Memo

Date: June 30, 2021

To:	El Paso County
	RG and Associates, LLC
From:	Paintbrush Hills Metropolitan District

RGA Job No. 1070.0022
RE: \quad Scenic View at Paintbrush Hills Pond Modifications

Scenic View at Paintbrush Hills Pond Modifications:

Purpose and Scope

The purpose of this memorandum is to update the detention pond associated with the Final Drainage Report prepared by Core Engineering Group, LLC in July 2014, which provided a detailed analysis of existing and developed runoff from "Scenic View at Paintbrush Hills". This site is located within an area previously studied by the "Master Development Drainage Plan for Falcon Hills Development". The approved Final Drainage Report analyzed developed drainage patterns and storm sewer infrastructure necessary to convey developed runoff for the Scenic View at Paintbrush Hills development. The Scenic View at Paintbrush Hills Pond was surveyed, and record drawings provided on July 3, 2016. Excerpts are attached from the approved Final Drainage Report and Record Drawings.

Property Location and Description

The Scenic View at Paintbrush Hills is located on approximately 18.76 acres with 89 proposed single family residential units. The site is in the south $1 / 2$ of the southwest $1 / 4$ of Section 36, Township 12 South, Range 65 West of the 6th Principal Meridian, of El Paso County, State of Colorado. The property is bounded to the north by Falcon Middle School, on the east by Paintbrush Hills Filing No. 4, on the south by Stapleton Drive and on the west by Towner Avenue. See attached vicinity map.

According to the current FEMA Flood Insurance Rate Map (FIRM) number 08041CO515G; this site is not located within the 100-year floodplain. See attached FEMA Flood Map.

The site consists of the following soils: Pring Coarse Sandy Loam (98-percent) and Columbine Gravelly Sandy Loam (2-percent), these soil types being Type B and Type A soils classifications, respectively. See attached SCS Soil Map.

Pond Modifications

The existing Scenic View at Paintbrush Hills Pond will be modified and brought up to current Mile High Flood District (MHFD) design standards. The following modifications are proposed for the on-site detention pond:

- A concrete lined forebay will be installed at the outlet of the existing 42-RCP outfall (sized for 8 -percent of the water quality capture volume).
- A concrete weir wall will be installed in the forebay to control the release from the forebay and overflow into the detention basin with a soil riprap mitigation on the downstream face (sized for 2-percent of the design inflow for the forebay notch and 100percent of the inflow for the overflow).
- A concrete trickle channel will be installed between the forebay and the existing outlet structure (sized for 13-percent of the design inflow).
- The existing concrete outlet structure will be modified to conform to MHFD Excess Urban Runoff Volume (EURV) methodology. The existing Type C box will be increased in high by approximately 2 -feet with a new EURV orifice plate installed and a new 100-year restrictor plate installed on the existing 21 -inch RCP outlet pipe.
- The existing detention pond will be re-graded to obtain more volume with the existing top of berm raised by approximately 1 -foot and the emergency spillway raised by approximately 0.70 -feet.
- The remainder of the pond sides and pond bottom will remain unchanged.

Supporting calculations related to the Scenic View at Paintbrush Hill Detention Pond Modification have been attached.

Sincerely,

Gary E. Welp, P.E., CFM Senior Project Manager

National Flood Hazard Layer FIRMette

Legend

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT
SPECIAL FLOOD HAZARD AREAS
Without Base Flood Elevation (BFE) Zone A, V, A99 With BFE or Depth Zone AE, AO, AH, VE, AR
Regulatory Floodway

B- 20.2 Cross Sections with 1\% Annual Chance
17.5 Water Surface Elevation

8 - - - Coastal Transec
mon sjumm Base Flood Elevation Line (BFE)
Limit of Study
_ Jurisdiction Boundary
--- --- Coastal Transect Baseline
OTHER FEATURES \qquad Profile Baseline
\qquad

MAP PANELS

:\% Digital Data Available

No Digital Data Available
 Unmapped

The pin displayed on the map is an approximate point selected by the user and does not represent an authoritative property location.

This map complies with FEMA's standards for the use o digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards
The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 6/29/2021 at 12:46 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

United States Department of Agriculture

Natural
Resources
Conservation
Service

A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for El Paso County Area, Colorado

Scenic View Pond Subdivision

Contents

Preface 2
How Soil Surveys Are Made 5
Soil Map 8
Soil Map. 9
Legend 10
Map Unit Legend 11
Map Unit Descriptions. 11
El Paso County Area, Colorado 13
19-Columbine gravelly sandy loam, 0 to 3 percent slopes. 13
71-Pring coarse sandy loam, 3 to 8 percent slopes 14
References 16

MAP LEGEND

Area of Interest (AOI)	
\square	Area of Interest (AOI)
Soils	
\square	Soil Map Unit Polygons
\square	Soil Map Unit Lines
\square	Soil Map Unit Points

Special Point Features
(c) Blowout

B Borrow Pit
次 Clay Spot
\diamond Closed Depression
Gravel Pit
$\therefore \quad$ Gravelly Spot
(4) Landfill
A. Lava Flow

Marsh or swamp
\& Mine or Quarry
(-) Miscellaneous Water

- Perennial Water
- Rock Outcrop
+ Saline Spot
$\because \quad$ Sandy Spot
을 Severely Eroded Spot
- Sinkhole

3) Slide or Slip
(6) Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Warning: Soil Map may not be valid at this scale.
Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:
Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background magery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol		Map Unit Name	Acres in AOI
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	0.3	Percent of AOI
71	Pring coarse sandy loam, 3 to 8 percent slopes	$\mathbf{2 2 . 4}$	
Totals for Area of Interest		$\mathbf{2 2 . 7}$	$\mathbf{9 8 . 6 \%}$

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.
Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.
The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however,
onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a soil series. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into soil phases. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.
Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A complex consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An association is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An undifferentiated group is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include miscellaneous areas. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

El Paso County Area, Colorado

19-Columbine gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367p
Elevation: 6,500 to 7,300 feet
Mean annual precipitation: 14 to 16 inches
Mean annual air temperature: 46 to 50 degrees F
Frost-free period: 125 to 145 days
Farmland classification: Not prime farmland

Map Unit Composition

Columbine and similar soils: 97 percent
Minor components: 3 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Columbine

Setting

Landform: Fans, flood plains, fan terraces
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Alluvium

Typical profile

A - 0 to 14 inches: gravelly sandy loam
C-14 to 60 inches: very gravelly loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to $19.98 \mathrm{in} / \mathrm{hr}$)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e
Land capability classification (nonirrigated): 6e
Hydrologic Soil Group: A
Ecological site: R049XB215CO - Gravelly Foothill
Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: 1 percent
Landform: Depressions
Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent
Hydric soil rating: No

Fluvaquentic haplaquolls

Percent of map unit: 1 percent
Landform: Swales
Hydric soil rating: Yes

71—Pring coarse sandy loam, 3 to 8 percent slopes

Map Unit Setting

National map unit symbol: 369k
Elevation: 6,800 to 7,600 feet
Farmland classification: Not prime farmland

Map Unit Composition

Pring and similar soils: 85 percent
Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Pring

Setting

Landform: Hills
Landform position (three-dimensional): Side slope
Down-slope shape: Linear
Across-slope shape: Linear
Parent material: Arkosic alluvium derived from sedimentary rock

Typical profile

A - 0 to 14 inches: coarse sandy loam
C-14 to 60 inches: gravelly sandy loam
Properties and qualities
Slope: 3 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Low
Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Low (about 6.0 inches)
Interpretive groups
Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3e
Hydrologic Soil Group: B
Ecological site: R048AY222CO
Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit:
Landform: Depressions
Hydric soil rating: Yes
Other soils
Percent of map unit:
Hydric soil rating: No

