See comment letter.

PRELIMINARY DRAINAGE REPORT FOR
 TIMBERRIDGE ESTATES, PRELIMINARY PLAN
 PART OF THE RETREAT AT TIMBERRIDGE (NORTH OF ARROYA LANE)

October 2018

Prepared For:
TIMBERRIDGE ESTATES, LLC 2760 Brogans Bluff Dr.
Colorado Springs, CO 80919

Prepared By:
TERRA NOVA ENGINEERING, INC.
721 S. $23^{\text {RD }}$ STREET
Colorado Springs, CO 80904
(719) 635-6422

TNE Job No. 1733.00
County Job No. SP-18-002
flows to a low point at the western side of the basin at Design Point 2, where it flows onto Basin C.

Basin C (15.36 acres) includes most of the western and northern portions of the site and is proposed for large residential lot development and the proposed Full Spectrum Extended Detention Basin. Runoff $\left(\mathrm{Q}_{5}=4.8 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=24.7 \mathrm{cfs}\right)$ sheet and channels flows to the detention basin in the southwest corner of the basin at Design Point 1. Outflow from the detention basin flows onto Basin E before flowing into Sand Creek.

Basin $\mathrm{D}(2.60$ acres $)$ is an area consisting of the north side of part of the existing Arroya Lane road and a small area north of the road. Runoff ($\mathrm{Q}_{5}=1.1 \mathrm{cfs}$ and $\mathrm{Q}_{100}=4.7 \mathrm{cfs}$) sheet and channels flows to the west, where it crosses the new Nature Refuge Way road in proposed dual 24 " RCP culverts and flows onto Basin E.

Basin E (1.04 acres) is an area consisting of the north side of part of the existing Arroya Lane road. Runoff $\left(\mathrm{Q}_{5}=1.8 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=4.7 \mathrm{cfs}\right)$ primarily channel flows to the west, where it enters Sand Creek at Design Point 5. Flows also enter Basin E from Basin D, the detention basin outfall, Basin F, and Basin OS-5 on their path to Sand Creek. Water quality for Basins E and D following the paving of Arroya Lane can be addressed by installing a sand filter in the road side swale near Design Point 5 (preliminary design calculations are included in the appendix). Route all the developed flows to the Full spectrum detention (FSD) pond for treatment. If a sand filter is still needed install it upstream of the FSD outfall.
Basin F (0.72 acres) is an area on the western edge of the site that includes some area in large residential lot development and some area around the detention basin. Runoff ($\mathrm{Q}_{5}=0.2$ cfs and $\mathrm{Q}_{100}=1.7 \mathrm{cfs}$) sheet flows to the southwest and onto Basin E.

Basin G (1.16 acres) is an area consisting of the north side of part of the existing Arroya Lane road. Runoff $\left(\mathrm{Q}_{5}=2.0 \mathrm{cfs}\right.$ and $\left.\mathrm{Q}_{100}=5.1 \mathrm{cfs}\right)$ primarily channel flows to the east, where it enters Sand Creek at Design Point 6. Water quality for Basin G following the paving of Arroya Lane can be addressed by installing a sand filter in the road side swale near Design Point 6 (preliminary design calculations are included in the appendix).

See note at bottom of calculation sheet. Freeboard is entering the culvert, not internal. Discuss size required to meet the 2-foot criteria and if a deviation might be requested at the final plat stage.

```
Culverts are proposed at the crossing of Sand Creek, for the detention basin outfall, at the intersection of Arroya Lane and Nature Refuge Nay, and at a low point on Nature Refuge Way. Culver design calculations have been included for the proposed drainage channels.
```


Box Culvert Bridge at Arroya Lane Crossing/Sand Creek

The three 6'x12' box culverts at the Arroya Lane crossing of Sand Creek are classified as a bridge. These culyerts haze been design to flow ar 66.3% capacity during a 100 year storm event, which results in én internal freeboard of 2.0 feet.

Full Spectrum
MAINTENANCE

> Additionally the Proposed Sand filter basins proposed next to Arroya Lane will be located on private property in an easement and maintained by The Timber Ridge Metro District.
The $\bigvee_{\text {Extended Detention Basin and the storm drain systems are private and therefore must be }}$ maintained by the owner (TimberRidge Metro District). These should be cleaned and checked after any significant precipitation event and at least once every three months. The proposed erosion control measures will be repaired and maintained by the property owner or owner's representative as required.

Access to the Extended Detention Basin is proposed from Arroya Lane. Access to the proposed drainage easements will be from Nature Refuge Way and/or from Arroya Lane via the Extended Detention Basin.

CONSTRUCTION COST OPINION

Proposed Public Reimbursable

1. 12'x6' Box Culverts 306 LF $\$ 820 \quad \$ 250,920$

Total \$ 250,920
Note: The Sand Creek Drainage Basin Planning Study (March 1996), calls out the removal of an existing 60" CMP and the installation of a $6^{\prime} \mathrm{H} x 12^{\prime} \mathrm{W}$ CBC, $10-\mathrm{Yr}$ capacity at the Arroya Lane crossing of Sand Creek.

