

June 1, 2023 Revised August 13, 2023

Paint Brush Hills Metropolitan District 9985 Towner Avenue Falcon, CO 80831

RE: Drainage Letter for Paint Brush Hills Metropolitan District's Pump House 6 within Paint Brush Hills Filing 12 Tract A and 14 Tract B

To Whom It May Concern:

The Paint Brush Hills Metropolitan District (PBHMD) is located in Peyton, Colorado in unincorporated El Paso County. This drainage conformance letter pertains to the PBHMD project called the Pump House 6 Site Development Plan (Site) and is located southeast of the intersection of Keynes Drive and Kingsbury Drive and is west of Rockingham Drive and Keating Drive within the Paint Brush Hills Filing No. 14. The Site is located in the NW ¼, Section 25, Township 12 South, Range 65 West of the 6th PM, County of El Paso, State of Colorado.

The Site was previously studied for drainage improvements as a part of the Final Drainage Report for Paint Brush Hills – Phase 2 (Filing No. 13 EDAPC File Number SF0538) which was prepared in October 2005 and with the latest revision date of June 2008. This site includes a small area in the northern portion of the Paint Brush Hills Filing 12, Tract A and Tract B of the Paint Brush Hills Filing No. 14. In general, the Site drains north-east to south-west toward the Detention Pond "C" in Tract A. This area is within sub- basins "XX2", "YY" and "ZZ" of the Filing No. 13 Final Drainage Report.

The Filing No. 13 Phase 2 site is planned for a single-family home development with over 550 homes (in the 2,000+ square foot range), a 10-acre elementary school site, a 6-acre community commercial site and 44 acres of trails and open space. The Filing 13 site has provided for regional detention and water quality for the overall site development.

The PBHMD Pump House 6 Site Development Plan (26' x 42') within the single-family development with its respective gravel access driveway out to Keynes Drive. The area of imperviousness for the site is the well house roof and associated concrete pads at 1,177 SF and gravel driveway at 4,888 SF, for a total of 6,065 SF of imperviousness.

This area was subsequently studied as a part of the Preliminary/Final for Paint Brush Hills Filing No. 14 (EDPAC File Number SF2024) dated March 2021. The PBHMD Pump House 6 Site Development Plan is primarily within sub-basin N and minor portions with sub-basin C and Sub-basin M of the Filing No. 14 Drainage Report. Sub-basin N appears to correspond to sub-basin ZZ and sub-basin YY from the Filing 13 Drainage Report. The summary of flows for Filing No. 13, Filing No. 14 and the proposed PHHMD Pump House 6 are shown in the following table.

Sub-Basin	Area (acres)	C₅	C ₁₀₀	Q₅ (cfs)	Q ₁₀₀ (cfs)
XX2	5.72	0.35	0.45	7 cfs	16 cfs
YY	1.85	0.35	0.45	2 cfs	5 cfs
ZZ	7.01	0.30	0.40	6 cfs	13 cfs
Total (FDS Filing No 13)	14.85			15 cfs	34 cfs
С	11.80	0.28	0.48	9.2 cfs	28.6 cfs
M	2.53	0.27	0.48	2.6 cfs	7.8 cfs
N	8.94	0.20	0.44	6.2 cfs	23.0 cfs
Total (FDS Filing No 14)	23.27			18.0 cfs	59.6 cfs
C (proposed)	11.80	0.28	0.48	9.2 cfs	28.6 cfs
M (proposed)	2.53	0.27	0.48	2.6 cfs	7.8 cfs
N (proposed)	8.94	0.21	0.45	6.4 cfs	23.2 cfs
Total (PBHMD Pump 6)	23.27			18.2 cfs	59.8 cfs
Change in Flow				+0.2 cfs	+0.2 cfs

For the purposes these calculation C-value and rainfall intensities used in the Filing No. 14 Drainage Report were replicated for the PBHMD Pump House 6 plan to obtain comparable calculations. For subbasin C and sub-basin M gravel driveway imperviousness in the amount 650 square-feet and 260 square-feet were added, respectively. The gravel driveway added were insignificant and did not have an impact upon either the imperviousness or flow rates for sub-basin C and sub-basin M. For sub-basin N the addition of 4,888 square-feet of gravel driveway and 1,177 square-feet roof /concrete increase the sub-basin imperviousness by 1.3-percent and increases the 5-year and 100-year flow rate both by 0.2 cfs.

The increase in imperviousness for sub-basin N by 1.3-percent translates to a 0.08-percent increase in imperviousness for the Detention Pond "C" and will have negligible impacts on the volume required and the water surface elevation (the difference change the pond volume requirement by approximately 400 cubic-feet or less than 0.1-percent).

Due to the minimal amount of imperviousness created by the proposed Pump House 6 and associated access drive, which were planned for with the development of the Paint Brush Hills Filing No. 14, it will not have any adverse drainage effects on any of the adjacent property and will not require any additional detention or water quality facilities.

Two drainage swales and associated riprap rundowns have been added to the site. The swale along the roadside ditch was designed to convey 2.2 cfs and the swale around the building was designed to convey 0.5 cfs. Both swales will be grass-lined until reach the side of the pond from there the swales will be riprap lined.

If you have any questions or concerns with drainage concepts associated with this proposed construction, please contact me at 303-293-8107.

Sincerely,

Gary E. Welp, P.E., CFM

Attachments

Design Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report

Gary E, Welp, P.E., CFM #35850

Owner/Developer's Statement:

I, the owner/developer have read and will comply with all of the requirements specified in this drainage report and plan.

olli

[Name, Title] [Business Name] [Address]

District Manager Paint Brush Hills Metropolitan District 9985 Towner Ave, Falcon, CO 80831

El Paso County:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

County Engineer / ECM Administrator

Date

09-12-2023

Date

9/14/23

Date

						Ca	lculati	on of I	Peak Ri	unoff usin	g Ratio	onal M	ethod									
Designer:	Gary E. W	/elp, PE, CFM			Version 2.	00 release	d May 201	7		ct UDFCD locat	ion for NO	AA Atlas 14	4 Rainfall [e pthe from	the pullde	we list OP	enter your	own depths	obtained f	rom the NC	AA websit	e (click this
Company:	RGA	•									. 0.3	95(1.1 – 0	$(L_5)\sqrt{L_i}$	t _{minim}	_{um} = 5 (urt	ban)						
Date:	8/13/2023	;		•	Cells of th	nis color are	for require	d user-	omputed t	$c = t_i + t_t$	$t_i =$	S: ^{0.33}		t _{minim}	_{um} = 10 (no	on-urban)						
Project:	Paintbrus	h Hills Well #12			Cells of th	nis color are	for optiona	al override	values	[<u>;</u>			•			\mathcal{D}_1						
Location:	Peyton, C	0			Cells of th	nis color are	for calcula	ted results	based on o	Selected $t_c =$	$max{t_{min}}$	_{imum} , min	(Compute	d t _c , Regio	nal t _c)}					Q(cfs) = C	IA	
				-												c)						
						Runoff Co	efficient, C)		e of Concentra		R	ainfall Inte	nsity, I (in/	hr)				Peak Flo	w, Q (cfs)	-	
Subcatchment Name	Area (ac)	NRCS Hydrologic Soil Group	Percent Imperviousness	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	Selected t _c (min)	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr
	44.00		00.0	0.13	0.15	0.22	0.37	0.44	0.52													1
C	11.80	В	20.0		0.26				0.48	20.5		3.0				5.0		9.2				28.6
N	0.04	Р	15.0	0.09	0.11	0.18	0.34	0.41	0.50													1
IN	8.94	В	15.0		0.21				0.45	15.6		3.4				5.8		6.4				23.2
NA	2.52	Р	20	0.13	0.15	0.22	0.37	0.44	0.52													
IVI	2.55	В	20		0.27				0.48	12.3		3.8				6.5		2.6				7.8
Sub #1	0.11	в	18	0.11	0.13	0.20	0.36	0.43	0.51													
	0.11	5	10		0.28				0.50	5.0		5.2				8.8		0.2				0.5
Sub #2	0.46	В	26	0.17	0.20	0.27	0.41	0.47	0.55													
	0.10	5			0.33				0.53	5.0		5.2				8.8		0.8				2.2
			-																			

Designer:	Gary E. W	elp, PE, CFM									
Company:	RGÁ	• • •									
Date:	8/13/2023										
Project:	Paintbrush	n Hills Well #12									
Location:	Peyton, Co	0									
	e de	Subar	ea 3 5	ubarea 1	Subarea		LEGEND: Flow Dire Catchm e Boundary	ction nt 7			
					Cells of thi	s color are	for require	d user-inpu	t		
Subcatchment					Cells of thi	s color are	for optiona	l override v	values		
Name		Cells of this color are for calculated results based on overrides									
N				0	"Desire la						
		See sheet "Design Info" for imperviousness-based runoff coefficient values.									
Sub-Area	Area	Area Hydrologic	Percent			Kullo					
ID	(ac)	Soil Group	Imperviousness	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr	
landscape	3.07	В	2.0	0.01	0.01	0.07	0.26	0.34	0.44	0.54	
		_			0.16				0.41		
gravel	0.09	В	80.0	0.64	0.67	0.70	0.75	0.77	0.80	0.83	
J					0.80				0.85		
building	0.03	В	90.0	0.74	0.76	0.78	0.81	0.83	0.84	0.87	
					0.90				0.95	<u> </u>	
residential	5.75	В	20.0	0.13	0.15	0.22	0.37	0.44	0.52	0.61	
					0.22				0.46		
15											
13											
Total Area (ac)	8.94		Area-Weighted C	0.09	0.11	0.18	0.34	0.41	0.49	0.59	
	0.34	Area-Wei	ahted Override C	0.09	0.21	0.18	0.34	0.41	0.45	0.59	

