

Flying Horse North Filing No. 5 Final Drainage Report

▷ HRGREEN.COM

October 2024

Prepared For:

Mr. Drew Balsick Vice President / Project Manager Flying Horse Development, LLC 2138 Flying Horse Club Drive Colorado Springs, CO 80921 (719) 785-3237

Prepared By:

HR Green Development, LLC 1975 Research Parkway, Ste. 160 Colorado Springs, CO 80920 Contact: Richie Lyon, PE Richie.Lyon@hrgreen.com 719-318-0871

PCD File No. SF____

Table of Contents

Engine	er's Statement1
Develo	per's Statement1
El Paso	o County:1
Final D	rainage Report – Flying Horse North2
I. Ge	eneral Purpose, Location and Description2
a.	Purpose and Scope2
b.	DBPS Investigations
C.	Stakeholder Process
d.	Agency Jurisdictions
e.	General Project Description
f.	Data Sources
g.	Applicable Criteria and Standards4
II. Pr	oject Characteristics
a.	Location in Drainage Basin, Offsite Flows, Size
b.	Compliance with DBPS7
C.	Site Characteristics
d.	Major Drainage Ways and Structures7
e.	Existing and proposed land uses8
III.	Hydrologic Analysis8
a.	Major Basins and Sub-basins8
Majo	or Basin Description8
Exist	ting Subbasin Description9
Prop	osed Subbasin Description9
b.	Water Quality and Detention Facilities12
C.	Methodology15
IV.	Hydraulic Analysis16
a.	Major Drainageways
b.	Storm Sewer Infrastructure and Culvert Pipes16
V. Er	vironmental Evaluations
a.	Significant Existing or Potential Wetland and Riparian Areas Impacts
C.	Stormwater Quality Considerations and Proposed Practices

Flying Horse North Filing No. 5 Final Development Drainage Plan Project No.: 211030.250

d.	Permitting Requirements	17
e.	4-Step Process	17
VI.	Drawings	18
VII.	Drainage and Bridge Fees	18
VIII.	Summary	19
IX.	References	20

Appendices

A.	Maps	&	Exhibits
		-	

- B. Hydrology Calculations
- C. Hydraulic Calculations
- D. Referenced Report Excerpts
- E. Site Drainage Maps

Engineer's Statement

This report and plan for the drainage design of the development, Flying Horse North Filing No. 5, was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the *El Paso County Drainage Criteria* Manual and is in conformity with the master plan of the drainage basin. I understand that El Paso County does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Richie Lyon, PE Date

State of Colorado No. 53921

For and on behalf of HR Green Development, LLC

Developer's Statement

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Flying Horse Development, LLC

Drew Balsick

Date

Vice President

Flying Horse Development, LLC 2138 Flying Horse Club Drive

Colorado Springs, CO 80921

El Paso County:

Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and the Engineering Criteria Manual, as amended.

Joshua Palmer, P.E.

Date

County Engineer/ECM Administrator

Final Drainage Report – Flying Horse North I. General Purpose, Location and Description

Purpose and Scope

The Purpose of this Final Drainage Report (FDR) is to identify specific solutions to drainage concerns for onsite and offsite tributary areas resulting from the development of the subdivision to be platted. The FDR is to describe the onsite and offsite drainage patterns, existing and proposed storm infrastructure as it relates to water quality and stormwater detention for any proposed or existing facilities, the planned storm water management for Flying Horse North Filing No. 5.

The Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1 is a combined Preliminary Drainage Report (PDR) and Final Drainage Report (FDR) that was developed by Classic Consulting, latest revision June 2018. The combined PDR/FDR was approved by the County in September of 2018 and is included in Appendix E.

A more recent Master Development Drainage Plan (MDDP) was prepared by HR Green Development, LLC. and was approved by the County in September of 2022, entitled *Flying Horse North Master Development Drainage Plan* latest revision date of September 9, 2022. This MDDP also referenced the Classic Consulting report from 2018 for master drainage design of the proposed Filing No. 5 area.

The items discussed in this FDR include final plat layout, land uses, and drainage patterns for Flying Horse North Filing No. 5. Included in this report are final hydrologic and hydraulic drainage calculations and design as required for the final design of the development of the single-family residential estate lot areas. This report references the aforementioned reports to compare and contrast findings in the final design to ensure that existing infrastructure and facilities are not negatively impacted by this development.

DBPS Investigations

Flying Horse North is split by the Arkansas River Basin and South Platte Basin. Within the South Platte Basin, the site is withing the East Cherry Creek Drainage Basin. A Drainage Basin Planning Study (DBPS) does not currently exist for the East Cherry Creek Drainage Basin. This FDR is consistent with the 2022 MDDP which complies with standard El Paso County regulations regarding drainage within this corridor.

The Filing No. 5 area falls within the East Cherry Creek Basin which is to consist of 21 single-family residential estate lots of 2.5-acres minimum area within 58 acres. The remainder of the filing consists of a 52.7-acre open space park area. Proposed developed areas are provided with water quality and full spectrum detention (FSD) prior to release offsite. Areas that are tributary to Flying Horse Filing No. 5 have no increase in required stormwater quality or detention volumes. The west side of the Filing No. 5 site drains to the west through the existing golf course into the existing Irrigation Reservoir. The east side of the site drains to the north to the existing detention facility, Pond B, within Filing No. 4. Development of the Filing No. 5 areas tributary to this pond were accounted for within the Filing No. 4 Final Drainage Report (FDR) and pond design.

Stakeholder Process

There are no amendments to the current DBPS.

Agency Jurisdictions

Listed below are the jurisdictions that this project will conform to:

El Paso County

Federal Emergency Management Agency

General Project Description

Flying Horse North Filing No. 5 is in El Paso County jurisdiction and is located within the larger Flying Horse North subdivision. The overall Flying Horse North development is bordered by Highway 83 to the west, Black Forest Road to the east, Cathedral Pines to the south, and High Forest Ranch to the north. The greater Flying Horse North area contains approximately 1,459 acres within the whole Section 36, Township 11 South, Range 66 West of the Sixth Principal Meridian, and a portion of Section 30 and 31, Township 11 South, and Range 65 West of the Sixth Principal Meridian.

The Filing No. 5 area totals approximately 115 acres including 21 total 2.5-acre single-family residential estate lots for 58 acres (50%) of the filing. There is a park area within Tract A that consists of 52.7 acres (46%) of the filing. The remained of the filing area is right-of-way consisting of 4.5 acres (4%). The development includes the single-family residential estate lots, 60' width rights-of-way that consist of asphalt paved roadways with roadside swale sections, electric easements, and storm infrastructure including culverts.

Filing No. 5 was previously assessed in the 2018 Classic Consulting report with a similar land use plan that included 2-acre single-family residential estate lots and roadways. This report assesses the lots as 2.5-acre lots. The layout shown in the developed conditions hydrology map of this report and the corresponding construction drawings differs slightly from the approved FDR/PDR with adjusted roadway alignments and lot lines. However, the drainage patterns, typical roadway section, and land use densities are similar.

The existing vegetative cover is 90 percent as evidenced by a field survey and aerial imagery. The existing vegetation includes native grasses and weeds, shrubs, and pinyon pine trees. Previous clearing of future planned roadways was done several years ago, and native grass and weeds have covered those areas.

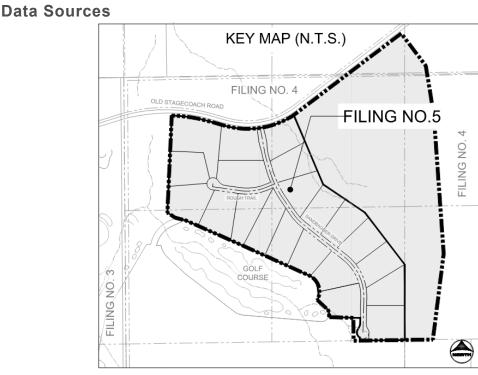


Figure 1 – Vicinity Map

Listed Below are the technical resources reviewed in the preparation of this FDR:

El Paso County Drainage Criteria Manual (DCM)

Mile High Flood District

NOAA Atlas 14

NRCS Soil Survey for El Paso County Area, Colorado

FEMA FIRM 08041C0305G and FIRM 08041C0315G (eff. 12/7/2018)

El Paso County Assessor Property Records

Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1 prepared by Classic Consulting – June 2018

Flying Horse North Master Development Drainage Report prepared by HR Green Development, LLC. – latest revision September 9, 2022

Flying Horse North Final Drainage Report prepared by HR Green Development, LLC. – latest revision September 2024

Applicable Criteria and Standards

Per El Paso County Criteria Manual, flows from the proposed site will be limited to historic flows to maintain the stability of the existing channels within the drainage basins. The final drainage plan follows the Drainage Criteria Manual for El Paso County which refers to the City of Colorado Springs Drainage Criteria Manuals as amended. Criteria within the County and City manuals refer to the Mile High Flood

District manuals, particularly for extended detention basin design and runoff reduction calculations which are utilized in this report.

A distinct difference in the 2018 FDR/PDR and this report are the hydrologic methodologies utilized to compute peak runoff values. The 2018 Classic Consulting report utilized the NRCS Curve Number method in order to be consistent with their previous MDDP for the greater Flying Horse North master development. The NRCS Curve Number method was used for Filing No. 1 and the future development of Filing No. 5 for sub-basins that did not exceed 100 acres. Typically, the Rational Method is used for hydrologic computations when basin analysis is under 100 acres due to the NRCS Curve Number method yielding smaller minor and major storm event peak runoff values. The resultant hydraulics in this report are similar to that of the approved 2018 FDR/PDR on a basin-by-basin basis, however, any differences in calculated stormwater runoff will be discussed. The difference in methodologies between the 2018 report and this report result in larger cumulative stormwater runoff values reported for the minor and major storm events. Due to the more conservative nature of the Rational Method, cumulative peak flow rates are greater than that of the 2018 FDR/PDR for the minor and major storm events for downstream design points.

HR Green has discussed this discrepancy in hydrologic methodology with El Paso County engineering staff and it has been expressed that the chosen method for hydrologic computations is the Rational Method for this report to ensure sound design of the storm infrastructure for Filing No. 5 including swales, channels, culvert pipes, inlets, and roadway capacities. Due to the use of the NRCS Curve Number method in the 2018 FDR/PDR, the peak runoff values in this report are larger than that of the approved 2018 FDR/PDR. To complete a fair assessment of the impacts downstream of the site, existing hydrology calculations have been completed and included in appendix B. There are no anticipated negative impacts to downstream offsite infrastructure because of this development as all other drainage parameters remain consistent with the 2018 FDR/PDR.

II. Project Characteristics

Location in Drainage Basin, Offsite Flows, Size

Flying Horse North Filing No. 5 is located within the East Cherry Creek Basin. There is not a current planning study of the drainage basin, but generally it slopes from southwest to northeast. The basin eventually flows into the South Platte River.

Within the portion of the East Cherry Creek Basin investigated with this Report, two major drainage basins have been designated by the detention facility in which the area is draining to. One drainage basin consists of seven sub-basins, "B" basins, conveyed to the existing detention pond, Pond B. This pond is located to the north of Old Stagecoach Road and drainage from the Filing No. 5 site will reach this pond via and existing 48-inch culvert. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
B1	57.78	15.9	97.5
B2.1	9.19	5.6	23.1
B2.2	5.24	3.0	12.4
B2.3	2.80	1.8	7.3
B2.4	2.61	1.8	6.9
B2.5	1.09	0.8	3.3
B2.6	18.82	9.5	38.4

Drainage within the "B" drainage basin flows ultimately from the southwest to northeast to reach the existing Pond B. Design points are located at proposed culverts and inlets within roadside ditches that direct flow to the detention pond. Drainage outfalls from Pond B into an existing channel that ultimately outfalls to the South Platte River. Drainage Basin B1 is an existing basin that was analyzed in the Filing No. 4 Final Drainage Report and has been included in this analysis to ensure consistency in routing calculations and final flow rates.

The second drainage basin consists of three sub-basins, "I" basins, conveyed to the existing Irrigation Reservoir. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
l1	1.02	0.8	3.4
12	22.90	13.2	54.4
13	2.48	1.6	6.8

Drainage within the "I" drainage basin flows ultimately from the southeast to the north and west to reach the irrigation facility. Drainage from these basins flows offsite, through an existing golf course and then collected in the existing reservoir.

This Filing No. 5 FDR utilizes similar tributary areas, runoff coefficients (when comparing the NRCS Curve Number method and the Rational Method), and percent imperviousness for respective sub-basins and downstream detention facilities compared to 2018 Classic Consulting FDR/PDR. Any deviation in the sub-basin area, coefficient, or percent imperviousness is due to slight roadway alignment adjustments for the final design as compared to the preliminary layout in the 2018 report. Any change in the peak runoff numbers as compared to the 2018 report are due to the change in hydrologic computation methodology as discussed in a previous section of this report. Due to these differences in the computational methodology between the previously approved 2018 FDR and the values being reported in this report, additional analysis of existing conditions has been completed on the entire site. The existing conditions major flow values have been added to Appendix B. A table showing the Classic 2018 FDR/PDR NRCS Method peak runoff values compared to the HR Green 2024 FDR Rational Method peak runoff values for proposed and existing conditions is provided below. This table is for basins that qualify for large lot exclusion under ECM code I.7.1.B.5.

Flying Horse North Filing No. 5 Final Development Drainage Plan Project No.: 211030.250

Basin Na	ame	Area	(acre)	Proposed Q100 (cfs)				
Classic	HRG	Classic	HRG	Classic	HRG			
CC-10	B1	85.6	57.78	91.9	97.5			
CC-8	B2.1	7.7	9.19	12.0	23.1			
CC-3	B2.2	52.5	5.24	54.5	12.4			
	B2.3		2.80		7.3			
CC-10	B2.4		2.61	01.0	6.9			
	B2.5	85.6	1.09	91.9	3.3			
	C2.6		18.82		38.4			
CC-9	11	5.6	1.02	9.8	3.4			
CC-4A	12	108.7	22.9	156.0	54.4			
CC-3	13	52.5	2.48	54.5	6.8			

While there is an increase in peak runoff for these basins as compared to the 2018 report, there is a discrepancy in methodology. The difference is insignificant as proposed improvements will be designed using the updated values and pond sizing, which relies on a historic model, was designed using CUHP / SWMM including a historic model. Additionally, as seen in the Flying Horse North Filing No. 4 Final Drainage Report, the total flowrates being released off-site into Cherry Creek basin has been reduced overall.

Compliance with DBPS

This FDR is in general conformance with the current drainage flows of the East Cherry Creek Basin. Flying Horse North will construct multiple full spectrum detention facilities to limit the effects of development and mimic natural flow patterns. Flying Horse North Filing No. 5 development will follow historic drainage patterns and utilize the existing natural swales throughout the area for conveyance of stormwater runoff toward respective proposed detention facilities.

Site Characteristics

Per the NRCS web soil survey, the site is made up entirely of Type B soils. Filing No. 5 is within the East Cherry Creek Basin which consists of Peyton sandy loam and Peyton-Pring complex. See Appendix A for the NRCS soil map.

The current ground cover in Filing No. 5 is short to mid-grass prairie grasslands and former farmland which consists of non-native weeds and grasses. This portion of the site has very few, if any, trees and a minimal number of shrubs are found on the site.

Major Drainage Ways and Structures

No major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries. These informal drainage ways are assessed within this report for stormwater runoff capacity and water surface elevations during the 100-year event as future development of single-family residential lots with basement or walkout conditions is considered. Roadside swales are included as a part of the typical roadway section and are assessed within sub-basins to ensure that swale and culvert pipe capacities are met and do not result in excessive pooling in the roadway sections per code.

The existing minor drainage channels within the site are planned to be maintained to the maximum extent possible. These will continue to be used for conveyance of storm drainage flows. The limits of construction and disturbance plan for no significant earthwork alterations to the existing minor drainage channels that would affect the drainage patterns or capacity of the sections throughout the filing as they are proven to have sufficient capacities for their respective tributary areas and to maintain the natural features of the site including existing trees and vegetation.

Drainageways of note including roadside swales are described within this report with parameters to demonstrate compliance with swale design criteria and capacities. Culvert pipes are sized to convey upstream flow under proposed roadways and maintain historic drainage patterns.

Existing and proposed land uses

The existing Filing No. 5 area is open rangeland within a forested area consisting of sparse native grasses, weeds, and pinyon pine trees as well as baren pervious soil. An open space area was planned for in the approved 2016 PUD and is consistent with this filing. The park area is approximately 53 acres and is to be developed as a public park.

The 2018 Classic Consulting PDR/FDR assumed 2-acre single-family residential estate lot development with the same percent imperviousness within the filing area. This report includes the final design layout of 2.5-acre lots with rural roadway sections. Any deviations in basin areas, land use acreages, and resultant composite coefficients are shown within this report and demonstrated to meet downstream stormwater runoff and volume capacities for proposed and existing facilities.

III. Hydrologic Analysis

Major Basins and Sub-basins

Major Basin Description

Per FEMA FIRM 08041C0315G (eff. 12/7/2018), there are no FEMA Floodplains within this Filing.

The site has been divided into several major drainage basins where each basin is tributary to a full spectrum detention pond facility. These basins and associated sub-basins are described in more detail in the next section of this report.

Existing Subbasin Description

The existing conditions for Filing No. 5 are consistent with the conditions and hydrology map presented within the Filing No. 4 FDR. The previous report's existing and developed conditions drainage maps are included in Appendix E of this report for reference.

The onsite basins relevant to this report that are utilized in the 2018 Classic Consulting report are the following: Basins CC-3, CC-4A, CC-8, CC-9, and CC-10

There are no offsite basins relevant to this report from the 2018 report.

Proposed Subbasin Description

The net area of some basins described in this report may differ from the 2018 Classic Consulting FDR/PDR due to changes of alignment of proposed roads and slight adjustments of the delineations with new topographic survey information. The net $Q_5 \& Q_{100}$ values may differ in this report because of the different methodologies used between the reports. Classic Consulting's FDR had used a Curve Number

Method to report 5-year and 100-year drainage flows while this report utilizes the Rational Method to determine peak flow values. The Rational Method yields higher minor and major storm peak runoff values. Because of these two discrepancies, the values reported in this FDR may be higher across all design points that had also been evaluated in Classic Consulting's FDR from 2018. After conversations with El Paso County, discrepancies in design, basin delineation, and calculation methodology do not require HR Green to redesign any existing storm infrastructure that has been built in previous filings for Flying Horse North including culvert pipes, channels, and rock chutes.

The following design points are presented on the Developed Conditions Drainage Map and are described as follows:

Basin B2.1: 9.19 acres, residential (2.5 acre lots)

Runoff generated in this basin travels first overland through existing topography to the north and east and travels shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2.1) and directed east through a 24-inch RCP to eventually outfall into Basin B2.6

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin B2.1 (and part of Basin B2.3) was identified as Basin CC-8. Classic's FDR reported a total basin area for CC-10 to be 7.7 acres with a Q_5 =2.5 CFS and a Q_{100} =12.0 CFS.

Basin B2.2: 5.24 acres, residential (2.5 acre lots)

Runoff generated in this basin travels first overland through existing topography to the north and travels shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2.2) and directed east through a 24-inch RCP to outfall into Basin B2.6.

Basin B2.3: 2.80 acres, residential (2.5 acre lots)

Runoff generated in this basin travels first overland through existing topography to the north and travels shallow concentrated flow in roadside ditches along Holmes Road and Rough Trail. The flows are directed through an 18-inch RCP culvert at design point 2.3 to Basin B2.4.

Basin B2.4: 2.61 acres, roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels first overland through existing topography to the north and travels shallow concentrated flow in roadside ditches along Holmes Road and Rough Trail. The flows are collected in a Type-C Inlet (IN-B2.4) and directed east through a 24-inch RCP to eventually outfall into Basin B2.6.

Basin B2.5: 1.09 acres, roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels first overland through existing topography to the north and travels shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2.5) and directed east through a 24-inch RCP to outfall into Basin B2.6.

Basin B2.6: 18.82 acres, residential (2.5 acre lots)

Runoff generated in this basin travels overland flow over existing topography to the north. Runoff is eventually collected in an existing drainage channel (Section A-A) flowing north to design point B2 where drainage will be directed through an existing 48-inch RCP culvert to Basin B3. Stormwater will eventually be collected in a water quality and detention pond, Pond B.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin B2.6 (and Basin B2.2, Basin B2.4, and Basin B2.5) was identified as Basin CC-10. Classic's FDR reported a total basin area for CC-10 to be 85.6 acres with a Q_5 =14.1 CFS and a Q_{100} =91.9 CFS. The cumulative flow at design point 26 (this includes basins CC-8 and CC-10) shown in this report have a net area of 93.3 acres, a net Q_5 = 15.9 CFS, and a net Q_{100} =102 CFS.

From Flying Horse North Filing No. 4 FDR, Basin B2 was analyzed as one basin draining to Pond B. Basin B2 has been delineated into more detailed basins in this report to provide a more accurate analysis based on detailed grading, and finalized lot locations and road alignments. The total combined flows at design point B2 in the Filing No. 4 report are $Q_5 = 35.4$ CFS and $Q_{100} = 285.8$ CFS. The new combined flows total at design point B2 calculated in this report are $Q_5 = 27.9$ CFS and $Q_{100} = 277.5$ CFS.

Basin I1: 1.02 acres, residential (2.5 acre lots)

Runoff generated in this basin will travel through the street and in roadside ditches along Rough Trail to a proposed 18-inch culvert that will outfall to Basin I2.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin I1 was identified as Basin CC-9. Classic's FDR reported a total basin area for CC-9 to be 5.6 acres with a $Q_5=2.1$ CFS and a $Q_{100}=9.8$ CFS.

Basin I2: 22.90 acres, residential (2.5 acre lots)

Runoff generated in this basin will travel overland flow over existing topography before eventually flowing off site to the west to an existing Irrigation Reserve (Pond-13).

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin I2 was identified as a part of Basin CC-4A. Classic's FDR reported a total basin area for CC-4A to be 108.7 acres with a Q_5 =39.0 CFS and a Q_{100} =156.0 CFS.

Basin I3: 2.48 acres, residential (2.5 acre lots)

Runoff generated in this basin will travel overland flow over existing topography before eventually flowing off site to the west. Offsite flow will first travel through an existing golf course before being collected in an existing Irrigation Reserve (Pond-13) located just west of the Filing No. 5 site.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin I3 was identified as a part of Basin CC-3. Classic's FDR reported a total basin area for CC-3 to be 52.5 acres with a Q_5 =8.8 CFS and a Q_{100} =54.5 CFS.

Water Quality and Detention Facilities

There is an existing irrigation reservoir (Pond-13) located just west of Flying Horse North Filing No. 5. This irrigation reservoir is designed with Flying Horse North Filing No. 1 as a retention pond using the Mile High Flood District (MHFD) Detention workbook. The reservoir facility provides detention and water quality through a concrete outlet box design outside of the reservoirs dam embankment. The total tributary area contributing to Pond-13 as identified in *The Irrigation Reservoir Embankment Design Report* by Classic Consulting is 366.80 acres and of that area, only 23.5 acres comes from within the Filing No. 5 boundary. The proposed area analyzed in this report contributing to Pond-13 is slightly higher at 26.40 acres. The contributing area to Pond-13 in the Classic Consulting design report included 2-acre residential land use and golf course, so an overall imperviousness of 8.5% was calculated. The area co

ntributing to the pond from Filing No. 5 contains only residential land use, making the calculated imperviousness 11%.

An existing Full Spectrum Detention Pond (Pond B), designed with Filing No. 4, will collect runoff from the Filing No. 5 site. Full Spectrum Detention (FSD) is a design concept introduced by the Mile High Flood District (MHFD, Urbonas and Wulliman 2005) that provides better control of the full range of runoff rates that pass through detention facilities than the conventional multi-stage concept. This concept also provides some mitigation of increased runoff volumes by releasing a portion of the increased runoff volume at a low rate over an extended period of time. Site detention ponds are designed as FSDs to provide the required volume stages for Water Quality Capture Volume (WQCV), Excess Urban Runoff Volume (EURV), and the 100-year stage (flood control volume). In FSDs, the flood volume is equal to the entire volume and is inclusive of the EURV and the WQCV. A full analysis of Pond B can be found in The *Flying Horse North Filing No. 4 Final Drainage Report* in Appendix E. The Pond B hydraulics are summarized in the table below:

	Peak Inflow (cfs)	Design Release/Outflow (cfs)	Time to Drain 99% of Inflow Volume (hrs)	Historic Peak Flowrate at O_BASIN_B	Developed Peak Flowrate at O_BASIN_B
Minor Storm (Q5)	59.1	49.2	50	58	54
Major Storm (Q100)	247.1	216.0	36	263	262

Methodology

Design rainfall was determined utilizing Table 6-2 from the City of Colorado Springs Drainage Criteria Manual to determine the 5-year and 100-year rainfall values for the 1-hour events. The 1-hour rainfall depths are 1.5 and 2.52 in/hr respectively.

The proposed development will consist of 21 2.5-acre single-family residential estate lots which are assumed at a percent imperviousness of 11% per the County ECM Table 3-1 Typical Values of Percent Impervious within Appendix L of the ECM which provides guidance for larger rural lot developments. Existing golf course areas are to remain undisturbed and utilize a land use category of "lawn" with a percent imperviousness of 2% per the County ECM Table 6-6 land use table. Composite coefficients, rainfall intensities, and runoff flow rates are calculated on a Rational Method spreadsheet and provided within the Appendix. As discussed previously, the Rational Method used in this report will result in higher peak flow rates for the minor and major storm events as compared to the 2018 Classic Consulting FDR/PDR which utilized the NRCS Curve Number Method. Design points within Filing No. 4 are designed per the findings of this report and existing Filing No. 1 storm infrastructure and design points are to remain as-is.

Reference to the 2018 Classic Consulting PDR/FDR set of calculations and spreadsheets is included to demonstrate compliance and consistency with the previously approved report which anticipated similar land uses and basin acreages tributary to existing stormwater facilities.

IV. Hydraulic Analysis

Major Drainageways

There are no major drainageways that exist within the development of Filing No. 5; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries. These tertiary drainage ways are analyzed within this report to assess the water surface elevation within the swales during the 100-year storm event and determine buildability of lots adjacent to these sections. Roadside swales are to be constructed at a minimum to meet the typical roadway section (4:1 for 10' and 3:1 for 9' resulting in a total swale depth of 2.5'). The roadside swales are assessed along the roadways that capture sub-basins and result in cumulative flow.

Storm Sewer Infrastructure and Culvert Pipes

The Filing No. 5 development consists of rural development with 2.5-acre single family residential estate lots and rural roadway sections with roadside swales. The storm infrastructure within these areas consist of public culvert pipes for roadway crossings and consideration for future public culvert pipes for future driveways for each lot. Culvert calculations and graphics are provided within the Appendix of this report to demonstrate culvert capacities and show any roadway/driveway overtopping as a result of peak flows. The culverts are designed to have full capacity of the minor (5-year) storm event and a maximum of 4" of roadway or driveway pooling during the major (100-year) storm event.

V. Environmental Evaluations

a. Significant Existing or Potential Wetland and Riparian Areas Impacts

There are no significant impacts to potential wetland and riparian areas with this report.

Stormwater Quality Considerations and Proposed Practices

A full spectrum detention facility will be installed with Filing No. 4 prior to this filing to provide water quality for the development. The facility is designed using El Paso County criteria and provide stormwater quality by slowing the release of stormwater captured by the ponds and allowing solids to settle out. Development of the Filing No. 5 areas tributary to the detention pond were accounted for with the Filing No. 4 FDR pond design.

On site practices for the estate homes includes direct discharge of roof and hardscape runoff to the surrounding landscaped areas. This would include discharge of the gutters onto landscape areas vs. directly connecting to storm sewer and as discussed above as well using natural ditches and swales where it is logical and makes sense to convey stormwater in lieu of storm sewer piping.

Permitting Requirements

When work infringes upon the wetlands or floodplain a 404 Permit will be required. If the work within the waterways is minimal, it will likely be covered under a nationwide 404 permit; it is however possible that an individual permit will be required.

The Colorado Department of Public Health and Environment will require permits for any disturbance that exceeds 1 acre of land. Should groundwater be encountered, a dewatering permit will also be required.

El Paso County will require an Erosion and Stormwater Quality Control Permit, and any other construction permits required to complete the construction of the site.

Should development occur which affects the floodplain, FEMA will require a permit for work withing the floodplain prior to the commencement of any construction or development within any special flood hazard area (SFHA). If the infrastructure is to be installed within the channel the designer shall route the design through the proper FEMA channels whether that be with a no rise certification or via the CLOMR/LOMR process should a more major improvement within the floodplain be proposed. At this time the project does not propose any direct development within the floodplain, however storm infrastructure will discharge into the existing FEMA channel.

4-Step Process

In accordance with the Engineering Criteria Manual I.7.2.A and DCM V2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume, and considering the need for Industrial Commercial BMPs.

Step 1 – Reducing Runoff Volumes: The majority of the development of the project site includes the land use categories of 2.5-acre single-family residential and lawn (golf course area). Both land uses have relatively minor imperviousness and runoff coefficients. The developed areas for the homes as designated by pad areas on the plans are disbursed with open land areas of vegetation and trees between which provide runoff reduction into the pervious soil.

Step 2 – Stabilize Drainageways: The existing tertiary drainage ways are assessed for stormwater runoff capacity, velocity, and shear stress. Any altered drainage ways will be designed in a manner that provides water quality benefits through infiltration and the removal of pollutants via phytoremediation. Vegetation and/or matting will also be selected to stabilize the drainage ways by reducing the velocity of flows and decreasing any scour. These improvements help stabilize drainageways and minimize erosion and sediment runoff. Roadside ditches are stabilized swales by way of compaction per the roadway typical section and are also prescribed any required seeding, erosion control blanketing, and/or matting.

Step 3 – Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV via detention ponds that are designed per current El Paso County DCM V2 and the MHFD. Proposed ponds A, B and C provide WQCV for their respective tributary basins. Areas that are not tributary to a detention pond have been proven to be excluded from WQCV requirements as they fall under the "large lot" exclusion I.7.1.B.5 of the El Paso County ECM. While runoff reduction is not required for these areas, it is being provided with well managed stormwater practices.

Step 4 – Consider the need for Industrial and Commercial BMP's: A site specific storm water quality and erosion control plan and narrative will be prepared with subsequent land use approvals prepared in conjunction with the report prior to any construction. Site specific temporary source control BMPs as well as permanent BMPs are detailed in this plan and narrative. Guidelines detailed in the El Paso DCM V2 4.2 pertaining to the covering and storage handline and spill containment and control shall be followed as necessary. This filing does not contain any commercial or industrial land use.

VI. Drawings

Please refer to the appendices for the Vicinity Map, FEMA Floodplain Map, NRCS Soils Map, hydrology

and hydraulic calculations, and drainage basin maps. Reference materials from previously approved reports are included in the appendix including.

VII. Drainage and Bridge Fees

The East Cherry Creek Basin does not currently have a Drainage Basin Fee.

VIII.Summary

Flying Horse North Filing No. 5 is a 115.1 acre filing within Flying Horse North that consists of approximately 58 acres of single-family residential estate lots.

Pond B and Pond-13 located outside of the Filing No. 5 boundary account for future development within Filing No. 5, anticipated to consist of local rural residential roadways within 60' public rights-of-way and single-family residential estate lots of 2.5 acres FSDs are proposed to provide water quality and detention to release the stormwater at or below historical rates.

The Filing No. 5 final design is assessed for stormwater capacity of roadway sections, roadside swales and the existing tertiary drainage ways to ensure that development of the 2.5-acre single-family residential estate lots will not be negatively impacted by drainage conditions, including existing and proposed altered areas for the roadway and lot construction phases.

All County and MHFD drainage design standards are met. It is anticipated that there will be no negative impacts to downstream and surrounding developments and facilities due to the development of Filing No. 5.

IX. References

El Paso County – Drainage Criteria Manual, 2014

City of Colorado Springs - Drainage Criteria Manual, May 2014

Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018

Mile High Flood District Urban Storm Drainage Criteria Manual Volumes 1, 2, and 3; latest revisions

Mile High Flood District Software Resources and Tools (MHFD-Detention, UD-Inlet, UD-BMP)

United States Department of Agriculture National Resources Conservation Service Rock Chute Design Data Spreadsheet

Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1, Classic Consulting Engineers and Surveyors, November 2017

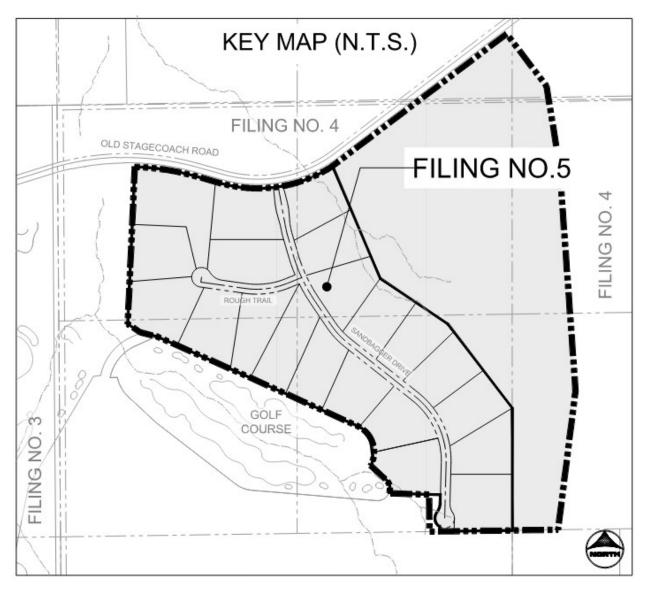
Flying Horse North Master Development Drainage Plan, HR Green Development, LLC., September 2022

Flying Horse North Irrigation Reservoir Embankment Design Report, Classic Consulting Engineers and Surveyors, latest revision June 2018, County approved on September 25, 2018

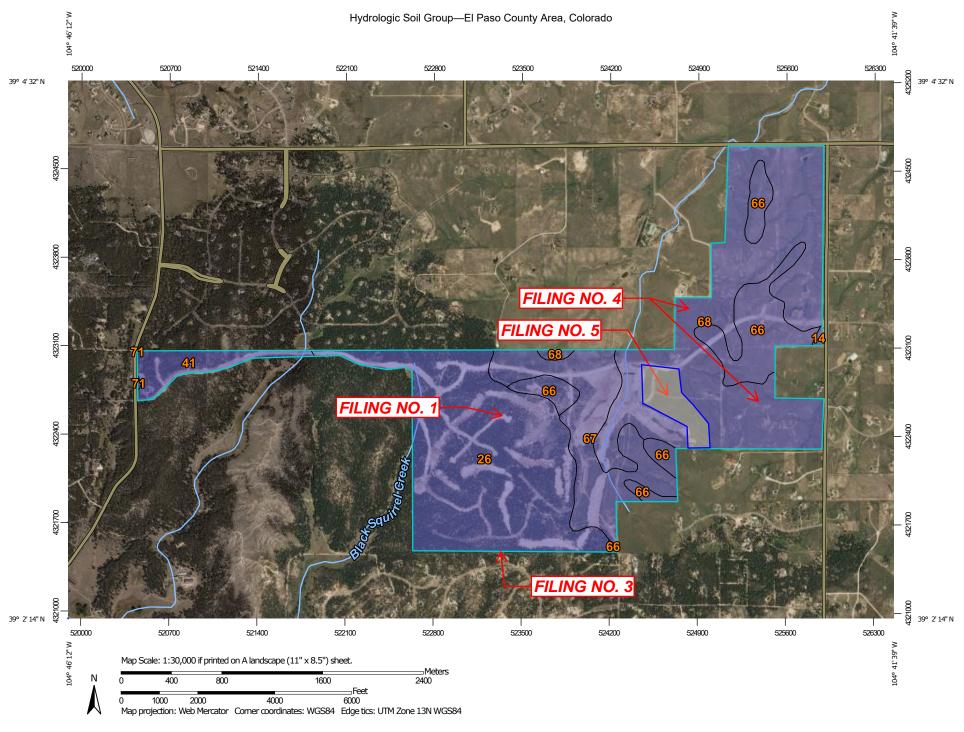
Flying Horse North Filing No. 4 Final Drainage Report, HR Green Development, LLC., September 2024.

Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

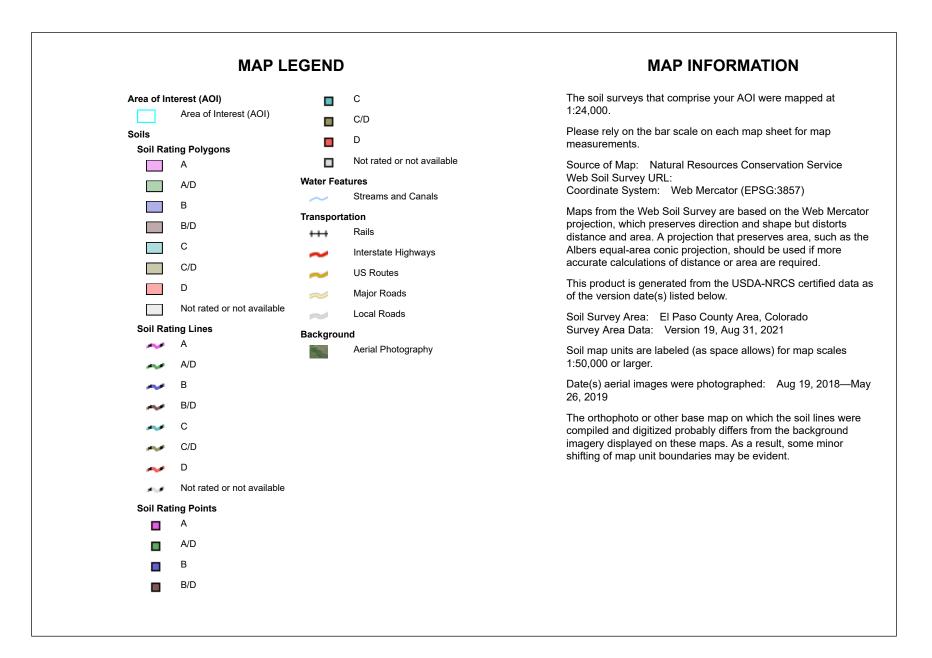
El Paso County, Colorado


APPENDIX A

VICINITY MAP NRCS SOILS MAP FEMA FLOODPLAIN MAP EL PASO COUNTY MAJOR DRAINAGE BASINS MAP DRAINAGE BASIN FEE TABLE (2024)


VICINITY MAP

FLYING HORSE NORTH FILING NO. 5


A PORTION OF SECTION 36, TOWNSHIP 11 SOUTH, RANGE 66 WEST OF THE SIXTH PRINCIPAL MERIDIAN COUNTY OF EL PASO, STATE OF COLORADO

NO SCALE

USDA Natural Resources Conservation Service Web Soil Survey National Cooperative Soil Survey 1/27/2022 Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
14	Brussett loam, 1 to 3 percent slopes	В	1.9	0.1%
26	Elbeth sandy loam, 8 to 15 percent slopes	В	474.2	33.7%
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	В	53.4	3.8%
66	Peyton sandy loam, 1 to 5 percent slopes	В	160.9	11.4%
67	Peyton sandy loam, 5 to 9 percent slopes	В	182.8	13.0%
68	Peyton-Pring complex, 3 to 8 percent slopes	В	533.4	37.9%
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	0.6	0.0%
Totals for Area of Inter	rest		1,407.3	100.0%

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where **Base Flood Elevations** (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12

National Geodetic Survey SSMC-3, #9202 1315 East-West Highway

Silver Spring, MD 20910-3282

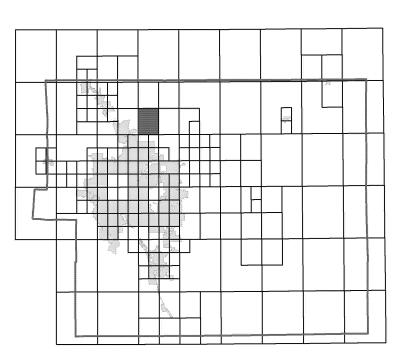
To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

Base Map information shown on this FIRM was provided in digital format by EI Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile paselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

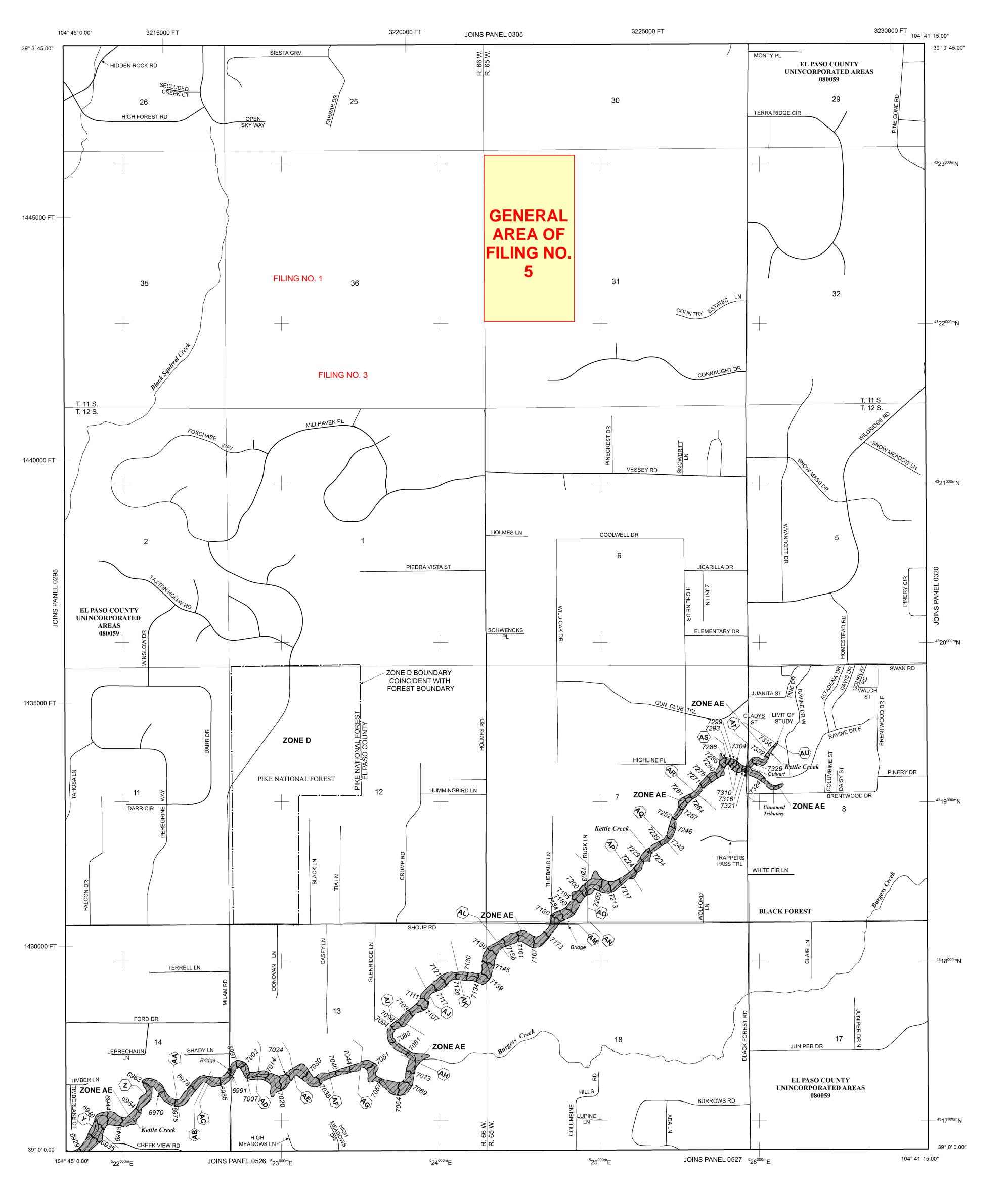
Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is located.