NOAA Atlas 14, Volume 8, Version 2
Location name: Peyton, Colorado, USA*
Latitude: 38.9707 ${ }^{\circ}$, Longitude: -104.6207 ${ }^{\circ}$
Elevation: 7152.99 ft**
source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials
PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\begin{gathered} \mathbf{0 . 2 3 8} \\ (0.192-0.297) \end{gathered}$	$\begin{gathered} \mathbf{0 . 2 9 0} \\ (0.233-0.362) \end{gathered}$	$\begin{gathered} \mathbf{0 . 3 8 0} \\ (0.305-0.476) \end{gathered}$	$\begin{gathered} \mathbf{0 . 4 5 9} \\ (0.366-0.578) \end{gathered}$	$\begin{gathered} \mathbf{0 . 5 7 5} \\ (0.445-0.755) \end{gathered}$	$\begin{gathered} \mathbf{0 . 6 7 0} \\ (0.505-0.890) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 7 6 9} \\ (0.560-1.05) \end{array}$	$\begin{gathered} 0.875 \\ (0.611-1.22) \end{gathered}$	$\begin{gathered} 1.02 \\ (0.685-1.47) \end{gathered}$	$\begin{gathered} 1.14 \\ (0.742-1.65) \end{gathered}$
10-min	$(0.281-0.435)$	$\begin{gathered} \mathbf{0 . 4 2 4} \\ (0.342-0.531) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{0 . 5 5 6} \\ (0.446-0.697) \\ \hline \end{gathered}$	$(0.536-0.846)$	$\begin{array}{\|c\|} \hline 0.842 \\ (0.652-1.11) \\ \hline \end{array}$	$\begin{gathered} 0.980 \\ (0.740-1.30) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.13 \\ (0.820-1.53) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.28 \\ (0.894-1.79) \\ \hline \end{array}$	$\begin{gathered} 1.50 \\ (1.00-2.15) \end{gathered}$	$\begin{gathered} 1.67 \\ (1.09-2.42) \\ \hline \end{gathered}$
15-min	$\begin{array}{c\|} \hline \mathbf{0 . 4 2 5} \\ (0.342-0.531) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 0.518 \\ (0.417-0.647) \\ \hline \end{array}$	$(0.544-0.850)$	$\begin{array}{\|c\|} \hline 0.819 \\ (0.654-1.03) \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 1.03 \\ (0.795-1.35) \\ \hline \end{array}$	$\begin{gathered} 1.20 \\ (0.902-1.59) \end{gathered}$	$\begin{array}{\|c\|} \hline 1.37 \\ (1.00-1.87) \\ \hline \end{array}$	$\begin{gathered} 1.56 \\ (1.09-2.18) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.83 \\ (1.22-2.62) \\ \hline \end{array}$	$\begin{gathered} \mathbf{2 . 0 4} \\ (1.33-2.95) \\ \hline \end{gathered}$
30-min	$\begin{array}{\|c} \hline \mathbf{0 . 6 1 1} \\ (0.492-0.76 \\ \hline \end{array}$	$(0.598-0.930)$	(0.780-1.22)	$\begin{array}{c\|} \hline 1.17 \\ (0.937-1.48) \\ \hline \end{array}$	$\begin{gathered} 1.47 \\ (1.14-1.93) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.71 \\ (1.29-2.27) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 1.96 \\ (1.43-2.67) \\ \hline \end{array}$	$\begin{gathered} \mathbf{2 . 2 3} \\ (1.56-3.11) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.60 \\ (1.74-3.73) \\ \hline \end{gathered}$	$\begin{gathered} 2.90 \\ (1.89-4.20) \\ \hline \end{gathered}$
60-min	$\begin{gathered} \mathbf{0 . 7 8 5} \\ (0.632-0.980 \end{gathered}$	$\begin{gathered} \hline 0.939 \\ (0.756-1.18) \\ \hline \end{gathered}$	$\begin{gathered} 1.22 \\ (0.976-1.53) \\ \hline \end{gathered}$	$\begin{gathered} 1.47 \\ (1.17-1.85) \end{gathered}$	$\begin{gathered} \hline 1.85 \\ (1.44-2.45) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.17 \\ (1.65-2.90) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.52 \\ (1.84-3.44) \\ \hline \end{gathered}$	$\begin{gathered} 2.89 \\ (2.02-4.06) \\ \hline \end{gathered}$	$\begin{gathered} 3.42 \\ (2.30-4.93) \\ \hline \end{gathered}$	$\begin{gathered} 3.85 \\ (2.51-5.58) \\ \hline \end{gathered}$
2-hr	$\begin{array}{\|c\|} \hline 0.959 \\ (0.779-1.19) \\ \hline \end{array}$	$\begin{gathered} 1.14 \\ (0.921-1.41) \end{gathered}$	$\begin{gathered} 1.46 \\ (1.18-1.82) \end{gathered}$	$\begin{gathered} 1.77 \\ (1.42-2.21) \end{gathered}$	$\begin{gathered} 2.24 \\ (1.76-2.95) \end{gathered}$	$\begin{gathered} \mathbf{2 . 6 4} \\ (2.02-3.51) \end{gathered}$	$\begin{gathered} 3.08 \\ (2.27-4.18) \\ \hline \end{gathered}$	$\begin{gathered} 3.56 \\ (2.51-4.96) \end{gathered}$	$\begin{gathered} \hline 4.25 \\ (2.88-6.08) \end{gathered}$	$\begin{gathered} \hline 4.81 \\ (3.16-6.92) \end{gathered}$
3-hr	$\begin{array}{\|c\|} \hline 1.05 \\ (0.860-1.30) \\ \hline \end{array}$	$\begin{gathered} 1.23 \\ (1.00-1.52) \end{gathered}$	$\begin{gathered} 1.57 \\ (1.28-1.95) \end{gathered}$	$\begin{gathered} 1.90 \\ (1.53-2.36) \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 2} \\ (1.92-3.19) \end{gathered}$	$\begin{gathered} \hline \mathbf{2 . 8 8} \\ (2.22-3.82) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.38 \\ (2.51-4.59) \\ \hline \end{array}$	$\begin{gathered} 3.94 \\ (2.80-5.49) \end{gathered}$	$\begin{array}{c\|} \hline 4.75 \\ (3.24-6.79) \\ \hline \end{array}$	$\begin{gathered} 5.42 \\ (3.58-7.78) \end{gathered}$
6-hr	$\begin{gathered} 1.22 \\ (1.01-1.50) \\ \hline \end{gathered}$	$\begin{gathered} 1.41 \\ (1.16-1.73) \end{gathered}$	$\begin{gathered} 1.79 \\ (1.46-2.20) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 1 6} \\ (1.76-2.67) \end{gathered}$	$\begin{gathered} 2.77 \\ (2.22-3.64) \end{gathered}$	$\begin{gathered} 3.31 \\ (2.57-4.37) \end{gathered}$	$\begin{array}{\|c\|} \hline 3.91 \\ (2.93-5.29) \\ \hline \end{array}$	$\begin{gathered} 4.58 \\ (3.29-6.36) \end{gathered}$	$\begin{gathered} \hline 5.58 \\ (3.84-7.93) \\ \hline \end{gathered}$	$\begin{gathered} 6.40 \\ (4.26-9.12) \end{gathered}$
12-hr	$\begin{gathered} 1.41 \\ (1.17-1.72) \end{gathered}$	$\begin{gathered} 1.64 \\ (1.36-1.99) \\ \hline \end{gathered}$	$\begin{gathered} 2.08 \\ (1.71-2.53) \\ \hline \end{gathered}$	$\begin{gathered} 2.50 \\ (2.05-3.06) \end{gathered}$	$\begin{gathered} 3.19 \\ (2.58-4.15) \end{gathered}$	$\begin{gathered} 3.80 \\ (2.98-4.97) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 4.47 \\ (3.38-6.00) \\ \hline \end{array}$	$\begin{gathered} 5.22 \\ (3.78-7.19) \end{gathered}$	$\begin{gathered} 6.32 \\ (4.39-8.93) \\ \hline \end{gathered}$	$\begin{gathered} 7.23 \\ (4.85-10.2) \end{gathered}$