D esimon										
Designer:	Gary E. W	elp, PE, CFIVI								
Company:	RGA 8/12/2022									
Date:	Dainthruch		,							
Project:										
Location:	reyton, co	0								
	e de	Subar	ea 3 5	ubarea 1	Subarea		LEGEND: Flow Dire Catchn e Boundary	nt		
	L.				Cells of thi	s color are	for require	d user-inpu	ıt	
Subcatchment					Cells of thi	s color are	for optiona	l override v	alues	
Name					Cells of thi	s color are	for calcula	ted results	based on o	verrides
М										
		See sheet "Design Info" for imperviousness-based runoff coefficient values.								
Sub-Area	Area	a NRCS Hydrologic	Percent		1	Runo	tt Coettici	ent, C		
ID	(ac)	Hydrologic Soil Group	Imperviousness	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
landscape	0.00	В	2.0	0.01	0.01	0.07	0.26	0.34	0.44	0.54
		_			0.16				0.41	
aravel	0.01	В	80.0	0.64	0.67	0.70	0.75	0.77	0.80	0.83
9		_			0.80				0.85	
building	0.00	В	90.0	0.74	0.76	0.78	0.81	0.83	0.84	0.87
2 an an 19	0.00	_	0010		0.90				0.95	
residential	2.52	В	20.0	0.13	0.15	0.22	0.37	0.44	0.52	0.61
rooldonnidi		_	2010		0.27				0.48	
20										
			Area-Weighted C	0.13	0.15	0.22	0.38	0.44	0.52	0.61
Total Area (ac)	2.53	Area-Wei	ghted Override C	0,13	0.27	0.22	0.38	0.44	0.48	0.61

Designer:	Gary E. W	elp, PE, CFM								
Company:	RGÁ	••••								
Date:	8/13/2023									
Project:	Paintbrush	n Hills Well #12								
Location:	Location: Peyton, CO									
Subcatchment	<i>.</i>	Subar	ea 3 5'	atheres 2	Subarea	s color are	LEGEND: Flow Dire Catchm e Boundary for require for optiona for calcula	ction nt 7 d user-inpu I override v	t alues	verrides
Name					Cells of the	s color are	for calcula	led results	Dased on O	verrides
	J			See sheet	"Desian In	fo" for impe	erviousness	-based run	off coefficie	ent values.
		NRCS			5	Runo	off Coeffici	ent, C		
Sub-Area ID	Area (ac)	Hydrologic Soil Group	Percent Imperviousness	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
landscape	0.00	В	2.0	0.01	0.01 0.16	0.07	0.26	0.34	0.44 0.41	0.54
landscape gravel	0.00	B	2.0 80.0	0.01	0.01 0.16 0.67 0.80	0.07	0.26	0.34	0.44 0.41 0.80 0.85	0.54
landscape gravel	0.00	B	2.0 80.0	0.01	0.01 0.16 0.67 0.80 0.76	0.07 0.70 0.78	0.26 0.75 0.81	0.34 0.77 0.83	0.44 0.41 0.80 0.85 0.84	0.54 0.83 0.87
landscape gravel building	0.00 0.01 0.00	B B B	2.0 80.0 90.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95	0.54
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B B	2.0 80.0 90.0 20.0	0.01 0.64 0.74 0.13	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07 0.70 0.78 0.22	0.26 0.75 0.81 0.37	0.34 0.77 0.83 0.44	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54 0.83 0.87 0.61
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B	2.0 80.0 90.0 20.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26 0.75 0.81 0.37	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B	2.0 80.0 90.0 20.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B	2.0 80.0 90.0 20.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B	2.0 80.0 90.0 20.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B	2.0 80.0 90.0 20.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B	2.0 80.0 90.0 20.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B	2.0 80.0 90.0 20.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54
landscape gravel building residential	0.00 0.01 0.00 11.79	B B B	2.0 80.0 90.0 20.0	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48	0.54
landscape gravel building residential 20	0.00 0.01 0.00 11.79 11.29	B B B C C C C C C C C C C C C C C C C C	2.0 80.0 90.0 20.0 Area-Weighted C	0.01	0.01 0.16 0.67 0.80 0.76 0.90 0.15 0.26	0.07	0.26	0.34	0.44 0.41 0.80 0.85 0.84 0.95 0.52 0.48 0.48 0.48 0.48 0.44 0.95 0.52 0.48	0.54

Designer:	Garv F. W	elp. PF. CFM								
Company	RGA	010,1 2,01 11								
Date:	8/13/2023									
Project:	Paintbrush	h Hills Well #12	•							
Location:	Peyton, C	0								
					_					
						1				
			_		Subarea		`			
							1			
				/		-	1			
						\neg				
			Y	«	~	~/	LEGEND:			
		1 ~		1	< _		Flow Dire	ction		
			51	abaren			• Catchme	nt		
		Subar	ea 3				Boundary			
	-							_		
					Cells of thi	is color are	for require	d user-innu	t	
Subcatchment	Ì				Cells of thi	is color are	for optiona	l override v	alues	
Name					Cells of thi	is color are	for calcula	ted results	based on o	verrides
Sub #1										
	I			See sheet	"Design In	fo" for impe	erviousness	-based run	off coefficie	ent values.
Out Area	A	NRCS	Demonst			Runo	off Coeffici	ent, C		
Sub-Area	Area	Hydrologic	gic Percent	0	Exm	10.50	0E .vm	E0. vm	100 \	500 v#
ID	(ac)	Soil Group	imperviousness	2-y i	э-уг	ТО-уг	2 3 -yi	50-yi	100-yi	500-yi
landscape	0.07	В	2.0	0.01	0.01	0.07	0.26	0.34	0.44	0.54
		_			0.16				0.41	
gravel	0.00	В	80.0	0.64	0.67	0.70	0.75	0.77	0.80	0.83
Ŭ				0.74	0.80	0.70	0.04	0.00	0.85	0.07
building	0.01	В	90.0	0.74	0.76	0.78	0.81	0.83	0.84	0.87
				0.12	0.90	0.22	0.27	0.44	0.95	0.61
residential	0.02	В	20.0	0.13	0.15	0.22	0.37	0.44	0.52	0.61
				-	0.20				0.40	
18										
								0.10		
Total Area (ac)	0.11	Aroa-Wai	Area-Weighted C	0.13	0.14	0.20	0.36	0.43	0.51	0.60
	1	Alea-wei		0.13	0.20	0.20	0.30	0.43	0.50	0.00

Designer:	Gary E. W	elp, PE, CFM								
Company:	RGA	- 17 7 -								
Date:	8/13/2023									
Project:	Paintbrush	h Hills Well #12								
Location:	Peyton, Co	0								
Location:		Subar	ea 3 5'	atheres 2	Subarea		LEGEND: Flow Dire Catchn e Boundary	rtion nt 7		
					Cells of thi	s color are	for require	d user-inpu	It	
Subcatchment					Cells of thi	s color are	for optiona	l override v	values	
Name					Cells of thi	s color are	for calcula	ted results	based on o	verrides
Sub #2										
				See sheet	"Design Inf	to" for impe	erviousness	-based run	off coefficie	ent values.
Sub-Area	Area	NRCS	Percent			Runo	off Coeffici	ent, C		
ID	(ac)	Hydrologic Soil Group	Imperviousness	2-yr	5-yr	10-yr	25-yr	50-yr	100-yr	500-yr
landscape	0 15	В	2.0	0.01	0.01	0.07	0.26	0.34	0.44	0.54
landocapo	0.10	D	2.0		0.16				0.41	
aravel	0.09	в	80.0	0.64	0.67	0.70	0.75	0.77	0.80	0.83
graver	0.00	В	00.0		0.80				0.85	
building	0.00	в	90.0	0.74	0.76	0.78	0.81	0.83	0.84	0.87
building	0.00	В	30.0		0.90				0.95	
residential	0.22	в	20.0	0.13	0.15	0.22	0.37	0.44	0.52	0.61
Tesideritiai	0.22	В	20.0		0.26				0.48	
26										
			Area-Weighted C	0.19	0.21	0.26	0.41	0.47	0.55	0.63
Total Area (ac)	0.46	Area-Wei	abted Override C	0.19	0.33	0.26	0.41	0.47	0.53	0.63

