u>3.5</u>	21.6	2.38	2.98	5.00	2.4	4	14
D2	2.54	3.53	6.63	0.25	150	3	15.0	900	3.0%	3.5	4.3	19.3	251	3.14	5.28	6.4	11	35
D3	0.68	0.85	1.81	0.21	150	3	15.6	375	2.0%	28	2.2	17.8	261	3.26	5.48	1.8	3	10
D4	1.36	1.84	3.30	0.27	150	3	14.6	600	3.5%	3.7	27	17.3	264	3.31	5.56	3.6	6	18
D5	2.30	3.20	6.02	0.25	<mark>1</mark> 50	3	15.0	1050	2.5%	3.2	5.5	20.5	244	3.05	5.13	5.6	10	3'
D6	2.75	3.83	7.19	0.25	<mark>150</mark>	3	15.0	1200	2.0%	2.8	7.1	22.0	236	2.94	4.94	6.5	11	30
D7	0.19	0.43	1.11	0.16	150	3	16.5					16.5	270	3.37	5.67	0.5	1	6
D8	0.29	0.40	0.75	0.25	70	28	8.1					<mark>8</mark> .1	3.54	4.44	7.46	1.0	2	6
D9	0.38	0.53	0.99	0.25	70	28	<mark>8.1</mark>					<mark>8</mark> .1	3.54	4.44	7.46	1.3	2	7
D10	0.31	0.43	0.80	0.25	80	3.2	8.7					8.7	3.46	4.34	7.29	1.1	2	6
E	1.16	1.17	1.25	0.25	30	7.5	2.9	400	5.0%	22	3.0	5.9	3.93	4.92	8.27	4.5	6	1
F1	0.54	1.63	6.52	0.09	60	3	8.3	2400	2.0%	1.4	28.3	36.6	1.75	2.18	3.66	1.0	4	24
F2	0.14	0.41	1.66	0.09	60	6	6.6	1200	2.0%	1.4	14.1	20.7	2.43	3.03	5.09	0.3	1	8
Н	0.40	0.94	2.68	0.14	300	11	<u>19.6</u>	900	2.0%	1.4	10.6	30.2	1.98	2.47	4.15	0.8	2	1
OS-1A	0.14	0.43	1.73	0.09	300	15	18.6	400	5.0%	4.5	1.5	20.1	2.47	3.08	5.18	0.4	1	9
OS-1B	0.70	2.11	8.42	0.09	300	15	<mark>18.6</mark>	1200	5.0%	4.5	4.5	23.0	2.30	2.88	4.83	1.6	6	4
OS-2A	0.06	0.18	0.72	0.09	300	12	20.0					20.0	247	3.09	5.19	0.1	0.6	4
OS-2B	0.07	0.21	0.83	0.09	300	12	20.0					20.0	247	3.09	5.19	0.2	0.6	4
OS-2C	0.45	1.34	5.36	0.09	300	12	20.0	1000	3.0%	3.5	4.8	24.8	221	277	4.64	1.0	4	2
OS-2D	0.03	0.08	0.31	0.09	250	12	17.2					17.2	265	3.32	5.57	0.07	0.3	2
OS-2E	0.09	0.28	1.12	0.09	300	12	20.0					20.0	2.47	3.09	5.19	0.2	0.9	6
OS-3	0.42	0.74	2.21	0.08	300	10	21.4	250	3.0%	3.5	1.2	22.6	232	2.90	4.87	1	2	1
<mark>06-5</mark>	0.55	2.21	9.66	0.08	300	12	20.2	1500	3.0%	3.5	7.2	27.4	2.10	2.62	4.39	1	6	42