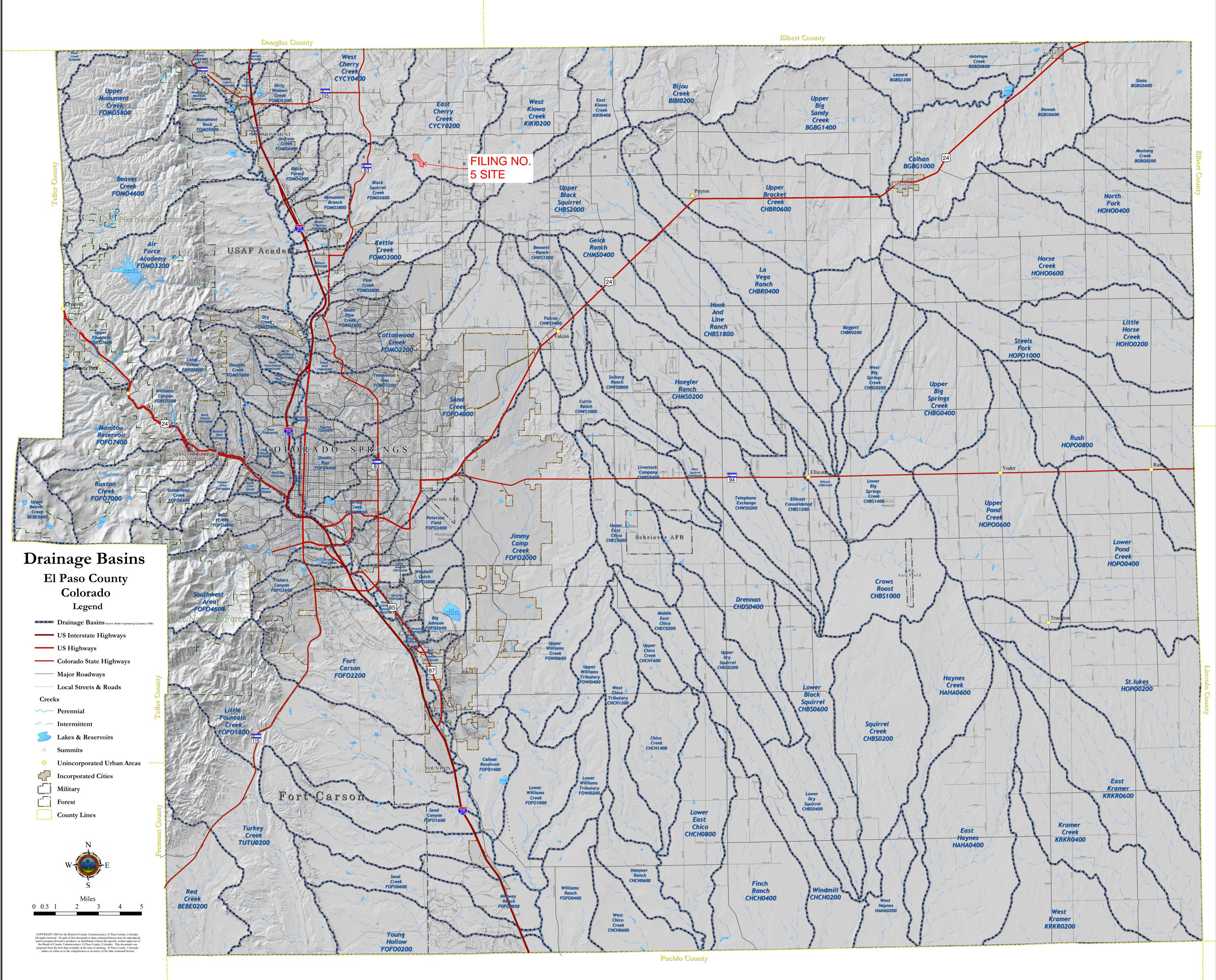

Contact **FEMA Map Service Center** (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

El Paso County Vertical Datum Offset Table **Vertical Datum** Flooding Source Offset (ft)

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION


Panel Location Map


This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

LEGEND Image: Special FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevations determined. ZONE A No Base Flood Elevations determined. ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.	
INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined. ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.	
 that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined. ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined. 	
 Elevation is the water-surface elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined. ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined. 	
ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.	
ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also	
determined. ZONE AR Special Flood Hazard Area Formerly protected from the 1% annual chance	
flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.	
ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations	
determined. ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined.	
ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined.	
FLOODWAY AREAS IN ZONE AE	
The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.	
OTHER FLOOD AREAS	
ZONE X Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.	
OTHER AREAS	
ZONE X Areas determined to be outside the 0.2% annual chance floodplain.ZONE D Areas in which flood hazards are undetermined, but possible.	
COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS	
OTHERWISE PROTECTED AREAS (OPAs)	
CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.	
Floodplain boundary Floodway boundary	
Zone D Boundary CBRS and OPA boundary	
Boundary dividing Special Flood Hazard Areas of different Base	
Flood Elevations, flood depths or flood velocities. 513 Base Flood Elevation line and value; elevation in feet*	
(EL 987) Base Flood Elevation value where uniform within zone; elevation in feet*	
* Referenced to the North American Vertical Datum of 1988 (NAVD 88)	
(23)(23) Transect line	
97° 07' 30.00" Geographic coordinates referenced to the North American	
32° 22' 30.00" Datum of 1983 (NAD 83) ⁴² 75 ^{000m} N 1000-meter Universal Transverse Mercator grid ticks, zono 12	
zone 13 6000000 FT 5000-foot grid ticks: Colorado State Plane coordinate system, central zone (FIPSZONE 0502),	
DX5510 X Bench mark (see explanation in Notes to Users section of this FIRM page)	
M1 5	
M1.5 River Mile	
MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE	
FLOOD INSURANCE RATE MAP MARCH 17, 1997	
EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to	
incorporate previously issued Letters of Map Revision.	
For community map revision history prior to countywide mapping, refer to the Community Map History Table located in the Flood Insurance Study report for this jurisdiction.	
To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620.	
MAP SCALE 1" = 1000'	
500 0 1000 2000 HHH FET	
500 0 1000 2000	
500 0 1000 2000 HH FEET 500 0 300 FEET METERS 300 0 300 600	
500 0 1000 2000 HHH H FEET METERS	
500 0 1000 2000 FEET FEET 300 0 300 600 PANEL 0315G	
500 0 1000 2000 HH FEET 500 0 300 FEET METERS 300 0 300 600	
50 0 1000 2000 FEET 300 0 300 600 PANEL 0315G FIRM	,
500 0 1000 2000 FEET	
500 0 1000 2000 FEET	
50 0 100 200 300 0 300 600 PANEL 0315G FIRM FIRM FLOOD INSURANCE RATE MAR EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 315 OF 1300	5
50 0 100 200 G 0 300 600 PANEL 0315G FIRM FLOOD INSURANCE RATE MAR EL PASO COUNTY, COLORADO AND INCORPORATED AREAS	5
50 0 100 200 300 0 300 600 PANEL 0315G FIRM FLOOD INSURANCE RATE MAR EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 315 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYC	5
50 0 100 200 300 0 300 600 PANEL 0315G FIRM FLOOD INSURANCE RATE MAR EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 315 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOR COMMUNITY	S DUT) IFFIX
50 0 100 200 300 0 300 600 PANEL 0315G FIRM FLOOD INSURANCE RATE MAR EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 315 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOR COMMUNITY	S DUT) IFFIX
50 0 100 200 300 0 300 600 PANEL 0315G FIRM FLOOD INSURANCE RATE MAR EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 315 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOR COMMUNITY	S DUT) IFFIX
50 0 100 200 300 0 300 600 PANEL 0315G FIRM FLOOD INSURANCE RATE MAR EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 315 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOR COMMUNITY	S DUT) IFFIX
Juint of the second state of the se	S DUT) G
S0 0 200 METERS 30 0 30 60 PANEL 0315G PANEL 0315G FIRM FLOOD INSURANCE RATE MARK EL PASO COUNTY, COLORADO AND INCORPORATED AREAS PANEL 315 OF 1300 SEE MAP INDEX FOR FIRM PANEL LAVC CONTAINS: OMMUNITY NUMBER ANEL OMMUNITY 0009 315	S DUT) G
S0 0 200 30 0 300 600 PANEL 0315G FIRM FLOOD INSURANCE RATE MARK FLOOD INSURANCE RATE MARK FLOOD INSURANCE RATE MARK FLOOD INSURANCE RATE MARK<	S DUT) G
0 00 200 0 0 00 00 0 0 0 00 0 0 0 00 <	S DUT) G he R G
Do DO 200 JOO JOO GO JOO JOO GO JOO JOO JOO JOO GO JOO JOO JOO JOO JOO JOO JOO JOO JOO JOO JOO JOO <th>S DUT) FFFIX G R G D</th>	S DUT) FFFIX G R G D
0 00 200 0 0 00 00 0 0 0 00 0 0 0 00 <	S DUT) FFFIX G B G I B

El Paso County Drainage Basin Fees

Resolution No. 23-400

Basin	Receiving	Year	Drainage Basin Name	2024 Drainage Fee	2024 Bridge Fee
Number	Waters	Studied		(per Impervious Acre)	(per Impervious Acre)
Drainage Basins with	DBPS's:				
CHMS0200	Chico Creek	2013	Haegler Ranch	\$13,971	\$2,062
CHWS1200	Chico Creek	2001	Bennett Ranch	\$15,641	\$6,000
CHWS1400	Chico Creek	2013	Falcon	\$40,088	\$5,507
FOFO2000	Fountain Creek	2001	West Fork Jimmy Camp Creek	\$17,003	\$5,031
FOFO2600	Fountain Creek	1991*	Big Johnson / Crews Gulch	\$24,832	\$3,207
FOFO2800	Fountain Creek	1988*	Widefield	\$24,832	\$0
FOFO2900	Fountain Creek	1988*	Security	\$24,832	\$0
FOFO3000	Fountain Creek	1991*	Windmill Gulch	\$24,832	\$372
FOFO3100 / FOFO3200	Fountain Creek	1988*	Carson Street / Little Johnson	\$15,147	\$0
FOFO3400	Fountain Creek	1984*	Peterson Field	\$17,911	\$1,358
FOFO3600	Fountain Creek	1991*	Fisher's Canyon	\$24,832	\$0
FOFO4000	Fountain Creek	1996	Sand Creek	\$25,632	\$10,484
FOFO4200	Fountain Creek	1977	Spring Creek	\$12,879	\$0
FOFO4600	Fountain Creek	1984*	Southwest Area	\$24,832	\$0
FOFO4800	Fountain Creek	1991	Bear Creek	\$24,832	\$1,358
FOFO5800	Fountain Creek	1964	Camp Creek	\$2,752	\$0
OMO1000	Monument Creek	1981	Douglas Creek	\$15,617	\$345
FOMO1200	Monument Creek	1977	Templeton Gap	\$16,032	\$372
FOMO2000	Monument Creek	1 97 1	Pulpit Rock	\$8,234	\$0
FOMO2200	Monument Creek	1994	Cottonwood Creek / S. Pine	\$24,832	\$1,358
OMO2400	Monument Creek	1966	Dry Creek	\$19,603	\$710
FOMO3600	Monument Creek	1989*	Black Squirrel Creek	\$11,275	\$710
OMO3700	Monument Creek	1987*	Middle Tributary	\$20,722	\$0
FOMO3800	Monument Creek	1987*	Monument Branch	\$24,832	\$0
OMO4000	Monument Creek	1996	Smith Creek	\$10,124	\$1,358
FOMO4200	Monument Creek	1989*	Black Forest	\$24,832	\$676
OMO5200	Monument Creek	1993*	Dirty Woman Creek	\$24,832	\$1,358
FOMO5300	Fountain Creek	1993*	Crystal Creek	\$24,832	\$1,358
<u>Miscellaneous Drainas</u>	e Basins: 1		-		
CHBS0800	Chico Creek		Book Ranch	\$23,300	\$3,373
CHEC0400	Chico Creek		Upper East Chico	\$12,694	\$368
CHWS0200	Chico Creek		Telephone Exchange	\$13,947	\$327
CHWS0400	Chico Creek		Livestock Company	\$13,547	\$273
CHW 50600	Chico Creek		West Squirrel	\$11,975	\$4,970
CHWS0800	Chico Creek		Solberg Ranch	\$24,832	\$4,570 \$0
FOFO1200	Fountain Creek		Crooked Canyon	\$24,832 \$7,497	\$0 \$0
FOFO1200	Fountain Creek		Calhan Reservoir	\$6,259	\$365
FOFO1600	Fountain Creek		Sand Canyon	\$4,522	\$0 \$0
OFO2000	Fountain Creek		Jimmy Camp Creek	•	
OFO2000	Fountain Creek		Fort Carson	\$24,832 \$19,603	\$1,161 \$710
	Fountain Creek				
70F02700 70F03800	Fountain Creek		West Little Johnson	\$1,636 \$11,911	\$0 \$533
OFO5000	Fountain Creek		Stratton Midland	-	
				\$19,603	\$710
FOFO6000	Fountain Creek		Palmer Trail	\$19,603	\$710
FOFO6800	Fountain Creek		Black Canyon	\$19,603	\$710
⁷ OMO4600	Monument Creek		Beaver Creek	\$14,846	\$0 \$0
FOMO3000 FOMO3400	Monument Creek		Kettle Creek	\$13,410	\$0 \$0
	Monument Creek		Elkhorn Monument Book	\$2,253	
	Monument Creek		Monument Rock	\$10,763	\$0 \$0
FOMO5000	Manuar C		Palmer Lake	\$17,210	\$0
FOMO5000 FOMO5400	Monument Creek		Dearbarry Manutate	\$£ 700	<u>A0</u>
FOMO5000 FOMO5400 FOMO5600	Monument Creek		Raspberry Mountain Bald Mountain	\$5,789 \$12 337	\$0 \$0
FOMO5000 FOMO5400 FOMO5600 PLPL0200	Monument Creek Monument Creek		Raspberry Mountain Bald Mountain	\$5,789 \$12,337	\$0 \$0
FOMO5000 FOMO5400 FOMO5600 PLPL0200 Interim Drainage Basi	Monument Creek Monument Creek		Bald Mountain	\$12,337	\$0
FOMO3400 FOMO5000 FOMO5400 PLPL0200 Interim Drainage Basi FOFO1800 FOMO4400	Monument Creek Monument Creek			•	

1. The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies performed within the last 14 years.

2. Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available information suitable for setting a fee.)

Joshua Palmer, P.E.

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

APPENDIX B

HYDROLOGY CALCULATIONS

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

RATIONAL METHOD CALCULATIONS

			FLYING H	ORSE NORT	'H FILI	NG NO. 5	5						Ca	alc'd	by:					тмм	
		PROPOSED CONDITIONS Checked by:																RDL			
HRGreen		EL PASO COUNTY, COLORADO Date:																9/30/2024			
	COMPOSITE 'C' FACTORS																				
BASIN	GOLF COURSE / UNDEVELOPED		F COU EVELC		R	DADV	VAY		IDEN 5 AC I		RESIDENTIAL (5.0 AC LOT)			COMPOSITE IMPERVIOUSNESS & C FACTOR							
		•	ACRES	•	-		%	C ₅	C ₁₀₀	%	C ₅	C ₁₀₀	%I	C ₅ *	C ₁₀₀ *	%	C ₅ *	C100*	%I	C 5	C ₁₀₀
B1	48.37	0.41	9.00	0.00	57.78	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	7	0.14	0.39	4.1	0.10	0.36
B2.1	0.00	0.00	9.19	0.00	9.19	В	2	0.08	0.35		0.90	0.96	11	0.17	0.42	8	0.14	0.39	11.0	0.17	0.42
B2.2	0.00	0.00	5.24	0.00	5.24	В	2	0.08	0.35			0.96	11	0.17	0.42	9	0.14	0.39	11.0	0.17	0.42
B2.3	0.00	0.00	2.80	0.00	2.80	В	2	0.08	0.35			0.96	11	0.17	0.42	10	0.14	0.39	11.0	0.17	0.42
B2.4	0.00	0.07	2.54	0.00	2.61	В	2	0.08	0.35	_		0.96	11	0.17	0.42	11	0.14	0.39	13.3	0.19	0.43
B2.5	0.00	0.02	1.07	0.00	1.09	B	2	0.08	0.35			0.96	11	0.17	0.42	12	0.14	0.39	12.4	0.18	0.43
B2.6	0.00	0.12	18.70	0.00	18.82	В	2	0.08	0.35			0.96	11	0.17	0.42	7	0.14	0.39	11.6	0.17	0.42
<u> 1</u>	0.00	0.00	1.02	0.00	1.02	В	2	0.08	0.35			0.96	11	0.17	0.42	8	0.14	0.39	11.0	0.17	0.42
12	0.00	0.00	22.90	0.00	22.90	B	2	0.08	0.35			0.96	11	0.17	0.42	9 10	0.14	0.39	11.0	0.17	0.42
13	0.00	0.00	2.48	0.00	2.48	B	2	0.08	0.35	100	0.90	0.96		0.17	0.42	10	0.14	0.39	11.0	0.17	0.42
TOTAL ONSITE	48.37	1.55	86.12	0.00	136.03														8.81%	14.64%	39.94%
TOTAL OFFSITE	0.00	0.00	26.58	0.00	26.58														11.00%	17.02%	41.71%
GRAND TOTAL	48.37	1.55	112.70	0.00	162.61											_			9.17%	0.15	0.40

NOTES:

BASIN PULLED DIRECTLY FROM FLYING HORSE NORTH FILING NO. 4 FINAL DRAINAGE REPORT

	PROP	OSED C	SE NOR CONDITI	ONS	NG NO	. 5				Calc'd Checke Date:	•	TMM RDL 9/30/2024		
TIME OF CONCENTRATION														
BAS	IN DATA		OVERI	AND TIMI	E (T _i)		TRAVI	EL TIME (T_t		TOTAL	tc=(L/180)+10	Design tc	
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t _c (min)	tc max	tc design (min)	
B1	0.10	57.78	300	4.5	19.2	10	2400	6.70	2.6	15.5	34.7	25.0	25.0	
B2.1	0.17	9.19	300	6.3	16.0	10	491	3.60	1.9	4.3	20.3	14.4	14.4	
B2.2	0.17	5.24	300	10.4	13.5	10	890	3.00	1.7	8.6	22.1	16.6	16.6	
B2.3	0.17	2.80	245	6.7	14.2	10	330	3.00	1.7	3.2	17.3	13.2	13.2	
B2.4	0.19	2.61	150	4.6	12.3	10	508	6.40	2.5	3.3	15.7	13.7	13.7	
B2.5	0.18	1.09	20	10.0	3.5	10	900	6.40	2.5	5.9	9.4	15.1	9.4	
B2.6	0.17	18.82	300	11.4	13.1	10	2014	6.70	2.6	13.0	26.0	22.9	22.9	
l1	0.17	1.02	30	10.0	4.3	10	340	6.20	2.5	2.3	6.6	12.1	6.6	
12	0.17	22.90	300	12.9	12.6	10	842	4.30	2.1	6.8	19.4	16.3	16.3	
13	0.17	2.48	250	6.0	14.8	10	50	6.00	2.4	0.3	15.2	11.7	11.7	

			FLYING HORSE NORTH FILING NO. 5									c'd by:	тмм			
トイン			PROPOSED CONDITIONS									ced by:	RDL 9/30/2024			
			DESIGN STORM: 5-YEAR								Date:					
HRGreen																
			DIRECT RUNOFF TOTAL I								RUNOF	F	REMARKS			
STREET	STREET DESIGN POINT BASIN ID		AREA (ac)	ů.	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.) Q (cfs)					
	B1	B1	57.78	0.10	25.0	5.77	2.75	15.9					OVERLAND FLOW TO DP B1			
	2.1	B2.1	9.19	0.17	14.4	1.56	3.58	5.6			6 2.43 6.0		BASIN FLOW IN ROADSIDE DITCH TO DPB2.1			
	2.2	B2.2	5.24	0.17	16.6	0.89	3.37	3.0					BASIN FLOW IN ROADSIDE DITCH TO DPB2.2			
	2.2	DZ.2	0.24	0.17	10.0	0.03	0.07	- 3.0	31.0	2.46			COMBINED PIPE FLOW			
	2.3	B2.3	2.80	0.17	13.2	0.48	3.71	1.8					BASIN FLOW IN ROADSIDE DITCH TO DPB2.3			
	2.4	B2.4	2.61	0.19	13.7	0.49	3.66	1.8					BASIN FLOW IN ROADSIDE DITCH TO DPB2.4			
	2.7	02.4	2.01	0.15	10.7	0.43	0.00		26.9	1.0	2.65	2.6	COMBINED PIPE FLOW			
	2.5	B2.5	1.09	0.18	9.4	0.20	4.22	0.8			2.20 2.6		BASIN FLOW IN ROADSIDE DITCH TO DPB2.5			
									36.3	1.17			COMBINED PIPE FLOW			
	B2	B2.6	18.82	0.17	22.9	3.29	2.89	9.5								
			4.00	0.47	0.0	0.47	4 ==		36.3	12.69	2.20	27.9	COMBINED FLOW THROUGH EXISTING CULVERT TO POND B			
	1	1	1.02	0.17	6.6	0.17	4.75	0.8					OFFSITE BASIN FLOW TO IRRIGATION RESERVE			
	12	12	22.90	0.17	16.3	3.90	3.39	13.2	40.0	4.07			OFFSITE BASIN FLOW TO IRRIGATION RESERVE			
	12	12	2.40	0.17	11 7	0.40	2 00	1.0	16.3	4.07	3.39	13.8				
	3 3		2.48	0.17	11.7	0.42	3.90	1.6					OFFSITE BASIN FLOW TO IRRIGATION RESERVE			

FLYING HORSE NORTH FILING NO. 5	<u>Calc'd by:</u>	ТММ
PROPOSED CONDITIONS	<u>Check</u>	RDL
DESIGN STORM: 100-YEAR	Date:	9/30/2024

			DIRECT RUNOFF						TOTAL RUNOFF				REMARKS			
									-			-	KEMAKKO			
STRUCTURE	DESIGN PONT	BASIN ID	AREA (ac)	C100	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)				
	B1	B1	57.78	0.36	25.0	21.08	4.62	97.5					OVERLAND FLOW TO DP B1			
	2.1	B2.1	9.19	0.42	14.4	3.83	6.01	23.1					BASIN FLOW IN ROADSIDE DITCH TO DPB2.1			
	2.2	B2.2	5.24	0.42	16.6	2.19	5.65	12.4					BASIN FLOW IN ROADSIDE DITCH TO DPB2.2			
									31.0	6.02	7.58	45.6	COMBINED PIPE FLOW			
	2.3	B2.3	2.80	0.42	13.2	1.17	6.23	7.3					BASIN FLOW IN ROADSIDE DITCH TO DPB2.3			
	2.4	B2.4	2.61	0.43	13.7	1.12	6.15	6.9					BASIN FLOW IN ROADSIDE DITCH TO DPB2.4			
									26.9	2.3	7.80	17.9	COMBINED PIPE FLOW			
	2.5	B2.5	1.09	0.43	9.4	0.46	7.08	3.3					BASIN FLOW IN ROADSIDE DITCH TO DPB2.5			
									36.3	2.76	7.35	20.3	COMBINED PIPE FLOW			
	B2	B2.6	18.82	0.42	22.9	7.92	4.85	38.4								
									36.3	37.77	7.35	277.5	COMBINED FLOW THROUGH EXISTING CULVERT TO POND B			
	11	11	1.02	0.42	6.6	0.43	7.98	3.4					OFFSITE BASIN FLOW TO IRRIGATION RESERVE			
	12	12	22.90	0.42	16.3	9.55	5.69	54.4					OFFSITE BASIN FLOW TO IRRIGATION RESERVE			
									16.3	9.98	8.54	85.2				
	13	13	2.48	0.42	11.7	1.03	6.54	6.8					OFFSITE BASIN FLOW TO IRRIGATION RESERVE			

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

APPENDIX C

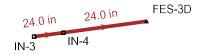
HYDRAULIC CALCULATIONS

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

INLET CALCULATIONS

STORM DRAINAGE SYSTEM DESIGN


Project #:211030.25By:T. McMunnDate:Project:FLYING HORSE NORTH FILING NO. 5Checked:K. HouseDate:Location:EL PASO COUNTY, COLORADOPlan Date:10/2/2024 $Merce = 0$ $Merce = 0$ Orifice Equation, Arequired = $Q_{100}/[0.65(2gh)^{1/2}]$ Q_{100} (cfs) = from Rational calculationsPonding Height, h (ft) = from grading planGravity, g (ft/s ²) = 32.2												
Design Point	Design Point Structure Name Q ₁₀₀ (cfs)		Inlet / Grate Type	Ponding Height, h (ft)	Area of Opening, Ao (ft²)	Clogging Factor (%)	Ao with Clogging Factor (ft²)	Area Required (ft²)	Size Check			
B2.1	IN-1	23.1	Type C Standard	2.4	5.92	50%	2.96	2.85	Good			
B2.2	IN-2	12.4	Type C Standard	2.5	5.92	50%	2.96	1.50	Good			
B2.4	IN-3	6.9	Type C Standard	2.6	5.92	50%	2.96	0.83	Good			
B2.5	IN-4	3.3	Type C Standard	2.5	5.92	50%	2.96	0.40	Good			
l1	IN-5	3.4	Type C Standard	2.5	5.92	150%	8.88	0.41	Good			

Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

PIPE HYDRAULICS

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Active Scenario: 5-Year

FlexTable: Conduit Table

Label	Invert (Start) (US Survey Ft)	Invert (Stop) (US Survey Ft)	Length (Scaled) (ft)	Diameter (in)	Flow (cfs)	Velocity (ft/s)	Manning's n	Capacity (Full Flow) (cfs)	Headloss (ft)	Hydraulic Grade Line (In) (US Survey Ft)	Hydraulic Grade Line (Out) (US Survey Ft)	Energy Grade Line (In) (US Survey Ft)	Energy Grade Line (Out) (US Survey Ft)	Slope (Calculated) (ft/ft)	Depth (Out) (ft)
CULVERT 1	7,576.63	7,576.22	52.0	24.0	5.60	5.47	0.013	20.05	0.52	7,577.47	7,576.94	7,577.78	7,577.41	0.008	0.72
CULVERT 1.1	7,575.89	7,575.43	48.9	24.0	6.00	5.99	0.013	22.13	0.61	7,576.76	7,576.15	7,577.09	7,576.70	0.010	0.72
CULVERT 4	7,561.67	7,557.23	58.4	12.0	0.80	7.53	0.013	9.82	4.62	7,562.04	7,557.42	7,562.18	7,558.30	0.076	0.19
CULVERT 3	7,540.64	7,539.47	51.3	18.0	2.60	6.03	0.013	13.92	1.34	7,541.25	7,539.91	7,541.48	7,540.47	0.018	0.44
CULVERT 3.1	7,539.27	7,537.68	146.4	18.0	2.60	5.19	0.013	11.28	1.71	7,539.88	7,538.17	7,540.11	7,538.59	0.012	0.49

Filing No. 5 StormCAD.stsw 9/30/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Active Scenario: 5-Year

FlexTable: Catch Basin Table

ID	Label	Notes	Elevation (Ground) (US Survey Ft)	Elevation (Rim) (US Survey Ft)	Elevation (Invert) (US Survey Ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (In) (US Survey Ft)	Hydraulic Grade Line (Out) (US Survey Ft)	Depth (Out) (ft)
90	IN-1	TYPE-C INLET	7,579.96	7,579.96	7,576.63	5.60	7,577.47	7,577.47	0.84
91	IN-2	TYPE-C INLET	7,580.56	7,580.56	7,576.09	6.00	7,576.76	7,576.76	0.66
92	IN-5	TYPE-C INLET	7,565.96	7,565.96	7,561.67	0.80	7,562.04	7,562.04	0.37
93	IN-3	TYPE-C INLET	7,546.51	7,546.51	7,540.29	2.60	7,541.20	7,541.20	0.91
94	IN-4	TYPE-C INLET	7,545.73	7,545.73	7,539.27	2.60	7,539.83	7,539.83	0.56

Filing No. 5 StormCAD.stsw 9/30/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Active Scenario: 100-Year

FlexTable: Conduit Table

Label	Invert (Start) (US Survey Ft)	Invert (Stop) (US Survey Ft)	Length (Scaled) (ft)	Diameter (in)	Flow (cfs)	Velocity (ft/s)	Manning's n	Capacity (Full Flow) (cfs)	Headloss (ft)	Hydraulic Grade Line (In) (US Survey Ft)	Hydraulic Grade Line (Out) (US Survey Ft)	Energy Grade Line (In) (US Survey Ft)	Energy Grade Line (Out) (US Survey Ft)	Slope (Calculated) (ft/ft)	Depth (Out) (ft)
CULVERT 1	7,576.63	7,576.22	52.0	24.0	23.10	7.35	0.013	20.05	0.54	7,579.90	7,579.36	7,580.74	7,580.20	0.008	3.14
CULVERT 1.1	7,575.89	7,575.43	48.9	24.0	45.60	14.51	0.013	22.13	1.95	7,579.36	7,577.41	7,582.63	7,580.70	0.010	1.97
CULVERT 4	7,561.67	7,557.23	58.4	12.0	3.40	11.35	0.013	9.82	4.83	7,562.46	7,557.63	7,562.87	7,559.64	0.076	0.41
CULVERT 3	7,540.64	7,539.47	51.3	24.0	17.90	9.97	0.013	29.99	1.54	7,542.16	7,540.62	7,542.92	7,542.04	0.018	1.15
CULVERT 3.1	7,539.27	7,537.68	146.4	24.0	20.30	8.66	0.013	24.29	1.81	7,540.89	7,539.08	7,541.75	7,540.24	0.012	1.40

Filing No. 5 StormCAD.stsw 9/30/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

Active Scenario: 100-Year

FlexTable: Catch Basin Table

ID	Label	Notes	Elevation (Ground) (US Survey Ft)	Elevation (Rim) (US Survey Ft)	Elevation (Invert) (US Survey Ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (In) (US Survey Ft)	Hydraulic Grade Line (Out) (US Survey Ft)	Depth (Out) (ft)
	90 IN-1	TYPE-C INLET	7,579.96	7,579.96	7,576.63	23.10	7,579.90	7,579.90	3.27
	91 IN-2	TYPE-C INLET	7,580.56	7,580.56	7,576.09	45.60	7,579.36	7,579.36	3.27
	92 IN-5	TYPE-C INLET	7,565.96	7,565.96	7,561.67	3.40	7,562.46	7,562.46	0.79
	93 IN-3	TYPE-C INLET	7,546.51	7,546.51	7,540.29	17.90	7,542.16	7,542.16	1.87
	94 IN-4	TYPE-C INLET	7,545.73	7,545.73	7,539.27	20.30	7,540.89	7,540.89	1.62

Filing No. 5 StormCAD.stsw 9/30/2024

Bentley Systems, Inc. Haestad Methods Solution Center 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

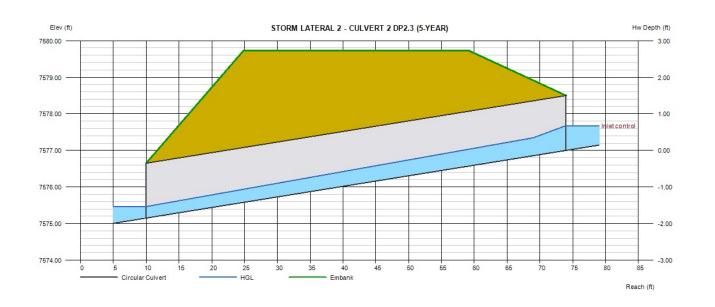
Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

CULVERT CALCULATIONS

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 27 2024


STORM LATERAL 2 - CULVERT 2 DP2.3 (5-YEAR)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft)	= 7575.15 = 63.98 = 2.89 = 7577.00	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 1.80 = 1.80 = Normal
Rise (in) Shape	= 18.0 = Circular	llightighted	
Span (in)	= 18.0	Highlighted Qtotal (cfs)	= 1.80
No. Barrels	= 1	Qpipe (cfs)	= 1.80
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	 Circular Concrete 	Veloc Dn (ft/s)	= 6.71
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 3.45
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7575.46
		HGL Up (ft)	= 7577.50
Embankment		Hw Elev (ft)	= 7577.68
Top Elevation (ft)	= 7579.73	Hw/D (ft)	= 0.45

Т Top Width (ft) Crest Width (ft)

=	7579.73
=	34.30
=	50.00

Q(0)a(0)s)	- 1.00
Qpipe (cfs)	= 1.80
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 6.71
Veloc Up (ft/s)	= 3.45
HGL Dn (ft)	= 7575.46
HGL Up (ft)	= 7577.50
Hw Elev (ft)	= 7577.68
Hw/D (ft)	= 0.45
Flow Regime	= Inlet Control

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Sep 27 2024

STORM LATERAL 2 - CULVERT 2 DP2.3 (100-YEAR)

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7575.15 = 63.98 = 2.89 = 7577.00 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 7.30 = 7.30 = Normal
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 7.30
No. Barrels	= 1	Qpipe (cfs)	= 7.30
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	 Circular Concrete 	Veloc Dn (ft/s)	= 9.75
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.55
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7575.81
		HGL Up (ft)	= 7578.05
Embankment		Hw Elev (ft)	= 7578.67
Top Elevation (ft)	= 7579.73	Hw/D (ft)	= 1.11
Top Width (ft)	= 34.30	Flow Regime	= Inlet Control

Top Width (ft) Crest Width (ft)

=	7579.73
=	34.30
=	50.00

	1	STORM LATER	AL Z - CULVE	RT Z DPZ.3 (1	00-YEAR)				Hw De	epth (ft)
0										- 3.00
o —								Inlet co		- 2.00
)							\nearrow			- 1.00
										- 0.00
										1.00
	T									2.00
						_				

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

SWALE CALCULATIONS

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.00 %	
Left Side Slope	3.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	23.10 cfs	
Results		
Normal Depth	1.2 ft	
Flow Area	5.4 ft ²	
Wetted Perimeter	9.1 ft	
Hydraulic Radius	0.6 ft	
Top Width	8.71 ft	
Critical Depth	1.2 ft	
Critical Slope	2.22 %	
Velocity	4.26 ft/s	
Velocity Head	0.28 ft	
, Specific Energy	1.53 ft	
Froude Number	0.953	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
, Upstream Velocity	Infinity ft/s	
Normal Depth	1.2 ft	
Critical Depth	1.2 ft	
Channel Slope	2.00 %	
Critical Slope	2.22 %	

Worksheet for Street Section 1 - Basin B2.1

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.00 %	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	12.40 cfs	
Results		
Normal Depth	1.0 ft	
Flow Area	3.4 ft ²	
Wetted Perimeter	7.2 ft	
Hydraulic Radius	0.5 ft	
Top Width	6.90 ft	
Critical Depth	1.0 ft	
Critical Slope	2.41 %	
Velocity	3.65 ft/s	
Velocity Head	0.21 ft	
Specific Energy	1.19 ft	
Froude Number	0.916	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0.0 10	
GVF Output Data		
	0.0 ft	
Upstream Depth Profile Description		
Profile Description Profile Headloss	N/A 0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.0 ft	
Critical Depth	1.0 ft	
Channel Slope	2.00 %	
Critical Slope	2.41 %	

Worksheet for Street Section 1 - Basin B2.2

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	7.60 %	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	17.90 cfs	
Results		
Normal Depth	0.9 ft	
Flow Area	2.7 ft ²	
Wetted Perimeter	6.4 ft	
Hydraulic Radius	0.4 ft	
Top Width	6.16 ft	
Critical Depth	1.1 ft	
Critical Slope	2.30 %	
Velocity	6.60 ft/s	
Velocity Head	0.68 ft	
Specific Energy	1.56 ft	
Froude Number	1.752	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.9 ft	
Critical Depth	1.1 ft	
Channel Slope	7.60 %	
Critical Slope	2.30 %	

Worksheet for Street Section 2 - Basin B2.4

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	7.60 %	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	3.30 cfs	
Results		
Normal Depth	0.5 ft	
Flow Area	0.8 ft ²	
Wetted Perimeter	3.4 ft	
Hydraulic Radius	0.2 ft	
Top Width	3.27 ft	
Critical Depth	0.6 ft	
Critical Slope	2.88 %	
Velocity	4.32 ft/s	
Velocity Head	0.29 ft	
Specific Energy	0.76 ft	
Froude Number	1.577	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.5 ft	
Critical Depth	0.6 ft	
Channel Slope	7.60 %	
Critical Slope	2.88 %	

Worksheet for Street Section 2 - Basin B2.5

Project Description		
Friction Method	Manning Formula	
Solve For	Normal Depth	
561761	Normal Depar	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	4.20 %	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	3.40 cfs	
Results		
Normal Depth	0.5 ft	
Flow Area	1.0 ft ²	
Wetted Perimeter	3.8 ft	
Hydraulic Radius	0.3 ft	
Top Width	3.69 ft	
Critical Depth	0.6 ft	
Critical Slope	2.87 %	
Velocity	3.49 ft/s	
, Velocity Head	0.19 ft	
Specific Energy	0.72 ft	
Froude Number	1.196	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.5 ft	
Critical Depth	0.6 ft	
Channel Slope	4.20 %	
Critical Slope	2.87 %	

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

DRAINAGE CHANNEL SECTION CALCULATIONS

Worksheet for Section A-A

roject Description
Friction Method Manning Formula
Solve For Normal Depth
iput Data
Roughness Coefficient 0.035
Channel Slope 2.00 %
Left Side Slope 7.000 H:V
Right Side Slope6.000 H:V
Bottom Width 12.00 ft
Discharge 38.40 cfs
esults
Normal Depth 0.6 ft
Flow Area 10.2 ft ²
Netted Perimeter 20.3 ft
Hydraulic Radius 0.5 ft
Fop Width 20.20 ft
Critical Depth 0.6 ft
Critical Slope 2.28 %
/elocity 3.78 ft/s
Velocity Head 0.22 ft
Specific Energy 0.85 ft
Froude Number 0.941
Flow Type Subcritical
VF Input Data
Downstream Depth 0.0 ft
Length 0.0 ft
Number Of Steps 0
VF Output Data
Jpstream Depth 0.0 ft
Profile Description N/A
Profile Headloss 0.00 ft
Downstream Velocity 0.00 ft/s
Jpstream Velocity 0.00 ft/s
Normal Depth 0.6 ft
Critical Depth 0.6 ft
Channel Slope 2.00 %
Critical Slope 2.28 %

Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

CHANNEL LINING CALCULATIONS

FROUDE	NUMBER CAL	CULATIONS	CALCULATED BY:	тмм	DATE:	9/30/2024				
PROJEC	T: 211030 FILI	NG NO. 5	CHECKED BY:	RHL						
Froude Number Calculations: 100-YR										
Section	Velocity Gravitational Constant		Hydraulic depth	Xsectional Area	top Width	Froude #				
-	ft/s	ft/s^2	ft	ft^2	ft	N/A				
A-A	3.78	32.17	0.50	10.20	20.20	0.94				
STREET SECTION 1	4.26	32.17	0.62	5.4	8.71	0.95				
STREET SECTION 2	6.6	32.17	0.44	2.7	6.16	1.76				
STREET SECTION 3	3.49	32.17	0.27	1.0	3.69	1.18				

SHEAR STRESS & CHANNEL LININGS CA			CALC	CULATED BY:	тмм	DATE:	9/30/2024				
PROJECT: 211030 FILING NO. 5				CHECKED BY:							
Shear Stress Calculations: 100-YR						Channel Lining Determination					
Section	unit weight of water	Depth of flow	Slope	Slope Shear Stress		Calculated Values		P300 Max Values			
-	lb/ft^3	ft	ft/ft	lb/ft^2		Section	Shear Stress	Velocity	Shear Stress	Velocity	Lining Required
A-A	62.43	0.60	0.020	0.75		A-A	0.75	3.78	3	9	P300
STREET SECTION 1	62.43	1.20	0.020	1.50		STREET SECTION	1.50	4.26	3	9	P300
STREET SECTION 2	62.43	0.90	0.076	4.27		STREET SECTION	4.27	6.60	3	9	ТМАХ
STREET SECTION 3	62.43	0.50	0.042	1.31		STREET SECTION	1.31	3.49	3	9	P300

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

RIPRAP SIZING ANALYSIS

	FLYING HORSE NOP	RTH FILING NO. 4	<u>Calc'd by:</u>	тмм
コートノブ	2110	Checked by:	RHL	
HRGreen	FES 1D R	IPRAP	Date:	9/18/2024
	Input Para	meters		
	Flow (Q)	45.6	cfs	
	Tailwater depth (Y _t)	ft		
	Conduit Diameter (D _c)	36	in	
	Expansion Factor (per Fig. 9-35)	4.5		
	Soil Type	Non-Cohesive Soils		
	Calculated Pa	arameters		
	Froude Parameter (Q/D ^{2.5})	2.93		
	D ₅₀ =	7.27	in	
	UDFCD Riprap Type =	Type L		
	Design D ₅₀ =	9	in	
	Minimum Mantle Thickness =	18	in	
	Minimum Length of Apron =	20.7	ft	
	brap was calculated using Equation $d_{ss} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ Example of a pron was calculated using		USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_i}{Y_i}\right)$		$A_t = \frac{Q}{V}$		Equation 9-12
Where:		v ere:		
$L_p = \text{length of protecti}$		Q = design discharge (cfs)		
W = width of the cond	luit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ity in the downstream	channel (ft/sec)
Y_r = tailwater depth (fi	0	A_t = required area of flow at allowab		. eminier (10 500)
θ = the expansion ang	le of the culvert flow			
Note:				
	criteria in the USDCM Vol.2 Cha	pter 9		
² Calculations assum				
	ssumes $y_t/D_t=0.4$ in cases where	v. is unknown or a hydraulic	iump is suspect	ed
downstream of the o			Jamp is suspeed	
	I.2 in no case should L _p be less th	an 3D, nor does L, need to k	be greater than	10D
	e parameter is less than 6.0. whe			
	uired by 1/4 D _c for each whole n	•	-	-
<u> </u>				

	FLYING HORSE NOR	TH FILING NO. 4	Calc'd by:	ТММ				
コートインゴ	21103	Checked by:	RHL					
HRGreen	Green FES 2D RIPRAP Date							
	Input Param							
	Flow (Q)	cfs						
	Tailwater depth (Y _t)	ft						
	Conduit Diameter (D _c)	in						
	Expansion Factor (per Fig. 9-35)	4.75						
	Soil Type	Non-Cohesive Soils						
	Calculated Par	ameters						
	Froude Parameter (Q/D ^{2.5})	2.65						
	D ₅₀ =	3.29	in					
	UDFCD Riprap Type =	Type VL						
	Design D ₅₀ =	6	in					
	Minimum Mantle Thickness =	12	in					
	Minimum Length of Apron =	4.5	ft					
Calculated minimum le	$d_{so} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ ingth of apron was calculated using Eq.	quations 9-11 and 9-12 in the	USDCM Vol. 2					
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	- W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12				
Where:	Wher	e:						
$L_p = $ length of protection	on (ft)	2 = design discharge (cfs)						
W = width of the cond	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)				
Y_r = tailwater depth (ft)	$A_t = required area of flow at allowable$	le velocity (ft2)					
θ = the expansion angle	le of the culvert flow							
Note:								
	criteria in the USDCM Vol.2 Chapt	er 9						
² Calculations assum								
	sumes y _t /D _t =0.4 in cases where y _t	is unknown or a hydraulic	iump is suspect	ed				
downstream of the c								
	.2 in no case should L _p be less tha	n 3D, nor does L ₂ need to h	e greater than	10D				
	e parameter is less than 6.0. when							
	uired by $1/4 D_c$ for each whole nu		-					

	FLYING HORSE NO	RTH FILING NO. 4	<u>Calc'd by:</u>	тмм
コートインゴ	2110	Checked by:	RHL	
HRGreen	FES 3D F	RIPRAP	Date:	9/18/2024
			Į.	
	Input Para	ameters		
	Flow (Q)	20.3	cfs	
	Tailwater depth (Y _t)	1.20	ft	
	Conduit Diameter (D _c)	36	in	
	Expansion Factor (per Fig. 9-35) 6.25		
	Soil Type	Non-Cohesive Soils		
	Calculated P		1	
	Froude Parameter (Q/D ^{2.5})	1.30		
	$D_{50} =$	3.24	in	
	UDFCD Riprap Type =	Type VL		
	Design D_{50} =		in	
	Minimum Mantle Thickness =	12		
	Minimum Length of Apron =		ft	
	$d_{so} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$			
Calculated minimum le	ngth of apron was calculated using	Equations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	W	here:		
L_p = length of protection	on (ft)	Q = design discharge (cfs)		
W = width of the cond	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ity in the downstream	channel (ft/sec)
Y_t = tailwater depth (ft θ = the expansion angl		A_t = required area of flow at allowab	le velocity (ft ²)	
- the expansion ang				
Note:				
	criteria in the USDCM Vol.2 Cha	pter 9		
² Calculations assume	e a circular culvert			
	sumes $y_t/D_t=0.4$ in cases where	y _t is unknown or a hydraulic	jump is suspect	ed
downstream of the o				
	.2 in no case should L _p be less th			
	e parameter is less than 6.0. wh	•	-	
the maximum L _p requ	uired by 1/4 D _c for each whole n	number by which the Froude	parameter is gr	eater than 6

	FLYING HORSE NOR	TH FILING NO. 4	<u>Calc'd by:</u>	тмм
ヨイイゴ	2110:	Checked by:	RHL	
HRGreen	FES 4D R	IPRAP	Date:	9/18/2024
	Input Parar	meters		
	Flow (Q)	cfs		
	Tailwater depth (Y _t)	ft		
	Conduit Diameter (D _c)	in		
	Expansion Factor (per Fig. 9-35)	6.25		
	Soil Type	Non-Cohesive Soils		
	Calculated Pa	rameters	1	
	Froude Parameter (Q/D ^{2.5})	1.23		
	$D_{50} =$	1.53	in	
	UDFCD Riprap Type =	Type VL		
	Design D_{50} =		in	
	Minimum Mantle Thickness =	12		
	Minimum Length of Apron =	4.5		
Calculated minimum le	$d_{\rm ss} = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$ ingth of apron was calculated using E	Equations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$		$A_t = \frac{Q}{V}$		Equation 9-12
Where:	Whe	ere:		
$L_p =$ length of protection		Q = design discharge (cfs)		
W = width of the cond	uit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ity in the downstream	channel (ft/sec)
Y_t = tailwater depth (ft)	$A_t = required area of flow at allowable$	le velocity (ft²)	
θ = the expansion angle	le of the culvert flow			
Note:				
¹ Calculations follow	criteria in the USDCM Vol.2 Chap	oter 9		
² Calculations assume	e a circular culvert			
³ This spreadsheet as	sumes $y_t/D_t=0.4$ in cases where y	/ _t is unknown or a hydraulic	jump is suspect	ed
downstream of the c		- '	- - '	
⁴ Per the USDCM Vol	.2 in no case should L_p be less the	an 3D, nor does L_p need to b	be greater than	10D
	e parameter is less than 6.0. whe			
the maximum L_p requ	uired by $1/4 D_c$ for each whole nu	umber by which the Froude	parameter is gr	eater than 6

Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

APPENDIX D

REFERENCE MATERIALS

INNOVATIVE DESIGN. CLASSIC RESULTS.

