COLORADO PUMPKIN PATCH

SPECIAL USE TRAFFIC IMPACT STUDY

El Paso County, Colorado

April 2023

Completed By:

Brett Louk, P.E.

411 S. Tejon St., Suite I Colorado Springs, Colorado 80903 Tel. 719-465-2145 blouk@smhconsultants.com

TABLE OF CONTENTS

TABLE OF CONTENTS	1
EXECUTIVE SUMMARY	2
INTRODUCTION	2
METHODOLOGY	3
EXISTING CONDITIONS	4
PROJECT DESCRIPTION	6
TRIP GENERATION	7
TRIP DISTRIBUTION	7
EXISTING PLUS DEVELOPMENT	8
SHORT-RANGE HORIZON ANALYSIS	9
LONG-RANGE HORIZON ANALYSIS	11
AUXILIARY LANE ANALYSIS	13
CONCLUSIONS	15
CERTIFICATION PAGE	17

EXECUTIVE SUMMARY

SMH Consultants, P.A. completed a traffic impact study, to support the special use application, for the tulip festival and pumpkin patch to be held at the Colorado Pumpkin Patch located at 18065 Saddlewood Road in El Paso County, Colorado. The application also includes a deviation request seeking access from Highway 105 for weekend traffic (Friday, Saturday, and Sunday) to the events. This access will remain closed, and un-used, the rest of the days that the events are open. The tulip festival is planned to take place over two weekends in May and the pumpkin patch is planned to take place the last two weeks of September and all of October.

Attendance information, from last year's events, was utilized to determine the number of trips generated by the tulip festival and pumpkin patch. These generated trips, along with the peak hour counts, were then used to perform a level of service (LOS) analysis for the following intersections: Saddlewood Rd./Canterbury Dr.; Canterbury Dr./Hwy. 105; Cherry Springs Ranch Dr./Hwy. 105; and Appaloosa Rd./Hwy. 105. The LOS analysis for all intersections indicated that the LOS for all approaches to the intersection would continue to operate at LOS B or better, for the A.M. and P.M. peak hours of the events. This remains true for the existing plus development, short-range horizon, and long-range horizon scenarios. It should be noted that the intersection LOS analysis, for each intersection, was completed with the existing lane configuration and no auxiliary lanes were accounted for.

Auxiliary lane analyses showed that a westbound left turn lane and eastbound right turn lane are warranted at the intersection of Canterbury Dr. and Highway 105 during the weekday A.M. and P.M. peak hours. A southbound left turn lane is warranted at the intersection of Canterbury Dr. and Saddlewood Rd. during the weekday and weekend A.M. and P.M. peak hours. A westbound left turn lane is warranted at the intersection of Appaloosa Rd. and Highway 105 during the weekday A.M. peak hour. A westbound left turn lane and eastbound right turn lane are warranted at the intersection of Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours. No right turn acceleration lanes are warranted at any of the study intersections. Since these events only occur during a small portion of the year, an alternative to constructing the warranted auxiliary lanes would be for the property owner to hire traffic flaggers, or off-duty sheriff deputies, to direct traffic during the times that the events are operating.

Based on the analysis presented in this report, the proposed tulip festival and pumpkin patch are not expected to have any negative impacts on the surrounding roadway network and existing accesses.

INTRODUCTION

The ownership of the Colorado Pumpkin Patch has requested that SMH Consultants, P.A. conduct a Traffic Impact Study (TIS) to support a special use application for a tulip festival and pumpkin patch. The tulip festival is planned to

take place over two weekends in May and will operate from 9 A.M. to 5 P.M. on Friday, Saturday, and Sunday. The pumpkin patch is planned to take place the last two weeks of September and the entire month of October and will operate from 9 A.M. to 5 P.M. seven days of the week. The purpose of this study is to determine the traffic impacts of the tulip festival and pumpkin patch on the surrounding transportation network. A vicinity map has been included in the appendix of this report.

This TIS will determine the trips generated by the tulip festival and pumpkin patch, perform a level of service (LOS) analysis for the following intersections: Saddlewood Rd./Canterbury Dr.; Canterbury Dr./Hwy. 105; Cherry Springs Ranch Dr./Hwy. 105; and Appaloosa Rd./Hwy. 105, perform auxiliary lane analyses at each intersection, and identify any improvements that may be required to the surrounding transportation network.

METHODOLOGY

On December 17th and 21st 2022, SMH Consultants conducted weekday and weekend A.M. and P.M. peak hour turning movement counts at the intersections of Saddlewood Rd./Canterbury Dr. and Canterbury Dr./Hwy. 105. Upon further discussion with El Paso County staff, further intersections were identified that would need analyzed. On March 14th and 18th 2023, SMH Consultants conducted weekday and weekend A.M. and P.M. peak hour turning movement counts at the intersections of Cherry Springs Ranch Dr./Hwy. 105 and Appaloosa Rd./Hwy. 105. All turning movement count information has been included in the appendix of this report.

McTrans HCS7 Software was used to analyze the existing, existing plus development, short-range horizon, and long-range horizon scenarios for all aforementioned intersections.

Intersection Level of Service (LOS) is a concept defined by the *Highway Capacity Manual* (HCM) to qualitatively describe operating conditions within a traffic stream. LOS is typically stratified into six categories (A through F). These range from LOS A indicating free-flow, low density, or nearly negligible delay conditions to LOS F where demand exceeds capacity and large queues are experienced.

For unsignalized intersections, the HCM uses control delay, measured in average seconds of delay per vehicle, as the basis for determining LOS. Control delay at an intersection is the average stopped time per vehicle traveling through the intersection plus the movements at slower speeds due to the vehicles moving up in the queue or slowing upstream of the approach. For two-way stop-controlled intersections, individual approach delays as well as an overall average delay are calculated for each intersection. Table 1 below shows the LOS criteria for an unsignalized intersection.

Level of Service	Control Delay Range (s/veh)				
	Unsignalized				
Α	0-10				
В	>10-15				
С	>15-25				
D	>25-35				
E	>35-50				
F	>50				

Table 1: LOS Criteria

EXISTING CONDITIONS

The existing site is located at 18065 Saddlewood Road in El Paso County, Colorado. The existing site consists of a single-family home, outbuildings, and agricultural ground. The site is bordered by Saddlewood Rd. to the south, residential properties to the east and west, and Highway 105 to the north. Canterbury Dr. is located west of the site and Appaloosa Rd. is located east of the site.

Saddlewood Rd. is a two-lane gravel road that is approximately 28-feet wide, with roadside ditches on both sides, and is classified as a rural local road. At the intersection with Canterbury Dr., westbound Saddlewood Rd. consists of a shared right/left lane. There is no eastbound approach to the intersection of Saddlewood Rd. and Canterbury Dr. Saddlewood Rd. does not have a posted speed limit, however, based on the posted speed limit for Canterbury Dr. and Appaloosa Rd., the speed limit is assumed to be 25 mph. Intersection sight distance at this intersection is adequate in both directions. An intersection sight distance exhibit has been included in the appendix of this report.

Canterbury Dr. is a two-lane paved road that is approximately 28-feet wide, with roadside ditches on both sides, and is classified as a rural local road. At the intersection with Saddlewood Rd., northbound Canterbury Dr. consists of a shared thru/right lane and southbound consists of a shared thru/left lane. At the intersection with Highway 105, northbound Canterbury Dr. consists of a shared right/left lane. There is no southbound approach to the intersection of Canterbury Dr. and Highway 105. Canterbury Dr. has a posted speed limit of 25 mph. Intersection sight distance at this intersection is adequate in both directions. An intersection sight distance exhibit has been included in the appendix of this report.

Cherry Springs Ranch Dr. is a two-lane paved road that is approximately 28-feet wide, with roadside ditches on both sides, and is classified as a rural local road. At the intersection with Highway 105, southbound Cherry Springs Ranch Dr. consists of a shared left/right lane. There is no northbound approach to the intersection of Cherry Springs Ranch Dr. and Highway 105. Cherry Springs

Ranch Dr. has a posted speed limit of 30 mph. Intersection sight distance at this intersection is adequate in both directions. An intersection sight distance exhibit has been included in the appendix of this report.

Appaloosa Rd. is a two-lane gravel road that is approximately 28-feet wide, with roadside ditches on both sides, and is classified as a rural local road. At the intersection with Highway 105, northbound Appaloosa Rd. consists of a shared left/right lane. There is no southbound approach to the intersection of Appaloosa Rd. and Highway 105. Appaloosa Rd. has a posted speed limit of 25 mph. Intersection sight distance at this intersection is adequate in both directions. An intersection sight distance exhibit has been included in the appendix of this report.

Highway 105 is a two-lane paved road that is approximately 24-feet wide, with roadside ditches on both sides, and is classified as a principal arterial. Currently, Highway 105 is undergoing a corridor analysis, from Interstate 25 to Highway 83, to determine improvements that may be necessary along this stretch of Highway 105. At this time, the section of Highway 105, adjacent to the Colorado Pumpkin Patch, is recommended to be a three-lane section with one thru lane in each direction and center left turn lanes at major intersections. It should be noted that the intersections studied in this report for the tulip festival were not studied as part of the El Paso County Highway 105 Traffic Study Update, performed by HDR, as they were considered side roads with insignificant traffic volumes. At the intersection with Canterbury Dr., eastbound Highway 105 consists of a shared thru/right lane and westbound consists of a shared thru/left lane. At the intersection with Cherry Springs Ranch Dr., eastbound Highway 105 consists of a shared thru/left lane and westbound consists of a shared thru/right lane. At the intersection with Appaloosa Rd., eastbound Highway 105 consists of a shared thru/right lane and westbound consists of a shared thru/left lane. Highway 105 has a posted speed limit of 50 mph.

Based on information provided in the El Paso County Highway 105 Traffic Study Update, performed by HDR, Highway 105 has peak hours of 7 A.M. to 8 A.M. and 5 P.M. to 6 P.M. However, these peak hours are different than the A.M. and P.M. peak hours for the tulip festival and pumpkin patch. Based on information provided by the owner, from last year's festivals, the A.M. peak hour is 9 A.M. to 10 A.M. and the P.M. peak hour is 1 P.M. to 2 P.M. Therefore, SMH Consultants performed existing turning movement counts for the timeframes coinciding with the peak hours of the tulip festival. Existing peak hour counts and turning movements can be seen in the appendix of this report.

Table 2 shows the existing weekday level of service for each intersection. Detailed intersection level of service calculations for each intersection are provided in the appendix.

		Weekda	ay A.M.	Peak Hour	Weekda	ay P.M. Pe	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
Cartaile a C	WB RT/LT	8.4	Α	0'	8.5	Α	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	Α	0'	7.2	Α	0'
Saudiewood	SB Thru/RT	7.2	Α	0'	7.2	Α	0'
Carata alaum. Q	EB Thru/RT	7.6	Α	0'	7.5	Α	0'
Canterbury & Hwy 105	WB Thru/LT	7.5	Α	0'	7.7	Α	0'
11Wy 103	NB RT/LT	9.9	Α	0'	11	В	0'
Cherry Springs	EB Thru/LT	7.6	Α	0'	7.5	Α	0'
Ranch & Hwy	WB Thru/RT	7.5	Α	0'	7.5	Α	0'
105	SB RT/LT	9.9	Α	0'	10.3	В	0'
	EB Thru/RT	7.6	Α	0'	7.5	Α	0'
Appaloosa & Hwy 105	WB Thru/LT	7.5	Α	0'	7.5	Α	0'
HWY 103	NB RT/LT	9.9	Α	0'	9.8	Α	0'

Table 2: Existing Intersection Weekday LOS

Table 3 shows the existing weekend level of service for each intersection.

		Weeker	nd A.M.	Peak Hour	Weeker	Weekend P.M. Peak Hour			
Intersection	Movement			95%			95%		
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue		
Cantarbum, 0	WB RT/LT	8.3	Α	0'	8.4	Α	0'		
Canterbury & Saddlewood	NB Thru/RT	7.2	Α	0'	7.2	Α	0'		
Saudiewood	SB Thru/RT	7.2	Α	0'	7.2	Α	0'		
Carlada a	EB Thru/RT	7.5	Α	0'	7.6	Α	0'		
Canterbury & Hwy 105	WB Thru/LT	7.5	Α	0'	7.6	Α	0'		
11Wy 103	NB RT/LT	10.4	В	0'	10.6	В	2.5'		
Cherry Springs	EB Thru/LT	7.6	Α	0'	7.5	Α	0'		
Ranch & Hwy	WB Thru/RT	7.4	Α	0'	7.6	Α	0'		
105	SB RT/LT	9.8	Α	0'	9.5	Α	0'		
	EB Thru/RT	7.6	Α	0'	7.5	Α	0'		
Appaloosa &	WB Thru/LT	7.5	Α	0'	7.6	Α	0'		
Hwy 105	NB RT/LT	10.3	В	0'	9.2	Α	0'		

Table 3: Existing Intersection Weekend LOS

PROJECT DESCRIPTION

The tulip festival event will be held two weekends in May and will operate from 9 A.M. to 5 P.M. Friday, Saturday, and Sunday. The pumpkin patch will be held the last two weeks of September and the entire month of October and will operate from 9 A.M. to 5 P.M. seven days a week. Weekday access to the pumpkin patch will be via Saddlewood Rd. Vehicles will access Saddlewood Rd., from Highway

105, via Canterbury Dr. and Appaloosa Rd. Weekend access, including Fridays, to the tulip festival and pumpkin patch will be via a new driveway off of Highway 105 that will line up with Cherry Springs Ranch Dr.

TRIP GENERATION

The Institute of Transportation Engineers (ITE), *Trip Generation Report, 11th Edition*, does not provide trip generation data for events due to the intermittent use of event venues and wide variability in event attendance. The owner provided SMH Consultants attendance information from last year's festivals. SMH then used this information to determine the A.M. and P.M. peak hour trips for the festivals. A ratio of one vehicle for every two persons was assumed. The A.M. peak hour was broken into 90% entering and 10% exiting, the P.M. peak hour was broken into 70% entering and 30% exiting, and the daily trips were broken into 50% entering and 50% exiting. Table 4 shows the weekday daily, A.M. peak hour, and P.M. peak hour trips for the tulip festival and pumpkin patch.

	Attendance	Daily			A.M. PH			P.M. PH		
	(ppl)	Total	In	Out	Total	In	Out	Total	In	Out
Max. Weekday	908	454	227	227						
A.M. Peak Hr	298				149	134	15			
P.M. Peak Hr	124							62	43	19

Table 4: Weekday Generated Trips

Table 5 shows the weekend daily, A.M. peak hour, and P.M. peak hour trips for the tulip festival and pumpkin patch. The same entering and exiting percentages, as stated above for the weekday trips, were applied for the weekend trips.

	Attendance (ppl)	e Daily		A.M. PH			P.M. PH			
		Total	In	Out	Total	In	Out	Total	ln	Out
Max. Weekend	3356	1678	839	839						
A.M. Peak Hr	346				173	156	17			
P.M. Peak Hr	472							236	212	24

Table 5: Weekend Generated Trips

TRIP DISTRIBUTION

There are many ways to distribute trips that are entering or exiting a proposed development. For the purposes of this study, SMH assumed that 60% of the site generated traffic would be coming from, or going to, the west and 40% would be coming from, or going to, the east. This directional distribution was largely based on Interstate 25 being located west of the site and Highway 83 being located east of the site.

From this initial directional distribution, weekday trips were further distributed amongst the intersections of Canterbury Dr./Hwy. 105 and Appaloosa Rd./Hwy. 105. For the trips coming from, or going to, the west, it was assumed that 90% of those trips would utilize the Canterbury Dr. and Highway 105 intersection and 10% would utilize the Appaloosa Rd. and Highway 105 intersection. For the trips coming from, or going to, the east, it was assumed that 80% of those trips would utilize the Canterbury Dr. and Highway 105 intersection and 20% would utilize the Appaloosa Rd. and Highway 25 intersection. Canterbury Dr. is a paved road, whereas Appaloosa Rd. is not, and the preferred route for mobile map services that visitors might use to get to the festival. Thus, the intersection of Canterbury Dr. and Highway 105 received a larger distribution of the festival generated trips.

For weekend trips, the site generated trips were distributed amongst the intersections of Canterbury Dr./Hwy. 105, Cherry Springs Ranch Dr./Hwy. 105 and Appaloosa Rd./Hwy. 105. As stated in the deviation request, weekend traffic would be allowed to utilize a new driveway off of Highway 105 that would line up with Cherry Springs Ranch Dr. For the trips coming from, or going to, the west, it was assumed that 85% of those trips would utilize the new driveway, 10% would utilize the Canterbury Dr. and Highway 105 intersection and the remaining 5% would utilize the Appaloosa Rd. and Highway 105 intersection. For the trips coming from, or going to, the east, it was assumed that 85% would utilize the new driveway, 10% would utilize the Canterbury Dr. and Highway 105 intersection and the remaining 5% would utilize the Appaloosa Rd. and Highway 105 intersection.

An exhibit has been included in the appendix of this report showing the distribution of the site generated trips.

EXISTING PLUS DEVELOPMENT

Existing plus development conditions combine the existing A.M. and P.M. peak hour turning movements with the A.M. and P.M. peak hour traffic generated by the site. The existing plus development peak hour turning movements can be seen in the appendix of this report. Detailed intersection level of service calculations for each intersection are provided in the appendix. Table 6 shows the existing plus development weekday level of service for all the study intersections.

This space intentionally left blank

		Weekda	ay A.M.	Peak Hour	Weekda	ay P.M. Pe	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
Cantanla	WB RT/LT	8.5	Α	2.5'	8.5	Α	2.5'
Canterbury & Saddlewood	NB Thru/RT	7.2	Α	0'	7.2	Α	0'
Saudiewood	SB Thru/RT	7.4	Α	7.5′	7.3	Α	2.5'
Carlada a C	EB Thru/RT	7.6	Α	0'	7.5	Α	0'
Canterbury & Hwy 105	WB Thru/LT	7.8	Α	2.5'	7.8	Α	0'
11Wy 103	NB RT/LT	11.3	В	2.5'	11.4	В	2.5'
Cherry Springs	EB Thru/LT	7.8	Α	0'	7.6	Α	0'
Ranch & Hwy	WB Thru/RT	7.5	Α	0'	7.5	Α	0'
105	SB RT/LT	10.3	В	0'	10.4	В	0'
	EB Thru/RT	7.7	Α	0'	7.6	Α	0'
Appaloosa & Hwy 105	WB Thru/LT	7.5	Α	0'	7.5	Α	0'
HWY 103	NB RT/LT	10.4	В	0'	9.9	Α	0'

Table 6: Existing + Development Weekday Intersection LOS

Table 7 shows the existing plus development weekend level of service for all the study intersections.

		Week	end A.N	1. Peak Hour	Weeker	nd P.M. P	eak Hour
Intersection	Movement	Delay		95%			95%
		(s)	LOS	Queue	Delay (s)	LOS	Queue
Contombumu 0	WB RT/LT	8.3	Α	0'	8.4	Α	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	Α	0'	7.2	Α	0'
Saddlewood	SB Thru/RT	7.3	Α	0'	7.3	Α	0'
Cantanh	EB Thru/RT	7.5	Α	0'	7.6	Α	0'
Canterbury & Hwy 105	WB Thru/LT	7.7	Α	0'	8.0	Α	0'
11Wy 103	NB RT/LT	11.4	В	2.5′	12.3	В	2.5′
	EB Thru/LT/RT	7.6	Α	0'	7.5	Α	0'
Cherry Springs	WB Thru/LT/RT	7.7	Α	2.5′	8.1	Α	5'
Ranch & Hwy 105	NB Thru/LT/RT	11.4	В	2.5′	12.3	В	2.5'
103	SB Thru/LT/RT	10.7	В	2.5′	10.6	В	0'
	EB Thru/RT	7.7	Α	0'	7.7	Α	0'
Appaloosa &	WB Thru/LT	7.5	Α	0'	7.6	Α	0'
Hwy 105	NB RT/LT	10.7	В	0'	10.2	В	0'

Table 7: Existing + Development Weekend Intersection LOS

SHORT-RANGE HORIZON ANALYSIS

El Paso County requires a short-range horizon analysis as part of the traffic impact study for projects. The short-range horizon analysis is intended to analyze

the immediate impacts of the proposed project on the existing and committed roadway network. The short-range horizon year is defined as one year after the full occupancy of the project. To determine the projected peak hour trips for the short-range horizon year, a 2% annual growth rate was applied to the existing peak hour turning movement counts. This growth rate is consistent with the Highway 105 study. The short-range peak hour turning movements can be seen in the appendix of this report. Detailed intersection level of service calculations for each intersection are provided in the appendix.

Table 8 shows the short-range horizon weekday level of service for all the study intersections.

		Weekda	ay A.M.	Peak Hour	Weekda	ay P.M. Pe	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
Carata da como O	WB RT/LT	8.5	Α	2.5'	8.5	Α	2.5'
Canterbury & Saddlewood	NB Thru/RT	7.2	Α	0'	7.2	Α	0'
Saddicwood	SB Thru/RT	7.4	Α	7.5′	7.3	Α	2.5'
Camtambum, 0	EB Thru/RT	7.6	Α	0'	7.5	Α	0'
Canterbury & Hwy 105	WB Thru/LT	7.8	Α	2.5'	7.8	Α	0'
11Wy 103	NB RT/LT	11.2	В	2.5'	11.3	В	5′
Cherry Springs	EB Thru/LT	7.8	Α	0'	7.6	Α	0'
Ranch & Hwy	WB Thru/RT	7.5	Α	0'	7.5	Α	0'
105	SB RT/LT	10.6	В	0'	10.1	В	0'
	EB Thru/RT	7.7	Α	0'	7.6	Α	0'
Appaloosa & Hwy 105	WB Thru/LT	7.5	Α	0'	7.6	Α	0'
HWY 103	NB RT/LT	10.3	В	2.5′	9.9	Α	0'

Table 8: Short-Range Horizon Weekday Intersection LOS

This space intentionally left blank

Table 9 shows the short-range horizon weekend level of service for all the study intersections.

		Week	end A.N	1. Peak Hour	Weeker	nd P.M. P	eak Hour
Intersection	Movement	Delay		95%			95%
		(s)	LOS	Queue	Delay (s)	LOS	Queue
Cantarhum	WB RT/LT	8.3	Α	0'	8.4	Α	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	Α	0′	7.2	Α	0'
Saudiewood	SB Thru/RT	7.3	Α	0′	7.3	Α	0'
Canata ula como O	EB Thru/RT	7.5	Α	0'	7.6	Α	0'
Canterbury & Hwy 105	WB Thru/LT	7.8	Α	0′	8.0	Α	0'
11Wy 103	NB RT/LT	11.5	В	2.5′	12.1	В	2.5′
	EB Thru/LT/RT	7.6	Α	0'	7.5	Α	0'
Cherry Springs Ranch & Hwy	WB Thru/LT/RT	7.8	Α	2.5'	8.1	Α	5'
105	NB Thru/LT/RT	11.5	В	2.5′	12.3	В	2.5′
103	SB Thru/LT/RT	10.5	В	0′	11.5	В	0'
	EB Thru/RT	7.8	Α	0′	7.7	Α	0'
Appaloosa &	WB Thru/LT	7.5	Α	0'	7.6	Α	0'
Hwy 105	NB RT/LT	10.2	В	0'	9.8	Α	0'

Table 9: Short-Range Horizon Weekend Intersection LOS

LONG-RANGE HORIZON ANALYSIS

El Paso County requires a long-range horizon analysis as part of the traffic impact study for projects. The long-range horizon analysis is intended to analyze the impacts of the proposed project on the long-range traffic condition and is based on the current Master Transportation Corridor Plan planning horizon and related modeling. The long-range peak hour turning movements can be seen in the appendix of this report. Detailed intersection level of service calculations for each intersection are provided in the appendix.

This space intentionally left blank

Table 10 shows the long-range horizon weekday level of service for all the study intersections.

		Weekda	y A.M.	Peak Hour	Weekda	ay P.M. Pe	eak Hour
Intersection	Movement			95%			95%
		Delay (s)	LOS	Queue	Delay (s)	LOS	Queue
Comboule 0	WB RT/LT	9.0	Α	2.5'	8.7	Α	2.5'
Canterbury & Saddlewood	NB Thru/RT	7.2	Α	0'	7.2	Α	0'
Saudiewood	SB Thru/RT	7.4	Α	7.5′	7.3	Α	2.5'
Comboule 0	EB Thru/RT	7.7	Α	0'	7.7	Α	0'
Canterbury & Hwy 105	WB Thru/LT	8.0	Α	2.5'	8.0	Α	2.5'
11Wy 103	NB RT/LT	12.4	В	2.5'	13.1	В	5′
Cherry Springs	EB Thru/LT	8.0	Α	0'	7.7	Α	0'
Ranch & Hwy	WB Thru/RT	7.6	Α	0'	7.7	Α	0'
105	SB RT/LT	11.6	В	2.5'	10.9	В	0'
	EB Thru/RT	8.0	Α	0'	7.7	Α	0'
Appaloosa & Hwy 105	WB Thru/LT	7.6	Α	0'	7.7	Α	0'
HWY 103	NB RT/LT	11.2	В	2.5′	10.9	В	2.5′

Table 10: Long-Range Horizon Weekday Intersection LOS

Table 11 shows the long-range horizon weekend level of service for all the study intersections.

		Week	end A.N	1. Peak Hour	Weeker	nd P.M. Po	eak Hour
Intersection	Movement	Delay		95%			95%
		(s)	LOS	Queue	Delay (s)	LOS	Queue
Cantanh	WB RT/LT	8.4	Α	0'	8.4	Α	0'
Canterbury & Saddlewood	NB Thru/RT	7.2	Α	0'	7.2	Α	0'
Jaudiewood	SB Thru/RT	7.3	Α	0′	7.3	Α	0'
Carlada a	EB Thru/RT	7.6	Α	0'	7.8	Α	0'
Canterbury & Hwy 105	WB Thru/LT	7.9	Α	0'	8.2	Α	0'
11Wy 103	NB RT/LT	12.8	В	2.5′	13.9	В	2.5′
	EB Thru/LT/RT	7.8	Α	0'	7.6	Α	0'
Cherry Springs	WB Thru/LT/RT	7.9	Α	2.5′	8.3	Α	5'
Ranch & Hwy 105	NB Thru/LT/RT	12.7	В	2.5′	13.8	В	5'
103	SB Thru/LT/RT	11.6	В	2.5'	12.7	В	2.5'
	EB Thru/RT	7.9	Α	0′	7.8	Α	0'
Appaloosa &	WB Thru/LT	7.6	Α	0'	7.8	Α	0'
Hwy 105	NB RT/LT	11.1	В	2.5′	10.4	В	0'

Table 11: Long-Range Horizon Weekend Intersection LOS

AUXILIARY LANE ANALYSIS

Per the Engineering Criteria Manual (ECM), an exclusive left turn lane is required on a principal arterial, at an access, when the projected peak hour left ingress turning volume is 10 vph or greater. Table 12 shows the project generated left turn movements at each intersection versus the ECM criteria.

Intersection	Peak Hour	Projected Left Turns (vph)	ECM Criteria (vph)	Warranted
Canterbury &	Weekday AM	43	10	Yes
	Weekday PM	16	10	Yes
Hwy 105	Weekend AM	7	10	No
	Weekend PM	9	10	No
	Weekday AM	12	10	Yes
Appaloosa &	Weekday PM	8	10	No
Hwy 105	Weekend AM	4	10	No
	Weekend PM	7	10	No
	Weekday AM	117	10	Yes
Canterbury &	Weekday PM	39	10	Yes
Saddlewood	Weekend AM	17	10	Yes
	Weekend PM	22	10	Yes
Cherry Springs Ranch & Hwy 105	Weekday AM	0	10	No
	Weekday PM	0	10	No
	Weekend AM	53	10	Yes
	Weekend PM	72	10	Yes

Table 12: Left Turn Lane Analysis

As can be seen from Table 12, an exclusive left turn lane is warranted at the intersection of Canterbury Dr. and Highway 105 for the weekday A.M. and P.M. peak hours, Appaloosa Rd. and Highway 105 for the weekday A.M. peak hour, Canterbury Dr. and Saddlewood Rd. for the weekday and weekend A.M. and P.M. peak hours, and Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours.

Per the ECM, an exclusive right turn lane is required on a principal arterial, at an access, when the projected peak hour right ingress turning volume is 25 vph or greater. Table 13 shows the project generated right turn movements at each intersection versus the ECM criteria.

Intersection	Peak Hour	Projected Right Turns (vph)	ECM Criteria (vph)	Warranted
	Weekday AM	74	25	Yes
Canterbury &	Weekday PM	30	25	Yes
Hwy 105	Weekend AM	10	25	No
	Weekend PM	16	25	No
	Weekday AM	10	25	No
Appaloosa &	Weekday PM	5	25	No
Hwy 105	Weekend AM	5	25	No
	Weekend PM	10	25	No
	Weekday AM	0	25	No
Canterbury &	Weekday PM	3	25	No
Saddlewood	Weekend AM	1	25	No
	Weekend PM	1	25	No
Cherry Springs Ranch & Hwy 105	Weekday AM	0	25	No
	Weekday PM	0	25	No
	Weekend AM	80	25	Yes
	Weekend PM	108	25	Yes

Table 13: Right Turn Lane Analysis

As can be seen from Table 13, an exclusive right turn lane is warranted at the intersection of Canterbury Dr. and Highway 105 for the weekday A.M. and P.M. peak hours and at the intersection of Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours.

Per the ECM, a right turn acceleration lane is required on a principal arterial when the projected right turning movement volume is 50 vph or greater and the posted speed limit is greater than 40 mph. Table 14 shows the project generated right turn movements at each intersection versus the ECM criteria.

Intersection	Peak Hour	Projected Right Turns (vph)	ECM Criteria (vph)	Warranted
Canterbury &	Weekday AM	8	50	No
	Weekday PM	8	50	No
Hwy 105	Weekend AM	8	50	No
	Weekend PM	4	50	No
	Weekday AM	4	50	No
Appaloosa &	Weekday PM	6	50	No
Hwy 105	Weekend AM	2	50	No
	Weekend PM	2	50	No
	Weekday AM	14	50	No
Canterbury &	Weekday PM	3	50	No
Saddlewood	Weekend AM	5	50	No
	Weekend PM	21	50	No
Cherry Springs Ranch & Hwy 105	Weekday AM	0	50	No
	Weekday PM	0	50	No
	Weekend AM	5	50	No
	Weekend PM	8	50	No

Table 14: Right Turn Acceleration Lane Analysis

As can be seen from Table 14, a right turn acceleration lane is not warranted at any of the study intersections.

CONCLUSIONS

This traffic impact study analyzed the traffic impacts of the proposed tulip festival and pumpkin patch on the adjacent roadway network.

The LOS analysis for all intersections indicated that the LOS for all approaches to the intersection would continue to operate at LOS B or better, for the A.M. and P.M. peak hours of the events. This remains true for the existing plus development, short-range horizon, and long-range horizon scenarios.

An auxiliary left turn lane is warranted at the intersection of Canterbury Dr. and Highway 105 for the weekday A.M. and P.M. peak hours, Appaloosa Rd. and

Highway 105 for the weekday A.M. peak hour, Canterbury Dr. and Saddlewood Rd. for the weekday and weekend A.M. and P.M. peak hours, and Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours

An auxiliary right turn lane is warranted at the intersection of Canterbury Dr. and Highway 105 for the weekday A.M. and P.M. peak hours and at the intersection of Cherry Springs Ranch Dr. and Highway 105 for the weekend A.M. and P.M. peak hours

Due to the limited time that these events will operate during a year, and considering that the access off of Highway 105 will only be used on the weekends that the events are occurring, an alternative to constructing the warranted auxiliary lanes would be for the property owner to hire traffic flaggers, or off-duty sheriff deputies, to direct traffic during the times that the events are operating.

Based on the analysis presented in this report, the proposed tulip festival and pumpkin patch are not expected to have any negative impacts on the surrounding roadway network and existing accesses.

CERTIFICATION PAGE

Colorado Pumpkin Patch LLC 18065 Saddlewood Road

Monument, CO 80132

Engineer's Statement			
The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.			
Brett Louk, PE #0055474 Date:			
Developer's Statement			
I, the Developer, have read and will comply with all commitments made on my behalf within this report.			