24-hr	$\begin{gathered} \hline 1.63 \\ (1.36-1.96) \end{gathered}$	$\begin{gathered} \hline 1.91 \\ (1.60-2.30) \end{gathered}$	$\begin{gathered} \hline 2.43 \\ (2.02-2.94) \end{gathered}$	$\begin{gathered} \hline 2.92 \\ (2.42-3.55) \end{gathered}$	$\begin{gathered} \hline 3.69 \\ (2.99-4.73) \end{gathered}$	$\begin{gathered} \hline 4.35 \\ (3.42-5.62) \end{gathered}$	$\begin{gathered} \mathbf{5 . 0 6} \\ (3.85-6.71) \end{gathered}$	$\begin{gathered} 5.85 \\ (4.26-7.97) \end{gathered}$	$\begin{gathered} 6.99 \\ (4.89-9.78) \end{gathered}$	$\begin{gathered} 7.92 \\ (5.36-11.1) \end{gathered}$
2-day	$\begin{gathered} 1.89 \\ (1.59-2.26) \end{gathered}$	$\begin{gathered} \hline 2.24 \\ (1.88-2.67) \end{gathered}$	$\begin{gathered} \mathbf{2 . 8 5} \\ (2.39-3.41) \end{gathered}$	$\begin{gathered} 3.41 \\ (2.84-4.10) \end{gathered}$	$\begin{gathered} \hline 4.25 \\ (3.45-5.36) \end{gathered}$	$\begin{gathered} \hline 4.95 \\ (3.92-6.32) \end{gathered}$	$\begin{gathered} 5.70 \\ (4.36-7.47) \end{gathered}$	$\begin{gathered} \mathbf{6 . 5 1} \\ (4.77-8.77) \end{gathered}$	$\begin{gathered} 7.66 \\ (5.39-10.6) \end{gathered}$	$\begin{gathered} \hline 8.59 \\ (5.87-12.0) \\ \hline \end{gathered}$
3-day	$\begin{gathered} 2.08 \\ (1.76-2.47) \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 5} \\ (2.07-2.91) \\ \hline \end{gathered}$	$\begin{gathered} 3.11 \\ (2.62-3.71) \\ \hline \end{gathered}$	$\begin{gathered} 3.71 \\ (3.11-4.44) \end{gathered}$	$\begin{gathered} 4.60 \\ (3.75-5.77) \end{gathered}$	$\begin{gathered} 5.34 \\ (4.24-6.78) \end{gathered}$	$\begin{gathered} \mathbf{6 . 1 2} \\ (4.70-7.98) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{6 . 9 7} \\ (5.13-9.34) \end{gathered}$	$\begin{gathered} 8.17 \\ (5.78-11.3) \\ \hline \end{gathered}$	$\begin{gathered} 9.13 \\ (6.27-12.7) \end{gathered}$
4-day	$\begin{gathered} \mathbf{2 . 2 4} \\ (1.90-2.65) \end{gathered}$	$\begin{gathered} \mathbf{2 . 6 3} \\ (2.23-3.11) \\ \hline \end{gathered}$	$\begin{gathered} 3.31 \\ (2.80-3.93) \end{gathered}$	$\begin{gathered} 3.93 \\ (3.30-4.68) \end{gathered}$	$\begin{gathered} 4.85 \\ (3.97-6.07) \\ \hline \end{gathered}$	$\begin{gathered} 5.62 \\ (4.48-7.11) \end{gathered}$	$\begin{array}{\|c\|} \hline \mathbf{6 . 4 3} \\ (4.96-8.35) \\ \hline \end{array}$	$\begin{gathered} 7.31 \\ (5.40-9.77) \end{gathered}$	$\begin{array}{c\|} \hline 8.55 \\ (6.07-11.8) \\ \hline \end{array}$	$\begin{gathered} 9.55 \\ (6.58-13.3) \\ \hline \end{gathered}$
7-day	$\begin{gathered} \mathbf{2 . 6 5} \\ (2.27-3.11) \\ \hline \end{gathered}$	$\begin{gathered} 3.06 \\ (2.61-3.60) \end{gathered}$	$\begin{gathered} 3.79 \\ (3.22-4.46) \end{gathered}$	$\begin{gathered} 4.44 \\ (3.76-5.26) \end{gathered}$	$\begin{gathered} 5.42 \\ (4.47-6.73) \end{gathered}$	$\begin{gathered} 6.24 \\ (5.01-7.84) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 7.11 \\ (5.51-9.17) \\ \hline \end{array}$	$\begin{gathered} 8.04 \\ (5.98-10.7) \end{gathered}$	$\begin{gathered} 9.37 \\ (6.69-12.8) \end{gathered}$	$\begin{gathered} 10.4 \\ (7.23-14.4) \end{gathered}$
10-day	$\begin{gathered} \hline 3.01 \\ (2.59-3.52) \end{gathered}$	$\begin{gathered} \hline 3.46 \\ (2.97-4.05) \end{gathered}$	$\begin{gathered} \hline \hline 4.24 \\ (3.62-4.98) \end{gathered}$	$\begin{gathered} \hline 4.94 \\ (4.20-5.83) \end{gathered}$	$\begin{gathered} \hline 5.98 \\ (4.95-7.38) \end{gathered}$	$\begin{gathered} \hline 6.84 \\ (5.51-8.55) \end{gathered}$	$\begin{gathered} 7.75 \\ (6.03-9.94) \end{gathered}$	$\begin{gathered} 8.73 \\ (6.52-11.5) \end{gathered}$	$\begin{gathered} \hline \mathbf{1 0 . 1} \\ (7.25-13.7) \end{gathered}$	$\begin{gathered} 11.2 \\ (7.80-15.4) \end{gathered}$
20-day	$\begin{gathered} 4.03 \\ (3.49-4.68) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.64 \\ (4.01-5.38) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.67 \\ (4.88-6.59) \end{gathered}$	$\begin{gathered} \hline \mathbf{6 . 5 4} \\ (5.61-7.65) \end{gathered}$	$\begin{gathered} 7.80 \\ (6.47-9.47) \end{gathered}$	$\begin{gathered} 8.79 \\ (7.13-10.8) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 9.82 \\ (7.69-12.4) \\ \hline \end{array}$	$\begin{gathered} 10.9 \\ (8.18-14.2) \\ \hline \hline \end{gathered}$	$\begin{gathered} \hline 12.4 \\ (8.93-16.6) \\ \hline \end{gathered}$	$\begin{gathered} 13.5 \\ (9.49-18.4) \end{gathered}$
30-day	$\begin{gathered} 4.86 \\ (4.23-5.60) \\ \hline \end{gathered}$	$\begin{gathered} 5.61 \\ (4.87-6.47) \end{gathered}$	$\begin{gathered} 6.83 \\ (5.91-7.91) \\ \hline \end{gathered}$	$\begin{gathered} 7.85 \\ (6.76-9.13) \\ \hline \end{gathered}$	$\begin{gathered} 9.27 \\ (7.71-11.2) \end{gathered}$	$\begin{gathered} 10.4 \\ (8.43-12.7) \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline 11.5 \\ (9.02-14.4) \\ \hline \end{array}$	$\begin{gathered} 12.6 \\ (9.50-16.3) \end{gathered}$	$\begin{gathered} 14.1 \\ (10.2-18.8) \\ \hline \end{gathered}$	$\begin{gathered} 15.3 \\ (10.8-20.8) \end{gathered}$
45-day	$\begin{gathered} \hline 5.88 \\ (5.14-6.75) \end{gathered}$	$\begin{gathered} 6.78 \\ (5.92-7.79) \end{gathered}$	8.23 $(7.16-9.48)$	$\begin{gathered} 9.41 \\ (8.14-10.9) \end{gathered}$	$\begin{gathered} 11.0 \\ (9.17-13.1) \end{gathered}$	$\begin{gathered} \hline 12.2 \\ (9.96-14.8) \end{gathered}$	$\begin{gathered} 13.4 \\ (10.6-16.7) \end{gathered}$	$\begin{gathered} 14.6 \\ (11.0-18.7) \end{gathered}$	$\begin{gathered} 16.1 \\ (11.7-21.3) \end{gathered}$	$\begin{gathered} 17.2 \\ (12.2-23.3) \end{gathered}$
60-day	$\begin{gathered} \hline 6.74 \\ (5.91-7.70) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.75 \\ (6.79-8.87) \end{gathered}$	$\begin{gathered} 9.36 \\ (8.18-10.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 10.7 \\ (9.25-12.3) \\ \hline \end{gathered}$	$\begin{gathered} \hline 12.4 \\ (10.3-14.7) \\ \hline \end{gathered}$	$\begin{gathered} \hline 13.6 \\ (11.2-16.4) \end{gathered}$	$\begin{array}{\|c\|} \hline 14.9 \\ (11.7-18.4) \\ \hline \end{array}$	$\begin{gathered} 16.0 \\ (12.2-20.5) \end{gathered}$	$\begin{gathered} 17.6 \\ (12.8-23.2) \\ \hline \end{gathered}$	$\begin{gathered} 18.6 \\ (13.3-25.2) \\ \hline \end{gathered}$