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

ZONE 1	AND 2	ORIFICE	A.		Depth Increment =		ft	I	1				I	T
PERMANENT ORIFICE POOL Example Zone	ts Configuratio	on (Potontic	on Bond)		Stage - Storage	Stago	Optional	Longth	Width	Area	Optional	Aron	Volume	Volumo
Example 2016	connguian	on (Retentio	Sii Foliu)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Watershed Information					Top of Micropool		0.00				180	0.004		
Selected BMP Type -	FDB	1				-	0.91				457	0.010	200	0.007
Sciecced Brin Type =	100 50	-					0.51				137	0.010	250	0.007
watershed Area =	137.58	acres				-	1.91				14,185	0.326	7,611	0.175
Watershed Length =	3,440	ft					2.91				41,901	0.962	35,654	0.818
Watershed Length to Centroid =	2,149	ft					3.91				61,466	1.411	87,337	2.005
Watershed Slope =	0.025	ft/ft					4.91				72,754	1.670	154,447	3.546
Watershed Imperviousness =	32.85%	percent					5.91				81,398	1.869	231,523	5.315
Percentage Hydrologic Soil Group A =	0.0%	percent					6.91				86,246	1.980	315,345	7.239
Percentage Hydrologic Soil Group B =	100.0%	percent					7.91				92,877	2.132	404,906	9.295
Percentage Hydrologic Soil Groups C/D =	0.0%	percent					8.91				98,536	2,262	500,613	11.492
Target WOCV Drain Time =	40.0	hours					9.91				105 513	2 422	602 637	13,835
Location for 1-br Painfall Donths = 1	lcor Input	nours					5.51				105/515	LITEL	002,057	15.055
	oser input													
After providing required inputs above inclu doubted alight Pure CLINPI to approach suppl	uding 1-hour	rainfall												
the embedded Colorado Urban Hydroc	ir nyurugraph iranh Procedi	is using ire				-								
·····			Optional Use	r Overrides										
Water Quality Capture Volume (WQCV) =	1.835	acre-feet		acre-feet										
Excess Urban Runoff Volume (EURV) =	4.672	acre-feet		acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) =	4.694	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	7.422	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	9.914	acre-feet	1.75	inches		-								
25-yr Runoff Volume (P1 = 2 in.) =	13.611	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) =	16.448	acre-feet	2.25	inches									1	
100-yr Runoff Volume (P1 = 2.52 in.) =	20.193	acre-feet	2.52	inches										
500-vr Runoff Volume (P1 = 3.14 in) =	27,489	acre-feet		inches										1
Approximate 2-vr Detention Volume -	3,374	acre-feet	L											<u> </u>
Approximate 5 or Detention Volume -	4 701	acre-foot				-		-		6				
Approximate 5-yr Decention Volume =	T./91					-								
Approximate 10-yr Detention Volume =	0.853	acre-reet												<u> </u>
Approximate 25-yr Detention Volume =	7.849	acre-feet												
Approximate 50-yr Detention Volume =	8.261	acre-feet												
Approximate 100-yr Detention Volume =	9.674	acre-feet												
Define Zones and Basin Geometry														
Select Zone 1 Storage Volume (Required) =		acre-feet												
Select Zone 2 Storage Volume (Optional) =		acre-feet												
Select Zone 3 Storage Volume (Optional) =		acre-feet												
Total Detention Basin Volume =		acre-feet												
Initial Surcharge Volume (ISV) =	user	ф. ³												
Initial Surcharge Donth (ISD) =	usor	н. Ф												
Total Augilable Detention Donth (H) -	usei	а. А.												
Total Available Deterition Deptit (H _{total}) =	user													
Depth of Trickle Channel (H _{TC}) =	user	π.												
Slope of Trickle Channel (S _{TC}) =	user	ft/ft												
Slopes of Main Basin Sides (S _{main}) =	user	H:V												
Basin Length-to-Width Ratio (R _{L/W}) =	user													
		_												
Initial Surcharge Area (A _{ISV}) =	user	ft ²												
Surcharge Volume Length $(L_{ISV}) =$	user	ft												
Surcharge Volume Width (WISV) =	user	ft												
Depth of Basin Floor (HELOOR) =	user	ft												
l ength of Basin Floor (Leoor) =	user	ft												
Width of Basin Floor (Wr.com) =	user	θ.												
Area of Basin Floor (A) =	ucor	a 2												
Volumo of Pasin Floor (V	usel	" "				-								<u> </u>
volume of Basin Floor (V _{FLOOR}) =	user	π-												
Depth of Main Basin (H _{MAIN}) =	user	10												<u> </u>
Length of Main Basin $(L_{MAIN}) =$	user	L.												
Width of Main Basin (W_{MAIN}) =	user	nt .												-
Area of Main Basin (A _{MAIN}) =	user	ft ²												L
Volume of Main Basin (V _{MAIN}) =	user	ft ³												L
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												-
						-								<u> </u>
														<u> </u>
						-								<u> </u>
						-								
														<u> </u>
												1		<u> </u>
												-		-
														<u> </u>
														1
														l
						-								
												1		<u> </u>
													L	
														+
												1		<u> </u>

Project Description		
Friction Method	Manning	•
.	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.027	
Channel Slope	2.5 %	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	2.20 cfs	
Results		
Normal Depth	5.7 in	
Flow Area	0.7 ft²	
Wetted Perimeter	3.0 ft	
Hydraulic Radius	2.7 in	
Top Width	2.86 ft	
Critical Depth	6.1 in	
Critical Slope	1.8 %	
Velocity	3.23 ft/s	
Velocity Head	0.16 ft	
Specific Energy	0.64 ft	
Froude Number	1.166	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	· · · · · · · · · · · · · · · · · · ·
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	and the second se
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.7 in	
Critical Depth	6.1 in	
Channel Slope	2.5 %	
Critical Slope	1.8 %	

Worksheet for Triangular Channel - Roadside grass

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.02.00.01] Page 1 of 1

Project Description		
Friction Method	Manning	
rifedon fieldou	Formula	
Solve For	Normal Depth	· · · · · · · · · · · · · · · · · · ·
Input Data		
Roughness Coefficient	0.040	
Channel Slope	10.0 %	
Left Side Slope	3.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	2.20 cfs	
Results	· · · · · · · · · · · · · · · · · · ·	
Normal Depth	5.1 in	
Flow Area	0.5 ft²	
Wetted Perimeter	2.7 代	
Hydraulic Radius	2.4 in	
Top Width	2.56 ft	
Critical Depth	6.1 in	
Critical Slope	4.0 %	
Velocity	4.04 ft/s	
Velocity Head	0.25 ft	
Specific Energy	0.68 ft	
Froude Number	1.545	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	<u>, , , , , , , , , , , , , , , , , , , </u>
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data	··· · · · · · · · · · · · · · · · · ·	
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	5.1 in	
Critical Depth	6.1 in	
Channel Slope	10.0 %	
Critical Slope	4.0 %	

Worksheet for Triangular Channel - Roadside riprap rundown

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

FlowMaster [10.02.00.01] Page 1 of 1

Project Description		
Eriction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.027	
Channel Slope	2.9 %	
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	0.50 cfs	
Results	, ,	· · · · · · · · · · · · · · · · · · ·
Normal Depth	2.8 in	
Flow Area	0.2 ft²	
Wetted Perimeter	2.0 ft	
Hydraulic Radius	1.4 in	
Top Width	1.90 ft	
Critical Depth	3.0 in	
Critical Slope	2.2 %	
Velocity	2.22 ft/s	
Velocity Head	0.08 ft	
Specific Energy	0.31 ft	
Froude Number	1.136	
Flow Type	Supercritical	
GVF Input Data		<u> </u>
Downstream Depth	0.0 in	· · · · · · · · · · · · · · · · · · ·
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.8 in	
Critical Depth	3.0 in	
Channel Slope	2.9 %	
Critical Slope	2.2 %	

Worksheet for Triangular Channel - Building grass

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.02.00.01] Page 1 of 1

.

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.040	
Channel Slope	25.0 %	· · · · · · · · · · · · · · · · · · ·
Left Side Slope	4.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	0.50 cfs	
Results	· · · · · · · · · · · ·	
Normal Depth	2.2 in	
Flow Area	0.1 ft²	
Wetted Perimeter	1.5 ft	
Hydraulic Radius	1.1 in	
Top Width	1.47 ft	
Critical Depth	3.0 in	
Critical Slope	4.9 %	
Velocity	3.71 ft/s	
Velocity Head	0.21 ft	
Specific Energy	0.40 ft	
Froude Number	2.161	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 in	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data	· · · • • · · · · · · · · · · · · · · ·	
Upstream Depth	0.0 in	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	2.2 in	
Critical Depth	3.0 in	
Channel Slope	25.0 %	
Critical Slope	4.9 %	

Worksheet for Triangular Channel - Building riprap rundown

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666 FlowMaster [10.02.00.01] Page 1 of 1

PRELIMINARY/FINAL DRAINAGE REPORT

FOR PAINT BRUSH HILLS FILING NO. 14

EL PASO COUNTY, COLORADO

MARCH 2021

Prepared for:

The Landhuis Company 212 N. Wahsatch Ave, Suite 301 Colorado Springs, CO 80903 (719) 635-3200

Prepared by:

102 E.Pikes Peak, 5th Floor

Colorado Springs, CO 80903 (719) 955-5485

Project #10-014 PCD Project # SP206 & SF2024

PRELIMINARY/FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO. 14

TABLE OF CONTENTS

PURPOSE	4
GENERAL LOCATION AND DESCRIPTION	4
SOILS	4
HYDROLOGIC CALCULATIONS	4
HYDRAULIC CALCULATIONS	5
FLOOD PLAIN STATEMENT	5
DRAINAGE CRITERIA	5
FOUR STEP PROCESS	5
EXISTING DRAINAGE CONDITIONS	5
PROPOSED DRAINAGE CONDITIONS	6
DETENTION POND PROVISIONS AND MAINTENANCE EROSION CONTROL	10
EROSION CONTROL	11
CONSTRUCTION COST OPINION	11
DRAINAGE AND BRIDGE FEES	12
SUMMARY	12
REFERENCES	13

APPENDIX

Vicinity Map Soils Map FIRM Panel W/Revised LOMR Hydrologic Calculations Hydraulic Calculations/EDB Calculations Grading Erosion Control Plan Reference Maps Proposed and Existing Drainage Maps Sewer plans but the flows (slightly higher) have been adjusted by this report the Preliminary/Final Drainage Report for Paint Brush Hills Filing No. 14" prepared by MS Civil Consultants, dated December 2020.

Detailed Drainage Discussion

Basins Tributary to Detention Pond C

Basin OS5C, 29.0 acres, ($Q_5=25.5$ cfs, $Q_{100}=57.0$ cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, are routed via existing roadside swales to a larger natural swale which carries flows south towards the north boundary of the subject site.

Basin A, 3.82 acres, $(Q_5=2.9 \text{ cfs}, Q_{100}=10.7 \text{ cfs})$, consists of a proposed single family residential lots and proposed 25' wide trail easement/Tract A. Developed flows within **Basin A** and offsite **Basin OS5C** are routed as surface runoff via an existing swale, in a 75' drainage easement, to **DP3** ($Q_5=27.7 \text{ cfs}, Q_{100}=65.3 \text{ cfs}$). Surface runoff at **DP3** will be collected and conveyed via a 36" RCP FES and 36" RCP pipe (**PR2**) to **DP4**. The existing swale shall be natural, except for the lower portion where it will be graded to the 36" RCP FES. This portion of the swale shall be maintained by the Paint Brush Hills Metropolitan District (see SC 150 Turf Reinforcement Mat in appendix). In the event of clogging, flows at **DP3** will over top the embankment and shall be conveyed via curb and gutter to **DP4**.