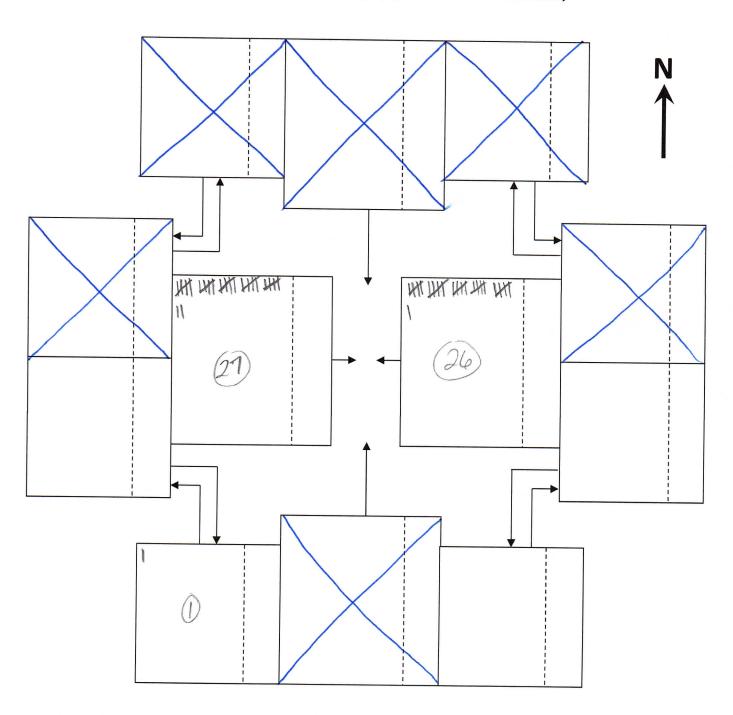
Date:

APPENDIX

VICINITY MAP

EXISTING TURNING MOVEMENT COUNTS

Four Approach Field Sheet

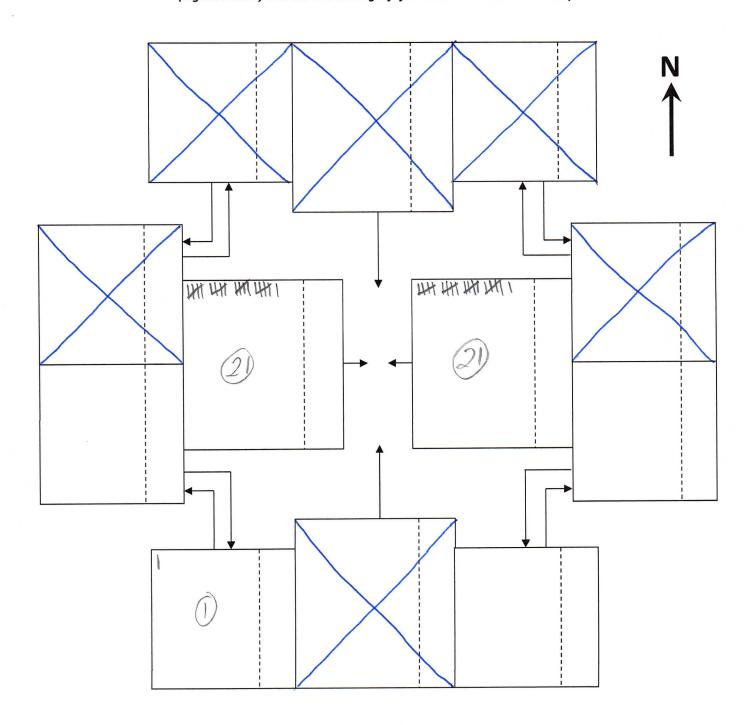

N/S Street: Cantubury Dr E/W Street: 105 Time: 9:00 to 9:15

Date: 12/17/22

Weather:

Observer: Brett

Counts are Conducted From the Direction of Travel

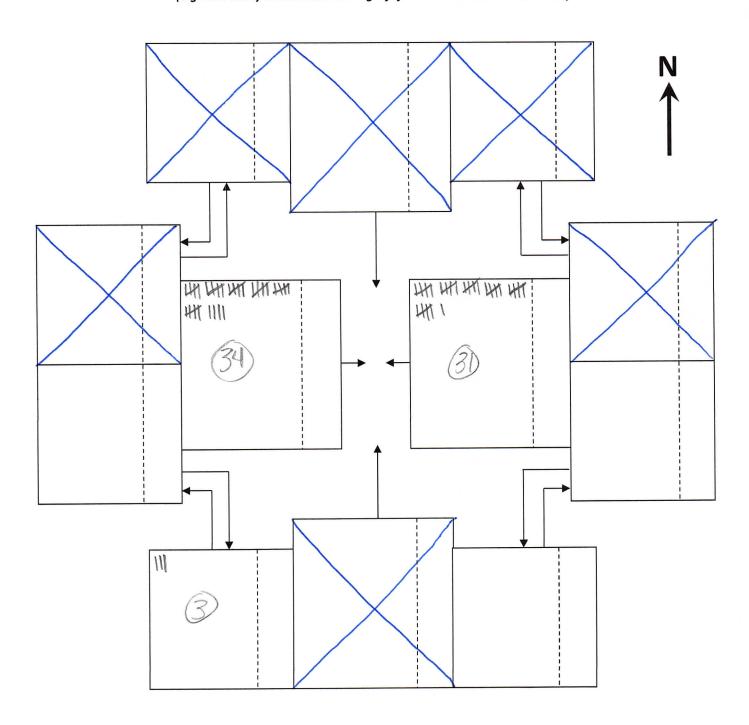

Four Approach Field Sheet

Time: 9:15 to 9:30

Date: 12/17/22

Weather: Brett N/S Street: Carterbury Dr E/W Street: 105

Counts are Conducted From the Direction of Travel


Four Approach Field Sheet

Time: 9:30 to 9:45

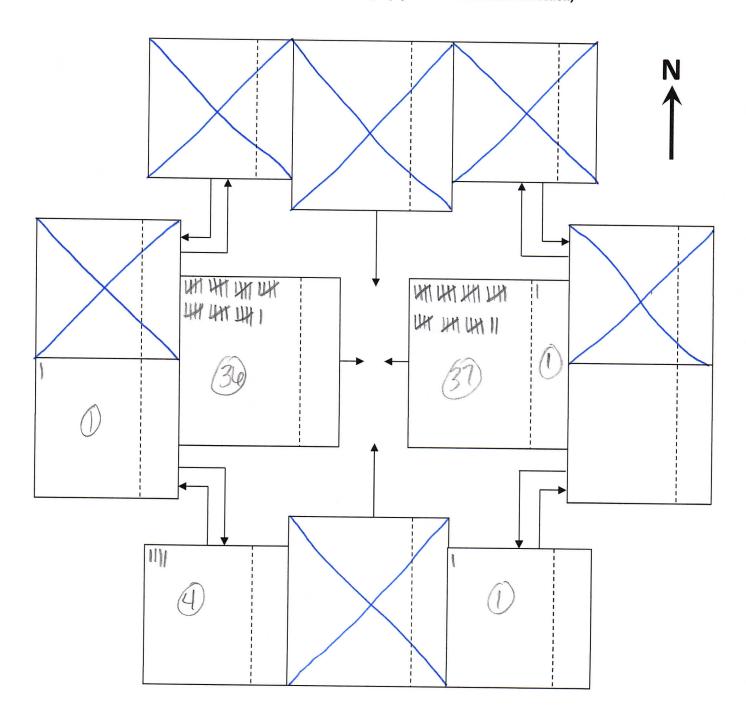
Date: 12/17/22

Weather:
Observer: Brett


Counts are Conducted From the Direction of Travel

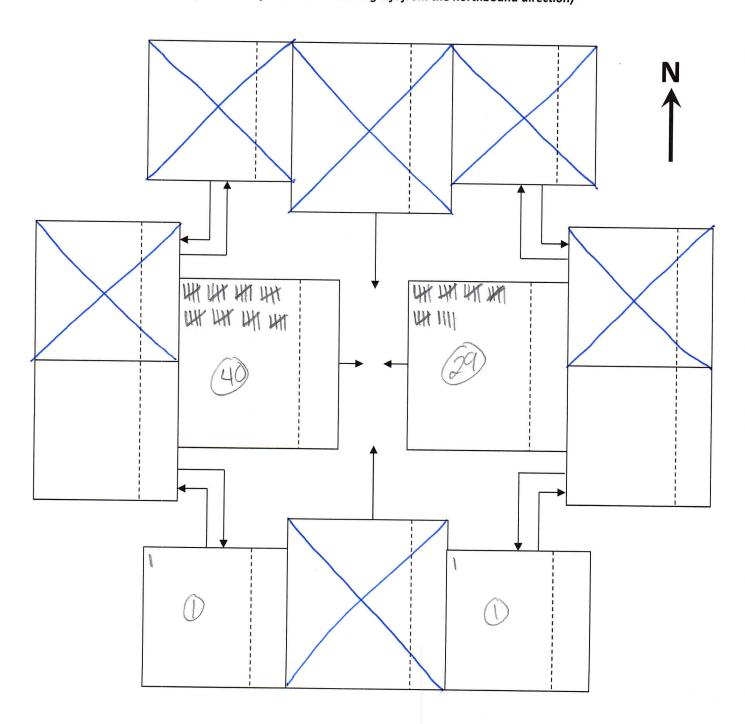
Four Approach Field Sheet

		Time:	9:45 to 10:00	
N/S Street:	Canterbury Dr	Date:	12/17/22	
E/W Street:	105	Weather:	, ,	
		Observer:	But	


Counts are Conducted From the Direction of Travel

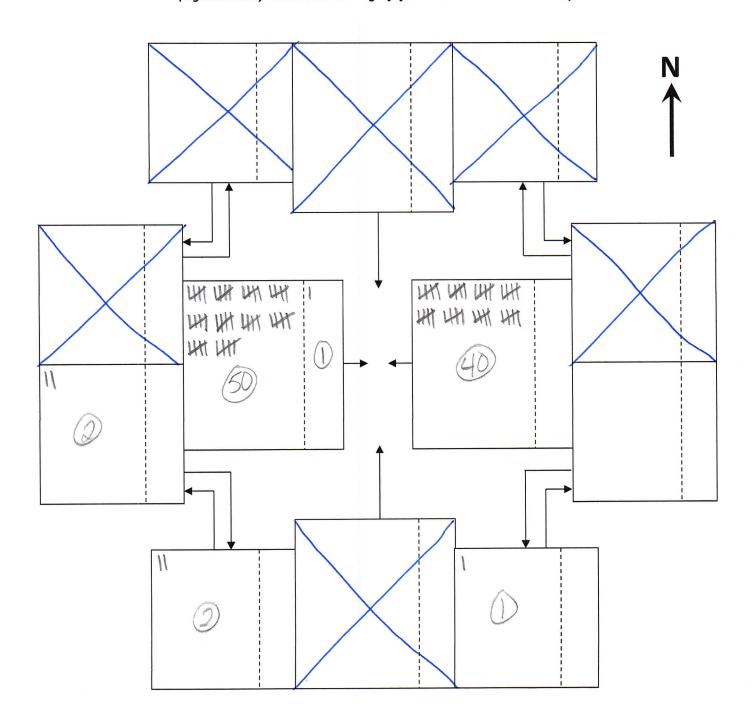
Four Approach Field Sheet

		Time:	1:00 to 1:15	
N/S Street:	Canterbury Dr	Date:	12/17/22	
E/W Street:	105	Weather:	· · · · · · · · · · · · · · · · · · ·	_
		Observer:	Brett	_


Counts are Conducted From the Direction of Travel

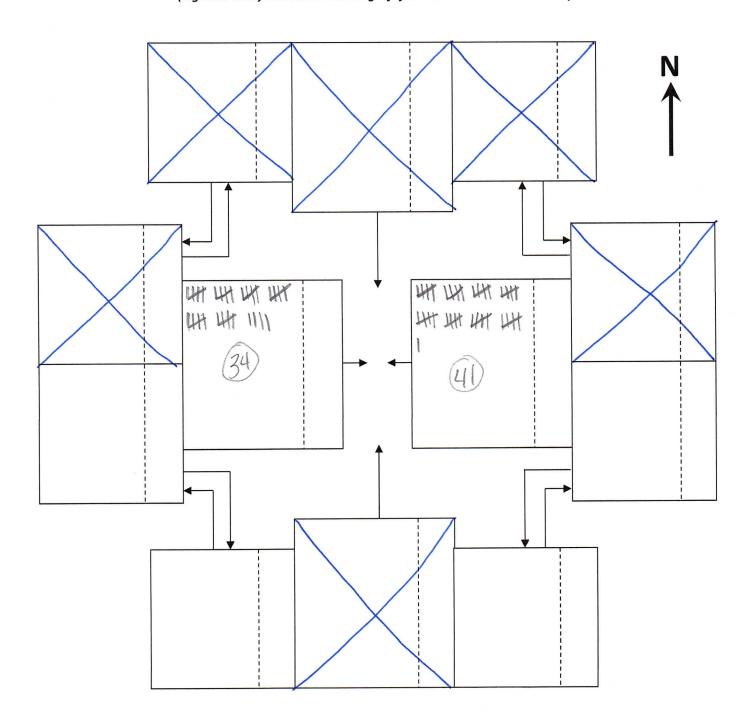
Four Approach Field Sheet

N/S Street:	Canterbury Dr	Date:	12/17/22	
E/W Street:	105	Weather:	12/1//22	
		Observer:	Brett	


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1.30 to 1:43	
N/S Street:	Canterbury Dr	Date:	12/17/22	
E/W Street:	105	Weather:		
		Observer:	Brett	

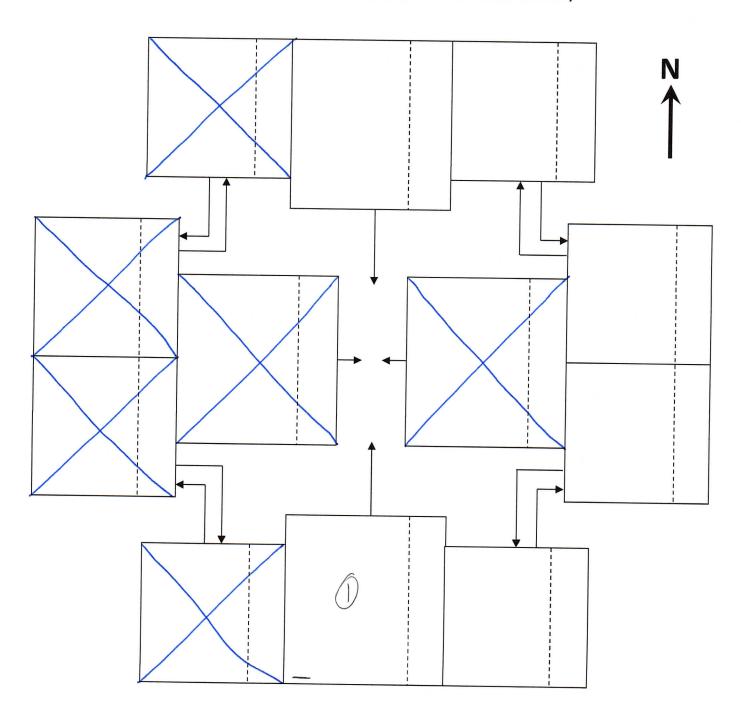

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1:45 to 2:00
N/S Street:	Canterbury Dr	Date:	12/17/22
E/W Street:	105	Weather:	
		Observer:	Brett

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street: Canterbury Dr E/W Street: Saddlewood Rd Time: 9:00 to 9:15

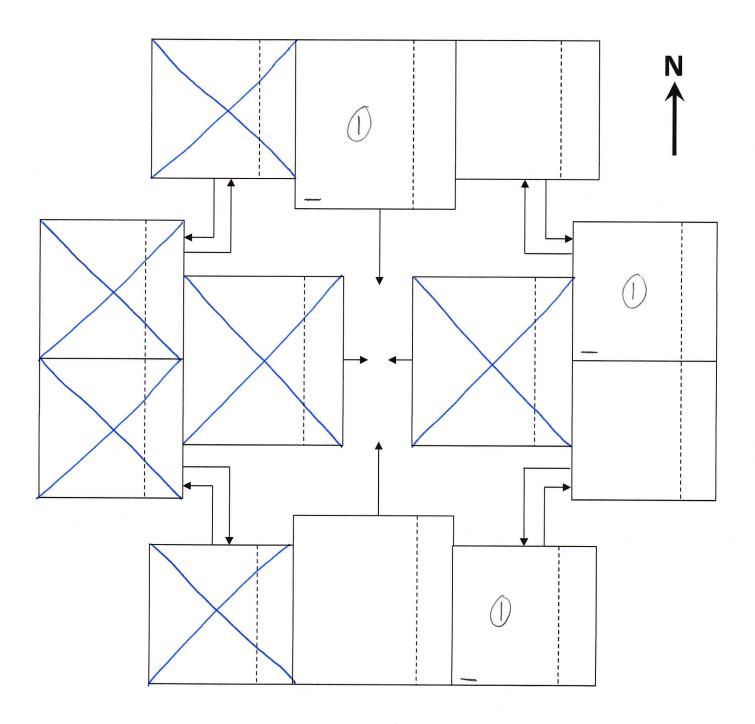
Date: 12/17/22

Weather: 7º Sunny

Observer: 1000 to 9:15

Counts are Conducted From the Direction of Travel

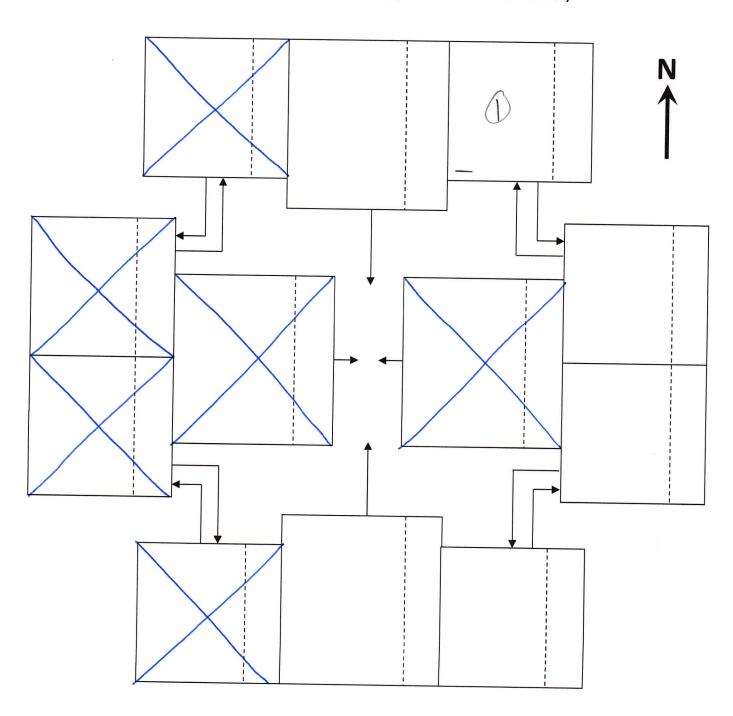
Four Approach Field Sheet


N/S Street: <u>Canterbury Or</u> E/W Street: <u>Saddlewood Rd</u> Time: 9:15 to 9:30

Date: 12/17/22

Weather: 7º Sunny

Observer: Jerrife

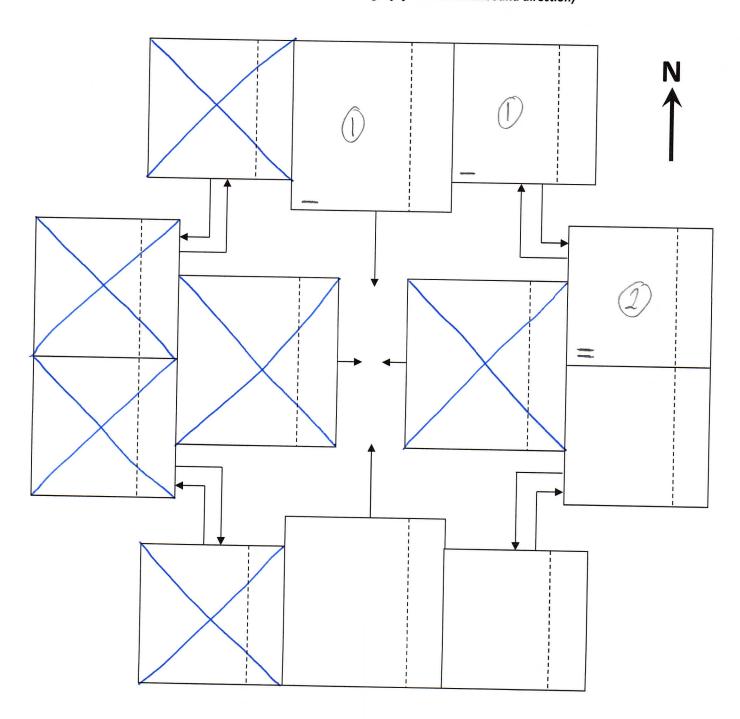

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Canterbury Dr E/W Street: Saddlewood Rd

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

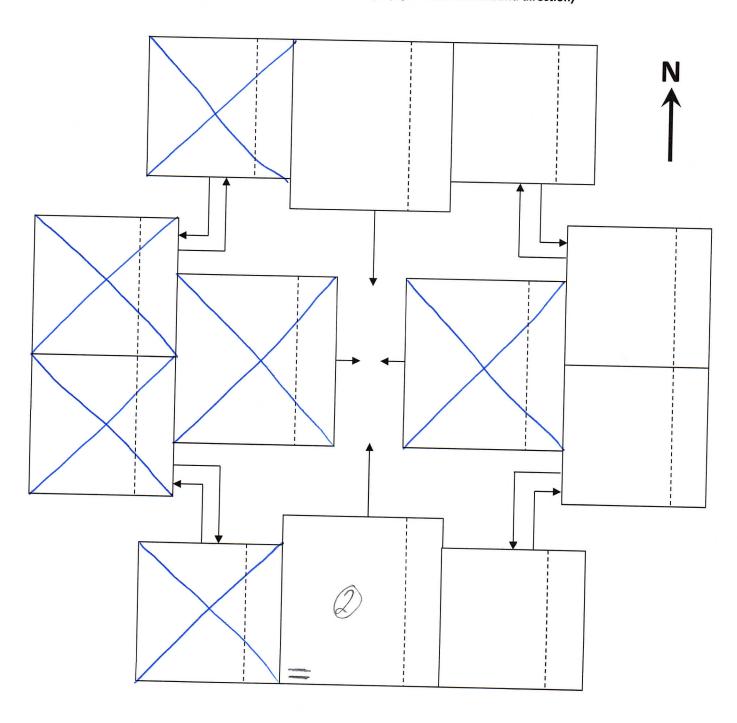

N/S Street: <u>Lantubury</u> Dr E/W Street: <u>Saddlewood</u> Rd Time: 9:45 to 10:00

Date: 12/17/22

Weather: 16 Sunny

Observer: 1000/fe/

Counts are Conducted From the Direction of Travel



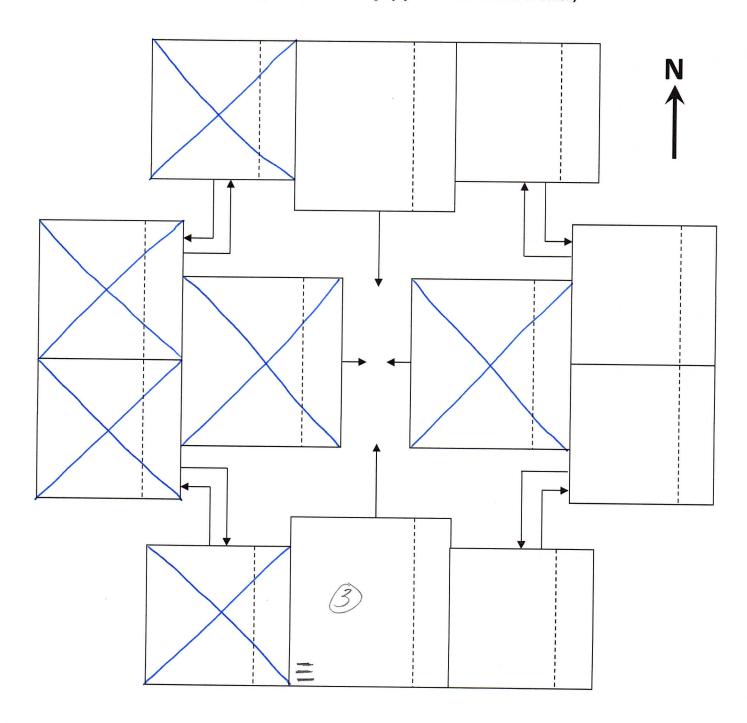
Four Approach Field Sheet

N/S Street: Canterbury Dr
E/W Street: Saddlewod Rd

Time: /:00 to /:/5
Date: 12/17/22
Weather:
Observer: Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street: Canterbury Dr E/W Street: Saddlewod Rd Time: /:/5 to /:30

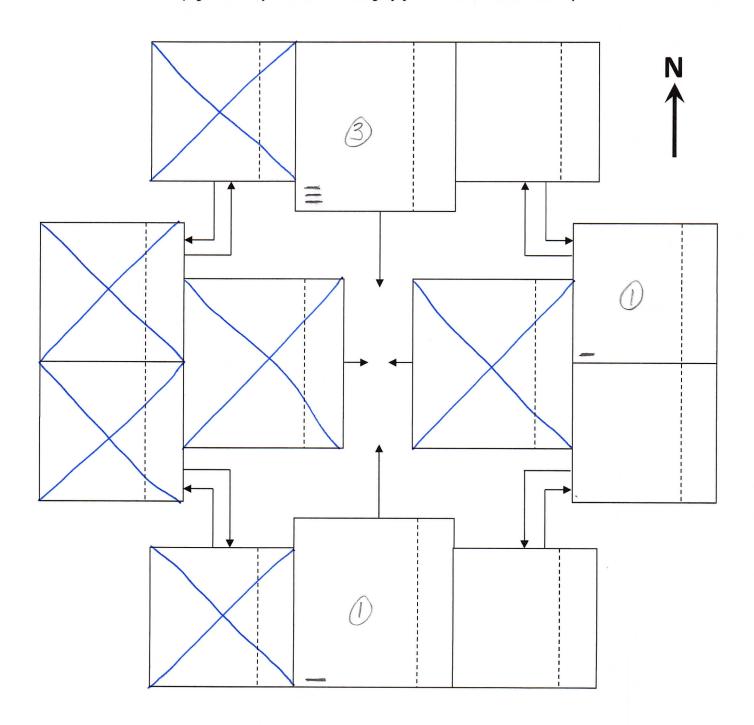
Date: 12/17/22

Weather: 28° Juny

Observer: Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street: Canterbury Dr
E/W Street: Saddlewod Rd We

 Time:
 /:30
 to /:45

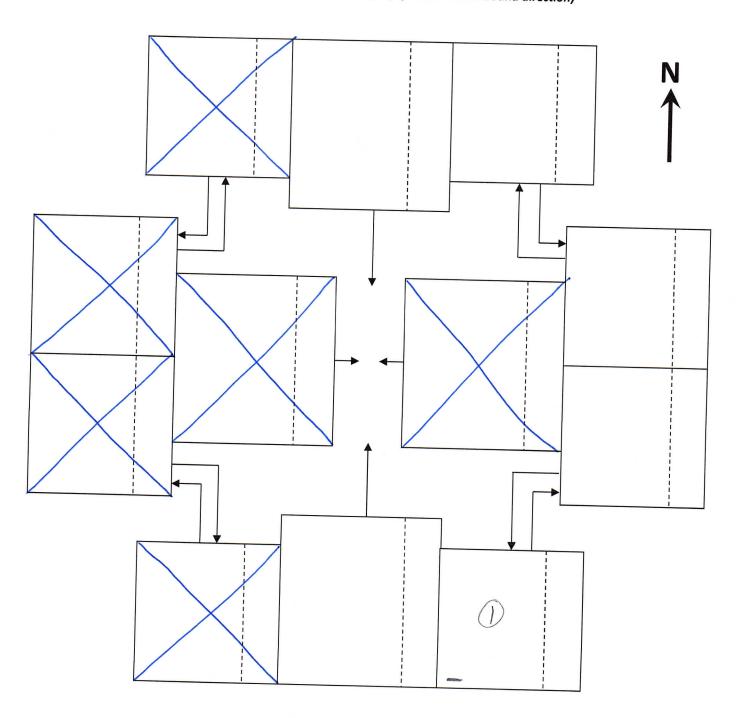
 Date:
 12/17/22

 Weather:
 Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

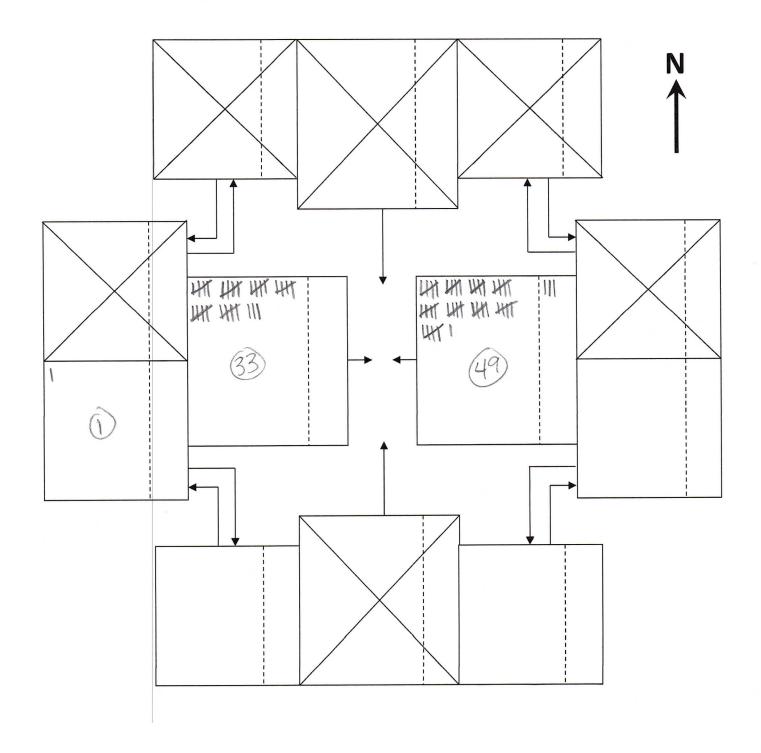
N/S Street: Canterbury Dr
E/W Street: Saddlewod Rd


 Time:
 /: 45
 to 2:00

 Date:
 12/17/22

 Weather:
 28° Sunny

 Observer:
 Jennifer


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	9:00 to 9:15
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	105	Weather:	
_		Observer:	Brett

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street:	Canterbury Dr
E/W Street:	105

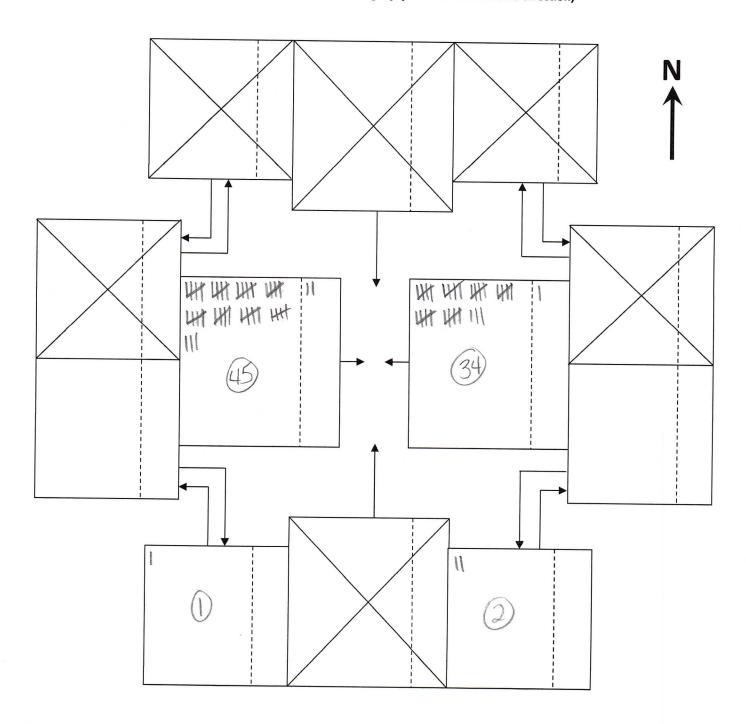
 Time:
 9:15 to 9:30

 Date:
 12/21/22

 Weather:
 Brett

Counts are Conducted From the Direction of Travel

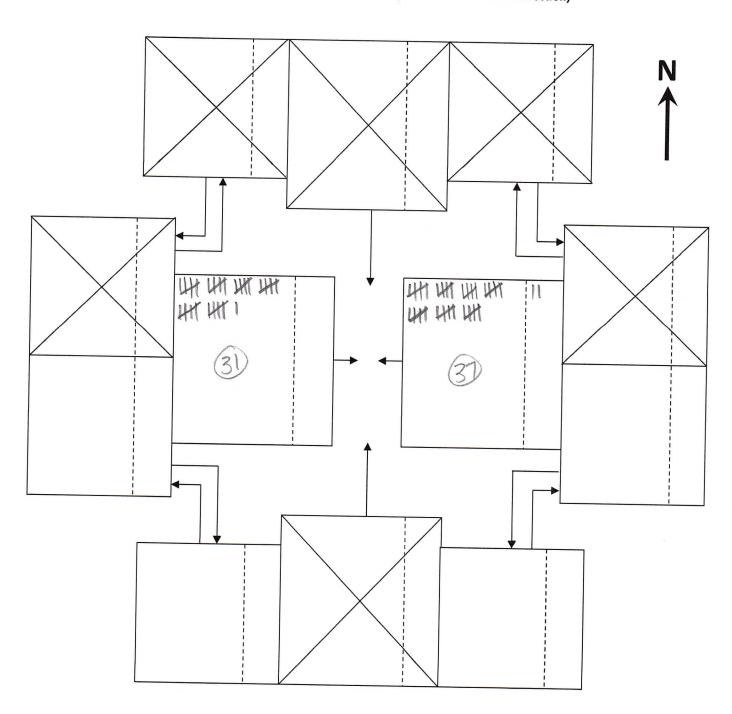
Four Approach Field Sheet


N/S Street: Canterbury Dr Date: E/W Street: 105 Weather:

Time: 9:30 to 9:45

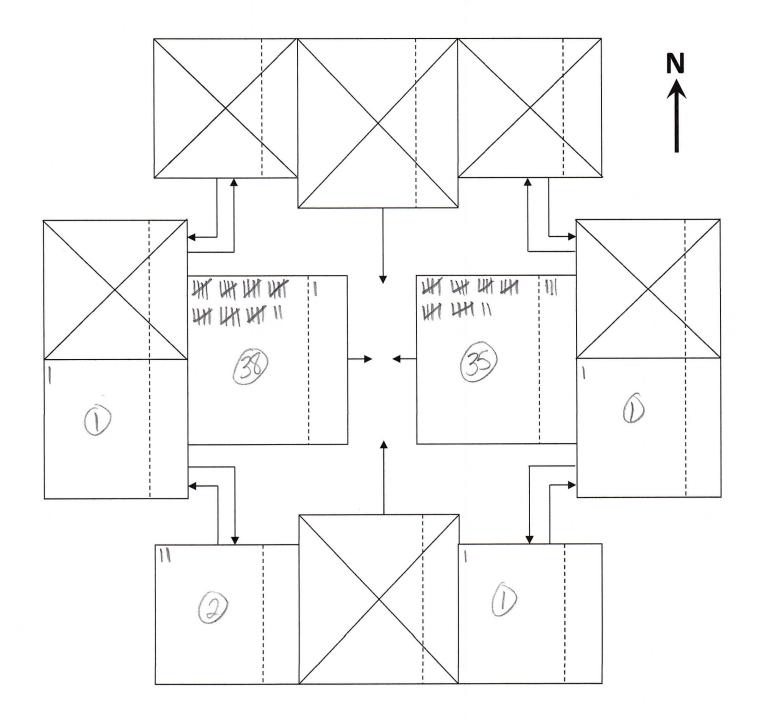
Date: 12/21/22

Weather: Brett


Counts are Conducted From the Direction of Travel

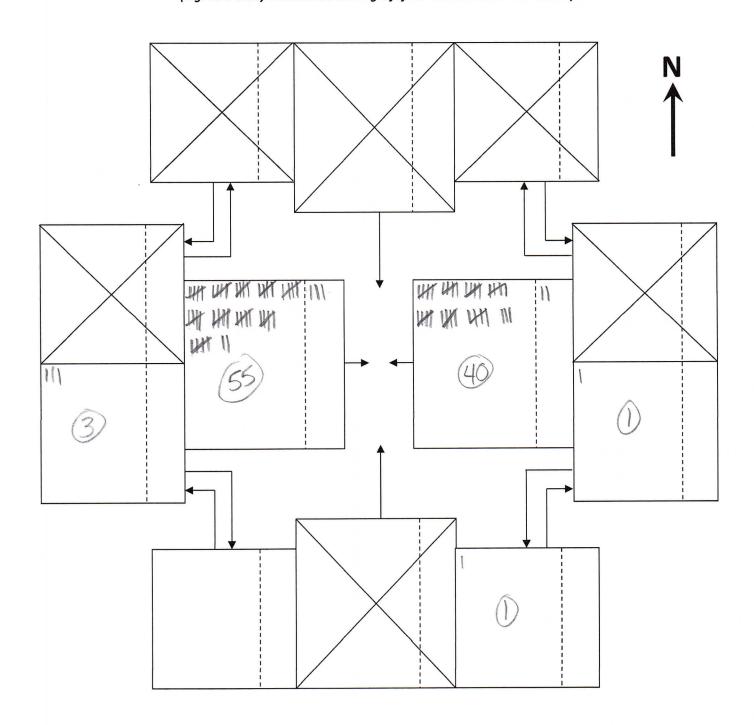
Four Approach Field Sheet

		Time:	9:45 to 10:00
N/S Street: _ E/W Street: _	Canterbury Dr	Date:	12/21/22
	105	Weather:	
		Observer:	Brett


Counts are Conducted From the Direction of Travel

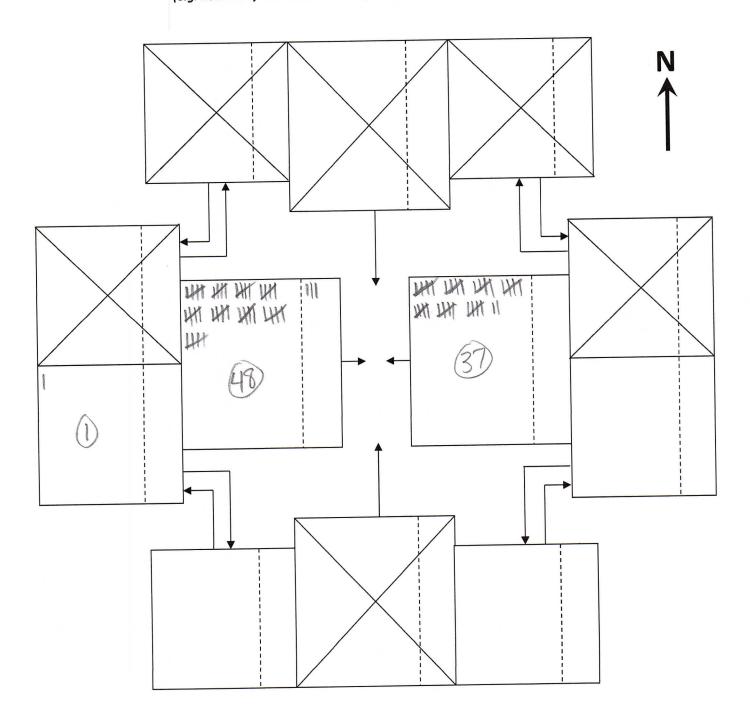
Four Approach Field Sheet

		Time:	1.00 to 1.13	
N/S Street:	Canterbury Dr	Date:	12/21/22	
E/W Street:	105	Weather:		
		Observer:	Brett	_