[^0]Please refer to NOAA Atlas 14 document for more information.

PF graphical

Project: Paintbrush Hills Scenic View Detention Pond
Basin ID: Pond \#2

Watershed Information

Selected BMP Type =	EDB	
Watershed Area $=$	19.72	acres
Watershed Length =	1,000	ft
Watershed Length to Centroid =	500	ft
Watershed Slope $=$	0.031	$\mathrm{ft} / \mathrm{ft}$
Watershed Imperviousness $=$	60.50\%	percent
Percentage Hydrologic Soil Group A $=$	2.0\%	ercent
Percentage Hydrologic Soil Group B $=$	98.0\%	rcent
Percentage Hydrologic Soil Groups C/D =	0.0\%	rcent
Target WQCV Drain Time =	40.0	hours

Location for 1-hr Rainfall Depths = User Input

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) 0.391 acre-feet Zone 2 Volume (EURV - Zone 1) = Zone 3 Volume (100-year - Zones 1 \& 2) Total Detention Basin Volume $=\begin{array}{ll} & 2.128 \\ & \text { acre-feet }\end{array}$

Depth Increment $=$	1.00	ft							
Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area $\left(\mathrm{ft}^{2}\right)$	Optional Override Area $\left(\mathrm{ft}^{2}\right)$	$\begin{gathered} \text { Area } \\ \text { (acre) } \end{gathered}$	Volume $\left(\mathrm{ft}^{3}\right)$	Volume (ac-ft)
Top of Micropool	--	0.00	--	--	--	33	0.001		
7138	--	0.85	--	--	--	3,174	0.073	1,363	0.031
7139	--	2.00	--	--	--	6,012	0.138	6,645	0.153
7140	--	3.00	--	--	--	8,153	0.187	13,727	0.315
7141	--	4.00	--	--	--	10,260	0.236	22,934	0.526
7142	--	5.00	--	--	--	12,558	0.288	34,343	0.788
7143	--	6.00	--	--	--	15,009	0.345	48,126	1.105
7144	--	7.00	--	--	--	17,647	0.405	64,454	1.480
7145	--	8.00	--	--	--	20,403	0.468	83,479	1.916
7146	--	9.00	--	--	--	23,274	0.534	105,318	2.418
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)			Calculated Parameters for Underdrain
Underdrain Orifice Invert Depth $=$	ft (distance below the filtration media surface)	Underdrain Orifice Area	ft^{2}
Underdrain Orifice Diameter $=$	inches	Underdrain Orifice Centroid =	¢feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice $=$	0.00	(rative to basin bottom at Stage $=0 \mathrm{ft}$)
Depth at top of Zone using Orifice Plate $=$	6.57	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Orifice Plate: Orifice Vertical Spacing =	18.00	nches
Orifice Plate: Orifice Area per Row	1.83	hes (diameter = 1-1/2 inches)

Calculated Parameters for Plate

	Calculated Parameters for	
Elliptical Half-Width	$=1.271 \mathrm{E}-02$	ft^{2}
Elliptical Slot Centroid	$=\mathrm{N} / \mathrm{A}$	feet
Elliptical Slot Area	$=\mathrm{N} / \mathrm{A}$	feet
	N / A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

User Input: Vertical Orifice (Circular or Rectanqular)

Invert of Vertical Orifice $=$ Depth at top of Zone using Vertical Orifice $=$ Vertical Orifice Diameter $=$	Not Selected	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches
	N/A	N/A	
	N/A	N/A	
	N/A	N/A	

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)

	Zone 3 Weir	Not Selected	ft (relativ feet
Overflow Weir Front Edge Height, Ho =	6.57	N/A	
	3.00	N/A	
Overflow Weir Grate Slope =	0.00	N/A	$\mathrm{H}: \mathrm{V}$
Horiz. Length of Weir Sides =	3.00	N/A	feet
Overflow Grate Type =	Type C Grate	N/A	
Debris Clogging \% =	38\%	N/A	\%

o Outlet Pipe)	Calculated Parameters for Overflow Weir		
	Zone 3 Weir	Not Selected	
$=0 \mathrm{ft}$) Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$	6.57	N/A	et
Overflow Weir Slope Length =	3.00	N/A	feet
Grate Open Area / 100-yr Orifice Area $=$	2.60	N/A	
Overflow Grate Open Area w/o Debris =	6.26	N/A	ta^{2}
Overflow Grate Open Area w/ Debris =	3.92	N/A	tt^{2}

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Depth to Invert of Outlet Pipe = Circular Orifice Diameter =	Zone 3 Circular	Not Selected	ft (distance below basin bottom at Stage $=0 \mathrm{ft}$) inches
	0.75	N/A	
	21.00	N/A	

Outlet Orifice Area $=$	Zone 3 Circular	Not Selected	ft^{2}
	2.41	N/A	
Outlet Orifice Centroid	0.88	N/A	feet
Restrictor Plate on Pipe =	N/A	N/A	

Half-Central Angle of Restrictor Plate on Pipe $=$

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Routed Hydrograph Results

WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
N/A	N/A	0.94	1.22	1.47	1.85	2.17	2.52	3.14
0.391	1.298	0.843	1.180	1.534	2.204	2.715	3.340	4.364
N/A	N/A	0.843	1.180	1.534	2.204	2.715	3.340	4.364
N/A	N/A	0.3	2.5	6.6	17.9	24.7	33.1	46.1
N/A	N/A							
N/A	N/A	0.02	0.12	0.34	0.91	1.25	1.68	2.34
N/A	N/A	17.1	24.0	31.1	45.5	56.8	70.4	90.8
0.2	0.5	0.4	0.5	2.6	12.6	20.5	27.7	54.1
N/A	N/A	N/A	0.2	0.4	0.7	0.8	0.8	1.2
Plate	Plate	Plate	Plate	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Spillway
N/A	N/A	N/A	N/A	0.3	1.9	3.2	4.3	4.9
N/A								
39	63	54	61	65	61	58	56	52
42	69	59	67	71	70	69	67	65
3.39	6.54	5.01	6.03	6.76	7.20	7.53	8.06	8.47
0.21	0.38	0.29	0.35	0.39	0.42	0.44	0.47	0.50
0.392	1.300	0.788	1.112	1.384	1.558	1.703	1.940	2.139

Worksheet for Trickle Channel

Project Description

Friction Method	Manning Formula
Solve For	Discharge

Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.5	$\%$
Normal Depth	0.50	ft
Bottom Width	4.00	ft

Results		
Discharge	8.78	$\mathrm{ft}^{3} / \mathrm{s}$
Flow Area	2.00	ft^{2}
Wetted Perimeter	5.00	ft
Hydraulic Radius	0.40	ft
Top Width	4.00	ft
Critical Depth	0.53	ft
Critical Slope	0.00416	$\mathrm{ft} / \mathrm{ft}$
Velocity	4.39	ft / s
Velocity Head	0.30	ft
Specific Energy	0.80	ft
Froude Number	1.09	
Flow Type		

GVF Input Data		
Downstream Depth	0.00	ft
Length	0.00	ft
Number Of Steps	0	

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft / s
Upstream Velocity	Infinity	ft / s
Normal Depth	0.50	ft
Critical Depth	0.53	ft
Channel Slope	0.5	$\%$
Critical Slope	0.00416	$\mathrm{ft} / \mathrm{ft}$

Bentley Systems, Inc. Haestad Methods SoBtindeqEhterMaster V8i (SELECTseries 1) [08.11.01.03]

Worksheet for Forebay Overflow

Project Description

Solve For	Headwater Elevation	
Input Data		
Discharge	68.50	$\mathrm{ft}^{3} / \mathrm{s}$
Crest Elevation	0.00	ft
Tailwater Elevation	0.00	ft
Weir Coefficient	3.33	US
Crest Length	21.0	ft
Number Of Contractions	0	
Results	0.99	ft
Headwater Elevation	0.99	ft
Headwater Height Above Crest	0.00	ft
Tailwater Height Above Crest	20.71	ft^{2}
Flow Area	3.31	ft / s
Velocity	22.97	ft
Wetted Perimeter	21.00	ft
Top Width		

SCENIC VIEW
 AT PAINTBRUSH HILLS

NOVEMBER, 2013
FEBRUARY, 2014
APRIL, 2014
JUNE, 2014
JULY, 2014

Prepared for:

Babcock Land Corp.
212 N. Wahsatch Ave, Suite 301
Colorado Springs, Colorado 80903
(719) 635-3200

Prepared by:
Core Engineering Group, LLC
$150041^{\text {st }}$ Avenue South
Burnsville Minnesota 55306
(719) 570-1100

Project No. 100.203

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and befieffochatirainage report has been prepared according to the criteria established by El Pas Coysyobr dratigeg teapots and said report is in conformity with the master plan of the drainage basin. f accopitappopsing for any liability caused by any negligent acts, errors, or omissions on my part if fotiginghis, ci ta

OWNERS STATEMENT

I, the Owner, have read and will comply with all the requirements specified in the drainage report and plan.