PRELIMINARY DRAINAGE REPORT FOR FLYING HORSE NORTH PRELIMINARY PLAN AND FINAL DRAINAGE REPORT FOR FLYING HORSE NORTH FILING NO. 1

NOVEMBER 2017 Revised June 2018

Prepared for: **PRI #2 LLC** 6385 CORPORATE DRIVE SUITE 200 COLORADO SPRINGS CO 80919 (719) 592-9333

Prepared by: **CLASSIC CONSULTING ENGINEERS & SURVEYORS** 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

Job no. 1096.11 PCD File No. SP-17-012 and SF-18-001

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

and B-B channel calculations) These facilities not only meet all current drainage criteria but also remain consistent with the intent of the DBPS. It is also noted that these facilities release well under the predevelopment flows as established by the DBPS. Thus, the downstream corridor within the existing Reach 13 on the adjacent property will not be significantly affected with the installation of these full-spectrum facilities. Portions of the Cathedral Pines Development to the south contributes developed flows to this property. These flows will be accommodated in the various on-site facility designs. A smaller on-site basin at the southeast corner of section 36 releases historic flows onto the Cathedral Pines and the Edmonds Subdivision. An on-site detention/storm water quality facility is planned in this corridor to help mitigate development.

East Cherry Creek Drainage Basin

The Palmer Divide traverses the eastern half of section 36 which defines the major basin line between the Black Squirrel Creek and the East Cherry Creek Basins. The vegetation also changes drastically in this area. The majority of the East Cherry Creek Basin contains very little trees and more grazing prairie land and meadows. This area defines the edge of Black Forest. In general, historic flow patterns in this basin travel in a northeasterly direction towards Hodgen Road. The MDDP designates several major design points along the north boundary. Again, multiple detention/storm water quality facilities are planned for these corridors and to be constructed along with future land development. This report has analyzed the downstream corridors along the north property line for the pre-development condition (per MDDP hydrology) and post-development condition (per UD-detention designed release). No significant erosion currently exists in these channels and we have been consistently maintaining proper BMPs along this property boundary. This effort will continue through final construction and revegetation of the permanent detention/SWQ facilities. (See Appendix for Sections D-D and E-E channel calculations). Portions of the Palmer Divide Subdivision and multiple large unplatted properties the south contribute developed flows to this property. These flows will be accommodated in the various on-site facility designs.

PROPOSED DRAINAGE CONDITIONS

The proposed land development within the Flying Horse North Filing No. 1 and future development within the remaining portions of the Preliminary Plan will be 2.5-5 acre large lot residential with associated paved streets and roadside ditches. The 18-hole private Golf Course with a club house site, driving range and

maintenance facility is also planned as a part of Filing No. 1. Based on the current El Paso County ECM Section I.7.1.B. and given the size of the lots within this entire development area, stormwater quality is not required to be provided. However, detention/EURV will still be provided in specific locations on-site to limit the on-site development flow release to remain consistent with pre-development conditions within the major drainage corridors. These proposed facilities will aide in limiting any detrimental effects on downstream corridors. At specific areas where the Filing No. 1 development creates concentrated flows into future development areas, temporary sediment basins will be constructed to minimize sediment transfer downstream and off-site. The Filing No. 1 Final Drainage Report portion of this report will define the permanent facilities providing an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2 year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of this development. Again, prior to any land development beyond the Filing No. 1 Final Plat area, additional final drainage reports, final plats and construction plans will be required detailing this criteria.

Given the rural nature of this development, roadside ditches are planned along all roadways. Concrete curb and gutter will only be used at the round-about locations and along the jurisdictional dam embankment as required by the State. The typical roadside ditch will be designed as a V-ditch with a depth of 24 inches. The natural terrain within much of this development creates some steeper slopes on many of the roadways. These slopes range from 1% to 10%. An analysis of the roadside ditches was performed in order to determine the necessary ditch lining required to maintain allowable velocity and shear stress. The following three basic ditch improvements are recommended throughout the development: (See Appendix for reference)

 Revegetation with native seeding (Grass lined only) Slope 2% or less and minimal flow

- Erosion Control Blanket (North American Green SC150 or equiv.) with native seeding Slope 5% or less and max. flow range of 7-43 cfs.
- Turf Reinforcement Mat (North American Green P300 or equiv.) with natives seeding Slope 10% or less and max. flow of 70 cfs.

The specific ditch lining locations will be shown on the street improvements plans

The following hydrology descriptions will start at the western edge of the Flying Horse North property and move east into the East Cherry Creek Basin, describing the development within the Filing No. 1 area first.

FLYING HORSE NORTH FILING NO.1

Black Squirrel Creek Drainage Basin

As mentioned previously, Flying Horse North is located in the upper region of the Black Squirrel Creek Drainage Basin. Per the approved DBPS for Black Squirrel Creek, the reaches in this area were proposed to remain as natural as possible. There were no recommendations for detention facilities within the area that is Flying Horse North, but due to current drainage criteria, detention/EURV facilities will be proposed with this development.

High Forest Ranch Detention Pond 26 outfalls onto the property at the very northwest corner of the site. These existing flows will continue to enter the site and travel within the natural channel towards the existing 48" CMP culvert crossing at Hwy. 83. Drainage easements across the proposed lots in this area will be provided on the final plat. The existing stock pond within lots 2 and 3 will be removed with grading of the road in this area. Tract B is platted in order to provide a detention/EURV facility for the lots and public road in this area. This facility will be constructed with Filing No. 1 with ownership and maintenance by the Flying Horse North HOA.

Design Point 1 (Q₂ = 2 cfs Q₅ = 3 cfs, Q₁₀₀ = 11 cfs) represents the existing off-site and on-site developed flows from Basins OS-1A and BS-2B. The combined flow from these basins travel to a low point just east of Stagecoach Road where a proposed 24" RCP culvert will be installed to convey these flows under the road. (See Appendix for culvert design)

Design Point 26 ($Q_2 = 3$ cfs $Q_5 = 16$ cfs, $Q_{100} = 102$ cfs) represents the full build-out developed flows from Basins CC-8 and CC-10. Basin CC-8 represents future residential lots and CC-10 mostly future passive park area. These flows will continue to sheet flow towards the low-point where a 48" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) After crossing Stagecoach Road, these flows will continue to flow directly into the existing stock pond just north of the roadway. This facility will provided sediment control for the small developed roadway area. Upon future development and plating of the lots planned within these basins, this stock pond will be formally designed into a detention facility.

Basin CC-15 (Q₂ = 1 cfs Q₅ = 4 cfs, Q₁₀₀ = 20 cfs) represents the full build-out developed flows from the future residential lots tributary to this basin. These flows will continue to sheet flow towards the low-point where a 30" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

Basin CC-16 ($Q_2 = 1 \text{ cfs } Q_5 = 5 \text{ cfs}$, $Q_{100} = 24 \text{ cfs}$ **)** represents the full build-out developed flows from the future residential lots tributary to this basin. These flows will continue to sheet flow towards the low-point at the southwest corner of Old Stagecoach Road and Rubble Drive where a 24" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

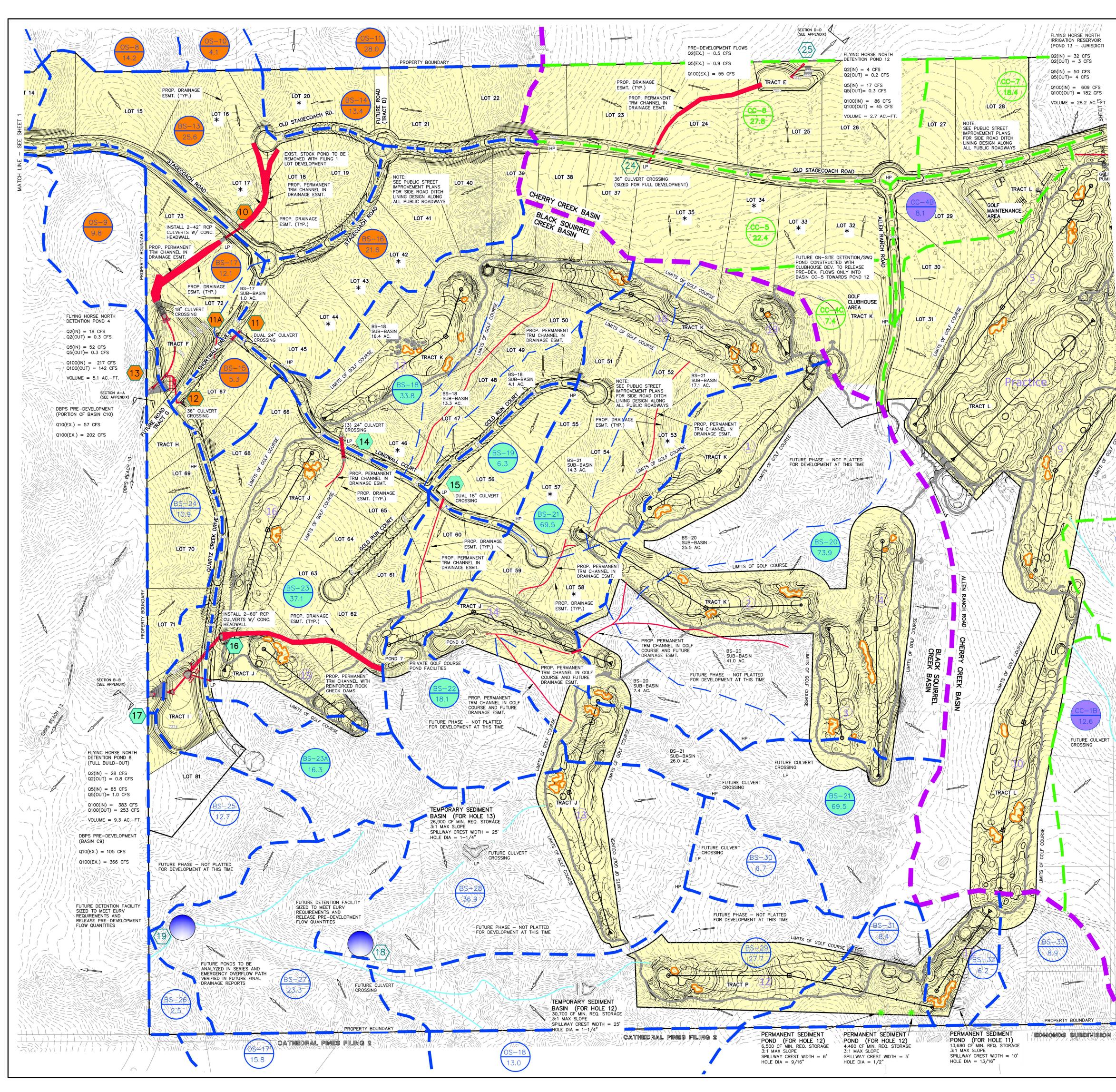
Design Point 30 (Q₂ = 0.7 cfs Q₅ = 2 cfs, Q₁₀₀ = 10 cfs) represents the full build-out developed flows from Basin CC-18. This Basin represents future residential lots. The flows will continue to sheet flow towards the low-point where a 24" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

Design Point 31 ($Q_2 = 0.9$ cfs $Q_5 = 3$ cfs, $Q_{100} = 15$ cfs) represents the full build-out developed flows from Basin CC-19 and the upstream release from DP-30. This Basin represents future residential 5 ac. lots. The flows will continue to sheet flow within a proposed drainage easement towards the existing low-point where an existing 24" CMP culvert will adequately handle the fully developed flows at this location.

CN VALUES - DEVELOPED CONDITIONS

BASIN	BASIN	GOLF COURSE / WOODS (B)		2 AC. RE	SIDENTIAL (B)	COMPOSITE
(label)	AREA					CN
	(Ac)	CN	AREA	CN	AREA	
			(Ac.)		(Ac.)	
CC-1A	9.8	61	0.0	65	9.8	65.0
CC-1B	12.6	61	0.5	65	12.1	64.8
CC-2A	11.0	61	0.0	65	11.0	65.0
CC-2B	20.8	61	0.0	65	20.8	65.0
CC-2C	6.4	61	0.0	65	6.4	65.0
CC-3	52.5	61	25.0	65	27.5	63.1
CC-4A	108.7	61	65.0	65	43.7	62.6
CC-4B	8.1	85	4.5	65	3.6	76.1
CC-4C (Pre-Dev.)	7.4	61	7.4	65	0.0	61.0
CC-5	22.4	61	0.0	65	22.4	65.0
CC-6	27.8	61	0.0	65	27.8	65.0
CC-7	18.4	61	0.0	65	18.4	65.0
CC-8	7.7	61	0.0	65	7.7	65.0
CC-9	5.6	61	0.0	65	5.6	65.0
CC-10	85.6	61	51.0	65	34.6	62.6
CC-11	18.6	61	9.0	65	9.6	63.1
CC-12	12.2	61	0.0	65	12.2	65.0
CC-13A	19.3	61	0.0	65	19.3	65.0
CC-13B	25.5	61	0.0	65	25.5	65.0
CC-13C	9.9	61	0.0	65	9.9	65.0
CC-13D	18.8	61	0.0	65	18.8	65.0
CC-14	4.6	61	0.0	65	4.6	65.0
CC-15	12.8	61	0.0	65	12.8	65.0
CC-16	16.3	61	0.0	65	16.3	65.0
CC-17	25.0	61	0.0	65	25.0	65.0
CC-18	6.2	65	5.8	89	0.4	66.5
CC-19	3.7	61	0.0	65	3.7	65.0
CC-20	39.3	61	0.0	65	39.3	65.0
CC-21	6.2	61	6.2	65	0.0	61.0
CC-22	13.8	61	0.0	65	13.8	65.0
CC-23	5.7	61	0.4	65	5.3	64.7
CC-24	39.6	61	0.0	65	39.6	65.0
CC-25	3.5	61	0.0	65	3.5	65.0
CC-26	16.7	61	0.0	65	16.7	65.0
CC-27	18.9	61	3.0	65	15.9	64.4
CC-28	154.8	61	23.0	65	131.8	64.4

TIME OF CONCENTRATION - DEVELOPED


	COMPOSITE			OVERLAND		STREET /		OW (DCM Vol	. 1 Fia. 6-25)	Тс	Тс	Тс
BASIN	Cn	C(5)	Length	Height	Тс	Length	Slope	Velocity	Tc	TOTAL	LAG (0.6tc)	LAG (0.6tc)
		- (-)	(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
CC-1A	65.0	0.08	300	16	18.4	500	5.0%	1.7	4.9	23.3	14.0	0.23
CC-1B	64.8	0.08	300	10	19.2	700	4.0%	2.0	5.8	25.0	15.0	0.25
CC-2A	65.0	0.08	300	14	19.2	250	3.0%	1.5	2.8	22.0	13.2	0.20
CC-2B	65.0	0.08	300	14	19.2	280	3.0%	1.5	3.1	22.3	13.4	0.22
CC-2C	65.0	0.08	300	18	17.7		,			17.7	10.6	0.18
CC-3	63.1	0.08	300	18	17.7	2300	3.0%	1.5	25.6	43.2	25.9	0.43
CC-4A	62.6	0.08	300	14	19.2	2700	2.0%	1.8	25.0	44.2	26.5	0.44
CC-4B	76.1	0.08	300	12	20.2	600	3.0%	1.6	6.3	26.4	15.9	0.26
CC-4C (Pre-Dev.)	61.0	0.08	40	0.8	9.3	350	3.0%	1.5	3.9	13.2	7.9	0.13
CC-5	65.0	0.08	300	18	17.7	1000	4.0%	2.0	8.3	26.0	15.6	0.26
CC-6	65.0	0.08	300	14	19.2	550	2.5%	1.6	5.7	24.9	14.9	0.25
CC-7	65.0	0.08	300	16	18.4	1000	3.0%	1.6	10.4	28.8	17.3	0.29
CC-8	65.0	0.08	300	10	21.4	250	2.0%	1.2	3.5	24.9	14.9	0.25
CC-9	65.0	0.08	300	18	17.7	100	2.0%	1.2	1.4	19.0	11.4	0.19
CC-10	62.6	0.08	300	22	16.5	2400	3.0%	1.8	22.2	38.7	23.2	0.39
CC-11	63.1	0.08	300	18	17.7	450	5.0%	2.1	3.6	21.2	12.7	0.21
CC-12	65.0	0.08	300	11	20.8	650	4.0%	2.0	5.4	26.2	15.7	0.26
CC-13A	65.0	0.08	300	14	19.2	1400	4.0%	2.0	11.7	30.9	18.5	0.31
CC-13B	65.0	0.08	300	18	17.7	1300	3.0%	1.6	13.5	31.2	18.7	0.31
CC-13C	65.0	0.08	300	14	19.2	350	4.0%	2.0	2.9	22.1	13.3	0.22
CC-13D	65.0	0.08	300	20	17.1	900	4.0%	2.0	7.5	24.6	14.7	0.25
CC-14	65.0	0.08	300	10	21.4					21.4	12.9	0.21
CC-15	65.0	0.08	300	14	19.2	550	3.0%	1.8	5.1	24.3	14.6	0.24
CC-16	65.0	0.08	300	10	21.4	650	2.5%	1.3	8.3	29.8	17.9	0.30
CC-17	65.0	0.08	300	9	22.2	950	2.0%	1.2	13.2	35.4	21.2	0.35
CC-18	66.5	0.08	300	7	24.1	400	2.0%	1.2	5.6	29.7	17.8	0.30
CC-19	65.0	0.08	300	8	23.1	100	2.0%	1.0	1.7	24.7	14.8	0.25
CC-20	65.0	0.08	300	9	22.2	350	6.0%	2.2	2.7	24.8	14.9	0.25
CC-21	61.0	0.08	300	18	17.7	200	3.0%	1.8	1.9	19.5	11.7	0.20
CC-22	65.0	0.08	300	14	19.2	700	4.0%	2.0	5.8	25.0	15.0	0.25
CC-23	64.7	0.08	300	10	21.4	850	2.0%	1.2	11.8	33.2	19.9	0.33
CC-24	65.0	0.08	300	20	17.1	900	4.0%	1.9	7.9	25.0	15.0	0.25
CC-25	65.0	0.08	300	16	18.4	500	3.0%	1.8	4.6	23.0	13.8	0.23
CC-26	65.0	0.08	300	14	19.2	900	5.0%	2.1	7.1	26.3	15.8	0.26
CC-27	64.4	0.08	300	14	19.2	1300	3.0%	1.8	12.0	31.2	18.7	0.31
CC-28	64.4	0.08	300	14	19.2	4700	3.0%	1.8	43.5	62.7	37.6	0.63

BASIN SUMMARY - DEVELOPED CONDITIONS

		COMPOSITE	TOTAL	Q	Q	Q
BASIN	AREA	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
(label)	(acres)	_	(hours)	(cfs)	(cfs)	(cfs)
CC-1A	9.80	65.0	0.23	0.8	3.3	16.0
CC-1B	12.60	64.8	0.25	1.0	4.0	19.4
CC-2A	11.00	65.0	0.22	1.0	3.8	18.3
CC-2B	20.80	65.0	0.22	1.9	7.1	34.6
CC-2C	6.40	65.0	0.18	0.7	2.5	11.5
CC-3	52.50	63.1	0.43	1.8	8.8	54.5
CC-4A	108.70	62.6	0.44	15.4	39.0	156.0
CC-4B	8.10	76.1	0.26	4.0	7.3	20.6
CC-4C (Pre-Dev.)	7.40	61.0	0.13	0.2	1.8	11.2
CC-5	22.40	65.0	0.26	1.8	7.1	34.3
CC-6	27.80	65.0	0.25	2.3	9.1	43.2
CC-7	18.40	65.0	0.29	1.4	5.4	27.0
CC-8	7.70	65.0	0.25	0.6	2.5	12.0
CC-9	5.60	65.0	0.19	0.6	2.1	9.8
CC-10	85.60	62.6	0.39	2.6	14.1	91.9
CC-11	18.60	63.1	0.21	0.9	5.0	28.1
CC-12	12.20	65.0	0.26	1.0	3.9	18.7
CC-13A	19.30	65.0	0.31	1.4	5.4	27.3
CC-13B	25.50	65.0	0.31	1.8	7.2	36.1
CC-13C	9.90	65.0	0.22	0.9	3.4	16.5
CC-13D	18.80	65.0	0.25	1.5	6.2	29.2
CC-14	4.60	65.0	0.21	0.4	1.6	7.8
CC-15	12.80	65.0	0.24	1.1	4.3	20.4
CC-16	16.30	65.0	0.30	1.2	4.6	23.6
CC-17	25.00	65.0	0.35	1.7	6.5	32.8
CC-18	6.20	66.5	0.30	0.7	2.2	9.7
CC-19	3.70	65.0	0.25	0.3	1.2	5.8
CC-20	39.30	65.0	0.25	3.2	12.9	61.0
CC-21	6.20	61.0	0.20	0.1	1.2	8.5
CC-22	13.80	65.0	0.25	1.1	4.5	21.4
CC-23	5.70	64.7	0.33	0.4	1.5	7.7
CC-24	39.60	65.0	0.25	3.3	13.0	61.5
CC-25	3.50	65.0	0.23	0.3	1.2	5.7
CC-26	16.70	65.0	0.26	1.4	5.3	25.6
CC-27	18.90	64.4	0.31	1.2	4.9	25.8
CC-28	154.80	64.4	0.63	6.5	24.7	136.3

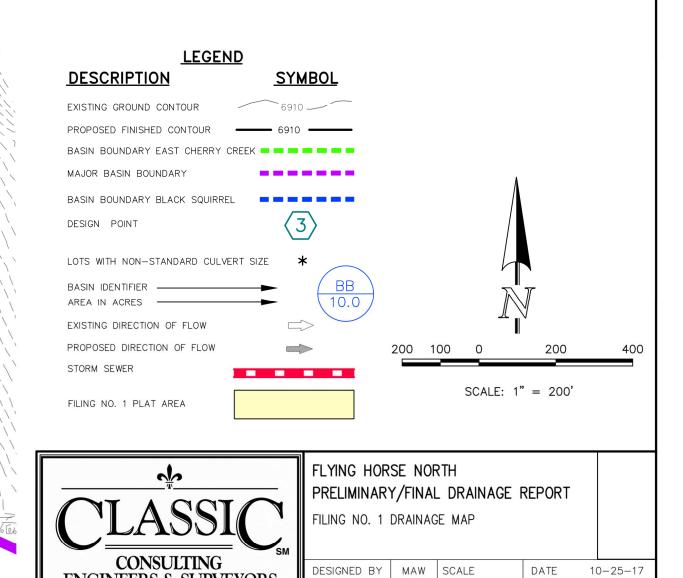
Contributing Basins	Q 2 Yr. Q (cfs)	Q 5 Yr. Q (cfs)	Q 100 Yr. Q (cfs)
BS-28, BS-29, BS-30, OS-18	5.0	21.6	115
BS-27, OS-17, Release from DP-18	3.8	16.8	126
CC-1A, OS-12	3.2	14.3	88
CC-2A, OS-13	2.1	10.5	62
CC-2B, Release from DP-21	3.7	16.6	92
CC-3, OS-14	2.5	13.0	84
CC-4C (Pre-Dev.), CC-5	1.9	8.4	45
CC-4C, CC-5, CC-6	6	9	85
Release from FHN Pond 12	0.2	0.3	45
CC-8, CC-10	3.0	15.9	102
CC-15, CC-20	4.3	17.2	81
CC-13A, OS-15	4.6	19.8	110
CC-13B, CC-13C, Release from DP-28	5.8	26.6	155
CC-18	0.7	2.2	10
CC-19, Release from DP-30	0.9	3.2	15
CC-17, OS-16	2.0	7.8	40
CC-23, CC-24	3.6	14.4	69
CC-26, CC-27, CC-28 and Release from CC-16 & DP-32	6.0	23.5	168
	BS-28, BS-29, BS-30, OS-18 BS-27, OS-17, Release from DP-18 CC-1A, OS-12 CC-2A, OS-13 CC-2B, Release from DP-21 CC-3, OS-14 CC-4C (Pre-Dev.), CC-5 CC-4C, CC-5, CC-6 Release from FHN Pond 12 CC-15, CC-20 CC-13A, OS-15 CC-13B, CC-13C, Release from DP-28 CC-19, Release from DP-30 CC-17, OS-16 CC-23, CC-24 CC-26, CC-27, CC-28 and	Contributing Basins 2 Yr. Q (cfs) BS-28, BS-29, BS-30, OS-18 5.0 BS-27, OS-17, Release from DP-18 3.8 CC-1A, OS-12 3.2 CC-2A, OS-13 2.1 CC-2B, Release from DP-21 3.7 CC-3, OS-14 2.5 CC-4C (Pre-Dev.), CC-5 1.9 CC-4C, CC-5, CC-6 6 Release from FHN Pond 12 0.2 CC-15, CC-20 4.3 CC-13B, CC-13C, Release from 5.8 CC-18 0.7 CC-19, Release from DP-30 0.9 CC-17, OS-16 2.0 CC-23, CC-24 3.6	Contributing Basins 2 Yr. Q (cfs) 5 Yr. Q (cfs) BS-28, BS-29, BS-30, OS-18 5.0 21.6 BS-27, OS-17, Release from DP-18 3.8 16.8 CC-1A, OS-12 3.2 14.3 CC-2A, OS-13 2.1 10.5 CC-2B, Release from DP-21 3.7 16.6 CC-3, OS-14 2.5 13.0 CC-4C (Pre-Dev.), CC-5 1.9 8.4 CC-4C, CC-5, CC-6 6 9 Release from FHN Pond 12 0.2 0.3 CC-13, OS-15 4.6 19.8 CC-13A, OS-15 4.6 19.8 CC-13B, CC-13C, Release from DP-28 5.8 26.6 CC-18 0.7 2.2 CC-19, Release from DP-30 0.9 3.2 CC-17, OS-16 2.0 7.8 CC-20, CC-27, CC-28 and 5.0 7.8

DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS

FLYING HORSE NORTH / IRRIGATION RESERVOIR (POND 13 - JURISDICTI Q2(IN) = 32 CFS

Q2(OUT) = 3 CFS $\sqrt{Q5(IN)} = 50 \text{ CFS}$ Q5(OUT) = 4 CFS

Q100(IN) = 609 CFSQ100(OUT) = 182 CFSVOLUME = 28.2 AC. FT


> FUTURE CULVERT CROSSING

BASIN SUMMARY - DEVELOPED CONDITIONS

		COMPOSITE	TOTAL	Q	Q	Q
BASIN	AREA	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
OS-8	14.20	65.0	0.27	2.1	6.2	24.7
OS-9	9.80	60.0	0.37	0.1	1.0	9.1
OS-10	4.10	65.0	0.17	0.7	2.1	8.2
OS-10 OS-11	28.00	65.0	0.35	2.4	8.2	38.7
OS-12	68.10	62.7	0.37	2.4	11.9	75.8
OS-12 OS-13	36.90	63.0	0.33	1.4	7.4	45.0
OS-14	26.40	62.0	0.31	0.7	4.6	31.0
OS-14 OS-15	70.80	63.9	0.31	3.3	14.8	84.2
OS-15 OS-16	4.50	65.0	0.38	0.4	14.0	7.2
OS-18 OS-17	15.80	65.0	0.24	1.6	5.9	27.7
OS-17 OS-18	13.00	65.0	0.19	1.8		27.7
03-16	13.00	05.0	0.20	1.3	4.7	22.0
BS-13	25.60	65.0	0.23	3.7	10.2	40.7
BS-13 BS-14		65.0	0.23			
BS-14 BS-15	13.40 5.30	65.0	0.23	2.6	6.8 3.7	26.5 12.2
		65.0		1.6		
BS-16	21.60		0.34	4.6	11.8	44.1
BS-17	12.10	65.0	0.21	3.1	7.7	26.7
BS-18	33.80	63.6	0.41	3.5	12.4	56.0
BS-19	6.30	65.0	0.18	2.1	4.6	15.0
BS-20	73.90	63.4	0.31	7.4	24.6	112.4
BS-21	69.50	64.3	0.35	7.8	23.9	103.0
BS-22	18.10	64.4	0.22	3.7	9.6	36.5
BS-23	37.10	63.3	0.33	4.5	13.6	58.2
BS-23A	16.30	64.4	0.29	5.5	12.0	38.3
BS-24	10.90	63.0	0.17	0.6	3.3	17.6
EX-24 (Pre-Dev.)	13.20	60.0	0.17	0.2	2.2	17.8
BS-25	12.70	63.0	0.23	0.4	2.7	17.3
BS-26	2.50	60.0	0.18	0.0	0.4	3.4
BS-27	23.30	65.0	0.22	2.1	8.0	38.8
BS-28	36.90	64.4	0.32	2.2	9.3	49.4
BS-29	27.70	64.0	0.33	1.4	6.5	35.9
BS-30	6.70	65.0	0.20	0.7	2.4	11.7
BS-31	8.40	62.5	0.23	0.3	1.9	11.8
BS-32	6.20	62.6	0.20	0.3	1.6	9.4
BS-33	8.90	64.7	0.19	0.8	3.2	15.3
CC-1A	9.80	65.0	0.23	0.8	3.3	16.0
CC-1B	12.60	64.8	0.25	1.0	4.0	19.4
CC-2A	11.00	65.0	0.22	1.0	3.8	18.3
CC-2B	20.80	65.0	0.22	1.9	7.1	34.6
CC-2C	6.40	65.0	0.18	0.7	2.5	11.5
CC-3	52.50	63.1	0.43	1.8	8.8	54.5
CC-4A	108.70	62.6	0.44	15.4	39.0	156.0
CC-4B	8.10	76.1	0.26	4.0	7.3	20.6
CC-4C (Pre-Dev.)	7.40	61.0	0.13	0.2	1.8	11.2
CC-5	22.40	65.0	0.26	1.8	7.1	34.3
CC-6	27.80	65.0	0.25	2.3	9.1	43.2
CC-7	18.40	65.0	0.29	1.4	5.4	27.0

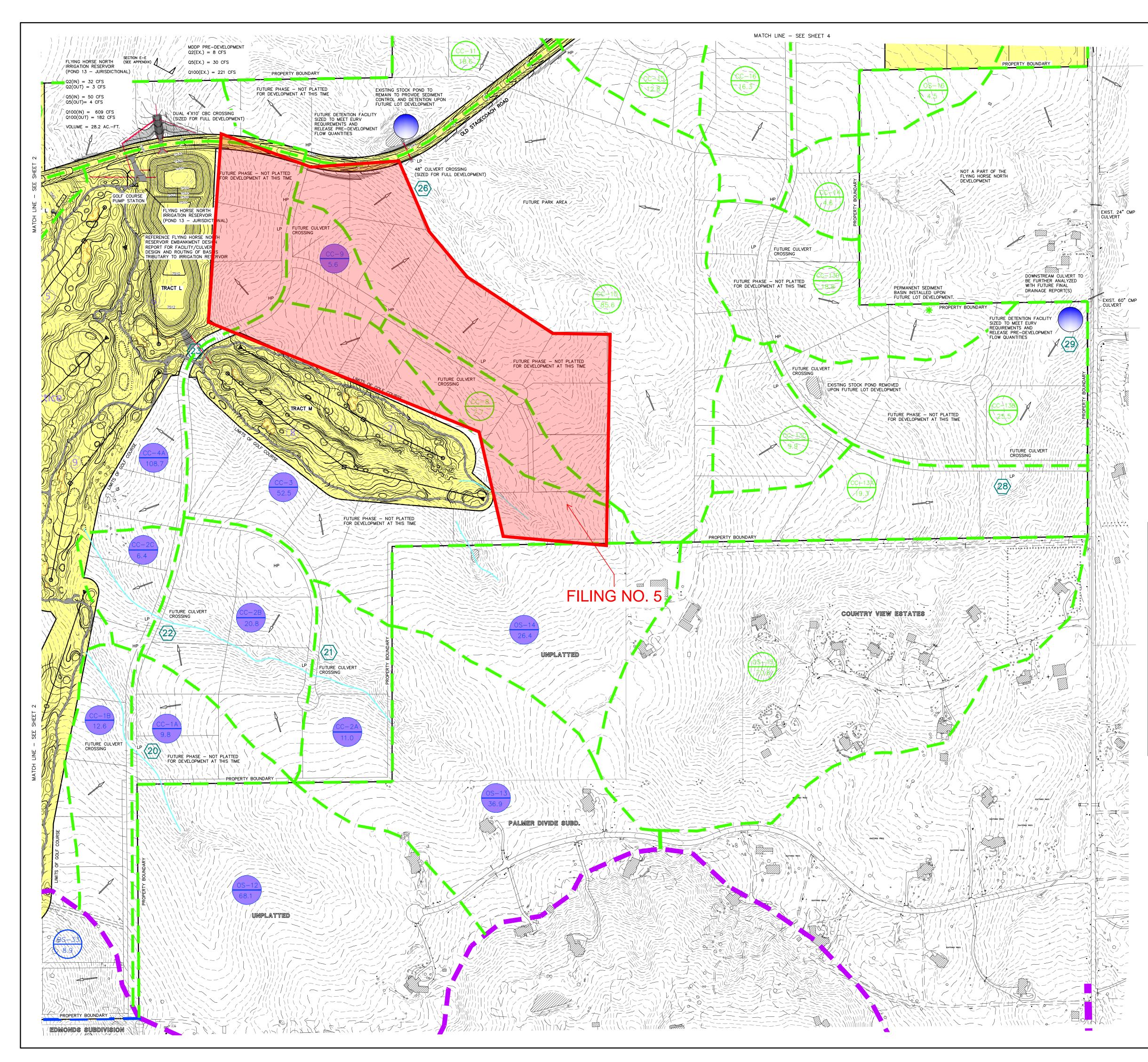
DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS

		Q	Q	Q
Design Point	Contributing Basins	2 Yr.	5 Yr.	100 Yr.
(label)		Q (cfs)	Q (cfs)	Q (cfs)
DP-10 DEV	OS-8, OS-10, OS-11, BS-13, BS- 14	10.7	32.0	143
DP-11 DEV	BS-16	4.6	11.8	36
DP-12 DEV	DP-11, 1.0 Ac. Portion of BS-17 and BS-15	4.2	11.8	46
TOTAL INFLOW TO POND 4 (UD Detention hydrograph)	DP-10, DP-12, BS-17, OS-9	10	16	217
DP-13 DEV	Release from FHN Pond 4	0.3	0.3	142
DP-14 DEV	BS-18	3.5	12.4	56
DP-15 DEV	BS-19	2.1	4.6	15
DP-16 DEV	DP-14, DP-15, BS-20, BS-21, BS-22, BS-23	25.0	78.0	362
TOTAL INFLOW TO FHN POND 8 (Full Build-out) (UD Detention hydrograph)	DP-10, DP-12, BS-17, OS-9	24	37	390
DP-17 DEV (Full Build-out)	Release from FHN Pond 8	0.8	1.0	253
TOTAL INFLOW TO FHN POND 8 (Filing 1 Only) (UD Detention hydrograph)	DP-10, DP-12, BS-17, OS-9	9	14	301
DP-17 DEV (Filing 1 Only)	Release from FHN Pond 8	0.4	0.5	219
DP-18 DEV	BS-28, BS-29, BS-30, OS-18	5.0	21.6	115
DP-19 DEV	BS-27, OS-17, Release from DP-18	3.8	16.8	126
DP-20 DEV	CC-1A, OS-12	3.2	14.3	88
DP-21 DEV	CC-2A, OS-13	2.1	10.5	62
DP-22 DEV	CC-2B, Release from DP-21	3.7	16.6	92
DP-23 DEV	CC-3, OS-14	2.5	13.0	84
DP-24 DEV	CC-4C (Pre-Dev.), CC-5	1.9	8.4	45
TOTAL INFLOW TO POND 12 (UD Detention hydrograph)	CC-4C, CC-5, CC-6	6	9	85
DP-25 DEV	Release from FHN Pond 12	0.2	0.3	45

CHECKED BY

RAWN BY MAW (H) 1"= 200' SHEET 2 OF 4

(V) 1"= N/A JOB NO.