Counts are Conducted From the Direction of Travel

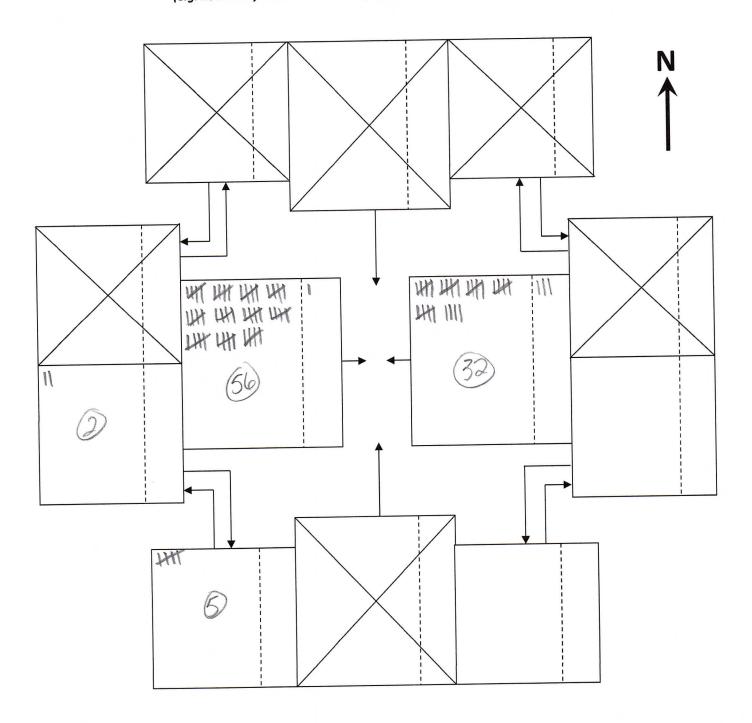
Four Approach Field Sheet

		Time:	1.10 to 1:30	
N/S Street:	Canterbury Dr	Date:	12/21/22	
E/W Street:	105	Weather:		
_		Observer:	Brett	


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

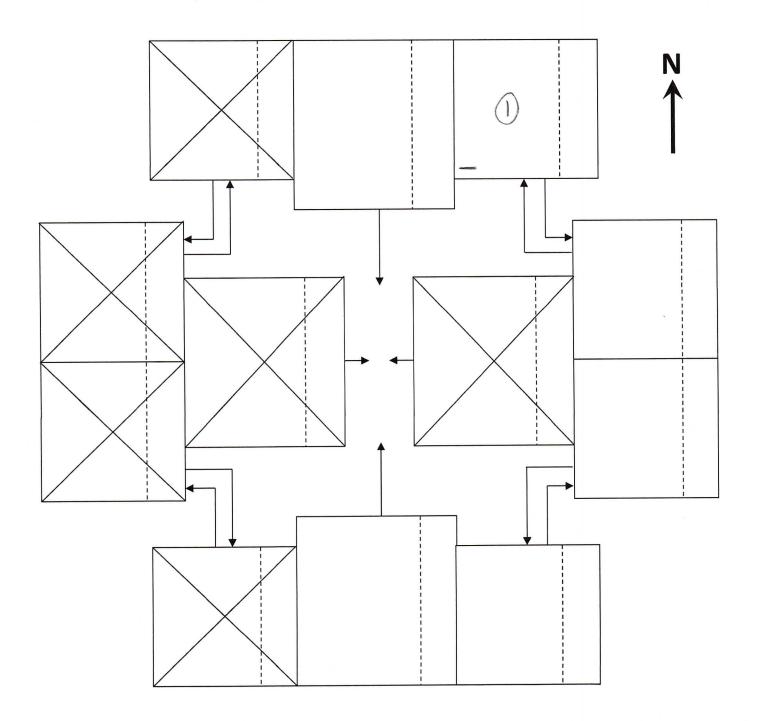
		· Time:	1:30 to 1:45
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	105	Weather:	
		Observer:	Brett


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1:45 to 2:00
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	105	Weather:	
		Ohserver:	Brett

Counts are Conducted From the Direction of Travel



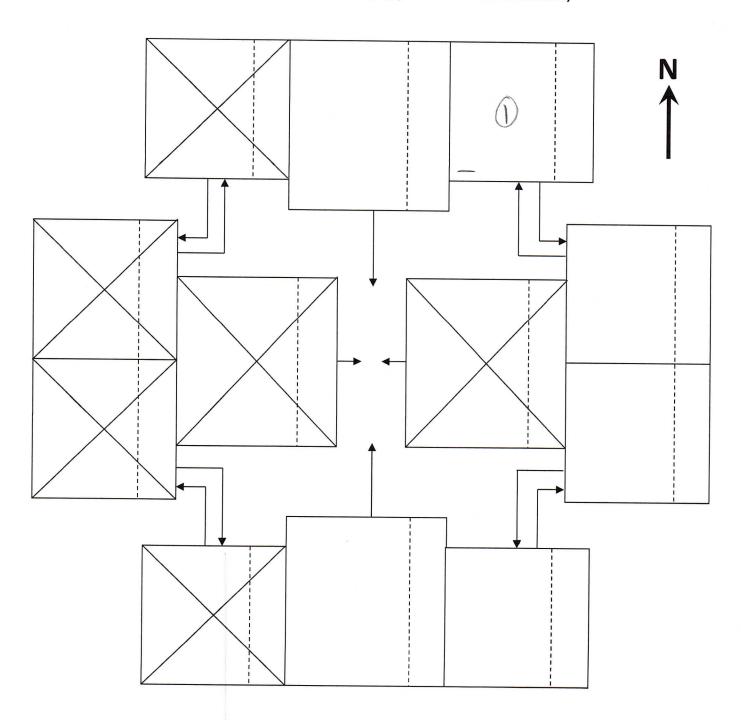
Four Approach Field Sheet

N/S Street: Canterbury Dr Date: 12/21/22

E/W Street: Saddlewood Rd Weather: Observer: Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street:	Canterbury Dr	
E/W Street:	Saddlewood Rd	

Time: 9:15 to 9:30

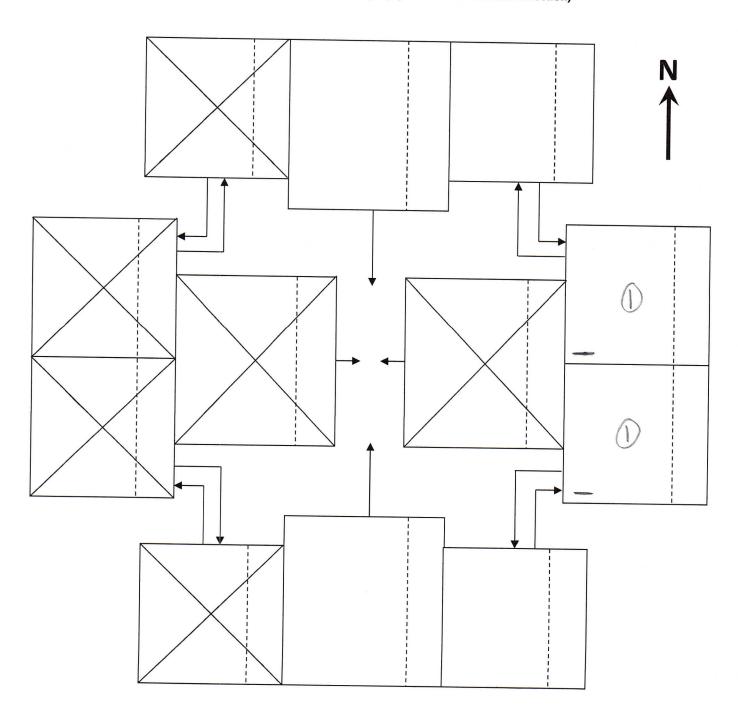
Date: 12/21/22

Weather: Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

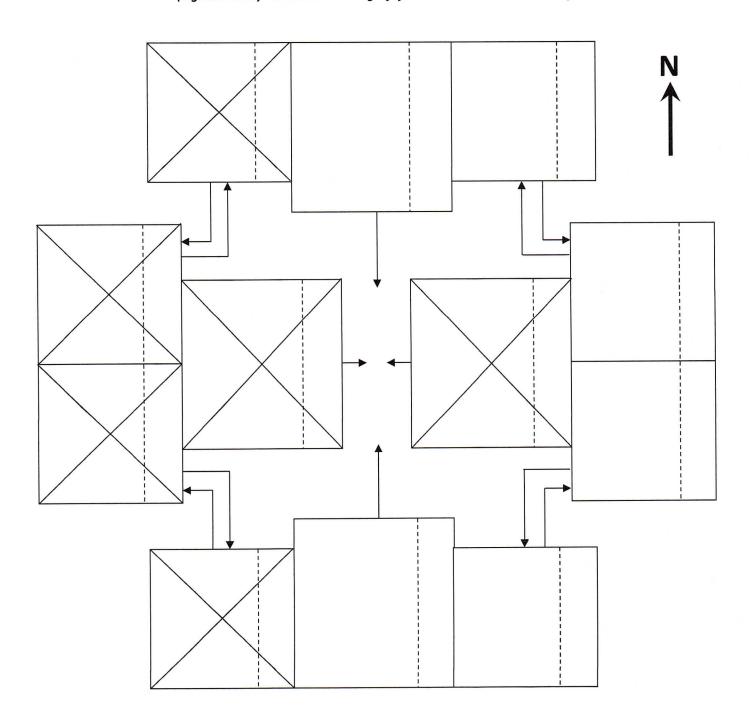
N/S Street: Canterbury Dr Date:


E/W Street: Saddlewood Rd Weather:

Time: 9:30 to 9:45

Date: 12/21/22

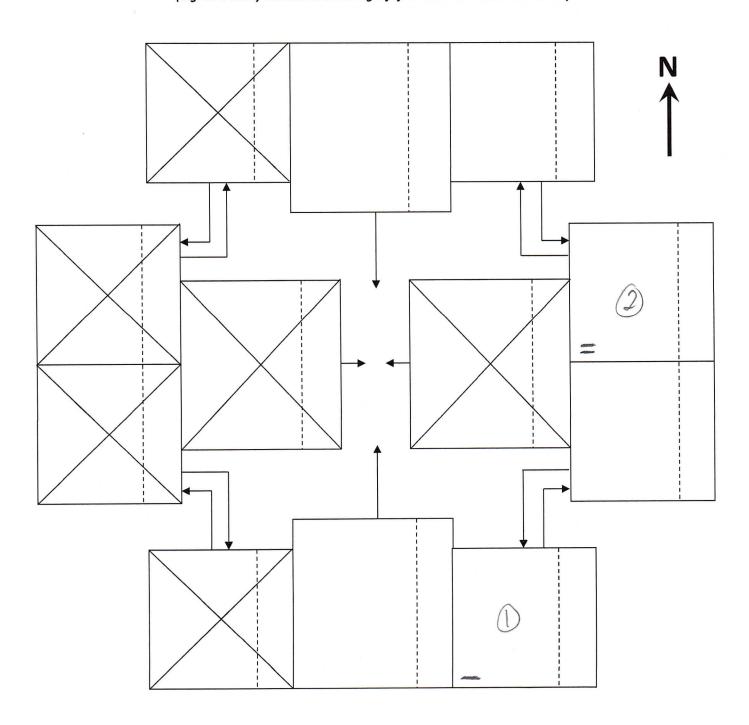
Weather: Jennifer


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	9:43 to 10:00
N/S Street:	Canterbury Dr	Date:	12/21/22
E/W Street:	Saddlewood Rd	Weather:	,
		Observer:	lennifer

Counts are Conducted From the Direction of Travel

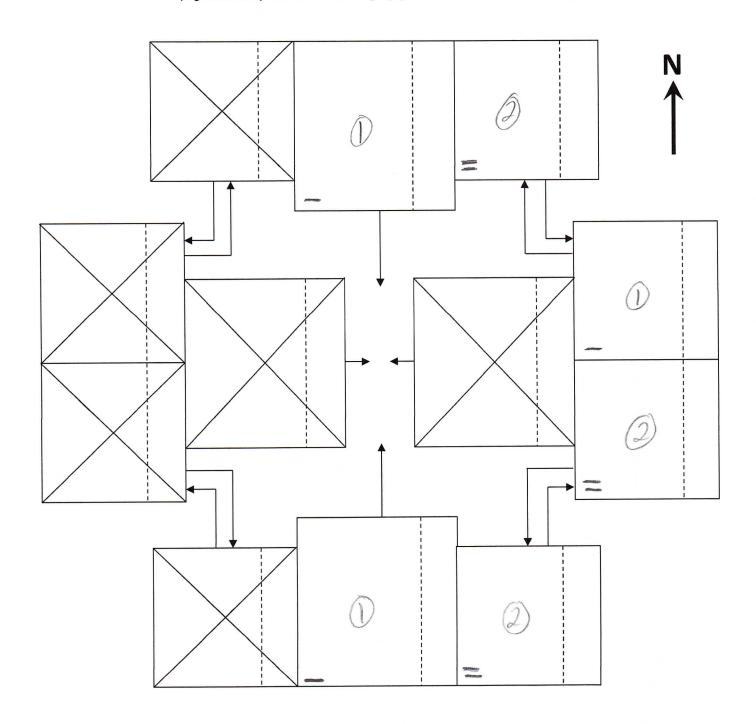


Four Approach Field Sheet

N/S Street: Canterbury Dr Date: 12/21/22

E/W Street: Saddlewood Rd Weather: Observer: Jennifer

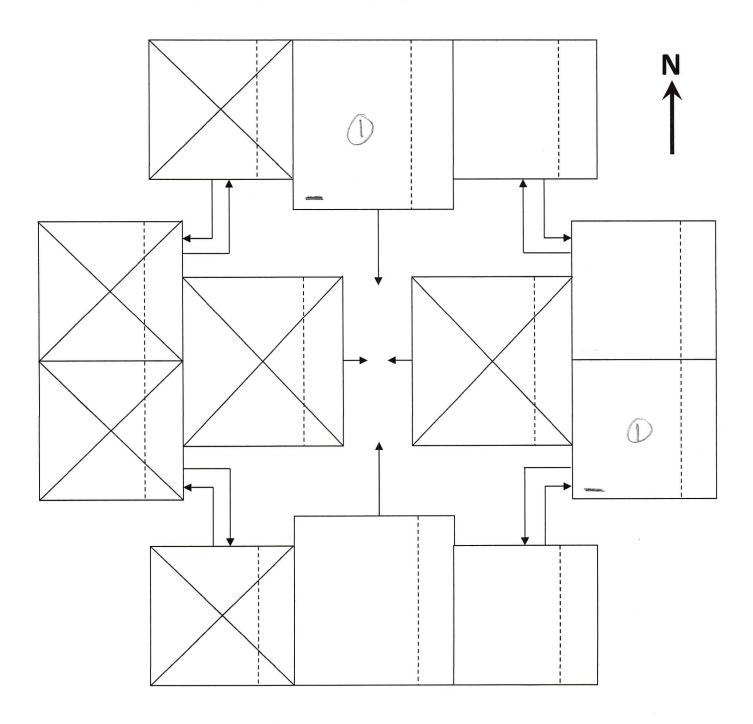
Counts are Conducted From the Direction of Travel



Four Approach Field Sheet

N/S Street: Canterbury Dr Date: 12/21/22

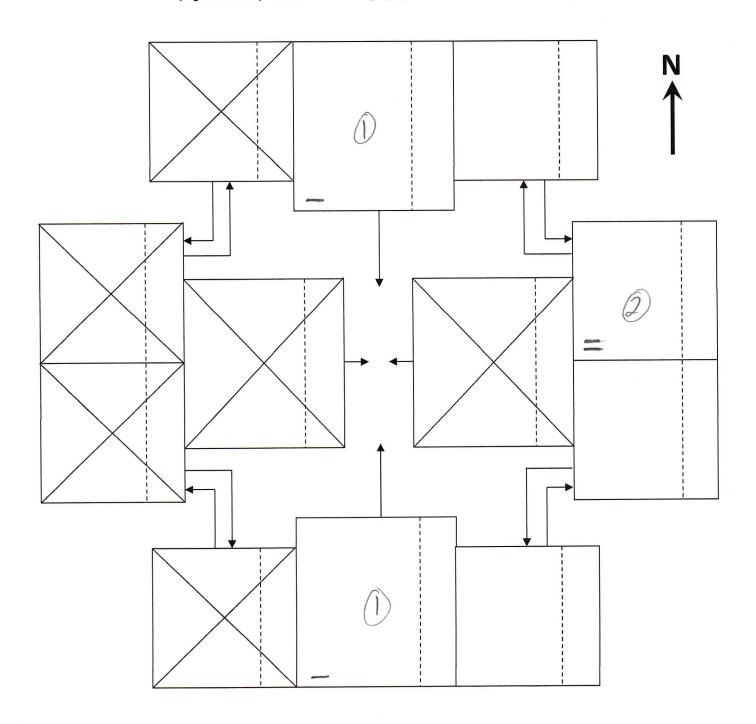
E/W Street: Saddlewood Rd Weather: Observer: Jennifer


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1:30 to	1:45	
N/S Street:	Canterbury Dr	Date:	12/2	1/22	
E/W Street:	Saddlewood Rd	Weather:			
_		Ohserver:	leni	nifer	

Counts are Conducted From the Direction of Travel



Four Approach Field Sheet

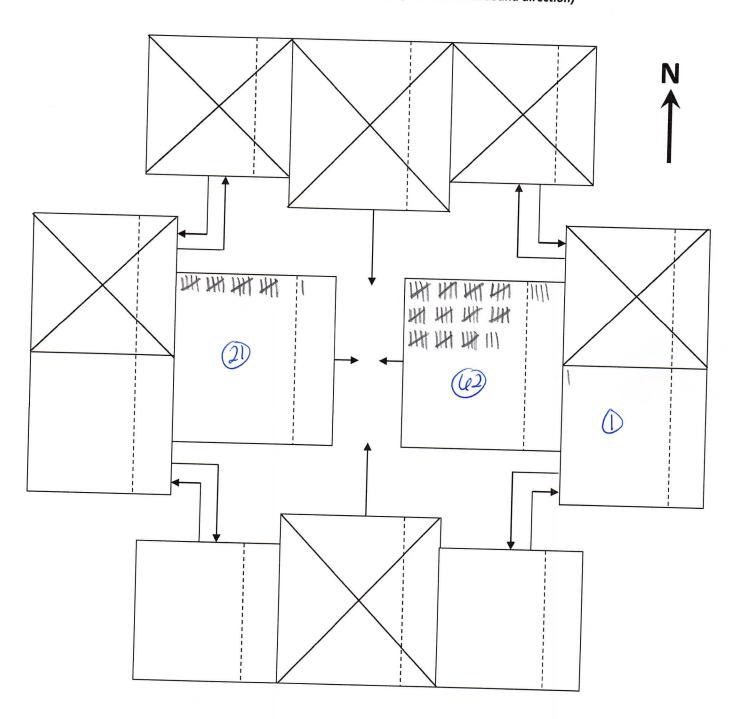
N/S Street: Canterbury Dr Date: 12/21/22

E/W Street: Saddlewood Rd Weather: Observer: Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Appaloosa Rd
E/W Street: Highway 105


Time: 9:00 to 9:15

Date: 3/14/23

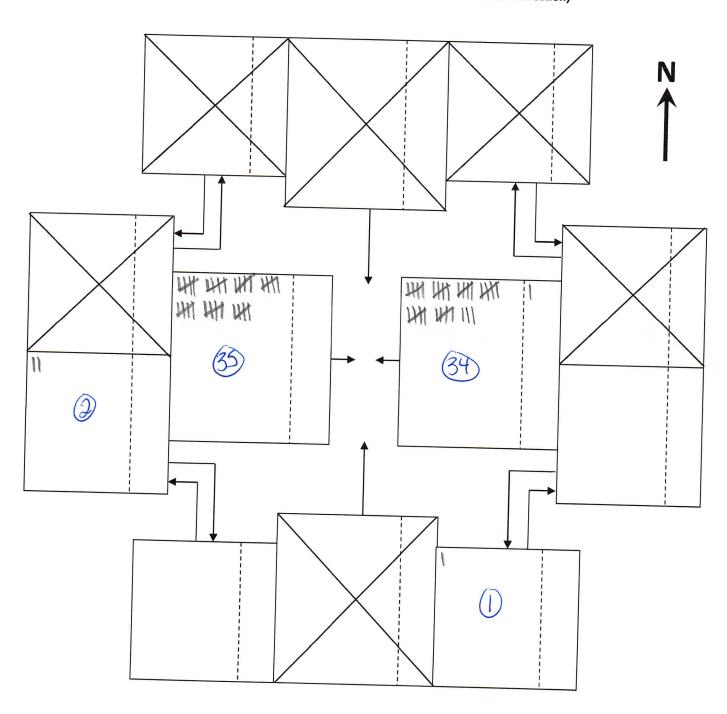
Weather: Partly cloudy

Observer: Stell loads

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

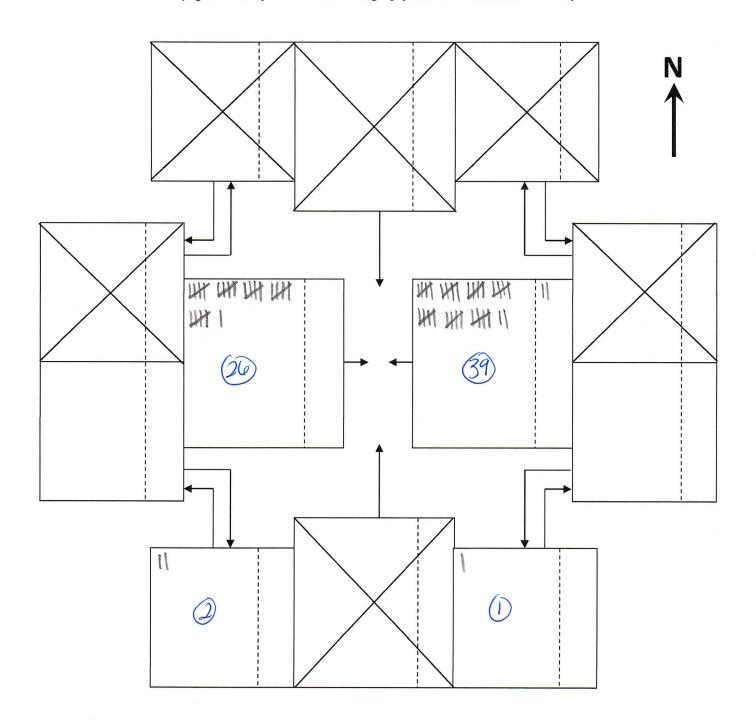
N/S Street: Appaloosa Rd
E/W Street: Highway 105


Time: 9:15 to 9:30

Date: 3/14/23

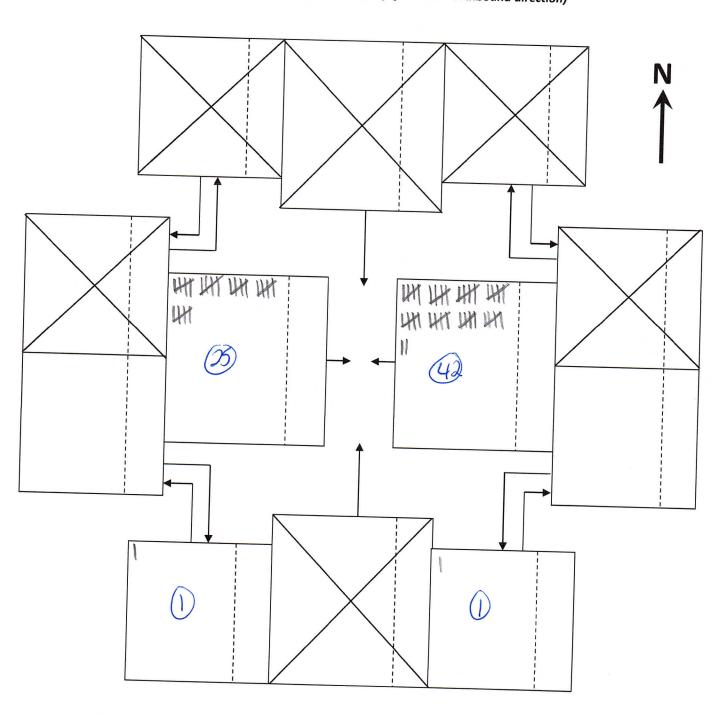
Weather: Partly Cloudy

Observer: brett Louk


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	9:30	to	9:45	
N/S Street:	Appaloosa Rd	Date:	3/14/23			
E/W Street:	Highway 105	Weather:				
		Observer:				


Counts are Conducted From the Direction of Travel

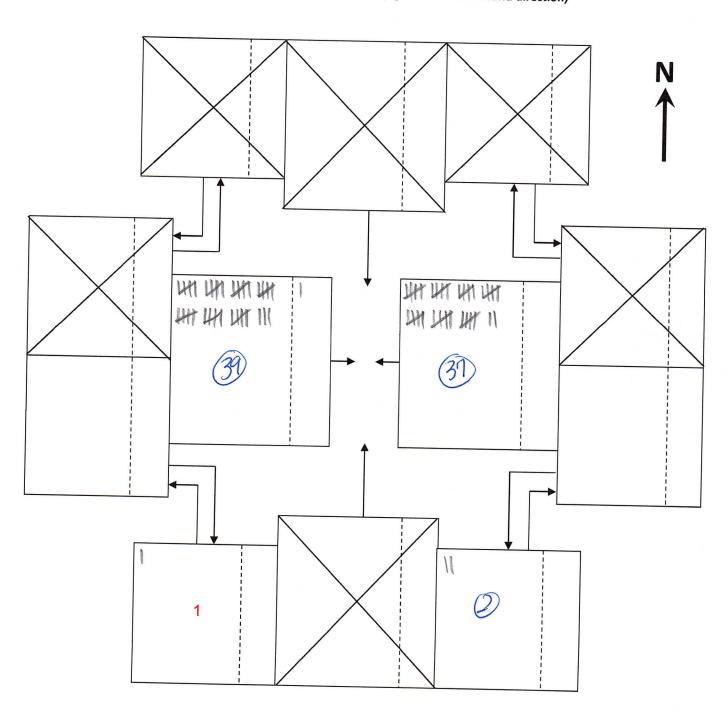
Four Approach Field Sheet

NI/C Charles		Time:	9:45	to 10:00	
	Appaloosa Rd	Date:	3/14/23		
E/W Street:	Highway 105	Weather:			
		Observer:			

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Appaloosa Rd
E/W Street: Highway 105


Time: /:00 to /:15

Date: 3/14/23

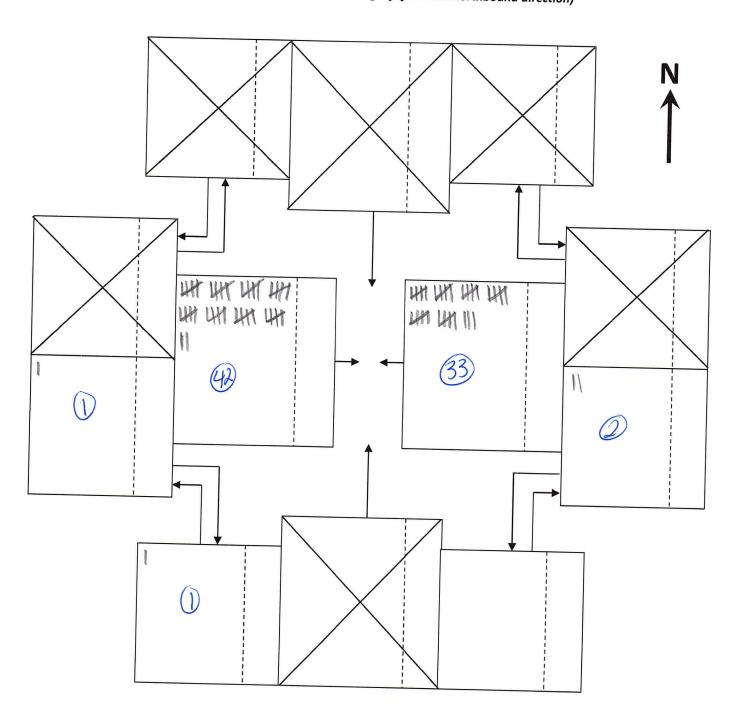
Weather: | Claudy | Cl

Observer: South Louk

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Appaloosa Rd
E/W Street: Highway 105


Time: 1:15 to 1:30

Date: 3/14/23

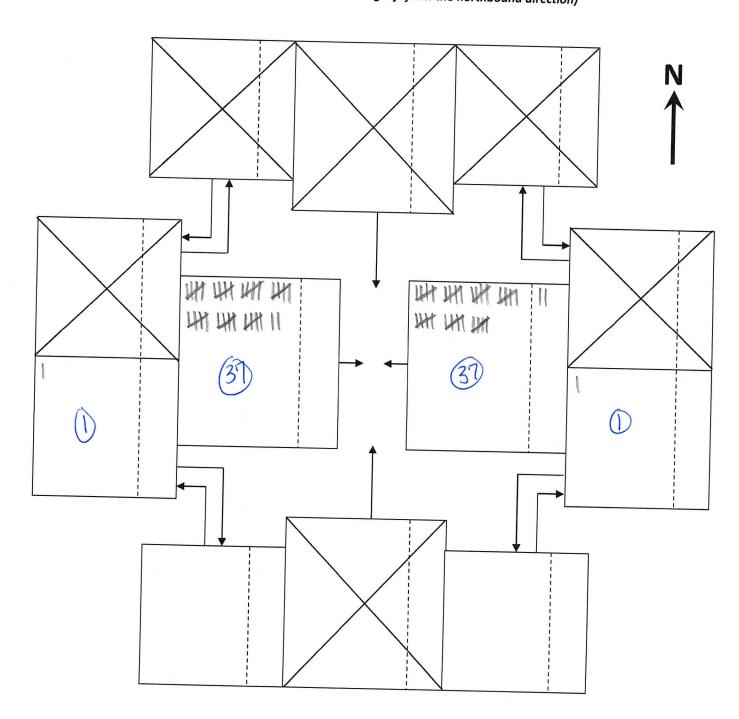
Weather: Raitly Cloudy

Observer: Brett Louk

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Appaloosa Rd
E/W Street: Highway 105

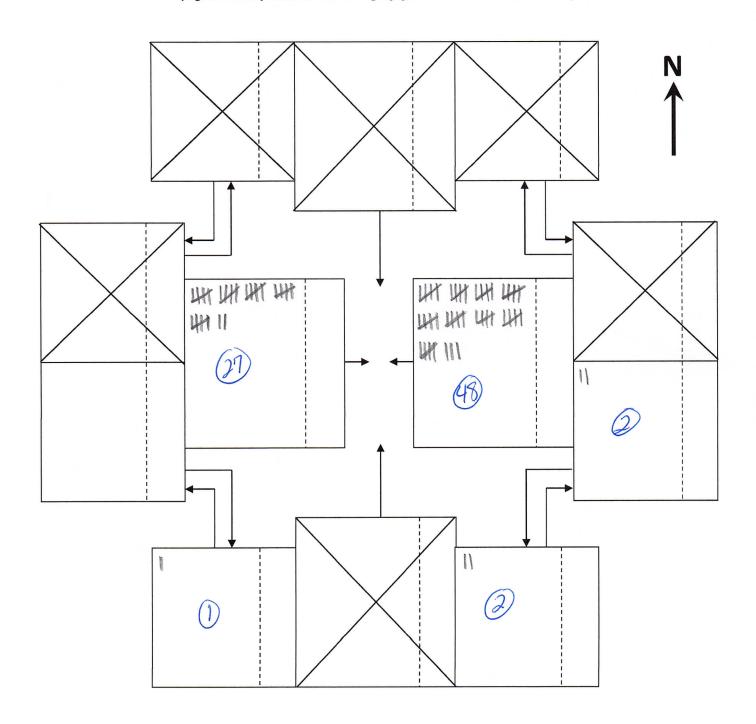

Time: 1:30 to 1:45

Date: 3/14/23

Weather: Claudy

Observer: Brett Louk

Counts are Conducted From the Direction of Travel


Four Approach Field Sheet

Time: 1:45 to 2:00 *N/S Street:* Appaloosa Rd *Date:* 3/14/23

E/W Street: Highway 105

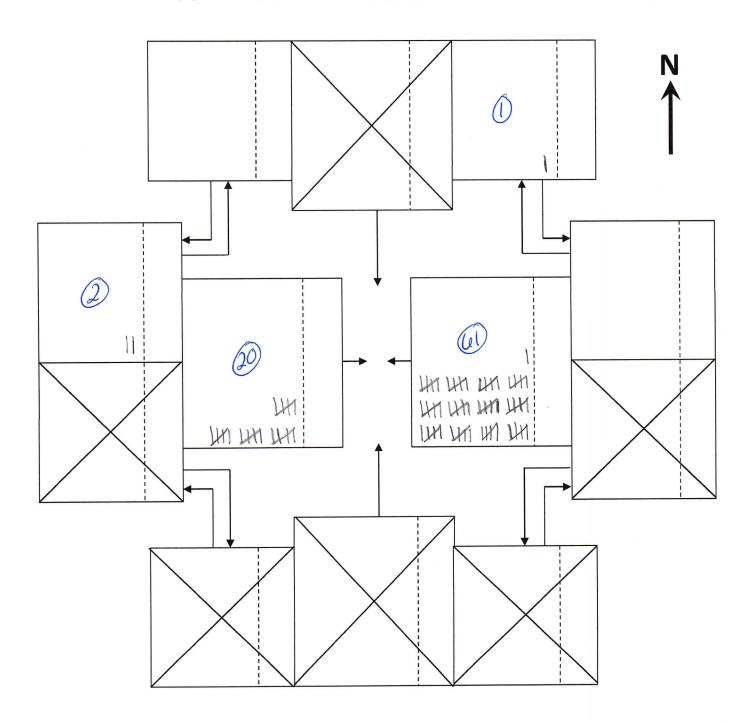
Weather: Partly cloudy
Observer: Rett Louk

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105


Time: 9:00 to 9:15

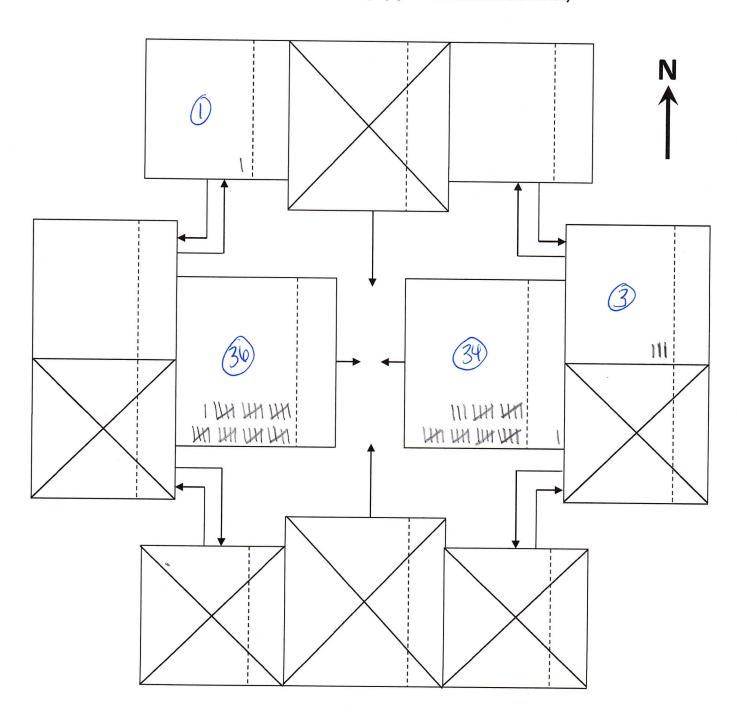
Date: 3/14/23

Weather:

Observer: Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105

Time: 9:15 to 9:30 **Date:** 3/14/23

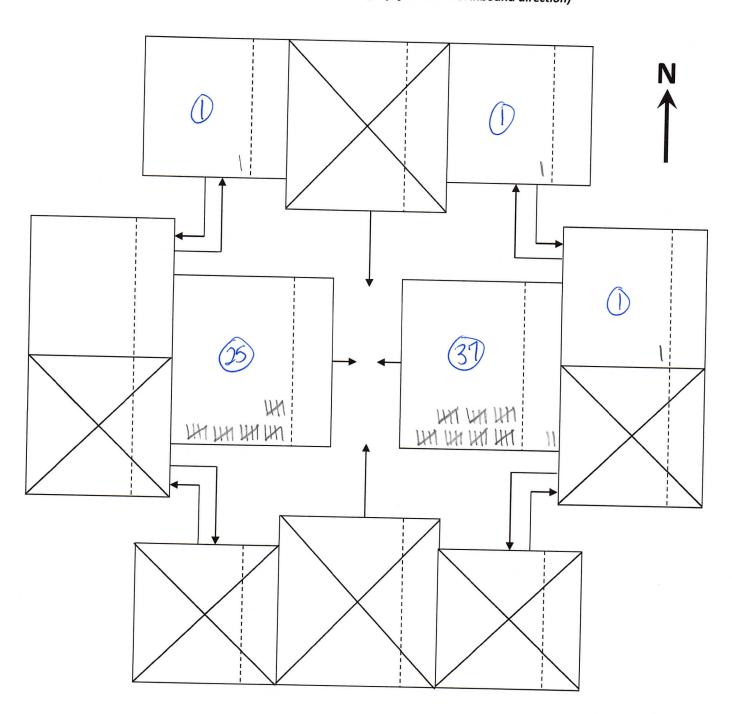
Weather: Observer: Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105


Time: 9:30 to 9:45

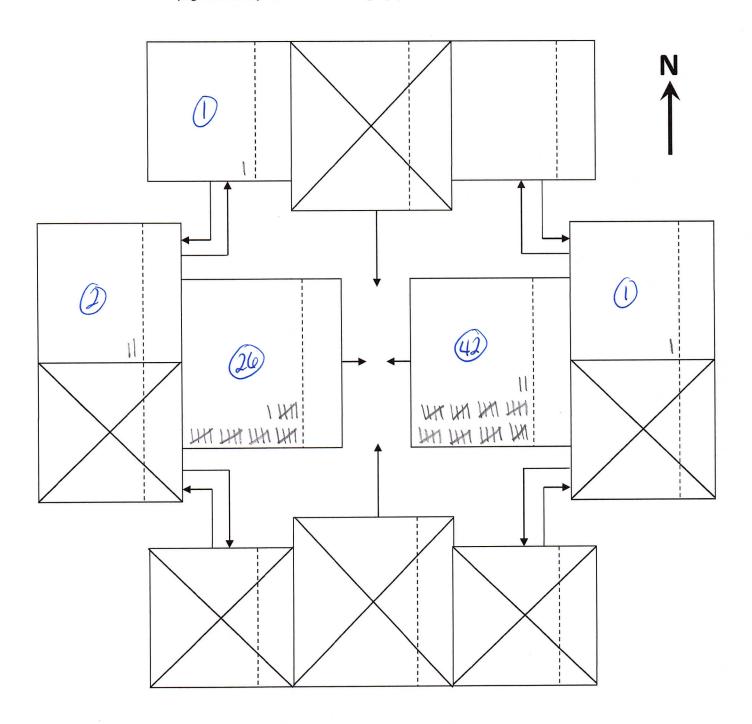
Date: 3/14/23

Weather:

Observer: Jernifel

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105

Time: 9:45 to 10:00

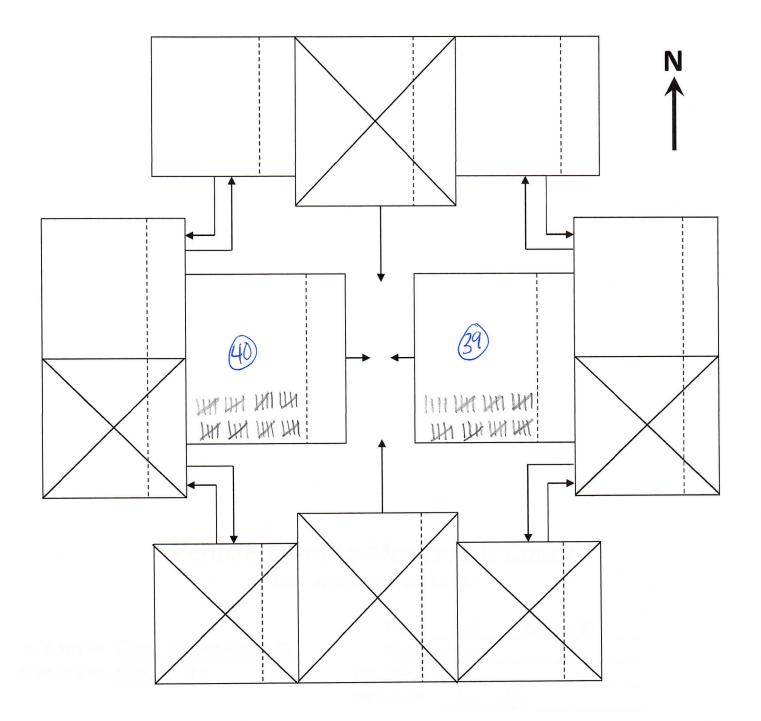
Date: 3/14/23

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105


Time: 1:00 to 1:15

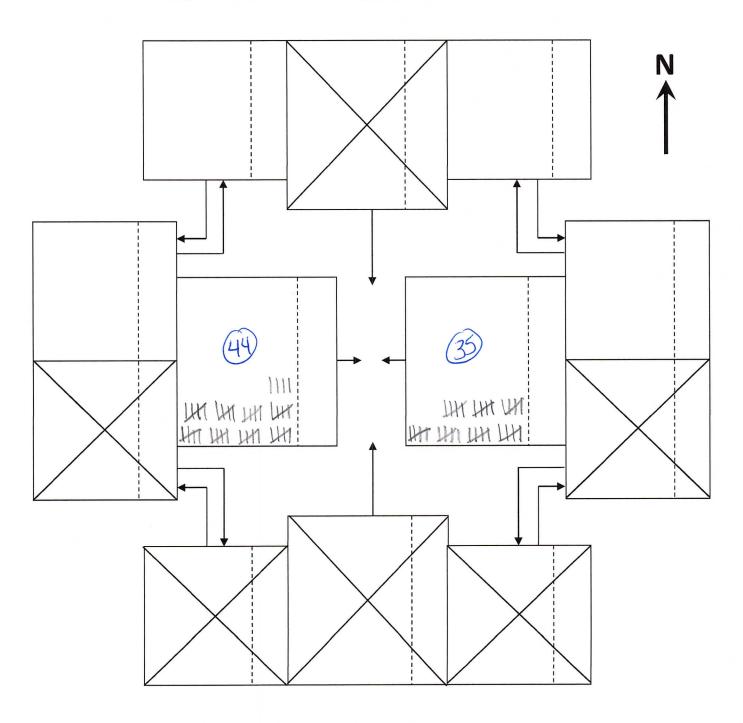
Date: 3/14/23

Weather:

Observer: Lenrifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105

Time: /:/5 to /:30

Date: 3/14/23

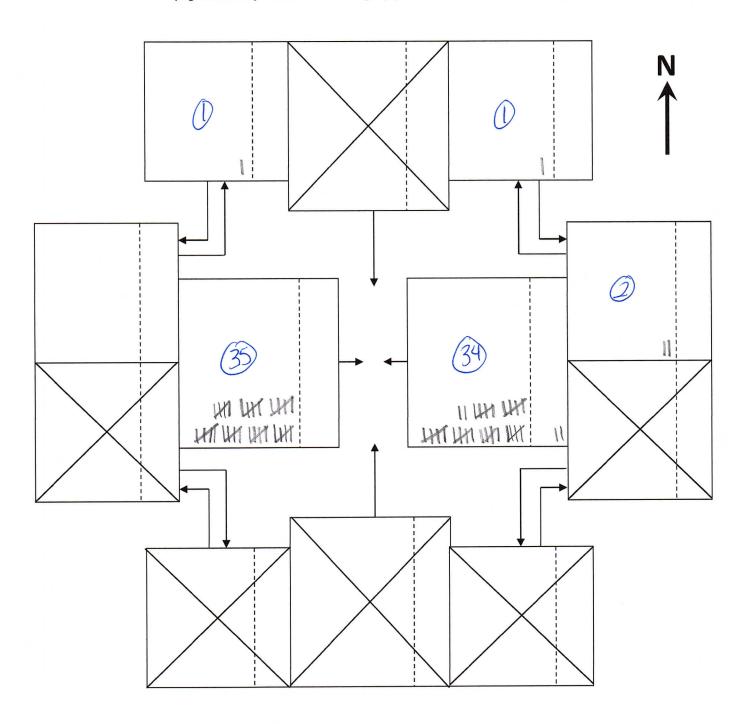
Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105

Time: 1:30 to 1:45


Date: 3/14/23

Weather:

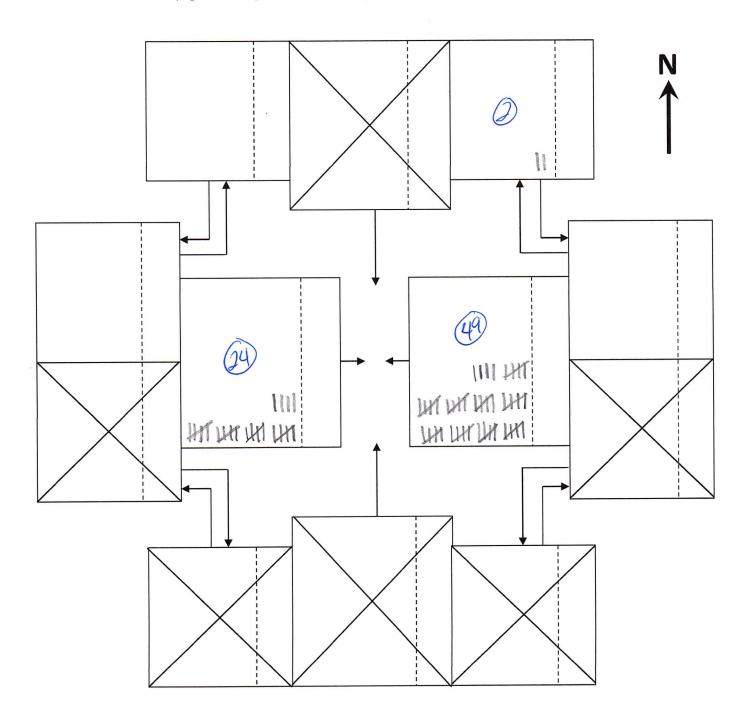
Observer:

Jennifer

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr


E/W Street: Highway 105

Time: <u>/:45</u> to <u>/:00</u>

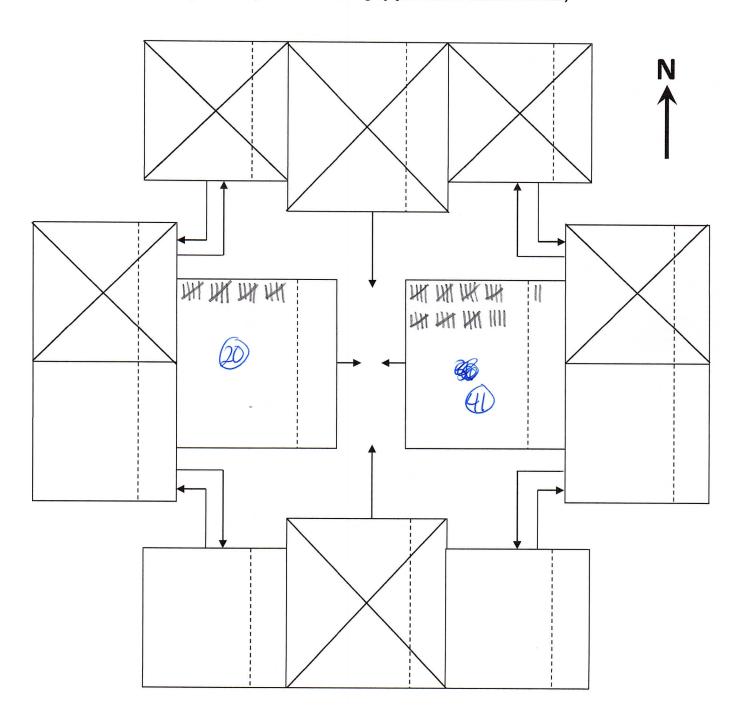
Date: 3/14/23

Weather:
Observer: Jenifel

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

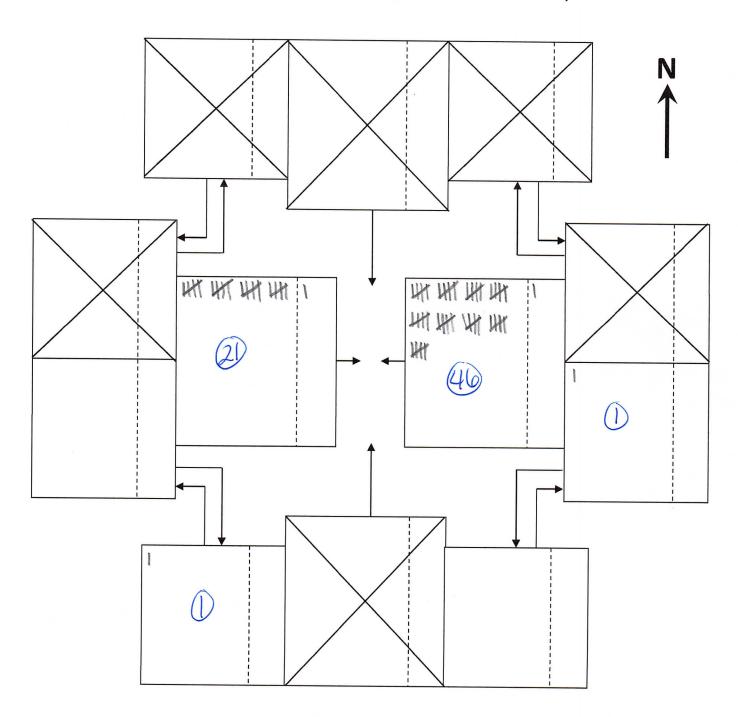
N/S Street: Appaloosa Rd
E/W Street: Highway 105


Time: 9:00 to 9:15

Date: 3/18/23

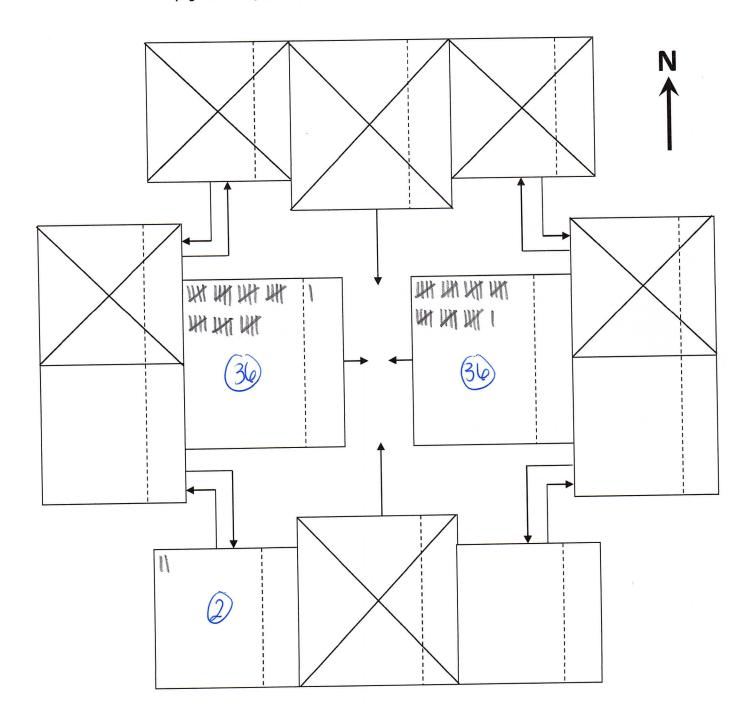
Weather: Sung cold

Observer: Brett Look


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	9:15	to	4:30	
N/S Street:	Appaloosa Rd	Date:	3/18/23			
E/W Street:	Highway 105	Weather:			*	
		Observer:				


Counts are Conducted From the Direction of Travel

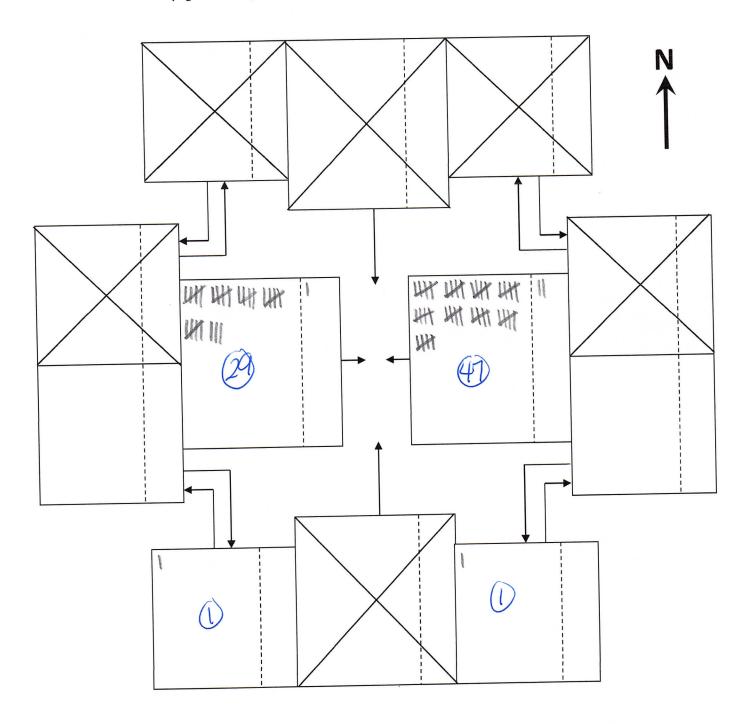
Four Approach Field Sheet

		Time:	9:30	to	9:45	
N/S Street:	Appaloosa Rd	Date:	3/18/23			
-	Highway 105	Weather:				
		Observer:				

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street:	Appaloosa Rd	
E/W Street:	Highway 105	


Time: 9:45 to 10:00

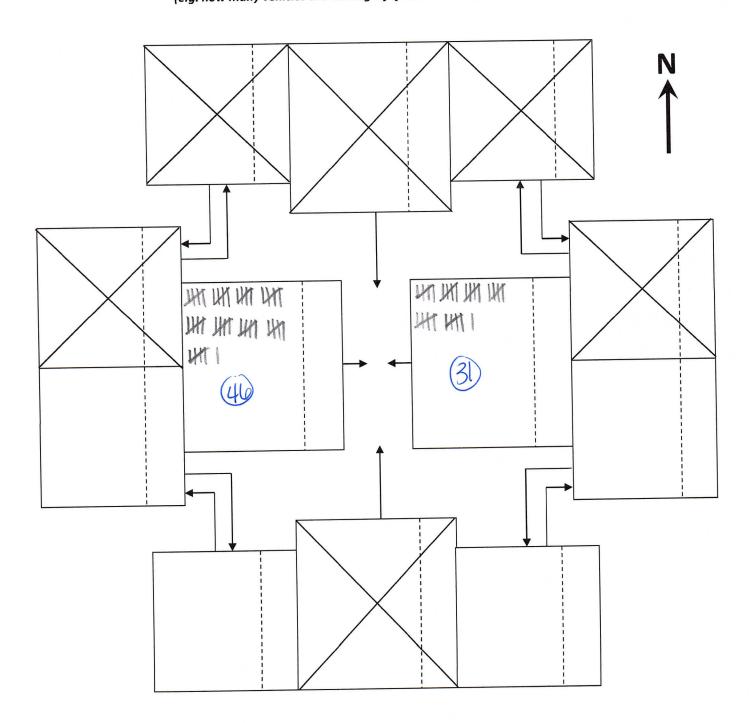
Date: 3/18/23

Weather:

Observer: Bieff Look

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street: Appaloosa Rd
E/W Street: Highway 105

Time: /:00 to /:15

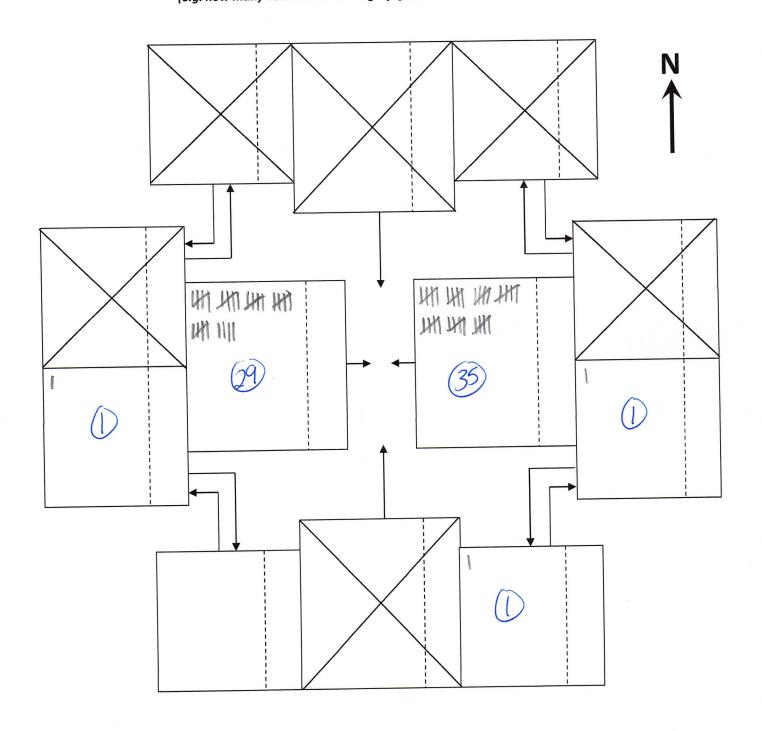
Date: 3/18/23

Weather:
Observer: 6reft Louk

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

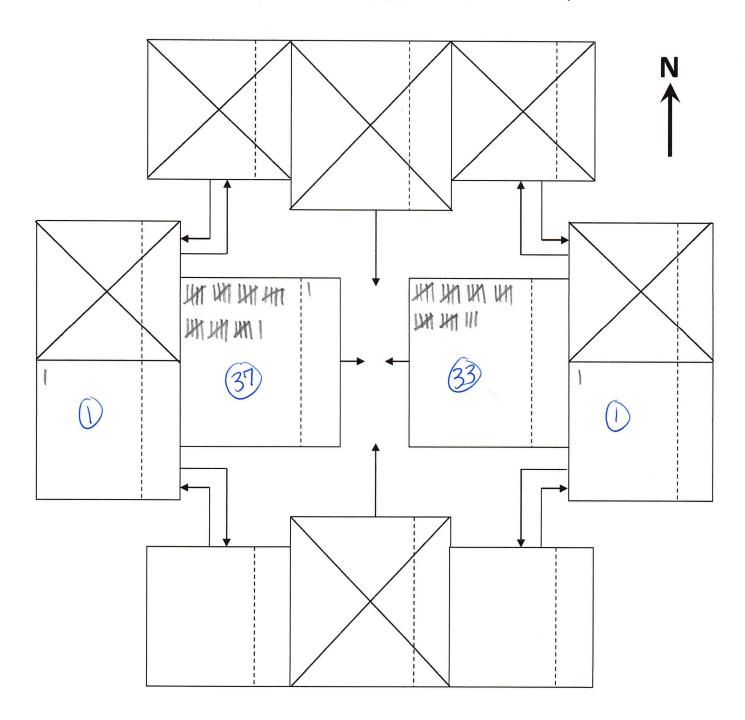
N/S Street:	Appaloosa Rd
E/W Street:	Highway 105


Time: /:/5 to /:30

Date: 3/18/23

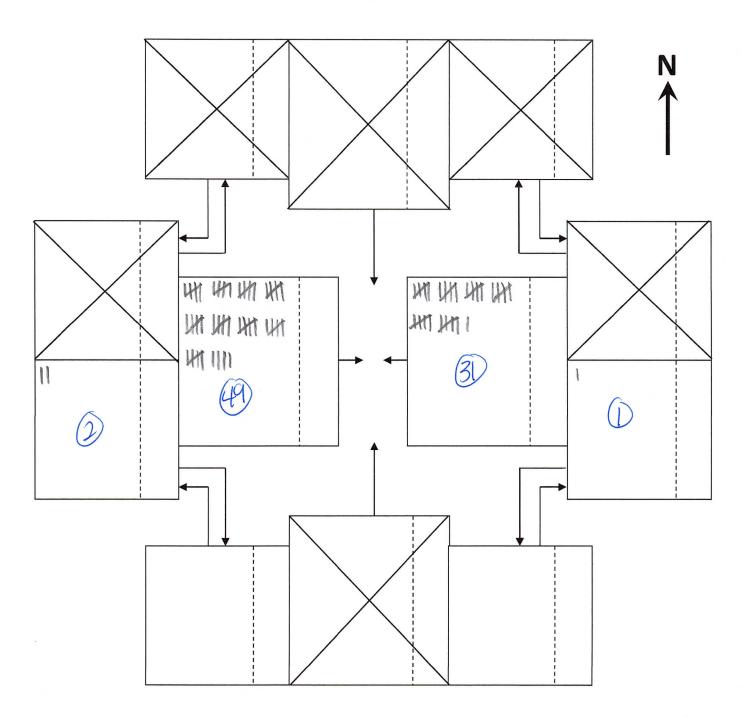
Weather:

Observer: Bred Lowe


Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1.30	to /:45	
N/S Street:	Appaloosa Rd	Date:	3/18/23		
E/W Street:	Highway 105	Weather:			
		Observer:	Ruff	2.18	

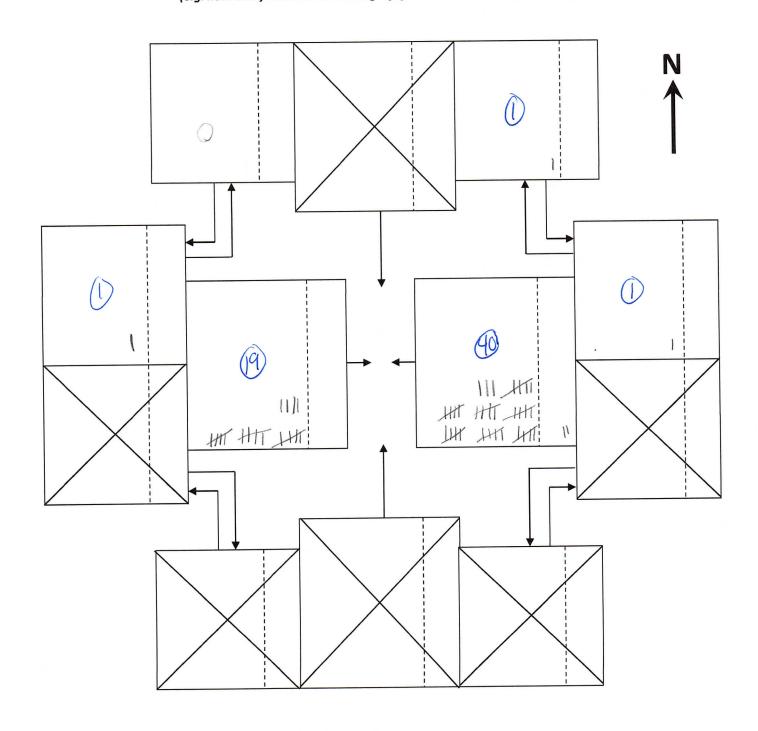

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

		Time:	1.45	to 1:00	
N/S Street:	Appaloosa Rd	Date:	3/18/23		
E/W Street:	Highway 105	Weather:			
		Observer:			

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet


N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105

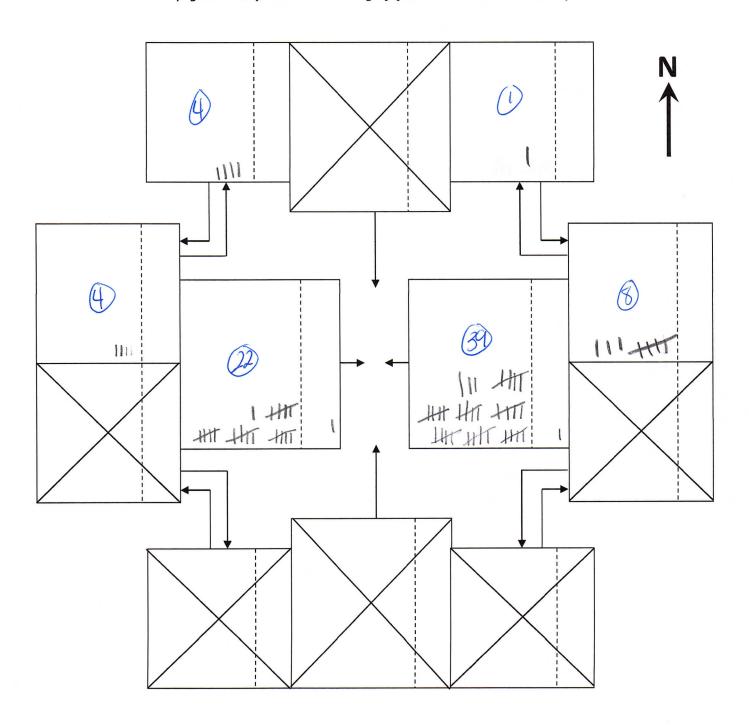
Time: 9:00 to 9:15

Date: 3/25/23 3/18/23
Weather: Clear Dry
Observer: Jennifee Loed + Ke

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr


E/W Street: Highway 105

Time: 9:15 to 9:30

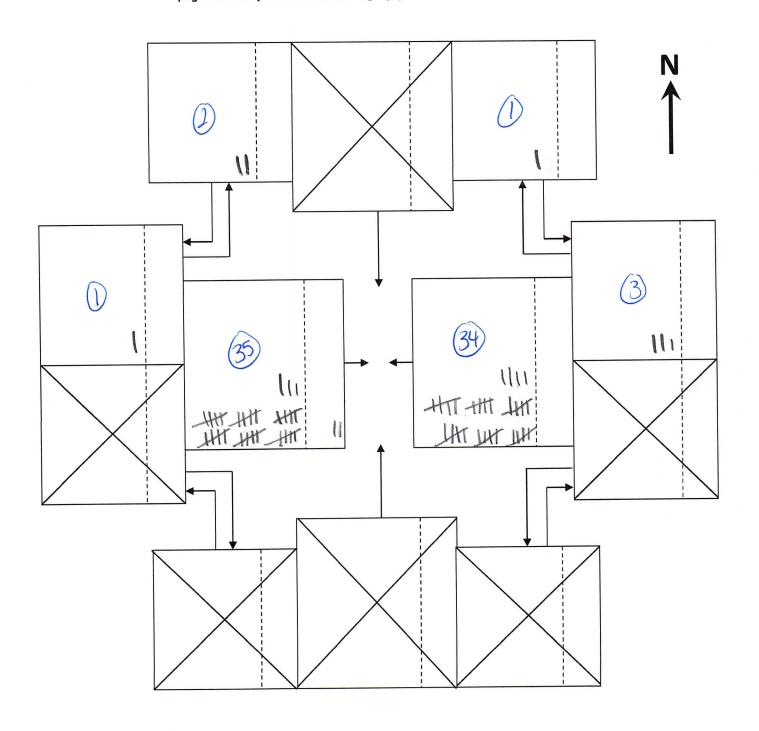
Date: 3/25/23 3/18/23

Weather: Clear Dry
Observer: Jennifer Loed+ke

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr


E/W Street: Highway 105

Time: 9:30 to 9:45

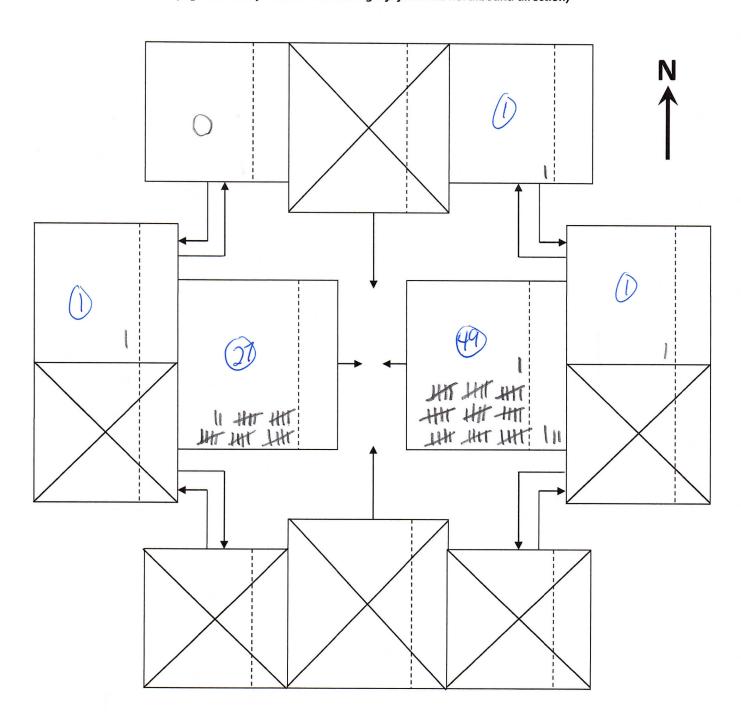
Date: 3/25/23 3/18/23
Weather: Clear Dev

Observer: Tennifer Lucalist

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr


E/W Street: Highway 105

Time: 9:45 to 10:00

Date: 3/25/23 3/18/23

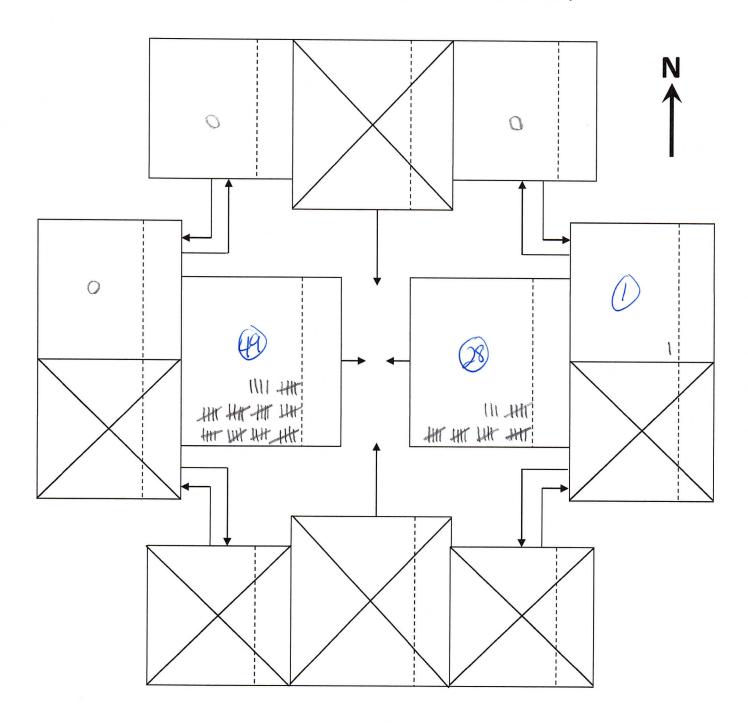
Weather: Clack Dry
Observer: Jennifer Lucate

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105


Time: 1:00 to 1:15

Date: 3/25/23 - 3/18/23

Weather: Clear Dry

Observer: January - 1/24

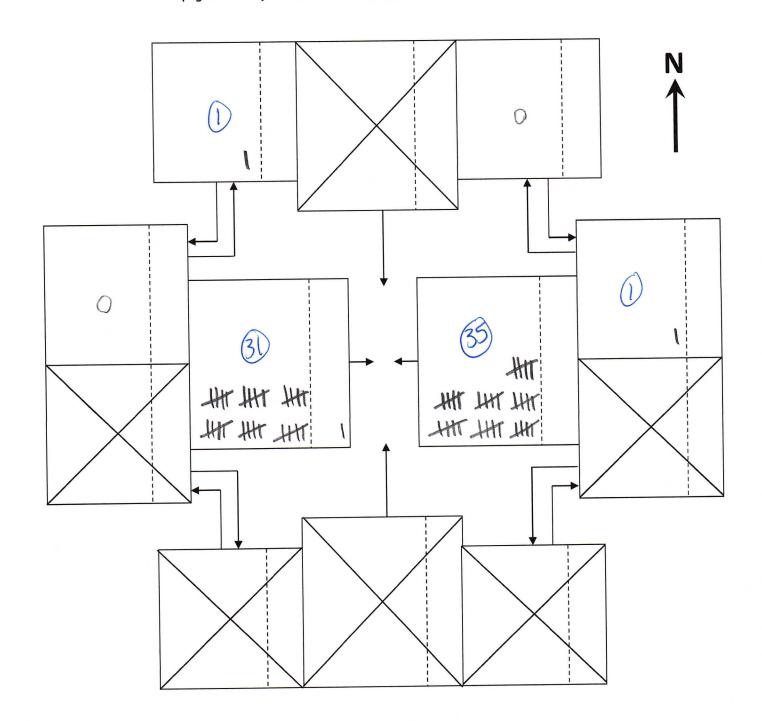
Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105