	PRELIMINARY DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY														
		IMPE	ERVIOUS A	REA / STRE	ETS	LAND	SCAPE / D	EVELOPED	AREAS	V	VEIGHTED			WEIGHTED	CA
	TOTAL			0/50	0(100)		0(0)	0(5)	0(100)	0(0)	0(5)	0(100)			
BASIN		AREA (AC)	C(2)	C(50)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100
A1	12.8	0.00	0.89	0.95	0.96	12.80	0.06	0.14	0.40	0.06	0.14	0.40	0.77	1.79	5.12
A2	6.9	0.00	0.89	0.95	0.96	6.90	0.06	0.14	0.40	0.06	0.14	0.40	0.41	0.97	2.76
A3	5.9	0.00	0.89	0.95	0.96	5.90	0.06	0.14	0.40	0.06	0.14	0.40	0.35	0.83	2.36
A4	2.1	0.00	0.89	0.95	0.96	2.10	0.12	0.20	0.44	0.12	0.20	0.44	0.25	0.42	0.92
A5	5.5	0.00	0.89	0.95	0.96	5.50	0.06	0.14	0.40	0.06	0.14	0.40	0.33	0.77	2.20
B1	18.8	0.00	0.89	0.95	0.96	18.80	0.06	0.14	0.40	0.06	0.14	0.40	1.13	2.63	7.52
B2	8.0	0.00	0.89	0.95	0.96	8.00	0.06	0.14	0.40	0.06	0.14	0.40	0.48	1.12	3.20
B3	6.10	1.10	0.89	0.95	0.96	5.00	0.06	0.14	0.40	0.21	0.28	0.50	1.28	1.69	3.06
B4	13.0	0.00	0.89	0.95	0.96	13.00	0.06	0.14	0.40	0.06	0.14	0.40	0.78	1.82	5.20
C1	12.5	0.00	0.89	0.95	0.96	12.50	0.09	0.17	0.42	0.09	0.17	0.42	1.13	2.13	5.25
C2	4.3	0.00	0.89	0.95	0.96	4.30	0.12	0.20	0.44	0.12	0.20	0.44	0.52	0.86	1.89
C3	8.6	0.00	0.89	0.95	0.96	8.60	0.09	0.17	0.42	0.09	0.17	0.42	0.77	1.46	3.61
D1	6.0	0.00	0.89	0.95	0.96	6.00	0.17	0.21	0.45	0.17	0.21	0.45	1.02	1.28	2.72
D2	14.1	0.00	0.89	0.95	0.96	14.10	0.18	0.25	0.47	0.18	0.25	0.47	2.54	3.53	6.63
D3	4.0	0.00	0.89	0.95	0.96	4.00	0.17	0.21	0.45	0.17	0.21	0.45	0.68	0.85	1.81
D4	6.8	0.00	0.89	0.95	0.96	6.80	0.20	0.27	0.49	0.20	0.27	0.49	1.36	1.84	3.30
D5	12.8	0.00	0.89	0.95	0.96	12.80	0.18	0.25	0.47	0.18	0.25	0.47	2.30	3.20	6.02
D6	15.3	0.00	0.89	0.95	0.96	15.30	0.18	0.25	0.47	0.18	0.25	0.47	2.75	3.83	7.19
D7	2.7	0.00	0.89	0.95	0.96	2.70	0.07	0.16	0.41	0.07	0.16	0.41	0.19	0.43	1.11
D8	1.6	0.00	0.89	0.95	0.96	1.60	0.18	0.25	0.47	0.18	0.25	0.47	0.29	0.40	0.75
D9	2.1	0.00	0.89	0.95	0.96	2.10	0.18	0.25	0.47	0.18	0.25	0.47	0.38	0.53	0.99
D10	1.7	0.00	0.89	0.95	0.96	1.70	0.18	0.25	0.47	0.18	0.25	0.47	0.31	0.43	0.80
Е	1.3	1.30	0.89	0.95	0.96	0.00	0.18	0.25	0.47	0.89	0.90	0.96	1.16	1.17	1.25
F1	18.1	0.00	0.89	0.95	0.96	18.10	0.03	0.09	0.36	0.03	0.09	0.36	0.54	1.63	6.52
F2	4.6	0.00	0.89	0.95	0.96	4.60	0.03	0.09	0.36	0.03	0.09	0.36	0.14	0.41	1.66
Н	6.7	0.00	0.89	0.95	0.96	6.70	0.06	0.14	0.40	0.06	0.14	0.40	0.40	0.94	2.68
OS-1A	4.8	0.00	0.89	0.95	0.96	4.80	0.03	0.09	0.36	0.03	0.09	0.36	0.14	0.43	1.73
OS-1B	23.4	0.00	0.89	0.95	0.96	23.40	0.03	0.09	0.36	0.03	0.09	0.36	0.70	2.11	8.42
OS-2A	2.0	0.00	0.89	0.95	0.96	2.00	0.03	0.09	0.36	0.03	0.09	0.36	0.06	0.18	0.72
OS-2B	2.3	0.00	0.89	0.95	0.96	2.30	0.03	0.09	0.36	0.03	0.09	0.36	0.07	0.21	0.83
OS-2C	14.9	0.00	0.89	0.95	0.96	14.90	0.03	0.09	0.36	0.03	0.09	0.36	0.45	1.34	5.36
OS-2D	0.85	0.00	0.89	0.95	0.96	0.85	0.03	0.09	0.36	0.03	0.09	0.36	0.03	0.08	0.31
OS-2E	3.1	0.00	0.89	0.95	0.96	3.10	0.03	0.09	0.36	0.03	0.09	0.36	0.09	0.28	1.12
OS-3	5.7	0.35	0.89	0.95	0.96	5.35	0.02	0.08	0.35	0.07	0.13	0.39	0.42	0.74	2.21
OS-5	27.6	0.00	0.89	0.95	0.96	27.60	0.02	0.08	0.35	0.02	0.08	0.35	0.55	2.21	9.66