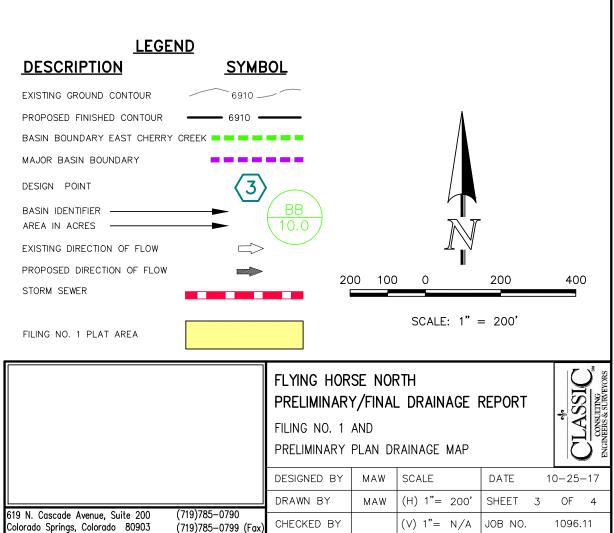

1096.11

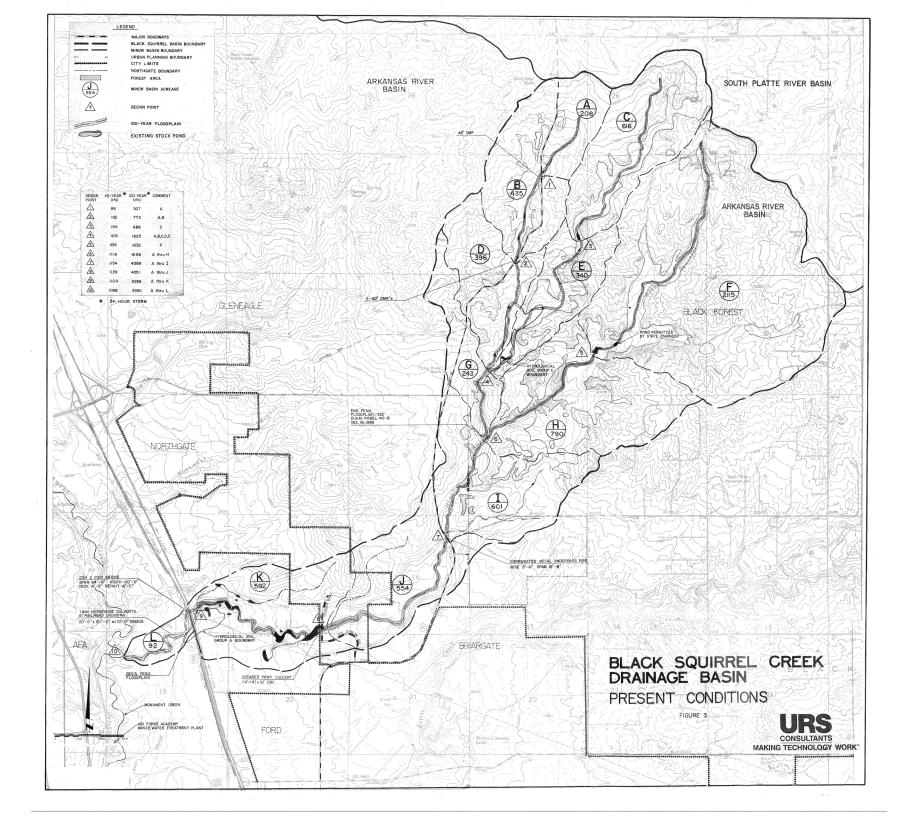
ENGINEERS & SURVEYORS

Colorado Springs, Colorado 80903 (719)785-0799 (Fax)

(719)785-0790

619 N. Cascade Avenue, Suite 200


09611\REPORTS\FILNG 1\10961'FJR JM.dwg, 5/14/2018 3:36:26 AM. 1:1.02065


BASIN SUMMARY - DEVELOPED CONDITIONS

BASIN (label) OS-8 OS-9 OS-10 OS-11 OS-12 OS-13 OS-14 OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-3 CC-4A CC-4B	AREA (acres) 14.20 9.80 4.10 28.00 68.10 36.90 26.40 70.80 4.50 15.80 13.00 15.80 13.00 9.80 12.60 11.00 20.80 6.40 52.50	CN 65.0 65.0 65.0 62.7 63.0 62.0 63.9 65.0 65	LAG TIME (hours) 0.27 0.37 0.37 0.35 0.37 0.33 0.31 0.38 0.24 0.19 0.20 	2 Yr. (cfs) 2.1 0.1 0.7 2.4 2.2 1.4 0.7 3.3 0.4 1.6 1.3 0.8 1.0 1.0	5 Yr. (cfs) 6.2 1.0 2.1 8.2 11.9 7.4 4.6 14.8 1.5 5.9 4.7 3.3 4.0 3.8	100 Yr. (cfs) 24.7 9.1 8.2 38.7 75.8 45.0 31.0 84.2 7.2 27.7 22.6 16.0 19.4
OS-8 OS-9 OS-10 OS-11 OS-12 OS-13 OS-14 OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-3 CC-3 CC-4A	14.20 9.80 4.10 28.00 68.10 36.90 26.40 70.80 4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	60.0 65.0 62.7 63.0 62.0 63.9 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	0.27 0.37 0.17 0.35 0.37 0.33 0.31 0.38 0.24 0.19 0.20 0.20 0.23 0.25 0.22	2.1 0.1 0.7 2.4 2.2 1.4 0.7 3.3 0.4 1.6 1.3 0.8 1.0	6.2 1.0 2.1 8.2 11.9 7.4 4.6 14.8 1.5 5.9 4.7 3.3 4.0	24.7 9.1 8.2 38.7 75.8 45.0 31.0 84.2 7.2 27.7 22.6 16.0 19.4
OS-9 OS-10 OS-11 OS-12 OS-13 OS-14 OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-3 CC-3 CC-4A	9.80 4.10 28.00 68.10 36.90 26.40 70.80 4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	60.0 65.0 62.7 63.0 62.0 63.9 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	0.37 0.17 0.35 0.37 0.33 0.31 0.38 0.24 0.19 0.20 0.20 0.23 0.25 0.22	0.1 0.7 2.4 2.2 1.4 0.7 3.3 0.4 1.6 1.3 0.8 1.0	1.0 2.1 8.2 11.9 7.4 4.6 14.8 1.5 5.9 4.7 3.3 4.0	9.1 8.2 38.7 75.8 45.0 31.0 84.2 7.2 27.7 22.6 16.0 19.4
OS-10 OS-11 OS-12 OS-13 OS-14 OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2A CC-2B CC-2C CC-3 CC-4A	4.10 28.00 68.10 36.90 26.40 70.80 4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	65.0 65.0 62.7 63.0 62.0 63.9 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	0.17 0.35 0.37 0.33 0.31 0.38 0.24 0.19 0.20 0.20 0.23 0.25 0.22	0.7 2.4 2.2 1.4 0.7 3.3 0.4 1.6 1.3 0.8 1.0	2.1 8.2 11.9 7.4 4.6 14.8 1.5 5.9 4.7 3.3 4.0	8.2 38.7 75.8 45.0 31.0 84.2 7.2 27.7 22.6 16.0 19.4
OS-11 OS-12 OS-13 OS-14 OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-3 CC-3 CC-4A	28.00 68.10 36.90 26.40 70.80 4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	65.0 62.7 63.0 62.0 63.9 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0	0.35 0.37 0.33 0.31 0.38 0.24 0.19 0.20 0.20 0.23 0.25 0.22	2.4 2.2 1.4 0.7 3.3 0.4 1.6 1.3 0.8 1.0	8.2 11.9 7.4 4.6 14.8 1.5 5.9 4.7 3.3 4.0	38.7 75.8 45.0 31.0 84.2 7.2 27.7 22.6 16.0 19.4
OS-12 OS-13 OS-14 OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-2C CC-3 CC-4A	68.10 36.90 26.40 70.80 4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	62.7 63.0 62.0 63.9 65.0 65.0 65.0 65.0 65.0 64.8 65.0 65.0 65.0	0.37 0.33 0.31 0.38 0.24 0.19 0.20 0.20 0.23 0.25 0.22	2.2 1.4 0.7 3.3 0.4 1.6 1.3 0.8 1.0	11.9 7.4 4.6 14.8 1.5 5.9 4.7 3.3 4.0	75.8 45.0 31.0 84.2 7.2 27.7 22.6 16.0 19.4
OS-12 OS-13 OS-14 OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-2C CC-3 CC-4A	68.10 36.90 26.40 70.80 4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	62.7 63.0 62.0 63.9 65.0 65.0 65.0 65.0 65.0 64.8 65.0 65.0 65.0	0.37 0.33 0.31 0.38 0.24 0.19 0.20 0.20 0.23 0.25 0.22	1.4 0.7 3.3 0.4 1.6 1.3 0.8 1.0	11.9 7.4 4.6 14.8 1.5 5.9 4.7 3.3 4.0	75.8 45.0 31.0 84.2 7.2 27.7 22.6 16.0 19.4
OS-14 OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-2C CC-3 CC-4A	26.40 70.80 4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	62.0 63.9 65.0 65.0 65.0 65.0 65.0 64.8 65.0 65.0	0.31 0.38 0.24 0.19 0.20 0.20 0.23 0.25 0.22	0.7 3.3 0.4 1.6 1.3 0.8 1.0	4.6 14.8 1.5 5.9 4.7 3.3 4.0	31.0 84.2 7.2 27.7 22.6 16.0 19.4
OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-2C CC-3 CC-4A	70.80 4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	63.9 65.0 65.0 65.0 65.0 65.0 64.8 65.0 65.0	0.38 0.24 0.19 0.20 0.23 0.25 0.22	3.3 0.4 1.6 1.3 0.8 1.0	14.8 1.5 5.9 4.7 3.3 4.0	84.2 7.2 27.7 22.6 16.0 19.4
OS-15 OS-16 OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-2C CC-3 CC-4A	4.50 15.80 13.00 9.80 12.60 11.00 20.80 6.40	65.0 65.0 65.0 65.0 64.8 65.0 65.0	0.38 0.24 0.19 0.20 0.23 0.25 0.22	0.4 1.6 1.3 0.8 1.0	1.5 5.9 4.7 3.3 4.0	84.2 7.2 27.7 22.6 16.0 19.4
OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-3 CC-3 CC-4A	15.80 13.00 9.80 12.60 11.00 20.80 6.40	65.0 65.0 65.0 64.8 65.0 65.0	0.19 0.20 0.23 0.25 0.22	1.6 1.3 0.8 1.0	5.9 4.7 3.3 4.0	27.7 22.6 16.0 19.4
OS-17 OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-3 CC-3 CC-4A	15.80 13.00 9.80 12.60 11.00 20.80 6.40	65.0 65.0 65.0 64.8 65.0 65.0	0.19 0.20 0.23 0.25 0.22	1.3 0.8 1.0	5.9 4.7 3.3 4.0	27.7 22.6 16.0 19.4
OS-18 CC-1A CC-1B CC-2A CC-2B CC-2C CC-3 CC-3 CC-4A	13.00 9.80 12.60 11.00 20.80 6.40	65.0 65.0 64.8 65.0 65.0	0.20 0.23 0.25 0.22	1.3 0.8 1.0	4.7 3.3 4.0	22.6 16.0 19.4
CC-1A CC-1B CC-2A CC-2B CC-2C CC-3 CC-4A	9.80 12.60 11.00 20.80 6.40	65.0 64.8 65.0 65.0	0.23 0.25 0.22	0.8	3.3 4.0	16.0 19.4
CC-1B CC-2A CC-2B CC-2C CC-3 CC-4A	12.60 11.00 20.80 6.40	64.8 65.0 65.0	0.25 0.22	1.0	4.0	19.4
CC-1B CC-2A CC-2B CC-2C CC-3 CC-4A	12.60 11.00 20.80 6.40	64.8 65.0 65.0	0.25 0.22	1.0	4.0	19.4
CC-2A CC-2B CC-2C CC-3 CC-4A	11.00 20.80 6.40	65.0 65.0	0.22			
CC-2B CC-2C CC-3 CC-4A	20.80 6.40	65.0				18.3
CC-2C CC-3 CC-4A	6.40		I V.ZZ I	1.9	7.1	34.6
CC-3 CC-4A			0.18	0.7	2.5	11.5
CC-4A		63.1	0.43	1.8	8.8	54.5
	108.70	62.6	0.44	15.4	39.0	156.0
	8.10	76.1	0.26	4.0	7.3	20.6
CC-4C (Pre-Dev.)	7.40	61.0	0.13	0.2	1.8	11.2
CC-5	22.40	65.0	0.26	1.8	7.1	34.3
CC-6	27.80	65.0	0.25	2.3	9.1	43.2
CC-7	18.40	65.0	0.29	1.4	5.4	27.0
CC-8	7.70	65.0	0.25	0.6	2.5	12.0
CC-9	5.60	65.0	0.19	0.6	2.1	9.8
CC-10	85.60	62.6	0.39	2.6	14.1	91.9
CC-11	18.60	63.1	0.21	0.9	5.0	28.1
CC-12	12.20	65.0	0.26	1.0	3.9	18.7
CC-13A	19.30	65.0	0.31	1.4	5.4	27.3
CC-13B	25.50	65.0	0.31	1.4	7.2	36.1
CC-13C	9.90	65.0	0.22	0.9	3.4	16.5
CC-13D	18.80	65.0	0.25	1.5	6.2	29.2
CC-14	4.60	65.0	0.23	0.4	1.6	7.8
CC-15	12.80	65.0	0.24	1.1	4.3	20.4
CC-16	16.30	65.0	0.30	1.1	4.6	23.6
CC-10 CC-17	25.00	65.0	0.35	1.7	6.5	32.8
CC-18	6.20	66.5	0.30	0.7	2.2	9.7
CC-18 CC-19	3.70	65.0	0.30	0.7	1.2	5.8
CC-19 CC-20	39.30	65.0	0.25	3.2	12.9	61.0
CC-20 CC-21	6.20	61.0	0.20	0.1	12.9	8.5
CC-21 CC-22	13.80	65.0	0.20	1.1	4.5	21.4
CC-22 CC-23	5.70	64.7	0.23	0.4	1.5	7.7
CC-23 CC-24	39.60	65.0	0.33	3.3	13.0	61.5
CC-24 CC-25	39.60	65.0	0.23	0.3	1.2	5.7
CC-25 CC-26	3.50 16.70		0.23		5.3	25.6
		65.0		1.4		-
CC-27 CC-28	18.90 154.80	64. 4 64. 4	0.31	<u> </u>	4.9 24.7	25.8 136.3

DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS

Design Point (label)	Contributing Basins	Q 2 Yr. Q (cfs)	Q 5 Yr. Q (cfs)	Q 100 Yr. Q (cfs)
DP-20 DEV	CC-1A, OS-12	3.2	14.3	88
DP-21 DEV	CC-2A, OS-13	2.1	10.5	62
DP-22 DEV	CC-2B, Release from DP-21	3.7	16.6	92
DP-23 DEV	CC-3, OS-14	2.5	13.0	84
DP-24 DEV	CC-4C (Pre-Dev.), CC-5	1.9	8.4	45
TOTAL INFLOW TO POND 12 (UD Detention hydrograph)	CC-4C, CC-5, CC-6	6	9	85
DP-25 DEV	Release from FHN Pond 12	0.2	0.3	45
DP-26 DEV	CC-8, CC-10	3.0	15.9	102
DP-27 DEV	CC-15, CC-20	4.3	17.2	81
DP-28 DEV	CC-13A, OS-15	4.6	19.8	110
DP-29 DEV	CC-13B, CC-13C, Release from DP-28	5.8	26.6	155
DP-30 DEV	CC-18	0.7	2.2	10
DP-31 DEV	CC-19, Release from DP-30	0.9	3.2	15
DP-32 DEV	CC-17, OS-16	2.0	7.8	40
DP-33 DEV	CC-23, CC-24	3.6	14.4	69
DP-34 DEV	CC-26, CC-27, CC-28 and Release from CC-16 & DP-32	6.0	23.5	168

Flying Horse North Master Development Drainage Plan

> HRGREEN COM

March 09, 2022 Revised: July 28, 2022 Revised: September 9th, 2022 HR Green Project No: 211030.01

Prepared For:

Mr. Drew Balsick Vice President / Project Manager Flying Horse Development, LLC 2138 Flying Horse Club Drive Colorado Springs, CO 80921 (719) 785-3237

Prepared By:

HR Green Development, LLC Contact: Gregory Panza, PE gpanza@hrgreen.com 720-602-4956

PCD File No. SKP223

c. Site Characteristics

Per the NRCS web soil survey, the site is made up entirely of Type B soils. The ridge line between the Arkansas River and South Platte River Basins creates different soil environments for each. The portion of site that is within the Black Squirrel Drainage Basin, which includes Flying Horse Norse Filing No. 2 and No. 3, are predominately Elbeth sandy loam. The remaining filings are within the East Cherry Creek Basin which consists of Peyton sandy loam and Peyton-Pring complex. See Appendix A for the NRCS soil map.

Current ground cover varies between the two basins as well. Filings No. 2 and 3 are predominantly covered by Ponderosa Pine trees as a part of Black Forest and pasture. The remaining filings are short-to mid-grass prairie grasslands and former farmland which consists of non-native weeds and grasses. This portion of the site has very few, if any, trees and a minimal number of shrubs are found on the site.

d. Major Drainage Ways and Structures

No major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries of the East Cherry Creek and Black Squirrel Creek. Additionally, as part of the Flying Horse North Filing 1 development, a large irrigation pond was built for water storage and flood control. This drains to the north and to the aforementioned unnamed tributary.

Existing minor drainage channels within the site are planned to be maintained to the maximum extent possible within parkways and greenways with the development. These will continue to be used for conveyance of storm drainage flows.

The Franktown Parker Dam (080130) is located near the northwest corner of site. The dam is designated as a jurisdictional dam and has a low hazard class. It is located along East Cherry Creek. See Appendix A for characteristics and location of dam.

e. Existing and proposed land uses

The existing site is open rangeland on the eastern portion of the site and the western site is single family homes on large (~2.5 acre) home site within a heavily forested area. As part of Filing 1, a road was constructed along with facilities to support a golf course. Structures, outside of the homes are scattered throughout the overall development which will either be removed as part of the project or were built as part of Filing 1. The proposed development will consist of estate, low and medium lots, along with a future hotel site and multiple green spaces and small parks. The current land plan assumes approximately 897 dwelling units will be constructed on the site, not including an approximate 225 provided the proposed hotel.

Land Use	MAX DU/AC
Estate Lots (2.5 Acres)	0.32
Estate Lots (5 Acres)	0.2
Low	1.9
Medium	3.0

III. Hydrologic Analysis

a. Major Basins and subbasins

Major Basin Description

- Previous basin study: Black Squirrel Drainage Basin Planning Study
- Per FEMA FIRM 08041C0305G and 08041C0315G (eff. 12/7/2018), Flying Horse North has the East Cherry Creek run through the northwest portion of the site. Currently, FEMA shows a LOMR effective April 4th, 2019 Base Flood Elevations and Zone A. Per the El Paso County Land Development Code Chapter 8 Section 8.4.2.B.1.e.i, the base flood elevations for Zone A will be determined once the platted lots are solidified and are confirmed within 300-ft of the current floodplain designation. Certification of the flood elevations will be via the FEMA CLOMR/LOMR process or Floodplain Certification Letter.
- There is a large irrigation pond that accounts for water storage and water control on the east side of the site.

The site has been divided into several major drainage basins per where each basin is tributary to a full spectrum detention pond facility. These basins and associated sub basins are described in more detail in the next section of this report.

Existing Subbasin Description

The site's flows are split by the major ridgeline of the Arkansas River Basin and South Platte Basin. Within the South Platte Basin, flow is generally carried northeast throughout the site. On the other side of the ridgeline, the Arkansas River Basin flows in a southwest direction. Subbasin IDs with single letters are part of the South Platte Basin and Subbasin IDs with double letters are part of the Arkansas River Basin.

- Subbasin A is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B1. The basin is 18.99 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 20.84 cfs and 43.83 cfs respectively.
- Subbasin B is located north of Subbasin A. The basin drains towards the northwest into a natural drainageway that flows directly to an existing irrigation pond. The basin is 59.74 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 103.48 cfs and 221.28 cfs respectively.
- Subbasin C is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B2. The basin is 36.39 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 33.36 cfs and 71.27 cfs respectively.
- Subbasin D is located north of Subbasin B. The basin drains towards the northwest and towards the existing irrigation pond. The basin is 38.84 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 31.56 cfs and 67.84 cfs respectively.
- Subbasin E is in a central location of the site and includes the existing irrigation pond. The basin drains towards the north and towards existing irrigation pond. The basin is 106.53 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 223.69 cfs and 483.10 cfs respectively.

- Subbasin F is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin G. The basin is 25.25 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 24.27 cfs and 51.63 cfs respectively.
- Subbasin G is directly north of Subbasin D and east of Subbasin E. The basin drains towards the northwest and towards Subbasin E with the irrigation pond. The basins consist of the existing golf course. The basin Is 52.19 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 79.17 cfs and 166.51 cfs respectively.
- Subbasin H is located directly downstream of Subbasin E and on the north side of Stagecoach Rd. The basin drains towards the north through a natural drainageway. There are existing lots on the west side of the basin. The basin is 20.63 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 18.59 cfs and 39.78 cfs respectively.
- Subbasin I is located west of Subbasin E and northeast of the major ridgeline between basins. The basin drains towards the northwest and towards an existing culvert. There are existing lots on the west side of the basin. The basin is 31.93 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 34.58 cfs and 72.63 cfs respectively
- Subbasin J is located downstream of Subbasin I. The basin drains towards the northeast to an unnamed tributary of the East Cherry Creek. The basin is 28.47 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 56.31 cfs and 120.46 cfs respectively.
- Subbasin K is located south of proposed section of Stagecoach Rd. The basin drains towards the northwest and into an existing 48" culvert. The basin is 93.15 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 92.05 cfs and 195.43 cfs respectively
- Subbasin L is downstream of Subbasin K and is located on the north side of the proposed section of Stagecoach Rd. The basin drains towards the northwest to a natural drainageway of East Cherry Creek. The basin is 16.39 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 107.58 cfs and 228.73 cfs respectively.
- Subbasin M is located on the east side of the site and between Subbasin N and V1. The basin drains towards the northwest and into an existing 30" culvert. The basin is 13.85 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 11.48 cfs and 24.61 cfs respectively.
- Subbasin N is located south of Subbasin O and north of proposed Stagecoach Rd. The basin drains towards the northwest to a nearby unnamed tributary and eventually East Cherry Creek. The basin is 49.00 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 64.68 cfs and 143.11 cfs respectively.
- Subbasin O is located south of Subbasin P. The basin drains towards the northwest and towards the north. The basin is 24.76 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 22.69 cfs and 48.54 cfs respectively.
- Subbasin P is in the northeast corner of the site and downstream of Subbasin O. The basin drains towards the northeast to an unnamed tributary of East Cherry Creek. The basin is 43.80 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 38.52 cfs and 82.17 cfs respectively.

Proposed Subbasin Description

- Subbasin A is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B1. The basin is 18.99 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 20.84 cfs and 43.83 cfs respectively.
- Subbasin B1 is located north of Subbasin A. The basin drains towards the northwest and towards proposed Detention Pond 11. Current planning documents call for low density dwelling units. The basin is 59.74 acres, with a composite impervious value of 29.83% and runoff rates for the 5 and 100 year of 66.93 cfs and 133.69 cfs respectively.
- Subbasin B2 is located northeast of Subbasin B1. The basin drains towards the northwest and towards the proposed Detention Pond 11. Current planning documents call for low density dwelling units. The basin is 19.99 acres, with a composite impervious value of 24.55% and runoff rates for the 5 and 100 year of 17.99 cfs and 37.14 cfs respectively.
- Subbasin C is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B2. The basin is 36.39 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 35.31 cfs and 75.28 cfs respectively.
- Subbasin D is located north of north of Subbasins B1 and B2. The basin drains towards the northwest and towards Detention Pond 15. Current planning documents call for low density dwelling units. The basin is 40.87 acres, with a composite impervious value of 37.20% and runoff rates for the 5 and 100 year of 61.12 cfs and 117.38 cfs respectively.
- Subbasin E is in a central location of the site and includes the existing irrigation pond. The basin drains towards the north and towards existing irrigation pond. Current planning documents call for two small parking lots. The basin is 106.53 acres, with a composite impervious value of 14.35% and runoff rates for the 5 and 100 year of 74.68 cfs and 157.91 cfs respectively.
- Subbasin F is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin G. The basin is 25.25 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 24.27 cfs and 51.63 cfs respectively.
- Subbasin G is directly north of Subbasin D and east of Subbasin E. The basin drains towards the northwest and towards Subbasin E. Current planning documents call for a small amount of low density dwelling units, where most of the basin consist of the existing golf course. The basin is 31.45 acres, with a composite impervious value of 12.48% and runoff rates for the 5 and 100 year of 27.18 cfs and 57.12 cfs respectively.
- Subbasin H is located located directly downstream of Subbasin E and on the north side of Stagecoach Rd. The basin drains towards the north and towards Detention Pond 10. Current planning documents call for medium density dwelling units. There are existing lots on the west side of the basin. The basin is 21.96 acres, with a composite impervious value of 10.00% and runoff rates for the 5 and 100 year of 17.86 cfs and 37.8 cfs respectively.
- Subbasin I is located west of Subbasin E and northeast of the major ridgeline between basins. The basin drains towards the northwest and towards proposed Detention Pond 16. There are existing lots on the west side of the basin. Current planning documents call for a commercial golf club. The basin is 28.99 acres, with a composite impervious value of 34.66% and runoff rates for the 5 and 100 year of 40.37 cfs and 78.06 cfs respectively

- Subbasin J is located downstream of Subbasin I. The basin drains towards the northeast to an unnamed tributary of the East Cherry Creek. Current planning documents do not call for any changes to this basin. The basin is 28.07 acres, with a composite impervious value of 10% and runoff rates for the 5 and 100 year of 24.25 cfs and 51.19 cfs respectively.
- Subbasin K is located south of proposed section of Stagecoach Rd. The basin drains towards the northwest and towards proposed Detention Pond 7. Current planning documents call for high, medium, and low density dwelling units and a few pocket parks. The basin is 114.73 acres, with a composite impervious value of 38.08% and runoff rates for the 5 and 100 year of 200.94 cfs and 382.3 cfs respectively
- Subbasin L is downstream of Subbasin K and is located on the north side of the proposed section of Stagecoach Rd. The basin drains towards the northwest into proposed Detention Pond 8. Current planning documents call for medium density dwelling units. The basin is 15.89 acres, with a composite impervious value of 24.82% and runoff rates for the 5 and 100 year of 15.97 cfs and 32.4 cfs respectively. The pond will discharge at predevelopment rates into an unnamed tributary of the East Cherry Creek via the ponds outlet structure.
- Subbasin M is located on the east side of the site and between Subbasin N and V1. The basin drains towards the northwest and towards proposed Detention Pond 6. Detention Pond 6 outlets into a culvert under proposed Stagecoach Rd. and eventually to Subbasin N. Current planning documents call for medium density dwelling units, potential fitness center, and a park. The basin is 26.83 acres, with a composite impervious value of 33.19% and runoff rates for the 5 and 100 year of 46.54 cfs and 89.08 cfs respectively.
- Subbasin N is located south of Subbasin O and North of proposed Stagecoach Rd. The basin drains towards the northwest towards proposed Detention Pond 5. Detention Pond 5 outlets to a nearby unnamed tributary and eventually East Cherry Creek. Current planning documents call for medium density dwelling units along with a pocket park. The basin is 41.57 acres, with a composite impervious value of 29.60% and runoff rates for the 5 and 100 year of 73.48 cfs and 141.24 cfs respectively.
- Subbasin O is located south of Subbasin P. The basin drains towards the northwest and towards Detention Pond 3. Current planning documents call for medium density dwelling units. The basin is 52.52 acres, with a composite impervious value of 30.10% and runoff rates for the 5 and 100 year of 63.86 cfs and 127.4 cfs respectively. The pond will discharge at predevelopment rates and into Pond 1 via a swale.
- Subbasin P is in the northeast corner of the site and downstream of Subbasin O. The basin drains towards the northeast to proposed Detention Pond 1. Current planning documents call for low density dwelling units. The basin is 43.71 acres, with a composite impervious value of 20.71% and runoff rates for the 5 and 100 year of 40 cfs and 82.83 cfs respectively. The pond will discharge at predevelopment rates into an unnamed tributary of the East Cherry Creek via the ponds outlet structure.
- Subbasin Q is located off site and on the southeast corner. The basin drains towards the northeast and towards Subbasin R. The basin is 72.29 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 64.68 cfs and 137.8 cfs respectively.

The above-mentioned basins are large planning area basins and as drainage reports are developed for the individual developed parcels additional drainage reports and calculations will be required. It is expected that storm drainage infrastructure consisting of inlets, storm sewer and open drainage channels will be constructed as the property develops.

• Although mentioned above, offsite basins include basins A, C, F, and Q. Flow contributing to the site from these basins will be routed through the proposed detention ponds. Flow rates are shown below.

	Offsite Flow Summary										
Basin Description	Ultimate Design Point	Basin Area (ac)	Receiving Detention Pond	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)						
А	А	18.99	Pond 11	20.84	43.83						
С	С	36.39	Pond 11	33.36	71.27						
F	F	25.25	Irr. Pond	24.27	51.63						
Q	Q	72.29	Pond 9	64.68	137.80						

b. Methodology

Design rainfall was determined utilizing Table 6-2 from the City of Colorado Springs Drainage Criteria Manual to determine the 5-year and 100-year rainfall values for the 1-hour events. The 1-hour rainfall depths are 1.5 and 2.52 in/hr respectively.

Composite percent impervious calculations were completed for each subbasin based on the density of lots and can be found in Appendix B. The El Paso County Drainage Criteria Manual Table 5-1 was used for reference when correlating land use to percent impervious values and located in Appendix F. Impervious values for 5-Acre Lots, 2.5-Acre Lots, Medium Density, Low Density, and Commercial Lots had impervious values of 10%, 15%, 45%, 55% and 75% respectively. The rainfall and percent impervious values were then used as inputs into the Colorado Urban Hydrograph Procedure (CUHP) spreadsheets to determine runoff values for both pre-development and post-development site.

CUHP is an evolution of the Snyder unit hydrograph and is calibrated for use along the Colorado Front Range. 1 Hour rainfall amounts are input into the program to produce a storm hyetograph that is then uses to calculate a storm hydrograph for each basin depending on the subbasins properties including slope, length, shape, impervious area, pervious depression storage area, and various infiltration rates. Tabular hydrographs are then computed and can be used in EPA SWMM. The CUHP results are included within Appendix B.

EPA SWMM was used to determine flow routing via the kinematic wave method. Subbasins were routed to their respective design points and detention ponds for both the developed and predeveloped condition to determine peak runoff amounts for the 5-year and 100-year storm events. Information from these models along with information and calculations performed in the Mile High Flood District BMP spreadsheets was used to determine pond sizing calculations and release rates.

c. Basin Hydrology

A summary of the flows for both the predeveloped and developed cases for each basin, subbasin and Pond are found on next page along with the full computation found in Appendix B.

	Existing SWMM Basin Summary									
Basin Description	Basin Area (ac)	% Impervious	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)						
А	18.99	2.00	20.84	43.83						
В	59.74	2.00	103.48	221.48						
С	34.87	2.00	33.36	71.27						
D	38.84	2.00	31.56	67.84						
E	127.86	2.00	223.69	483.10						
F	25.25	2.00	24.27	51.63						
G	52.19	2.00	79.17	166.51						
Н	20.63	2.00	18.59	39.78						
I	31.93	2.00	34.58	72.63						
J	28.47	2.00	56.31	120.46						
К	93.14	2.00	92.05	195.43						
L	16.39	2.00	107.58	228.73						
М	13.87	2.00	11.48	24.61						
Ν	49.00	2.00	68.16	143.11						
0	24.76	2.00	22.69	48.54						
Р	43.80	2.00	38.52	82.17						
Q	72.29	2.00	64.68	137.80						
R	54.98	2.00	108.65	232.13						
S	24.36	2.00	25.99	48.54						
Т	5.24	2.00	4.04	8.68						
U	5.48	2.00	4.15	8.95						
V	38.47	2.00	29.63	63.92						
W	3.76	2.00	3.45	7.33						
Х	190.88	2.00	167.76	361.56						
AA	33.49	10.00	38.76	80.22						
BB	37.15	10.00	40.62	84.15						
СС	6.33	10.00	6.53	13.57						
DD	70.06	10.00	58.42	123.69						
EE	69.47	10.00	81.16	167.45						
FF	17.62	2.00	162.77	340.42						
GG	16.35	2.00	14.93	31.99						
НН	12.61	2.00	13.01	27.42						
11	97.53	2.00	81.77	175.59						
]]	8.72	2.00	9.74	20.50						
КК	8.12	2.00	7.51	15.99						
LL	6.10	2.00	6.88	14.48						

Proposed SWMM Basin and Pond Summary									
Basin Description	Basin Area (ac)	% Impervious	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)	5 Year Pond Volume (ac- ft)	100 Year Pond Volume (ac- ft)			
P	43.71	20.71%	40.00	82.83	,	1.07			
I	45.71	20.7170		ond 1	1.03	1.97			
X1	76.38	29.50%	80.91	163.27	1.00	1.57			
	, 0.00			ond 2	6.56	8.80			
0	52.52	30.10%	63.86	127.40					
-				ond 3	3.79	6.37			
X2	36.33	33.33%	41.46	82.46					
X3	61.99	13.53%	47.59	100.73					
V2	15.34	15.00%	16.15	33.25					
V1	11.57	38.62%	13.99	27.67					
			P	ond 4	7.21	7.35			
Ν	41.57	29.60%	73.48	141.24					
			P	ond 5	1.86	2.55			
М	26.83	33.19%	46.54	89.09		•			
	•	1	P	ond 6	0.84	0.94			
К	114.73	38.03%	200.94	382.30					
	1	1	P	ond 7	8.38	12.59			
L	15.89	24.82%	15.97	32.40		1			
	1			ond 8	1.05	1.09			
S	21.67	40.88%	30.83	58.96					
R	56.16	21.81%	56.59	116.06					
Q	72.29	2.00%	64.68	137.80					
	24.00	10.00%		ond 9	6.28	10.31			
Н	21.96	10.00%	17.86	37.80	0.00	0.04			
B2	19.99	24.55%	17.99	ond 10 37.14	0.66	0.94			
B2 B1	59.74	29.83%	66.93	133.69					
A	18.99	29.83%	20.84	43.83					
<u>с</u>	36.39	2.00%	35.31	75.28					
C	50.55	2.0070		ond 11	1.94	3.23			
J	28.07	10.00%	24.25	51.19	2.34	5.25			
		_0.0070		ig Pond 12					
EE2	16.36	75.00%	35.71	63.62					
EE3	6.67	55.00%	10.38	19.93					
				ond 13	1.33	1.61			
113	23.97	10.0%	28.32	58.65					
112	23.13	10.0%	28.04	116.62					
111	50.43	10.0%	34.94	74.39					
			Po	ond 14	1.06	3.99			
D	40.87	37.20%	61.12	117.38					
				ond 15	1.94	3.23			
E	106.53	14.35%	74.68	157.91					

	26.99	34.66%	40.37	78.06		
			Poi	nd 16	1.40	1.79
11	8.9	20.70%	11.49	22.8		
КК	8.4	12.09%	8.14	16.95		
LL	6.2	10.00%	7.36	15.07		
			Рог	nd 17	1.09	1.23
G	31.45	12.48%	37.69	107.75		
			Irrigati	ion Pond		
IJ	8.90	20.70%	11.06	28.04		
LL	6.2	12.09%	5.85	15.68		
КК	8.4	10.00%	5.9	16.72		
			Natural D	rainage Way		
DD	69.5	10.0%	42.26	120.76		
EE1	50.87	10.0%	42.6	154.16		
			-	lying Horse		
			†	ntion Pond 6		
CC	6.33	10.0%	4.74	13.39		
FF	18.1	10.0%	100.02	325.29		
			-	lying Horse		
			-	ntion Pond 7		
GG	16.35	10.0%	11.25	32.04		
AA	33.8	10.0%	28.57	80.08		
BB	37.15	10.0%	29.52	83.01		
			Existing Flyi	-		
			1	ntion Pond 8		
HH	12.7	10.0%	9.86	27.77		
	1			rainage Way		
Т	5.24	2.00%	2.92	8.56		
U	5.86	10.0%	3.63	10.37		
W	3.76	10.0%	2.6	7.36 rainage Way		

IV. Hydraulic Analysis

a. Major Drainageways

There are no major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries of the East Cherry Creek and Black Squirrel Creek.

V. Environmental Evaluations

a. Significant Existing or Potential Wetland and Riparian Areas Impacts

As part of this work, the developer has engaged Bristlecone Ecology, LLC to perform environmental studies of the site that will be submitted with the planning documents. Major information in the report concerning wetlands concludes that there is a wetland associated with Black Squirrel Creek. Black Squirrel Creek is known to be a jurisdictional stream.

At this time, there are no improvements proposed for Black Squirrel Creek. The minimal impact to the stream will keep the natural habitat intact and the natural function of the Creek as it is to maintain the wetland habitat.

b. Stormwater Quality Considerations and Proposed Practices

As part of the development, full spectrum detention facilities will be installed to provide water quality for the development. The facilities will be designed using El Paso County criteria and provide stormwater quality by slowing the release of stormwater captured by the ponds and allowing solids to settle out. Additionally, when possible, the existing natural drainage ways will be used to convey stormwater to more closely mimic the natural hydrologic and hydraulic cycle. Some of the drainage ways will be used to convey water to the ponds and others will receive water from the ponds and in both scenarios will provide additional water quality benefits.

On site practices for the homes, schools, churches, and other buildings should use means such that impervious areas drain across pervious area to allow for infiltration during the minor events. This would include discharge of the gutters onto landscape areas vs. directly connecting to storm sewer and as discussed above as well using natural ditches and swales where it is logical and makes sense to convey stormwater in lieu of storm sewer piping.

c. Permitting Requirements

When work infringes upon the wetlands or floodplain a 404 Permit will be required. If the work within the waterways is minimal, it will likely be covered under a nationwide 404 permit; it is however possible that an individual permits will be required.

The Colorado Department of Public Health and Environment will require permits for any disturbance that exceed 1 acre of land. Should groundwater be encountered, a dewatering permit will also be required.

El Paso County will require an Erosion and Stormwater Quality Control Permit and any other construction permits required to complete the construction of the site.

Should development occur which effects the floodplain, FEMA will require a permit for work withing the floodplain prior to the commencement of any construction or development within any special flood hazard area (SFHA). If the infrastructure is to be installed within the channel the designer shall route the design through the proper FEMA channels whether that be with a no rise certification or via the CLOMR/LOMR process should a more major improvement within the floodplain be proposed. At this time the project does not propose any direct development within the floodplain however storm infrastructure will discharge into the existing FEMA channel.

d. 4-Step Process

In accordance with the Engineering Criteria Manual I.7.2.A and DCM V2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume, and considering the need for Industrial Commercial BMPs.

Step 1 – Reducing Runoff Volumes: The development of the project site includes a variety of land uses including open and vegetated areas interspersed to help disconnect imperious areas and reduce runoff volumes.

- Pond 2 is located to the east of Pond 1 and and discharges into another unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 8.8 ac-ft during the 100-year event and have a peak outflow of 74.6 cfs which is slightly below the predevelopment peak outflow of 81.0 cfs. The 5-year storage volume is 6.56 ac-ft with a peak outflow of 27.8 cfs.
- Pond 3 is located on the eastern portion of the site and south of Pond 1. The pond discharges into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 6.37 ac-ft during the 100-year event and have a peak outflow of 46.1 cfs which is slightly below the predevelopment peak outflow of 48.5 cfs. The 5-year storage volume is 3.79 ac-ft with a peak outflow of 22.7 cfs.
- Pond 4 is located near the eastern portion of the site adjacent to Black Forest Rd. The pond discharges into a natural drainage way, which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 7.35 ac-ft during the 100-year event and have a peak outflow of 198.8 cfs which is slightly below the predevelopment peak flow rate of 231.6 cfs. The 5-year storage volume is 7.12 ac-ft with a peak outflow of 70.6 cfs.
- Pond 5 is located in the northwest portion of the site. The pond discharges natural drainageway, which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 2.5 ac-ft during the 100-year event and have a peak outflow of 103.1 cfs which is greater than the predevelopment peak outflow of 116.9 cfs. The 5-year storage volume is 1.86 ac-ft with a peak outflow of 39.4 cfs.
- Pond 6 is located near the northwest corner of the site and upstream of Pond 5. The pond discharges into a natural drainageway which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 2.93 ac-ft during the 100-year event and have a peak outflow of 48.2 cfs which is greater than the predevelopment peak outflow of 47.5 cfs. The 5-year storage volume is 1.77 ac-ft with a peak outflow of 12.2 cfs.
- Pond 7 is located in the central portion of site. The pond discharges into a natural drainageway that eventually outlets to an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 12.59 ac-ft during the 100-year event and have a peak outflow of 172.2 cfs which is slightly lower than the predevelopment peak outflow of 191.6 cfs. The 5-year storage volume is 8.38 ac-ft with a peak outflow of 65.4 cfs.
- Pond 8 is located near the central portion of the site and downstream of Pond 7. The pond discharges into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 0.94 ac-ft during the 100-year event and have a peak outflow of 28.9 cfs which lower than the predevelopment peak outflow of 32.7. The 5-year storage volume is 0.84 ac-ft with a peak outflow of 11.4 cfs.
- Pond 9 is located near the southeast corner of the site just and adjacent to Black Forest Road. The pond discharges into a natural drainageway and flows under Black Forest Rd. via culvert. The natural drainageway is southeast of the existing property and eventually drains northeast to East Cherry Creek. The pond is planned to store a maximum of 10.31 ac-ft during the 100-year

Basin	Park/Open						Total	Total	Composite Percent	Predominant Soil	5 Year C	100 Year
Description	Space	5 Acre	2.5 Acre	Low Density	Med Density	Commercial	Impervious	Acreage	Impervious	Group	Factor	C Factor
mpervious Percentage	10%	10%	15%	45%	55%	75%						
Р	15.55	14.78	0.00	13.38	0.00	0.00	9.05	43.71	20.71%	В	0.15	0.4
						Pond 1		43.71	20.71%			
X1	38.32	3.30	0.00	25.66	0.00	9.10	22.53	76.38	29.50%	В	0.24	0.4
						Pond 2		76.38	29.50%			
0	13.17	0.00	10.72	28.63	0.00	0.00	15.81	52.52	30.10%	В	0.19	0.4
						Pond 3		52.52	30.10%			
X2	12.11	0.00	0.00	24.22	0.00	0.00	12.11	36.33	33.33%	В	0.19	0.4
X3	38.88	16.85	0.00	6.26	0.00	0.00	8.39	61.99	13.53%	В	0.13	0.4
V2	0.00	0.00	15.34	0.00	0.00	0.00	2.30	15.34	15.00%	В		
V1	2.11	0.00	0.00	9.46	0.00	0.00	4.47	11.57	38.62%	В	0.20	0.4
						Pond 4		125.23	20.85%			
Ν	10.44	11.52	0.00	6.77	12.84	0.00	12.30	41.57	29.60%	В	0.19	0.4
						Pond 5		41.57	29.60%			
Μ	14.55	0.00	0.00	1.24	6.94	4.10	8.91	26.83	33.19%	В	0.28	0.5
						Pond 6		26.83	33.19%			
K	26.45	2.93	0.00	61.89	23.46	0.00	43.69	114.73	38.08%	В	0.21	0.4
						Pond 7		114.73	38.08%			
L	6.93	5.54	0.00	0.00	2.72	0.00	2.74	15.19	18.06%	В	0.15	0.4
						Pond 8		15.19	18.06%			
S	2.31	0.24	0.00	19.12	0	0.00	8.86	21.67	40.88%	В	0.21	0.4
R	26.63	16.11	0.00	21.77	0.00	0.00	14.07	64.51	21.81%	В	0.15	0.4
					•	Pond 9		86.18	21.81%			
Н	17.65	4.31	0.00	0.00	0.00	0.00	2.20	21.96	10.00%	В	0.12	0.
					•	Pond 10		21.96	10.00%			
B2	7.20	4.48	0.00	8.31	0.00	0.00	4.91	19.99	24.55%	В	0.16	0.4
B1	12.86	13.03	0.00	33.85	0.00	0.00	17.82	59.74	29.83%	В	0.18	0.4
					•	Pond 11		79.73	28.51%			
J	28.07	0.00	0.00	0.00	0.00	0.00	2.81	28.07	10.00%	В	0.12	0.3
						Exisiting Pon	12					
I	17.99	0.00	0.00	0.00	0.00	11.00	10.05	28.99	34.66%	В	0.38	0.5
						Pond 16		57.06	22.53%			
EE2	0.00	0.00	0.00	0.00	0.00	16.36	12.27	16.36	75.00%	В	0.81	0.8
EE3	0.00	0.00	0.00	0.00	6.67	0.00	3.67	6.67	55.00%	В	0.30	0.5
						Pond 13		23.03	69.21%			
112	0.00	23.13	0.00	0.00	0.00	0.00	2.31	23.13	10.00%	В	0.12	0.3
113	0.00	23.97	0.00	0.00	0.00	0.00	2.40	23.97	10.00%	В	0.12	0.3
111	15.77	34.66	0.00	0.00	0.00	0.00	5.04	50.43	10.00%	В	0.12	0.3
						Pond 14		97.53	10.00%			
D	4.41	4.70	0.00	31.76	0.00	0.00	15.20	40.87	37.20%	В	0.20	0.4
						Pond 15		40.87	37.20%			
E	99.63	8.80	0.00	1.72	0.00	6.90	16.79	117.05	14.35%	В	0.16	0.4
G	25.81	3.41	0.00	2.23	0.00	0.00	3.93	31.45	12.48%	В	0.13	0.3
						Irrigation Por	nd	148.50	13.95%			
11	1.86	4.32	0.00	2.72	0.00	0.00	1.84	8.90	20.70%	В	0.15	0.4
LL	4.39	1.44	0.00	0.37	0.00	0.00	0.75	6.20	12.09%	В	0.13	0.3
						Pond 17		15.10	17.16%			
KK	5.98	2.42	0.00	0.00	0.00	0.00	0.84	8.40	10.00%	В	0.12	0.
AA	0.00	33.88	0.00	0.00	0.00	0.00	3.39	33.88	10.00%	В	0.12	0.
BB	0.00	37.15	0.00	0.00	0.00	0.00	3.72	37.15	10.00%	В	0.12	0.
CC	0.00	6.33	0.00	0.00	0.00	0.00	0.63	6.33	10.00%	В	0.12	0.
DD	0.00	69.5	0.00	0.00	0.00	0.00	6.95	69.50	10.00%	В	0.12	0.
FF	0.00	18.1	0.00	0.00	0.00	0.00	1.81	18.10	10.00%	В	0.12	0.
GG	0.00	16.35	0.00	0.00	0.00	0.00	1.64	16.35	10.00%	В	0.12	0.
HH	0.00	12.7	0.00	0.00	0.00	0.00	1.27	12.70	10.00%	В	0.12	0.