Basin J, 3.9 acres, $(Q_5=3.0 \text{ cfs}, Q_{100}=10.4 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP4** which will be collected by a proposed 10' Type R sump inlet. The intercepted flow $(Q_5=3.0 \text{ cfs}, Q_{100}=10.4 \text{ cfs})$ will be routed west via an 18" RCP pipe (**PR3**, $Q_5=3.0 \text{ cfs}, Q_{100}=10.4 \text{ cfs})$ to **PR5** $(Q_5=31.0 \text{ cfs}, Q_{100}=75.9 \text{ cfs})$, a 48" RCP. In the event of clogging, flows at **DP4** will over top the high point and be routed via curb and gutter to **DP10**.

Basin K, 0.8 acres, ($Q_5=1.1$ cfs, $Q_{100}=2.7$ cfs), consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP5** which will be collected by a proposed 5' Type R sump inlet. The intercepted flow ($Q_5=1.1$ cfs, $Q_{100}=2.7$ cfs) will be routed west via an 18" RCP pipe (**PR4**, $Q_5=1.1$ cfs, $Q_{100}=2.7$ cfs) to **PR5** ($Q_5=31.0$ cfs, $Q_{100}=75.5$ cfs), a 48" RCP. In the event of clogging, flows at **DP5** will over top the high point and be routed via curb and gutter to **DP10**.

Basin OS5B, 13.4 acres, (Q_5 =4.6 cfs, Q_{100} =25.8 cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, will sheet flow into **Basin D**.

Basin D, 5.2 acres, ($Q_5=3.8$ cfs, $Q_{100}=14.0$ cfs), consists of a proposed single family residential lots. Cumulative developed flows within **Basin D** and offsite **Basin OS5B** are routed via curb and gutter and side lot swales to **DP6**.

Basin E, 0.5 acres, $(Q_5=2.3 \text{ cfs}, Q_{100}=4.1 \text{ cfs})$, consists of a proposed local residential street. Surface runoff from **Basin E** will combine with flows from **Basin OS5B** and **Basin D** and will be routed via curb and gutter to **DP6** which will be collected by a proposed 15' Type R sump inlet. The cumulative flow from **DP6** and **DP7** at **DP8** is $Q_5=10.7 \text{ cfs}$, $Q_{100}=44.4$. The 100-year flow will be split between the two inlets. The intercepted flow at **DP6** ($Q_5=9.3 \text{ cfs}$, $Q_{100}=22.2$) will be routed west via a 24'' RCP pipe (**PR7**, $Q_5=9.2 \text{ cfs}$, $Q_{100}=22.2 \text{ cfs}$) to **PR9**. In the event of clogging, flows at **DP6** will over top the high point in Country Manor Drive and be routed to **DP12**.

Basin F, 1.6 acres, (Q_5 =1.9 cfs, Q_{100} =5.4 cfs), consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP7** which will be

Basin M, 2.53 acres, ($Q_5=2.6$ cfs, $Q_{100}=7.8$ cfs), consists of proposed single family residential lots and proposed local residential streets. Flowby from **DP9**, **DP11**, **DP12** and surface runoff from **Basin M** will be routed via curb and gutter to **DP13** ($Q_5=2.1$ cfs, $Q_{100}=21.3$ cfs). See **Basin C** for discussion of intercepted flow.

Basin OS5A, 3.7 acres, ($Q_5=1.5$ cfs, $Q_{100}=8.4$ cfs), consist of existing developed 3.5-acre properties and streets. Runoff produced by the offsite area, will sheet flow onto **Basin C** which will be routed via side lot swales and curb and gutter to **DP14**.

Basin C, 11.8 acres, $(Q_5=9.2 \text{ cfs}, Q_{100}=28.6 \text{ cfs})$, consists of proposed single family residential lots and proposed local residential streets. Surface runoff is routed via curb and gutter to **DP14** ($Q_5=10.3 \text{ cfs}$, $Q_{100}=34.8 \text{ cfs}$). The combined flows from **DP13** and **DP14** will be captured by proposed dual 20' Type R sump inlets at **DP15** ($Q_5=12.3 \text{ cfs}, Q_{100}=55.4 \text{ cfs}$). The intercepted flow will be routed south via a 30'' RCP pipe (**PR22**, $Q_5=6.1 \text{ cfs}, Q_{100}=27.7 \text{ cfs}$ per side) and then south to a proposed 36'' RCP pipe (**PR23**, ($Q_5=12.3 \text{ cfs}, Q_{100}=55.4 \text{ cfs}$). The combined flows from **PR21** and **PR23** will be routed south to a proposed 60'' RCP pipe (**PR24**, $Q_5=98.8 \text{ cfs}, Q_{100}=269.2 \text{ cfs}$) which will ultimately outfall into a proposed concrete lined forebay in Pond C.

Basin B, 8.31 acres, ($Q_5=5.6$ cfs, $Q_{100}=20.8$ cfs), consists of the backyards of proposed single family residential lots. Minimal improvements to the backyards will be implemented and shall have split rail fences only along the rear and side lots lines. Surface runoff will be collected by a 2' wide swale (see Table 10-4 in appendix), within a 20'/30' easement, to **DP16** a CDOT type C inlet. The intercepted flow will be routed east via a 30" RCP pipe (**PR25**, $Q_5=5.6$ cfs, $Q_{100}=20.8$ cfs). The cumulative flows from PR24 and PR25 will combine and be routed south to a proposed 66" RCP pipe (**PR26**, $Q_5=103.6$ cfs, $Q_{100}=287.2$ cfs) which will outfall into a proposed concrete lined forebay in Pond C.

Basin N, 8.94 acres, $(Q_5=6.2 \text{ cfs}, Q_{100}=23.0 \text{ cfs})$, consists of backyards of proposed single family residential lots, backyards of existing residential lots from Paint Brush Hills Filing No. 12 and existing Pond C. The combined surface runoff and PR26 will be collected at **DP17** (existing **Pond C**, $Q_5=108.8$ cfs, Q₁₀₀=306.5 cfs). The existing Pond C will require modifications in order to function as an Full Spectrum Extended Detention Basin (EDB). These modifications will be addressed in the Street and Storm Sewer Construction drawings for Paint Brush Hills Filing No. 14. The proposed Detention Pond C functions to provide full spectrum detention and water quality for runoff calculated onsite and offsite flows. The pond is designed to treat approx 137.6 acres, and provide 1.839 ac-ft of WQCV storage, 4.673 ac-ft of EURV and 11.583 ac-ft of 100-year storage. The forebay, trickle channel micropool, outlet structure and pipe have been designed per the UDFCD manual using the MHFD Detention v4.03 workbook. The detention pond will be private and shall be maintained by the Paint Brush Hills Metropolitan District. Access shall be granted to the owner and El Paso County for maintenance of the private detention pond. A private maintenance agreement document shall accompany the submittal. In the event of clogging of the outlet structure, flows at DP17 will over top the emergency spillway and outfall onto an existing swale, as it previously was designed. Per the Paint Brush Hills Filing No. 12 Construction Plans, an existing 20' x 20' rip rap pad $(D_{50} = 18")$ has been constructed and is in general conformance with the present release rate. The existing riprap pad will dissipate energy and prevent local scour at the outlet. The peak release rate from Pond C (#PR27, Q5=22.6 cfs and Q100=92.8cfs ~an existing 48" RCP) outfalls into an existing swale. The flows exiting the site are less than the flows as stated in the MDDP of Q5=22 cfs and Q100=161 cfs. The proposed discharge from the subject site will not adversely affect the downstream infrastructure or affect water quality.

Basin Tributary to Adjacent Property to the West

Basin B1, 0.92 acres, ($Q_5=0.6$ cfs, $Q_{100}=2.4$ cfs), consists of portions of two backyards of proposed single family residential lots which will have minimal to no impervious surfaces and an upstream natural swale.

APPENDIX

HYDROLOGIC CALCULATIONS

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS (Area Runoff Coefficient Summary)

			IMPERVIOUS AREA/STREET			LANDSC	APED/UNDE	RE	SIDENTL	WEIGHTED			
BASIN	TOTAL AREA (Sq Ft)	TOTAL AREA (Acres)	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	AREA (Acres)	C ₅	C ₁₀₀	C ₅	C ₁₀₀
** <i>RR</i>	182952	4.20	0.00	0.90	0.96	0.00	0.16	0.41	4.20	0.30	0.50	0.30	0.50
**SS	131167	3.01	0.00	0.90	0.96	0.00	0.16	0.41	3.01	0.30	0.50	0.30	0.50
** 0 S1	193584	4.44	0.00	0.90	0.96	0.00	0.16	0.41	4.44	0.30	0.50	0.30	0.50
*00	1268037	29.11	0.00	0.90	0.96	29.11	0.16	0.41	0.00	0.22	0.46	0.16	0.41
*TT	219978	5.05	0.00	0.90	0.96	0.00	0.16	0.41	5.05	0.35	0.45	0.35	0.45
*UU	55321	1.27	0.00	0.90	0.96	0.00	0.16	0.41	1.27	0.35	0.45	0.35	0.45
*** 0S-5	2008124	46.10	0.00	0.90	0.96	0.00	0.16	0.41	46.10	0.30	0.40	0.30	0.40
OS5A	159430	3.66	0.00	0.90	0.96	0.00	0.16	0.41	3.66	0.11	0.37	0.11	0.37
OS5B	585306	13.44	0.00	0.90	0.96	0.00	0.16	0.41	13.44	0.11	0.37	0.11	0.37
OS5C	1263404	29.00	0.00	0.90	0.96	0.00	0.16	0.41	29.00	0.30	0.40	0.30	0.40
A	166371	3.82	0.00	0.90	0.96	0.00	0.16	0.41	3.82	0.20	0.44	0.20	0.44
В	361915	8.31	0.00	0.90	0.96	0.00	0.16	0.41	8.31	0.20	0.44	0.20	0.44
B1	40214	0.92	0.00	0.90	0.96	0.00	0.16	0.41	0.92	0.16	0.41	0.16	0.41
С	514010	11.80	0.00	0.90	0.96	0.00	0.16	0.41	11.80	0.26	0.48	0.26	0.48
D	226401	5.20	0.00	0.90	0.96	0.00	0.16	0.41	5.20	0.20	0.44	0.20	0.44
Ε	21364	0.49	0.49	0.90	0.96	0.00	0.16	0.41	0.00	0.20	0.44	0.90	0.96
F	70330	1.61	0.00	0.90	0.96	0.00	0.16	0.41	1.61	0.30	0.50	0.30	0.50
G	531342	12.20	0.00	0.90	0.96	0.00	0.16	0.41	12.20	0.35	0.52	0.35	0.52
Н	469586	10.78	0.00	0.90	0.96	0.00	0.16	0.41	10.78	0.35	0.52	0.35	0.52
Ι	554956	12.74	0.00	0.90	0.96	0.00	0.16	0.41	12.74	0.35	0.52	0.35	0.52
J	169859	3.90	0.00	0.90	0.96	0.00	0.16	0.41	3.90	0.22	0.45	0.22	0.45
K	32632	0.75	0.00	0.90	0.96	0.00	0.16	0.41	0.75	0.36	0.54	0.36	0.54
L	146850	3.37	0.00	0.90	0.96	0.00	0.16	0.41	3.37	0.36	0.54	0.36	0.54
М	110207	2.53	0.00	0.90	0.96	0.00	0.16	0.41	2.53	0.27	0.48	0.27	0.48
N	389341	8.94	0.00	0.90	0.96	3.19	0.16	0.41	5.75	0.22	0.46	0.20	0.44