PRELIMINARY DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY											
					Inter	nsity	F	wo			
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I (5)	I(100)	Q(5)	Q(100)	Culvert / Inlet Size		
1	OS-5 (27.6 ac.)	2.21	9.66	27.4	2.62	4.39	6	42	EX. 48" CMP		
2	OS-3 (5.7 ac.)	0.74	2.21	22.6	2.90	4.87	2	11	24" RCP		
3	DP-2, A-1 (18.5 ac.)	2.54	7.33	23.6	2.84	4.76	7	35	30" RCP		
4	A2 (6.9 ac.)	0.97	2.76	22.3	2.92	4.91	3	14	24" RCP		
5	DP-3, DP-4, A3 (31.3 ac.)	4.33	12.45	25.6	2.72	4.57	12	57	DUAL 30" RCP CULVERTS		
6	OS-3, A1, A2, A3 and A4 (POND B INFLOW - 33.4 ac.)	4.75	13.37	26.6	2.66	4.47	13	60			
7	B1 (18.8 ac.)	2.63	7.52	31.8	2.39	4.02	6	30	30" RCP		
8	B3 (6.1 ac.)	1.69	3.06	24.9	2.76	4.63	5	14	5' Type R sump inlets		
9	B1, B2 and B3 (POND C INFLOW - 32.9ac.)	5.44	13.78	34.8	2.26	3.79	12	52			
10	C1, OS-1A (17.3 ac.)	2.56	6.98	23.4	2.85	4.79	7	33	30" RCP		
11	C2 (4.3 ac.)	0.86	1.89	16.9	3.34	5.61	3	11	5' Type R sump inlets		
12	D2, OS-2A (16.1 ac.)	3.71	7.35	20.0	3.09	5.19	11	38	10' Type R sump inlets		
13	D1, OS-2B (8.3 ac.)	1.49	3.55	21.6	2.98	5.00	4	18	5' Type R sump inlets		
14	D3, OS-2D (4.85 ac.)	0.93	2.12	17.8	3.26	5.48	3	12	5' Type R sump inlets		
15	D5, OS-2E (15.9 ac.)	3.48	7.13	20.5	3.05	5.13	11	37	10'Type R sump inlets		
16	D4 6.8 ac.)	1.84	3.30	17.3	3.31	5.56	6	18	5' Type R sump inlets		
17	D6 (15.3 ac.)	3.83	7.19	22.0	2.94	4.94	11	36	10' Type R sump inlets		
18	DP-10 Thru DP-17 and OS-1B, OS-2C, D7 (POND D INFLOW - 129.9 ac.)	22.55	54.40	27.8	2.60	4.36	59	237			


<u>SYMBOL</u>

6910 _____

 \Box

6910

provide contributing acreage column

SCALE: 1" = 200'