Time: 1:15 to 1:30


Time: 1.15

Date: 3/25/23 3/18/23

Weather: Clear Day

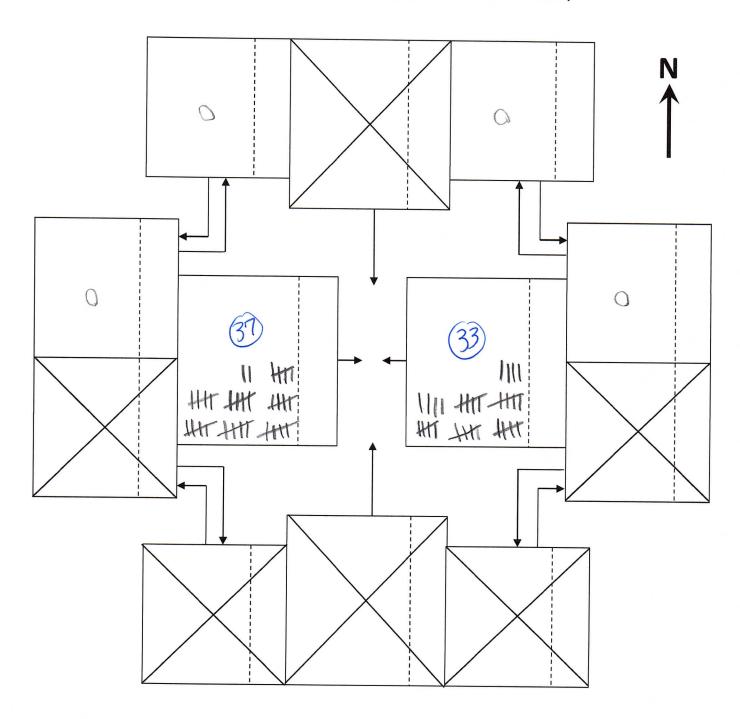
Charmer: Transfer Luckture

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105


Time: 1:30 to 1:45

Date: 3/25/23 3/18/23

Weather: Clear Div

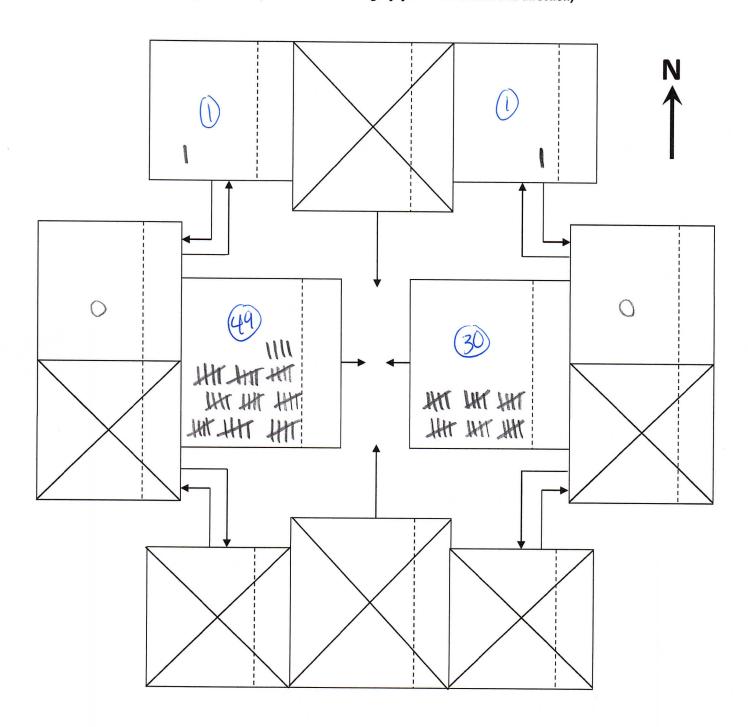
Observer:

Counts are Conducted From the Direction of Travel

Four Approach Field Sheet

N/S Street: Cherry Springs Ranch Dr

E/W Street: Highway 105


Time: 1:45 to 2:00

Date: 3/25/23 3/18/23

Weather: Clear Dry

Observer: Leadtke

Counts are Conducted From the Direction of Travel

INTERSECTION SIGHT DISTANCE EXHIBIT

CANTERBURY DR & HIGHWAY 105 INTERSECTION SIGHT DISTANCE NOT TO SCALE

CHERRY SPRINGS RANCH DR & HIGHWAY 10

INTERSECTION SIGHT DISTANCE

NOT TO SCALE

APPALOOSA RD & HIGHWAY 105 NTERSECTION SIGHT DISTANCE

www.smhconsultants.com Civil Engineering • Land Surveying Landscape Architecture

Manhattan, KS - HQ (785) 776-0541 Dodge City, KS (620) 255-1952

Kansas City (913) 444-9615 Colorado Springs, CO (719) 465-2145

*EL PASO COUNTY ENGINEERING CRITERIA MANUAL (ECM) REQUIRES THAT THE INTERSECTION SIGHT DISTANCE BE BASED ON THE ROADWAY DESIGN SPEED. HOWEVER, TABLE 2-21, IN THE ECM, DOES NOT PROVIDE AN INTERSECTION SIGHT DISTANCE FOR A DESIGN SPEED OVER 50 MPH. THE DESIGN SPEED FOR HIGHWAY 105 IS 60 MPH. THEREFORE, THE DESIGN INTERSECTION SIGHT DISTANCE SHOWN ON THIS EXHIBIT IS BASED ON THE HIGHEST ROADWAY DESIGN SPEED SHOWN IN THE TABLE. TABLE 2-1 ALSO STATES THAT THE VALUES ARE ONLY APPLICABLE TO TWO-LANE ROADS WITH STOP CONTROL, WHICH IS THE SCENARIO AT ALL INTERSECTIONS ANALYZED.

DATE: 4/7/2023

SHEET #

TOTAL SHEETS 1

PROJECT #: 2211-0442 CHECKED BY: BML DRAWN BY: JAM

EXISTING PEAK HOUR CALCULATIONS

9:30 to 9:45 am 9:45 to 10:00 am	68 74			1:30 to 1:45 pm 96 1:45 to 2:00 pm 75		
5.45 to 10.00 alli	/4			1.43 to 2.00 pm 73		
Canterbury Dr. &		Canterbury Dr. &	Canterbury Dr. &	Canterbury Dr. &	Canterbury Dr. &	Canterbury Dr. &
Saddlewood Rd.		Saddlewood Rd.	Saddlewood Rd.	Saddlewood Rd.	Saddlewood Rd.	Saddlewood Rd.
12-17-22		12-17-22	12-17-22	12-17-22	12-17-22	12-17-22
Time Period Volu	me	Time Period Volume	Peak Hour Factor	Time Period Volume	Time Period Volume	Peak Hour Factor
9:00 to 9:15 am	1	9:00 to 10:00 am 9	= 0.563	1:00 to 1:15 pm 2	1:00 to 2:00 pm 11	= 0.550

Canterbury Dr. & 105

12-17-22

Volume

80

71

3 5

1

Time Period

1:00 to 1:15 pm

1:15 to 1:30 pm

1:15 to 1:30 pm

1:30 to 1:45 pm

1:45 to 2:00 pm

Canterbury Dr. & 105

12-17-22

Volume

Time Period

1:00 to 2:00 pm

Canterbury Dr. &

105

Peak Hour Factor

= 0.839

Canterbury Dr. & 105

12-17-22

Peak Hour Factor

= 0.807

Canterbury Dr. & 105

12-17-22

Volume

54

43

3

1

4

Time Period

9:00 to 9:15 am

9:15 to 9:30 am

9:15 to 9:30 am

9:30 to 9:45 am

9:45 to 10:00 am

Canterbury Dr. & 105

12-17-22

Volume

239

Time Period

9:00 to 10:00 am

9:30 to 9:45 am	82			1:30 to 1:45 pm 86		
9:45 to 10:00 am	68			1:45 to 2:00 pm 95		
Cantarhum Dr 0		Contachum, Dr. 9	Contorbury Dr. 9	Contorbury Dr. 9	Contorbury Dr. 9	Contorbury Dr. 9
Canterbury Dr. &		Canterbury Dr. &	Canterbury Dr. &	Canterbury Dr. &	Canterbury Dr. &	Canterbury Dr. &
Saddlewood Rd.		Saddlewood Rd.	Saddlewood Rd.	Saddlewood Rd.	Saddlewood Rd.	Saddlewood Rd.
12-21-22		12-21-22	12-21-22	12-21-22	12-21-22	12-17-22
Time Period Vol	lume	Time Period Volume	Peak Hour Factor	Time Period Volume	Time Period Volume	Peak Hour Factor
9:00 to 9:15 am	1	9:00 to 10:00 am 4	= 0.500	1:00 to 1:15 pm 3	1:00 to 2:00 pm 18	= 0.500
9:15 to 9:30 am	1			1:15 to 1:30 pm 9		

Canterbury Dr. & 105

12-21-22

Volume

78

100

2

Time Period

1:00 to 1:15 pm

1:15 to 1:30 pm

1:30 to 1:45 pm

1:45 to 2:00 pm

Canterbury Dr. & 105

12-21-22

Volume

Time Period

1:00 to 2:00 pm

Canterbury Dr. &

105

Peak Hour Factor

= 0.898

Canterbury Dr. & 105

12-21-22

Peak Hour Factor

= 0.931

Canterbury Dr. & 105

12-21-22

Volume

83

76

2

0

Time Period

9:00 to 9:15 am

9:15 to 9:30 am

9:30 to 9:45 am

9:45 to 10:00 am

Canterbury Dr. & 105

12-21-22

Volume

Time Period

9:00 to 10:00 am

9:15 to 9:30 am 9:30 to 9:45 am	74 65	3.00 to 10.00 dill 233	- 0.070	1:15 to 1:30 pm 1:30 to 1:45 pm	79 73	1.00 to 2.00 pm 300	- 0.500
9:45 to 10:00 am	72			1:45 to 2:00 pm	75		
105 & Appaloosa	Rd	105 & Appaloosa Rd	105 & Appaloosa Rd	105 & Appaloosa	Rd	105 & Appaloosa Rd	105 & Appaloosa Rd
03-14-23		03-14-23	03-14-23	03-14-23		03-14-23	03-14-23
Time Period Vol	ume	Time Period Volume	Peak Hour Factor	Time Period Vol	lume	Time Period Volume	Peak Hour Factor
9:00 to 9:15 am	84	9:00 to 10:00 am 293	= 0.872	1:00 to 1:15 pm	79	1:00 to 2:00 pm 314	= 0.981
9:15 to 9:30 am	72			1:15 to 1:30 pm	79		
9:30 to 9:45 am	68			1:30 to 1:45 pm	76		
	69						

105 & Cherry Springs Ranch

03-14-23

Volume

79

Time Period

1:00 to 1:15 pm

105 & Cherry Springs Ranch

03-14-23

Time Period Volume

1:00 to 2:00 pm

105 & Cherry Springs Ranch

03-14-23

Peak Hour Factor

0.968

105 & Cherry Springs Ranch

03-14-23

Peak Hour Factor

= 0.878

105 & Cherry Springs Ranch

03-14-23

Time Period

9:00 to 9:15 am

Volume

84

105 & Cherry Springs Ranch

03-14-23

Time Period Volume

9:00 to 10:00 am

03-18-	-23	03-18-23	03-18-23	03-18-23	03-18-23	03-18-23
Time Period	Volume	Time Period Volume	Peak Hour Factor	Time Period Volume	Time Period Volume	Peak Hour Factor
9:00 to 9:15 am	62	9:00 to 10:00 am 295	= 0.934	1:00 to 1:15 pm 78	1:00 to 2:00 pm 297	= 0.917
9:15 to 9:30 am	78			1:15 to 1:30 pm 68		
9:30 to 9:45 am	76			1:30 to 1:45 pm 70		
9:45 to 10:00 am	79			1:45 to 2:00 pm 81		
105 & Appa		105 & Appaloosa Rd	105 & Appaloosa Rd	105 & Appaloosa Rd	105 & Appaloosa Rd	105 & Appaloosa Rd
03-18-	-23	03-18-23	03-18-23	03-18-23	03-18-23	03-18-23
Time Period 9:00 to 9:15 am 9:15 to 9:30 am 9:30 to 9:45 am 9:45 to 10:00 am	Volume 61 69 74	Time Period Volume 9:00 to 10:00 am 282	Peak Hour Factor = 0.904	Time Period Volume 1:00 to 1:15 pm 77 1:15 to 1:30 pm 67 1:30 to 1:45 pm 72	Time Period Volume 1:00 to 2:00 pm 299	Peak Hour Factor = 0.901

105 & Cherry Springs Ranch

EXISTING PEAK HOUR TURNING MOVEMENTS

Canterbury/Hwy 105							
	Peak	Hour: 9:00	am to 10:0	0 am			
		Existing \	Weekend				
		Hwy	105				
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT		
0	116	1	1	114	0		
	Canterbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT		
0	0	0	0	0	7		

Peak Hour Volume: 239

Canterbury/Saddlewood Peak Hour: 9:00 am to 10:00 am							
Existing Weekend Saddlewood							
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT		
0	0	0	0	0	3		
	Canterbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT		
0	2	2	1	1	0		

,	Peak Hour Volume:	9

Appaloosa/Hwy 105										
Peak Hour: 9:00 am to 10:00 am Existing Weekday										
Hwy 105										
HWY 103										
EB LT	EB LT EB Thru EB RT WB LT WB Thru WE									
0	0 107 2 1 177 0									
		Appa	loosa							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0 0 0 3 0 3										
Peak Hou	r Volume:	293								

Cherry Springs Ranch/Hwy 105										
Peak Hour: 9:00 am to 10:00 am										
Existing Weekday										
Hwy 105										
EB LT	EB Thru	BThru EBRT WBLT WBThru W								
4	107	107 0 0 174 5								
		Cherry Spr	ings Ranch							
SB RT	SB Thru SB LT NB RT N		NB Thru	NB LT						
3	0	2	0	0	0					

Peak Hour Volume:

Canterbury/Hwy 105									
Peak Hour: 9:00 am to 10:00 am									
Existing Weekday									
		Hwy	105						
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB RT							
0	144	144 2 0 157 0							
		Cante	erbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	0	0	3	0	3				

Peak Hour Volume: 309

Canterbury/Saddlewood									
Peak Hour: 9:00 am to 10:00 am									
	Existing Weekday								
		Saddle	ewood						
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB RT							
0	0	0	1	0	1				
		Cante	rbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	0	2	0	0	0				

Peak Hour Volume: 4

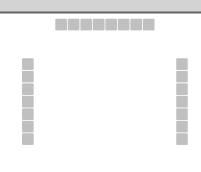
Appaloosa/Hwy 105										
Peak Hour: 9:00 am to 10:00 am										
Existing Weekend										
Hwy 105										
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT					
0	106	0	1	170	0					
		Appa	loosa							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0	0	0	1	0	4					
Dook Hou	r Volumo:	282								

Cherry Springs Ranch/Hwy 105									
Peak Hour: 9:00 am to 10:00 am									
Existing Weekend									
Hwy 105									
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB F							
7	103	103 0 0 162 13							
		Cherry Spr	ings Ranch						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
6 0 4 0 0 0									
Peak Hou	Peak Hour Volume: 295								

Canterbury/Hwy 105									
Peak Hour: 1:00 pm to 2:00 pm									
	Existing Weekend								
		Hwy	105						
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT								
0	161 3 0 148 0								
		Cante	erbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	0	0	3	0	7				
Peak Hou	r Volume:	322							

Canterbury/Saddlewood									
Peak Hour: 1:00 pm to 2:00 pm									
	Existing Weekend								
		Saddle	ewood						
EB LT	T EB Thru EB RT WB LT WB Thru WB RT								
0	0	0 0 0 0 1							
		Cante	erbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	3	0	1	6	0				
Dook Hou	r Volumo:	11							

	Appaloosa/Hwy 105										
Peak Hour: 1:00 pm to 2:00 pm											
		Existing 1	Weekday								
	Hwy 105										
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT						
0	145	145 2 5 155									
		Appa	loosa								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
0	0 0 0 4 0 3										
Peak Hou	ır Volume:	314									


Cherry Springs Ranch/Hwy 105									
Peak Hour: 1:00 pm to 2:00 pm									
Existing Weekday									
Hwy 105									
EB LT	EB Thru	BThru EBRT WBLT WBThru WBF							
0	143	143 0 0 157							
		Cherry Spr	ings Ranch						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
1	0	3	0	0	0				

Peak Hour Volume: 306

EXISTING LEVEL OF SERVICE (LOS)

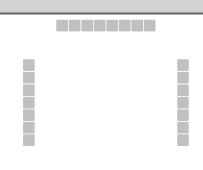
HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/4/2023	East/West Street	Saddlewood						
Analysis Year	2023	North/South Street	Canterbury						
Time Analyzed	9:00-10:00 pm Weekday	Peak Hour Factor	0.85						
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25						
Project Description	Colorado Pumpkin Patch Temporary Use TIS								

Major Street: North-South

V	ehi	icle	e V	ol	lume	S	and	F	١d	IJι	ıst	tm	ent	ts
---	-----	------	-----	----	------	---	-----	---	----	-----	-----	----	-----	----

Approach		Eastb	ound			Westl	oound		Northbound					South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						1		1		0	0	0		2	0	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		

Base Critical Headway (sec)					7.1		6.2	4.1		4.1	
Critical Headway (sec)					7.12		6.22	4.12		4.12	
Base Follow-Up Headway (sec)					3.5		3.3	2.2		2.2	
Follow-Up Headway (sec)					3.52		3.32	2.22		2.22	
Delay, Queue Length, and	Leve	l of S	ervice								
Flow Rate, v (veh/h)						2		0		2	
Capacity, c (veh/h)						1049		1623		1623	
v/c Ratio						0.00		0.00		0.00	
95% Queue Length, Q ₉₅ (veh)						0.0		0.0		0.0	
Control Delay (s/veh)						8.4		7.2		7.2	
Level of Service (LOS)						А		Α		А	

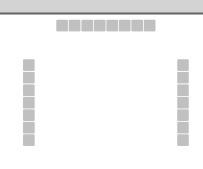

Approach Delay (s/veh)

Approach LOS

8.4

Α

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/4/2023	East/West Street	Saddlewood								
Analysis Year	2023	North/South Street	Canterbury								
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.85								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	Colorado Pumpkin Patch Temporary Use TIS										


Major Street: North-South

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		3		0	1	1		2	2	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage				Undi	rided											
Critical and Follow-up Headways																
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	Leve	l of Se	ervice													
Flow Rate, v (veh/h)							4			0				2		
Capacity, c (veh/h)							1083			1620				1620		
v/c Ratio							0.00			0.00				0.00		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0		
Control Delay (s/veh)							8.3			7.2				7.2		
Level of Service (LOS)							А			А				А		
Approach Delay (s/veh)					8.3			0.0				3.6				
Approach LOS					А											

Generated: 4/4/2023 1:52:56 PM

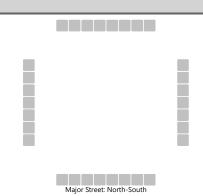
HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/4/2023	East/West Street	Saddlewood								
Analysis Year	2023	North/South Street	Canterbury								
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.85								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	Colorado Pumpkin Patch Temporary Use TIS										

Major Street: North-South

Vehicle Volumes and Adju	stments
Approach	Ea

Approach		Eastb	ound			West	oound			North	bound			Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR				LTR				LTR		
Volume (veh/h)						3		5		0	2	3		2	3	0	
Percent Heavy Vehicles (%)						2		2		2				2			
Proportion Time Blocked																	
Percent Grade (%)						0											
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up Headways																	
Base Critical Headway (sec)						7.1		6.2		4.1				4.1			
Critical Headway (sec)						7.12		6.22		4.12				4.12			
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2			
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22			
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)							9			0				2			
Capacity, c (veh/h)							1050			1618				1615			
v/c Ratio							0.01			0.00				0.00			
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0			
Control Delay (s/veh)							8.5			7.2				7.2			
Level of Service (LOS)							Α			Α				Α			

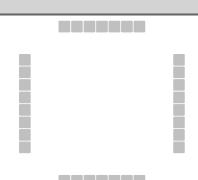
Approach Delay (s/veh)


Approach LOS

8.5

Generated: 4/4/2023 2:04:30 PM

2.9


HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/4/2023	East/West Street	Saddlewood								
Analysis Year	2023	North/South Street	Canterbury								
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.85								
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25								
Project Description	Colorado Pumpkin Patch Temporary Use TIS										

Approach		Eastb	ound			West	bound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		1		0	6	1		0	3	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage			Undivided													
Critical and Follow-up Headways																
Base Critical Headway (sec)	Т					7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	T						1			0				0		
Capacity, c (veh/h)							1075			1618				1612		
v/c Ratio							0.00			0.00				0.00		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0		
Control Delay (s/veh)							8.4			7.2				7.2		
Level of Service (LOS)							А			А				А		
Approach Delay (s/veh)					8.4			0.0			0.0					
Approach LOS					Α											

Generated: 4/4/2023 2:00:57 PM

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/4/2023	East/West Street	Hwy 105								
Analysis Year	2023	North/South Street	Canterbury								
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.93								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Colorado Pumpkin Patch Temporary Use TIS										

Major Street: East-West

venicie vo	oiumes	and	Aajustm	ents
------------	--------	-----	---------	------

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	144	2		0	157	0		3		3				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adways															
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				

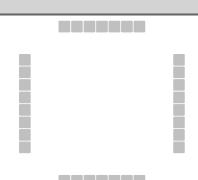
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			0			6			
Capacity, c (veh/h)		1409			1423			737			
v/c Ratio		0.00			0.00			0.01			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.0			
Control Delay (s/veh)		7.6			7.5			9.9			

Α

0.0

Level of Service (LOS)

Approach LOS


Approach Delay (s/veh)

0.0

9.9

Α

HCS7 Two-Way Stop-Control Report									
General Information									
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/4/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Canterbury						
Time Analyzed	9:00-10:00 AM Weekend	Peak Hour Factor	0.85						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description Colorado Pumpkin Patch Temporary Use TIS									

Major Street: East-West

Approach	Eastbound					Westk	oound		Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration			LTR				LTR				LR						
Volume (veh/h)		0	116	1		1	114	0		7		0					
Percent Heavy Vehicles (%)		2				2				2		2					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage	Undivided																
Critical and Follow-up He	Critical and Follow-up Headways																

•											
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Level	of Se	ervice								
Flow Rate, v (veh/h)		0			1			8			
Capacity, c (veh/h)		1450			1446			678			

0.00

0.0

7.5

0.1

Approach LOS	
Copyright © 2023 University of Florida.	All Rights Reserved

0.00

0.0

7.5

Α

0.0

v/c Ratio

95% Queue Length, Q₉₅ (veh)

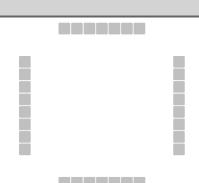
Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

0.01

0.0


10.4

В

10.4

В

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 PM						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/4/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Canterbury						
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.90						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Colorado Pumpkn Patch Temporary Use TIS								

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	197	7		2	144	0		7		2				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										(0					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadways															
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				

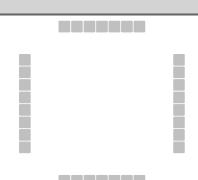
• • • • • • • • • • • • • • • • • • •		<u> </u>									
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			2			10			
Capacity, c (veh/h)		1419			1342			612			
v/c Ratio		0.00			0.00			0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.0			
Control Delay (s/veh)		7.5			7.7			11.0			

0.0

Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)

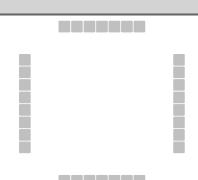

0.1

В

11.0

В

HCS7 Two-Way Stop-Control Report									
General Information Site Information									
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/4/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Canterbury						
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.85						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description									


Major Street: East-West

venicie volumes and Adjustment	τs	
--------------------------------	----	--

Approach		Eastb	ound		Westbound			Northbound				Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration			LTR				LTR				LR						
Volume (veh/h)		0	161	3		0	148	0		7		3					
Percent Heavy Vehicles (%)		2				2				2		2					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1		6.2					
Critical Headway (sec)		4.12				4.12				7.12		6.22					
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3					
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32					
Delay, Queue Length, and	Leve	l of Se	ervice														
Flow Rate, v (veh/h)		0				0					12						
Capacity, c (veh/h)		1402				1380					650						
	1		-		+	-									-		

Delay, Quede Length, and	Level Oi	Jei vice	•								
Flow Rate, v (veh/h)	С			0				12			
Capacity, c (veh/h)	14)2		1380				650			
v/c Ratio	0.0	0		0.00				0.02			
95% Queue Length, Q ₉₅ (veh)	0.)		0.0				0.1			
Control Delay (s/veh)	7.	5		7.6				10.6			
Level of Service (LOS)	A			Α				В			
Approach Delay (s/veh)		0.0		0	.0		10).6			
Approach LOS							[3			

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105							
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County							
Date Performed	4/4/2023	East/West Street	Hwy 105							
Analysis Year	2023	North/South Street	Cherry Springs Ranch							
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.88							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description Colorado Pumpkin Patch Temporary Use TIS										

Major Street: East-West

Vehicle Volume	es and	Adjust	tments
----------------	--------	--------	--------

Approach		Eastb	ound		Westbound			Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		4	107	0		0	174	5						2		3
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized																
Median Type Storage				Undi	divided											

Critical and Follow-up Headways

95% Queue Length, Q₉₅ (veh)

Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS

Base Critical Headway (sec)		4.1			4.1				7.1		6.2
Critical Headway (sec)		4.12			4.12				7.12		6.22
Base Follow-Up Headway (sec)		2.2			2.2				3.5		3.3
Follow-Up Headway (sec)		2.22			2.22				3.52		3.32
Delay, Queue Length, and	Leve	l of Se	ervice								
Flow Rate, v (veh/h)		5			0					6	
Capacity, c (veh/h)		1368			1466					736	
v/c Ratio		0.00			0.00					0.01	

0.0

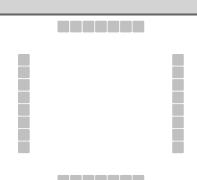
7.5

0.0

0.0

7.6

Α


0.3

9.9

Α

0.0

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105							
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County							
Date Performed	4/4/2023	East/West Street	Hwy 105							
Analysis Year	2023	North/South Street	Cherry Springs Ranch							
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.93							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description Colorado Pumpkin Patch Temporary Use TIS										

Major Street: East-West

venicie vo	oiumes	and	Aajustm	ents
------------	--------	-----	---------	------

Approach		Eastb	oound		Westbound			Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		7	103	0		0	162	13						4		6
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)													0			
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	leadwavs															

95% Queue Length, Q_{95} (veh)

Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS

	•	, -									
Base Critical Headway (sec)		4.1			4.1				7.1		6.2
Critical Headway (sec)		4.12			4.12				7.12		6.22
Base Follow-Up Headway (sec)		2.2			2.2				3.5		3.3
Follow-Up Headway (sec)		2.22			2.22				3.52		3.32
Delay, Queue Length, and	Leve	l of Se	ervice								
Flow Rate, v (veh/h)		8			0					11	
Capacity, c (veh/h)		1386			1479					758	
v/c Ratio		0.01			0.00					0.01	

Copyright $\ensuremath{\text{@}}$ 2023 University of Florida. All Rights Reserved.

0.0

7.6

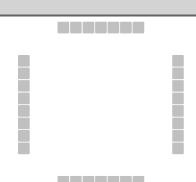
Α

0.5

0.0

7.4

0.0


Generated: 4/4/2023 2:29:12 PM

9.8

Α

0.0

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105							
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County							
Date Performed	4/4/2023	East/West Street	Hwy 105							
Analysis Year	2023	North/South Street	Cherry Springs Ranch							
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.97							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description Colorado Pumpkin Patch Temporary Use TIS										

Major Street: East-West

venicie	volumes	and	Adjustments
---------	---------	-----	-------------

Approach	Eastbound					Westbound				North	bound		Southbound												
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R									
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12									
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0									
Configuration			LTR				LTR								LR										
Volume (veh/h)		0	143	0		0	157	2						3		1									
Percent Heavy Vehicles (%)		2				2								2		2									
Proportion Time Blocked																									
Percent Grade (%)													0												
Right Turn Channelized																									
Median Type Storage				Undi	vided																				
Critical and Follow-up He	adwa	ys												Critical and Follow-up Headways											

Base Critical Headway (sec)		4.1				4.1							7.1		6.2
Critical Headway (sec)		4.12				4.12							7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2							3.5		3.3
Follow-Up Headway (sec)		2.22				2.22							3.52		3.32
Delay, Queue Length, and Level of Service															
Flow Rate, v (veh/h)		0				0								4	
Capacity, c (veh/h)		1415				1434								689	
v/c Ratio		0.00				0.00								0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.0								0.0	

7.5

Α

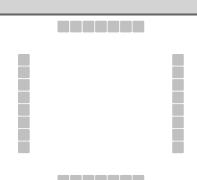
0.0

Control Delay (s/veh)

Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)


0.0

10.3

В

10.3

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/4/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Cherry Springs Ranch									
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.92									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Colorado Pumpkin Patch Temporary Use TIS											

Major Street: East-West

Vehicle '	Volumes	and A	Adjust	tments
-----------	---------	-------	--------	--------

Approach	Eastbound					Westl	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration			LTR				LTR								LR		
Volume (veh/h)		0	166	0		0	126	2						1		2	
Percent Heavy Vehicles (%)		2				2								2		2	
Proportion Time Blocked																	
Percent Grade (%)													0				
Right Turn Channelized																	
Median Type Storage			Undivided														
Critical and Follow-up He	Critical and Follow-up Headways																

<u> </u>															
Base Critical Headway (sec)		4.1				4.1							7.1		6.2
Critical Headway (sec)		4.12				4.12							7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2							3.5		3.3
Follow-Up Headway (sec)		2.22				2.22							3.52		3.32
Delay, Queue Length, and Level of Service															
Flow Rate, v (veh/h)		0				0								3	
Capacity, c (veh/h)		1444				1395								795	

0.00

0.0

7.6

Copyright $\ensuremath{\text{@}}$ 2023 University of Florida. All Rights Reserved.