* Values taken from "Final Drainage Report for Paint Brush Hills Filing 13E" (*FDRPBH-13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018

** Revised from "Final Drainage Report for Paint Brush Hills Filing 13E" (**PDRPBH13E) prepared by Classic Consulting Engineers and Surveyors, dated Sept 2018

*** "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008

MS CIVIL, INC FDR Drainage Calcs.xls Calculated by: GT

Checked by: VAS

Date: 3/12/2021

PAINTBRUSH HILLS FILING NO. 14 FINAL DRAINAGE CALCULATIONS

(Area Drainage Summary)

From Area Runoff Coe	fficient Summa	ry			OVE.	RLAND		STRE	ET / CH	ANNEL F	FLOW	Time o	f Travel	INTENSITY *		TOTAL FLOWS	
BASIN	AREA TOTAL	C ₅	C ₁₀₀	C ₅	Length	Height	T _C	Length	Slope	Velocity	T _t	TOTAL	CHECK	I ₅	I ₁₀₀	Q5	Q ₁₀₀
	(Acres)	From DCM	A Table 5-1	1	(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
					Pi	roposed	Area Dr	uinage S	Summa	ry							
**RR	4.20	0.30	0.50	0.25												8.0	17.0
**SS	3.01	0.30	0.50	0.25	170	3.4	16.5	800	3.9%	6.9	1.9	18.4	15.4	3.1	5.6	2.8	8.4
**0S1	4.44	0.30	0.50	0.30	100	5	8.5	616	1.0%	2.0	5.1	13.6	14.0	3.7	6.2	4.9	13.7
*00	29.11	0.16	0.41	0.16												22.0	51.0
* <i>TT</i>	5.05	0.35	0.45	0.25	180	3.6	17.0	150	1.5%	4.3	0.6	17.6	11.8	3.2	5.7	5.7	13.0
*UU	1.27	0.35	0.45	0.25	180	3.6	17.0	475	2.5%	5.5	1.4	18.4	13.6	3.1	5.6	1.4	3.2
***OS-5	46.10	0.30	0.40	0.30												14.0	32.0
OS5A	3.66	0.11	0.37	0.11	100	2	14.2	527	1.5%	1.8	4.8	19.0	13.5	3.7	6.2	1.5	8.4
OS5B	13.44	0.11	0.37	0.11	100	2	14.2	1684	1.5%	1.8	15.3	29.5	19.9	3.1	5.2	4.6	25.8
OS5C	29.00	0.30	0.40	0.30	100	2	11.5	2110	1.0%	2.0	17.6	29.1	22.3	2.9	4.9	25.5	57.0
A	3.82	0.20	0.44	0.20	100	4	10.3	373	3.2%	2.7	2.3	12.6	12.6	3.8	6.3	2.9	10.7
В	8.31	0.20	0.44	0.20	100	3	11.3	1063	3.2%	2.7	6.6	17.9	16.5	3.4	5.7	5.6	20.8
B1	0.92	0.16	0.41	0.16	100	3	11.8	265	2.6%	3.2	1.4	13.2	12.0	3.9	6.5	0.6	2.4
С	11.80	0.26	0.48	0.26	100	3	10.6	2030	2.6%	3.2	10.6	21.1	21.8	3.0	5.0	9.2	28.6
D	5.20	0.20	0.44	0.20	100	4	10.3	593	2.0%	2.1	4.7	14.9	13.9	3.6	6.1	3.8	14.0
Ε	0.49	0.90	0.96	0.90	10	0.2	0.9	471	2.0%	2.8	2.8	5.0	12.7	5.2	8.7	2.3	4.1
F	1.61	0.30	0.50	0.30	60	1.2	8.9	362	2.0%	2.8	2.1	11.0	12.3	4.0	6.7	1.9	5.4
G	12.20	0.35	0.52	0.35	100	2	10.8	1381	2.8%	3.3	6.9	17.7	18.2	3.3	5.5	14.0	34.8
Н	10.78	0.35	0.52	0.35	100	2	10.8	1543	2.1%	2.9	8.9	19.6	19.1	3.2	5.3	11.9	29.7
Ι	12.70	0.35	0.52	0.35	100	2	10.8	1309	2.1%	2.9	7.5	18.3	17.8	3.3	5.5	14.5	36.2
J	3.90	0.22	0.45	0.22	100	2	12.6	799	1.9%	2.7	4.9	17.5	15.0	3.5	5.9	3.0	10.4
K	0.75	0.36	0.54	0.36	72	1.4	9.1	277	1.6%	2.5	1.8	10.9	11.9	4.0	6.7	1.1	2.7
L	3.37	0.36	0.54	0.36	75	1.5	9.2	1802	2.1%	2.9	10.4	19.6	20.4	3.1	5.2	3.8	9.5
M	2.53	0.27	0.48	0.27	100	2	11.9	318	2.1%	2.9	1.8	13.8	12.3	3.8	6.4	2.6	7.8
N	N 8.94 0.20 0.44 0.20 100 2 12.9 902 3.2% 3.6 4.2 17.1 15.6 3.5 5.8 6.2 23.0																
*Values taken from "Final D	rainage Rep	ort for Pair	t Brush Hi	ills Filing 1	3E" (*FDI	RPBH13E)	prepared by C	lassic Con	ulting Eng	ineers and	Surveyors,	dated Sept 20	018	Calcul	ated by:	GT	
** Revised from "Final Draw	inage Report	for Paint	Brush Hills	Filing 131	E" (**PDR	PBH13E) p	repared by Cl	assic Consi	lting Engi	neers and S	lurveyors, a	lated Sept 201	18		Date:	3/12/202	1
*** "Final Drainage Report for Paint	Brush Hills-	Phase 2 (F	iling 13)" (* "Final Drainage Report for Paint Brush Hills-Phase 2 (Filing 13)" (FDRPBH-PH2-13) prepared by Classic Consulting Engineers and Surveyors, revised June 2008 ked by: VAS													

HYDRAULIC CALCULATIONS / EDB WQCV CALCULATIONS

Weighted Percent Imperviousness of WQ Pond C											
Contributing Basing	Area	~									
Basins	(Acres)	C_5	Impervious % (I)	(Acres)*(I)							
OS5A	3.66	0.11	5	18.30							
OS5B	13.44	0.11	5	67.18							
OS5C	29.00	0.30	40	1160.15							
A	0.52	0.18	16	8.37							
В	8.31	0.20	20	166.17							
С	11.80	0.26	32	377.60							
D	5.20	0.20	20	103.95							
E	0.49	0.90	100	49.04							
F	1.61	0.30	40	64.58							
G	12.20	0.35	48	585.50							
Н	10.78	0.35	48	517.45							
Ι	12.74	0.35	48	611.52							
J	7.19	0.22	25	179.81							
K	0.75	0.36	50	37.46							
L	3.37	0.36	50	168.56							
М	2.53	0.27	34	86.02							
N	8.94	0.20	20	178.76							
*TT	5.05	0.35	25	126.25							
Totals	137.58			4506.69							
Imperviousness											
of WQ Pond C	32.8										

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.03 (May 2020)