Private Non Reimbursable

| 1. $24 " \mathrm{RCP}$ | 180 LF | $\$ 50$ | $\$ 9,000$ |
| :--- | ---: | :---: | :---: | :---: |
| 2. EDB | 1 EA | $\$ 20,000$ | $\$ 20,000$ |
| | | | Total $\mathbf{\$ 2 0 , 9 0 0}$ |

DRAINAGE FEES

The existing site is in the Sand Creek Basin. 2018 Drainage fees due prior to final plat recordation are as follows:

FEE TYPE	\% IMP.	PARCEL AREA	MOD.	FEE PER IMP. AC.	SUBTOTAL
DRAINAGE FEES:	$11 \% \mathrm{x}$	35.3 acres x	$75 \% \mathrm{x}$	$\$ 17,197=$	$\$ 50,082$
BRIDGE FEES:	$11 \% \mathrm{x}$	35.3 acres x	$100 \% \mathrm{x}$	$\$ 5,210=$	$\underline{\$ 20,230}$
				TOTAL $\$ 70,312$	

SUMMARY

Development of this site will not adversely affect the surrounding development. Proposed flows, as detailed in this report, will follow the drainage patterns outlined in this report showing how runoff will be safely routed downstream. The Extended Detention Basin will control flow to historic levels and provide water quality for this site. These water features will need to be periodically maintained by the owner in order to maintain their effectiveness in cleaning the discharge form the site.

PREPARED BY:
TERRA NOVA ENGINEERING, INC.

Created by: Mike O'Shea

> Label the proposed easement widths, here, on each sheet, for each section EX1 through EX 11.

Determination of Culvert Headwater and Outlet Protection

Project: Timberridge Estates
Basin ID: Arroya Lane Crossing Sand Creek (2,607 cfs) - 3-6'x12' Conc Box Culverts

Soil Type:

Supercritical Flow! Using Ha to calculate protection type.

Design Information (Input):	
Circular Culvert:	Design Discharge
	Barrel Diameter in Inches
Box Culvert:	Inlet Edge Type (Choose from pull-down list)
	Barrel Height (Rise) in Feet
	Barrel Width (Span) in Feet
	Inlet Edge Type (Choose from pull-down list)
	Number of Barrels
	Inlet Elevation
	Outlet Elevation OR Slope
	Culvert Length
	Manning's Roughness
	Bend Loss Coefficient
	Exit Loss Coefficient
	Tailwater Surface Elevation
	Max Allowable Channel Velocity

Required Protection (Output):
Flow Area at Max Channel Velocity
Culvert Cross Sectional Area Available
Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Losses Coefficients
Culvert Normal Depth
Culvert Critical Depth

Tailwater Depth for Design
Adjusted Diameter OR Adjusted Rise
Expansion Factor
Flow/Diameter ${ }^{2.5}$ OR Flow/(Span * Rise ${ }^{1.5}$)
Froude Number
Tailwater/Adjusted Diameter OR Tailwater/Adjusted Rise

Inlet Control Headwater
Outlet Control Headwater
Design Headwater Elevation
Headwater/Diameter OR Headwater/Rise Ratio

Minimum Theoretical Riprap Size
Nominal Riprap Size
UDFCD Riprap Type
Length of Protection
Width of Protection

$\mathrm{Y}_{\mathrm{t}}=$	2.40	ft
$\mathrm{A}_{\mathrm{t}}=$	173.80	ft^{2}
$\mathrm{A}=$	72.00	ft^{2}
$\mathrm{k}_{\mathrm{e}}=$	0.50	
$\mathrm{k}_{\mathrm{f}}=$	0.29	
$\mathrm{k}_{\mathrm{s}}=$	1.79	ft
$\mathrm{Y}_{\mathrm{n}}=$	3.66	ft
$\mathrm{Y}_{\mathrm{c}}=$	5.46	ft
d =	5.73	ft
$\mathrm{H}_{\mathrm{a}}=$	4.83	ft
$1 /\left(2^{*} \tan (\Theta)\right)=$	2.85	
Q/WH^1.5 =	4.93	$\mathrm{ft}{ }^{0.5} / \mathrm{s}$
$\mathrm{Fr}=$	1.83	Supercritical!
$\mathrm{Yt} / \mathrm{H}=$	0.50	
$\mathrm{HW}_{1}=$	10.51	ft
$\mathrm{HW}_{\mathrm{O}}=$	8.77	
HW =	7,243.51	ft
HW/H =	1.75	HW/H >1.5 !

$\mathrm{d}_{50}=$	11
$\mathrm{d}_{50}=$	12
Type =	M
$L_{p}=$	60
T =	34