*2% imperviousness for all, and runoff coefficients are .09 and .36 for 5 and 100 yr respectively

	DE	ETENTION	BASIN OUT	LET STRU	CTURE DE	SIGN		
			FD-Detention, Vers	sion 4.04 (Februar)	y 2021)			
Project: Basin ID:	Flying Horse North	1 MDDP						
ZONE 3	Folia 8			E 11 I I	E 11 1 1			
ZONE 2 ZONE 1	\bigcirc			Estimated	Estimated	0 H I T		
				Stage (ft)	Volume (ac-ft)	Outlet Type	1	
VOLUME EURV WOCV			Zone 1 (WQCV)	2.39	0.178	Orifice Plate		
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	3.67	0.221	Circular Orifice		
PERMANENT ORIFICES			Zone 3 (100-year)	5.97	0.543	Weir&Pipe (Restrict)		
Example Zone	Configuration (Re	tention Pond)		Total (all zones)	0.942			
User Input: Orifice at Underdrain Outlet (typically	<u>/ used to drain WQ</u>	CV in a Filtration BN	<u>4P)</u>			_	Calculated Parame	ters for Underdrain
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)	Under	drain Orifice Area =	N/A	ft ²
Underdrain Orifice Diameter =	N/A	inches			Underdrai	n Orifice Centroid =	N/A	feet
User Input: Orifice Plate with one or more orifice	es or Elliptical Slot V	Neir (typically used	to drain WQCV and	/or EURV in a sedin	mentation BMP)		Calculated Paramet	
Invert of Lowest Orifice =	0.00	ft (relative to basin	bottom at Stage =	0 ft)	WQ Orif	ice Area per Row =	4.514E-03	ft ²
Depth at top of Zone using Orifice Plate =	2.39	ft (relative to basin	bottom at Stage =	0 ft)	Ell	iptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	9.60	inches			Ellipt	ical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	0.65	sq. inches (diamete	er = 7/8 inch)		E	Elliptical Slot Area =	N/A	ft ²
User Input: Stage and Total Area of Each Orifice					1	1	1	T
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)		0.80	1.59				l	
	0.05	0.05	0.05					

Orifice Area (sq. inches) 0.65 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sq. inches)

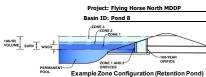
User Input: Vertical Orifice (Circular or Rectangu	ılar <u>)</u>				Calculated Paramet	ers for Vertical Orif
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected
Invert of Vertical Orifice =	2.39	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.05	N/A
Depth at top of Zone using Vertical Orifice =	3.67	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.12	N/A
Vertical Orifice Diameter =	2.88	N/A	inches			

User Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoidal Weir (and No Outlet Pipe)	Calculated Parameters for Overflow W		
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.00	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	5.00	N/A	
Overflow Weir Front Edge Length =	4.00	N/A	feet Overflow Weir Slope Length =	5.00	N/A	
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	5.22	N/A	
Horiz. Length of Weir Sides =	5.00	N/A	feet Overflow Grate Open Area w/o Debris =	13.92	N/A	
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	6.96	N/A	
Debris Clogging % =	50%	N/A	%			

User Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, Re	estrictor Plate, or R	ectangular Orifice)	for Outlet Pipe w/ Flow Restriction Pla		
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected
Depth to Invert of Outlet Pipe =	1.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	2.67	N/A
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid =	0.87	N/A
Restrictor Plate Height Above Pipe Invert =	19.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	2.19	N/A

User Input: Emergency Spillway (Rectangular or	Calculated Paramet	ters for Spillway			
Spillway Invert Stage=	6.30	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.85	feet
Spillway Crest Length =	11.00	feet	Stage at Top of Freeboard =	8.15	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	0.38	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	1.66	acre-ft

Routed Hydrograph Results	The user can over	ride the default CUP	HP hydrographs and	runoff volumes by	entering new value	es in the Inflow Hya	Irographs table (Col	lumns W through Al
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.178	0.399	0.416	0.713	0.991	1.426	1.746	2.181
User Override Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.416	1.850	0.991	1.426	1.746	3.383
CUHP Predevelopment Peak Q (cfs) =		N/A	1.6	4.6	6.9	12.4	15.5	19.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A		11.1				32.7
Predevelopment Unit Peak Flow, q (cfs/acre) =		N/A	0.10	0.70	0.44	0.78	0.98	2.06
Peak Inflow Q (cfs) =	N/A	N/A	4.8	15.9	10.8	16.6	20.1	32.3
Peak Outflow Q (cfs) =	0.1	0.3	0.3	11.4	3.5	9.4	13.5	28.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.0	0.5	0.8	0.9	0.9
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.8	0.2	0.6	0.9	2.1
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	49	51	48	55	51	49	38
Time to Drain 99% of Inflow Volume (hours) =	40	52	54	59	62	60	59	54
Maximum Ponding Depth (ft) =	2.39	3.67	3.51	5.52	5.22	5.46	5.58	5.99
Area at Maximum Ponding Depth (acres) =	0.15	0.19	0.19	0.26	0.25	0.26	0.27	0.28
Maximum Volume Stored (acre-ft) =	0.179	0.399	0.369	0.821	0.741	0.802	0.837	0.946


DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can o	verride the calcu	lated inflow hyd	rographs from th	nis workbook wit	h inflow hydrogr	aphs developed	in a separate pro	gram.	
	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
-	0:05:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.06	0.00
	0:10:00	0.00	0.00	0.00	0.34	0.00	0.00	0.02	0.34	0.07
	0:15:00	0.00	0.00	0.18	2.78	0.37	0.25	0.31	2.31	0.44
	0:20:00	0.00	0.00	0.66	10.46	1.64	0.65	0.80	9.50	1.64
	0:25:00	0.00	0.00	2.63	14.81	7.18	2.58	3.15	22.52	7.13
	0:30:00	0.00	0.00	4.43	15.89	10.39	11.21	13.94	29.84	22.90
	0:35:00	0.00	0.00	4.81	15.66	10.85	15.07	18.39	32.21	30.64
	0:40:00	0.00	0.00	4.71	15.11	10.40	16.58	20.07	32.32	32.92
	0:43:00	0.00	0.00	4.31	14.56	9.75 8.98	16.12 15.64	19.49	31.57 30.25	32.76 31.70
	0:55:00	0.00	0.00	3.95 3.62	13.85 13.31	8.27	13.64	18.90 17.48	28.95	30.01
	1:00:00	0.00	0.00	3.35	12.85	7.71	13.24	16.11	27.97	28.37
	1:05:00	0.00	0.00	3.13	12.39	7.26	12.28	15.01	26.11	27.13
	1:10:00	0.00	0.00	2.85	11.75	6.83	11.17	13.71	24.14	24.72
	1:15:00	0.00	0.00	2.57	10.98	6.41	10.13	12.46	21.80	22.36
	1:20:00	0.00	0.00	2.30	10.25	5.80	9.02	11.10	19.55	19.70
	1:25:00	0.00	0.00	2.04	9.75	5.13	7.96	9.80	17.56	17.19
	1:30:00	0.00	0.00	1.82	9.39	4.59	6.91	8.50	16.06	14.90
	1:35:00	0.00	0.00	1.66	8.88	4.19	6.09	7.51	14.87	13.13
	1:40:00 1:45:00	0.00	0.00	1.55	8.36	3.86	5.46 4.94	6.74	13.83 12.89	11.76
	1:50:00	0.00	0.00	1.45 1.35	7.87 7.42	3.57 3.30	4.94	6.10 5.53	12.89	10.57 9.51
	1:55:00	0.00	0.00	1.33	6.93	3.01	4.05	5.01	11.18	8.53
	2:00:00	0.00	0.00	1.10	6.06	2.68	3.65	4.51	9.79	7.61
	2:05:00	0.00	0.00	0.95	5.17	2.31	3.17	3.91	8.39	6.58
	2:10:00	0.00	0.00	0.81	4.34	1.94	2.70	3.34	7.04	5.61
	2:15:00	0.00	0.00	0.67	3.57	1.60	2.25	2.78	5.79	4.67
	2:20:00	0.00	0.00	0.53	2.90	1.28	1.82	2.25	4.63	3.76
	2:25:00	0.00	0.00	0.41	2.39	0.98	1.40	1.73	3.63	2.89
	2:30:00	0.00	0.00	0.30	2.01	0.74	1.01	1.25	2.90	2.09
	2:35:00 2:40:00	0.00	0.00	0.22	1.68	0.59	0.70	0.88	2.34	1.50
	2:45:00	0.00	0.00	0.18	1.40 1.16	0.48	0.51 0.38	0.65	1.89 1.51	1.11 0.82
	2:50:00	0.00	0.00	0.13	0.96	0.39	0.38	0.49	1.31	0.60
	2:55:00	0.00	0.00	0.12	0.78	0.26	0.25	0.29	0.97	0.44
	3:00:00	0.00	0.00	0.08	0.64	0.21	0.17	0.22	0.78	0.32
	3:05:00	0.00	0.00	0.07	0.52	0.16	0.13	0.17	0.64	0.23
	3:10:00	0.00	0.00	0.05	0.42	0.13	0.10	0.13	0.52	0.17
	3:15:00	0.00	0.00	0.04	0.32	0.10	0.08	0.10	0.42	0.14
	3:20:00	0.00	0.00	0.03	0.25	0.08	0.06	0.08	0.32	0.11
	3:25:00	0.00	0.00	0.03	0.18	0.06	0.05	0.06	0.24	0.09
	3:30:00 3:35:00	0.00	0.00	0.02	0.13	0.04	0.04	0.05	0.18	0.06
	3:40:00	0.00	0.00	0.01	0.08	0.03	0.03	0.04	0.12	0.05
	3:45:00	0.00	0.00	0.01	0.05	0.02	0.02	0.02	0.07	0.03
	3:50:00	0.00	0.00	0.00	0.03	0.01	0.01	0.02	0.04	0.02
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00 0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment = 0.10 ft

Watershed Information		
Selected BMP Type =	EDB	
Watershed Area =	15.89	acres
Watershed Length =	1,507	ft
Watershed Length to Centroid =	741	ft
Watershed Slope =	0.040	ft/ft
Watershed Imperviousness =	24.82%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embadded Colorado Irrhan Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	ire.
Water Quality Capture Volume (WQCV) =	0.178	acre-feet
Excess Urban Runoff Volume (EURV) =	0.399	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	0.416	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	0.713	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	0.991	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	1.426	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	1.746	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	2.181	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	3.010	acre-feet
Approximate 2-yr Detention Volume =	0.280	acre-feet
Approximate 5-yr Detention Volume =	0.407	acre-feet
Approximate 10-yr Detention Volume =	0.620	acre-feet
Approximate 25-yr Detention Volume =	0.740	acre-feet
Approximate 50-yr Detention Volume =	0.781	acre-feet
Approximate 100-yr Detention Volume =	0.942	acre-feet

Define Zones and Basin Geometry

Chine Lones and Basin Geometry		
Zone 1 Volume (WQCV) =	0.178	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.221	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.543	acre-feet
Total Detention Basin Volume =	0.942	acre-feet
Initial Surcharge Volume (ISV) =	23	ft ³
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth (H _{total}) =	6.00	ft
Depth of Trickle Channel (H _{TC}) =	0.50	ft
Slope of Trickle Channel (STC) =	0.004	ft/ft
Slopes of Main Basin Sides (S _{main}) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	2	
		_
Initial Surcharge Area (A _{ISV}) =	70	ft²
Surcharge Volume Length (L) =	0.4	<u>م</u>

Surcharge Volume Length (LISV) =	8.4	ft
Surcharge Volume Width (W_{ISV}) =	8.4	ft
Depth of Basin Floor (H _{FLOOR}) =	0.35	ft
Length of Basin Floor $(L_{FLOOR}) =$	97.3	ft
Width of Basin Floor (W_{FLOOR}) =	52.1	ft
Area of Basin Floor (A _{FLOOR}) =	5,073	ft ²
Volume of Basin Floor (V _{FLOOR}) =	670	ft ³
Depth of Main Basin (H _{MAIN}) =	4.82	ft
Length of Main Basin $(L_{MAIN}) =$	135.8	ft
Width of Main Basin (W _{MAIN}) =	90.7	ft
Area of Main Basin (A _{MAIN}) =	12,321	ft ²
Volume of Main Basin (V _{MAIN}) =	40,648	ft ³
Calculated Total Basin Volume (V_{total}) =	0.950	acre-feet

AR E		Depth Increment =	0.10	ft				Optional		1	
tion Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Override	Area	Volume	Volume
		Description Top of Micropool	(ft) 0.00	Stage (ft)	(ft) 8.4	(ft) 8.4	(ft ²) 70	Area (ft ²)	(acre) 0.002	(ft 3)	(ac-ft)
		ISV	0.33		8.4	8.4	70		0.002	23	0.001
			0.40		8.4	8.4	70		0.002	28	0.001
			0.50		8.4	8.4	70		0.002	35	0.001
			0.60		8.4	8.4	70		0.002	42	0.001
			0.70		8.4 8.4	8.4 8.4	70 70		0.002	49 56	0.001
			0.90		26.2	17.1	449		0.010	75	0.002
			1.00		51.6	29.6	1,528		0.035	168	0.004
			1.10		77.0	42.1	3,243		0.074	402	0.009
		Floor	1.18		97.3 97.4	52.1 52.3	5,073 5,096		0.116	732 833	0.017 0.019
			1.30		98.2	53.1	5,217		0.120	1,349	0.015
			1.40		99.0	53.9	5,339		0.123	1,877	0.043
Optional Use	-		1.50		99.8	54.7	5,462		0.125	2,417	0.055
	acre-feet		1.60		100.6	55.5	5,586		0.128	2,969	0.068
1.19	acre-feet inches		1.70 1.80		101.4 102.2	56.3 57.1	5,711 5,838		0.131 0.134	3,534 4,111	0.081 0.094
1.50	inches		1.90		103.0	57.9	5,966		0.137	4,702	0.108
1.75	inches		2.00		103.8	58.7	6,096		0.140	5,305	0.122
2.00	inches		2.10		104.6	59.5	6,226		0.143	5,921	0.136
2.25	inches inches		2.20 2.30		105.4 106.2	60.3 61.1	6,358 6,492		0.146 0.149	6,550	0.150
2.32	inches	Zone 1 (WQCV)	2.30		106.2	61.8	6,613		0.149	7,192 7,782	0.165
	-		2.40		107.0	61.9	6,626		0.152	7,848	0.180
			2.50		107.8	62.7	6,762		0.155	8,518	0.196
			2.60		108.6	63.5 64.3	6,899		0.158	9,201	0.211
			2.70		109.4 110.2	64.3 65.1	7,037 7,177		0.162	9,898 10,608	0.227
			2.90		111.0	65.9	7,318		0.165	11,333	0.244
			3.00		111.8	66.7	7,460		0.171	12,072	0.277
			3.10		112.6	67.5	7,604		0.175	12,825	0.294
			3.20 3.30		113.4 114.2	68.3 69.1	7,748 7,894		0.178 0.181	13,593 14,375	0.312 0.330
			3.40		114.2	69.9	8,042		0.181	15,172	0.330
			3.50		115.8	70.7	8,190		0.188	15,983	0.367
			3.60		116.6	71.5	8,340		0.191	16,810	0.386
		Zone 2 (EURV)	3.67		117.2	72.1	8,446		0.194	17,397	0.399
			3.70 3.80		117.4 118.2	72.3 73.1	8,491 8,644		0.195 0.198	17,651 18,508	0.405
			3.90		119.0	73.9	8,798		0.202	19,380	0.445
			4.00		119.8	74.7	8,953		0.206	20,268	0.465
			4.10		120.6	75.5	9,109		0.209	21,171	0.486
			4.20		121.4 122.2	76.3 77.1	9,266 9,425		0.213	22,089 23,024	0.507
			4.40		123.0	77.9	9,585		0.220	23,975	0.550
			4.50		123.8	78.7	9,747		0.224	24,941	0.573
			4.60		124.6	79.5	9,909		0.227	25,924	0.595
			4.70		125.4	80.3	10,073		0.231	26,923	0.618
			4.80		126.2 127.0	81.1 81.9	10,239 10,405		0.235	27,939 28,971	0.641
			5.00		127.8	82.7	10,573		0.243	30,020	0.689
			5.10		128.6	83.5	10,742		0.247	31,085	0.714
			5.20		129.4	84.3	10,912		0.251	32,168	0.738
			5.30 5.40		130.2 131.0	85.1 85.9	11,084 11,257		0.254 0.258	33,268 34,385	0.764 0.789
			5.50		131.8	86.7	11,431		0.262	35,519	0.815
			5.60		132.6	87.5	11,607		0.266	36,671	0.842
			5.70 5.80		133.4 134.2	88.3 89.1	11,783 11,961		0.271	37,841 39,028	0.869
		Zone 3 (100-year)	5.90 5.97		135.0	89.9 90.5	12,141		0.279	40,233	0.924
		(100-year)	6.00		135.8	90.7	12,321		0.283	41,456	0.952
			6.10 6.20		136.6 137.4	91.5 92.3	12,503 12,686		0.287 0.291	42,697 43,957	0.980
			6.30 6.40		138.2 139.0	93.1 93.9	12,871 13,057		0.295	45,235 46,531	1.038 1.068
			6.50		139.8	94.7	13,244		0.304	47,846	1.098
			6.60 6.70		140.6 141.4	95.5 96.3	13,432 13,621		0.308	49,180 50,532	1.129
			6.80 6.90		142.2 143.0	97.1 97.9	13,812 14,004		0.317 0.321	51,904 53,295	1.192
			7.00		143.8 144.6	98.7 99.5	14,198 14,392		0.326	54,705 56,135	1.256
			7.20		145.4	100.3	14,588 14,786		0.335	57,584	1.322
			7.30 7.40		146.2 147.0	101.1 101.9	14,984		0.339 0.344	59,052 60,541	1.356 1.390
			7.50 7.60		147.8 148.6	102.7 103.5	15,184 15,385		0.349 0.353	62,049 63,578	1.424 1.460
			7.70		149.4	105.5	15,587		0.358	65,126 66,695	1.495
			7.90		151.0	105.9	15,791 15,996		0.363	68,284	1.531 1.568
			8.00 8.10		151.8 152.6	106.7 107.5	16,202 16,410		0.372	69,894 71,525	1.605 1.642
			8.20		153.4	108.3	16,618		0.382	73,176	1.680
			8.30 8.40		154.2 155.0	109.1 109.9	16,828 17,040		0.386	74,849 76,542	1.718 1.757
			8.50 8.60		155.8 156.6	110.7 111.5	17,252 17,466		0.396 0.401	78,257 79,992	1.797 1.836
			8.70 8.80		157.4	112.3 113.1	17,681 17,898		0.406	81,750 83,529	1.877
			8.90		159.0	113.9	18,115		0.416	85,329	1.959
			9.00 9.10		159.8 160.6	114.7 115.5	18,334 18,555		0.421 0.426	87,152 88,996	2.001 2.043
			9.20		161.4	116.3	18,776		0.431	90,863	2.086
		I I									
			9.30 9.40 9.50		162.2 163.0 163.8	117.1 117.9 118.7	18,999 19,223 19,449		0.436 0.441 0.446	92,752 94,663 96,596	2.123

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

	Project: Flying H	lorse North MDDP
	Basin ID: Pond 9	
100-YR VOLUME EURV	ZONE 1 AND 2 ORIFICES	100-YEAR ORIFICE

Depth Increment = 0.10 ft

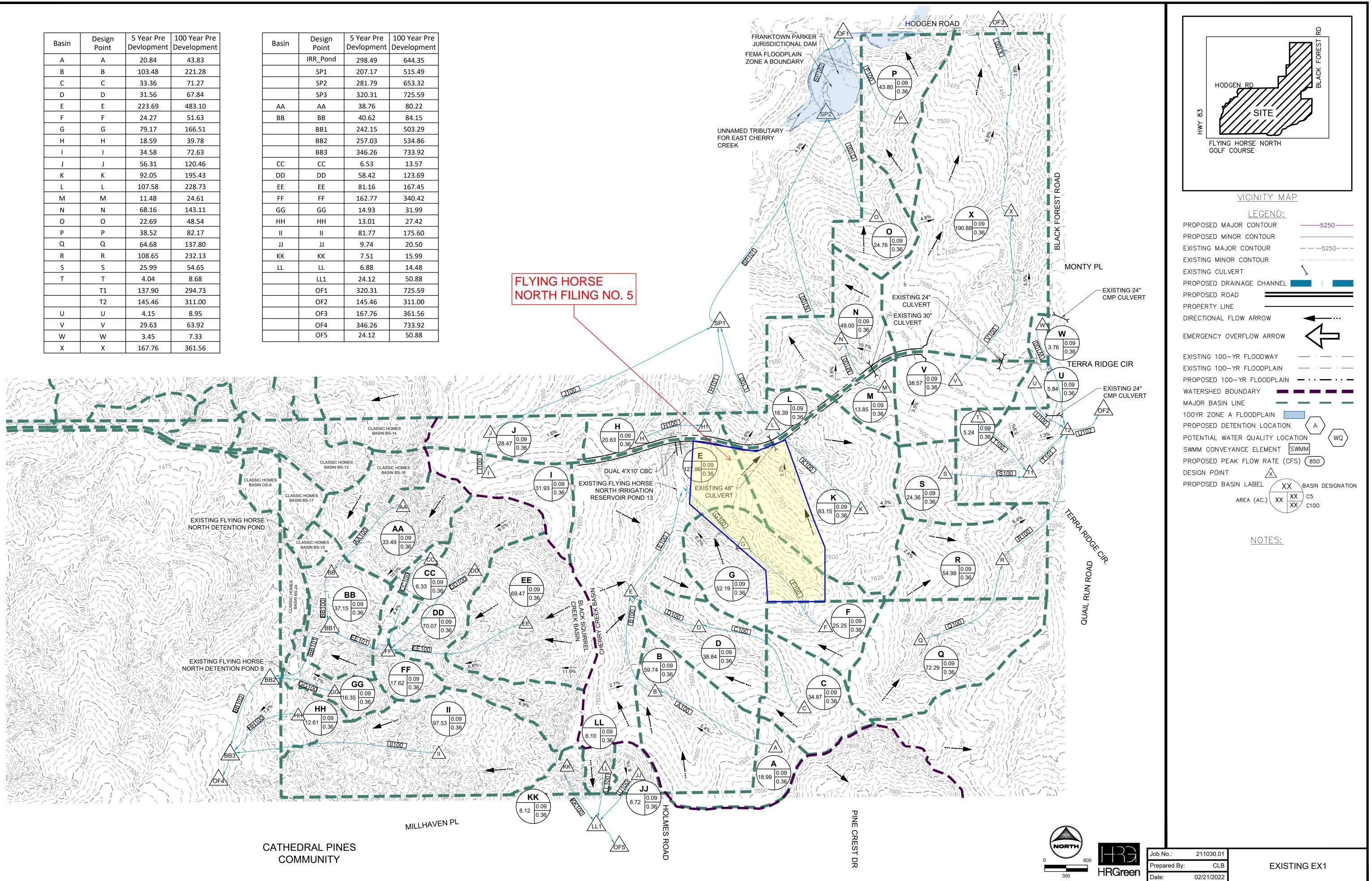
ZONE	1 AND 2	ORIFICI	Ξ.		Depth Increment =	0.10	π							
PERMANENT ORIFI	Ces Configuration	on (Retentio	on Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
					Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
Information		1			Top of Micropool		0.00				510	0.012		
Selected BMP Type =	EDB	-					0.10				510	0.012	51	0.001
Watershed Area = Watershed Length =	86.18 2,354	acres ft					0.20				510 510	0.012	102 153	0.002
Watershed Length to Centroid =	1,434	ft					0.40				510	0.012	204	0.005
Watershed Slope =	0.039	ft/ft					0.50				510	0.012	255	0.006
Watershed Imperviousness =	21.81%	percent					0.60				510	0.012	306	0.007
rcentage Hydrologic Soil Group A =	0.0%	percent					0.70				1,331	0.031	398	0.009
rcentage Hydrologic Soil Group B =	100.0%	percent					0.80				3,124 5,648	0.072	620	0.014
ntage Hydrologic Soil Groups C/D = Target WQCV Drain Time =		hours					1.00				8,903	0.130 0.204	1,059 1,786	0.024
Location for 1-hr Rainfall Depths =							1.10				12,887	0.296	2,876	0.066
providing required inputs above in	luding 1-hour	rainfall					1.20				17,602	0.404	4,400	0.101
ns, click 'Run CUHP' to generate run							1.30				23,047	0.529	6,433	0.148
he embedded Colorado Urban Hydro		-	Optional Use	-			1.40				29,222	0.671	9,046	0.208
 Quality Capture Volume (WQCV) = ess Urban Runoff Volume (EURV) = 	0.883	acre-feet acre-feet		acre-feet acre-feet			1.50			-	36,128 43,764	0.829	12,314 16,308	0.283
yr Runoff Volume (P1 = 1.19 in.) =	2.026	acre-feet	1.19	inches			1.70				52,130	1.197	21,103	0.484
5-yr Runoff Volume (P1 = 1.5 in.) =	3.599	acre-feet	1.50	inches			1.80				57,500	1.320	26,584	0.610
yr Runoff Volume (P1 = 1.75 in.) =	5.087	acre-feet	1.75	inches			1.90	-		-	57,673	1.324	32,343	0.742
25-yr Runoff Volume (P1 = 2 in.) =	7.473	acre-feet	2.00	inches			2.00				58,107	1.334	38,132	0.875
yr Runoff Volume (P1 = 2.25 in.) =	9.201	acre-feet	2.25	inches			2.10				58,542	1.344	43,964	1.009
<pre>-yr Runoff Volume (P1 = 2.52 in.) = -yr Runoff Volume (P1 = 3.14 in.) =</pre>	11.580 16.065	acre-feet acre-feet	2.52	inches inches			2.20 2.30	-			58,979 59,418	1.354 1.364	49,840 55,760	1.144 1.280
proximate 2-yr Detention Volume =	1.301	acre-feet		incrico			2.40				59,858	1.374	61,724	1.417
proximate 5-yr Detention Volume =	1.913	acre-feet					2.50				60,299	1.384	67,732	1.555
roximate 10-yr Detention Volume =	3.018	acre-feet					2.60	-		-	60,742	1.394	73,784	1.694
roximate 25-yr Detention Volume =	3.681	acre-feet					2.70				61,187	1.405	79,880	1.834
roximate 50-yr Detention Volume =	3.888	acre-feet					2.80				61,632	1.415	86,021	1.975
oximate 100-yr Detention Volume =	4.742	acre-feet					2.90 3.00				62,080 62,529	1.425 1.435	92,207 98,437	2.117 2.260
nes and Basin Geometry							3.10				62,979	1.435	104,713	2.200
Zone 1 Volume (WQCV) =	0.883	acre-feet					3.20				63,431	1.456	111,033	2.549
Zone 2 Volume (5-year - Zone 1) =	1.030	acre-feet					3.30				63,884	1.467	117,399	2.695
Volume (100-year - Zones 1 & 2) =	2.829	acre-feet					3.40				64,338	1.477	123,810	2.842
Total Detention Basin Volume =	4.742	acre-feet					3.50				64,795	1.487	130,267	2.991
Initial Surcharge Volume (ISV) =	user	ft ³					3.60				64,840	1.489 1.498	136,748	3.139
Initial Surcharge Depth (ISD) = Available Detention Depth (H _{total}) =	user	ft					3.70 3.80				65,252 65,711	1.509	143,253 149,801	3.289 3.439
Depth of Trickle Channel (H _{TC}) =	user	ft					3.90				66,172	1.519	156,395	3.590
Slope of Trickle Channel (STC) =	user	ft/ft					4.00				66,634	1.530	163,036	3.743
Slopes of Main Basin Sides (S _{main}) =	user	H:V					4.10				67,097	1.540	169,722	3.896
asin Length-to-Width Ratio $(R_{L/W}) =$	user						4.20				67,562	1.551	176,455	4.051
Initial Surcharge Area (A _{ISV}) =	user	ft 2					4.30 4.40			-	68,029 68,497	1.562 1.572	183,235 190,061	4.206 4.363
Surcharge Volume Length $(L_{ISV}) =$	user	ft ft					4.40				68,966	1.583	196,934	4.503
Surcharge Volume Width (W _{ISV}) =	user	ft					4.60				69,437	1.594	203,854	4.680
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft					4.70				69,909	1.605	210,822	4.840
Length of Basin Floor $(L_{FLOOR}) =$	user	ft					4.80				70,383	1.616	217,836	5.001
Width of Basin Floor (W _{FLOOR}) =	user	ft					4.90				70,858	1.627	224,898	5.163
Area of Basin Floor $(A_{FLOOR}) =$ Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ² ft ³					5.00 5.10				71,335 71,813	1.638 1.649	232,008 239,165	5.326 5.490
Depth of Main Basin (H _{MAIN}) =	user	ft					5.20				72,293	1.660	246,371	5.656
Length of Main Basin (L _{MAIN}) =	user	ft					5.30				72,774	1.671	253,624	5.822
Width of Main Basin (W_{MAIN}) =	user	ft					5.40			-	73,257	1.682	260,926	5.990
Area of Main Basin (A _{MAIN}) =	user	ft ²					5.50				73,741	1.693	268,275	6.159
Volume of Main Basin (V _{MAIN}) =	user	ft ³					5.60				74,227	1.704	275,674	6.329
ulated Total Basin Volume (V _{total}) =	user	acre-feet					5.70 5.80				74,714 75,202	1.715	283,121 290,617	6.500
							5.90 6.00				75,692 76,184	1.738 1.749	298,161	6.845 7.019
							6.10				76,233	1.750	305,755 313,376	7.194
							6.20 6.30				76,677 77,171	1.760	321,021 328,714	7.370 7.546
							6.40 6.50				77,667 78,164	1.783 1.794	336,456 344,247	7.724 7.903
							6.60	-			78,663	1.806	352,089	8.083
							6.70 6.80				79,163 79,665	1.817 1.829	359,980 367,921	8.264 8.446
							6.90				80,168	1.840	375,913	8.630
							7.00 7.10	-			80,673 81,179	1.852 1.864	383,955 392,048	8.814 9.000
							7.20 7.30				81,687 82,196	1.875	400,191 408,385	9.187 9.375
							7.40				82,707	1.899	416,630	9.565
							7.50 7.60				83,219 83,732	1.910	424,927 433,274	9.755 9.947
							7.70 7.80				84,247 84,764	1.934 1.946	441,673 450,124	10.139 10.333
							7.90				85,282	1.958	458,626	10.529
							8.00 8.10				85,801 86,322	1.970	467,180 475,786	10.725 10.923
							8.20				86,845	1.994	484,445	11.121
							8.30 8.40	-			87,368 87,894	2.006	493,155 501,918	11.321 11.522
							8.50 8.60				88,421 88,949	2.030	510,734 519,603	11.725 11.928
							8.70				89,479	2.054	528,524	12.133
							8.80 8.90				90,010 90,543	2.066 2.079	537,498 546,526	12.339 12.547
							9.00 9.10				91,077 91,612	2.091 2.103	555,607 564,741	12.755 12.965
							9.20				92,149	2.115	573,930	13.176
							9.30 9.40				92,688 93,228	2.128 2.140	583,171 592,467	13.388 13.601
							9.50 9.60				93,770 94,313	2.153	601,817	13.816 14.032
							0.70			-	04.057	2.165	611,221	11.032

Water

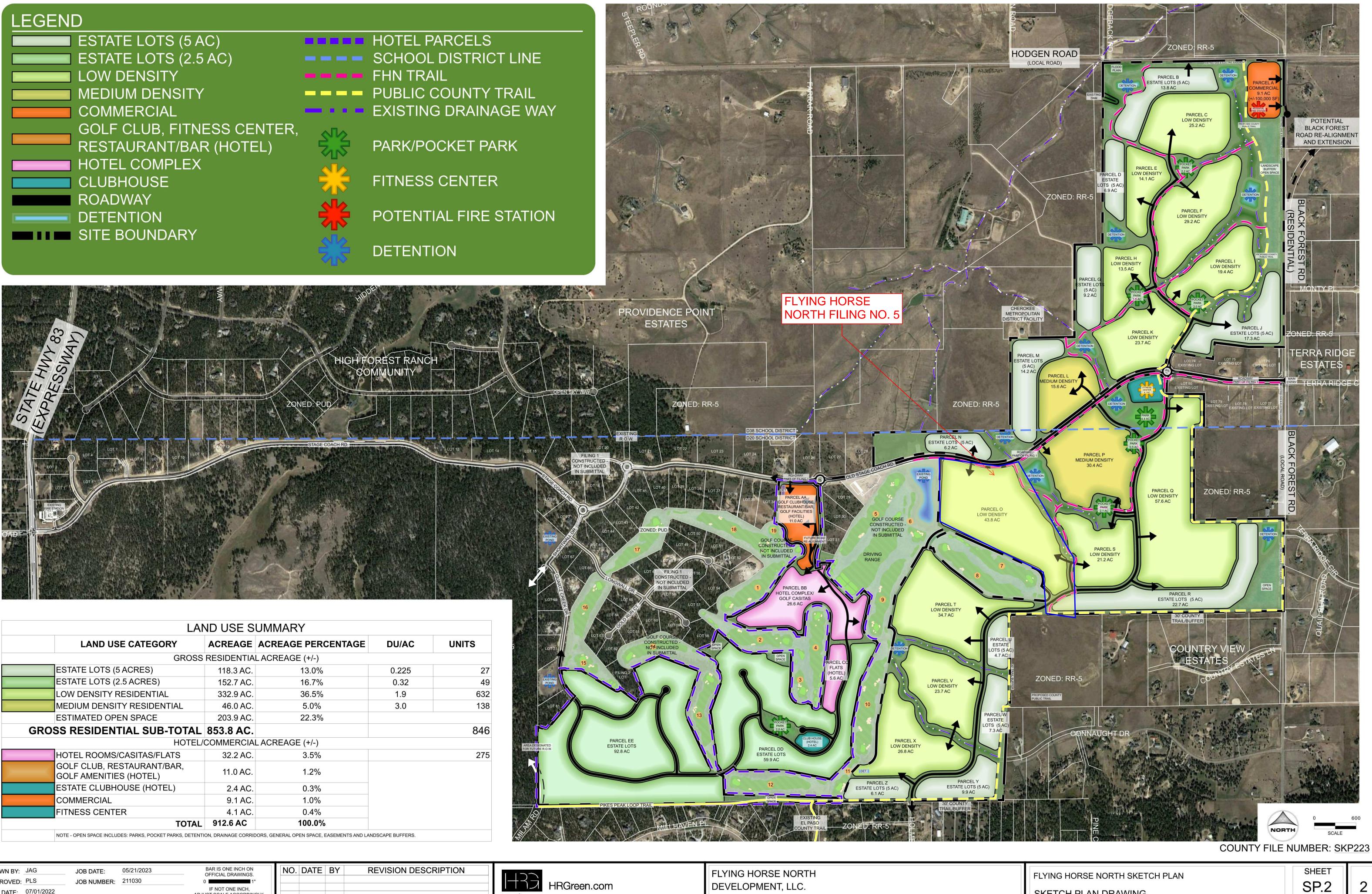
ershed Information		
Selected BMP Type =	EDB	
Watershed Area =	86.18	acres
Watershed Length =	2,354	ft
Watershed Length to Centroid =	1,434	ft
Watershed Slope =	0.039	ft/ft
Watershed Imperviousness =	21.81%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After pr depths, the

the embedded colorado orban nyaro	graphinoceau		Optior
Water Quality Capture Volume (WQCV) =	0.883	acre-feet	
Excess Urban Runoff Volume (EURV) =	1.880	acre-feet	
2-yr Runoff Volume (P1 = 1.19 in.) =	2.026	acre-feet	1.
5-yr Runoff Volume (P1 = 1.5 in.) =	3.599	acre-feet	1.
10-yr Runoff Volume (P1 = 1.75 in.) =	5.087	acre-feet	1.
25-yr Runoff Volume (P1 = 2 in.) =	7.473	acre-feet	2
50-yr Runoff Volume (P1 = 2.25 in.) =	9.201	acre-feet	2.
100-yr Runoff Volume (P1 = 2.52 in.) =	11.580	acre-feet	2.
500-yr Runoff Volume (P1 = 3.14 in.) =	16.065	acre-feet	
Approximate 2-yr Detention Volume =	1.301	acre-feet	
Approximate 5-yr Detention Volume =	1.913	acre-feet	
Approximate 10-yr Detention Volume =	3.018	acre-feet	
Approximate 25-yr Detention Volume =	3.681	acre-feet	
Approximate 50-yr Detention Volume =	3.888	acre-feet	
Approximate 100-yr Detention Volume =	4.742	acre-feet	


Define Zones

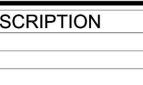
Zone 1 Volume (WQCV) =	0.883	acre-fe
Zone 2 Volume (5-year - Zone 1) =	1.030	acre-fe
Zone 3 Volume (100-year - Zones 1 & 2) =	2.829	acre-fe
Total Detention Basin Volume =	4.742	acre-fe
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel (H _{TC}) =	user	ft
Slope of Trickle Channel (STC) =	user	ft/ft
Slopes of Main Basin Sides (S _{main}) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
		•
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft 2
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft ²
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-fe
		-


	2.10	 	 58,542	1.344	43,964	1.009
	2.20	 	 58,979	1.354	49,840	1.144
	2.30	 	 59,418	1.364		1.280
					55,760	
	2.40	 	 59,858	1.374	61,724	1.417
	2.50	 	 60,299	1.384	67,732	1.555
	2.60	 	 60,742	1.394	73,784	1.694
	2.70	 	 	1.405		1.834
			61,187		79,880	
	2.80	 	 61,632	1.415	86,021	1.975
	2.90	 	 62,080	1.425	92,207	2.117
	3.00	 	 62,529	1.435	98,437	2.260
	3.10	 	 62,979	1.446	104,713	2.404
	3.20	 	 63,431	1.456	111,033	2.549
	3.30	 	 63,884	1.467	117,399	2.695
	3.40	 	 64,338	1.477	123,810	2.842
	3.50	 	 64,795	1.487	130,267	2.991
	3.60	 	 64,840	1.489	136,748	3.139
	3.70	 	 65,252	1.498	143,253	3.289
	3.80	 	 65,711	1.509	149,801	3.439
	3.90	 	 66,172	1.519	156,395	3.590
	4.00	 	 66,634	1.530	163,036	3.743
	4.10	 	 67,097	1.540	169,722	3.896
	4.20	 	 67,562	1.551	176,455	4.051
	4.30	 	 68,029	1.562	183,235	4.206
	4.40	 	 68,497	1.572	190,061	4.363
	4.50	 	 68,966	1.583	196,934	4.521
	4.60	 	 			4.680
			69,437	1.594	203,854	
 	4.70	 	 69,909	1.605	210,822	4.840
	4.80	 	 70,383	1.616	217,836	5.001
	4.90	 	 70,858	1.627	224,898	5.163
	5.00		71,335	1.638	232,008	5.326
	5.10	 	 71,813	1.649	239,165	5.490
	5.20	 	 72,293	1.660	246,371	5.656
	5.30	 	 72,774	1.671	253,624	5.822
	5.40		73,257	1.682	260,926	5.990
	5.50	 	 73,741	1.693	268,275	6.159
	5.60	 	 74,227	1.704	275,674	6.329
	5.70	 	 74,714	1.715	283,121	6.500
	5.80	 	75,202	1.726	290,617	6.672
	5.90	 	 75,692	1.738	298,161	6.845
	6.00	 	 76,184	1.749	305,755	7.019 7.194
	6.10	 	 76,233	1.750	313,376	7.194
	6.20	 	 76,677	1.760	321,021	7.370
	6.30	 	 77,171	1.772	328,714	7.546
	6.40	 	 77,667	1.783	336,456	7.724
 	6.50 6.60	 	 78,164 78,663	1.794	344,247 352,089	8.083
-	6.70	 	 79,163	1.800	359,980	8.264
	6.80	 	 79,665	1.829	367,921	8.446
	6.90	 	 80,168	1.840	375,913	8.630
	7.00	 	 80,673	1.852	383,955	8.814
	7.10	 	 81,179	1.864	392,048	9.000
 	7.20	 	 81,687	1.875	400,191	9.187
 	7.30	 	 82,196	1.887	408,385	9.375
	7.40 7.50	 	 82,707 83,219	1.899	416,630 424,927	9.565 9.755
	7.60	 	 83,732	1.910	433,274	9.947
	7.70	 	 84,247	1.934	441,673	10.139
	7.80	 	 84,764	1.946	450,124	10.333
	7.90	 	 85,282	1.958	458,626	10.529
	8.00	 	 85,801	1.970	467,180	10.725
 	8.10	 	 86,322	1.982	475,786	10.923
 	8.20	 	 86,845	1.994	484,445	11.121
 	8.30 8.40	 	 87,368 87,894	2.006 2.018	493,155 501,918	11.321 11.522
	8.50	 	 88,421	2.018	510,734	11.725
	8.60	 	 88,949	2.030	519,603	11.928
	8.70	 	 89,479	2.054	528,524	12.133
	8.80	 	 90,010	2.066	537,498	12.339
 	8.90	 	 90,543	2.079	546,526	12.547
 	9.00	 	 91,077	2.091	555,607	12.755
 	9.10	 	 91,612	2.103	564,741	12.965
 	9.20 9.30	 	 92,149	2.115 2.128	573,930 583,171	13.176 13.388
	9.30	 	 92,688 93,228	2.128	583,171 592,467	13.388
	9.40	 	 93,228	2.140	601,817	13.816
	9.60	 	 94,313	2.165	611,221	14.032
	9.70	 	 94,857	2.178	620,680	14.249
	9.80	 	 95,403	2.190	630,193	14.467

Basin	Design Point	5 Year Pre Devlopment	100 Year Pre Development
А	А	20.84	43.83
В	В	103.48	221.28
С	С	33.36	71.27
D	D	31.56	67.84
E	E	223.69	483.10
F	F	24.27	51.63
G	G	79.17	166.51
Н	Н	18.59	39.78
Ι	I	34.58	72.63
J	J	56.31	120.46
К	К	92.05	195.43
L	L	107.58	228.73
Μ	М	11.48	24.61
N	Ν	68.16	143.11
0	0	22.69	48.54
Р	Р	38.52	82.17
Q	Q	64.68	137.80
R	R	108.65	232.13
S	S	25.99	54.65
Т	Т	4.04	8.68
	T1	137.90	294.73
	T2	145.46	311.00
U	U	4.15	8.95
V	V	29.63	63.92
W	W	3.45	7.33
Х	Х	167.76	361.56

	Design	5 Year Pre	100 Year Pre
Basin	Design Point	Devlopment	Development
	IRR_Pond	298.49	644.35
	SP1	207.17	515.49
	SP2	281.79	653.32
	SP3	320.31	725.59
AA	AA	38.76	80.22
BB	BB	40.62	84.15
	BB1	242.15	503.29
	BB2	257.03	534.86
	BB3	346.26	733.92
СС	СС	6.53	13.57
DD	DD	58.42	123.69
EE	EE	81.16	167.45
FF	FF	162.77	340.42
GG	GG	14.93	31.99
НН	НН	13.01	27.42
II	I	81.77	175.60
IJ	JJ	9.74	20.50
КК	КК	7.51	15.99
LL	LL	6.88	14.48
	LL1	24.12	50.88
	OF1	320.31	725.59
	OF2	145.46	311.00
	OF3	167.76	361.56
	OF4	346.26	733.92
	OF5	24.12	50.88

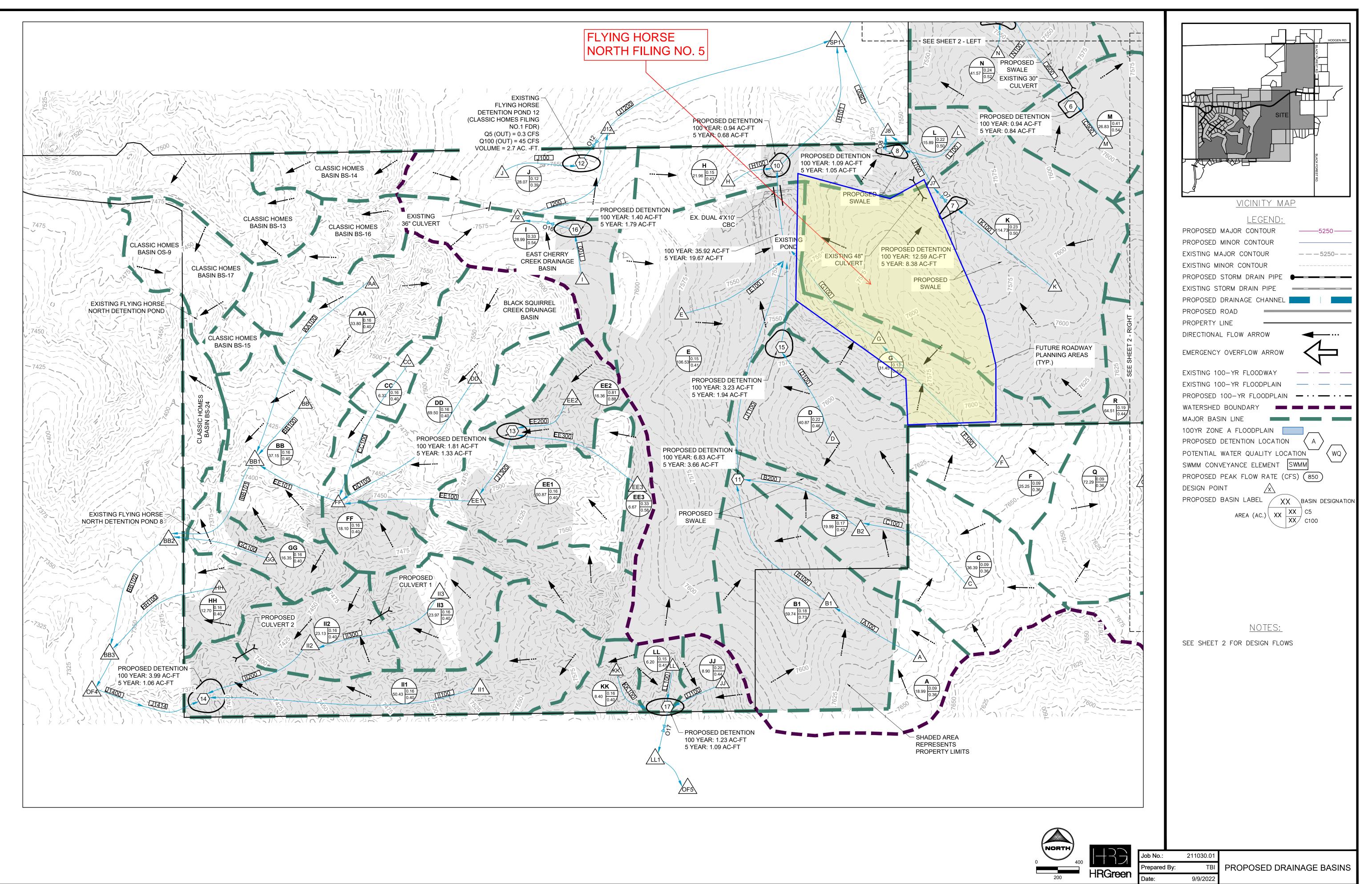
ESTATE LOTS (5 AC)		HOTEL
ESTATE LOTS (2.5 AC)		SCHOC
LOW DENSITY		FHN TR
MEDIUM DENSITY		PUBLIC
COMMERCIAL		EXISTIN
GOLF CLUB, FITNESS CENTER,		
RESTAURANT/BAR (HOTEL)	E.S	PARK/P
HOTEL COMPLEX		
	25	FITNES
ROADWAY		
		POTEN
SITE BOUNDARY		
		DETEN



LAN	ID USE S	UMMARY	
LAND USE CATEGORY	ACREAGE	ACREAGE PERCENTAGE	DU/A
GROSS I	RESIDENTIA	LACREAGE (+/-)	
ESTATE LOTS (5 ACRES)	118.3 AC.	13.0%	0.225
ESTATE LOTS (2.5 ACRES)	152.7 AC.	16.7%	0.32
LOW DENSITY RESIDENTIAL	332.9 AC.	36.5%	1.9
MEDIUM DENSITY RESIDENTIAL	46.0 AC.	5.0%	3.0
ESTIMATED OPEN SPACE	203.9 AC.	22.3%	
GROSS RESIDENTIAL SUB-TOTAL	853.8 AC.		
HOTEL/C	COMMERCIA	LACREAGE (+/-)	
HOTEL ROOMS/CASITAS/FLATS	32.2 AC.	3.5%	
GOLF CLUB, RESTAURANT/BAR, GOLF AMENITIES (HOTEL)	11.0 AC.	1.2%	
ESTATE CLUBHOUSE (HOTEL)	2.4 AC.	0.3%	
COMMERCIAL	9.1 AC.	1.0%	
FITNESS CENTER	4.1 AC.	0.4%	
TOTAL	912.6 AC	100.0%	

DRAWN BY:	JAG	JOB DATE:	05/21/2023	BAR IS ONE INCH ON OFFICIAL DRAWINGS.	NO	DATE	BY	REVISION DES
APPROVED:	PLS	JOB NUMBER:	211030	0 1"				
CAD DATE:	07/01/2022			IF NOT ONE INCH, ADJUST SCALE ACCORDINGLY.	-			
CAD FILE:	J:\2021\211030\C	CAD\Dwgs\C\Sketch	h-Plan\BUBBLE-PLAN					
1					C			

FLYING HORSE NORTH SKETCH PLAN


DEVELOPMENT, LLC. EL PASO COUNTY, COLORADO

2

SKETCH PLAN DRAWING

Flying Horse North Filing No. 4 Final Drainage Report

▷ HRGREEN.COM

September 2024

Prepared For:

Mr. Drew Balsick Vice President / Project Manager Flying Horse Development, LLC 2138 Flying Horse Club Drive Colorado Springs, CO 80921 (719) 785-3237

Prepared By:

HR Green Development, LLC 1975 Research Parkway, Ste. 160 Colorado Springs, CO 80920 Contact: Richie Lyon, PE Richie.Lyon@hrgreen.com 719-318-0871

PCD File No. SF____

2018 FDR/PDR. Review of the CUHP / SWMM generated hydrology results in peak values generally less than calculated with the Rational Method. The resultant peak runoff figures are used to assess all existing and proposed stormwater infrastructure associated with Filing No. 4's development, as well as a future Filing No. 5 development for Pond B in particular.