Project:	Paint Brush	Hills Filing I	No.14												-
Basin ID: FSD Pond C															
100-YR	ONE 1	T													
VOLUME EURY WOCY															
		100-YEA	R		Depth Increment =		ft								
PERMANENT ZONE I POOL Example Zone	Configurati	on (Retentio	on Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume]
	•		,		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)	
Watershed Information		-		7190.09	Top of Micropool		0.00				180	0.004			
Selected BMP Type =	EDB			7191			0.91				457	0.010	290	0.007	
Watershed Area =	137.58	acres					1.91				14,185	0.326	7,611	0.175	
Watershed Length =	3,440	ft					2.91				41,901	0.962	35,654	0.818	
Watershed Length to Centroid =	2,149	ft					3.91				61,466	1.411	87,337	2.005	
Watershed Slope =	0.025	ft/ft					4.91				72,754	1.670	154,447	3.546	
Watershed Imperviousness =	32.80%	percent		7196.00			5.91				81,398	1.869	231,523	5.315	
Percentage Hydrologic Soil Group A =	0.0%	percent		7197.00			6.91				86,246	1.980	315,345	7.239	
Percentage Hydrologic Soil Group B =	100.0%	percent		7198.00			7.91				92,877	2.132	404,906	9.295	
Percentage Hydrologic Soil Groups C/D =	0.0%	percent		7199.00			8.91				98,536	2.262	500,613	11.492	
Target WQCV Drain Time =	40.0	hours		7200			9.91				105,513	2.422	602,637	13.835	
Location for 1-hr Rainfall Depths =	User Input														
After providing required inputs above inclu	uding 1-hour	rainfall													_
depths, click 'Run CUHP' to generate runo	ff hydrograph	is using													_
		, i.e.	Optional User	Overrides											_
Water Quality Capture Volume (WQCV) =	1.834	acre-feet		acre-feet											_
Excess Urban Runoff Volume (EURV) =	4.664	acre-feet		acre-feet											_
2-yr Runoff Volume (P1 = 1.19 in.) =	4.688	acre-feet	1.19	inches											_
5-yr Runoff Volume (P1 = 1.5 in.) =	7.414	acre-feet	1.50	inches											_
10-yr Runoff Volume (P1 = 1.75 in.) =	9.906	acre-feet	1.75	inches											-
25-yr Runoff Volume (P1 = 2 in.) =	13.603	acre-feet	2.00	inches											-
50-yr Runoff Volume (P1 = 2.25 in.) =	16.440	acre-feet	2.25	inches											-
100-yr Runoff Volume (P1 = 2.52 in.) =	20.186	acre-feet	2.52	inches											-
500-yr Runoff Volume (P1 = 3.14 in.) =	27.480	acre-feet		inches											-
Approximate 2-yr Detention Volume =	3.368	acre-reet													-
Approximate 5-yr Detention Volume =	4.783	acre-reet													-
Approximate 10-yr Detention Volume =	0.844	acre-reet													-
Approximate 25-yr Detention Volume =	7.840	acre-reet													-
Approximate 50-yr Detention Volume =	0.251	acre-leet													-
Approximate 100-yr Detention Volume -	9.004	acre-reet													-
Define Zones and Basin Geometry															-
$\frac{\text{Denne 20hes and Dasin Geometry}}{\text{Zone 1 Volume (WOCV)}} =$	1 834	acre-feet													-
$Z_{ODE} = 2$ Volume (FLIRV - Zone 1) =	2 831	acre-feet													-
Zone 3 Volume $(100 \text{-vear} - 70 \text{nes } 1 \otimes 2) =$	5.000	acre-feet													-
Total Detention Basin Volume =	9.664	acre-feet													-
Initial Surcharge Volume (ISV) =	user	ft ³													-
Initial Surcharge Depth (ISD) =	user	ft													1
Total Available Detention Depth (Heren) =	user	ft													1
Depth of Trickle Channel (H_{Tr}) =	user	ft													1
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft													1
Slopes of Main Basin Sides (S _{main}) =	user	H:V												·	1
Basin Length-to-Width Ratio $(R_1 M)$ =	user	1													1
MHED-Detention v4.03 xlsm Basin		-						•					12	/7/2020 Q·1,	- 1 дм
													12	.,2020, 0.15	

RINGS,CO 80908	SANIT SE	PVC ARY WER 210		M 2.53.27 .48 KEYNES DRIVE	19 19 8" PVC SANITARY - CH	PLANT AT DF CONS BRUSH	NED 30" RCP AND IN P11 AND DP*37 TO E TRUCTED WITH PAINT H HILLS FILING NO.13	LETS			A CONDONDERRY D	RIVE		
	16 25 7200 7195		DR 4000,		SEWER 1411 1200	*UU 1.27 <u>.16</u> .41								
-7/			EX 8" PVC	(0125) (0125)				BASIN SUMMARY		DESIGN F	POINT SUMMARY	STORM	SEWER SI	
(1200)			Sewer					AREA	DESIGN	CONTRIE	UTING			
	*EXIST POND C	TRACT A		i l l				BASIN (ACRES) Q ₅ Q ₁₀₀	POINT Q ₅	Q ₁₀₀ BASIN	(S) STRUCTURE			
	AINT BRUSH	HILLS /						*RR 4.20 8.0 17.0	1 4.9	13.7 **09	PROP 10' TYPE R SUMP INLET	PIPE RUN	$Q_5 Q_{100}$	PIPE SIZE
								**SS 3.01 2.8 8.4	**33 8.0	17.0 **R	*10' TYPE R SUMP INLET	*37	6.0 10.4	*24 RCP
							<u> </u>	*00 29 11 22 0 51 0	**34 2.8	8.4 **S	5 *5' TYPE R SUMP INLET	1	0.9 19.4	*24 RCP
						I EX ROCKINGHAM DRIVE	· –	*TT 5.05 5.7 13.0	*34A 36	155 POND	D INFLOW TO POND D	2	4.9 15.7	36" RCP
							=	*UU 1.27 1.4 3.2	3 27.7	65.3 A, OS	5C PROP 36" RCP FES	3	3.0 10.4	18" RCP
					Í Í			***0S-5 46.10 14.0 32.0	4 3.0	10.4 J	PROP 10' TYPE R SUMP INLET	4	1.1 2.7	18" RCP
	7195							OS5A 3.66 1.5 8.4	5 11	2.7 K		5	31.0 75.9	48" RCP
	7200			<pre>> *EXIST PAINT B</pre>	7USH 1.1.2*		_	0S5B 13.44 4.6 25.8	3 1.1			7	9.2 22.2	24" RCP
#27					∠'		-	A 3.82 2.9 10.7	6 9.2	22.2 0558,	D, E SEE DP8 FOR CUMULATIVE FLOW	8	1.9 22.2	24" RCP
								B 8.31 5.6 20.8	7 1.9	22.2 F	SEE DP8 FOR CUMULATIVE FLOW	10	7.0 13.7	24" RCP
6		(7200)				POND C EDB SUMMARY	7 [B1 0.92 0.6 2.4	8 10.7	44.4 DP6,	P7 PROP DUAL 15' TYPE R SUMP INLET	11	7.0 13.7	24" RCP
E	EX 48" RCP AND		``~^```				-	C 11.80 9.2 28.6	9 13.8	34.4 G	PROP DUAL 15' TYPE R AT-GRADE INLET	12	53.7 142.4	48" RCP
F	RIPRAP PAD		~			EPC/URBAN DRAINAGE EDB		D 5.20 3.8 14.0	10 14.5	36.2	PROP DUAL 15' TYPE R AT-GRADE INLET	13	7.3 14.0	18" RCP
	J50=18					WQ WATER SURFACE ELEV 7193.88]	F 1.61 1.9 5.4	11 3.7	17.0 L, FLOWB	DP10 EX 15' TYPE R AT-GRADE INLET	#38	14.6 27.9	30 RCP *30" RCP
						WQ VOLUME 1.839 AC-FT		G 12.20 14.0 34.8	*37 5.7	13.0 *T1	EX 15' TYPE R AT-GRADE INLET	#15	3.7 13.5	*24" RCP
, , 1	<u>legend</u>					EURV WATER SURFACE ELEV 7195.65		Н 10.78 11.9 29.7	12 11.9	29.7 Н	PROP DUAL 15' TYPE R AT-GRADE INFLT	#16	17.4 39.7	*30" RCP
						EURV VOLUME 4.673 AC-FT	- -			M,FLOWB	DP9,	#39	5.7 13.0	*24" RCP
BASIN DESIGNATION		<u>n. 1</u>		(\mathcal{T})		100-YR VOLUME 11 583 AC-FT	-	K 0.75 1.1 2.7	1.3 2.1	21.3 FLOWYBY FLOWBY	DP12, SEE DP15 FOR CUMULATIVE FLOW	#!/ 18	22.8 51.3	18" RCP
		\square	FLARED END SECTION	\downarrow		SPILLWAY CREST ELEV 7199.00	- F	L 3.37 3.8 9.5	14 10.3	34.8 C, OS	5A SEE DP15 FOR CUMULATIVE FLOW	18.1	6.0 12.4	18" RCP
	$\int 25 \left \frac{.25}{.35} \right $		CROSSPAN			TOP OF EMBANKMENT ELEV 7201.00		M 2.53 2.6 7.8	15 12.3	55.4 DP13, I	P14 PROP DUAL 20' TYPE R SUMP INLET	19	11.9 24.8	30" RCP
ACRES	C100					100-YR INFLOW 248.0 CFS	_ L	N 8.94 6.2 23.0	16 5.6	20.8 B	PROP CDOT TYPE C INLET	20	34.4 75.3	42" RCP
			INLET/OUTLET STRUCTURE	. 11		100-YR RELEASE 92.8 CFS			17 108 9	3 3065 N PF		21	86.6 214.4	54" RCP
4	PIPE RUN REFERENCE		EXISTING FLOW DIRECTION	1" = 100'								22	6.1 27.7	30" RCP
$\mathbf{\wedge}$			EMERGENCY OVERELOW									24	98.8 269.2	60" RCP
$\langle _{6} \rangle$	SURFACE DESIGN POINT		DIRECTION									25	5.6 20.8	30" RCP
		-	PROPOSED FLOW DIRECTION									26	103.6 287.2	66" RCP
	BASIN BOUNDARY			0 50 100	200							#27	22.6 92.8	EX 48" RCP
	CCES BASIN BOUNDARY	X	HIGH POINT	Scale in Feet										
	COLO DAGIN DOCIDANT	L.P. X	LOW POINT				* H	VALUES TAKEN FROM FINAL DRAINAGE F IILLS FILING NO.13E DRAINAGE MAP BASIN	S DD1, DD2, EE, FF,	KUSH HILLS FILING NO.1 GG, HH, II, JJ AND KK	FOR AREA DRAINAGE SUMMARY, BASIN ROUTING SUMM	S, DATED SEPTEMB ARY AND STORM S	EWER ROUTING	FAINT BRUSH SUMMARY.