BABCOCK LAND CORP.

212 North Wahsatch Avenue, Suite 301
Address
Colorado Springs, Colorado 80903

FLOODPLAIN STATEMENT

To the best of my knowledge and belief, this development is not located within a designated 100 year floodplain as shown on Flood Insurance Rate Map Panel No. 08041 C 0575 F, dated March 17, 1997. (See Appendix A, FEMA FIRM Exhibit)

EL PAS COUNTY

Filed in accordance with ElPaso County Land Development Code, Drainage Criteria manual,

Andre Brackin, P.E., County Engineer / ECM Administrator

$$
\frac{9-12-14}{\text { Date }}
$$

Conditions:

Sub-Basin C6b

Sub-Basin C6b consists of residential lots and directs runoff east and south to the proposed street. The total developed flow from this 1.49 acre sub-basin is 3.7 cfs for the 5 -year event and 7.6 cfs for the 100 -year event. Runoff from this basin is directed westerly within the street to the proposed 10 ' type " R^{n} inlet \#2 on a continuous grade. For the 5 -year flow of 4.7 cfs (includes 1.0 cfs flowby from inlet \#2 in C6a), this inlet intercepts a total of 4.5 cfs , with 0.2 cfs flowby directed to inlet \#4, for the 100 -year flow of 12.9cfs (includes 5.3 cfs flowby from inlet \#2 in C6a) 8.1cfs will be intercepted with 4.8cfs flowby directed to inlet \#4. Runoff from this proposed inlet is routed westerly underground via proposed $18^{\prime \prime} \& 24^{\prime \prime}$ RCP's, then to the proposed detention pond located in the southwest corner of this development. See Appendix B for a flow summary of this basin.

Sub-Basin C6c

Sub-Basin C6c consists of residential lots and directs runoff south to the proposed street. The total developed flow from this 1.35 acre sub-basin is 3.5 cfs for the 5 -year event and 7.4 cfs for the 100 -year event. Runoff from this basin and the flowby is directed westerly within the street to the proposed 15' type " $\mathrm{R}^{\text {" }}$ inlet \#4 in a sump condition. This inlet will be discussed in greater detail in the following design point DP-4 section. See Appendix B for a flow summary of this basin.

Sub-Basin C6

Sub-Basin C consists of residential lots and directs runoff north and west to the proposed street. The peak developed flow from this 5.18 acre sub-basin is 12.8 cfs for the 5 -year event and 26.6 cfs for the 100-year event, flows from this sub-basin have been intercepted as detailed previously in sub-basins C6a and C6b the remaining flow is directed to the proposed 15 ' type " R " inlet \#4 in a sump condition. This inlet will be discussed in greater detail in the following design point DP-4 section. See Appendix B for a flow summary of this basin.

Design Point DP-4

Design Point DP-4 consists of sub-basins C5 and C6, the total developed flow from this combined 7.18 acre basin is 17.0 cfs for the 5 -year event and 35.2 cfs for the 100 -year event, of this flow, 10.1 cfs for the 5 -year event and 16.4 cfs for the 100-year event have been intercepted upstream by inlets \#2 and \#3 and conveyed westerly underground via $18^{n} \& 24^{\prime \prime}$ RCP's to the low point in the proposed street. The remaining runoff is routed via curb and gutter to a proposed 15 ' type "R" inlet \#4 in a sump condition on the north side of the proposed street. This 15 ' inlet will intercept the 5 -year flow of 8.4 cfs (4.7 cfs from basin C5 + 3.5cfs from basin C6c +0.2 cfs flowby from inlet \#3 $=8.4 \mathrm{cfs}$; additive) at a depth of 0.48 , the 100 -year flow of 22.0 cfs (9.8 cfs from basin C5 +7.4 cfs from basin $\mathrm{C} 6 \mathrm{c}+4.8 \mathrm{cfs}$ flowby from inlet \#3 = 8.4cfs; additive) will be intercepted at a depth of 0.69'. Runoff from this proposed inlet is routed southerly underground via proposed 24^{n} RCP (pipe flow is 8.4 cfs for the 5 year event and 22.0 cfs for the 100 -year event) to the proposed manhole, then a 42^{π} RCP to proposed inlet \#5, and the 42" RCP outlets into the proposed detention pond located in the southwest corner of this development. See Appendix B for a flow summary of this basin.

Sub-Basin C7

Sub-Basin $\mathrm{C7}$ consists of residential lots and directs runoff north to the proposed street. The peak developed flow from this 1.65 acre sub-basin is 4.1 cfs for the 5 -year event and 8.6 cfs for the 100 -year event, these flows are routed westerly via curb and gutter to a proposed 20 ' type " R " inlet \#5 in a sump condition on the south side of the proposed street. This inlet will be discussed in greater detail in the following design point DP-5 section. See Appendix B for a flow summary of this basin.

Sub-Basin C8

Sub-Basin C8 consists of residential lots and directs runoff easterly to the proposed street. The peak developed flow from this 1.54 acre sub-basin is 4.1 cfs for the 5 -year event and 8.4 cfs for the 100 -year event, these flows are routed southerly, the easterly via curb and gutter to a proposed 20 ' type " R "
inlet \#5 in a sump condition on the south side of the proposed street. This inlet will be discussed in greater detail in the following design point DP-5 section. See Appendix B for a flow summary of this basin.

Design Point DP-5

Design Point DP-5 consists of design point DP-3 and sub-basins C7 and C8, the total developed flow from this combined 32.27 acre basin is 24.4 cfs for the 5 -year event and 60.1cfs for the 100 -year event, a portion of the 5 -year flow and the 100 -year flow have been intercepted upstream and conveyed underground southerly and easterly via $30^{\prime \prime}$ RCP to the low point in the proposed street. The remaining runoff is routed via curb and gutter to a proposed 20 ' type " $R^{\prime \prime}$ inlet \#5 in a sump condition on the south side of the proposed street. This 20 ' inlet will intercept the 5 -year flow of 9.6 cfs (4.1 cfs from basin C7 +4.1 cfs from basin C8 +0.3 cfs flowby from basin EX-B1 +1.1 cfs flowby from inlet \#1 $=9.3 \mathrm{cfs}$; additive) at a depth of 0.46 ', the 100 -year flow of 32.2 cfs (8.6 cfs from basin $\mathrm{C} 7+$ 8.4 cfs from basin C8 +8.1 cfs flowby from basin EX-B1 +7.1 cfs flowby from inlet $\# 1=32.2 \mathrm{cfs}$; additive) will be intercepted at a depth of 0.73 '. Runoff from this proposed inlet is routed southerly underground via proposed $42^{\prime \prime}$ RCP to the proposed detention pond located in the southwest corner of this development. See Appendix B for a flow summary of this basin.

Design Point DP-6

Design Point DP-6 collects surface and pipe flow from design points DP-4 and DP-5, which includes the released flows of 10.9 cfs for the 5 -year event and 46.2 cfs for the 100 -year event from the existing detention pond. The total developed flow from this 39.45 acre design point is 32.5 cfs for the 5 -year event and 68.6 cfs for the 100 -year event. Design point DP-6 flows are directed to the proposed detention pond located in the southwest corner of this development. This pond will be discussed in greater detail in the following Detention Pond and Water Quality section. See Appendix B for a flow summary of this basin.

Sub-Basin C9

Sub-Basin C9 encompasses the detention pond area, contains 0.67 acres and generates a peak developed flow of 0.8 cfs for the 5 -year event and 2.1 cfs for the 100 -year event, flows are routed through the detention pond and outlets to the existing 30^{n} RCP at the comer of Stapleton Drive and Towner Avenue via proposed 24" RCP. See Appendix B for a flow summary of this basin.

Design Point DP-6a

Design Point DP-6 collects surface and pipe flow from sub-basin C9 and design point DP-6, which includes the released flows of 10.9 cfs for the 5 -year event and 46.2 cfs for the 100 -year event from the existing detention pond. The total developed flow from this 40.12 acre design point is 33.2 cfs for the 5 -year event and 70.4 cfs for the 100 -year event. Design point DP-6a flows are directed to the proposed detention pond located in the southwest corner of this development. This pond will be discussed in greater detail in the following Detention Pond and Water Quality section. See Appendix B for a flow summary of this basin.