II. Project Characteristics

a. Location in Drainage Basin, Offsite Flows, Size

Filing No. 4 is located within the East Cherry Creek Basin. There is not a current planning study of the drainage basin, but generally it slopes from southwest to northeast. The basin eventually flows into the South Platte River.

Within the portion of the East Cherry Creek Basin investigated with this Report, three major drainage basins have been designated by the proposed pond in which the area is draining to. One drainage basin consists of seven sub-basins, "A" basins, conveyed to the proposed detention pond at Design Point A6, Pond A. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
A1	9.6	5.2	22.1
A2	10.8	6.7	27.6
A3	72.7	21.2	126.2
A4	18.4	10.2	42.0
A5	6.1	3.7	15.4
A6	2.8	1.8	7.2
A7	8.1	5.1	20.9

Drainage within the "A" drainage basin flows ultimately from the southwest to northeast to reach Pond A. Design points are located at proposed culverts underneath roadways and proposed swales that direct flow to the detention pond. Drainage outfalls from Pond A into an existing channel that ultimately outfalls to the South Platte River.

The second drainage basin consists of six sub-basins, "B" basins, conveyed to the proposed detention pond at Design Point B3, Pond B. Two Basins, B5 and B6, flow directly offsite. Additional volume has been included in Pond B to compensate for these basins, see additional discussion below. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
B1	57.8	15.9	97.5
B2	35.8	18.2	73.1
B3	1.1	1.4	3.8
B4	11.0	8.0	28.1
B5	10.6	6.3	25.9
B6	16.0	8.7	35.8

Drainage within the "B" drainage basin flows ultimately from the southeast to northwest to reach Pond B. Design points are located at an existing culvert under Old Stagecoach Road and at existing and proposed

Basin A4: 18.39 acres, residential (2.5 acre lots)

Runoff generated in this basin combines with upstream tributary basins and travels overland through the 2.5-acre lots and via shallow concentrated flow in the proposed roadside ditches and a proposed channel represented as section A-A. Developed flows are directed to the north to design point A6 through a 28-inch RCP culvert (Culvert 2).

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin A4 was identified as Basin CC-13A. Classic's FDR reported a total basin area for CC-13A to be 19.3 acres with a Q_5 =5.4 CFS and a Q_{100} =27.3 CFS. The cumulative flow at design point 28 (this includes basins CC-13A and OS-15) shown in this report has a net area of 90.1 acres, a net Q_5 =19.8 CFS, and a net Q_{100} =110 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Basin A5: 6.10 acres, residential (2.5 acre lots)

Runoff generated in this basin combines with upstream tributary basins and travels overland through the 2.5-acre lots and via shallow concentrated flow in the proposed roadside ditches and a proposed channel represented as section I-I. The flows are directed to the northeast to design point A6 through a 30-inch RCP culvert (Culvert 12).

Basin A6: 2.76 acres, residential (2.5 acre lots)

Runoff generated in this basin combines with upstream tributary basins and travels overland through the 2.5-acre lots and via shallow concentrated flow in the proposed roadside swales and a proposed channel represented as section H-H. The combined 100-year flow totaling to 102.7 CFS is collected in Pond A at design point A6 through a proposed rundown rock chute.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin A6 was identified as Basin CC-13B. Classic's FDR reported a total basin area for CC-13B to be 25.5 acres with a $Q_5=7.2$ CFS and a $Q_{100}=36.1$ CFS. The cumulative flow at design point 29 (this includes basins CC-13A – CC-13C and OS-15) shown in this report have a net area of 125.5 acres, a net $Q_5=26.6$ CFS, and a net $Q_{100}=155$ CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Basin A7: 8.11 acres, residential (2.5 acre lots)

Runoff generated in this basin travels via overland flow into the proposed Pond A. Within the pond, flows travel through trickle channels and outfall through an outlet structure. The reduced 100-year flow from Pond A is 156 CFS.

Basin B1: 57.78 acres, undeveloped / roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels overland east to west first through two acre-lots and over existing terrain. Discharge is eventually collected in existing channels proposed roadside ditches. The flows are directed to the northwest to design point B2.

Basin B2: 35.77 acres roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels overland through existing topography from south to north. Minimal flow produced within Basin B2 will travel shallow concentrated flow in existing roadside ditches. The flows are directed to the north to design point B3 through an existing 48-inch RCP culvert.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin B2 (and Basin B1) was identified as Basin CC-10. Classic's FDR reported a total basin area for CC-10 to be 85.6 acres with a Q_5 =14.1 CFS and a Q_{100} =91.9 CFS. The cumulative flow at design point 26 (this includes basins CC-8 and CC-10) shown in this report have a net area of 93.3 acres, a net Q_5 = 15.9 CFS, and a net Q_{100} =102 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Basin B3: 1.10 acres, roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels overland and shallow concentrated flow in existing roadside ditches and a proposed channel represented as section F-F. The combined 100-year flow totaling to 102.8 CFS is collected in Pond B at design point B3 through a proposed rundown rock chute.

Basin B4: 11.00 acres, roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels overland to Pond B. within Pond B, runoff travels through trickle channels to a Type-C modified outfall structure. The reduced 100-year flow from Pond B is 214.6 CFS

Basin B5: 10.62 acres, residential (2.5 acre lots)

Runoff in from this basin is generated completely within the proposed 2.5 acres lots. The runoff will follow existing drainage patterns and sheet flow directly offsite to the west to existing channels and tributaries. The drainage from this basin is included in the water quality calculations for Pond B.

Basin B6: 15.96 acres, residential (2.5 acre lots)

Runoff in from this basin is generated completely within the proposed 2.5 acres lots. The runoff will follow existing drainage patterns and sheet flow directly offsite to the north to existing channels and tributaries. The drainage from this basin is included in the water quality calculations for Pond B.

Basin C1: 15.94 acres, undeveloped / roadway (minor collector) / residential (2.5 acre lots)

Runoff generated from this basin will overland flow to the north and east. Some flow will reach the proposed roadside ditches along Gimme Way and will concentrated flow to a proposed 18-inch culvert (Culvert 7). Runoff outfalls from this culvert into a proposed swale represented as section E-E that diverts flow to an existing 30-inch culvert under Old Stage Coach Road to basin C2.

Basin C2: 1.98 acres, roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin overland flows to a proposed swale represented as section G-G. Runoff is collected in the swale from Basin C1 when it outfalls from the existing 30-inch culvert under Old Stage Coach Road. The combined flows of Basin C1 and C2 travel concentrated flow to Pond C and enter the detention basin via a rundown rock chute.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin C2 was identified as Basin CC-20. Classic's FDR reported a total basin area for CC-20 to be 39.3 acres with a Q_5 = 12.9 CFS and a Q_{100} = 61.0 CFS. The cumulative flow at design point 29 (this includes basins CC-15 and CC-20) shown in this report have a net area of 52.1 acres, a net Q_5 = 17.2 CFS, and a net Q_{100} = 81 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Basin H2: 14.46 acres, residential (2.5 acre lots)

Runoff generated in this basin travels overland through 2.5-acre lots and travels shallow concentrated flow in an existing channel represented as section C-C. The flows in this channel are directed to the east offsite further downstream the existing channel.

Basin H3: 36.80 acres, roadway (minor arterial) ($Q_5 = 15.6$ CFS, $Q_{100} = 26.3$ CFS)

Runoff generated in this basin is offsite flow collected in an existing channel that captures all the flows from Basins G1 and G2 and Basins H1 and H2. This existing channel flows offsite to the east and its and is represented as section D-D in calculations in Appendix C.

b. Water Quality and Detention Facilities

There are three Full Spectrum Detention ponds that are proposed within this filing. Full Spectrum Detention (FSD) is a design concept introduced by the Mile High Flood District (MHFD, Urbonas and Wulliman 2005) that provides better control of the full range of runoff rates that pass through detention facilities than the conventional multi-stage concept. This concept also provides some mitigation of increased runoff volumes by releasing a portion of the increased runoff volume at a low rate over an extended period of time. Site detention ponds are designed as FSDs to provide the required volume stages for Water Quality Capture Volume (WQCV), Excess Urban Runoff Volume (EURV), and the 100-year stage (flood control volume). In FSDs, the flood volume is equal to the entire volume and is inclusive of the EURV and the WQCV.

Areas tributary to storage facilities are greater than 5 acres. Therefore, detention volumes have been determined using the CUHP/MHFD SWMM methodology. When multiple basins are tributary to a single pond, basins are first routed together within the SWMM program to develop a combined detention pond inflow hydrograph. The hydrographs were then added to a Mile High Flood District MHFD-Detention workbook for each pond. Then the release curve / estimated outlet condition was adjusted until the desired peak pond outflow was achieved. Once the 100-year peak release rate was confirmed, resultant stage-release curves were transferred back to the prepared SWMMs and re-run to confirm the similar results as found with the MHFD-Detention analysis.

The MHFD-Detention workbook is utilized to design the outlet structures with orifice plates and restrictor plates. The outlet structures and plates are designed to achieve the target release rates of the various stages: WQCV at 40 hours, and EURV and 100-year release rates within the requisite 120 hours, with the goal of being in the range of 52 to 72 hours, as feasible for the runoff conditions. The developed condition outlet flow rates are not to exceed predeveloped conditions, and over-detention is provided within the three ponds to account for sub-basins that drain directly offsite without capture per the existing drainage patterns of the site.

The ponds include the required infrastructure such as concrete forebays, an emergency spillway with riprap weirs, concrete trickle channels, and a 2.5-foot depth micro-pool attached to the outlet structure. Ponds include 15'-20' width maintenance paths with vehicular access to the bottom of pond to access forebays and outlet structures for continued maintenance. The pathways have access from the public right-of-way and proper turning radii and longitudinal and cross slopes for a maintenance vehicle. The ponds include 1.0-foot of freeboard to the emergency spillway berm of the pond with the crest elevation at or above the 100-year water surface elevation. The spillways are sized with a trapezoidal weir for the 100-year inflow with rip-rap prescribed for the outflow velocity as energy dissipation.

Minor Storm (Q5)

Major Storm (Q100)

54

262

The B basins consist of Filing No. 4 site area for 2.5-acre single-family residential development and local rural residential roadways. The pond includes a minimum 1.0-foot of freeboard to the top of berm and the 100-year water surface elevation is below the crest of the emergency spillway weir.

The MHFD-Detention / SWMM analysis yields the following pond sizing results:

49.2

216.0

			Propo	osed	Pond B			
	(Owners	hip and m	aintenand	ce by	the Flying Ho	orse	North HOA)	
		WQCV (ac-ft)	EURV (ac-ft		100-year / Total Volun (ac-ft)			
		0.50	0.81		2.17			
Pond B hydrau	lics are descri	bed in the	following t	able	:			
	Peak Inflow (cfs)	Des Release/ (cf	Outflow	99	me to Drain % of Inflow plume (hrs)	F	storic Peak Flowrate at _BASIN_B	Developed Peak Flowrate at O_BASIN_B

Pond B includes a concrete forebay sized for the required volume of the inflow, a 4-foot width concrete trickle channel with 6" vertical concrete curb, a 2.5-foot depth concrete micro pool, and an outlet structure that is includes a top trash rack, orifice plate, and restrictor plate on the outlet pipe.

50

36

58

263

Pond C (Design Point C) provides WQCV and EURV for the stormwater runoff from the C basins as well as over-detention of nearby sub-basins that drain directly offsite and converge with the ultimate downstream drainageway that Pond C outfalls to. This is confirmed by comparing the routed peak flows of similar basins in the historic condition, to the routed peak flows inclusive of detention in the developed condition. Both historic and developed SWMM models note this location as O_BASIN_C and modeling results at this location are included in the table below.

Proposed Pond C

(Ownership and maintenance by the Flying Horse North HOA)

WQCV (ac-ft)	EURV (ac-ft)	100-year / Total Volume (ac-ft)
0.23	0.39	0.90

Pond C hydraulics are described in the following table:

59.1

247.1

	Peak Inflow (cfs)	Design Release/Outflow (cfs)	Time to Drain 99% of Inflow Volume (hrs)	Historic Peak Flowrate at O_BASIN_C	Developed Peak Flowrate at O_BASIN_C
Minor Storm (Q5)	18.0	10.2	59	19	11
Major Storm (Q100)	69.0	62.4	50	78	73

Pond C includes a concrete forebay sized for the required volume of the inflow, a 4-foot width concrete trickle channel with 6" vertical concrete curb, a 2.5-foot depth concrete micro pool, and an outlet structure that is includes a top trash rack, orifice plate, and restrictor plate on the outlet pipe.

A comparison of the existing conditions as identified in the 2022 MDDP, and proposed conditions releasing off-site from the identified Filing No. 4 boundary into Cherry Creek is provided below to show that the detention being provided on site from the proposed ponds in Filing No. 4 will negate any impact downstream.

Basin ID	Existing Conditions (HRG MDDP 2022)	Proposed Conditions (HRG Filing 4 FDR 2024)
Cherry Creek	371.2 CFS	24.0 CFS

c. Methodology

Design rainfall was determined utilizing Table 6-2 from the City of Colorado Springs Drainage Criteria Manual to determine the 5-year and 100-year rainfall values for the 1-hour events. The 1-hour rainfall depths are 1.5 and 2.52 in/hr respectively.

The proposed development will consist of 48 2.5-acre single-family residential estate lots which are assumed at a percent imperviousness of 11% per the County ECM Table 3-1 Typical Values of Percent Impervious within Appendix L of the ECM which provides guidance for larger rural lot developments. Existing golf course areas are to remain undisturbed and utilize a land use category of "lawn" with a percent imperviousness of 2% per the County ECM Table 6-6 land use table. Composite coefficients, rainfall intensities, and runoff flow rates are calculated on a Rational Method spreadsheet and provided within the Appendix. As discussed previously, the Rational Method used in this report will result in higher peak flow rates for the minor and major storm events as compared to the 2018 Classic Consulting FDR/PDR which utilized the NRCS Curve Number Method. Design points within Filing No. 4 are designed per the findings of this report which utilizes the Rational Method and CUHP/SWMM modeling.

Mile High Flood District (MHFD) UD-BMP Runoff Reduction calculations are provided to demonstrate WQCV reduction for the sub-basins that drain directly offsite, however the sub-basins that drain directly off-site do fall under ECM code I.7.1.B.5, which excludes areas of "large lots" to require detention. The provided Runoff Reduction calculations are to show the good stormwater management practices of the site.

Areas tributary to storage facilities are greater than 5 acres. Therefore, detention volumes have been determined using the CUHP/MHFD SWMM methodology. When multiple basins are tributary to a single pond, basins are first routed together within the SWMM program to develop a combined detention pond inflow hydrograph. The hydrographs were then added to a MHFD-Detention workbook for each pond. Then the release curve / estimated outlet condition was adjusted until the desired peak pond outflow was achieved. Once the 100-year peak release rate was confirmed, resultant stage-release curves were transferred back to the prepared SWMMs and re-run to confirm the similar results as found with the MHFD-Detention analysis.

The MHFD-Detention workbook is utilized to design the outlet structures with orifice plates and restrictor plates. The outlet structures and plates are designed to achieve the target release rates of the various stages: WQCV at 40 hours, and EURV and 100-year release rates within the requisite 120 hours, with the goal of being in the range of 52 to 72 hours, as feasible for the runoff conditions.

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030

El Paso County, Colorado

APPENDIX D

WATER QUALITY AND DETENTION CALCULATIONS

Flying Horse North Filing No. 4 - Detention Modeling Summary

Pond A Developed Parameters							
Catchment	Catchment						
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.				
A1	0.017	10.84	10.2				
A2	0.017	10.79	11.0				
A3	0.111	71.16	4.1				
A4	0.029	18.71	11.0				
A5	0.004	2.47	11.0				
A6	0.010	6.38	11.0				
A7	0.013	8.13	11.0				
Total		128.48	7.1				

Peak Storage Volume		Peak Release
(cu-ft) (ac-ft)		(cfs)
111,834	2.6	160.8

Pre-Development Flow		
Catchment Peak Flow		
Name/ID	(cfs)	
A1	97.1	
A2	71.2	
G1	10.8	
H1	94.0	
Total	273.2	
O_BASIN_H	267.4	

Post-Develo	pment Flow	
Catchment	Peak Flow]
Name/ID	(cfs)	
A1	14.3	
A2	19.6	
A3	101.6	
A4	20.0	
A5	4.7	
A6	11.7	
A7	17.1	
G1	5.7	
G2	7.2	
H1	7.7	
H2	35.0	
H3	66.9	
Total	311.6	Direct summation
O_BASIN_H	248.5	Less than or equal to historic at same locati

Pond B Developed Parameters				
Catchment Percent				
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.	
B1	0.090	57.78	4.1	
B2	0.056	35.77	11.7	
B3	0.002	1.10	33.7	
Total		94.65	7.3	

Peak Storage Volume		Peak Release
(cu-ft)	(cu-ft) (ac-ft)	
103,808	2.4	216.7

Pre-Development Flow		
Catchment	Peak Flow	
Name/ID	(cfs)	
B1	148.9	
B2	75.8	
B3	18.8	
B4	19.6	
Total	263.0	
O_BASIN_B	262.7	

Post-Development Flow]
Catchment	Peak Flow	
Name/ID	(cfs)	
B1	182.0	Detained
B2	49.5	Detained
B3	3.0	Detained
B4	15.1	Detained
B5	18.9	Undetained
B6	33.9	Undetained
Total	302.3	Direct summation
O BASIN B	262.4	Less than or equal to historic at same location

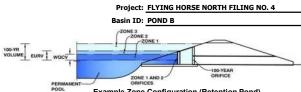
Pond C Developed Parameters				
Catchment	Percent			
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.	
C1	0.025	15.94	10.5	
C2	0.003	1.98	20.9	
C3	0.033	21.39	9.3	
Total		39.31	10.4	

Peak Storage Volume		Peak Release
(cu-ft)	(cu-ft) (ac-ft)	

Pre-Development Flow		
Catchment	Peak Flow	
Name/ID	(cfs)	
C1	24.7	
C2	39.8	
C3	9.7	
C4	4.0	
Total	78.2	
O_BASIN_C	78.0	

Post-Develo	pment Flow	
Catchment	Peak Flow	
Name/ID	(cfs)	
C1	27.7	Detained
C2	3.0	Detained
C3	39.0	Detained
C4	10.3	Undetained
C5	4.0	Undetained
Total	84.1	Direct summation
O_BASIN_C	73.2	Less than or equal to historic at same locatio

Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030


El Paso County, Colorado

POND B

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Depth Increment =

MHFD-Detention, Version 4.06 (July 2022)

Example Zone Configuration (Retention Pond)

Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	105.65	acres
Watershed Length =	3,000	ft
Watershed Length to Centroid =	1,000	ft
Watershed Slope =	0.035	ft/ft
Watershed Imperviousness =	8.25%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded Colorado Urban Hydro	graph Procedu	cedure. Optional Use			
Water Quality Capture Volume (WQCV) =	0.50	acre-feet		acre-	
Excess Urban Runoff Volume (EURV) =	0.81	acre-feet		acre-	
2-yr Runoff Volume (P1 = 1.19 in.) =	1.27	acre-feet	1.19	inche	
5-yr Runoff Volume (P1 = 1.5 in.) =	2.93	acre-feet	1.50	inche	
10-yr Runoff Volume (P1 = 1.75 in.) =	4.61	acre-feet	1.75	inche	
25-yr Runoff Volume (P1 = 2 in.) =	7.66	acre-feet	2.00	inche	
50-yr Runoff Volume (P1 = 2.25 in.) =	9.71	acre-feet	2.25	inche	
100-yr Runoff Volume (P1 = 2.52 in.) =	12.69	acre-feet	2.52	inche	
500-yr Runoff Volume (P1 = 3.14 in.) =	18.09	acre-feet		inche	
Approximate 2-yr Detention Volume =	0.50	acre-feet			
Approximate 5-yr Detention Volume =	0.80	acre-feet			
Approximate 10-yr Detention Volume =	1.83	acre-feet			
Approximate 25-yr Detention Volume =	2.63	acre-feet			
Approximate 50-yr Detention Volume =	2.73	acre-feet			
Approximate 100-yr Detention Volume =	3.57	acre-feet			

		Depth Increment =		ft						-	
		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	7528	Top of Micropool		0.00				10	0.000		
		7528.5		0.50				2,046	0.047	514	0.012
		7529.0		1.00				6,923	0.159	2,756	0.063
		7529.5		1.50				12,926	0.297	7,718	0.177
		7530.0		2.00				17,329	0.398	15,282	0.351
		7530.5		2.50				21,190	0.486	24,912	0.572
		7531.0		3.00				24,525	0.563	36,341	0.834
		7531.5		3.50				26,987	0.620	49,219	1.130
		7532.0		4.00				28,945	0.664	63,202	1.451
		7532.5		4.50				30,931	0.710	78,171	1.795
		7533.0		5.00				32,981	0.757	94,149	2.161
		7533.5		5.50				35,154	0.807	111,182	2.552
		7534.0		6.00				37,372	0.858	129,314	2.969
		7534.5		6.50				39,936	0.917	148,641	3.412
ser	Overrides	7535.0		7.00				42,384	0.973	169,221	3.885
	acre-feet										
	acre-feet										
	inches										
	inches										
	inches										
	inches										
	inches										
	inches										
	inches										
ent	tion										
	ss than										
vo	lume.										

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.50	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.31	acre-feet
Zone 3 Volume (User Defined - Zones 1 & 2) =	1.51	acre-feet
Total Detention Basin Volume =	2.32	acre-feet

Total detention volume is less th 100-year volume

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022) Project: FLYING HORSE NORTH FILING NO. 4 Basin ID: POND B Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type OLUME EURY WOCY Zone 1 (WQCV) 2.28 0.500 Orifice Plate 100-YEAR Zone 2 (EURV) 2.84 0.307 Circular Orifice Weir&Pipe (Restrict) PERM Zone 3 (User) 4.92 1.513 Example Zone Configuration (Retention Pond) Total (all zones) 2.320 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Area N/A ft² Underdrain Orifice Centroid = Underdrain Orifice Diameter = N/A inches N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row : 1.521E-02 ft² Depth at top of Zone using Orifice Plate = 2.28 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = 9.20 Elliptical Slot Centroid : N/A feet inches Orifice Plate: Orifice Area per Row = 2.19 sq. inches (diameter = 1-5/8 inches) Elliptical Slot Area N/A ft2 User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 0.80 1.60 Orifice Area (sq. inches) 2.19 2.19 2 19 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Zone 2 Circular Not Selected Invert of Vertical Orifice = 2.28 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.01 N/A ft² Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) 2.84 N/A Vertical Orifice Centroid = 0.04 N/A feet Vertical Orifice Diameter = 1.00 N/A inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = 2.85 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t = 2.85 N/A feet Overflow Weir Front Edge Length = 30.00 N/A feet Overflow Weir Slope Length = 5.00 N/A feet Overflow Weir Grate Slope = H:V Grate Open Area / 100-yr Orifice Area = 0.00 N/A 5.87 N/A Horiz. Length of Weir Sides = 5.00 N/A feet Overflow Grate Open Area w/o Debris 104.40 N/A ft² 0% clogging to ensure program is using pipe/plate to Overflow Grate Open Area w/ Debris = Type C Grate Overflow Grate Type = N/A 104.40 N/A ft Debris Clogging % = 0% N/A limit release, see next sheet for results with clogging User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe Outlet Orifice Area 3.70 N/A ft (distance below basin bottom at Stage = 0 ft) 17.79 N/A ft² Outlet Orifice Centroid 2.29 Outlet Pipe Diameter = 60.00 N/A inches N/A feet Restrictor Plate Height Above Pipe Invert = 51.00 inches Half-Central Angle of Restrictor Plate on Pipe = 2.35 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 5.50 1.49 feet Spillway Crest Length = 40.00 feet Stage at Top of Freeboard = 7.99 feet Spillway End Slopes = 4.00 lh:v Basin Area at Top of Freeboard 1.09 acres Freeboard above Max Water Surface = Basin Volume at Top of Freeboard = 1.00 feet 4.33 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF, EURV Design Storm Return Period WQCV 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year 2 Year One-Hour Rainfall Depth (in) : N/A N/A 1.19 1.50 2.00 2.25 2.52 3.14 1.75 CUHP Runoff Volume (acre-ft) 0.500 0.807 1.270 2.932 4,609 7.657 9.710 12.690 18.086 User Override Inflow Hydrograph Volume (acre-ft) = N/A N/A 1.270 3.472 4.609 7.657 9.710 17.082 18.086 CUHP Predevelopment Peak O (cfs) = N/A N/A 14.9 41.7 63.1 109.6 138.0 172.8 240.7 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 216.0 0.14 0.60 1.04 1.31 2.04 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.39 2.28 Peak Inflow Q (cfs) = N/A N/A 59.1 70 16 45 247.1 248.6 Peak Outflow Q (cfs) : 0.3 0.3 49.2 213.2 213.6 Ratio Peak Outflow to Predevelopment Q = N/A N/A 1.0 0.9 Structure Controlling Flow Vertical Orifice 1 Overflow Weir 1 Overflow Weir 1 Overf Weir 1 Overflow Weir 1 Overflow Outlet Plate Plate Weir 1 Outlet Plate Max Velocity through Grate 1 (fps) = N/A N/A 0.5 2.0 1.: 2.0 N/A N/A N/A N/A N/A N/A Max Velocity through Grate 2 (fps) = N/A N/A N/A Time to Drain 97% of Inflow Volume (hours) = 48 48 41 38 31 27 16 14 Time to Drain 99% of Inflow Volume (hours) = 40 52 53 50 48 44 42 36 35 Maximum Ponding Depth (ft) = 2.28 2.84 2.96 3.21 3.29 3.49 3.60 4.81 4.78 Area at Maximum Ponding Depth (acres) = 0.49 0.60 0.62 0.66 0.67 0.69 0.70 0.83 0.83 Maximum Volume Stored (acre-ft) = 0.50 0.81 1.04 1.23 1.30 2.21 0.88 1.09 2.27

Elevation (ft) =

Pond Bottom (ft) =

7528.28

7526.00

7528.84

7530.81

103,808

SWMM volume

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022) Project: FLYING HORSE NORTH FILING NO. 4 Basin ID: POND B Estimated Estimated Stage (ft) Volume (ac-ft) Outlet Type OLUME EURY WOCY Zone 1 (WQCV) 2.28 0.500 Orifice Plate 100-YEAR Zone 2 (EURV) 2.84 0.307 Circular Orifice Weir&Pipe (Restrict) PERM Zone 3 (User) 4.92 1.513 Example Zone Configuration (Retention Pond) Total (all zones) 2.320 User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP) Calculated Parameters for Underdrain Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Area N/A ft² Underdrain Orifice Centroid = Underdrain Orifice Diameter = N/A inches N/A feet User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) WQ Orifice Area per Row : 1.521E-02 ft² Depth at top of Zone using Orifice Plate = 2.28 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = 9.20 Elliptical Slot Centroid : N/A feet inches Orifice Plate: Orifice Area per Row = 2.19 sq. inches (diameter = 1-5/8 inches) Elliptical Slot Area N/A ft2 User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest) Row 1 (required) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 5 (optional) Row 6 (optional) Row 7 (optional) Row 8 (optional) Stage of Orifice Centroid (ft) 0.00 0.80 1.60 Orifice Area (sq. inches) 2.19 2.19 2 19 Row 9 (optional) Row 10 (optional) Row 11 (optional) Row 12 (optional) Row 13 (optional) Row 14 (optional) Row 15 (optional) Row 16 (optional) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Zone 2 Circular Not Selected Invert of Vertical Orifice = 2.28 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.01 N/A ft² Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) 2.84 N/A Vertical Orifice Centroid = 0.04 N/A feet Vertical Orifice Diameter = 1.00 N/A inches User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = 2.85 N/A ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t = 2.85 N/A feet Overflow Weir Front Edge Length = 30.00 N/A feet Overflow Weir Slope Length = 5.00 N/A feet Overflow Weir Grate Slope = H:V Grate Open Area / 100-yr Orifice Area = 0.00 N/A 5.87 N/A Horiz. Length of Weir Sides = 5.00 N/A feet Overflow Grate Open Area w/o Debris 104.40 N/A ft² Type C Grate 50% clogging included to Overflow Grate Type = N/A Overflow Grate Open Area w/ Debris = 52.20 N/A ft review velocity through Debris Clogging % = 50% N/A 0/ structure User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe Outlet Orifice Area 3.70 N/A ft (distance below basin bottom at Stage = 0 ft) 17.79 N/A ft² Outlet Orifice Centroid 2.29 Outlet Pipe Diameter = 60.00 N/A inches N/A feet Restrictor Plate Height Above Pipe Invert = 51.00 inches Half-Central Angle of Restrictor Plate on Pipe = 2.35 N/A radians User Input: Emergency Spillway (Rectangular or Trapezoidal) Calculated Parameters for Spillway Spillway Invert Stage= ft (relative to basin bottom at Stage = 0 ft) Spillway Design Flow Depth= 5.50 1.49 feet Spillway Crest Length = 40.00 feet Stage at Top of Freeboard = 7.99 feet Spillway End Slopes = 4.00 lh:v Basin Area at Top of Freeboard 1.09 acres Freeboard above Max Water Surface = Basin Volume at Top of Freeboard = 1.00 feet 4.33 acre-ft Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF) EURV Design Storm Return Period WQCV 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year 2 Year One-Hour Rainfall Depth (in) : N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.14 CUHP Runoff Volume (acre-ft) 0.500 0.807 1.270 2.932 4,609 7.657 9.710 12.690 18.086 User Override Inflow Hydrograph Volume (acre-ft) = N/A N/A 1.270 3.472 4.609 7.657 9.710 17.082 18.086 CUHP Predevelopment Peak O (cfs) = N/A N/A 14.9 41.7 63.1 109.6 138.0 172.8 240.7 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 216.0 1.04 2.04 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.14 0.39 0.60 1.31 2.28 Peak Inflow Q (cfs) = N/A N/A 21.5 59.1 70.7 116.9 145.3 247.1 248.6 Peak Outflow Q (cfs) : 0.3 0.3 45.1 59.7 109.1 139.2 216 217.2 Ratio Peak Outflow to Predevelopment Q = N/A N/A N/A 1.1 0.9 1.0 1.0 1.0 0.9 Structure Controlling Flow Vertical Orifice 1 Overflow Weir 1 Outlet Plate 1 Plate Outlet Plate Max Velocity through Grate 1 (fps) = N/A N/A 0.06 0.4 0.6 1.0 2.1 N/A 1.3 N/A N/A N/A N/A N/A N/A N/A Max Velocity through Grate 2 (fps) = N/A Time to Drain 97% of Inflow Volume (hours) = 48 48 41 31 16 14 38 27 Time to Drain 99% of Inflow Volume (hours) = 40 52 54 50 48 44 42 36 35 3.50