0.00

0.0

7.5

Α

0.0

v/c Ratio

95% Queue Length, Q_{95} (veh)

Control Delay (s/veh)

Level of Service (LOS)

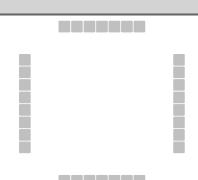
Approach Delay (s/veh)

Approach LOS

HCS[™] TWSC Version 7.6

0.0

Generated: 4/6/2023 9:56:41 AM


9.5

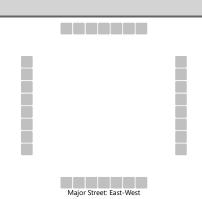
Α

0.00

0.0

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/4/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Appaloosa									
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.87									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Colorado Pumpkin Patch Temporary Use TIS											

Major Street: East-West


venicie	volumes	and	Aajust	ments

Approach		Eastbound Westbound							North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	107	2		1	177	0		3		3				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														
Page Critical Headway (see)		41 41								7 1		6.2				

		, -									
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			1			7			
Capacity, c (veh/h)		1368			1461			745			

v/c Ratio	0.00			0.00				0.01			
95% Queue Length, Q ₉₅ (veh)	0.0			0.0				0.0			
Control Delay (s/veh)	7.6			7.5				9.9			
Level of Service (LOS)	А			А				А			
Approach Delay (s/veh)	0	0.0		0	.0		9	.9			
Approach LOS								Δ			

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/4/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Appaloosa									
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Colorado Pumpkin Patch Temporary Use TIS											

|--|

Approach	Eastbound Westbound									North	bound			South	Southbound							
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R						
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12						
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0						
Configuration			LTR				LTR				LR											
Volume (veh/h)		0	106	0		1	170	0		4		1										
Percent Heavy Vehicles (%)		2				2				2		2										
Proportion Time Blocked																						
Percent Grade (%)										()											
Right Turn Channelized																						
Median Type Storage		Undivided																				
Critical and Follow-up H	eadwa	ys																				
Base Critical Headway (sec)		4.1				4.1				7.1		6.2										
Critical Headway (sec)		4.12				4.12				7.12		6.22										
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3										
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32										
Delay, Queue Length, an	d Leve	l of Se	ervice																			
Flow Rate, v (veh/h)		0				1					6											
Capacity, c (veh/h)		1385				1470					686											
v/c Ratio		0.00				0.00					0.01											
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0											

7.6

Α

0.0

Control Delay (s/veh)

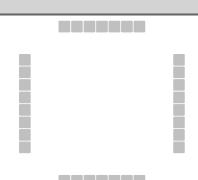
Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)

7.5

Α


0.0

10.3

В

10.3

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/4/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Appaloosa									
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.98									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Colorado Pumpkin Patch Temporary Use TIS											

Major Street: East-West

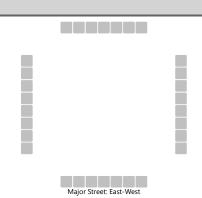
Vehicle Vo	lumes a	ind Adj	ustments
------------	---------	---------	----------

Approach		Eastb	ound		Westbound					Northbound				Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R				
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12				
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0				
Configuration			LTR				LTR				LR									
Volume (veh/h)		0	145	2		5	155	0		3		4								
Percent Heavy Vehicles (%)		2				2				2		2								
Proportion Time Blocked																0				
Percent Grade (%)										(0									
Right Turn Channelized																				
Median Type Storage																				
Critical and Follow-up He	adwa	ys																		

Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			5			7			
Capacity, c (veh/h)		1421			1431			762			
v/c Ratio		0.00			0.00			0.01			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.0			
Control Delay (s/veh)		7.5			7.5			9.8			
Level of Service (LOS)		Α			Α			Α			

0.0

Approach Delay (s/veh)


Approach LOS

0.3

9.8

Α

HCS7 Two-Way Stop-Control Report							
General Information Site Information							
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105				
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County				
Date Performed	4/4/2023	East/West Street	Hwy 105				
Analysis Year	2023	North/South Street	Appaloosa				
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.90				
Intersection Orientation East-West Analysis Time Period (hrs) 0.25							
Project Description Colorado Pumpkin Patch Temporary Use TIS							

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westl	oound			Northbound				South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	161	4		3	130	0		0		1				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)									0							
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, and	d Leve	l of S	ervice													
Flow Rate, v (veh/h)		0				3					1					
Capacity, c (veh/h)		1438				1392					862					
v/c Ratio		0.00				0.00					0.00					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.5				7.6					9.2					
Level of Service (LOS)		А				А					А					
Approach Delay (s/veh)		0	.0			0	.2			9	.2					
	-				-											

Approach LOS

Α


TRIP DISTRIBUTION EXHIBIT

Project Generated Weekday Trip Distribution Percentages Exhibit

Project Generated Weekend Trip Distribution Percentages Exhibit

EXISTING + DEVELOPMENT PEAK HOUR TURNING MOVEMENTS

Canterbury/Hwy 105									
	Peak	Hour: 9:00	am to 10:0	10 am					
	Existi	ng + Develo	pment We	ekend					
	Hwy 105								
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT								
0	201	10	7	123	0				
		Cante	rbury						
SB RT	SB RT SB Thru SB LT NB RT NB Thru NB LT								
0 0 0 1 0 8									

Peak Hour Volume: 350

	Canterbury/Saddlewood								
	Peak	Hour: 9:00	am to 10:0	00 am					
	Existi	ng + Develo	pment We	ekend					
		Saddle	ewood						
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT								
0	0	0	0	0	5				
		Cante	erbury						
SB RT	SB RT SB Thru SB LT NB RT NB Thru NB LT								
0 2 17 1 1 0									
Deak Hou	r Volumo:	26							

	Appaloosa/Hwy 105							
	Peak	Hour: 9:00	am to 10:0	10 am				
	Existi	ng + Develo	pment We	ekday				
		Hwy	105					
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT							
0	112	10	12	220	0			
		Appa	loosa					
SB RT	SB RT SB Thru SB LT NB RT NB Thru NB LT							
0	0 0 0 4 0 4							
Peak Hou	r Volume	362						

Peak Hour Volume: 362

	Cherry Springs Ranch/Hwy 105								
		Peak	Hour: 9:00	am to 10:0	0 am				
		Existi	ng + Develo	pment We	ekday				
			Hwy	105					
Г	EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
	4	120	0	0	218	5			
			Cherry Spr	ings Ranch					
	SB RT SB Thru SB LT NB RT NB Thru NB LT								
	3	0	2	0	0	0			

Peak Hour Volume:

Canterbury/Hwy 105										
	Peak Hour: 9:00 am to 10:00 am									
	Existing + Development Weekday									
	Hwy 105									
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT									
0	152	74	43	158	0					
	Canterbury									
SB RT SB Thru SB LT NB RT NB Thru NB LT										
0	0	0	8	0	11					

Peak Hour Volume: 446

Canterbury/Saddlewood									
	Peak Hour: 9:00 am to 10:00 am								
	Existi	ng + Develo	pment We	ekday					
		Saddle	ewood						
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT								
0	0	0	1	0	14				
		Cante	rbury						
SB RT SB Thru SB LT NB RT NB Thru NB LT									
0 0 117 0 0 0									
Park the safet control of the safety of the									

Peak Hour Volume: 132

	Appaloosa/Hwy 105							
	Peak	Hour: 9:00	am to 10:0	10 am				
	Existi	ng + Develo	pment We	ekend				
		Hwy	105					
EB LT EB Thru EB RT WB LT WB Thru WB RT								
0	112	5	4	229	0			
		Appa	loosa					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0	0	0	2	0	5			
Peak Hou	r Volume:	357						

	Cherry Springs Ranch/Hwy 105							
	Peak	Hour: 9:00	am to 10:0	00 am				
	Existi	ng + Develo	pment We	ekend				
		Hwy	105					
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT							
7	109	80	53	169	13			
		Cherry Spr	ings Ranch					
SB RT	SB RT SB Thru SB LT NB RT NB Thru NB LT							
6	6 0 4 5 0 8							

Peak Hour Volume: 454

Canterbury/Hwy 105									
	Peak Hour: 1:00 pm to 2:00 pm								
	Existing + Development Weekend								
Hwy 105									
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT								
0	275	16	9	161	0				
		Cante	rbury						
SB RT	SB RT SB Thru SB LT NB RT NB Thru NB LT								
0	0	0	4	0	8				

Peak Hour Volume: 473

Canterbury/Saddlewood Peak Hour: 1:00 pm to 2:00 pm									
Existing + Development Weekend									
Saddlewood									
EB LT	T EB Thru EB RT WB LT WB Thru WB RT								
0	0	0	0	0	3				
		Cante	rbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	3	22	1	6	0				

Peak Hour Volume:

Appaloosa/Hwy 105										
Peak Hour: 1:00 pm to 2:00 pm										
Existing + Development Weekday										
Hwy 105										
EB LT	EB Thru EB RT WB LT WB Thru WB RT									
0	151	151 5 8 169 0								
		Appa	loosa							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0	0 0 6 0 4									
Peak Hou	r Volume:	343								

	Che	rry Springs	Ranch/Hwy	105						
Peak Hour: 1:00 pm to 2:00 pm										
Existing + Development Weekday										
Hwy 105										
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB RT								
0	152	0	0	172 2						
		Cherry Spr	ings Ranch							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
1	0	3	0	0	0					

Peak Hour Volume: 330

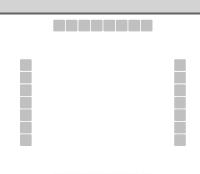
Canterbury/Hwy 105 Peak Hour: 1:00 pm to 2:00 pm										
Existing + Development Weekday Hwy 105										
EB LT	EBLT EB Thru EB RT WB LT WB Thru WB RT									
0	200	30	16	145	0					
		Cante	erbury							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0	0	0	8	0	17					

Peak Hour Volume: 416

Canterbury/Saddlewood									
Peak Hour: 1:00 pm to 2:00 pm									
Existing + Development Weekday									
Saddlewood									
EB LT	EB Thru	EB RT	WB LT	WB Thru WB RT					
0	0	0	3	0 21					
		Cante	rbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	3	39	3	2	0				
Peak Hou	ır Volume:	71							

Peak Hour Volume: 71

Appaloosa/Hwy 105											
Peak Hour: 1:00 pm to 2:00 pm											
Existing + Development Weekend											
Hwy 105											
EB LT	EB LT EB Thru EB RT WB LT WB T										
0	170	10	7	211	0						
		Appa	loosa								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
0	0	0	0 2 0 1								
Peak Hou	r Volume:	401									

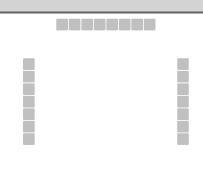

Cherry Springs Ranch/Hwy 105											
Peak Hour: 1:00 pm to 2:00 pm											
Existing + Development Weekend											
Hwy 105											
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB									
0	173	108	72	136	2						
		Cherry Spr	ings Ranch								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
2	0	1	8	0	12						
Deal III		544									

Peak Hour Volume: 514

EXISTING + DEVELOPMENT LEVEL OF SERVICE (LOS)

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood							
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County							
Date Performed	4/24/2023	East/West Street	Saddlewood							
Analysis Year	2023	North/South Street	Canterbury							
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.85							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Colorado Pumpkin Patch Special Use TIS									

Major Street: North-South

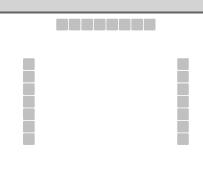

venicie vo	oiumes	and	Aajustm	ents
------------	--------	-----	---------	------

Approach		Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6	
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0	
Configuration							LR				LTR				LTR		
Volume (veh/h)						1		14		0	0	0		117	0	0	
Percent Heavy Vehicles (%)						2		2		2				2			
Proportion Time Blocked																	
Percent Grade (%)						(0										
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up Headways																	
Base Critical Headway (sec)						7.1		6.2		4.1				4.1			
Critical Headway (sec)						7.12		6.22		4.12				4.12			
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2			
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22			
Delay, Queue Length, an	d Leve	l of S	ervice														
Flow Rate, v (veh/h)							18			0				138			
Capacity, c (veh/h)							1036			1623				1623			
v/c Ratio							0.02			0.00				0.08			
95% Queue Length, Q ₉₅ (veh)							0.1			0.0				0.3			
Control Delay (s/veh)							8.5			7.2				7.4			
Level of Service (LOS)							А			Α				Α			
Approach Delay (s/veh)						8.5						7.4					

Approach LOS

Α

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood							
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County							
Date Performed	4/24/2023	East/West Street	Saddlewood							
Analysis Year	2023	North/South Street	Canterbury							
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.85							
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25							
Project Description	Colorado Pumpkin Patch Special Use TIS									


Major Street: North-South

V	ehi	icle	e V	ol	lume	S	and	F	١d	IJι	ıst	tm	ent	ts
---	-----	------	-----	----	------	---	-----	---	----	-----	-----	----	-----	----

Approach		Eastbound				Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		5		0	1	1		17	2	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)						0										
Right Turn Channelized																
Median Type Storage				Undi	vided	ided										
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)	1					7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Un Headway (sec)						3 52		3 32		2 22				2 22		

Base Follow-Up Headway (sec)						3.5		3.3		2.2			2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22			2.22		
Delay, Queue Length, and	Delay, Queue Length, and Level of Service														
Flow Rate, v (veh/h)							6			0			20		
Capacity, c (veh/h)							1083			1620			1620		
v/c Ratio							0.01			0.00			0.01		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0			0.0		
Control Delay (s/veh)							8.3			7.2			7.3		
Level of Service (LOS)							Α			Α			Α		
Approach Delay (s/veh)					8.3				0	.0		6.	.5		
Approach LOS					A										

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/24/2023	East/West Street	Saddlewood					
Analysis Year	2023	North/South Street	Canterbury					
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.85					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description Colorado Pumpkin Patch Special Use TIS								

Major Street: North-South

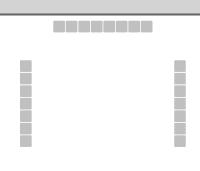
V	ehi	icle	e V	ol	lume	S	and	F	١d	IJι	ıst	tm	ent	ts
---	-----	------	-----	----	------	---	-----	---	----	-----	-----	----	-----	----

	•															
Approach		Eastb	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						3		21		0	2	3		39	3	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)					0											
Right Turn Channelized																
Median Type Storage				Undi	vided	vided										
Critical and Follow-up H	leadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)				Î		7.12		6.22		4.12				4.12		

Base Critical Headway (sec)					7.1		6.2	4.1			4.1	
Critical Headway (sec)					7.12		6.22	4.12			4.12	
Base Follow-Up Headway (sec)					3.5		3.3	2.2			2.2	
Follow-Up Headway (sec)					3.52		3.32	2.22			2.22	
Delay, Queue Length, an	d Leve	l of S	ervice									
Flow Rate, v (veh/h)						28		0			46	
Capacity, c (veh/h)						1047		1618			1615	
v/c Ratio						0.03		0.00			0.03	
95% Queue Length, Q ₉₅ (veh)						0.1		0.0			0.1	
Control Delay (s/veh)						8.5		7.2			7.3	
Level of Service (LOS)						Α		А			А	

Approach Delay (s/veh)

Approach LOS


8.5

0.0

6.8

Generated: 4/24/2023 3:29:12 PM

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/24/2023	East/West Street	Saddlewood					
Analysis Year	2023	North/South Street	Canterbury					
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.85					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description Colorado Pumpkin Patch Special Use TIS								

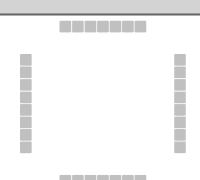
Major Street: North-South

V	ehi	icle	e V	ol	lume	S	and	F	١d	IJι	ıst	tm	ent	ts
---	-----	------	-----	----	------	---	-----	---	----	-----	-----	----	-----	----

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		3		0	6	1		22	3	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)					0											
Right Turn Channelized																
Median Type Storage		Und				vided										
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		

Base Critical Headway (sec)					7.1		6.2	4.1		4.1	
Critical Headway (sec)					7.12		6.22	4.12		4.12	
Base Follow-Up Headway (sec)					3.5		3.3	2.2		2.2	
Follow-Up Headway (sec)					3.52		3.32	2.22		2.22	
Delay, Queue Length, an	d Leve	l of S	ervice								
Flow Rate, v (veh/h)						4		0		26	
Capacity, c (veh/h)						1075		1618		1612	
v/c Ratio						0.00		0.00		0.02	
95% Queue Length, Q ₉₅ (veh)						0.0		0.0		0.0	
Control Delay (s/veh)						8.4		7.2		7.3	
Level of Service (LOS)						Α		А		А	

Approach Delay (s/veh)


Approach LOS

8.4

6.4

0.0

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/24/2023	East/West Street	Hwy 105					
Analysis Year	2023	North/South Street	Canterbury					
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.93					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Colorado Pumpkin Patch Special Use TIS							

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------

Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	152	74		43	158	0		11		8				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	itical and Follow-up Headways															

on the control of the		,-									
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			46			20			
Capacity, c (veh/h)		1407			1323			596			

0.03

0.1

7.8

0.00

0.0

7.6

Α

0.0

v/c Ratio

95% Queue Length, Q_{95} (veh)

Control Delay (s/veh)

Level of Service (LOS)

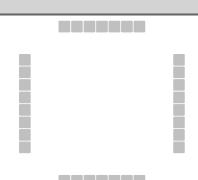
Approach LOS

Approach Delay (s/veh)

1.9

Generated: 4/24/2023 3:10:37 PM

0.03


0.1

11.3

В

11.3

HCS7 Two-Way Stop-Control Report												
General Information Site Information												
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/24/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Canterbury									
Time Analyzed	9:00-10:00 AM Weekend	Peak Hour Factor	0.85									
Intersection Orientation East-West Analysis Time Period (hrs) 0.25												
Project Description Colorado Pumpkin Patch Special Use TIS												

Major Street: East-West

Vehicle Vo	olumes	and A	Adjus	tments	;
------------	--------	-------	-------	--------	---

Approach		Eastb	ound			West	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	201	10		7	123	0		8		1				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up Headways																

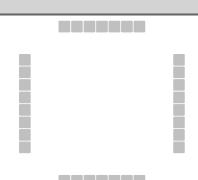
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			8			11			
Capacity, c (veh/h)		1438			1317			574			
v/c Ratio		0.00			0.01			0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/veh)		7.5			7.7			11.4			

Α

0.0

Level of Service (LOS)

Approach LOS


Approach Delay (s/veh)

0.5

Generated: 4/25/2023 3:52:25 PM

11.4

HCS7 Two-Way Stop-Control Report											
General Information Site Information											
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 PM								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/24/2023	East/West Street	Hwy 105								
Analysis Year	2023	North/South Street	Canterbury								
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.90								
Intersection Orientation East-West Analysis Time Period (hrs) 0.25											
Project Description Colorado Pumpkn Patch Special Use TIS											

Major Street: East-West

V	ehi	cl	e '	Vo	lumes	and	Ad	jus	tmen	ts
---	-----	----	-----	----	-------	-----	----	-----	------	----

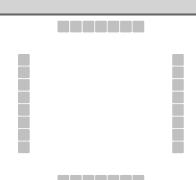
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	200	30		16	145	0		17		8				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Haadway (coc)		112				112				7 12		6.22				

•											
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Level	of Se	ervice								
Flow Rate, v (veh/h)		0			18			28			
Capacity, c (veh/h)		1418			1309			590			
v/c Ratio		0.00			0.01			0.05			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/veh)		7.5			7.8			11.4			

Α

0.0

Level of Service (LOS)


Approach LOS

Approach Delay (s/veh)

0.9

11.4

HCS7 Two-Way Stop-Control Report											
General Information Site Information											
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/24/2023	East/West Street	Hwy 105								
Analysis Year	2023	North/South Street	Canterbury								
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.85								
Intersection Orientation East-West Analysis Time Period (hrs) 0.25											
Project Description Colorado Pumpkin Patch Special Use TIS											

Major Street: East-West

venicie	volumes	and	Aajust	ments

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	275	16		9	161	0		8		4				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	adways														
Base Critical Headway (sec)		11				<i>l</i> 1				7 1		6.2				

-		<u> </u>									
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			11			14			
Capacity, c (veh/h)		1384			1217			510			
v/c Ratio		0.00			0.01			0.03			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/veh)		7.6			8.0			12.3			
Level of Service (LOS)		Α			Α			В			

0.0

Approach Delay (s/veh)

Approach LOS

0.5

Generated: 4/24/2023 3:13:54 PM

12.3

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/24/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.88
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------

Approach		Eastb	ound		Westbound					Northbound				South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		4	120	0		0	218	5						2		3
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized																
Median Type Storage				Undi	vided								-			
Critical and Follow-up He	adwa	vs														

Base Critical Headway (sec)		4.1			4.1				7.1		6.2
Critical Headway (sec)		4.12			4.12				7.12		6.22
Base Follow-Up Headway (sec)		2.2			2.2				3.5		3.3
Follow-Up Headway (sec)		2.22			2.22				3.52		3.32
Delay, Queue Length, and	Level	of Se	ervice								
Flow Rate, v (veh/h)		5			0					6	
Capacity, c (veh/h)		1312			1448					679	
v/c Ratio		0.00			0.00					0.01	

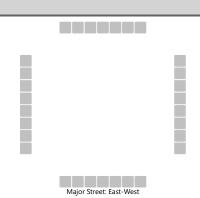
Level of Service (LOS) Α Approach Delay (s/veh) 0.3 0.0 10.3 Approach LOS В

0.0

7.5

0.0

7.8


95% Queue Length, Q_{95} (veh)

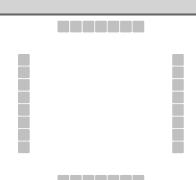
Control Delay (s/veh)

0.0

10.3

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/24/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Vehicle Volumes and Adjustments


•	<u> </u>															
Approach		Eastb	oound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		7	109	80		53	169	13		8	0	5		4	0	6
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)											0				0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Page Critical Handway (and)	T	4.1	T	I	П	4.1	I		I	7.1	C F	C 2	П	7.1	C F	()

	'												
Base Critical Headway (sec)		4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
Critical Headway (sec)		4.12			4.12			7.12	6.52	6.22	7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
Follow-Up Headway (sec)		2.22			2.22			3.52	4.02	3.32	3.52	4.02	3.32
Delay, Queue Length, and	l Leve	l of Se	ervice										
Flow Rate, v (veh/h)		8			57				14			11	
Capacity, c (veh/h)		1377			1368				575			645	
v/c Ratio		0.01			0.04				0.02			0.02	
95% Queue Length, Q ₉₅ (veh)		0.0			0.1				0.1			0.1	
Control Delay (s/veh)		7.6			7.7				11.4			10.7	
Level of Service (LOS)		А			А				В			В	
Approach Delay (s/veh)		0	.3		2	.0		11	.4		10).7	

Approach LOS

В

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/24/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.97
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------

Approach		Eastb	ound			Westk	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		0	152	0		0	172	2						3		1
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)														(0	
Right Turn Channelized																
Median Type Storage				Undi	vided											

Critical and Follow-up Headways

v/c Ratio

95% Queue Length, Q_{95} (veh)

Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS

Control of the control of the		, -									
Base Critical Headway (sec)		4.1			4.1				7.1		6.2
Critical Headway (sec)		4.12			4.12				7.12		6.22
Base Follow-Up Headway (sec)		2.2			2.2				3.5		3.3
Follow-Up Headway (sec)		2.22			2.22				3.52		3.32
Delay, Queue Length, and	Leve	of Se	ervice								
Flow Rate, v (veh/h)		0			0					4	
Capacity, c (veh/h)		1396			1423					666	

0.00

0.0

7.5

0.0

Copyright $\ @$ 2023 University of Florida. All Rights Reserved.

0.00

0.0

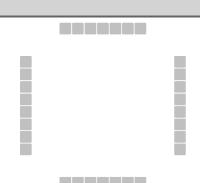
7.6

Α

0.0

Generated: 4/24/2023 3:50:51 PM

10.4


В

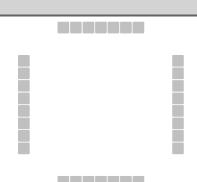
0.01

0.0

10.4

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/24/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Cherry Springs Ranch
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.92
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Major Street: East-West


Approach		Eastb	ound		Westbound			Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		0	173	108		72	136	2		12	0	8		1	0	2
Percent Heavy Vehicles (%)		2				2				3	3	3		2	3	2
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Bass Critical Hasshure (ass)		4.1				4.1				7.1	СГ	C 2		7.1	СГ	C 2

		, -											
Base Critical Headway (sec)		4.1			4.1			7.1	6.5	6.2	7.1	6.5	6.2
Critical Headway (sec)		4.12			4.12			7.13	6.53	6.23	7.12	6.53	6.22
Base Follow-Up Headway (sec)		2.2			2.2			3.5	4.0	3.3	3.5	4.0	3.3
Follow-Up Headway (sec)		2.22			2.22			3.53	4.03	3.33	3.52	4.03	3.32
Delay, Queue Length, and	l Leve	l of Se	ervice										
Flow Rate, v (veh/h)		0			78				22			3	
Capacity, c (veh/h)		1431			1255				515			646	
v/c Ratio		0.00			0.06				0.04			0.01	
95% Queue Length, Q ₉₅ (veh)		0.0			0.2				0.1			0.0	
Control Delay (s/veh)		7.5			8.1				12.3			10.6	
Level of Service (LOS)		А			А				В			В	
Approach Delay (s/veh)		0	.0		3	.1		12	2.3		10).6	

Approach LOS

В

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/24/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Appaloosa									
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.87									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Colorado Pumpkin Patch Special Use TIS											

Major Street: East-West

venicie	voiumes	and A	Aaju	stments
---------	---------	-------	------	---------

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	112	10		12	220	0		4		4				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Rase Critical Headway (sec)		11				<i>l</i> 1				71		6.2				

Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of S	ervice	1							
Flow Rate, v (veh/h)		0			14			9			
Capacity, c (veh/h)		1312			1443			682			
v/c Ratio		0.00			0.01			0.01			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.0			

7.5

7.7

Α

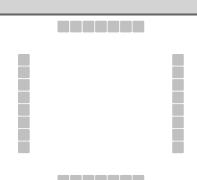
0.0

Control Delay (s/veh)

Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)


0.5

10.4

В

10.4

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/24/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Appaloosa									
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Colorado Pumpkin Patch Special Use TIS											

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------

Approach		Eastb	ound		Westbound				North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	112	5		4	229	0		5		2				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys							-							

•											
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			4			8			
Capacity, c (veh/h)		1311			1455			637			
v/c Ratio		0.00			0.00			0.01			

0.0

7.5

0.0

7.7

Α

0.0

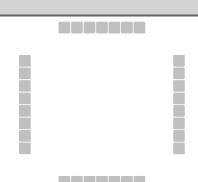
95% Queue Length, Q₉₅ (veh)

Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

0.2


0.0

10.7

В

10.7

HCS7 Two-Way Stop-Control Report								
General Information Site Information								
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/24/2023	East/West Street	Hwy 105					
Analysis Year	2023	North/South Street	Appaloosa					
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.98					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Colorado Pumpkin Patch Special Use TIS							

Major Street: East-West

Approach		Eastb	ound			Westk	ound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	151	5		8	169	0		4		6				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, and	Delay, Queue Length, and Level of Service															
Flow Rate, v (veh/h)		0				8					10					

1420

0.01

0.0

7.5

Approach LOS Copyright © 2023 University of Florida. All Rights Reserved.

1404

0.00

0.0

7.6

Α

0.0

Capacity, c (veh/h)

Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

95% Queue Length, Q₉₅ (veh)

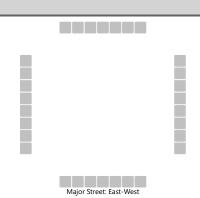
v/c Ratio

0.4

749

0.01

0.0


9.9

Α

9.9

Α

HCS7 Two-Way Stop-Control Report								
General Information Site Information								
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/24/2023	East/West Street	Hwy 105					
Analysis Year	2023	North/South Street	Appaloosa					
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.90					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Colorado Pumpkin Patch Special Use TIS							

Vehicle Volumes and Adjustments

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	170	10		7	211	0		1		2				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	Т	4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of Se	ervice													
Flow Rate, v (veh/h)	Т	0				8					3					
Capacity, c (veh/h)		1333				1372					701					
v/c Ratio		0.00				0.01					0.00					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.7				7.6					10.2					
Level of Service (LOS)		Α				А					В					

0.0

Approach Delay (s/veh)