Design Point DP-7

Design Point DP-7 collects surface and pipe flow from design point DP-6a and basin J, which includes the released flows of 10.9cfs for the 5 -year event and 46.2 cfs for the 100-year event from the existing detention pond. The total developed flow from this 41.88 acre design point is 8.8 cfs for the 5 -year event and 28.6 cfs for the 100 -year event. Design point DP- 7 is located at the southwest corner of this development at the intersection of Stapleton Drive and Towner Avenue. This design point does not generate an increase in runoff; therefore, there should be no downstream impacts. See Appendix B for a flow summary of this basin.

Hydraulic and pond calculations have been performed using an Excel spreadsheet, Street and Inlet Hydraulics by Denver Urban Drainage and Flood Control District, Stormwater Quality Procedures by the City of Colorado Springs, Hydraflow for Storm Sewers, Hydraflow Hydrographs and Hydraflow Express by Intellisolve computer modeling programs. The inlets have been sized using local runoff for interception and runby flows, if any. The pipe flows shown are based on an additive flow and was used for the sizing of the storm drain system only, and was not used for the hydraulic modeling of the proposed Scenic View Pond. A separate Hydrologic modeling program (Hydraflow Hydrographs; by Intellisolve) using peak flow at the various design points, was used to design the proposed Scenic View detention pond. These storm sewer calculations are located in Appendix C.

It is the intent of this FDR to use the proposed curb/gutter and storm sewer in the streets to convey runoff to the detention facility and water quality pond where runoff can be treated prior to discharge. Maintenance of the private grass swale sedimentation facility will be provided by the "Paint Brush Hills Metro District". Inlet locations have been indicated on the developed conditions drainage map and have been sized for the 5 -year and 100 -year storms. See Appendix C for detailed hydraulic calculations and the storm sewer model.

6.0 DRAINAGE AND BRIDGE FEES

Scenic View at Paintbrush Hills is located within the Falcon Area Drainage Basin which is currently a fee basin in El Paso County. Current El Paso County regulations require drainage and bridge fees to be paid for platting of land.

Scenic View at Paintbrush Hills Final Plat contains 18.76 acres and will be assessed Drainage and Bridge fees. This project has a percent impervious of 53%, this is based on 0.138 acre lots obtained from the "Addendum; Revised Drainage Basin Fees Based on Impervious Area". The 2014 drainage fees are $\$ 8,115$, and the bridge fees are $\$ 3,115$ per impervious acre. The fees are calculated as follows:

Table 1: Drainage/Bridge Fees

Type of Land Use	Total Area (ac)	Impervious	2014 Drainage Fees ($\$ 8,115)$	2014 Bridge Fees $(\$ 3,115)$
Residential	18.76	53%	$\$ 80,686$	$\$ 30,972$

7.0 DETENTION AND WATER QUALITY POND

Runoff from Scenic View at Paintbrush Hills drains southwest to the proposed Scenic View Pond; the total contributing area is 40.12 acres and generates a peak flow of 33.2 cfs for the 5 -year event and 70.4 cfs for the 100 -year event. Release rate is 8.8 cfs for the 5 -year event and 28.6 cfs for the $100-$ year event. This pond also includes water quality. See the drainage map, also the early grading plan and detail sheet for the proposed pond that are included in the appendix of this report.
Current conditions Drainage Plan show peak flows exiting this site at 4 existing culverts, proposed conditions show that developed flow exiting at these locations are at or below current condition flows. Since these basins do not generate an increase in runoff; there should be no downstream impacts.

Table 1: Detention Pond Data

Pond	Incoming Flow	Pond Discharge	WSEL	Storage (ac-ft)	Water Quality
Scenic View Pond (5-yr.)	33.2 cfs	8.8 cfs	7141.74	0.70	yes
Scenic View Pond (100-yr)	70.4 cfs	28.6 cfs	7144.20	1.55	yes

Table 3: Water Quality Pond Summary

Pond	Tributary Area	WQCV	WSEL	Comments
Scenic View Pond	13.09 ac	$0.33 \mathrm{ac}-\mathrm{ft}$	7139.00	
Porous Landscape Detention	1.52 ac.	$0.03 \mathrm{ac}-\mathrm{ft}$	7147.69	$1,122 \mathrm{cu}-\mathrm{ft}$

8.0 CONCLUSIONS

This drainage report has been prepared in accordance with the City of Colorado Springs/El Paso County Drainage Criteria Manual. The proposed development and drainage infrastructure will not cause adverse impacts to adjacent properties or properties located downstream. Several key aspects of the development discussed above are summarized as follows:

- Developed runoff will be conveyed via curb/gutter and storm sewer facilities
- Detention for this filing is provided in Scenic View Pond
- Water Quality for this filing is provided in Scenic View Pond

9.0 REFERENCES

1. City of Colorado Springs/EI Paso County Drainage Criteria Manual DCM
2. Soil Survey of El Paso County Area, Colorado by USDA, SCS
3. City of Colorado Springs "Drainage Criteria Manual, Volume 2
4. El Paso County "Engineering Criteria Manual"
5. MDDP for Faicon Hills Development, Dated October 22, 2002 by Kiowa Engineering
6. Paintbrush Hills Filing No. 4, Dated February, 1987, by KKBNA, Inc.
7. The Meadows Filing No. 3, Dated July, 2000, by Ladd Engineering Consultants, Inc.

(E) CORE

ENGINEERING GROUP
15004 1st Avenue South
Bumsville, MN 55306
PROJECT NAME: Scenic View at Paintbrush Hills
PROJECT NUMBER: 100.203
ENGINEER: LAB
DATE: 11/04/13
Final Drainage Plan
DEVELOPED CONDITIONS HYDROLOGY CALCULATIONS

B\% BASIN	CRITERIA	$\begin{aligned} & \text { Offsite } \\ & \text { EX-A } \end{aligned}$	$\begin{aligned} & \hline \text { Offsite } \\ & \text { EX-B1 } \end{aligned}$	Offsite EX-C1	Offsite EX-C2	$\begin{gathered} \text { C1 \& C2 } \\ \text { DP-1 } \\ \hline \end{gathered}$	$\begin{gathered} \text { W/Det } \\ \text { DP:1 } \end{gathered}$	$\begin{aligned} & \text { Offsite } \\ & \text { Ex-c3 } \end{aligned}$	C4	C3 8 C4	$\begin{gathered} \hline \text { WIDet: } \\ \text { DP. } 2 \end{gathered}$	W/Det. DP-3	C5
AREA, A [ACRE]	-	9.18	2.16	3.11	19.47	22.58	22.58	1.43	2.91	4.34	26.92	29.06	2.00
RUN-OFF COEFFICIENT, C5	-	0.47	0.80	0.65	0.47	0.49		0.30	0.60	0.50			0.60
OVERLAND DROP [FT]	-	16.00	1.00	1.00	24.00	24.00		6.00	3.10	6.00			0.80
OVERLAND FLOW LENGTH, Lo [FT]	-	300.00	26.00	15.00	300.00	300.00		271.00	424.00	271.00			40.00
OVERLAND SLOPE, $\mathrm{S}_{0}[\%]$	-	5.33\%	3.85\%	6.67\%	8.00\%	8.00\%		2.21\%	2.50\%	2.21\%			2.00\%
OVERLAND FLOW TIME, ¢ [MIN]	-	11.24	1.76	1.67	9.82	9.51		18.19	7.38	13.64			4.52
TRAVEL FLOW DROP [FT]	-	51.00	31.30		34.00	34.00		10.00		16.80			
TRAVEL FLOW LENGTH, Lt [F]]	-	1536.0	738.0		1059.0	1059.0		151.0		261.0			
TRAVEL SLOPE, $\mathrm{S}_{\mathrm{t}}[\%]$	-	3.32\%			3.21\%	3.21\%				6.44\%			
CHANNEL TRAVEL VELOCITY, V_{1} [FT/SEC]	-	3.11			2.82	2.82				2.67			
CHANNEL TRAVEL TIME, 4 [MIN]	Channel "ti"	8.23	3.90		6.28	6.26		0.60		1.63			
STREET FLOW DROP [FT]	-		2.50	26.00					5.70	5.90			14.90
STREET FLOW LENGTH, LT [FT]	-		81.0	807.0					895.0	791.0			1450.0
STREET TRAVEL SLOPE, $\mathrm{S}_{\mathrm{i}}[\%]$	-		3.09\%	3.22\%					0.64\%	0.75\%			1.03\%
STREET TRAVEL VELOCITY, V [[FT/SEC]	29.4927* ${ }^{\text {Slope^^ } 0.5}$		5.18	5.29					2.35	2.55			2.99
STREET TRAVEL TIME, \& [MIN]	Street "t"		0.26	2.54					6.34	5.18			8.08
PIPE DIAMETER	-		1.25										
PIPE FLOW DROP [FT]	-		2.44										
PIPE FLOW LENGTH, Lt [FT]	-		65.0										
PIPE TRAVEL SLOPE, $S_{t}[\%]$	- -		3.75\%										
PIPE TRAVEL VELOCITY, V_{1} [FT/SEC]	$V=1,486 / n * R^{23} \cdot S^{1 / 2}$		10.20										
PIPE TRAVEL TIME, 4 [MIN]	Pipe "tt"		0.11										
TIME OF CONCENTRATION, t_{c}	$t_{1}+h_{4}$	19.5	6.0	4.2	16.1	15.8	5 \& 23	18.8	13.7	20.4	$5 \& 23$	5\&23	12.6
	-												
5-YR RUN-OFF COEFFICIENT, C5	-	0.47	0.80	0.65	0.47	0.49		0.30	0.60	0.50			0.60
5-YR RAINFALL INTENSITY, 15 [IN/HR]	-	3.22	5.11	5.20	3.53	3.56		3.28	3.80	3.14			3.94
5-YR MAXIMUM RUN-OFF, Q5 [CFS]	$Q=C 1 A$	13.9	8.8	10.5	32.3	39.4	10.8	1.4	6.6	6.8	12.6	20.0	4.7
100-YR RUN-OFF COEFFICIENT, © ¢ $_{1}$		0.69	0.80	0.80	0.60	0.71		0.60	0.70	0.67			0.70
100-YR RAINFALL INTENSITY, I_{100} [IN/HR]	-	5.72	8.94	9.00	6.28	6.34		5.83	6.75	5.58			7.00
100-YR MAXIMUM RUN-OFF, Q_{100} [CFS]	$\mathrm{Q}=\mathrm{C} \mid \mathrm{A}$	36.3	17.5	22.4	84.4	101.6	46.2	5.0	13.6	16.2	60.1	60.1	9.8