**REVISED FROM"FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO.13E" PREPARED BY CLASSIC ENGINEERS AND SURVEYORS, DATED SEPTEMBER 2018

EX STORM SEWER PIPE

STORM SEWER PIPE

***"FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS PHASE 2 (FILING NO.13)" PREPARED BY CLASSIC ENGINEERS AND SURVEYORS, REVISED JUNE 2008

#REVISED FLOWS AND/OR PIPE SIZE FROM "FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS FILING NO.14" PREPARED BY MS CIVIL CONSULTANTS, DATED DECEMBER, 2020

FINAL DRAINAGE REPORT EPC DEVELOPMENT SERVICES FOR **PAINT BRUSH HILLS – PHASE 2** (FILING NO. 13)

> **OCTOBER 2005 REVISED MARCH 2006 REVISED JULY 2006 REVISED JUNE 2008**

FOR REVIEW PURPOSES ONLY JUL 1 1 2008

JUL 17 2008

PREPARED FOR:

SIX NINETY-NINE PROPERTIES, LLC. 545 E. PIKES PEAK AVENUE **SUITE 207** COLORADO SPRINGS, CO 80903 (719) 328-1672

PREPARED BY: CLASSIC CONSULTING ENGINEERS & SURVEYORS, LLC 6385 CORPORATE DRIVE, SUITE 101 **COLORADO SPRINGS, CO 80919** (719) 785-0790

FINAL DRAINAGE REPORT FOR PAINT BRUSH HILLS – PHASE 2 (FILING NO. 13)

TABLE OF CONTENTS:

PURPOSE	Page	1
GENERAL DESCRIPTION	Page	1
EXISTING DRAINAGE CONDITIONS	Page	2
DEVELOPED DRAINAGE CONDITIONS	Page	5
HYDROLOGIC CALCULATIONS	Page	19
FLOODPLAIN STATEMENT	Page	20
EROSION CONTROL PLAN	Page	20
DRAINAGE/BRIDGE FEES	Page	20
SUMMARY	Page	21
REFERENCES	Page	22

APPENDICES

VICINITY MAP F.E.M.A. MAP FINAL PLAT APPROVAL / EXTENSION LETTERS HYDROLOGIC / HYDRAULIC CALCULATIONS CHANNEL / DROP STRUCTURE CALCULATIONS RIP-RAP CALCULATIONS DRAINAGE MAP

Design Point 32 ($Q_5 = 4$ cfs and $Q_{100} = 7$ cfs) consists of developed flows from Basin NN. An existing 6' sump inlet exists at this location. Based on the previous study, this location was notated as design point 18A with a developed flow of ($Q_5 = 8$ cfs and $Q_{100} = 15$ cfs). Thus, the existing facility at this location continues to adequately handle both the 5-year and 100-year developed flows.

Design Point 34A ($Q_5 = 46$ cfs and $Q_{100} = 106$ cfs) consists of developed flows from Basins DD1, DD2, EE, OO, RR and SS. Existing dual 36" RCP storm sewers exist at this location. Based on the previous study, this location was notated as Basin OS-9 with a developed flow of ($Q_5 = 50$ cfs and $Q_{100} = 113$ cfs). Thus, the existing facilities at this location continue to adequately handle both the 5-year and 100-year developed flows.

Design Point 34B ($Q_5 = 139$ cfs and $Q_{100} = 302$ cfs) consists of developed flows from much of the inner development. At this location, dual 42" RCP culverts are designed to handle both the 5-yr. and 100-yr. developed flows and route them safely under the proposed roadway and into the existing Detention Pond B1 based on the final overlot grading plan.

Design Point 34C ($Q_5 = 154$ cfs and $Q_{100} = 337$ cfs) consists of developed flows from the main natural channel. The existing Detention Pond B1 exists at this location. Based on the previous study, the total developed inflow to this facility was ($Q_5 = 149$ cfs and $Q_{100} = 326$ cfs). This increase equates to around 3% of what was previously accounted for at this design point. Thus, the existing detention facility at this location continues to adequately handle both the 5-yr. and 100-yr. developed flows.

Design Point 34D ($Q_5 = 89$ cfs and $Q_{100} = 207$ cfs) consists of developed flows from the off-site basins to the north and the north west corner of the development. The existing Detention Pond C exists at this location. Based on the previous study, the total developed inflow to this facility was ($Q_5 = 90$ cfs and $Q_{100} = 206$ cfs). Thus, the existing detention facility at this location continues to adequately handle both the 5-yr. and 100-yr. developed flows.

developed flows, respectfully. These collected flows are then combined with the collected flows mentioned earlier within the 42" RCP storm sewer. Approaching this sump location, the street design grade is 1.5%, which equates to a street capacity of 12.92 cfs per side. (See Appendix for Street Capacity Calculations) Incidentally, the total flows at Design Point 43 flow from both directions into the sump condition. Thus, the maximum flow from one direction would be from Basin WW2 ($Q_5 = 13$ cfs and $Q_{100} = 30$ cfs), which meets the County criteria for street capacity. The maximum ponding at this location will be 1.0' and then the flows will overtop the highpoint at the intersection and travel around the corner. These combined flows within the 42" RCP storm sewer will then combine with the collected flows from Design Points 42, 43 and 44. A 54" RCP storm sewer will convey these total flows in a westerly direction towards Design Point 45.

Basins XX1 and XX2 are tributary to the sump condition at Design Points 45 ($Q_5 = 7$ cfs and $Q_{100} = 16$ cfs) and 46 ($Q_5 = 11$ cfs and $Q_{100} = 26$ cfs). At these locations a 6' Type R sump inlet and a 10' Type R sump inlet will be installed to collect both the 5-year and 100-year developed flows. These collected flows are then combined with the flows from the previous design points and a 54" RCP will then convey the total developed flows in a southerly direction through a drainage tract directly into the existing detention pond. A rip-rap dissipater will be installed to minimize erosion. The emergency overlflow route at this location is via a natural swale within the tract and then directly into the existing pond. As mentioned earlier, the total developed flows entering this existing facility is consistent with the previously approved Final Drainage Report for Paint Brush Hills Filing Nos. 10, 11 and 12.

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and 1994. The Rational Method was used to estimate storm water runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

APPENDIX

JOB NAME:	PAINT BRUSH HILLS - PHASE 2 (FILING NO. 13)
JOB NUMBER:	2053.21
DATE:	06/10/08
CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY

		IMPERVIO	DUS AREA /	STREETS	LANDSCAP	E/UNDEVEL	OPED AREAS	WEIG	HTED	WEIGHTED CA		
	TOTAL											
BASIN	AREA (AC)	AREA (AC)	C(5)	C(100)	AREA (AC)	C(5)	C(100)	C(5)	C(100)	CA(5)	CA(100)	
RR	4.20	0.00	0.90	0.95	4.20	0.40	0.55	0.40	0.55	1.68	2.31	
SS	6.14	0.00	0.90	0.95	6.14	0.35	0.45	0.35	0.45	2.15	2.76	
TT1	1.05	0.00	0.90	0.95	1.05	0.35	0.45	0.35	0.45	0.37	0.47	
TT2	6.10	0.00	0.90	0.95	6.10	0.30	0.40	0.30	0.40	1.83	2.44	
UU1	3.05	0.00	0.90	0.95	3.05	0.35	0.45	0.35	0.45	1.07	1.37	
UU2	10.60	0.00	0.90	0.95	10.60	0.35	0.45	0.35	0.45	3.71	4.77	
UU3	2.75	0.00	0.90	0.95	2.75	0.35	0.45	0.35	0.45	0.96	1.24	
VV1	4.85	0.00	0.90	0.95	4.85	0.35	0.45	0.35	0.45	1.70	2.18	
VV2	1.30	0.00	0.90	0.95	1.30	0.37	0.50	0.37	0.50	0.48	0.65	
VV3	0.40	0.20	0.90	0.95	0.20	0.35	0.45	0.63	0.70	0.25	0.28	
WW1	1.20	0.00	0.90	0.95	1.20	0.35	0.45	0.35	0.45	0.42	0.54	
WW2	12.80	0.00	0.90	0.95	12.80	0.35	0.45	0.35	0.45	4.48	5.76	
WW3	5.20	0.00	0.90	0.95	5.20	0.35	0.45	0.35	0.45	1.82	2.34	
XX1	11.45	0.00	0.90	0.95	11.45	0.35	0.45	0.35	0.45	4.01	5.15	
XX2	5.72	0.00	0.90	0.95	5.72	0.35	0.45	0.35	0.45	2.00	2.57	
ΥY	1.85	0.00	0.90	0.95	1.85	0.35	0.45	0.35	0.45	0.65	0.83	
ZZ	7.01	0.00	0.90	0.95	7.01	0.30	0.40	0.30	0.40	2.10	2.80	
AAA	8.95	0.00	0.90	0.95	8.95	0.30	0.40	0.30	0.40	2.69	3.58	
OS-1	16.30	0.00	0.90	0.95	16.30	0.30	0.40	0.30	0.40	4.89	6.52	
OS-2	29.00	0.00	0.90	0.95	29.00	0.30	0.40	0.30	0.40	8.70	11.60	
OS-3	10.28	0.00	0.90	0.95	10.28	0.35	0.45	0.35	0.45	3.60	4.63	
OS-4	14.84	0.00	0.90	0.95	14.84	0.35	0.45	0.35	0.45	5.19	6.68	
OS-5	3.28	0.00	0.90	0.95	3.28	0.35	0.45	0.45	0.55	1.48	1.80	
OS-6	0.82	0.65	0.90	0.95	0.17	0.35	0.45	0.79	0.85	0.64	0.69	
H-1	92.30	0.00	0.90	0.95	92.30	0.25	0.35	0.25	0.35	23.08	32.31	
H-2	1.50	0.00	0.90	0.95	1.50	0.25	0.35	0.25	0.35	0.38	0.53	
H-3	18.80	0.00	0.90	0.95	18.80	0.25	0.35	0.25	0.35	4.70	6.58	
H-4	121.30	3.00	0.90	0.95	118.30	0.25	0.35	0.27	0.36	32.28	44.26	
H-5	55.60	0.00	0.90	0.95	55.60	0.25	0.35	0.25	0.35	13.90	19.46	
H-6	4.40	0.00	0.90	0.95	4.40	0.25	0.35	0.25	0.35	1.10	1.54	
H-7	14.70	0.00	0.90	0.95	14.70	0.25	0.35	0.25	0.35	3.68	5.15	