Approach LOS

0.3

10.2

В

Generated: 4/24/2023 3:41:17 PM

FUTURE TRAFFIC GROWTH

Canterbury & Saddlewood Projected A.M. Weekday Peak Hour	Canterbury & Saddlewood Projected P.M. Weekday Peak Hour	Canterbury & Highway 105 Projected A.M. Weekday Peak Hour	Canterbury & Highway 105 Projected P.M. Weekday Peak Hour	Cherry Springs Ranch & Highway 105 Projected A.M. Weekday Peak Hour	Cherry Springs Ranch & Highway 105 Projected P.M. Weekday Peak Hour	Appaloosa & Highway 105 Projected A.M. Weekday Peak Hour	Appaloosa & Highway 105 Projected P.M. Weekday Peak Hour
Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV	Year Growth Expected PHV
2023 4	2023 18	2023 309	2023 359	2023 295	2023 306	2023 293	2023 314
2024 0.02 5	2024 0.02 19	2024 0.02 316	2024 0.02 367	2024 0.02 301	2024 0.02 313	2024 0.02 299	2024 0.02 321
2025 0.02 6	2025 0.02 20	2025 0.02 323	2025 0.02 375	2025 0.02 308	2025 0.02 320	2025 0.02 305	2025 0.02 328
2026 0.02 7	2026 0.02 21	2026 0.02 330	2026 0.02 383	2026 0.02 315	2026 0.02 327	2026 0.02 312	2026 0.02 335
2027 0.02 8	2027 0.02 22	2027 0.02 337	2027 0.02 391	2027 0.02 322	2027 0.02 334	2027 0.02 319	2027 0.02 342
2028 0.02 9	2028 0.02 23	2028 0.02 344	2028 0.02 399	2028 0.02 329	2028 0.02 341	2028 0.02 326	2028 0.02 349
2029 0.02 10	2029 0.02 24	2029 0.02 351	2029 0.02 407	2029 0.02 336	2029 0.02 348	2029 0.02 333	2029 0.02 356
2030 0.02 11	2030 0.02 25	2030 0.02 359	2030 0.02 416	2030 0.02 343	2030 0.02 355	2030 0.02 340	2030 0.02 364
2031 0.02 12	2031 0.02 26	2031 0.02 367	2031 0.02 425	2031 0.02 350	2031 0.02 363	2031 0.02 347	2031 0.02 372
2032 0.02 13	2032 0.02 27	2032 0.02 375	2032 0.02 434	2032 0.02 357	2032 0.02 371	2032 0.02 354	2032 0.02 380
2033 0.02 14	2033 0.02 28	2033 0.02 383	2033 0.02 443	2033 0.02 365	2033 0.02 379	2033 0.02 362	2033 0.02 388
2034 0.02 15	2034 0.02 29	2034 0.02 391	2034 0.02 452	2034 0.02 373	2034 0.02 387	2034 0.02 370	2034 0.02 396
2035 0.02 16	2035 0.02 30	2035 0.02 399	2035 0.02 462	2035 0.02 381	2035 0.02 395	2035 0.02 378	2035 0.02 404
2036 0.02 17	2036 0.02 31	2036 0.02 407	2036 0.02 472	2036 0.02 389	2036 0.02 403	2036 0.02 386	2036 0.02 413
2037 0.02 18	2037 0.02 32	2037 0.02 416	2037 0.02 482	2037 0.02 397	2037 0.02 412	2037 0.02 394	2037 0.02 422
2038 0.02 19	2038 0.02 33	2038 0.02 425	2038 0.02 492	2038 0.02 405	2038 0.02 421	2038 0.02 402	2038 0.02 431
2039 0.02 20	2039 0.02 34	2039 0.02 434	2039 0.02 502	2039 0.02 414	2039 0.02 430	2039 0.02 411	2039 0.02 440
2040 0.02 21	2040 0.02 35	2040 0.02 443	2040 0.02 513	2040 0.02 423	2040 0.02 439	2040 0.02 420	2040 0.02 449
Canterbury & Saddlewood Projected A.M. Weekend Peak Hour	Canterbury & Saddlewood Projected P.M. Weekend Peak Hour	Canterbury & Highway 105 Projected A.M. Weekend Peak Hour	Canterbury & Highway 105 Projected P.M. Weekend Peak Hour	Cherry Springs Ranch & Highway 105 Projected A.M. Weekend Peak Hour	Cherry Springs Ranch & Highway 105 Projected P.M. Weekend Peak Hour	Appaloosa & Highway 105 Projected A.M. Weekend Peak Hour	Appaloosa & Highway 105 Projected P.M. Weekend Peak Hour
A.M. Weekend Peak Hour	P.M. Weekend Peak Hour	A.M. Weekend Peak Hour	P.M. Weekend Peak Hour	Projected A.M. Weekend Peak Hour	Projected P.M. Weekend Peak Hour	A.M. Weekend Peak Hour	P.M. Weekend Peak Hour
A.M. Weekend Peak Hour Year Growth Expected PHV	P.M. Weekend Peak Hour Year Growth Expected PHV	A.M. Weekend Peak Hour Year Growth Expected PHV	P.M. Weekend Peak Hour Year Growth Expected PHV	Projected A.M. Weekend Peak Hour Year Growth Expected PHV	Projected P.M. Weekend Peak Hour Year Growth Expected PHV	A.M. Weekend Peak Hour Year Growth Expected PHV	P.M. Weekend Peak Hour Year Growth Expected PHV
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9 2024 0.02 10	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2024 0.02 12	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 2024 0.02 244	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 329	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2024 0.02 301	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 303	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 288	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 305
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9 2024 0.02 10 2025 0.02 11	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2024 0.02 301 2025 0.02 308	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 303 2025 0.02 310	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 305 2025 0.02 312
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 12	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 260 2028 0.02 266	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336 2026 0.02 343	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2024 0.02 301 2025 0.02 308 2026 0.02 315 2027 0.02 322 2028 0.02 329	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 309 2025 0.02 310 2026 0.02 317 2027 0.02 324 2028 0.02 331	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 28 2024 0.02 288 2025 0.02 294 2026 0.02 300	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 299 2024 0.02 305 2025 0.02 312 2026 0.02 319
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9 2024 0.02 10 2025 0.02 11 2026 0.02 12 2027 0.02 13	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2034 0.02 11 2035 0.02 13 2035 0.02 15 2026 0.02 15 2028 0.02 16 2029 0.02 17	A.M. Weekend Peak Hour Vear Growth Espected PHV 2023 239 2034 2023 244 2026 0.02 254 2027 0.02 256 2028 0.02 266 2029 0.02 272	P.M. Weekend Peak Hour Veair Growth Espected PHV 2023 3 322 2005 0.02 33 2026 0.02 33 2026 0.02 35 2028 0.02 357 2028 0.02 357 2029 0.02 355	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2004 02 308 2005 002 315 2006 002 315 2007 002 329 2028 0.02 329 2029 0.02 336	Projected P.M. Weekend Peak Hour Vear Growth Espected PHV 2023 297 2004 0.23 300 2005 0.02 310 2006 0.02 317 2007 0.02 324 2028 0.02 331 2029 0.02 338	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 0.22 282 3024 0.02 284 2025 0.02 284 2026 0.02 306 2027 0.02 313 2029 0.02 313	P.M. Weekend Peak Hour Year Growth Expected PHV 2024 2 299 2024 3 259 2025 0.02 315 2026 0.02 319 2027 0.02 326 2028 0.02 333 2029 0.02 340
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9 9 2024 0.02 10 2025 0.02 11 2026 0.02 12 2027 0.02 13 2028 0.02 14 2029 0.02 15 2030 0.02 15	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2029 0.02 17 2030 0.02 18	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 260 2028 0.02 266 2029 0.02 272 2030 0.02 278	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336 2026 0.02 336 2027 0.02 350 2028 0.02 357 2029 0.02 365 2030 0.02 373	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2024 0.02 301 2025 0.02 308 2026 0.02 315 2027 0.02 322 2028 0.02 329 2029 0.02 336 2030 0.02 343	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 309 2025 0.02 310 2026 0.02 317 2027 0.02 324 2028 0.02 331 2029 0.02 338 2030 0.02 345	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294 2026 0.02 300 2027 0.02 366 2028 0.02 313 2029 0.02 327 2030 0.02 327	P.M. Weekend Peak Hour Year Growth Expected PRV 2023 299 2024 0.02 395 2025 0.02 312 2026 0.02 319 2027 0.02 326 2028 0.02 333 2029 0.02 340 2030 0.02 347
A.M. Weekend Peak Hoor Year Growth Espected PHV 2022 9 2023 9 2025 002 11 2026 002 12 2027 002 13 2028 002 14 2029 002 15	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2034 0.02 11 2035 0.02 13 2035 0.02 15 2026 0.02 15 2028 0.02 16 2029 0.02 17	A.M. Weekend Peak Hour Vear Growth Espected PHV 2023 239 2034 2023 244 2026 0.02 254 2027 0.02 256 2028 0.02 266 2029 0.02 272	P.M. Weekend Peak Hour Veair Growth Espected PHV 2023 3 322 2005 0.02 33 2026 0.02 33 2026 0.02 35 2028 0.02 357 2028 0.02 357 2029 0.02 355	Projected A.M. Weekend Peak Hour Year Growth Expected PHV 2023 295 2004 02 308 2005 002 315 2006 002 315 2007 002 329 2028 0.02 329 2029 0.02 336	Projected P.M. Weekend Peak Hour Vear Growth Espected PHV 2023 297 2004 0.23 300 2005 0.02 310 2006 0.02 317 2007 0.02 324 2028 0.02 331 2029 0.02 338	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 0.22 282 3024 0.02 284 2025 0.02 284 2026 0.02 306 2027 0.02 313 2029 0.02 313	P.M. Weekend Peak Hour Year Growth Expected PHV 2024 2 299 2024 3 259 2025 0.02 315 2026 0.02 319 2027 0.02 326 2028 0.02 333 2029 0.02 340
A.M. Weekend Peak Hoour Year Growth Espected PHV 3022 2024 0.022 10 2055 0.022 11 2066 0.02 12 2077 2022 13 2089 0.02 14 2089 0.02 15 2081 0.02 17 2092 0.02 18	P.M. Weekend Peak Nour Year Growth Espected PHV 2023 2024 0.22 12 2026 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2039 0.02 16 2039 0.02 17 2039 0.02 17 2039 0.02 18 2031 0.02 19 2031 0.02 19 2032 0.02 20	A.M. Weekend Peak Hour Year Growth Expected PHV 2022 239 2024 0.02 244 2025 0.02 249 2026 0.02 254 2027 0.02 266 2028 0.02 266 2028 0.02 266 2028 0.02 266 2028 0.02 278 2031 0.02 278 2031 0.02 278	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 222 2024 0.02 329 2025 0.02 336 2026 0.02 343 2027 0.02 350 2028 0.02 357 2028 0.02 357 2029 0.02 357 2029 0.02 358 2020 0.02 381 2021 0.02 381	Projected A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 295 2024 0.02 301 2025 0.02 308 2026 0.02 315 2027 0.02 312 2028 0.02 329 2029 0.02 329 2039 0.02 350 2020 350 2021 350 2021 350 2021 0.02 350 2021 0.02 357	Projected P.M. Weekend Peak hour Year Growth Expected PRV 3023 297 2024 0.02 303 2025 0.02 310 2026 0.02 317 2027 0.02 324 2028 0.02 331 2029 0.02 331 2029 0.02 336 2031 0.02 362 2031 0.03 352 2031 0.02 360	A.M. Weekend Peak Hour Year Growth Expected PHV 3023 2024 0.02 288 2025 0.02 294 2026 0.02 306 2027 0.02 306 2028 0.02 313 2029 0.02 313 2029 0.02 313 2029 0.02 313 2029 0.02 314 2021 0.02 334 2031 0.02 334	P.M. Weekend Peak Nour Year Growth Espected PNV 2023 299 2024 0.22 305 2025 0.02 312 2026 0.02 319 2027 0.02 326 2039 0.02 333 2039 0.02 336 2039 0.02 338 2039 0.02 338 2031 0.02 354 2031 0.02 354 2031 0.02 354
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9 9 2024 0.22 10 2025 0.022 11 2026 0.02 12 2028 0.02 14 2029 0.02 15 2030 0.02 15 2030 0.02 17 2031 0.02 17 2032 0.02 18 2033 0.02 18	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2028 0.02 15 2029 0.02 17 2030 0.02 17 2030 0.02 18 2031 0.02 19 2031 0.02 19 2032 0.02 20 2033 0.02 21	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 2024 0.02 2.44 2015 0.02 2.49 2016 0.02 2.54 2016 0.02 2.56 2028 0.02 2.72 2030 0.02 2.72 2030 0.02 2.78 2031 0.02 2.84 2032 0.02 2.96	P.M. Weekend Peak Hour Vear Growth Espected PHV 2023 322 2024 0.02 329 2025 0.02 346 2026 0.02 357 2028 0.02 357 2029 0.02 357 2029 0.02 373 2031 0.02 373 2031 0.02 389 2033 0.02 389	Projected A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 295 2004 0.02 301 2005 0.02 308 2006 0.02 312 2008 0.02 329 2008 0.02 329 2009 0.02 336 2001 0.02 343 2001 0.02 343 2001 0.02 357 2033 0.02 357 2033 0.02 365	Projected P.M. Weekend Peak Hour Year Growth Expected PMV 2023 297 2024 0.02 303 2025 0.02 310 2026 0.02 311 2029 0.02 331 2029 0.02 331 2029 0.02 331 2029 0.02 331 2029 0.02 345 2031 0.02 345 2031 0.02 360 2031 0.02 360 2033 0.02 366	A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294 2026 0.03 305 2028 0.02 305 2028 0.02 313 2029 0.02 327 2031 0.02 334 2032 0.02 341 2032 0.02 341	P.M. Weekend Peak Hour Year Growth Espected PHV 2023 299 2045 0.02 312 2045 0.02 312 2046 0.02 313 2040 0.02 313 2040 0.02 314 2040 0.02 347 2040 0.02 347 2051 0.02 362 2052 0.02 370
A.M. Weekend Peak Nour Year Growth Expected PHV 3023 9 2024 0.02 10 2055 0.02 11 2066 0.02 12 2077 0.02 13 2088 0.02 14 2099 0.02 15 2080 0.02 16 2080 0.02 16 2080 0.02 16 2080 0.02 17 2080 0.02 18 2080 0.02 19 2084 0.02 200 200 200 200 200 200 200 200 20	P.M. Weekend Peak Nour Year Growth Expected PHV 3023 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2029 0.02 17 2030 0.02 17 2030 0.02 19 2030 0.02 19 2030 0.02 19 2030 0.02 19 2030 0.02 19 2030 0.02 19 2030 0.02 21 2030 0.02 21 2030 0.02 21 2030 0.02 22	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 2024 0,02 244 2025 0,02 249 2026 0,02 254 2027 0,02 266 2028 0,02 266 2029 0,02 272 2030 0,02 278 2031 0,02 278 2033 0,02 278 2033 0,02 278 2033 0,02 278 2033 0,02 278 2034 0,02 296 2034 0,02 296	P.M. Weekend Peak Hour Vear Growth Expected PHV 2023 2024 2025 2026 2026 2027 2029 2029 2029 2029 2029 2029 2029	Projected A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 2024 2025 2024 2022 2026 2026 2027 2027 2028 2029 2029 2029 2029 2029 2029 2029	Projected P.M. Weekend Peak hour Year Growth Expected PHV 3033 302 303 303 304 302 305 305 306 307 307 307 307 307 307 307 307 307 307	A.M. Weekend Peak Hour Year Growth Expected PHV 3023 2024 0.02 288 2025 0.02 294 2026 0.02 306 2027 0.02 306 2028 0.02 313 2029 0.02 320 2039 0.02 320 2039 0.02 321 2039 0.02 324 2014 0.02 344 2014 0.02 385	P.M. Weekend Peak Nour Year Growth Espected PNV 2023 299 2024 0.02 305 2025 0.02 312 2026 0.02 319 2027 0.02 326 2028 0.02 333 2039 0.02 344 2030 0.02 344 2030 0.02 346 2031 0.02 347 2030 0.02 370 2040 0.02 378
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9 9 2024 0.02 10 2015 0.02 11 2016 0.02 12 2010 0.02 15 2000 0.02 15 2010 0.02 15 2010 0.02 15 2010 0.02 17 2023 0.02 18 2031 0.02 19 2044 0.02 20 2055 0.02 19	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2030 0.02 14 2030 0.02 15 2030 0.02 15 2030 0.02 15 2030 0.02 15 2030 0.02 15 2030 0.02 15 2030 0.02 15 2030 0.02 12 2040 0.02 22 2050 0.02 20 2033 0.02 21 2044 0.02 22 2055 0.02 23	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 224 2024 0.02 2.44 2025 0.02 2.49 2026 0.02 2.56 2027 2.60 2027 2.60 2027 2.60 2027 2.60 2027 2.72 2030 0.02 2.72 2030 0.02 2.78 2031 0.02 2.84 2032 0.02 2.90 2033 0.02 2.96 2034 0.02 302 2035 0.02 302 2036 0.02 302	P.M. Weekend Peak Hour Veair Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336 2020 0.02 339 2021 327 2021 327 2021 327 2021 327 2021 327 2021 327 2021 327 2021 327 2021 327 2021 327 2021 0.02 373 2021 0.02 389 2023 0.02 389 2033 0.02 397 2034 0.02 405	Projected A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 295 2004 0.02 301 2005 0.02 388 2006 0.02 325 2007 0.02 389 2008 0.02 329 2008 0.02 329 2009 0.02 336 2001 0.02 343 2001 0.02 343 2001 0.02 357 2003 0.02 357 2003 0.02 372 2004 0.02 373 2005 0.02 381	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 303 2055 0.02 310 2066 0.02 31.1 2072 31.2 2073 31.3 2073 0.02 33.1 2073 0.02 33.8 2070 0.02 345 2071 0.02 360 2072 0.02 360 2073 0.02 366 2073 0.02 376 2075 0.02 376	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 396 2026 0.02 306 2027 0.02 306 2029 0.02 327 2030 0.02 327 2031 0.02 324 2032 0.02 341 2033 0.02 348 2034 0.02 355 2035 0.02 363	P.M. Weekend Peak Hour Year Growth Espected PHV 2023 299 2045 0.02 312 2050 0.02 312 2060 0.02 315 2000 0.02 336 2000 0.02 336 2000 0.02 347 2010 0.02 347 2010 0.02 354 2010 0.02 362 2010 0.02 362 2010 0.02 362 2010 0.02 362 2010 0.02 362 2010 0.02 362 2010 0.02 362 2010 0.02 362 2011 0.02 362 2013 0.02 362 2013 0.02 378 2014 0.02 378 2015 0.02 386
A.M. Weekend Peak Nour Year Growth Expected PHV 3023 9 3044 0.02 30 2055 0.02 11 2066 0.02 12 2077 0.02 13 2088 0.02 14 2079 0.02 15 2080 0.02 15 2010 0.02 15 2010 0.02 15 2010 0.02 15 2011 0.02 15 2010 0.02 16 2011 0.02 17 2011 0.02 17 2011 0.02 17 2011 0.02 17 2011 0.02 17 2011 0.02 17 2011 0.02 17 2011 0.02 17 2011 0.02 17 2011 0.02 19 2015 0.02 21 2015 0.02 22	P.M. Weekend Peak Hour Year Growth Espected PHV 3023 11 2024 0.02 12 2025 0.02 13 2026 0.02 14 2027 0.02 15 2028 0.02 16 2029 0.02 17 2030 0.02 18 2031 0.02 19 2031 0.02 19 2031 0.02 2 19 2031 0.02 2 20 2035 0.02 2 22 2035 0.02 2 24	A.M. Weekend Peak Hour Year Growth Espected PHV 2023 2034 0,032 234 2055 0,02 246 2056 0,02 254 2057 0,02 266 2028 0,02 266 2029 0,02 272 2030 0,02 278 2031 0,02 284 2033 0,02 266 2039 0,02 278 2031 0,02 286 2034 0,02 366 2034 0,02 366 2035 0,02 366 2036 0,02 366 2037 0,02 366 2038 0,02 366 2039 0,02 378 2039 0,02 378 2039 0,02 366 2039 0,02 366 2039 0,02 366 2039 0,02 366 2039 0,02 366 2039 0,02 366 2039 0,02 366 2039 0,02 366 2039 0,02 366	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336 2026 0.02 343 2027 0.02 350 2028 0.02 357 2029 0.02 365 2030 0.02 373 2031 0.02 373 2031 0.02 373 2031 0.02 373 2031 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 414 2035 0.02 414	Projected A.M. Weekend Peak Hour Vear Growth Expected PHV 2023	Projected P.M. Weekend Peak hour Vear Growth Espected PPV 2023 2034 027 350 2055 022 310 2056 022 310 2057 022 312 2079 022 324 2088 022 331 2099 0.02 338 2090 0.02 345 2011 0.02 355 2011 0.02 356 2011 0.02 356 2011 0.02 356 2011 0.02 356 2011 0.02 356 2011 0.02 356 2011 0.02 356 2011 0.02 356	A.M. Weekend Peak Hour Year Growth Expected PHV 3033 2024 2034 2032 2034 2025 2026 2027 2027 2020 2027 2020	P.M. Weekend Peak Hour Year Growth Espected PHV 2023 299 2014 0.02 305 2025 0.02 312 2026 0.02 313 2027 0.02 326 2028 0.02 333 2029 0.02 347 2030 0.02 347 2031 0.02 347 2031 0.02 347 2031 0.02 347 2031 0.02 378 2031 0.02 378 2035 0.02 386 2036 0.02 386 2036 0.02 386 2036 0.02 384
A.M. Weekend Peak Hour Year Growth Expected PHV 2023 9 9 2024 0.02 10 2015 0.02 11 2016 0.02 12 2017 0.02 14 2019 0.02 14 2019 0.02 14 2019 0.02 15 2020 0.02 15 2030 0.02 16 2031 0.02 17 2032 0.02 18 2031 0.02 19 2044 0.02 20 2055 0.02 19 2064 0.02 21 2066 0.02 22 2066 0.02 22	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2067 0.02 14 2067 0.02 15 2069 0.02 15 2069 0.02 15 2070 0.02 15 2089 0.02 15 2090 0.02 15 2090 0.02 15 2090 0.02 15 2090 0.02 15 2090 0.02 15 2090 0.02 12 2090 0.02 22 2004 0.02 22 2004 0.02 22 2005 0.02 22 2006 0.02 22 2006 0.02 23 2006 0.02 24 2007 0.02 25	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 2024 0.02 2.44 2025 0.02 2.49 2026 0.02 2.54 2027 0.02 2.60 2029 0.02 2.78 2020 0.02 2.78 2020 0.02 2.78 2020 0.02 2.78 2020 0.02 2.78 2020 0.02 2.78 2020 0.02 2.90 2020 0.02 2.90 2031 0.02 2.96 2034 0.02 302 2055 0.02 309 2036 0.02 316 2037 0.02 323	P.M. Weekend Peak Hour Vear Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336 2027 0.02 336 2027 0.02 365 2020 0.02 365 2020 367 2020 389 2020 0.02 389 2031 0.02 389 2032 0.02 389 2034 0.02 389 2035 0.02 445 2036 0.02 445 2036 0.02 442	Projected A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 295 2004 0.02 301 2005 0.02 308 2006 0.02 315 2007 0.02 322 2007 0.02 325 2007 0.02 325 2007 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 385 2009 0.02 389 2009 0.02 389 2009 0.02 389	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 303 2025 0.02 310 2026 0.02 317 2027 0.02 324 2038 0.02 345 2030 0.02 345 2030 0.02 345 2031 0.02 366 2034 0.02 366 2034 0.02 376 2035 0.02 384 2036 0.02 384 2036 0.02 384 2036 0.02 384 2037 0.02 384 2038 0.02 384 2039 0.02 384	A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294 2026 0.02 300 2027 0.02 300 2028 0.02 300 2029 0.02 300 2020 0.02 310 2030 0.02 327 2031 0.02 344 2032 0.02 341 2033 0.02 348 2034 0.02 355 2035 0.02 363 2036 0.02 371 2037 0.02 379	P.M. Weekend Peak Hour Year Growth Espected PHV 2023 299 2024 0.02 305 2015 0.02 312 2016 0.02 319 2017 0.02 32 319 2017 0.02 33 30 2019 0.02 33 30 2019 0.02 347 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 378 2019 0.02 378 2019 0.02 378 2019 0.02 386 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 402
A.M. Weekend Peak Hoor Year Growth Espected PHV 2022 9 2024 0.02 10 2025 0.02 11 2026 0.02 12 2027 0.02 13 2028 0.02 14 2029 0.02 15 2030 0.02 15 2030 0.02 17 2032 0.02 17 2032 0.02 17 2032 0.02 19 2031 0.02 19 2031 0.02 19 2031 0.02 19 2031 0.02 19 2031 0.02 19 2031 0.02 21 2031 0.02 21 2031 0.02 22 2037 0.02 22 2037 0.02 22 2037 0.02 22 2037 0.02 23	P.M. Weekend Peak Hour Year Growth Espected PHV 2023 11 2024 0.02 11 2025 0.02 12 2026 0.02 15 2028 0.02 16 2029 0.02 17 2030 0.02 18 2030 0.02 19 2031 0.02 19 2032 0.02 19 2032 0.02 19 2032 0.02 2 20 2034 0.02 2 20 2040 0.02 2 20 2050 0.02 2 20 2050 0.02 2 20 2050 0.02 2 20 2051 0.02 2 20 2052 0.02 2 20 2053 0.02 2 24 2057 0.02 25 2058 0.02 26	A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 233 244 2023 0,22 244 2025 0,22 246 2026 0,22 254 2027 0,2 256 2028 0,02 256 2029 0,02 272 2030 0,02 278 2031 0,02 284 2032 0,02 266 2039 0,02 278 2031 0,02 284 2032 0,02 296 2038 0,02 309 2038 0,02 309 2038 0,02 309 2039 0,02 316 2037 0,02 323 2038 0,02 330	P.M. Weekend Peak Hour Veair Growth Espected PHV 2023 322 2024 0.02 329 2025 0.02 336 2026 0.02 336 2027 0.02 350 2028 0.02 357 2029 0.02 365 2030 0.02 373 2031 0.02 381 2032 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 389 2031 0.02 389 2032 0.02 404 2035 0.02 414 2036 0.02 432 2038 0.02 441	Projected A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 295 2054 0,02 361 2055 0,02 368 2006 0,02 368 2006 0,02 329 2029 0,02 346 2030 0,02 349 2031 0,02 349 2031 0,02 356 2032 0,02 376 2035 0,02 387 2036 0,02 387 2037 0,02 381 2036 0,02 389 2037 0,02 389 2037 0,02 389 2037 0,02 397 2038 0,02 495	Projected P.M. Weekend Peak Hour Year Growth Espected PMV 2021 297 2021 350 2025 002 310 2026 002 310 2026 002 312 2029 002 334 2039 002 345 2030 002 345 2031 002 352 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356 2031 002 356	AM. Weekend Peak Hour Year Growth Expected PHV 2023 222 2024 0.02 288 2025 0.02 294 2026 0.02 306 2028 0.02 313 2029 0.02 327 2030 0.02 327 2031 0.02 344 2031 0.02 344 2031 0.02 344 2031 0.02 344 2031 0.02 344 2031 0.02 344 2031 0.02 347 2031 0.02 347 2031 0.02 348 2031 0.02 387	P.M. Weekend Peak Nour Year Growth Espected PNV 2023 299 2024 0.02 299 2025 0.02 1319 2026 0.02 1319 2027 0.02 1349 2028 0.02 1340 2030 0.02 1340 2030 0.02 1347 2031 0.02 1347 2031 0.02 1347 2032 0.02 1364 2031 0.02 1364 2032 0.02 1364 2031 0.02 1364 2032 0.02 1364 2031 0.02 1364 2031 0.02 1364 2031 0.02 1364 2031 0.02 1364 2031 0.02 1364 2031 0.02 1364 2031 0.02 1364 2031 0.02 1364 2031 0.02 1364 2031 0.02 1364
A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 9 9 2024 0.02 10 2025 0.02 11 2036 0.02 12 2037 0.02 14 2039 0.02 14 2030 0.02 15 2030 0.02 15 2030 0.02 16 2031 0.02 17 2021 0.02 17 2032 0.02 18 2034 0.02 19 2034 0.02 19 2036 0.02 19 2036 0.02 19 2036 0.02 21 2036 0.02 22 2036 0.02 22 2036 0.02 22	P.M. Weekend Peak Hour Year Growth Expected PHV 2023 11 2024 0.02 12 2025 0.02 13 2067 0.02 14 2067 0.02 15 2069 0.02 15 2069 0.02 15 2070 0.02 15 2089 0.02 15 2090 0.02 15 2090 0.02 15 2090 0.02 15 2090 0.02 15 2090 0.02 15 2090 0.02 12 2090 0.02 22 2004 0.02 22 2004 0.02 22 2005 0.02 22 2006 0.02 22 2006 0.02 23 2006 0.02 24 2007 0.02 25	A.M. Weekend Peak Hour Year Growth Expected PHV 2023 239 2024 0.02 2.44 2025 0.02 2.49 2026 0.02 2.54 2027 0.02 2.60 2029 0.02 2.78 2020 0.02 2.78 2020 0.02 2.78 2020 0.02 2.78 2020 0.02 2.78 2020 0.02 2.78 2020 0.02 2.90 2020 0.02 2.90 2031 0.02 2.96 2034 0.02 302 2055 0.02 309 2036 0.02 316 2037 0.02 323	P.M. Weekend Peak Hour Vear Growth Expected PHV 2023 322 2024 0.02 329 2025 0.02 336 2027 0.02 336 2027 0.02 365 2020 0.02 365 2020 367 2020 389 2021 0.02 389 2031 0.02 389 2032 0.02 389 2034 0.02 389 2035 0.02 445 2036 0.02 445 2036 0.02 442	Projected A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 295 2004 0.02 301 2005 0.02 308 2006 0.02 315 2007 0.02 322 2007 0.02 325 2007 0.02 325 2007 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 343 2009 0.02 385 2009 0.02 389 2009 0.02 389 2009 0.02 389	Projected P.M. Weekend Peak Hour Year Growth Expected PHV 2023 297 2024 0.02 303 2025 0.02 310 2026 0.02 317 2027 0.02 324 2038 0.02 345 2030 0.02 345 2030 0.02 345 2031 0.02 366 2034 0.02 366 2034 0.02 376 2035 0.02 384 2036 0.02 384 2036 0.02 384 2036 0.02 384 2037 0.02 384 2038 0.02 384 2039 0.02 384	A.M. Weekend Peak Hour Vear Growth Expected PHV 2023 282 2024 0.02 288 2025 0.02 294 2026 0.02 300 2027 0.02 300 2028 0.02 300 2029 0.02 300 2020 0.02 310 2030 0.02 327 2031 0.02 344 2032 0.02 341 2033 0.02 348 2034 0.02 355 2035 0.02 363 2036 0.02 371 2037 0.02 379	P.M. Weekend Peak Hour Year Growth Espected PHV 2023 299 2024 0.02 305 2015 0.02 312 2016 0.02 319 2017 0.02 32 319 2017 0.02 33 30 2019 0.02 33 30 2019 0.02 347 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 362 2019 0.02 378 2019 0.02 378 2019 0.02 378 2019 0.02 386 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 394 2019 0.02 402

SHORT RANGE HORIZON PEAK HOUR TURNING MOVEMENTS

	Canterbury/Hwy 105										
	Peak Hour: 9:00 am to 10:00 am										
	Short Range Weekend										
	Hwy 105										
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT						
0	202	12	9	123	0						
		Cante	rbury								
SB RT	SB RT SB Thru SB LT NB RT NB Thru NB LT										
0	0 0 0 1 0 8										

Peak Hour Volume: 355

Canterbury/Saddlewood Peak Hour: 9:00 am to 10:00 am								
		Short Rang	e Weekend					
		Saddle	ewood					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	0	0	0	0	5			
		Cante	erbury					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0	2	17	2	1	0			

Peak Hour Volume:

	Appaloosa/Hwy 105							
	Peak Hour: 9:00 am to 10:00 am							
		Short Rang	e Weekday					
		Hwy	105					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	112	11	12	222	0			
		Appa	loosa					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0 0 0 6 0 5								
Peak Hou	r Volume:	368						

Cherry Springs Ranch/Hwy 105 Peak Hour: 9:00 am to 10:00 am								
		Short Rang	e Weekday					
		Hwy	105					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
3	121	0	0	222	6			
		Cherry Spr	ings Ranch					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
3	0	3	0	0	0			

Peak Hour Volume:

Canterbury/Hwy 105										
Peak Hour: 9:00 am to 10:00 am										
		Short Rang	e Weekday							
		Hwy	105							
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT									
0	153	75	43	162	0					
		Cante	erbury							
SB RT SB Thru SB LT NB RT NB Thru NB LT										
0 0 0 9 0 11										

Peak Hour Volume: 453

	Canterbury/Saddlewood							
	Peak	Hour: 9:00	am to 10:0	00 am				
		Short Rang	e Weekday					
		Saddle	ewood					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	0	0	1	0	14			
		Cante	erbury					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
0	0	118	0	0	0			
Peak Hou	r Volume:	133	•	•	•			

	Appaloosa/Hwy 105							
		Peak	Hour: 9:00	am to 10:0	10 am			
			Short Rang	e Weekend				
			Hwy	105				
	EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT		
ı	0	112	5	6	232	0		
			Appa	loosa				
	SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT		
	0	0	0	4	0	4		
	Beech III.	-17-1	262					

Peak Hour Volume:

	Cherry Springs Ranch/Hwy 105							
	Peak	Hour: 9:00	am to 10:0	00 am				
		Short Rang	e Weekend					
		Hwy	105					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
6	111	80	53	173	15			
		Cherry Spr	ings Ranch					
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT			
6	6 0 3 5 0 8							
Peak Hou	Peak Hour Volume: 460							

	Canterbury/Hwy 105							
	Peak	Hour: 1:00) pm to 2:0) pm				
		Short Rang	e Weekend					
		Hwy	105					
EB LT	BLT EB Thru EB RT WB LT WB Thru WB RT							
0	278	278 17 9 164 0						
		Cante	rbury					
SB RT	SB RT SB Thru SB LT NB RT NB Thru NB LT							
0	0	0	5	0	7			

Peak Hour Volume: 480

	Canterbury/Saddlewood								
	Peal	Hour: 1:00	pm to 2:0	0 pm					
		Short Rang	e Weekend						
		Saddle	ewood						
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB R								
0	0 0 0 0 0 3								
		Cante	erbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	3	22	1	7	0				
Deal, Her	. 17.1	2.0							

Peak Hour Volume:

	Appaloosa/Hwy 105								
	Peal	Hour: 1:00	pm to 2:0	0 pm					
		Short Rang	e Weekday						
		Hwy	105						
EB LT	BLT EB Thru EB RT WB LT WB Thru WB RT				WB RT				
0	154	6	9	171	0				
		Appa	loosa						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	0	0	6	0	4				
Peak Hou	r Volume	350							

Peak Hour Volume: 350

Cherry Springs Ranch/Hwy 105								
	Peal	k Hour: 1:00	pm to 2:0) pm				
		Short Rang	e Weekday					
		Hwy	105					
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT			
0	153	0	0	175	3			
		Cherry Spr	ings Ranch					
SB RT SB Thru SB LT NB RT NB Thru NB LT								
3	0	3	0	0	0			
Peak Hour Volume: 337								

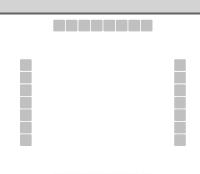
	Canterbury/Hwy 105								
	Peal	k Hour: 1:00) pm to 2:0) pm					
		Short Rang	e Weekday						
		Hwy	105						
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	0 201 30 18 147 0								
		Cante	erbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	0	0	11	0	17				

Peak Hour Volume: 424

	Canterbury/Saddlewood									
	Peak	Hour: 1:00	pm to 2:00) pm						
		Short Rang	e Weekday							
		Saddle	ewood							
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT					
0	0	0	3	0	21					
		Cante	rbury							
SB RT	SB RT SB Thru SB LT NB RT NB Thru NB LT									
0	3	40	3	2	0					
Dook Hou	r Volume:	72								

Peak Hour Volume:

	Appaloosa/Hwy 105								
	Peal	Hour: 1:00	pm to 2:0	0 pm					
		Short Rang	e Weekend						
		Hwy	105						
EB LT EB Thru EB RT WB LT WB Thru WB					WB RT				
0	174	9	7	212	0				
		Appa	loosa						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0 0 0 4 0 1									
Peak Hou	r Volume:	407							

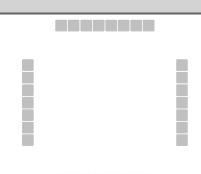

	Cherry Springs Ranch/Hwy 105								
	Peal	k Hour: 1:00	pm to 2:00) pm					
		Short Rang	e Weekend						
		Hwy	105						
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	173	108	72	137	4				
		Cherry Spr	ings Ranch						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
3	0	3	8	0	12				
Deak Hou	r Volume:	520							

Peak Hour Volume: 520

SHORT RANGE HORIZON LEVEL OF SERVICE (LOS)

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/25/2023	East/West Street	Saddlewood					
Analysis Year	2023	North/South Street	Canterbury					
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.85					
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25					
Project Description	Colorado Pumpkin Patch Special Use TIS							

Major Street: North-South


venicie	volumes	and Ad	ijustments
---------	---------	--------	------------

Approach	Eastbound Westbound					Northbound				Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						1		14		0	0	0		118	0	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)	T						0									
Right Turn Channelized																
Median Type Storage	T			Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)	\top					7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)	Т						18			0				139		
Capacity, c (veh/h)							1035			1623				1623		
v/c Ratio							0.02			0.00				0.09		
95% Queue Length, Q ₉₅ (veh)							0.1			0.0				0.3		
Control Delay (s/veh)							8.5			7.2				7.4		
Level of Service (LOS)							А			Α				Α		
Approach Delay (s/veh)		8.5				3.5						7.4				

Approach LOS

Α

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Saddlewood
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.85
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Major Street: North-South

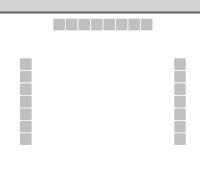
Vehicle Volumes and Adj	ustme	nts														
Approach	T	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	T	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		5		0	1	2		17	2	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)						. ()									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up Ho	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)							6			0				20		
Capacity, c (veh/h)							1082			1620				1618		
v/c Ratio							0.01			0.00				0.01		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0		
Control Delay (s/veh)							8.3			7.2				7.3		

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS

8.3


Α

Α

6.5

0.0

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Saddlewood
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.85
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Major Street: North-South

V	ehi	icle	e V	ol	lume	S	and	F	١d	IJι	ıst	tm	ent	ts
---	-----	------	-----	----	------	---	-----	---	----	-----	-----	----	-----	----

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						3		21		0	2	3		40	3	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7 1		6.2		41				41		

Base Critical Headway (sec)					7.1		6.2	4.1		4.1	
Critical Headway (sec)					7.12		6.22	4.12		4.12	
Base Follow-Up Headway (sec)					3.5		3.3	2.2		2.2	
Follow-Up Headway (sec)					3.52		3.32	2.22		2.22	
Delay, Queue Length, and	Leve	l of S	ervice								
Flow Rate, v (veh/h)						28		0		47	
Capacity, c (veh/h)						1046		1618		1615	
v/c Ratio						0.03		0.00		0.03	
95% Queue Length, Q ₉₅ (veh)						0.1		0.0		0.1	

Control Delay (s/veh)

Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)

8.5

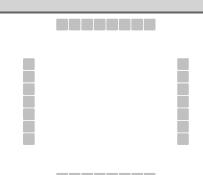
Α

8.5

Α

7.2

Α


0.0

7.3

Α

6.8

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Saddlewood
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.85
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Major Street: North-South

Vehicle Volumes and Ad	justme	nts														
Approach	Т	Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	T	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		3		0	7	1		22	3	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, an	d Leve	l of S	ervice	•												
Flow Rate, v (veh/h)							4			0				26		
Capacity, c (veh/h)							1073			1618				1610		
v/c Ratio							0.00			0.00				0.02		
95% Queue Length, Q ₉₅ (veh)							0.0			0.0				0.0		
Control Delay (s/veh)							8.4			7.2				7.3		
Level of Service (LOS)							А			А				А		
Approach Delay (s/veh)						8	.4			0	.0			6	.4	

Approach LOS

Α

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.93
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

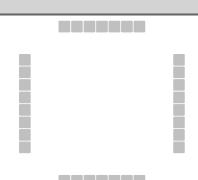
Major Street: East-West

venicie	voiumes	ana	Aaj	ustment	5

Approach	Eastbound				Westbound					North	bound		Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R		
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12		
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0		
Configuration			LTR				LTR				LR							
Volume (veh/h)		0	153	75		43	162	0		11		9						
Percent Heavy Vehicles (%)		2				2				2		2						
Proportion Time Blocked																		
Percent Grade (%)										(0							
Right Turn Channelized																		
Median Type Storage		Undivided																
Critical and Follow-up Headways																		
Base Critical Headway (sec)		4.1				4.1				7.1		6.2						

Base Critical Headway (sec)		4.1				4.1				7.1		6.2			
Critical Headway (sec)		4.12				4.12				7.12		6.22			
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3			
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32			
Delay, Queue Length, and Level of Service															
Flow Rate, v (veh/h)		0				46					22				
Capacity, c (veh/h)		1402				1321					600				
v/c Ratio		0.00				0.04					0.04				
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1				
Control Delay (s/veh)		7.6				7.8					11.2				
Level of Service (LOS)		Α				Α					В				

0.0


Approach Delay (s/veh)

Approach LOS

1.9

11.2

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/25/2023	East/West Street	Hwy 105					
Analysis Year	2023	North/South Street	Canterbury					
Time Analyzed	9:00-10:00 AM Weekend	Peak Hour Factor	0.85					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Colorado Pumpkin Patch Special Use TIS							

Major Street: East-West

Vehicle Vo	olumes	and A	Adjus	tments	;
------------	--------	-------	-------	--------	---

Approach		Eastbound			Westl	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	202	12		9	123	0		8		1				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)									0							
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														

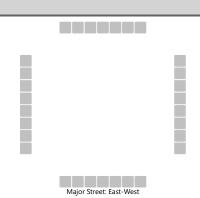
<u> </u>											
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			11			11			
Capacity, c (veh/h)		1438			1314			567			
v/c Ratio		0.00			0.01			0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/veh)		7.5			7.8			11.5			

Α

0.0

Level of Service (LOS)

Approach LOS


Approach Delay (s/veh)

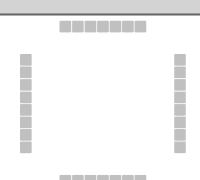
0.6

В

11.5

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 PM					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/25/2023	East/West Street	Hwy 105					
Analysis Year	2023	North/South Street	Canterbury					
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.90					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Colorado Pumpkn Patch Special Use TIS							

Vehicle Volumes and Adjustments


Approach		Eastb	ound		Westbound			Northbound				Southbound					
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration			LTR				LTR				LR						
Volume (veh/h)		0	201	30		18	147	0		17		11					
Percent Heavy Vehicles (%)		2				2				2		2					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up He	adwa	adways															
Base Critical Headway (sec)		4.1				4.1				7.1		6.2					
Critical Headway (sec)		4.12				4.12				7.12		6.22					
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3					
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32					
Delay, Queue Length, and	l Leve	l of S	ervice														
Flow Rate, v (veh/h)		0				20					31						
Capacity, c (veh/h)		1415				1308					601						
v/c Ratio		0.00				0.02					0.05						
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.2						
Control Delay (s/veh)		7.5				7.8					11.3						
Level of Service (LOS)		А				Α					В						
Approach Delay (s/veh)		0.0				1.0				11.3							

Approach LOS

В

Generated: 4/25/2023 4:00:19 PM

HCS7 Two-Way Stop-Control Report								
General Information		Site Information						
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105					
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County					
Date Performed	4/25/2023	East/West Street	Hwy 105					
Analysis Year	2023	North/South Street	Canterbury					
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.85					
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25					
Project Description	Colorado Pumpkin Patch Special Use TIS							

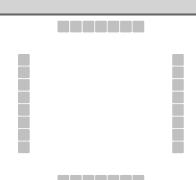
Major Street: East-West

V	ehic	:le	Vol	lumes	and	Ad	just	tment	ts
---	------	-----	-----	-------	-----	----	------	-------	----

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	278	17		9	164	0		7		5				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys							-							
Base Critical Headway (sec)		41				41				7 1		6.2				

Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			11			14			
Capacity, c (veh/h)		1380			1212			523			
v/c Ratio		0.00			0.01			0.03			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/veh)		7.6			8.0			12.1			
Level of Service (LOS)		Α			Α			В			

0.0


Approach Delay (s/veh)

Approach LOS

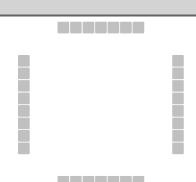
0.5

12.1

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/25/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Cherry Springs Ranch						
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.88						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Colorado Pumpkin Patch Special Use TIS								

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------


	Lastu	ound		Westbound Northbound				Southbound							
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
0	0	1	0	0	0	1	0		0	0	0		0	1	0
		LTR				LTR								LR	
	3	121	0		0	222	6						3		3
	2				2								2		2
														0	
			Undi	Undivided											
	1U	1U 1 0 0 3	1U 1 2 0 0 1 LTR 3 121	1U 1 2 3 0 0 1 0 LTR 3 121 0	1U 1 2 3 4U 0 0 1 0 0 LTR 3 121 0	1U 1 2 3 4U 4 0 0 1 0 0 0 LTR 3 121 0 0 0 2 2	1U 1 2 3 4U 4 5 0 0 1 0 0 0 1 LTR LTR 3 121 0 0 222 2 2 2	1U 1 2 3 4U 4 5 6 0 0 1 0 0 0 1 0 LTR LTR 3 121 0 0 222 6 2 2 2	1U 1 2 3 4U 4 5 6 0 0 1 0 0 0 1 0 LTR LTR LTR 3 121 0 0 222 6 2 2 2	1U 1 2 3 4U 4 5 6 7 0 0 1 0 0 0 1 0 0 LTR	1U 1 2 3 4U 4 5 6 7 8 0 0 1 0 0 0 1 0 0 0 LTR LTR LTR	1U 1 2 3 4U 4 5 6 7 8 9 0 0 1 0 0 0 1 0 0 0 0 LTR	1U 1 2 3 4U 4 5 6 7 8 9 0 0 1 0 0 0 1 0 0 0 0 LTR LTR LTR	1U 1 2 3 4U 4 5 6 7 8 9 10 0 0 1 0 0 0 1 0 0 0 0 0 0 LTR LTR LTR	1U 1 2 3 4U 4 5 6 7 8 9 10 11 0 0 1 0 0 0 0 0 0 0 11 1 1 1 0 0 0 0 0 0 11 0 0 0 0 11 0 0 0 0 0 11 0 0 0 0 0 0 0 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

Critical and Follow-up Headways

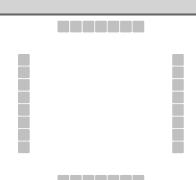
•	•	<u> </u>													
Base Critical Headway (sec)		4.1				4.1							7.1		6.2
Critical Headway (sec)		4.12				4.12							7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2							3.5		3.3
Follow-Up Headway (sec)		2.22				2.22							3.52		3.32
Delay, Queue Length, and	Delay, Queue Length, and Level of Service														
Flow Rate, v (veh/h)		3				0								7	
Capacity, c (veh/h)		1305				1446								652	
v/c Ratio		0.00				0.00								0.01	

95% Queue Length, Q₉₅ (veh) 0.0 0.0 0.0 Control Delay (s/veh) 7.8 7.5 10.6 Level of Service (LOS) Α Approach Delay (s/veh) 0.2 0.0 10.6 Approach LOS В

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/25/2023	East/West Street	Hwy 105								
Analysis Year	2023	North/South Street	Cherry Springs Ranch								
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.93								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Colorado Pumpkin Patch Special Use TIS										

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------


Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		6	111	80		53	173	15		8	0	5		3	0	6
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()			()	
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	ys														

Circical and Follow up Tie	critical and Tollow up redamays														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2	7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22	7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3	3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32	3.52	4.02	3.32
Delay, Queue Length, and Level of Service															
Flow Rate, v (veh/h)		6				57					14			10	
Capacity, c (veh/h)		1370				1366					571			668	
v/c Ratio		0.00				0.04					0.02			0.01	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1			0.0	
Control Delay (s/veh)		7.6				7.8					11.5			10.5	
Level of Service (LOS)		А				Α					В			В	
Approach Delay (s/veh)		0	.3			2	.0			11	.5		10).5	

Approach LOS

В

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/25/2023	East/West Street	Hwy 105								
Analysis Year	2023	North/South Street	Cherry Springs Ranch								
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.97								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Colorado Pumpkin Patch Special Use TIS										

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------

Approach		Eastb	ound			Westl	oound			North	bound			Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0	
Configuration			LTR				LTR								LR		
Volume (veh/h)		0	153	0		0	175	3						3		3	
Percent Heavy Vehicles (%)		2				2								2		2	
Proportion Time Blocked																	
Percent Grade (%)														(0		
Right Turn Channelized																	
Median Type Storage				Undi	Jndivided												
Critical and Follow-up He	adwa	vs															