0.50 7528.84 Elevation (ft) = 7528.28 7526.00 Pond Bottom (ft) =

2.84

0.60

0.81

3.00

0.63

0.91

3.39

0.68

1.16

0.69

1.24

2.28

0.49

SWMM volume 103,808

4.98

0.85

2.37

7530.98

4.00

0.74

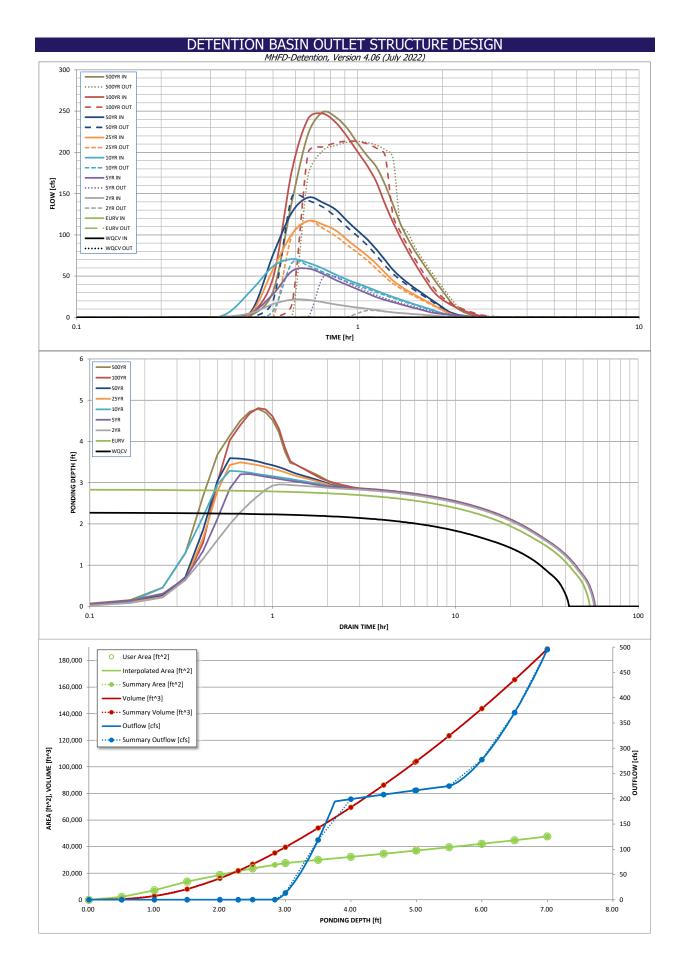
1.59

3.83

0.72

1.47

Maximum Ponding Depth (ft) =


Maximum Volume Stored (acre-ft) =

Area at Maximum Ponding Depth (acres) =

5.02

0.85

2.40

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

SOURCCUHPCUHPCUPUSCTORCUPCUPUVerUVerUVERIns intoMOX6.000.00 </th <th></th> <th>ogram. 🗸</th> <th>in a separate pr</th> <th>rapns developed</th> <th>in aniow right og</th> <th>IS WOLKDOOK WI</th> <th>rographs nom u</th> <th>lated inflow hyd</th> <th></th> <th>The user can of</th> <th></th>		ogram. 🗸	in a separate pr	rapns developed	in aniow right og	IS WOLKDOOK WI	rographs nom u	lated inflow hyd		The user can of	
0.10.00 0.00	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	SOURCE	
015:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 015:00 0.00 0.00 0.00 0.00 0.01 0.03 <t< td=""><td>] 500 Year [</td><td>100 Year [cfs]</td><td>50 Year [cfs]</td><td>25 Year [cfs]</td><td>10 Year [cfs]</td><td>5 Year [cfs]</td><td>2 Year [cfs]</td><td>EURV [cfs]</td><td>WQCV [cfs]</td><td>TIME</td><td>e Interval</td></t<>] 500 Year [100 Year [cfs]	50 Year [cfs]	25 Year [cfs]	10 Year [cfs]	5 Year [cfs]	2 Year [cfs]	EURV [cfs]	WQCV [cfs]	TIME	e Interval
005500 0.00 0.00 0.00 0.00 0.00 0.00 01500 0.00 <td< td=""><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0.00</td><td>0:00:00</td><td>00 min</td></td<>	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0:00:00	00 min
01:00 0.00 0.00 0.01 0.03 01:50 0.00 0.00 0.00 0.01 0.21 0.22 0.23 0.11 0.53 0.44 0.45 0.11	0.00									0:05:00	
01500 0.00 0.00 0.23 0.24 0.22 0.32 02500 0.00 0.00 0.58 5.28 5.20 5.11 6.51 4.44 03000 0.00 0.00 1.51 28.18 6.165 58.93 7.7.4 47.72 04000 0.00 0.00 1.21.44 55.99 7.065 100.78 112.33 129.24 27.06 04900 0.00 0.00 1.577 45.39 51.86 105.76 139.83 24.70.6 055:00 0.00 0.00 1.185 33.91 46.87 34.77 44.27 44.32 11000 0.00 0.00 1.185 33.91 46.82 43.77 41.15.37 11.560 13.57 43.50 13.57 43.50 13.57 43.50 13.57 43.50 13.57 43.50 13.57 43.50 13.57 13.56 13.57 13.56 13.57 43.50 13.57 43.50 13.57 14.59	0.05										F
0.2000 0.000 0.000 0.64 2.58 0.51 0.61 0.21 0.25000 0.000 0.000 16.15 22.00 50.10 65.8 4.44 0.45000 0.000 0.000 21.19 59.11 66.12 116.33 145.33 240831 0.45000 0.000 0.000 15.77 45.39 51.88 105.76 132.84 22.20 2.23 122.24 227.04 0.55000 0.000 0.000 15.77 45.39 51.88 105.76 132.84 22.20 2.23 2.22.01 2.23 122.01 1.45.7 2.23 2.23 2.21 2.23 2.23 1.23 1.45.7 2.23 13.24 2.24 2.23 13.25 1.15.90 0.00 0.00 1.45.7 2.23 2.24 2.23 1.25 1.25.70 1.25.41 6.64.2 12.75.1 1.25.9 1.25.7 1.15.9 1.25.9 1.25.7 1.25.31 6.23.7 1.25.3 1.25.1 <	0.32										
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2.42										
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	31.16										F
0.35:00 0.00 0.14 55.99 70.65 102.78 127.36 177.65 0.45:00 0.00 0.00 11.9 35.11 65.12 115.03 132.21 240.83 0.55:00 0.00 0.00 13.51 33.31 45.74 94.10 116.33 219.61 1.00:00 0.00 0.00 14.57 45.39 36.47 74.57 94.22 132.22 1.16:00 0.00 0.00 1.45 28.33 64.7 74.57 94.22 132.76 1.15:00 0.00 0.00 5.21 15.99 21.68 37.99 49.23 97.45 1.15:00 0.00 0.00 4.56 13.64 18.77 22.39 42.24 61.17 1.20:00 0.00 0.00 1.36 13.44 18.77 22.39 42.20 61.13 1.40:00 0.00 0.00 1.46 18.77 11.49 13.39 13.54 15.55 14.31 <tr< td=""><td>140.12</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>F</td></tr<>	140.12										F
0-90:00 0.00 0.141 59.11 66.12 116.31 195.24 247.06 0-55:00 0.00 0.00 15.77 45.33 51.88 106.76 130.83 213.64 190:00 0.00 0.00 11.57 213.91 45.74 94.10 116.93 213.64 190:00 0.00 0.00 10.45 28.91 36.47 74.57 74.52 183.22 110:00 0.00 0.00 8.87 24.45 32.13 64.62 0.22.65 113.376 115:00 0.00 0.00 6.87 24.45 32.13 64.62 0.22.65 113.731 125:00 0.00 0.00 4.56 13.64 18.77 25.39 42.20 61.33 13:00 0.00 0.00 3.46 13.77 21.88 30.82 54.21 13:500 0.00 0.00 2.28 53.24 13.64 13.63 13.14 15.64 13.26 13.86 13	222.60										
0.455.00 0.00 18.41 52.21 19.22 112.63 139.24 237.66 0.555.00 0.00 0.00 13.51 39.31 45.74 94.10 116.93 236.1 195.00 0.00 0.00 10.85 239.31 40.99 83.71 104.99 200.31 115.00 0.00 0.00 8.87 24.57 24.57 94.22 183.22 115.00 0.00 0.00 5.21 15.99 21.68 72.99 11.56 125.00 0.00 0.00 5.21 15.99 21.68 72.99 21.68 72.99 13.62 67.41 125.00 0.00 0.00 3.98 11.47 14.17 13.50 0.02 45.41 130.00 0.00 0.00 3.98 11.47 14.51 3.54 72.42 16.13 140.00 0.00 0.00 3.98 13.41 16.17 21.17 21.33 44.61 140.00	248.61									0:40:00	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	242.92	247.06					18.41	0.00	0.00	0:45:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	229.34	236.61	130.83	105.76	51.88	45.39	15.77	0.00	0.00	0:50:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	210.73	219.08	116.93	94.10	45.74	39.31	13.51	0.00	0.00	0:55:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	195.31	200.33	104.89	83.71	40.89	33.91	11.89	0.00	0.00	1:00:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	182.16	183.22	94.22	74.57	36.47	28.93	10.45	0.00	0.00	1:05:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	160.97	163.76	82.26	64.62	32.13	24.45	8.87	0.00	0.00	1:10:00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	137.05	137.51	69.62	54.18	28.23	21.11	7.27	0.00	0.00	1:15:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	114.12	115.66	57.74	44.69	24.80	18.47	6.00	0.00	0.00	1:20:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	96.67	97.45	49.23	37.99	21.68	15.99	5.21	0.00	0.00	1:25:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	82.47	81.53	42.20	32.53		13.64	4.56	0.00	0.00	1:30:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	70.56	67.41	36.24	27.90	16.17	11.47	3.98	0.00	0.00	1:35:00	Ľ
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	59.85	54.87	30.82	23.69	13.77	9.51	3.40	0.00	0.00		
1:55:00 0.00 0.00 1.71 4.79 7.07 12.63 16.64 26.61 2:00:00 0.00 0.00 1.15 4.12 4.87 9.19 11.28 21.52 2:10:00 0.00 0.00 0.42 3.31 5.41 7.96 17.61 2:15:00 0.00 0.00 0.23 2.04 1.47 1.48 2.35 9.28 2:25:00 0.00 0.00 0.18 1.60 1.14 0.95 1.58 7.30 2:35:00 0.00 0.00 0.11 1.18 0.86 0.62 1.08 7.30 2:35:00 0.00 0.00 0.07 0.55 0.45 0.25 0.46 2.75 2:45:00 0.00 0.00 0.02 0.15 0.99 0.17 0.31 1.87 2:5:00 0.00 0.00 0.03 0.19 0.11 0.06 0.03 0.97 2.24 1.28 2:5:00	50.04	43.86	25.89	19.86	11.49	7.57	2.83	0.00	0.00	1:45:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	40.82	33.94	21.17	16.17	9.29	5.83	2.28	0.00	0.00		L
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	32.21	26.61	16.64	12.63	7.07	4.79	1.71	0.00	0.00	1:55:00	
2:10:00 0.00 0.42 3.01 2.45 3.59 5.15 14.31 2:15:00 0.00 0.00 0.30 2.51 1.89 2.28 3.44 11.60 2:20:00 0.00 0.00 0.18 1.60 1.14 0.55 1.58 7.30 2:30:00 0.00 0.00 0.13 1.18 0.66 0.62 1.08 5.61 2:35:00 0.00 0.00 0.01 0.81 0.63 0.40 0.71 4.07 2:40:00 0.00 0.00 0.07 0.55 0.45 0.25 0.46 2.75 2:45:00 0.00 0.00 0.05 0.31 0.21 0.12 0.22 1.28 2:55:00 0.00 0.00 0.03 0.91 0.11 0.06 0.13 0.58 3:05:00 0.00 0.01 0.12 0.06 0.03 0.07 0.23 3:16:00 0.00 0.01 0.07	24.12	21.52	12.28	9.19	4.87	4.12	1.15	0.00	0.00	2:00:00	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	16.50	17.61	7.96	5.81	3.31	3.56	0.67	0.00	0.00		
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	11.29	14.31	5.15	3.59	2.45	3.01	0.42	0.00	0.00		
2:25:00 0.00 0.00 0.18 1.60 1.14 0.95 1.58 7.30 2:30:00 0.00 0.00 0.13 1.18 0.86 0.62 1.08 5.61 2:35:00 0.00 0.00 0.00 0.55 0.45 0.25 0.46 2.75 2:45:00 0.00 0.00 0.05 0.31 0.17 0.31 1.87 2:55:00 0.00 0.00 0.05 0.31 0.12 0.22 1.28 2:55:00 0.00 0.00 0.03 0.19 0.11 0.86 0.13 0.58 3:00:00 0.00 0.00 0.01 0.12 0.06 0.03 0.07 0.23 3:10:00 0.00 0.00 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.01 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.02 0.01 0.00	7.89	11.60	3.44	2.28	1.89	2.51	0.30	0.00	0.00		
2:30:00 0.00 0.13 1.18 0.86 0.62 1.08 5.61 2:35:00 0.00 0.00 0.10 0.81 0.63 0.40 0.71 4.07 2:40:00 0.00 0.00 0.07 0.55 0.45 0.25 0.46 2.75 2:45:00 0.00 0.00 0.05 0.31 0.17 0.31 1.87 2:55:00 0.00 0.00 0.04 0.24 0.15 0.90 0.17 0.88 3:00:00 0.00 0.00 0.04 0.24 0.15 0.99 0.37 3:10:00 0.00 0.01 0.12 0.06 0.03 0.07 0.23 3:15:00 0.00 0.00 0.01 0.07 0.02 0.01 0.03 0.11 3:25:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	5.46	9.28	2.35	1.48	1.47	2.04	0.23	0.00			
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3.68	7.30	1.58	0.95	1.14	1.60	0.18	0.00	0.00	2:25:00	
2:40:00 0.00 0.07 0.55 0.45 0.25 0.46 2.75 2:45:00 0.00 0.00 0.06 0.40 0.31 0.17 0.31 1.87 2:55:00 0.00 0.00 0.05 0.31 0.21 0.12 0.22 1.28 2:55:00 0.00 0.00 0.04 0.24 0.15 0.09 0.17 0.88 3:00:00 0.00 0.00 0.01 0.11 0.06 0.13 0.58 3:00:00 0.00 0.01 0.12 0.06 0.03 0.07 0.23 3:10:00 0.00 0.01 0.12 0.06 0.03 0.07 0.23 3:20:00 0.00 0.00 0.01 0.02 0.01 0.03 0.11 3:20:00 0.00 0.00 0.04 0.00 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03 0.00 0.00 0.03 3.30:00	2.39	5.61	1.08	0.62	0.86	1.18	0.13	0.00	0.00		L
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1.45		0.71			0.81					F
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.84										-
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.55										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.38										_
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.30										-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.24										-
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.18										-
3:20:00 0.00 0.01 0.07 0.02 0.01 0.03 0.11 3:25:00 0.00 0.00 0.00 0.00 0.01 0.01 0.02 0.08 3:30:00 0.00 0.00 0.00 0.04 0.00 0.00 0.01 0.07 3:35:00 0.00	0.13										-
3:25:00 0.00 0.00 0.00 0.01 0.01 0.02 0.08 3:30:00 0.00	0.09										-
3:30:00 0.00 0.00 0.04 0.00 0.00 0.07 3:35:00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 3:40:00 0.00 0.00 0.00 0.02 0.00 0.00 0.00 3:45:00 0.00 0.00 0.01 0.00 0.00 0.03 3:55:00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 3:55:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:00:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:20:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.05										-
3:35:00 0.00 0.00 0.03 0.00 0.00 0.05 3:40:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 3:45:00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 3:55:00 0.00	0.03										-
3:40:00 0.00 0.00 0.02 0.00 0.00 0.00 0.01 3:45:00 0.00 0.00 0.00 0.01 0.00 0.00 0.03 3:50:00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 3:55:00 0.00	0.01										⊢
3:45:00 0.00 0.00 0.01 0.00 0.00 0.03 3:50:00 0.00 0.00 0.00 0.01 0.00 0.00 0.02 3:55:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:00:00 0.00	0.00										⊢
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00										⊢
3:55:00 0.00	0.00										⊢
4:00:00 0.00	0.00										F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00										⊢
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00										⊢
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00										F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00										F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4:20:00	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00										F
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.00										⊢
4:50:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 4:55:00 0.00	0.00										⊢
5:00:00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	4:50:00	E
5:05:00 0.00	0.00										Ļ
5:10:00 0.00	0.00										⊢
5:15:00 0.00	0.00										F
5:20:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5:25:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5:30:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5:30:00 0.00 0.00 0.00 0.00 0.00 0.00 5:40:00 0.00 0.00 0.00 0.00 0.00 0.00 5:45:00 0.00 0.00 0.00 0.00 0.00 0.00	0.00										F
5:30:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5:35:00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5:20:00	E
5:35:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 5:40:00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	5:25:00	F
5:40:00 0.00	0.00										F
<u>5:45:00</u> 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00										⊢
	0.00										⊢
	0.00									5:50:00	F
5:55:00 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.00										F

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.06 (July 2022)

MHFU-Detention, Version 4.06 (July 2022) Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage	Stage	Area	Area	Volume	Volume	Total Outflow		Area	Stage	Total	Stage
Stage - Storage Description	[ft]	[ft ²]	[acres]	[ft ³]	[ac-ft]	Outflow [cfs]		[ft ²]	Area	Outflow [cfs]	Release
	0.00	10	0.000	0	0.000	0.00	For best results, include the	10	0 10	0.00	0.0
		2,138	0.049	537	0.012	0.05	stages of all grade slope	2,138	0.5 2138.28	0.05	0.5 0.0
	0.50	7,169	0.165	2,864	0.066	0.05	changes (e.g. ISV and Floor)	7,169	1 7169.09	0.05	1 0.11
	1.00	13,715	0.315	8,085	0.186	0.11	from the S-A-V table on	13,715	1.5 13715.31	0.15	1.5 0.1
	2.00	18,729	0.430	16,196	0.372	0.23	_ Sheet 'Basin'.	18,729	2 18728.56	0.23	2 0.23
	2.28	21,476	0.493	21,824	0.501	0.26	Also include the inverts of all	21,476	2.28 21475.96	0.26	2.28 0.2
	2.50	23,635	0.543	26,787	0.615	0.29	outlets (e.g. vertical orifice,	23,635	2.5 23634.63	0.29	2.5 0.2
	2.84	26,333	0.605	35,281	0.810	0.33	overflow grate, and spillway,	26,333	2.84 26332.66	0.33	2.84 0.
	3.00	27,602	0.634	39,596	0.909	13.45	where applicable).	27,602	3 27602.32	13.45	3 13.4
	3.50	30,042	0.690	54,007	1.240	118.57		30,042	3.5 30042.07	118.57	3.5 118
	4.00	32,274	0.741	69,586	1.597	199.28		32,274	4 32273.85	199.28	4 199.
	4.50	34,626	0.795	86,311	1.981	208.28		34,626	4.5 34626.01	208.28	4.5 208
	4.98	36,955	0.848	103,490	2.376	216.56		36,955	4.98 36954.82	216.56	4.98 21
	5.00	37,052	0.851	104,230	2.393	216.90	_	37,052	5 37051.85	216.90	5 216
	5.50	39,551	0.908	123,381	2.832	225.20	_	39,551	5.5 39551.39	225.20	5.5 22
	6.00	42,125	0.967	143,800	3.301	277.32		42,125	6 42124.62	277.32	6 277.
	6.50	44,776	1.028	165,525	3.800	370.54		44,776	6.5 44775.53 7 47666.69	370.54	6.5 370
	7.00	47,667	1.094	188,636	4.330	495.34	- L	47,667	/ 4/000.09	495.34	7 495.
							-		N N		
	_						-				
							-		``````````````````````````````````````		
							-			Y	
							-		These sets		-f
							-		These pair		
							1		to the SWN		
							1		this pond s	ize and re	elease
							7				
							_				
							_				
	_						-				
							-				
							-				
							-				
							-				
							-				
							-				
							1				
							1				
							1				
							7				
							4				
							4				
							-				
							4				
							1				
							4				
							-				
							1				
							4				
							-				
							-				
							1				
							4				
							4				
							-				
							1				
							7				

Design Procedure Form: Extended Detention Basin (EDB)							
·		(Version 3.07, March 2018) Sheet 1 of 3					
Designer: Company:	RICHARD LYON, PE						
Date:	August 19, 2024						
Project:	FLYING HORSE NORTH - FILING NO. 4						
Location:	POND B						
1. Basin Storage	/olume						
A) Effective Imp	perviousness of Tributary Area, I_a	l _a = <u>7.5</u> %					
B) Tributary Are	ea's Imperviousness Ratio (i = $I_a/100$)	i =0.075					
C) Contributing	y Watershed Area	Area = 109.200 ac					
	heds Outside of the Denver Region, Depth of Average lucing Storm	d ₆ = in					
E) Design Con (Select EUR	cept V when also designing for flood control)	Choose One Water Quality Capture Volume (WQCV) Excess Urban Runoff Volume (EURV)					
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft					
Water Qual	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume $_{R} = (d_{e}^{*}(V_{DESIGN}/0.43))$	V _{DESIGN OTHER} ≡ac-ft					
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} =0.475ac-ft					
i) Percenta ii) Percent	ologic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils tage of Watershed consisting of Type C/D Soils	$ HSG_{A} = 0 \% HSG_{B} = 100 \% HSG_{CD} = 0 \% $					
For HSG A For HSG B	an Runoff Volume (EURV) Design Volume : EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08} :/D: EURV _{CID} = 1.20 * i ^{1.08}	EURV _{DESIGN} = ac-f t					
	of Excess Urban Runoff Volume (EURV) Design Volume fferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-ft					
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1					
3. Basin Side Slop	Des						
,	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft					
4. Inlet							
	eans of providing energy dissipation at concentrated						
inflow locati							
5. Forebay							
A) Minimum Fo	prebay Volume = 3% of the WQCV)	V _{FMIN} =0.014 ac-ft					
B) Actual Fore		V _F = 0.014 ac-ft					
C) Forebay Dep (D _F	- oth	D _F = 18.0 in					
D) Forebay Dis							
, ,	ed 100-year Peak Discharge	Q ₁₀₀ = 187.60 cfs					
	Discharge Design Flow	$Q_{100} = 187.80$ cfs $Q_F = 3.75$ cfs					
E) Forebay Discharge Design		Choose One Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir Choose One Flow too small for berm w/ pipe					
F) Discharge P	ipe Size (minimum 8-inches)	Calculated D _P = in					
G) Rectangular	Notch Width	Calculated W _N = 11.0 in					

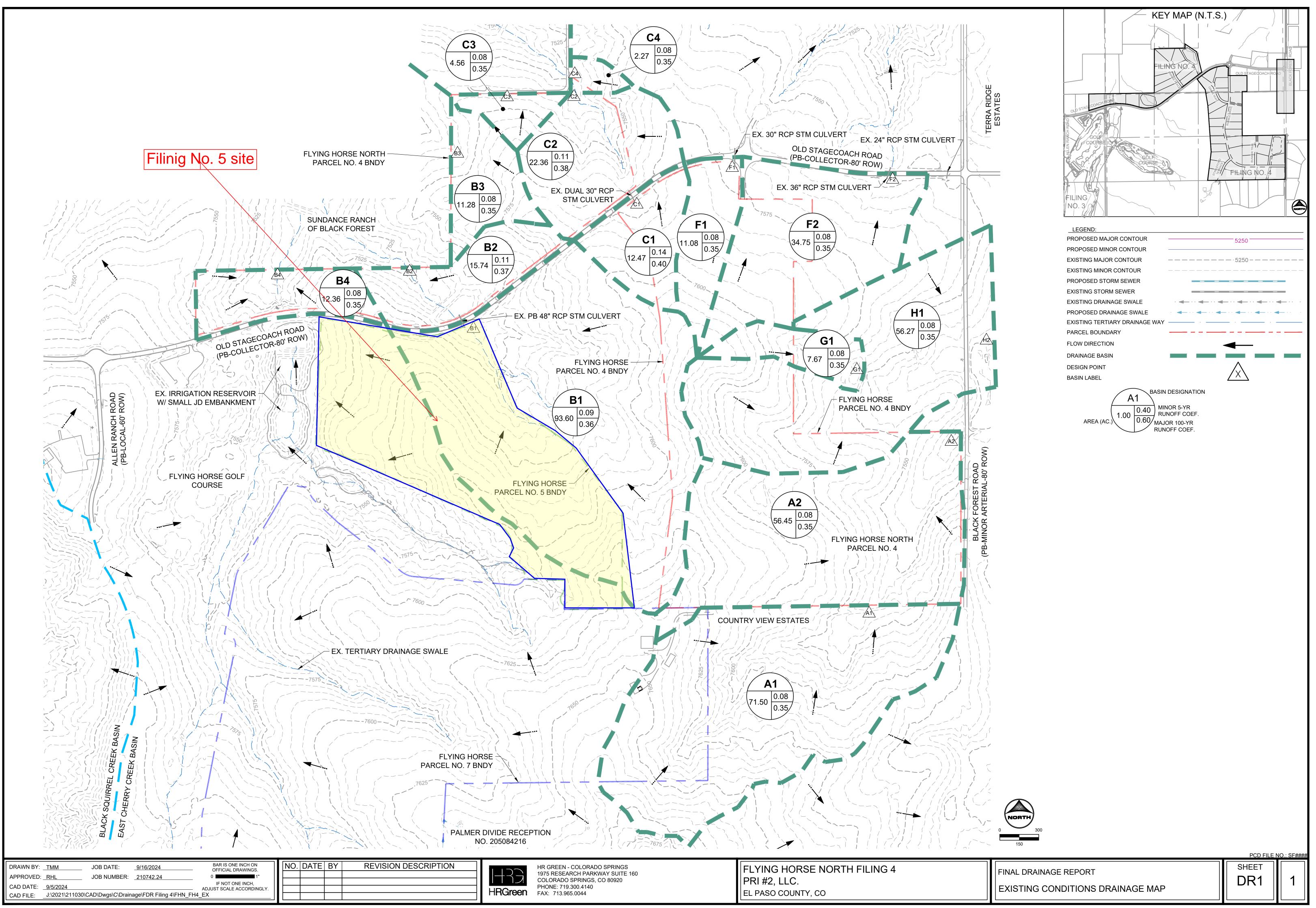
Filing 4 Pond B - UD BMP, EDB

Design Procedure Form: I	Extended Detention Basin (EDB)
Designer: RICHARD LYON, PE Company: HR GREEN Date: August 19, 2024 Project: FLYING HORSE NORTH - FILING NO. 4 Location: POND B	Sheet 2 of 3
6. Trickle Channel A) Type of Trickle Channel	Choose One © Concrete © Soft Bottom
F) Slope of Trickle Channel	S = 0.0050 ft / ft
 7. Micropool and Outlet Structure A) Depth of Micropool (2.5-feet minimum) B) Surface Area of Micropool (10 ft² minimum) C) Outlet Type 	$D_{M} = \underbrace{2.5}_{M} \text{ ft}$ $A_{M} = \underbrace{10}_{Sq} \text{ ft}$ $\underbrace{Choose One}_{Orifice Plate}_{Orifice Plate}_{Other (Describe):}$
D) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) E) Total Outlet Area	D _{orifice} =inches A _{ct} =square inches
 8. Initial Surcharge Volume A) Depth of Initial Surcharge Volume (Minimum recommended depth is 4 inches) B) Minimum Initial Surcharge Volume (Minimum volume of 0.3% of the WQCV) C) Initial Surcharge Provided Above Micropool 	$D_{is} =$ in $V_{is} =$ 62 cu ft $V_{s} =$ cu ft
 9. Trash Rack A) Water Quality Screen Open Area: A_t = A_{st} * 38.5*(e^{-0.095D}) B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.) Other (Y/N): N C) Ratio of Total Open Area to Total Area (only for type 'Other') D) Total Water Quality Screen Area (based on screen type) E) Depth of Design Volume (EURV or WQCV) (Based on design concept chosen under 1E) F) Height of Water Quality Screen (H_{TR}) G) Width of Water Quality Screen Opening (W_{opening}) (Minimum of 12 inches is recommended) 	A _i =

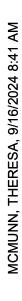
PROJECT	: FLYING HORSE N	NORTH FILING 4								
DATE	: 8/19/2024									
DESIGNED BY	: RDL									
CHECKED BY	: RDL									
POND OR DF	: POND B									
	11	NER DIMENSIONS	OUTER D	IMENSIONS						
	LENGTH									
	L1	5 FT		5.83 FT	T-5		Exten	ded Deter	tion Basi	n (EDR)
	L2	22.333 FT		23.166 FT			Laten	ucu Deter	Ition Dasi	n (LDD)
	L3	5 FT		5.83 FT		Tab	E FDR-4 FDR	component criter	ia	
	INNER L	32.333 FT	OUTER TOTAL L	33.999 FT						-
						On-Site EDBs for Watersheds up to 1 Impervious	EDBs with Watersheds between 1 and 2 Impervious	EDBs with Watersheds up to 5 Impervious	EDBs with Watersheds over 5 Impervious	EDBs with Watersheds over 20 Impervious
	WIDTH					Acrel	Acres	Acres	Acres	Acres
	W1	5 FT		5.83 FT					NACCONC. INTRO- INDIA	Release 2% of
	W2	16.74975 FT (75%	of L2)	17.58 FT			Release 2% of the undetained	Release 2% of the undetained	Release 2% of the undetained	the undetained
	W3	5 FT		5.83 FT	Forebay Release and		100-year peak discharge by	100-year peak discharge by	100-year peak discharge by	100-year peak discharge by
	INNER W	26.750 FT	OUTER TOTAL W	28.416 FT	Configuration		way of a	way of a	way of a	way of a wall/notch or
	BAFFLE	(6'x0.83' + 4'x0.83')					wall/notch configuration	wall/notch configuration	wall/notch configuration	berm/pipe ² configuration
	AREA	(6 x0.83 + 4 x0.83) 8.33 SF			_					configuration
	AREA	0.55 SF	nt /		Minimum	EDBs should	elonia poren		reality of the sector	Party Arriv
FRIANGLES	5	0	× 12	-)	Forebay	not be used for	1% of the WQCV	2% of the WQCV	3% of the WQCV	3% of the WQCV
RECTANGLE	374.072166			-13-	Volume	watersheds with less than	215 080730			0.00000000
BAFFLE	8.3				Maximum Forebay Depth	1 impervious	12 inches	18 inches	18 inches	30 inches
	415.742166		OUTFLOW	- CL RUNDOW CHANNEL	Poreoay Depth	acre.	≥ the	≥the	≥the	≥the
OTAL JUNI ACL ANLA	415.742100	0.00011	myrset	NOTCH (INFLOW)	Trickle		maximum	maximum	maximum	maximum
			IN THE PARTY OF TH	//	Capacity		forebay outlet	forebay outlet	forebay outlet	forebay outlet
OREBAY HT.	1.	5 FT		//	Micropool		capacity Area ≥ 10 ft ²	capacity Area $\geq 10 \text{ ft}^2$	capacity Area ≥ 10 ft ²	capacity Area ≥ 10 ft ²
					Initial		entrande combra		Area $\ge 10 \text{ ft}^2$ Depth $\ge 4 \text{ in}$.	Area $\ge 10 \text{ ft}^2$ Depth $\ge 4 \text{ in}.$
FOREBAY VOLUME	623.6132501	CF	ICIENT UME?		Surcharge Volume		Depth ≥ 4 inches	Depth ≥ 4 inches	Volume ≥ 0.3% WQCV	Volume ≥ 0.3% WQCV
	23.09678704	CY			1 CDD	1.10			C	1.671
	0.01431619	AC-FT			EDBs are not re garden.	ecommended for si	tes with less than	2 impervious acre	 consider a sand 	i titter or rain
					2 Round up to the	first standard pipe	size (minimum 8	inches).		
EQ'D VOL (3% WQCV)	0.01425	AC-FT								
per UD-BMP calc)	620.73	CF								
Notch Width per UD-BMP	11.0	in								

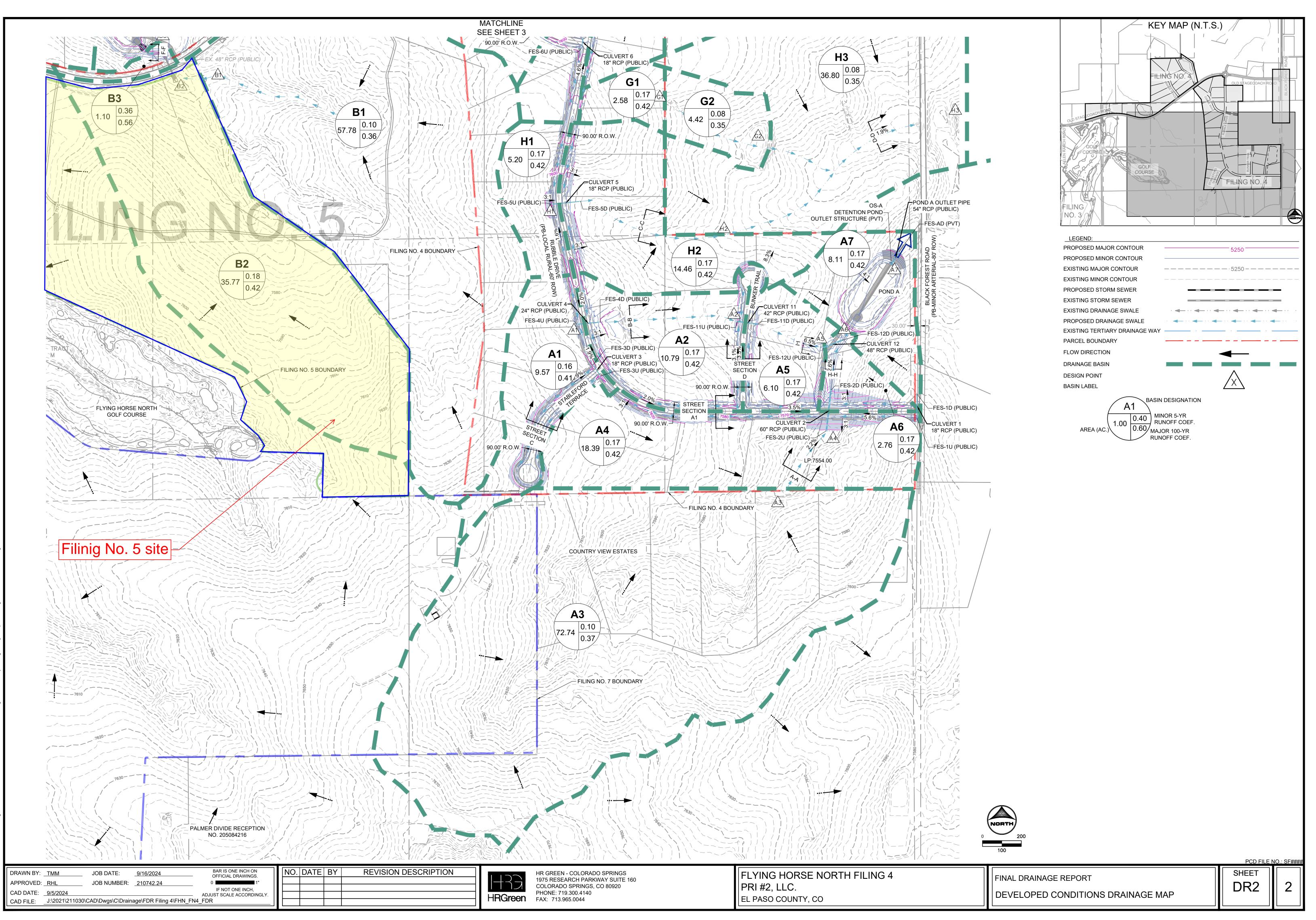
Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	187.60 cfs	
Crest Elevation	7,534.00 ft	
Tailwater Elevation	7,522.00 ft	
Crest Surface Type	Gravel	
Crest Breadth	75.00 ft	
Crest Length	68.0 ft	
Results		
Headwater Elevation	7,534.98 ft	
Headwater Height Above Crest	0.98 ft	
Tailwater Height Above Crest	-12.00 ft	
Weir Coefficient	2.82 ft^(1/2)/s	
Submergence Factor	1.000	
Adjusted Weir Coefficient	2.82 ft^(1/2)/s	
Flow Area	66.9 ft ²	
Velocity	2.80 ft/s	
Wetted Perimeter	70.0 ft	
Top Width	68.00 ft	

Worksheet for Pond B Spillway

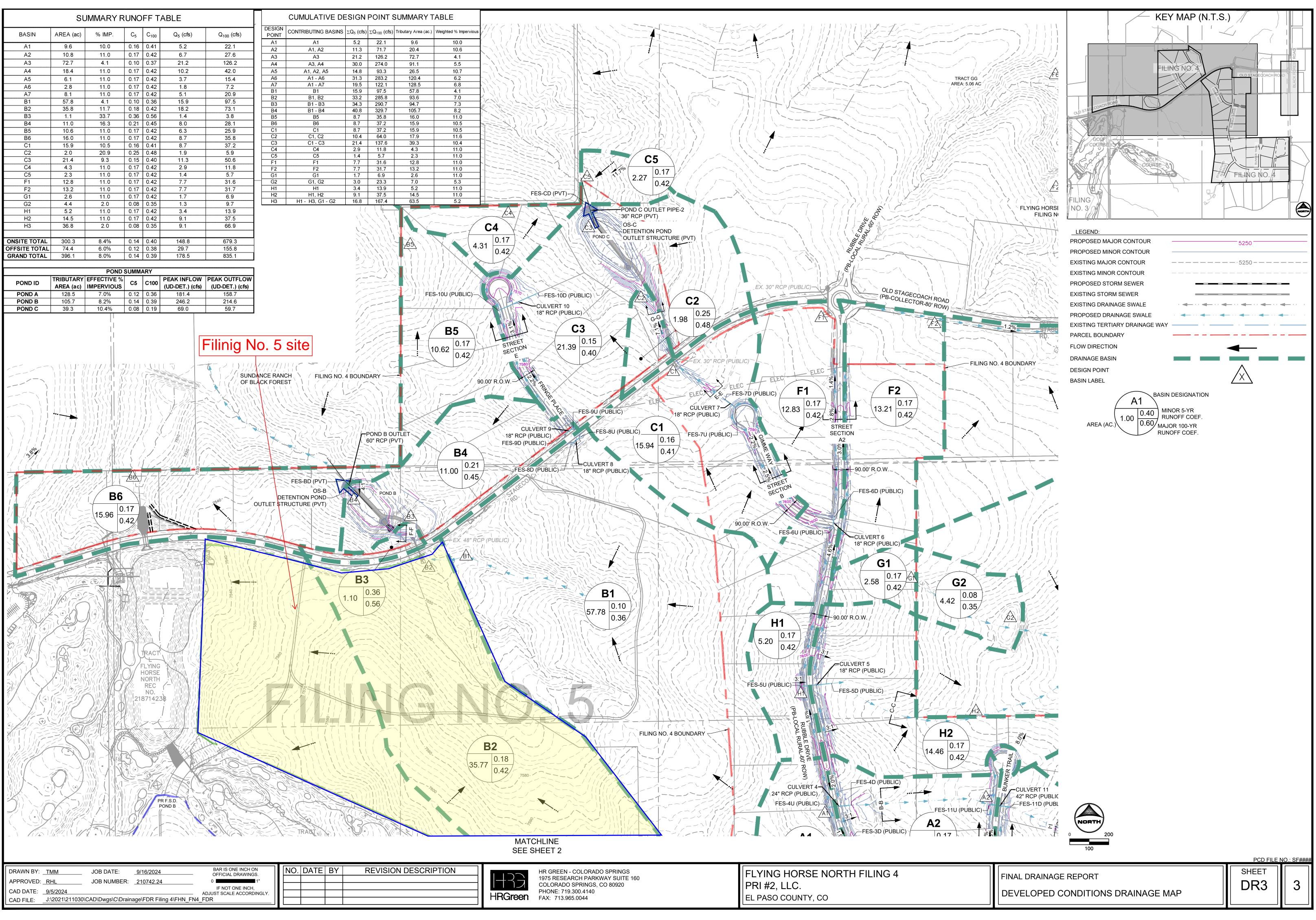


Flying Horse North Filing No. 4 Final Drainage Report Project No.: 211030


El Paso County, Colorado


APPENDIX F

DRAINAGE MAPS



:EN Xrefs: Parcel_Boundary; xv-row-1030; xv-util-1030; xv-dsgn-1030; Legend_FDR_Map_Filing4; key_map; xgt-

INNOVATIVE DESIGN. CLASSIC RESULTS.

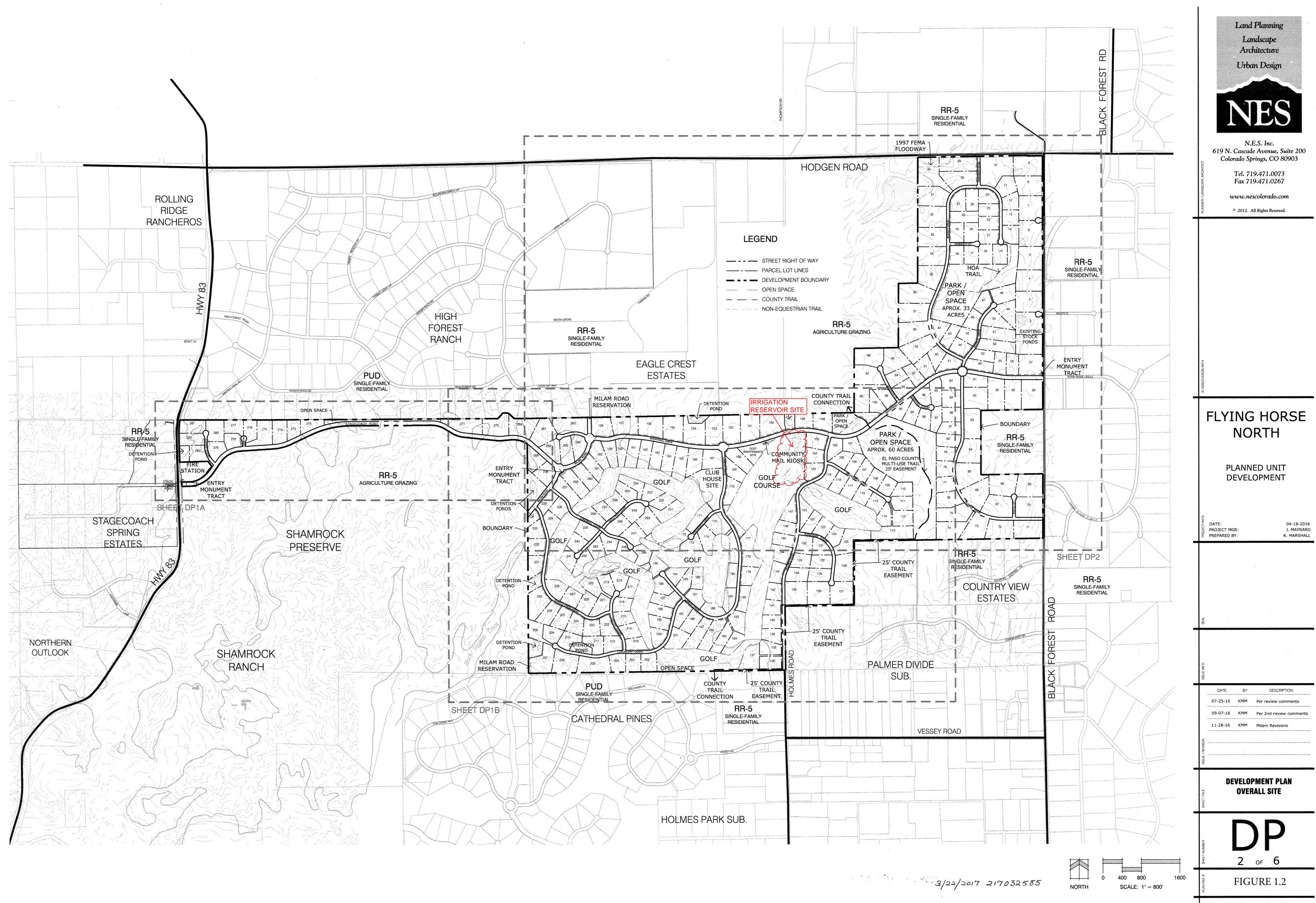
FLYING HORSE NORTH

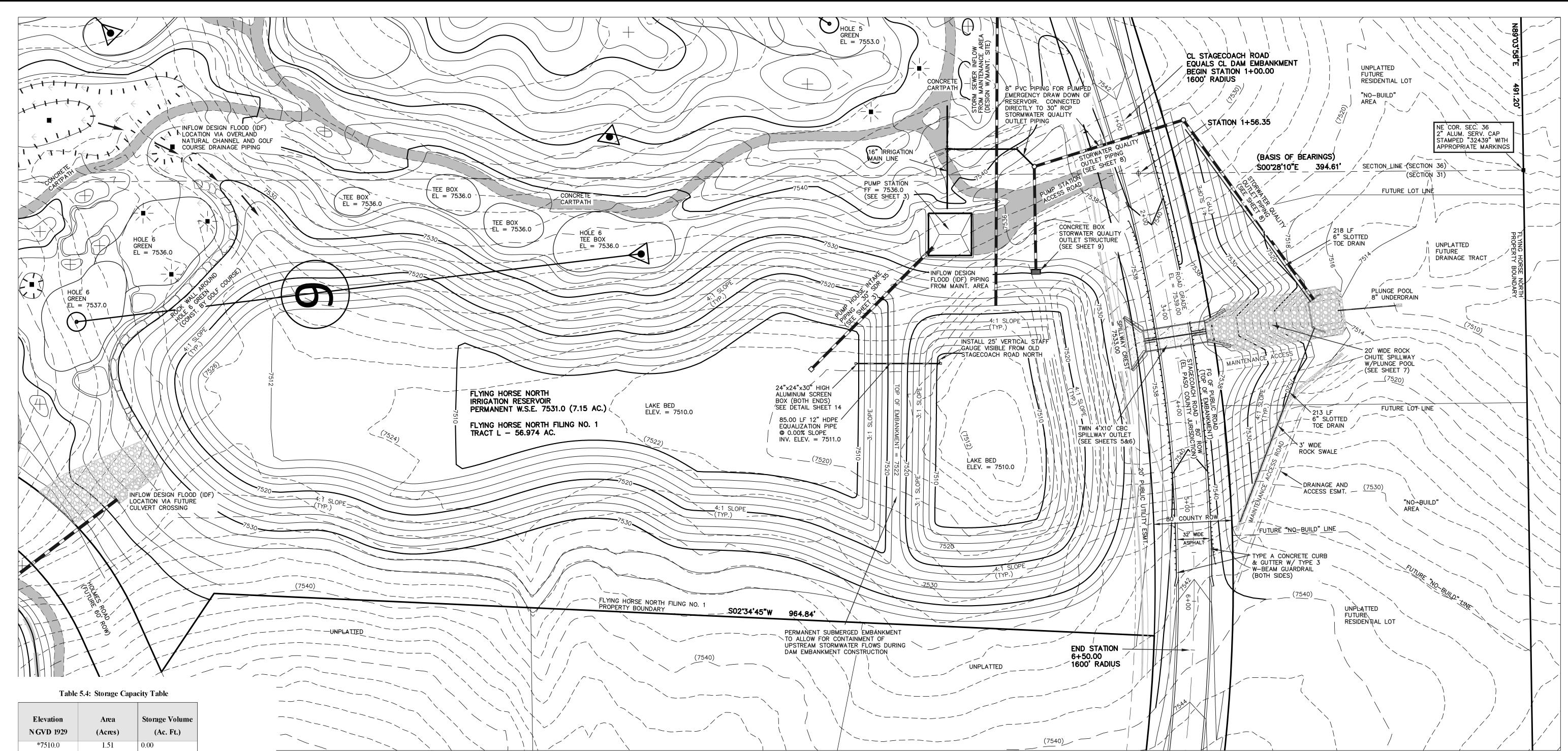
IRRIGATION RESERVOIR EMBANKMENT

DESIGN REPORT

DAMID: 080459 Construction File No.: C-2085

AUGUST 2018


Prepared for: **PRI #2 LLC** 6385 CORPORATE DRIVE SUITE 200 COLORADO SPRINGS CO 80919 (719) 592-9333


Prepared by: CLASSIC CONSULTING ENGINEERS & SURVEYORS 619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

> Job no. 1096.11 PCD File No. SF-18-001

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

Elevation N GVD 1929	Area (Acres)	Storage Volume (Ac. Ft.)
*7510.0	1.51	0.00
*7511.0	1.91	1.74
*7512.0	2,52	3.99
*7513.0	2.85	6.68
*7514.0	3.05	9.63
*7515.0	3.26	12.78
7516.0	3.48	16.15
7517.0	3.70	19.74
7518.0	3.93	23.56
7519.0	4.16	27.60
7520.0	4.40	31.88
7521.0	4.64	36.40
7522.0	4.88	41.16
7523.0	5.14	46.17
7524.0	5.36	51.42
7525.0	5.59	56.89
7526.0	5.84	62.61
7527.0	6.08	68.57
7528.0	6.33	74.77
7529.0	6.57	81.22
7530.0	6.81	87.91
7531.0	7.15	94.89
7532.0	7.52	102.22
7533.0	7.83	109.90
7534.0	8.37	118.00
7535.0	8.77	126.57
7536.0	9.17	135.53

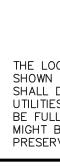

*Indicates dead storage below pumping ability

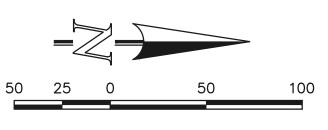
Table 5.5: Reservoir Discharge Table									
	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)						
levation	(SWQ Outlet Box)	(Twin CBC Spillway)	(Total)						
7531.0	0.0	0.0	0.0						
7532.0	13.89	0.0	13.89						
7533.0	27.77	0.0	27.77						
7534.0	51.31	49.05	100.36						
7535.0	69.52	138.56	208.08						
7536.0	74.61	254.72	329.33						

Permanent WSE = 7531.0Top of SWQ Outlet box = 7533.0

E

Spillway elevation = 7533.0

Table 5.5. Reservoir Discharge Table


NOTES:

- 1. TOPOGRAPHIC BASE MAPPING PRODUCED FROM AERIAL PHOTOGRAPHY PROVIDED BY NORTH AMERICAN MAPPING IN 2009. HORIZONTAL CONTROL IS BASED ON LOCAL CALIBRATION TIED TO SECTION CORNER AND VERTICAL CONTROL IS BASED ON NGVD 1929 DATUM.
- 2. PERMANENT WSE = 7531.0
- 3. RESERVOIR LINER INSTALLED UP TO ELEVATION 7534.0

48 HOURS BEFORE YOU DIG, CALL UTILITY LOCATORS	NO.	REVISION	DATE	REVIEW:
811	1	REVISED PER STATE COMMENTS	5-14-18	PREPARED UNDER MY DIRECT SUF
UTILITY NOTIFICATION CENTER OF COLORADO IT'S THE LAW	2	REVISED PER COUNTY COMMENTS	7-31-18	CLASSIC CONSULTING ENGINEERS
LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE /N IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR L DETERMINE THE EXACT LOCATION OF ALL EXISTING				
TIES BEFORE COMMENCING WORK. THE CONTRACTOR SHALL JLLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH T BE CAUSED BY HIS FAILURE TO EXACTLY LOCATE AND ERVE ANY AND ALL UNDERGROUND UTILITIES.				MARC A. WHORTON, COLORADO
	-			

STAFF GAUGE DETAILS:

- 1. 12"X25'X1/2" PVC
- 2. LASER CUT ACRYLIC NUMBERS AND HATCH MARKS LIQUID WELDED TO PVC ON 1 FT. INCREMENTS
- 3. MOUNTED ON ALUMINUM FRAME WITH CROSS BRACKETS ANCHORED INTO SLOPE
- 4. BASE FASTENED TO 12" PIPE
- 5. ELEVATION DISPLAY RANGE: 7512-7535

SCALE: 1'' = 50'

FIGURE 1.3

STATE ENGINEER'S CONSTRUCTION FILE NUMBER: C-2085

SECTION 4: RESERVOIR AND DAM

4.1 DESIGN CRITERIA

The proposed dam for the Flying Horse North Irrigation Reservoir was designed in accordance with Rule 5 of the State of Colorado Rules and Regulations for Dam Safety and Dam Construction, dated January 2007.