PROPOSED DRAINAGE IMPROVEMENTS

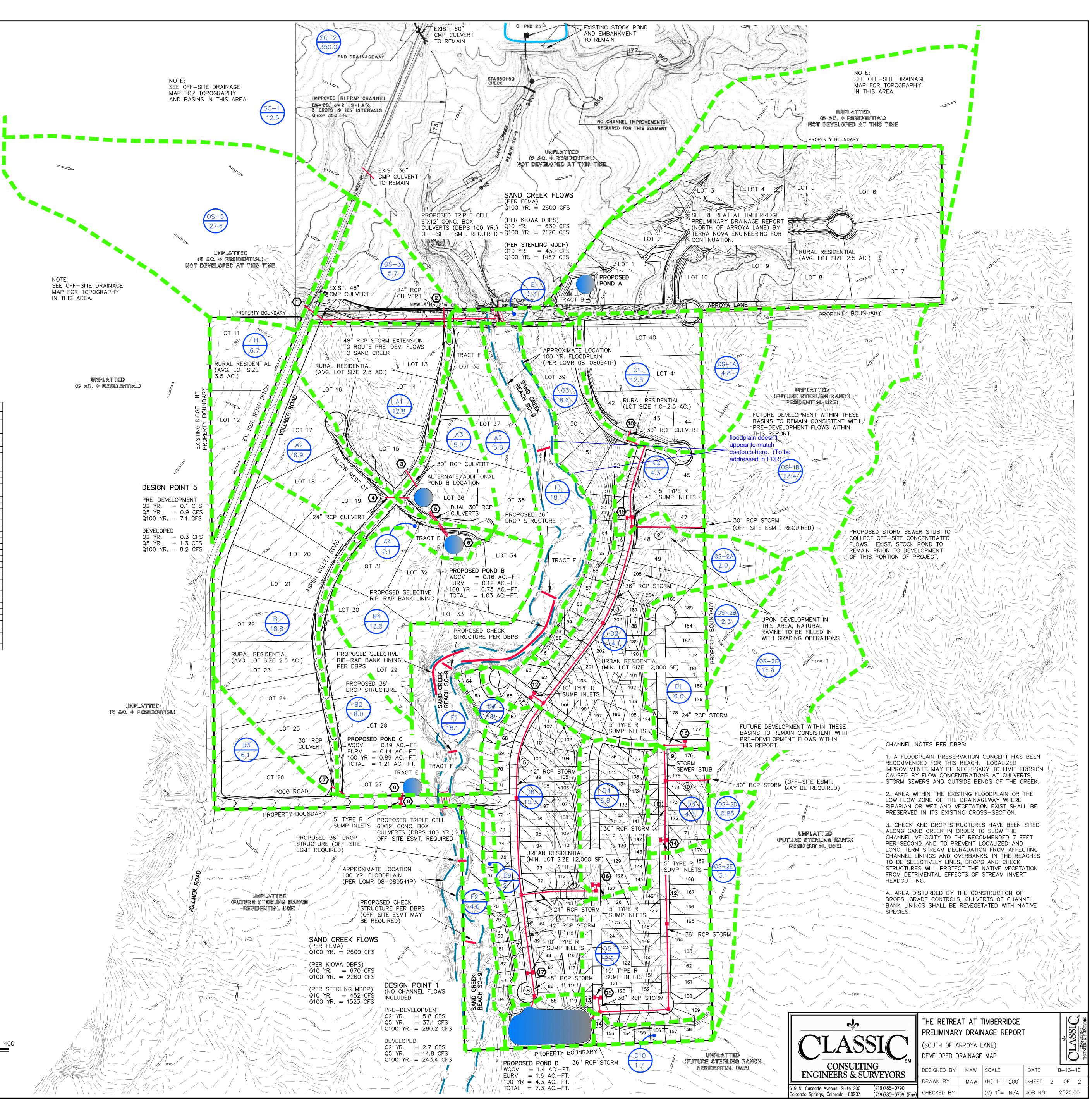
DESCRIPTION

BASIN BOUNDARY

BASIN IDENTIFIER

DESIGN POINT

AREA IN ACRES ------


EXISTING DIRECTION OF FLOW

PROPOSED DIRECTION OF FLOW

EXISTING GROUND CONTOUR

PROPOSED FINISHED CONTOUR

<u>LEGEND</u>