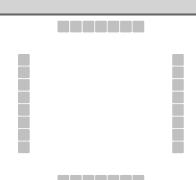
95% Queue Length, Q₉₅ (veh)

Control Delay (s/veh)

	•	, -														
Base Critical Headway (sec)		4.1				4.1								7.1		6.2
Critical Headway (sec)		4.12				4.12								7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32
Delay, Queue Length, and	Delay, Queue Length, and Level of Service															
Flow Rate, v (veh/h)		0				0									6	
Capacity, c (veh/h)		1391				1422									717	
v/c Ratio		0.00				0.00									0.01	

0.0

7.5


Level of Service (LOS) Α Approach Delay (s/veh) 0.0 0.0 10.1 Approach LOS В

0.0

7.6

0.0

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/25/2023	East/West Street	Hwy 105								
Analysis Year	2023	North/South Street	Cherry Springs Ranch								
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.92								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Colorado Pumpkin Patch Special Use TIS										

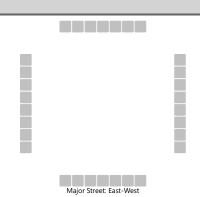
Major Street: East-West

venicie vo	oiumes	and	Aajustm	ents
------------	--------	-----	---------	------

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		0	173	108		72	137	4		12	0	8		3	0	3
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														

erricar and ronour ap ric	uuttu	,										
Base Critical Headway (sec)		4.1			4.1		7.1	6.5	6.2	7.1	6.5	6.2
Critical Headway (sec)		4.12			4.12		7.12	6.52	6.22	7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2			2.2		3.5	4.0	3.3	3.5	4.0	3.3
Follow-Up Headway (sec)		2.22			2.22		3.52	4.02	3.32	3.52	4.02	3.32
Delay, Queue Length, and	l Leve	of Se	ervice									
Flow Rate, v (veh/h)		0			78			22			7	
Capacity, c (veh/h)		1427			1255			515			565	
v/c Ratio		0.00			0.06			0.04			0.01	

Control Delay (s/veh) 7.5 8.1 12.3 11.5 Level of Service (LOS) Α В Approach Delay (s/veh) 0.0 3.1 12.3 11.5 Approach LOS В В


0.2

0.0

95% Queue Length, Q₉₅ (veh)

0.0

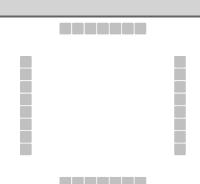
	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Appaloosa
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.87
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Vehicle Volumes and Adjustments

remore remained and riage																
Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	112	11		12	222	0		5		6				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
	i e		i e		ì				ì		i e		i e		ì	

Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of S	ervice								
Flow Rate, v (veh/h)		0			14			13			
Capacity, c (veh/h)		1310			1442			696			
v/c Ratio		0.00			0.01			0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/veh)		7.7			7.5			10.3			
Level of Service (LOS)		Α			Α			В			

0.0


Approach Delay (s/veh)

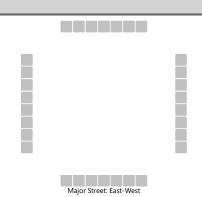
Approach LOS

0.5

10.3

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Appaloosa
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.90
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

Major Street: East-West

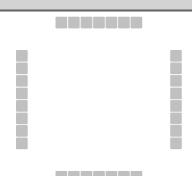

venicie	volumes	and	Aajust	ments

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	112	5		6	232	0		4		4				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	ritical and Follow-up Headways															

		, -									
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	of Se	ervice								
Flow Rate, v (veh/h)		0			7			9			
Capacity, c (veh/h)		1307			1455			697			

v/c Ratio	0.00			0.00				0.01			
95% Queue Length, Q ₉₅ (veh)	0.0			0.0				0.0			
Control Delay (s/veh)	7.8			7.5				10.2			
Level of Service (LOS)	А			А				В			
Approach Delay (s/veh)	(0.0		0	.2		10).2			
Approach LOS								3			

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/25/2023	East/West Street	Hwy 105
Analysis Year	2023	North/South Street	Appaloosa
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.98
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		


Vehicle Volumes and Adjustments

Approach		Eastb	ound		Westbound					North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	154	6		9	171	0		4		6				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up H	eadwa	adways														
Base Critical Headway (sec)		4.1				4.1				7.1		6.2				
Critical Headway (sec)		4.12				4.12				7.12		6.22				
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3				
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32				
Delay, Queue Length, an	d Leve	l of S	ervice													
Flow Rate, v (veh/h)	Τ	0				9					10					
Capacity, c (veh/h)		1402				1415					743					
v/c Ratio		0.00				0.01					0.01					
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0					
Control Delay (s/veh)		7.6				7.6					9.9					
Level of Service (LOS)		А				Α					А					
Approach Delay (s/veh)	0.0				0	.4			9	.9						
					_								-			

Approach LOS

Α

HCS7 Two-Way Stop-Control Report										
General Information		Site Information								
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105							
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County							
Date Performed	4/25/2023	East/West Street	Hwy 105							
Analysis Year	2023	North/South Street	Appaloosa							
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.90							
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25							
Project Description	Colorado Pumpkin Patch Special Use TIS									

Major Street: East-West

V	ehic	:le	Vol	lumes	and	Ad	just	tment	ts
---	------	-----	-----	-------	-----	----	------	-------	----

Approach		Eastb	ound		Westbound Northbound			bound		Southbound						
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	174	9		7	212	0		1		4				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	adwa	ys														

-		<u> </u>												
Base Critical Headway (sec)		4.1				4.1				7.1		6.2		
Critical Headway (sec)		4.12				4.12				7.12		6.22		
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3		
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32		
Delay, Queue Length, and Level of Service														
Flow Rate, v (veh/h)		0				8					6			
Capacity, c (veh/h)		1332				1368					749			

											4
v/c Ratio	0.00			0.01				0.01			
95% Queue Length, Q ₉₅ (veh)	0.0			0.0				0.0			
Control Delay (s/veh)	7.7			7.6				9.8			
Level of Service (LOS)	А			Α				А			
Approach Delay (s/veh)	0	.0		0	.3		9	.8			
Approach LOS							,	4			

LONG RANGE HORIZON PEAK HOUR TURNING MOVEMENTS

Canterbury/Hwy 105										
	Peak Hour: 9:00 am to 10:00 am									
	Long Range Weekend Hwy 105									
EB LT										
0	250	12	9	171	0					
	Canterbury									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0	0	0	1	0	12					

Peak Hour Volume: 455

Canterbury/Saddlewood										
	Peak Hour: 9:00 am to 10:00 am									
		Long Range	e Weekend							
	Saddlewood									
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT									
0	0 0 0 0 0 11									
		Cante	erbury							
SB RT SB Thru SB LT NB RT NB Thru NB LT										
0 5 21 3 3 0										
Park the savet are										

Peak Hour Volume:

	Appaloosa/Hwy 105										
Peak Hour: 9:00 am to 10:00 am											
		Long Range	e Weekday								
Hwy 105											
EB LT	EB LT EB Thru EB RT WB LT WB Thru WB RT										
0 156 12 15 295 0											
		Appa	loosa								
SB RT SB Thru SB LT NB RT NB Thru NB LT											
0 0 0 6 0 5											
Peak Hour Volume: 489											

Cherry Springs Ranch/Hwy 105										
Peak Hour: 9:00 am to 10:00 am										
Long Range Weekday										
Hwy 105										
EB LT	F EB Thru EB RT WB LT WB Thru WB RT									
5	5 165 0 0 294 8									
Cherry Springs Ranch										
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
4	4 0 4 0 0 0									

Peak Hour Volume:

Canterbury/Hwy 105									
Peak Hour: 9:00 am to 10:00 am									
		Long Rang	e Weekday						
		Hwy	105						
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	212	76	43	227	0				
Canterbury									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0	0	0	10	0	12				

Peak Hour Volume: 580

Canterbury/Saddlewood									
Peak Hour: 9:00 am to 10:00 am									
		Long Range	e Weekday						
		Saddle	ewood						
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT				
0	0	0	5	0	18				
		Cante	rbury						
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT				
0 0 126 0 0 0									
Dook Hou	Dook Hour Volume: 140								

Peak Hour Volume: 149

Appaloosa/Hwy 105										
	Peak		am to 10:0							
		Long Range	e Weekend							
Hwy 105										
EB LT EB Thru EB RT WB LT WB Thru WB RT										
0 155 5 7 301 0										
		Appa	loosa							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
0 0 0 5 0 5										
Peak Hour Volume: 478										

		Che	rry Springs	Ranch/Hwy	105				
		Peak	Hour: 9:00	am to 10:0	0 am				
			Long Range	e Weekend					
Hwy 105									
EB LT		EB Thru	EB RT	WB LT	WB Thru	WB RT			
8		154	80	53	240	21			
			Cherry Spr	ings Ranch					
SB RT	- 1	SB Thru	SB LT	NB RT	NB Thru	NB LT			
8		0	5	5	0	8			

Peak Hour Volume: 582

	Canterbury/Hwy 105											
Peak Hour: 1:00 pm to 2:00 pm												
	Long Range Weekend											
		Hwy	105									
EB LT	BLT EBThru EBRT WBLT WBThru WBRT											
0	343	18	9	224	0							
		Cante	erbury									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
0	0	0	6	0	10							
Book III.	- M-1	640										

Peak Hour Volume: 610

Canterbury/Saddlewood												
Peak Hour: 1:00 pm to 2:00 pm												
	Long Range Weekend											
		Saddle	ewood									
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB R										
0	0	0	0	0	5							
		Cante	rbury									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
0	7	22	3	15	0							
Deal, Her	. 17.1	F 2										

Appaloosa/Hwy 105											
Peak Hour: 1:00 pm to 2:00 pm											
	rear			J PIII							
		Long Range	e Weekday								
Hwy 105											
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB RT									
0	213	7	12	235	0						
		Appa	loosa								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
0	0	0	6	0	5						
Deal, Herr		470									

	Che	rry Springs	Ranch/Hwy	105							
	Peak Hour: 1:00 pm to 2:00 pm										
	Long Range Weekday										
	Hwy 105										
EB LT	EB Thru	EB RT	WB Thru WB I								
0	211	0	0	239	5						
		Cherry Spr	ings Ranch								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
4	0	4	0	0	0						
Devel III	- M-1	463									

Peak Hour Volume: 463

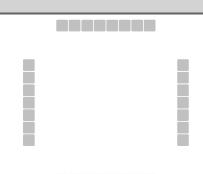
Canterbury/Hwy 105 Peak Hour: 1:00 pm to 2:00 pm											
Long Range Weekday Hwy 105											
EB LT	EB Thru EB RT WB LT WB Thru WB RT										
0	280	33	19	207	0						
		Cante	erbury								
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT						
0	0	0	11	0	20						

Peak Hour Volume: 570

	Canterbury/Saddlewood												
Peak Hour: 1:00 pm to 2:00 pm													
	Long Range Weekday												
		Saddle	ewood										
EB LT	EB Thru	EB Thru EB RT WB LT WB Thru WB R											
0	0	0	6	0	26								
		Cante	rbury										
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT								
0	6	41	6	3	0								
Deak Hou	r Volume:	99											

Peak Hour Volume: 88

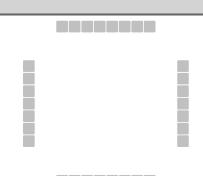
		Appaloosa	a/Hwy 105									
Peak Hour: 1:00 pm to 2:00 pm												
Long Range Weekend												
Hwy 105												
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT							
0	241	10	8	266	0							
		Appa	loosa									
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT							
0	0	0	5	0	1							
Peak Hou	r Volume:	531										


	Che	rry Springs	Ranch/Hwy	105						
	Peal	k Hour: 1:00	pm to 2:0	0 pm						
Long Range Weekend										
Hwy 105										
EB LT	EB Thru	EB RT	WB LT	WB Thru	WB RT					
0	242	108	72	189	4					
		Cherry Spr	ings Ranch							
SB RT	SB Thru	SB LT	NB RT	NB Thru	NB LT					
4	0	4	8	0	12					
Dook Hou	r Volumo:	643								

Peak Hour Volume: 643

LONG RANGE HORIZON LEVEL OF SERVICE (LOS)

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/26/2023	East/West Street	Saddlewood								
Analysis Year	2023	North/South Street	Canterbury								
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.85								
Intersection Orientation	North-South	Analysis Time Period (hrs) 0.25									
Project Description	Colorado Pumpkin Patch Special Use TIS										

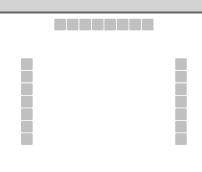


Major Street: North-South

Vehicle Volumes and Adj	ustme	nts														
Approach		Eastbound				Westbound			Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						5		18		0	0	0		126	0	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage				Undi	vided											

Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22				2.22		
Delay, Queue Length, and	l Leve	l of S	ervice													
Flow Rate, v (veh/h)							27			0				148		
Capacity, c (veh/h)							928			1623				1623		
v/c Ratio							0.03			0.00				0.09		
95% Queue Length, Q ₉₅ (veh)							0.1			0.0				0.3		
Control Delay (s/veh)							9.0			7.2				7.4		
Level of Service (LOS)							А			А				А		
Approach Delay (s/veh)					9.0						7.4					
Approach LOS							Ą									

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/26/2023	East/West Street	Saddlewood
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.85
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		


Major Street: North-South

Vehicle Volumes ar	nd Adjustments
--------------------	----------------

Approach		Eastbound Westbound								North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		11		0	3	3		21	5	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)							0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	eadwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
Critical Headway (sec)						7.12		6.22		4.12				4.12		
Base Follow-Up Headway (sec)						3.5		3.3		2.2				2.2		
Follow-Up Headway (sec)						3.52		3.32		2.22			2.22			
Delay, Queue Length, and	d Leve	Level of Service														
Flow Rate, v (veh/h)							13			0				25		
Capacity, c (veh/h)							1078			1615				1614		
		_	_													-

Tollow-op Fleadway (sec)					3.52		3.32	2.22			2.22		
Delay, Queue Length, and	l Leve	l of S	ervice										
Flow Rate, v (veh/h)						13		0			25		
Capacity, c (veh/h)						1078		1615			1614		
v/c Ratio						0.01		0.00			0.02		
95% Queue Length, Q ₉₅ (veh)						0.0		0.0			0.0		
Control Delay (s/veh)						8.4		7.2			7.3		
Level of Service (LOS)						А		Α			Α		
Approach Delay (s/veh)					8	.4		0	.0		5.	.9	
Approach LOS					,	Α							

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/26/2023	East/West Street	Saddlewood
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.85
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

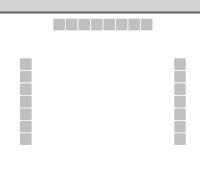
Major Street: North-South

venicie vo	oiumes	and	Aajustm	ents
------------	--------	-----	---------	------

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						6		26		0	3	6		41	6	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adwa	ys														
Base Critical Headway (sec)						7.1		6.2		4.1				4.1		
	11			1			1			11		11				

Base Critical Headway (sec)					7.1		6.2	4.1		4.1	
Critical Headway (sec)					7.12		6.22	4.12		4.12	
Base Follow-Up Headway (sec)					3.5		3.3	2.2		2.2	
Follow-Up Headway (sec)					3.52		3.32	2.22		2.22	
Delay, Queue Length, and	Leve	l of S	ervice								
Flow Rate, v (veh/h)						38		0		48	
Capacity, c (veh/h)						1024		1614		1609	
v/c Ratio						0.04		0.00		0.03	
95% Queue Length, Q ₉₅ (veh)						0.1		0.0		0.1	
Control Delay (s/veh)						8.7		7.2		7.3	
Level of Service (LOS)						Α		А		Α	

Approach Delay (s/veh)


Approach LOS

8.7

Α

6.4

	HCS7 Two-Way Stop	o-Control Report	
General Information		Site Information	
Analyst	Brett Louk	Intersection	Canterbury & Saddlewood
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County
Date Performed	4/26/2023	East/West Street	Saddlewood
Analysis Year	2023	North/South Street	Canterbury
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.85
Intersection Orientation	North-South	Analysis Time Period (hrs)	0.25
Project Description	Colorado Pumpkin Patch Special Use TIS		

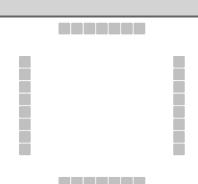
Major Street: North-South

V	ehi	icle	e V	ol	lume	S	and	F	١d	IJι	ıst	tm	ent	ts
---	-----	------	-----	----	------	---	-----	---	----	-----	-----	----	-----	----

Approach		Eastb	ound			Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority		10	11	12		7	8	9	1U	1	2	3	4U	4	5	6
Number of Lanes		0	0	0		0	1	0	0	0	1	0	0	0	1	0
Configuration							LR				LTR				LTR	
Volume (veh/h)						0		5		0	15	3		22	7	0
Percent Heavy Vehicles (%)						2		2		2				2		
Proportion Time Blocked																
Percent Grade (%)						(0									
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	adwa	dways														

•		•									
Base Critical Headway (sec)					7.1		6.2	4.1		4.1	
Critical Headway (sec)					7.12		6.22	4.12		4.12	
Base Follow-Up Headway (sec)					3.5		3.3	2.2		2.2	
Follow-Up Headway (sec)					3.52		3.32	2.22		2.22	
Delay, Queue Length, an	d Leve	l of S	ervice	•							
Flow Rate, v (veh/h)						6		0		26	
Capacity, c (veh/h)						1059		1612		1595	
v/c Ratio						0.01		0.00		0.02	
95% Queue Length, Q ₉₅ (veh)						0.0		0.0		0.0	
Control Delay (s/yeh)						8.4		7.2		7.3	

Level of Service (LOS) Approach Delay (s/veh)


Approach LOS

8.4

Α

5.6

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/26/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Canterbury									
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.93									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Colorado Pumpkin Patch Special Use TIS											

Major Street: East-West

venicie volum	es and Ad	ajustments
---------------	-----------	------------

Approach	Eastbound					Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	212	76		43	227	0		12		10				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adways															

		<i>,</i> -									
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			46			24			
Capacity, c (veh/h)		1322			1251			508			
v/c Ratio		0.00			0.04			0.05			
95% Queue Length, Q ₉₅ (veh)		0.0			0.1			0.1			

8.0

Copyright $\ensuremath{\text{@}}$ 2023 University of Florida. All Rights Reserved.

7.7

Α

0.0

Control Delay (s/veh)

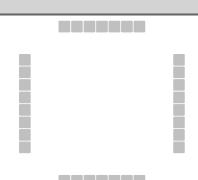
Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)

ed. HCS [™] TWSC Version 7.6 Canterbury & Hwy 105 Long Range AM Weekday.xtw

1.6


Generated: 4/26/2023 2:09:37 PM

12.4

В

12.4

HCS7 Two-Way Stop-Control Report											
General Information		Site Information									
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 AM								
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County								
Date Performed	4/26/2023	East/West Street	Hwy 105								
Analysis Year	2023	North/South Street	Canterbury								
Time Analyzed	9:00-10:00 AM Weekend	Peak Hour Factor	0.85								
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25								
Project Description	Colorado Pumpkin Patch Special Use TIS										

Major Street: East-West

Vehicle Vo	olumes	and A	Adjus	tments	;
------------	--------	-------	-------	--------	---

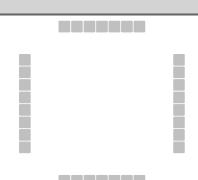
Approach	Eastbound					Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	250	12		9	171	0		12		1				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	Jndivided											
Critical and Follow-up He	adways															

• • • • • • • • • • • • • • • • • • •	-										
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Level	of Se	ervice								
Flow Rate, v (veh/h)		0			11			15			
Capacity, c (veh/h)		1371			1252			475			
v/c Ratio		0.00			0.01			0.03			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/yeh)		7.6			7.9			12.8			

Α

0.0

Level of Service (LOS)


Approach LOS

Approach Delay (s/veh)

0.5

12.8

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105 PM									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/26/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Canterbury									
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25									
Project Description	Colorado Pumpkn Patch Special Use TIS											

Major Street: East-West

Vehicle Volume	es and	Adjust	tments
----------------	--------	--------	--------

Approach	Eastbound					Westl	oound			North	bound		Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	280	33		19	207	0		20		11				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	divided											
Critical and Follow-up He	adwa	dways														

•		•									
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			21			34			
Capacity, c (veh/h)		1338			1211			479			
v/c Ratio		0.00			0.02			0.07			
95% Queue Length, Q ₉₅ (veh)		0.0			0.1			0.2			

8.0

7.7

Α

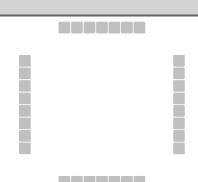
0.0

Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS


8.0

13.1

В

13.1

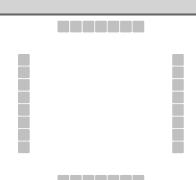
HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	Brett Louk	Intersection	Canterbury & Hwy 105						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/26/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Canterbury						
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.85						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Colorado Pumpkin Patch Special Use TIS								

Major Street: East-West

venicie	voiumes	and	Adjustments
---------	---------	-----	-------------

Approach		Eastb	ound			Westl	oound			North	bound		Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration			LTR				LTR				LR						
Volume (veh/h)		0	343	18		9	224	0		10		6					
Percent Heavy Vehicles (%)		2				2				2		2					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage		Undivided															
Critical and Follow-up H	llow-up Headways																
Base Critical Headway (sec)		4.1				4.1				7.1		6.2					
Critical Headway (sec)		4.12				4.12				7.12		6.22					
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3					
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32					
Delay, Queue Length, an	d Leve	l of Se	ervice														
Flow Rate, v (veh/h)	Τ	0				11					19						
Capacity, c (veh/h)		1301				1135					423						
v/c Ratio		0.00				0.01					0.04						
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.1						
Control Delay (s/veh)		7.8				8.2					13.9						
Level of Service (LOS)		А				Α					В						

0.0


Approach Delay (s/veh)

Approach LOS

0.4

13.9

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/26/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Cherry Springs Ranch						
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.88						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Colorado Pumpkin Patch Special Use TIS								

Major Street: East-West

venicie vo	oiumes	and	Aajustm	ents
------------	--------	-----	---------	------

Approach		Eastb	ound		Westbound			Northbound				Southbound				
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	0	0		0	1	0
Configuration			LTR				LTR								LR	
Volume (veh/h)		5	165	0		0	294	8						4		4
Percent Heavy Vehicles (%)		2				2								2		2
Proportion Time Blocked																
Percent Grade (%)													0			
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up He	Critical and Follow-up Headways															

Base Critical Headway (sec)		4.1			4.1				7.1		6.2
Critical Headway (sec)		4.12			4.12				7.12		6.22
Base Follow-Up Headway (sec)		2.2			2.2				3.5		3.3
Follow-Up Headway (sec)		2.22			2.22				3.52		3.32
Delay, Queue Length, and	Leve	of Se	rvice								
Flow Rate, v (veh/h)		6			0					9	
Capacity, c (veh/h)		1216			1387					551	

0.00

0.0

7.6

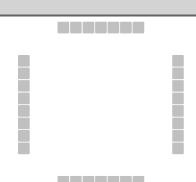
Level of Service (LOS) Α Approach Delay (s/veh) 0.3 0.0 11.6 Approach LOS В

0.00

0.0

8.0

v/c Ratio


95% Queue Length, Q_{95} (veh)

Control Delay (s/veh)

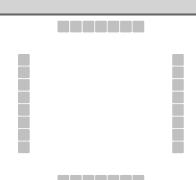
0.02

0.1

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/25/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Cherry Springs Ranch						
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.93						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Colorado Pumpkin Patch Special Use TIS								

Major Street: East-West

venicie volumes	and Adjustments
-----------------	-----------------


Approach	Eastbound Westbound				Northbound				Southbound							
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		8	154	80		53	240	21		8	0	5		5	0	8
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)									0				0			
Right Turn Channelized																
Median Type Storage		Undivided														
Critical and Follow-up Headways																

Circical and Follow up Tie	Critical and Follow up recaways														
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2	7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22	7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3	3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32	3.52	4.02	3.32
Delay, Queue Length, and	Leve	l of Se	ervice												
Flow Rate, v (veh/h)		9				57					14			14	
Capacity, c (veh/h)		1282				1314					482			556	
v/c Ratio		0.01				0.04					0.03			0.03	
95% Queue Length, Q ₉₅ (veh)		0.0				0.1					0.1			0.1	
Control Delay (s/veh)		7.8				7.9					12.7			11.6	
Level of Service (LOS)		А				Α					В			В	
Approach Delay (s/veh)		0	.3			1	.7			12	7		11	1.6	

Approach LOS

В

HCS7 Two-Way Stop-Control Report									
General Information		Site Information							
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105						
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County						
Date Performed	4/26/2023	East/West Street	Hwy 105						
Analysis Year	2023	North/South Street	Cherry Springs Ranch						
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.97						
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25						
Project Description	Colorado Pumpkin Patch Special Use TIS								

Major Street: East-West

Eastbound					Westk	oound			North	bound			South	bound	
U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
0	0	1	0	0	0	1	0		0	0	0		0	1	0
		LTR				LTR								LR	
	0	211	0		0	239	5						4		4
	2				2								2		2
													(0	
Undivided															
	1U	U L 1U 1 0 0	U L T 1U 1 2 0 0 1 LTR 0 211	U L T R 1U 1 2 3 0 0 1 0 LTR 0 211 0	U L T R U 1U 1 2 3 4U 0 0 1 0 0 LTR 0 211 0 2	U L T R U L 1U 1 2 3 4U 4 0 0 1 0 0 0 LTR 0 211 0 0 2 2	U L T R U L T 1U 1 2 3 4U 4 5 0 0 1 0 0 0 1 LTR LTR 0 211 0 0 239 2 2 2	U L T R U L T R 1U 1 2 3 4U 4 5 6 0 0 1 0 0 0 1 0 LTR LTR 0 211 0 0 239 5 2 2 2	U L T R U L T R U 1U 1 2 3 4U 4 5 6 0 0 1 0 0 0 1 0 LTR LTR 0 211 0 0 239 5 2 2 2	U L T R U L T R U L 1U 1 2 3 4U 4 5 6 7 0 0 1 0 0 0 1 0 0 0 LTR LTR LTR 0 211 0 0 239 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	U L T R U L T R U L T 1 1 1 1 1 2 3 4 4 4 5 6 7 8 8 0 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0	U L T R U L T R U L T R 1U 1 2 3 4U 4 5 6 7 8 9 0 0 1 0	U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U L T R U R P U L T R R U R P U R	U L T R U L T R U L T R U L T R U L T R U L L T R U L L T R U L L T R U L L T R U L L T R U L L T R R U L T R U	U L T R U L T R U L T R U L T R U L T R 10 LT 11

-																
Base Critical Headway (sec)		4.1				4.1								7.1		6.2
Critical Headway (sec)		4.12				4.12								7.12		6.22
Base Follow-Up Headway (sec)		2.2				2.2								3.5		3.3
Follow-Up Headway (sec)		2.22				2.22								3.52		3.32
Delay, Queue Length, and Level of Service																
Flow Rate, v (veh/h)		0				0									8	
Capacity, c (veh/h)		1314				1352									617	
Flow Rate, v (veh/h)	Leve	0	ervice			0 1352									-	

0.00

0.0

7.7

0.00

0.0

7.7

Α

0.0

v/c Ratio

95% Queue Length, Q_{95} (veh)

Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS

0.0

10.9

В

0.01

0.0

HCS7 Two-Way Stop-Control Report													
General Information		Site Information											
Analyst	Brett Louk	Intersection	Cherry Spr R & Hwy 105										
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County										
Date Performed	4/26/2023	East/West Street	Hwy 105										
Analysis Year	2023	North/South Street	Cherry Springs Ranch										
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.92										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Colorado Pumpkin Patch Special Use TIS												

Major Street: East-West

venicie vo	oiumes	and	Aajustm	ents
------------	--------	-----	---------	------

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	1	0
Configuration			LTR				LTR				LTR				LTR	
Volume (veh/h)		0	242	108		72	189	4		12	0	8		4	0	4
Percent Heavy Vehicles (%)		2				2				2	2	2		2	2	2
Proportion Time Blocked																
Percent Grade (%)										()			(0	
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	cal and Follow-up Headways															

Constitution of the contract o																
Base Critical Headway (sec)		4.1				4.1				7.1	6.5	6.2		7.1	6.5	6.2
Critical Headway (sec)		4.12				4.12				7.12	6.52	6.22		7.12	6.52	6.22
Base Follow-Up Headway (sec)		2.2				2.2				3.5	4.0	3.3		3.5	4.0	3.3
Follow-Up Headway (sec)		2.22				2.22				3.52	4.02	3.32		3.52	4.02	3.32
Delay, Queue Length, and Level of Service																
Flow Rate, v (veh/h)		0				78					22				9	
Capacity, c (veh/h)		1361				1178					429				477	
v/c Ratio		0.00				0.07					0.05				0.02	

0.2

8.3

2.7

0.0

7.6

Α

0.0

95% Queue Length, Q₉₅ (veh)

Control Delay (s/veh)

Level of Service (LOS)

Approach LOS

Approach Delay (s/veh)

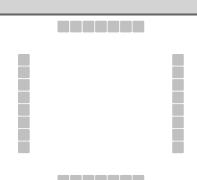
0.1

12.7

В

12.7

В


0.2

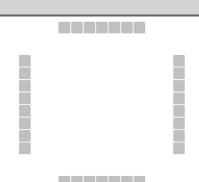
13.8

В

13.8

HCS7 Two-Way Stop-Control Report													
General Information		Site Information											
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105										
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County										
Date Performed	4/26/2023	East/West Street	Hwy 105										
Analysis Year	2023	North/South Street	Appaloosa										
Time Analyzed	9:00-10:00 am Weekday	Peak Hour Factor	0.87										
Intersection Orientation	East-West	Analysis Time Period (hrs)	0.25										
Project Description	Colorado Pumpkin Patch Special Use TIS												

Major Street: East-West


V	ehi	icle	e V	ol	lume	S	and	F	١d	IJι	ıst	tm	ent	ts
---	-----	------	-----	----	------	---	-----	---	----	-----	-----	----	-----	----

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	156	12		15	295	0		5		6				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage	Undivided															
Critical and Follow-up He	ical and Follow-up Headways															

•	-	<i>-</i>										
Base Critical Headway (sec)		4.1			4.1		7.1		6.2			
Critical Headway (sec)		4.12			4.12		7.12		6.22			
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3			
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32			
Delay, Queue Length, and	Leve	of Se	ervice									
Flow Rate, v (veh/h)		0			17			13				
Capacity, c (veh/h)		1220			1380			594				
,							11				1	$\overline{}$

Capacity, c (veh/h)		1220			1380				594			
v/c Ratio		0.00			0.01				0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0				0.1			
Control Delay (s/veh)		8.0			7.6				11.2			
Level of Service (LOS)		Α			А				В			
Approach Delay (s/veh)	0.0			0	.5		11	1.2				
Approach LOS								I	В			

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/26/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Appaloosa									
Time Analyzed	9:00-10:00 am Weekend	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs) 0.25										
Project Description	Colorado Pumpkin Patch Special Use TIS											

Major Street: East-West

Vehicle Volumes ar	nd Adjustments
--------------------	----------------

Approach	Eastbound					Westl	oound		Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	155	5		7	301	0		5		5				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adways															

•		<u> </u>									
Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of Se	ervice								
Flow Rate, v (veh/h)		0			8			11			
Capacity, c (veh/h)		1225			1398			602			

0.01

0.0

7.6

Copyright © 2023 University of Florida. All Rights Reserved.

0.00

0.0

7.9

Α

0.0

v/c Ratio

95% Queue Length, Q₉₅ (veh)

Control Delay (s/veh)

Level of Service (LOS)

Approach Delay (s/veh)

Approach LOS

ed. HCS[™] TWSC Version 7.6 Appaloosa & Hwy 105 Long Range AM Weekend.xtw

0.2

Generated: 4/26/2023 2:30:12 PM

0.02

0.1

11.1

В

11.1

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/26/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Appaloosa									
Time Analyzed	1:00-2:00 pm Weekday	Peak Hour Factor	0.98									
Intersection Orientation	East-West	Analysis Time Period (hrs) 0.25										
Project Description	Colorado Pumpkin Patch Special Use TIS											

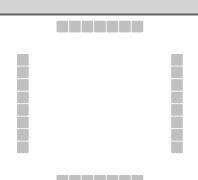
Major Street: East-West

venicie	volumes	and	Aajust	ments

Approach		Eastbound				Westbound				Northbound				Southbound			
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R	
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12	
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0	
Configuration			LTR				LTR				LR						
Volume (veh/h)		0	213	7		12	235	0		5		6					
Percent Heavy Vehicles (%)		2				2				2		2					
Proportion Time Blocked																	
Percent Grade (%)										()						
Right Turn Channelized																	
Median Type Storage				Undi	vided												
Critical and Follow-up H	leadwa	ys															
Base Critical Headway (sec)		4.1				4.1				7.1		6.2					
Critical Headway (sec)		4 12				4 12				7 12		6.22					

Base Critical Headway (sec)		4.1			4.1		7.1		6.2		
Critical Headway (sec)		4.12			4.12		7.12		6.22		
Base Follow-Up Headway (sec)		2.2			2.2		3.5		3.3		
Follow-Up Headway (sec)		2.22			2.22		3.52		3.32		
Delay, Queue Length, and	l Leve	l of S	ervice								
Flow Rate, v (veh/h)		0			12			11			
Capacity, c (veh/h)		1327			1344			626			
v/c Ratio		0.00			0.01			0.02			
95% Queue Length, Q ₉₅ (veh)		0.0			0.0			0.1			
Control Delay (s/veh)		7.7			7.7			10.9			
Level of Service (LOS)		Α			А			В			

0.0


Approach Delay (s/veh)

Approach LOS

0.5

10.9

HCS7 Two-Way Stop-Control Report												
General Information		Site Information										
Analyst	Brett Louk	Intersection	Appaloosa & Hwy 105									
Agency/Co.	SMH Consultants	Jurisdiction	El Paso County									
Date Performed	4/26/2023	East/West Street	Hwy 105									
Analysis Year	2023	North/South Street	Appaloosa									
Time Analyzed	1:00-2:00 pm Weekend	Peak Hour Factor	0.90									
Intersection Orientation	East-West	Analysis Time Period (hrs) 0.25										
Project Description	Colorado Pumpkin Patch Special Use TIS											

Major Street: East-West

V	ehic	:le	Vol	lumes	and	Ad	just	tment	ts
---	------	-----	-----	-------	-----	----	------	-------	----

Approach		Eastb	ound			Westl	oound			North	bound			South	bound	
Movement	U	L	Т	R	U	L	Т	R	U	L	Т	R	U	L	Т	R
Priority	1U	1	2	3	4U	4	5	6		7	8	9		10	11	12
Number of Lanes	0	0	1	0	0	0	1	0		0	1	0		0	0	0
Configuration			LTR				LTR				LR					
Volume (veh/h)		0	241	10		8	266	0		1		5				
Percent Heavy Vehicles (%)		2				2				2		2				
Proportion Time Blocked																
Percent Grade (%)										()					
Right Turn Channelized																
Median Type Storage				Undi	vided											
Critical and Follow-up He	adways															

Base Critical Headway (sec)		4.1				4.1				7.1		6.2			
Critical Headway (sec)		4.12				4.12				7.12		6.22			
Base Follow-Up Headway (sec)		2.2				2.2				3.5		3.3			
Follow-Up Headway (sec)		2.22				2.22				3.52		3.32			
Delay, Queue Length, and	Leve	l of Se	ervice												
Flow Rate, v (veh/h)		0				9					7				
Capacity, c (veh/h)		1266				1284					673				
v/c Ratio		0.00				0.01					0.01				

V/C Ratio		0.00				0.01					0.01			
95% Queue Length, Q ₉₅ (veh)		0.0				0.0					0.0			
Control Delay (s/veh)		7.8				7.8					10.4			
Level of Service (LOS)		Α				А					В			
Approach Delay (s/veh)	0.0			0.3				10.4						
Approach LOS										ſ	3			