${ }^{1}$ Cify of Colorado Springs and El Paso County Drainage Crileria Manual

© CORE
 ENGINEERING GROUP

15004 1st Avenue South
Burnsville, MN 55306
PROJECT NAME: Scenic View at Paintbrush Hills
PROJECT NUMBER: 100.203
ENGINEER: LAB
DATE: 11/04/13
Final Drainage Plan
DEVELOPED CONDITIONS HYDROLOGY CALCULATIONS

$\therefore \therefore \therefore$ BASIN	CRITERIA REFERENCE	C6a	C6b	C6c	C6	$\begin{gathered} \hline \text { C5 \& C8 } \\ \text { DP-4 } \\ \hline \end{gathered}$	C7	C8	C7 \& C8	$\begin{aligned} & \text { W/Dot } \\ & \text { DP-5 } \end{aligned}$	$\begin{aligned} & \text { W/Det: } \\ & \text { DP-6 } \end{aligned}$	$\begin{aligned} & \text { W/Dot } \\ & \text { DP-6a } \end{aligned}$	C9
AREA, A [ACRE]	-	2.34	1.49	1.35	5.18	7.18	1.65	1.54	3.19	32.27	39.45	40.12	0.87
RUN-OFF COEFFICIENT. C5	.	0.60	0.60	0.60	0.60	0.60	0.60	0.60	0.60				0.25
OVERLAND DROP [FT]	-	1.00	8.80	8.00	1.00	0.80	0.40	3.00	0.40				8.20
OVERLAND FLOW LENGTH, Lo [FT]	-	50.00	247.00	196.00	50.00	40.00	22.00	95.00	22.00				50.00
OVERLAND SLOPE, S_{0} [\%]	-	2.00\%	3.56\%	4.08\%	2.00\%	2.00\%	1.82\%	3.16\%	1.82\%				16.40\%
OVERLAND FLOW TIME, 4 [MIN]	.	5.05	9.26	7.88	5.05	4.52	3.46	5.98	3.46				4.26
TRAVEL FLOW DROP [FT]	.												1.60
TRAVEL FLOW LENGTH, Li [FT]													160.0
TRAVEL SLOPE, S, [\%]	.												1.00\%
CHANNEL TRAVEL VELOCITY, Vi [FT/SEC]	-												1.16
CHANNEL TRAVEL TIME, 4 [MIN]	Channel ${ }^{\text {tri" }}$												2.29
STREET FLOW DROP [FT]	-	11.80	1.60	1.50	14.90	14.90	5.40	6.60	5.40				
STREET FLOW LENGTH, Lt [FT]	-	684.0	288.0	243.0	1215.0	1450.0	976.0	636.0	976.0				
STREET TRAVEL SLOPE, $\mathrm{S}_{7}[\%]$	-	1.73\%	0.56\%	0.62\%	1.23\%	1.03\%	0.55\%	1.04\%	0.55\%				
STREET TRAVEL VELOCITY, $\mathrm{V}_{\text {[}}$ [FT/SEC]	$29.4927 \times$ Slope ${ }^{\text {^0. }}$.	3.87	2.20	2.32	3.27	2.99	2.19	3.00	2.19				
STREET TRAVEL TIME. L [MIN]	Street "t"	2.94	2.18	1.75	6.20	8.08	7.42	3.53	7.42				
PIPE DIAMETER	-												
PIPE FLOW DROP [FT]	-												
PIPE FLOW LENGTH, Lt [FT]	.												
PIPE TRAVEL SLOPE, S , $[\%]$													
PIPE TRAVEL VELOCITY, , [1FT/SEC]	$V=1.486 / \mathrm{n} \cdot \mathrm{R}^{23 \cdot} \mathrm{~S}^{1 / 2}$												
PIPE TRAVEL TIME, ¢ [MIN]	Pipe ${ }^{\text {\# }}{ }^{\text {r }}$												
TIME OF CONCENTRATION, $L_{\text {c }}$	$4+4$	8.0	11.4	9.6	11.3	12.6	10.9	9.5	10.9	8824	98.8	6	6.5
	.												
5-YR RUN-OFF COEFFICIENT, C5	\cdot	0.60	0.60	0.60	0.60	0.60	0.60	0.80	0.60				0.25
5-YR RAINFALL. INTENSITY, 15 [/N/HR]	-	4.68	4.10	4.38	4.13	3.94	4.18	4.40	4.18				4.99
5-YR MAXIMUM RUN-OFF, Q5 [CFS]	Q=CIA	6.6	3.7	3.5	12.8	17.0	4.1	4.1	8.0	24.4	32.5	33.2	0.8
100-YR RUN-OFF COEFFICIENT, C_{100}		0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70				0.35
100-YR RAINFALL INTENSITY, 1000 [IN/HR]	-	8.33	7.29	7.79	7.34	7.00	7.44	7.83	7.44				8.87
$100-\mathrm{YR}$ MAXIMUM RUN-OFF. Q_{100} [CFS]	Q=CIA	13.61	7.6	7.4 \|	28.6	35.2	8.6	8.4	16.6	60.1	68.6	70.4	2.1

${ }^{1}$ City of Colorado Springs and El Paso County Drainage Criteria

(E) CORE

ENGINEERING GROUP
15004 1st Avenuc South
Bumsville, MN $\$ 5306$
PROJECT NAME: Scenic View at Paintbrush Hills
PROJECT NUMBER: 100.203
ENGINEER: $\angle A B$
DATE: 11/04/13
Final Drainage Plan
DEVELOPED CONDITIONS HYDROLOGY CALCULATIONS
Basin C Flow Does not include Existing offsite Detention,