JOB NAM	E:	PAINT BR	USH H	IILLS - I	PHASE	2 (FIL	ING NO	. 13)	-						
JOB NUM	BER:	2053.21					-								
DATE:		06/10/08													
CALC'D B	IY:	MAW													
		FII	NAL D	RAIN	AGE R	EPOF	₹ T ~ B	ASIN	RUNO	FF SL	JMMA	RY			
	WEIGHTED)		0	VERLAN	ID	STRE	ET / CH	HANNEL	FLOW	Tc			TOTAL	FLOWS
BASIN	CA(5)	CA(100)	C(5)	Lenath	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	l(5)	I(100)	Q(5)	Q(100)
-/				(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(in/hr)	(in/hr)	(cfs)	(cfs)
RR	1.68	2.31	0.25	150	3	15.5	250	2.0%	4.9	0.8	16.3	3.33	5.92	6	14
SS	2.15	2.76	0.25	150	3	15.5	900	3.5%	6.5	2.3	17.8	3.20	5.68	7	16
TT1	0.37	0.47	0.25	60	0.6	12.3	350	1.0%	3.5	1.7	14.0	3.57	6.35	1	3
TT2	1.83	2.44	0.25	250	8	17.1	350	1.0%	3.5	1.7	18.8	3.11	5.53	6	13
UU1	1.07	1.37	0.25	60	1.2	9.8	900	3.0%	6.1	2.5	12.3	3.78	6.72	4	9
UU2	3.71	4.77	0.25	200	4	17.9	1200	3.0%	6.1	3.3	21.2	2.93	5.20	11	25
UU3	0.96	1.24	0.25	60	1.2	9.8	700	1.5%	4.3	2.7	12.5	3.75	6.66	4	8
VV1	1.70	2.18	0.25	200	8	14.2	350	1.5%	4.3	1.4	15.6	3.40	6.05	6	13
VV2	0.48	0.65	0.25	200	5	16.6	100	2.0%	4.9	0.3	16.9	3.27	5.81	2	4
٧٧3	0.25	0.28	0.25	30	1.5	5.1	200	2.0%	4.9	0.7	5.8	4.91	8.73	1	2
WW1	0.42	0.54	0.25	100	2	12.6	400	2.0%	4.9	1.3	14.0	3.57	6.35	2	3
WW2	4.48	5.76	0.25	200	4	17.9	1300	2.5%	5.5	3.9	21.8	2.88	5.13	13	30
WW3	1.82	2.34	0.25	200	4	17.9	1300	2.5%	5.5	3.9	21.8	2.88	5.13	5	12
XX1	4.01	5.15	0.25	200	4	17.9	1500	2.5%	5.5	4.5	22.4	2.84	5.05	11	26
XX2	2.00	2.57	0.25	80	1.6	11.3	1200	2.5%	5.5	3.6	14.9	3.47	6.17	7	16
YY	0.65	0.83	0.25	300	15	16.2					16.2	3.34	5.94	2	5
ZZ	2.10	2.80	0.25	300	4	25.0					25.0	2.68	4.76	6	13
AAA	2.69	3.58	0.25	1000	32	34.2					34.2	2.24	3.99	6	14

AAA

JOB NAME:	PAINT BRUSH HILLS - PHASE 2 (FILING NO. 13)	
JOB NUMBER:	2053.21	
DATE:	06/10/08	
CALCULATED BY:	MAW	

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY

					Intensity		Fle	w	
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)	Inlet Size
34C	DP-34B, V1, PR-6, PR-21	83.05	101.53	43.1	1.9	3.3	154	337	Exist. Dual 42"
34D	PR-55, YY, ZZ	40.70	53.16	34.7	2.2	4.0	91	210	Exist. Pond
35	OS-2, QQ1	9.43	12.57	23.3	2.8	5.0	26	62	36" RCP
36	QQ2	0.18	0.23	13.1	3.7	6.5	1	2	4' TYPE R
37	QQ3	1.67	2.20	17.2	3.3	5.8	5	13	4' TYPE R
38	TT1	0.37	0.47	14.0	3.6	6.4	1	3	4' TYPE R
39	OS-1, TT2	6.72	8.96	26.0	2.6	4.7	18	42	20' TYPE R
40	UU3	0.96	1.24	12.5	3.7	6.7	4	8	4' TYPE R
41	UU1, UU2	4.78	6.14	21.2	2.9	5.2	14	32	14' TYPE R
42	WW3	1.82	2.34	21.8	2.9	5.1	5	12	4' TYPE R
43	WW1, WW2	4.90	6.30	21.8	2.9	5.1	14	32	14' TYPE R
44	VV1	1.70	2.18	15.6	3.4	6.0	6	13	14' TYPE R
45	XX2	2.00	2.57	14.9	3.5	6.2	7	16	6' TYPE R
46	XX1	4.01	5.15	22.4	2.8	5.1	11	26	10' TYPE R

_ €1 1 1 - 25 e e e

JOB NAME:	PAINT BRUSH HILLS - PHASE 2 (FILING NO. 13)
JOB NUMBER:	2053.21
DATE:	06/10/08
CALCULATED BY:	MAW

* PIPES ARE LISTED AT MAXIMUM SIZE REQUIRED TO ACCOMMODATE Q100 FLOWS AT MINIMUM GRADE. REFER TO INDIVIDUAL PIPE SHEETS FOR HYDRAULIC INFORMATION.

FINAL DRAINAGE REPORT ~ PIPE ROUTING SUMMARY

					Intensity		Flow		1	
Pipe Run	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	I(5)	l(100)	Q(5)	Q(100)	Pipe Size*	
45	DP-41	4.78	6.14	21.2	2.93	5.20	14	32	30"	
46	PR-44, PR-45	5.74	7.38	22.0	2.87	5.10	16	38	30"	
47	DP-44 Pickup	1.11	1.35	15.6	3.40	6.05	4	8	18"	
48	PR-46, PR-47	6.85	8.73	22.4	2.84	5.06	19	44	36"	
49	DP-42	1.82	2.34	22.0	2.87	5.10	5	12	24"	
50	DP-43	4.90	6.30	22.0	2.87	5.10	14	32	30"	
51	PR-43, PR-49, PR-50	25.09	33.07	30.7	2.39	4.25	60	141	54"	
52	PR-48, PR-51	31.94	41.80	31.2	2.37	4.21	76	176	54"	
53	DP-45	2.00	2.57	14.9	3.47	6.17	7	16	24"	
54	DP-46	4.01	5.15	22.4	2.84	5.05	11	26	30"	
55	PR-52, PR-53, PR-54	37.95	49.53	32.7	2.30	4.10	87	203	54"	> :
56	1/2 DP34B	35.77	43.81	40.1	2.04	3.63	73	159	48"	71
57	1/2 DP34B	35.77	43.81	40.1	2.04	3.63	73	159	48"	> /

100

1%

United States Department of Agriculture

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants Custom Soil Resource Report for El Paso County Area, Colorado

Sub-basin ZZ and XX2

Contents

Preface	2
How Soil Surveys Are Made	5
Soil Map	8
Soil Map	9
Legend	10
Map Unit Legend	11
Map Unit Descriptions	11
El Paso County Area, Colorado	13
71—Pring coarse sandy loam, 3 to 8 percent slopes	13
References	15

	MAP L	EGEND		MAP INFORMATION			
Area of Int	Area of Interest (AOI)		Spoil Area	The soil surveys that comprise your AOI were mapped at			
	Area of Interest (AOI)	۵	Stony Spot	1:24,000.			
Soils	Call Mars Linit Daluman	0	Very Stony Spot	Warning: Soil Map may not be valid at this scale.			
	Soil Map Unit Polygons	Ŷ	Wet Spot	······································			
~		Δ	Other	Enlargement of maps beyond the scale of mapping can cause			
			Special Line Features	line placement. The maps do not show the small areas of			
Special	Special Point Features Blowout		itures	contrasting soils that could have been shown at a more detailed scale.			
Ø	Borrow Pit	\sim	Streams and Canals				
<u>م</u>	Clay Spot	Transport	ation	Please rely on the bar scale on each map sheet for map			
~	Closed Depression	••••	Rails	measurements.			
Ň	Gravel Pit	~	Interstate Highways	Source of Map: Natural Resources Conservation Service			
50	Gravelly Spot	~	US Routes	Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)			
ů.		\sim	Major Roads				
9		\sim	Local Roads	Maps from the Web Soil Survey are based on the Web Mercator			
Λ.		Backgrou	Ind	distance and area. A projection that preserves area, such as the			
خلله	Marsh or swamp	and the second s	Aerial Photography	Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required			
~	Mine or Quarry						
0	Miscellaneous Water			This product is generated from the USDA-NRCS certified data as			
0	Perennial Water			of the version date(s) listed below.			
\sim	Rock Outcrop			Soil Survey Area: El Paso County Area, Colorado			
+	Saline Spot			Survey Area Data: Version 18, Jun 5, 2020			
000	Sandy Spot			Soil map units are labeled (as space allows) for map scales			
-	Severely Eroded Spot			1:50,000 or larger.			
\$	Sinkhole			Date(s) aerial images were photographed: Sep 11, 2018—Oct			
≫	Slide or Slip			20, 2018			
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.			

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI	
71	Pring coarse sandy loam, 3 to 8 percent slopes	8.9	100.0%	
Totals for Area of Interest		8.9	100.0%	

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

El Paso County Area, Colorado

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k Elevation: 6,800 to 7,600 feet Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam C - 14 to 60 inches: gravelly sandy loam

Properties and qualities

Slope: 3 to 8 percent Depth to restrictive feature: More than 80 inches Drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water capacity: Low (about 6.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R048AY222CO Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: Hydric soil rating: No