	CRITERIA REFERENCE	W/O Det C	WiDet: DP. 7	Offsito EX-E1	E2	E	F	G	H	1.	J		
AREA, A [ACRE]	- -	37.99]	41.88	0.29	0.44	0.73	1.02	7.52	0.87	0.84	1.76		
RUN-OFF COEFFICIENT, C5	.	0.52		0.30	0.60	0.48	0.38	0.60	0.44	0.38	0.60		
OVERLAND DROP [FT]		6.00		12.0	10.00	19.00	3.00	1.60	3.00	9.20	2.60		
OVERLAND FLOW LENGTH, Lo (FT)	-	271.00		134.0	265.00	330.00	100.00	78.00	70.00	93.00	76.00		
OVERLAND SLOPE, $\mathrm{S}_{0}[\%]$.	2.21\%		9.0\%	3.77\%	5.76\%	3.00\%	2.05\%	4.29\%	9.89\%	3.42\%		
OVERLAND FLOW TIME, \& [MIN]	-	13.19		8.0	0.41	11.40	8.89	6.26	6.12	5.82	5.21		
TRAVEL FLOW DROP [FT]	-	16.80					5.60	2.00	5.00	1.40	14.00		
TRAVEL FLOW LENGTH, Lt [FT]	-	261.0					184.0	30.0	174.0	281.0	407.0		
TRAVEL SLOPE, St [\%]	.	6.44\%					3.04\%	6.67\%	2.87\%	0.50\%	3.44\%		
CHANNEL TRAVEL VELOCITY. V, [FT/SEC]	-	2.67					1.85	1.65	1.78	1.01	2.32		
CHANNEL TRAVEL TIME, 4 [MIN]	Channel "tr"	1.63					1.66	0.30	1.63	4.62	2.92		
STREET FLOW DROP [FT]	-	13.60						12.00					
STREET FLOW LENGTH, Lt [F]	-	1475.0						312.0					
STREET TRAVEL SLOPE, S [$[\%]$	-	0.92\%						3.85\%					
STREET TRAVEL VELOCITY, Vt [FT/SEC]	29.4927*Slope^0.5	2.83						5.78					
STREET TRAVEL TIME, 4 [MIN]	Street "tr"	8.68						0.90					
PIPE DIAMETER	-												
PIPE FLOW DROP [FT]	.												
PIPE FLOW LENGTH, LT [FT]	.												
PIPE TRAVEL SLOPE, $\mathrm{S}_{1}[\%]$	-												
PIPE TRAVEL VELOCITY, V, [FT/SEC]	$\mathrm{V}=1.486 / \mathrm{n} \cdot \mathrm{R}^{23} \cdot \mathrm{~g}^{1 / 2}$												
PIPE TRAVEL TIME, 4 [MIN]	Pipe "nt"												
TIME OF CONCENTRATION, t_{6}	t+4	23.5	10 \& 13	8.0	9.4	11.4	10.6	7.5	7.7	10.4	8.1		
	-												
5-YR RUN-OFF COEFFICIENT, C5	-	0.52		0.30	0.60	0.48	0.38	0.60	0.44	0.38	0.60		
5-YR RAINFALL INTENSITY. 15 [IN/HR]	-	2.92		4.68	4.42	3.92	4.22	4.79	4.73	4.25	4.66		
5-YR MAXIMUMRUN-OFF, Q5 [CFS]	$Q=C 1 /$	57.7	8.8	0.4	1.2	1.3	1.6	4.4	1.8	1.5	4.9		
100-YR RUN-OFF COEFFICIENT, C_{100}		0.70		0.60	0.70	0.66	0.65	0.70	0.68	0.64	0.70		
$100-\mathrm{YR}$ RAINFALL $\operatorname{INTENSITY,~}{ }_{100}$ [IN/HR]	-	5.19		8.32	7.86	7.30	7.50	8.52	8.42	7.56	8.28		
100-YR MAXIMUM RUN-OFF, Q_{100} [CFS]	Q = CIA	138.1	28.6	1.4	2.4	3.5	5.01	9.11	5.0	4.5	10.2		

[^1]
Scenic View Proposed Pond

Stage

Schematic only. Not for construction.
Hydraflow Hydrographs Pond Draw

Pond Report

Hydraflow Hydrographs by Intelisolve
Pond No. 2 - Scenic View Proposed Pond
Pond Data
Pond storage is based on known contour areas. Average end area method used.

Stage / Storage Table				
Stage ((t)	Elevation (ft)	Contour area (sqft)	Incr. Storage (cuft)	Total storage (cuft)
0.00	7138.00	4,261	0	$0<5$ -
1.00	7139.00	6,250	5,256	5,256
2.00	7140.00	8,240	7,245	12,501
3.00	7141.00	10,400	9,320	21,821
4.00	7142.00	12,558	11,479	33,300
5.00	7143.00	15,102	13,830	47,130
6.00	7144.00	17,647	16,375	63,504
7.00	7145.00	20,461	19,054	82,558
8.00	7146.00	23,274	21,868	104,426

Culvert I Orifice Structures

Weir Structures

| | [A] | [B] | [C] | [D] | | | [A] | [B] | [C] |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | [D]

Stage / Storage / Discharge Table												
Stage ft	Storage cuft	$\begin{gathered} \text { Elevation } \\ \mathrm{ft} \end{gathered}$	Clv A cfs	Clv 8 efs	Civ C efs	Clv D cfs	Wr A cfs	Wr B cfs	Wre cfs	Wr D cfs	$\begin{aligned} & \text { Exfil } \\ & \text { efs } \end{aligned}$	Total cts
0.00	0	7138.00	0.00	0.00	-	-	0.00	0.00	-	-	-	0.00
1.00	5,256	7139.00	9.02	0.00	--	-	0.00	0.00	-	-	--	0.00
2.00	12,501	7140.00	9.02	2.01	--	--	0.00	0.00	--			2.01
3.00	21,821	7141.00	9.02	3.30	-	-	0.00	0.00		--		3.30
4.00	33,300	7142.00	17.51	3.77	--	-	13.74	0.00	--	-	-	17.51
5.00	47,130	7143.00	25.94	0.68		-	25.25	0.00				25.93
6.00	63,504	7144.00	28.19	0.71	-	-	27.47	0.00	-		--	28.18
7.00	82,558	7145.00	30.27	0.74	-	--	29.53	0.00	-	-	-	30.26
8.00	104,426	7146.00	32.21	0.77	-	-	31.43	96.57	-	-	-	128.77

Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 1 of 3

Designer:	Len Beasley
Company:	Core Engineering Group
Date:	November 13, 2013
Project:	Scenic View at Paintbrush Hills
Location:	Scenic View Pond (SW Corner) \#100.203

1. Basin Storage Volume
A) Tributary Area's Imperviousness Ratio ($i=I_{a} / 100$)
B) Contributing Watershed Area (Area)
C) Water Quality Capture Volume (WQCV) (WQCV $=1.0$ * ($\left.\left.0.91 *\right|^{3}-\left.1.19 *\right|^{2}+0.78 * I\right)$)
D) Design Volume: Vol $=($ WQCV $/ 12) *$ Area * 1.2
2. Outlet Works
A) Outlet Type (Check One)
B) Depth at Outlet Above Lowest Perforation (H)
C) Required Maximum Outlet Area per Row, (A_{0})
D) Perforation Dimensions (enter one only):
i) Circular Perforation Diameter OR
ii) 2" Height Rectangular Perforation Width
E) Number of Columns (nc, See Table 6a-1 For Maximum)
F) Actual Design Outlet Area per Row $\left(A_{0}\right)$
G) Number of Rows (nr)
H) Total Outlet Area ($A_{o d}$)

3. Trash Rack

A) Needed Open Area: $A_{t}=0.5^{*}$ (Figure 7 Value) * $A_{o t}$
B) Type of Outlet Opening (Check One)
C) For $\mathbf{2 "}^{\text {" }}$, or Smaller, Round Opening (Ref.: Figure 6a):
i) Width of Trash Rack and Concrete Opening ($\mathrm{W}_{\text {conc }}$) from Table 6a-1
ii) Height of Trash Rack Screen $\left(\mathrm{H}_{\mathrm{TR}}\right)$

$\begin{gathered} A_{1}= \\ X \end{gathered}$	131	square inches
	≤ 2 " Diameter Round $2^{\text {n }}$ High Rectangular Other:	
$\mathrm{W}_{\text {conc }}=$	6	inches (minimum)
	11" to ac	odate 10" Orifice
$\mathrm{H}_{\text {TR }}=$	48	inches

Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility

Designer:	Len Beasley
Company:	Core Engineering Group
Date:	November 13, 2013
Froject:	Scenic View at Paintbrush Hills
Location:	Scenic View Pond (SW Corner) \#100.203

Design Procedure Form: Extended Detention Basin (EDB) - Sedimentation Facility
Sheet 3 of 3

Designer:	Len Beasley
Company:	Core Engineering Group
Date:	November 13, 2013
Project:	Scenic View at Painthrush Hills
Location:	Scenic View Pond (SW Corner) \#100.203

[^0]: Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).
 Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

[^1]: ${ }^{1}$ City of Colorado Springs and El Paso County Drainage Criteria