4.2 **RESERVOIR**

This watershed will contain development of a private golf course (currently under construction) including an outdoor golf maintenance facility, along with 2.5 ac. rural residential lot development accessed by rural County paved roadways. As such, the irrigation reservoir will also be designed with a separate stormwater detention and SWQ component per El Paso County criteria. This separate structure will be in the form of a concrete outlet box with an orifice plate and 30" RCP outlet allowing the release of the smaller storm events to meet the standards as specified per this criteria and the County's MS4 permit with the State. This SWQ release through the 30" RCP will be constructed outside of the reservoir embankment. The specific location of this reservoir is within a portion of Section 36, township 11 south, range 66 west of the sixth principal meridian, and a portion of Section 31 township 11 south, range 65 west of the sixth principal meridian, El Paso County Colorado. (See Figure 1.3)

The reservoir has a surface area at its permanent WSE (Elev. 7531.0) of 7.0 acres with a storage volume of 94.9 acre feet. The maximum depth at this elevation is 21 feet with the lake bed at 7510. The reservoir will have a liner constructed of a flexible membrane. This liner will be laid up to a maximum elevation of 7534. The reservoir is supplied by water from a well located on the Clubhouse site within the development approximately 1/4 mile west of the reservoir. The level in the reservoir is controlled by the two outlet structures. The Detention/SWQ structure will facilitate the State required 72 hr. drain time for the smaller stormwater events and help maintain the permanent water level while the twin box culvert spillway will allow for the County required 100 yr. detention release of the major stormwater events. The total storage capacity table is found in Section 5, Table 5.4.

4.3 DAM EMBANKMENT

The dam embankment for this reservoir will be constructed within the County owned and maintained Old Stagecoach Road (80' ROW - Collector). The subdivision Improvement Agreement (SIA) as required by El

Paso County for this subdivision, will be recorded along with the Final Plat and specify ownership and maintenance responsibilities related to the embankment and associated drainage structures. The crest of the embankment, which will be the finished grade of asphalt for the roadway is at elevation 7539.0 at the lowest point. The regulatory height from the twin box culvert emergency spillway invert to the native channel grade equals 23.0°. The length of the embankment measured from the toe of slopes on each side is approximately 450°. Both the upstream and downstream slopes of the embankment will be constructed at no greater than a 4:1 slope. The roadway will have a typical 2% crown with an asphalt width of 32.0° with El Paso County Type A concrete curb and gutter on both sides and then 6:1 maximum to edge of ROW with a County required clear zone of 14.0°. The twin box culvert emergency spillway structure is outside this clear zone. El Paso County will also require CDOT Type 3 W-Beam guardrail along both sides of the embankment. The embankment itself will be constructed of local material found on-site and tested by the Geotech. According to the State of Colorado Rules and Regulations for Dam Safety and Dam Construction, Rule 4.2.5.4, this facility is considered a "Small Jurisdictional Dam" given the jurisdictional height greater than 20 feet but less than 50 feet and a capacity greater than 100 acre-feet.

4.4 SPILLWAY AND OUTLET WORKS

This facility will be designed with two separate outlet structures. One will facilitate the State/County required detention/SWQ component of the facility while the other will allow for the 100 yr. stormwater event and emergency flow situations. A low level outlet will be built into the pump station design allowing for an emergency drawdown of the reservoir to be with connection to the SWQ outlet piping.

Detention / SWQ Outlet

Per the County's MS4 permit with the State, this development is required to provide detention and stormwater quality within this reservoir facility. The design for this is being handled by a separate concrete outlet box constructed outside the formal dam embankment. This structure is a 4'x8' concrete box with a steel flow control plate and protective well screen located on the front. The control plate is designed with three rectangular holes to facilitate the State required drain times. The first hole is located at elevation 7531.0 with the top of box at elevation 7533.0. The top of box will be constructed with a grate to allow flows to enter the box as well. A 30" RCP outlet pipe will allow for the release of all the flows entering the box structure. The design of this structure meets all State and County requirements for both EURV and

WQCV. The 30" RCP outlet piping will be routed around the dam embankment and into the rock chute and plunge pool at the base of the emergency spillway.

Spillway Outlet

Given that the embankment for this reservoir will be a County roadway, the conventional emergency spillway channel design at the crest of the embankment was not appropriate. But rather a concrete box culvert spillway design under the roadway to allow for both the major stormwater events and emergency release has been employed. Twin 4'x10' concrete box culverts (CBC) will facilitate the required releases. The crest of the spillway will be constructed at elevation 7533.0 where the release will then travel under the roadway and into a 20' wide rock chute. The rock chute will have a 4:1 slope with 3:1 side slopes and a total drop of 18.0' into a 2.0' deep plunge pool. The following roughness coefficients were used: CBCs 0.013 and Rock Chute 0.035. The rip-rap thickness will be 56'' with a gradation specified by the Geotech. (See Design Plans) The spillway CBCs and Rock Chute have been designed to accommodate both the 100 yr. release of 182 cfs with a headwater depth ratio (Hw/D) of 0.54 and the total basin inflow of 609 cfs with a (Hw/D) of 1.31. This design is within the maximum County criteria of (Hw/D) of 1.40. The freeboard design is as follows: 100 Yr. = 4.39' and 500 Yr. = 3.03'. The velocity at inlet of chute = 15.6 fps and velocity at outlet of chute = 6.99 fps, both at normal depth. 1.76' of Freeboard is included in chute design.

Low Level Outlet

This reservoir will not be designed with a formal low level outlet given the nature of the facility and the ability for the pump station to facilitate the draining of the reservoir for embankment inspection or emergency purposes. Thus, directly off of the 16" irrigation main just outside the pump station, a 16"x8" tee with gate valves and a 8" drain line will be installed to allow for the pumped release and draining of the reservoir. This 8" drain line will then connect directly to the 30" RCP storm system via a Type II concrete storm manhole constructed as a part of the release of the Detention/SWQ component as required by El Paso County. This 30" storm system then daylights into the base of the rock chute and plunge pool on the backside of the embankment. The 8" drain line @ 110 psi is expected to release 800-1200 GPM. However, using the maximum pump station capacity of 2,250 GPM while opening system drain valves and irrigation heads, the drain time is as follows: As mentioned earlier, the pumps will allow for release down to an elevation of 7515.67. Based on the permanent WSE of 7531, this equates to a total of approximately 26 million gallons (MG) to be drained. The total drain time is estimated at approximately 8 days.

Hazard Classification" as described in section 5.6 of this report the Inflow Design Flood Requirements (IDF) as found in Rule 5.9.1, Table 5.1 utilize the (NOAA 14 – 24 Hr. duration) 100 Yr. storm event. The UD-Detention v3.07 spreadsheet (Per Urban Drainage Vol. 3) will also be utilized in the final design of the Detention and SWQ aspects of this facility. This spreadsheet uses 1 Hr. precipitation depths. See Table 5.1 for precipitation depth comparison. Please note that the higher precipitation amounts have been used for each return period.

Table 5.1: Precipitation Depth Comparison								
Return Period	1-Hr. Depth (City/County)	1-Hr. Depth (NOAA 14)	24-Hr. Depth (City/County)	24-Hr. Depth (NOAA 14)				
2	1.19	0.92	2.10	1.93				
5	1.50	1.20	2.70	2.44				
50	2.25	2.15	4.20	4.33				
100	2.52	2.49	4.60	5.04				

5.2 WATER RIGHTS

Based on the water decree filed October 6, 2017 (See Appendix), PRI #2, LLC has the water rights to pump and store in the on-site Flying Horse North reservoir. PRI #2, LLC has a lease from the State Land Board for the following water rights: 515 AF in the Dawson, 577 AF in the Denver, 239 AF in the Arapahoe and 182 AF in the Laramie Fox Hills. The Arapahoe and Laramie Fox Hills are both deemed non-tributary reservoirs. The Flying Horse North Golf Course will take an average of 200 AF per year from their Arapahoe well that will be pumped into the reservoir. Evaporative loss is not an issue when pumping from a non-tributary source. Upon termination of the State Land Board Lease in 2048, all water rights revert automatically back to PRI #2, LLC who will own them in perpetuity.

5.3 WATERSHED CHARACTERISTICS

The watershed of the irrigation reservoir includes a total area of 366.8 acres within the East Cherry Creek drainage basin and just north of the Palmer Divide. A portion of this area is outside the Flying Horse North development as shown in basins OS-12, OS-13 and OS-14. These basins are both currently undeveloped and developed as County zoned RR-5 (5 ac. rural residential). All the on-site basins are zoned PUD for either 2.5 ac. rural residential or golf course/open space. (See Tables 5.2 and 5.3 for sub-basin CN values and associated Tc times) Nearly the entire watershed is outside of the black forest tree line and mainly consists of prairie grasses with grades ranging from 2%-20% with three major natural ravines that drain in a northwesterly direction directly towards the planned irrigation reservoir. The golf course layout aides in the natural conveyance of the majority of the stormwater flows to the reservoir. The storage capacity table for the reservoir is listed in Table 5.4.

	ALL	LAND ASSUM	IED 2 ACRE RES	DENTIAL LOT	S OR	
GOOD	CONDITION OF	PEN SPACE (L	AWNS, PARKS	GOLF COURSE	S, CEMETARIES	ETC.)
	CN	VALUES	- DEVELOP	ED COND	ITIONS	
BASIN	BASIN	GOLF C	OURSE (B)	2 AC. RES	SIDENTIAL (B)	COMPOSITE
(label)	AREA				(-)	C _N
X /	(Ac)	CN	AREA	CN	AREA	
			(Ac.)		(Ac.)	
CC-1	22.3	61	0.0	65	22.3	65.0
CC-2	36.4	61	0.0	65	36.4	65.0
CC-3	51.9	61	19.1	65	32.8	63.5
CC-4A	108.2	61	63.2	65	45.0	62.7
CC-4B	17.0	61	5.5	65	11.5	63.7
OS-12	67.7	61	0.0	65	67.7	65.0
OS-13	36.9	61	0.0	65	36.9	65.0
OS-14	26.4	61	0.0	65	26.4	65.0

			TIMEC	OF CONC	ENTRATIO	ON DEVE	LOPED			
	COMPOSITE		OVERLAND		STREET / C	CHANNEL FL	.OW(DCM Va	l. 1 Fig. 6-25)	Tc	Тс
BASIN	Cn	Length	Height	Tc	Length	Slope	Velocity	Тс	TOTAL	LAG (0.6tc)
		(ft)	(ft)	(hr)	(ft)	(%)	(fps)	(hr)	(hr)	(hr)
CC-1	65.0	300	10	0.40	900	2.0%	1.8	0.14	0.53	0.32
CC-2	65.0	300	10	0.40	1700	2.0%	1.8	0.26	0.66	0.39
CC-3	63.5	300	14	0.35	900	2.5%	2.4	0.10	0.45	0.27
CC-4A	62.7	300	14	0.35	2900	2.0%	2.1	0.38	0.73	0.44
CC-4B	63.7	300	12	0.37	900	3.0%	2.5	0.10	0.47	0.28
OS-12	65.0	300	14	0.35	1500	3.0%	2.5	0.17	0.51	0.31
OS-13	65.0	300	16	0.33	900	3.0%	2.5	0.10	0.43	0.26
OS-14	65.0	300	14	0.35	600	3.5%	2.7	0.06	0.41	0.24

Table 5.3: Sub-basin Time of Concentration

Table 5.4: Storage Capacity Table

Elevation NGVD 1929	Area (Acres)	Storage Volume (Ac. Ft.)
*7510.0	1.51	0.00
*7511.0	1.99	1.74
*7512.0	2.52	3.99
*7513.0	2.85	6.68
*7514.0	3.05	9.63
*7515.0	3.26	12.78
7516.0	3.48	16.15
7517.0	3.70	19.74
7518.0	3.93	23.56
7519.0	4.16	27.60
7520.0	4.40	31.88
7521.0	4.64	36.40
7522.0	4.88	41.16

7523.0	5.14	46.17
7524.0	5.36	51.42
7525.0	5.59	56.89
7526.0	5.84	62.61
7527.0	6.08	68.57
7528.0	6.33	74.77
7529.0	6.57	81.22
7530.0	6.81	87.91
7531.0	7.15	94.89
7532.0	7.52	102.22
7533.0	7.83	109.90
7534.0	8.37	118.00
7535.0	8.77	126.57
7536.0	9.17	135.53

*Indicates dead storage below pumping ability

5.4 HYDROLOGIC MODEL

The PondPack model produced peak discharges for the 2-yr, 5-yr, 50-yr and 100-yr storm events assuming a permanent pool elevation of 7531.0. Reference Appendix B for specific hydrologic model results. Table 5.5 below shows the results of these storm events upon the irrigation reservoir.

			Total
Storm Event	Peak Inflow	Max. WSE	Discharge
	(cfs)	(ft.)	(cfs)
2-yr (City/County)	48	7531.40	6
5-yr (City/County)	119	7531.87	12
50-yr (NOAA 14)	431	7533.58	64
100-yr (NOAA 14)	609	7534.23	124

Table 5.5: Inflow Design Flood (IDF) Summary Table

5.5 HYDRAULIC MODEL

Both the SWQ Outlet and the CBC Spillway were modeled using both PondPack (24-hr. precipitation) and the Urban Drainage UD Detention Spreadsheet (1-hr precipitation) as required by County design criteria. Table 5.6 below shows the results of the PondPack model. Reference Appendix B for the UD Detention – Retention Pond Spreadsheet results. As this facility is required to meet both detention and SWQ criteria, the following is applicable to these design components:

Required WQCV =	1.36 ac-ft.	Provided WQCV =	15.01 ac-ft.
Required EURV =	2.83 ac-ft.	Provided EURV =	15.01 ac-ft.
Required 100-yr. =	12.42 ac-ft.	Provided 100-yr =	27.35 ac-ft.

	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)
Elevation	(SWQ Outlet Box)	(Twin CBC Spillway)	(Total)
7531.0	0.0	0.0	0.0
7532.0	13.89	0.0	13.89
7533.0	27.77	0.0	27.77
7534.0	51.31	49.05	100.36
7535.0	69.52	138.56	208.08
7536.0	74.61	254.72	329.33

Table 5.6:	Reservoir	Discharge	Table
------------	-----------	-----------	-------

Permanent WSE = 7531.0

Top of SWQ Outlet box = 7533.0

Spillway elevation = 7533.0

The twin 4'x10' CBC Spillway design has the following results:

100-yr storm release = $182 cfs$	Hw/D = 0.54
Emergency release – Max. basin IDF = 609 cfs	Hw/D = 1.31
County Criteria (max.)	Hw/D = 1.40

ALL LAND ASSUMED 2 ACRE RESIDENTIAL LOTS OR GOOD CONDITION OPEN SPACE (LAWNS, PARKS GOLF COURSES, CEMETARIES ETC.)

CN VALUES - DEVELOPED CONDITIONS

BASIN	BASIN	GOLF COURSE (B) 2 AC. RESIDENTIAL (B)				COMPOSITE
(label)	AREA (Ac)	CN	AREA (Ac.)	CN	AREA (Ac.)	CN
CC-1	22.3	61	0.0	65	22.3	65.0
CC-2	36.4	61	0.0	65	36.4	65.0
CC-3	51.9	61	19.1	65	32.8	63.5
CC-4A	108.2	61	63.2	65	45.0	62.7
CC-4B	17.0	61	5.5	65	11.5	63.7
OS-12	67.7	61	0.0	65	67.7	65.0
OS-13	36.9	61	0.0	65	36.9	65.0
OS-14	26.4	61	0.0	65	26.4	65.0

TIME OF CONCENTRATION DEVELOPED

	COMPOSITE		OVERLAND		STREET / (CHANNEL FL	OW (DCM Vol	. 1 Fig. 6-25)	Tc	Tc
BASIN	Cn	Length	Height	Тс	Length	Slope	Velocity	Тс	TOTAL	LAG (0.6tc)
		(ft)	(ft)	(hr)	(ft)	(%)	(fps)	(hr)	(hr)	(hr)
CC-1	65.0	300	10	0.40	900	2.0%	1.8	0.14	0.53	0.32
CC-2	65.0	300	10	0.40	1700	2.0%	1.8	0.26	0.66	0.39
CC-3	63.5	300	14	0.35	900	2.5%	2.4	0.10	0.45	0.27
CC-4A	62.7	300	14	0.35	2900	2.0%	2.1	0.38	0.73	0.44
CC-4B	63.7	300	12	0.37	900	3.0%	2.5	0.10	0.47	0.28
OS-12	65.0	300	14	0.35	1500	3.0%	2.5	0.17	0.51	0.31
OS-13	65.0	300	16	0.33	900	3.0%	2.5	0.10	0.43	0.26
OS-14	65.0	300	14	0.35	600	3.5%	2.7	0.06	0.41	0.24

		Form: Retention Pond (RF	
		rsion 3.06, November 2016)	Sheet 1 of 3
Designer:	Marc A. Whorton, I		
Company:	Classic Consultin	-	
Date:	August 20, 2018		
Project:	Flying Horse North - J		
Location:	Black Forest, CO El Pas	o County	
1. Baseflow A) Is the permane	ent pool established by groundwater?	Choose One OrES Or	THE NET INFLUX OF WATER MUST BE AVAILABLE THROUGH A PERENNIAL BASEFLOW AND MUST EXCEED THE LOSSES.
2. Surcharge Volum		1 - 83	%
	rviousness of Tributary Area, I _a	I _a = 8.3 i = 0.083	70
	's Imperviousness Ratio (i = I _a / 100)		_
C) Contributing V		Area = <u>366.800</u>	ac
D) For Watershe Runoff Produc	ds Outside of the Denver Region, Depth of Average cing Storm	d ₆ = <u>0.42</u>	in
E) Design Conce	pt	Choose One	
(Select EURV	when also designing for flood control)	OVater Quality Captur	
	Capture Volume (WQCV) hour Drain Time	V _{WQCV} = 1.395	ac-ft
(V _{WQCV} = (0.8	* (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)		
Water Quality	ds Outside of the Denver Region, Capture Volume (WQCV) = (d ₆ *(V _{WQCV} /0.43))	V _{WQCV OTHER} = 1.363	ac-ft
	Water Quality Capture Volume (WQCV) rent WQCV Design Volume is desired)	V _{WQCV USER} =	ac-ft
I) Predominant W	/atershed NRCS Soil Group	Choose One A ©B	
For HSG A: E	Runoff Volume (EURV) Design Volume EURV _A = 1.68 * i ^{1.28}	Oc / D	-
	$EURV_B = 1.36 * i^{1.08}$		
For HSG C/D): EURV _{C/D} = 1.20 * i ^{1.08}	EURV =	ac-ft
3. Basin Shape (It is recommende	ed to have a basin length-to-width ratio between 2:1 and 3:1)	L : W = 5.0	_:1
4. Permanent Pool A) Minimum Perr	nanent Pool Volume	V _{POOL} = 1.363	ac-ft
· · ·	Safety Wetland Bench en 6 to 12 inches recommended)	D _{LZ} =12	in
	Open Water Zone pth of 12 feet)	D _{owz} =21.0	ft
5. Side Slopes			
	e Slopes Above the Safety Wetland Bench er unit vertical, should be no steeper than 4:1)	Z _{PP} =4.00	ft / ft
	e Slopes Below the Safety Wetland Bench er unit vertical, should be no steeper than 3:1)	Z _{OWZ} =4.00	ft / ft

Design Procedure Form: Retention Pond (RP)	Sheet 2 of 3
Designer:	Sheet 2 of 3
Company:August 20, 2018	
Project: August 20, 2010	<u> </u>
Location:	
6. Inlet	Rip-Rap
 A) Describe means of providing energy dissipation at concentrated inflow locations: 	
7. Forebay	
A) Minimum Forebay Volume (V _{FMIN} = 3% of the WQCV)	V _{FMIN} =0.041ac-ft
B) Actual Forebay Volume	V _F =0.041ac-ft
8. Outlet	Choose One ©Drifice Plate
A) Outlet Type	Obther (Describe):
 C) Smallest Dimension of Orifice Opening Based on Hydrograph Routing (Use UD-Detention) D) Total Outlet Area (A_{ot}) 	D _{onflice} = <u>15.8</u> inches A _{ct} = <u>585.000</u> square inches
9. Trash Rack	
A) Water Quality Screen Open Area: At = Aot * 38.5*(e ^{-0.095D})	A _t = <u>5020</u> square inches
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the total open are to the total screen are for the material specified.)	Aluminum Amico-Klemp SR Series with Cross Rods 4" O.C.
Other (Y/N): N	
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water Quality Screen Area (based on screen type)	A _{total} =6520 square inches
E) Inundated Depth of Water Quality Screen below Permanent Pool	D _{inundated} =ft
F) Depth of Design Volume (EURV or WQCV) Based on the Design Concept Chosen Under 1.E	H= <u>2.0</u> ft
G) Height of Water Quality Screen (H_{TR})	H _{TR} = <u>32.04</u> inches
H) Width of Water Quality Screen Opening (W _{opening}) (Minimum of 12 inches is recommended)	W _{opening} =203.5 inches

			DETENTION E	ASIN STAGE-S	TORAG	E TABLE	BUILDE	R					
			UD-D	etention, Version 3	8.07 (Febru	uary 2017)							
	Flying Horse Golf Course		Reservoir (Pond - 13)										
20HE 3 20HE 3	2	-											
VOLUME EVENT WOLT		L											
	1	B 100-11	TAR .			1.							
	TAND 2	Delta	ce ·	Depth Increment =	0.5	ft Optional				Optional			
Example Zone	Configurati	on (Retent	tion Pond)	Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft^2)	Override Area (ft ²)	Area (acre)	Volume (ft^3)	Vi (
Required Volume Calculation				Permanent Pool		0.00	-			311,545	7.152		
Selected BMP Type = Watershed Area =	RP 366.80	acres		7532		1.00	-	-		327,571 341,084	7.520	316,283 650,475	1
Watershed Length =	5,175	ft		7534	-	3.00	-	-	-	364,597	8.370	1,006,726	2
Watershed Slope =	0.015	ft/ft		7535		4.00	-			382,021	8.770	1,380,035	3
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	8.30%	percent percent		7536		5.00				399,445	9.170	1,770,768	4
Percentage Hydrologic Soil Group B =		percent					-						
Percentage Hydrologic Soil Groups C/D =	0.0%	percent					-						
Desired WQCV Drain Time = Location for 1-hr Rainfall Depths =		hours											
Water Quality Capture Volume (WQCV) =		acre-feet	Optional User Override		-								
Excess Urban Runoff Volume (EURV) =		acre-feet	1-hr Precipitation		-								
2-yr Runoff Volume (P1 = 1.19 in.) = 5-yr Runoff Volume (P1 = 1.5 in.) =		acre-feet acre-feet	1.19 inches 1.50 inches									-	\vdash
5-yr Runoff Volume (P1 = 1.5 in.) = 10-yr Runoff Volume (P1 = 1.75 in.) =		acre-feet	1.50 Inches		-				-			-	+
25-yr Runoff Volume (P1 = 2 in.) =	21.442	acre-feet	2.00 inches										
50-yr Runoff Volume (P1 = 2.25 in.) = 100-yr Runoff Volume (P1 = 2.52 in.) =	30.109 41.427	acre-feet acre-feet	2.25 inches 2.52 inches										
500-yr Runoff Volume (P1 = 2.52 in.) =		acre-reet acre-feet	3.39 inches										
Approximate 2-yr Detention Volume =	1.765	acre-feet							-				
Approximate 5-yr Detention Volume =	2.813	acre-feet			-								
Approximate 10-yr Detention Volume = Approximate 25-yr Detention Volume =	6.361 9.142	acre-feet acre-feet							-				\vdash
Approximate 50-yr Detention Volume =	9.507	acre-feet			-								L
Approximate 100-yr Detention Volume =	12.417	acre-feet											
Stage-Storage Calculation							-	-					
Zone 1 Volume (WQCV) =	1.395	acre-feet			-		-	-					
Zone 2 Volume (EURV - Zone 1) =	1.424	acre-feet					-						
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	9.598 12.417	acre-feet			-			-					
Initial Surcharge Volume (ISV) =	N/A	acre-feet ft^3			-		-	-					
Initial Surcharge Depth (ISD) =	N/A	ft					-						
Total Available Detention Depth (H _{total}) = Depth of Trickle Channel (H _{TC}) =	user	ft					-						
Slope of Trickle Channel (H _{TC}) =	N/A N/A	ft ft/ft			-		-	-	-				
Slopes of Main Basin Sides (Smain) =	user	H:V			-		-						
Basin Length-to-Width Ratio (R _{L/W}) =	user				-		-		-				
Initial Surcharge Area (A _{ISV}) =	user	ff^2			-		-	-		-		-	
Surcharge Volume Length (L _{ISV}) =	user	ft					-						
Surcharge Volume Width (W _{ISV}) = Depth of Basin Floor (H _{FLOOR}) =	user	ft			-		-		-				-
Length of Basin Floor (H _{RODR}) =	user	ft ft										-	
Width of Basin Floor (W _{FLOOR}) =	user	ft							-				
Area of Basin Floor (A _{FLOOR}) =	user	ft^2			-		-						L
Volume of Basin Floor (V _{FLOOR}) = Depth of Main Basin (H _{MAIN}) =		ft^3 ft										+	-
Length of Main Basin (L _{MAIN}) =	user	ft			-		-						
Width of Main Basin (W _{MAIN}) =	user	ft			-		-						
Area of Main Basin (A _{MAIN}) = Volume of Main Basin (V _{MAIN}) =	user	ft^2 ft^3										+	\vdash
Calculated Total Basin Volume (V _{total}) =	user	tt^3 acre-feet			-		-		-				t
									-				F
							-		-	1			
					-		-	-	-			1	
							-					1	F
									-			1	
							-		-				F
					-				-			-	F
									-				
							-	-				-	L
					-				- 1				F
							-	-	-			1	L
					-		-	-					L
									-				F
									-				-
					-		-	-					
					-		-	-	-				
									-			<u> </u>	t
													F
									-				F
					-		-	-				1	F
					-		-	-	-			1	F
						-	-		-	-		-	+
													-

-

		Dete	ention Basin (Dutlet Struct	ure Design				
	The level 1		UD-Detention, Ve	rsion 3.07 (Februa	ry 2017)				
-	Flying Horse North Golf Course Irrigat		- 13)						
ZONE 3									
DO-YR				Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	0.20	1.395	Orifice Plate			
ZONE 1 AND 2	100-YEA	R	Zone 2 (EURV)	0.40	1.424	Orifice Plate			
PERMANENT ORIFICES		tention Dand)	:one 3 (100-year)	1.67	9.598	Weir&Pipe (Restrict)			
	Configuration (Re	-			12.417	Total			
er Input: Orifice at Underdrain Outlet (typically u Underdrain Orifice Invert Depth =		1	. filteration modia	-fa a a \	Linda	calculate = rdrain Orifice Area	ed Parameters for Ur	1	
Underdrain Orifice Invert Depth =	N/A N/A	inches	ne filtration media sui	nace)		in Orifice Centroid =	N/A N/A	ft ² feet	
		Inches			onderdite			licer	
ser Input: Orifice Plate with one or more orifices		r (typically used to d	rain WQCV and/or EL	JRV in a sedimentati	ion BMP)	Calcu	lated Parameters for	1	
Invert of Lowest Orifice =	0.00		bottom at Stage = 0 ft			rifice Area per Row =	1.354E+00	ft ²	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	2.00	ft (relative to basin I inches	bottom at Stage = 0 ft	t)		lliptical Half-Width = ptical Slot Centroid =	N/A N/A	feet feet	
Orifice Plate: Orifice Area per Row =	195.00	sq. inches (use recta	ingular openings)		EIII	Elliptical Slot Area =	N/A N/A	ft ²	
		1	0.00]	
er Input: Stage and Total Area of Each Orifice	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)		0.70	1.40						
Orifice Area (sq. inches)	195.00	195.00	195.00						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)									1
Orifice Area (sq. inches)									
Developments Martinel 6-10. Com	ular or Peatrice 1					6-1-1	Dorometers for M	ical Orifica	
User Input: Vertical Orifice (Circ	Not Selected	Not Selected	1			Calculated	Parameters for Vert Not Selected	Not Selected	1
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 f	t) V	ertical Orifice Area =	N/A	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin b	oottom at Stage = 0 f	t) Vertio	al Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
User Input: Overflow Weir (Dropbox) and G	rate (Flat or Sloped)					Calculated	Parameters for Ove	rflow Weir	
	Zone 3 Weir	Not Selected]				Zone 3 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	2.00	N/A	ft (relative to basin bo	ttom at Stage = 0 ft)		ate Upper Edge, H _t =	3.00	N/A	feet
Overflow Weir Front Edge Length =	8.00	N/A	feet			Weir Slope Length =	4.12	N/A	feet
Overflow Weir Slope = Horiz. Length of Weir Sides =	4.00	N/A N/A	H:V (enter zero for fl feet	al grate)		100-yr Orifice Area = en Area w/o Debris =	5.04 24.74	N/A N/A	should be ≥ 4 ft ²
Overflow Grate Open Area % =	75%	N/A	%, grate open area/t	total area	-	pen Area w/ Debris =	12.37	N/A	ft ²
Debris Clogging % =	50%	N/A	%						-
ser Input: Outlet Pipe w/ Flow Restriction Plate (C	Zone 3 Restrictor	Not Selected	ngular Orifice)		C C	alculated Parameter	s for Outlet Pipe w/ Zone 3 Restrictor	Flow Restriction Pla Not Selected	lte T
Depth to Invert of Outlet Pipe =	4.00	N/A	ft (distance below bas	in bottom at Stage = 0	ft)	Outlet Orifice Area =	4.91	N/A	ft ²
Outlet Pipe Diameter =		N/A	inches			let Orifice Centroid =	1.25	N/A	feet
Restrictor Plate Height Above Pipe Invert =	30.00		inches	Half-0	Central Angle of Rest	rictor Plate on Pipe =	3.14	N/A	radians
User Input: Emergency Spillway (Rectang Spillway Invert Stage=		ft (relative to basin l	bottom at Stage = 0 ft	-)	Spillway	Design Flow Depth=	ted Parameters for S 4.13	feet	
Spillway Crest Length =	20.00	feet		-)		t Top of Freeboard =	7.13	feet	
Spillway End Slopes =	0.00	H:V			Basin Area a	t Top of Freeboard =	9.17	acres	
	1.00	feet							
Freeboard above Max Water Surface =	1.00								
Freeboard above Max Water Surface = Routed Hydrograph Results								100 Vees	500 Year
Routed Hydrograph Results Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	<u>WQCV</u> 0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.39
Routed Hydrograph Results Design Storm Return Period =	WQCV								3.39 68.375
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	WQCV 0.53 1.395 1.395	1.07 2.819 2.819	1.19 1.903 1.902	1.50 3.006 3.006	1.75 7.525 7.522	2.00 21.442 21.445	2.25 30.109 30.113	2.52 41.427 41.428	68.375 68.385
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) =	WQCV 0.53 1.395 1.395 0.00	1.07 2.819 2.819 0.00	1.19 1.903 1.902 0.01	1.50 3.006 3.006 0.02	1.75 7.525 7.522 0.20	2.00 21.442 21.445 0.67	2.25 30.109 30.113 0.93	2.52 41.427 41.428 1.25	68.375 68.385 2.00
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	WQCV 0.53 1.395 1.395	1.07 2.819 2.819	1.19 1.903 1.902	1.50 3.006 3.006	1.75 7.525 7.522	2.00 21.442 21.445	2.25 30.109 30.113	2.52 41.427 41.428	68.375 68.385
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Riow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	WQCV 0.53 1.395 1.395 0.00 0.0 23.2 2.6	1.07 2.819 2.819 0.00 0.0 46.4 3.7	1.19 1.903 0.01 4.5 31.5 3.0	1.50 3.006 0.02 7.8 49.5 3.9	1.75 7.525 7.522 0.20 75.1 121.4 9.0	2.00 21.442 21.445 0.67 247.4 333.1 41.5	2.25 30.109 	2.52 41.427 41.428 1.25 460.1 608.8 182.0	68.375 68.385 2.00 734.0 941.9 373.2
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Row, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	WQCV 0.53 1.395 0.00 23.2 2.6 N/A	1.07 2.819 2.819 0.00 0.0 46.4 3.7 N/A	1.19 1.903 0.01 4.5 31.5 3.0 N/A	1.50 3.006 3.006 0.02 7.8 49.5 3.9 0.5	1.75 7.525 7.522 0.20 75.1 121.4 9.0 0.1	2.00 21.442 21.445 0.67 247.4 333.1 41.5 0.2	2.25 30.109 30.113 0.93 342.3 458.5 103.9 0.3	2.52 41.427 41.428 1.25 460.1 608.8 182.0 0.4	68.375 68.385 2.00 734.0 941.9 373.2 0.5
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	WQCV 0.53 1.395 1.395 0.00 0.0 23.2 2.6	1.07 2.819 2.819 0.00 0.0 46.4 3.7	1.19 1.903 0.01 4.5 31.5 3.0	1.50 3.006 0.02 7.8 49.5 3.9	1.75 7.525 7.522 0.20 75.1 121.4 9.0	2.00 21.442 21.445 0.67 247.4 333.1 41.5	2.25 30.109 	2.52 41.427 41.428 1.25 460.1 608.8 182.0	68.375 68.385 2.00 734.0 941.9 373.2 0.5
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	WQCV 0.53 1.395 0.00 0.0 23.2 2.6 N/A Plate N/A N/A	1.07 2.819 2.819 0.00 46.4 3.7 N/A Plate N/A N/A	1.19 1.903 0.01 4.5 31.5 3.0 N/A Plate N/A N/A	1.50 3.006 0.02 7.8 49.5 3.9 0.5 Plate N/A N/A	1.75 7.525 0.20 75.1 121.4 9.0 0.1 Plate N/A N/A	2.00 21.442 21.445 0.67 247.4 333.1 41.5 0.2 Spillway 0.1 N/A	2.25 30.109 30.113 0.93 342.3 458.5 103.9 0.3 Spillway 0.7 N/A	2.52 41.427 41.428 1.25 460.1 608.8 182.0 0.4 Spillway 1.1 N/A	68.375 68.385 2.00 734.0 941.9 373.2 0.5 Spillway 1.0 N/A
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	WQCV 0.53 1.395 0.00 0.01 23.2 2.6 N/A Plate N/A 11	1.07 2.819 0.00 0.0 46.4 3.7 N/A Plate N/A N/A 15	1.19 1.903 0.01 4.5 31.5 3.0 N/A Plate N/A N/A N/A 12	1.50 3.006 0.02 7.8 49.5 3.9 0.5 Plate N/A N/A 15	1.75 7.525 7.522 0.20 75.1 121.4 9.0 0.1 Plate N/A N/A 22	2.00 21.442 21.445 0.67 247.4 333.1 41.5 0.2 Spillway 0.1 N/A 27	2.25 30.109 30.113 0.93 342.3 458.5 103.9 0.3 Spillway 0.7 N/A 27	2.52 41.427 41.428 1.25 460.1 608.8 182.0 0.4 Spillway 1.1 N/A 25	68.375 68.385 2.00 734.0 941.9 373.2 0.5 Spillway 1.0 N/A 23
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Flow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	WQCV 0.53 1.395 0.00 0.01 23.2 2.6 N/A Plate N/A 11 12	1.07 2.819 0.00 0.0 46.4 3.7 N/A Plate N/A N/A 15 16	1.19 1.903 0.01 4.5 31.5 3.0 N/A Plate N/A N/A 12 14	1.50 3.006 0.02 7.8 49.5 3.9 0.5 Plate N/A N/A 15 16	1.75 7.525 0.20 75.1 121.4 9.0 0.1 Plate N/A N/A 22 24	2.00 21.442 21.445 0.67 247.4 333.1 41.5 0.2 Spillway 0.1 N/A 27 31	2.25 30.109 30.113 0.93 342.3 4458.5 103.9 0.3 Spillway 0.7 N/A 27 31	2.52 41.427 41.428 1.25 460.1 608.8 182.0 0.4 Spillway 1.1 N/A 25 30	68.375 68.385 2.00 734.0 941.9 373.2 0.5 Spillway 1.0 N/A 23 29
Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = Calculated Runoff Volume (acre-ft) = OPTIONAL Override Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = Predevelopment Unit Peak Riow, q (cfs/acre) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Peak Nutflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	WQCV 0.53 1.395 0.00 0.01 23.2 2.6 N/A Plate N/A 11	1.07 2.819 0.00 0.0 46.4 3.7 N/A Plate N/A N/A 15	1.19 1.903 0.01 4.5 31.5 3.0 N/A Plate N/A N/A N/A 12	1.50 3.006 0.02 7.8 49.5 3.9 0.5 Plate N/A N/A 15	1.75 7.525 7.522 0.20 75.1 121.4 9.0 0.1 Plate N/A N/A 22	2.00 21.442 21.445 0.67 247.4 333.1 41.5 0.2 Spillway 0.1 N/A 27	2.25 30.109 30.113 0.93 342.3 458.5 103.9 0.3 Spillway 0.7 N/A 27	2.52 41.427 41.428 1.25 460.1 608.8 182.0 0.4 Spillway 1.1 N/A 25	68.375 68.385 2.00 734.0 941.9 373.2 0.5 Spillway 1.0 N/A 23

Detention Basin Outlet Structure Design

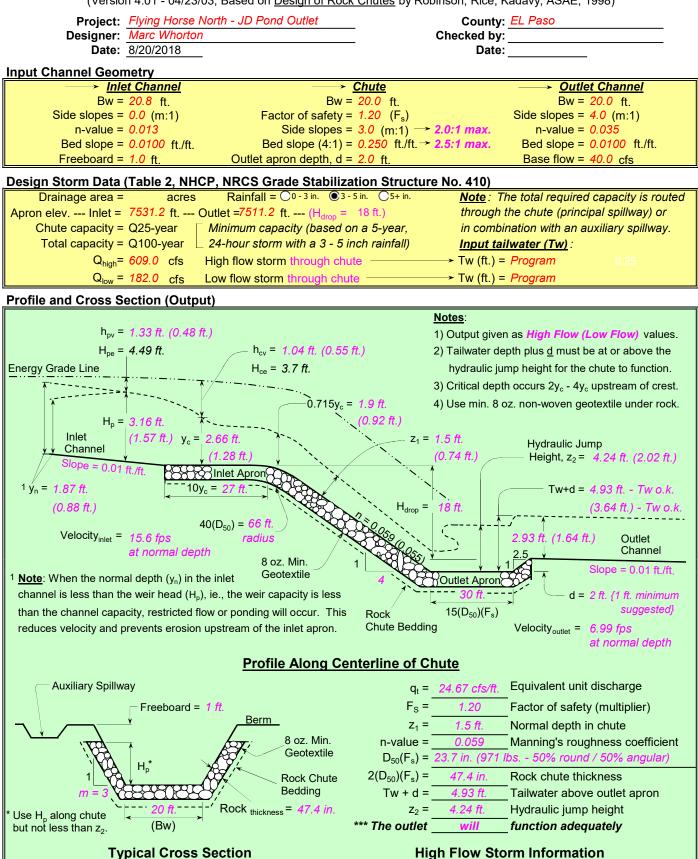
Outflow Hydrograph Workbook Filename:

	Storm Inflow H				n 3.07 (Februa					
ſ		WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK		ed in a separate	-	WORKBOOK
Time Interval	SOURCE						WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.95 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:09:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant 1.010	0:14:51 0:19:48	2.74	1.97 5.42	1.36 3.70	2.10	4.69 13.49	9.77 31.71	11.39 39.07	12.89 46.76	15.10 59.45
1.010	0:24:45	7.04	5.42 13.91	9.51	14.80	34.64	82.12	102.73	124.75	164.90
	0:29:42	19.32	38.17	26.10	40.61	94.81	223.20	277.98	336.63	444.01
	0:34:39	23.19	46.42	31.50	49.46	121.39	323.47	425.12	541.27	768.07
	0:39:36	22.19	44.52	30.16	47.44	118.28	333.14	458.54	608.77	941.94
	0:44:33	20.20	40.51	27.45	43.17	108.29	310.79	431.04	582.87	939.56
	0:49:30	18.10	36.44	24.64	38.84	97.66	281.42	390.98	535.69	878.35
	0:54:27	15.70	31.77	21.42	33.89	85.81	250.82	352.31	485.61	800.60
	0:59:24	13.65	27.68	18.60	29.53	75.09	221.36	315.01	438.24	731.15
	1:04:21	12.38	25.04	16.87	26.71	67.46	196.13	281.72	395.12	668.65
	1:09:18	10.29	20.92	14.06 11.59	22.33	56.98	169.57	244.05	343.20	594.66
	1:14:15	8.46 6.60	17.30 13.63	9.08	18.47 14.56	47.35 37.87	142.96 117.65	207.70 173.58	294.13 249.28	509.61 435.39
	1:24:09	4.99	10.46	6.92	14.56	29.48	94.26	1/5.58	249.28	372.25
	1:29:06	3.64	7.75	5.08	8.30	22.24	74.08	115.60	173.54	316.50
	1:34:03	2.78	5.85	3.86	6.26	16.51	56.37	91.58	142.20	268.83
	1:39:00	2.28	4.73	3.14	5.06	13.16	42.77	70.68	113.81	225.24
	1:43:57	1.92	3.99	2.65	4.26	11.04	34.92	55.08	89.03	185.28
	1:48:54	1.68	3.48	2.32	3.72	9.57	29.75	45.79	70.94	149.07
	1:53:51	1.51	3.12	2.08	3.33	8.53	26.20	39.69	59.85	118.87
	1:58:48	1.39	2.86	1.91	3.05	7.79	23.63	35.39	52.61	99.74
	2:03:45	1.02	2.12	1.41	2.26	5.92	18.97	28.99	43.64	83.33
	2:13:39	0.75	1.54 1.13	1.03 0.76	1.64	4.27 3.17	13.83 10.12	21.64 15.73	33.32 24.54	65.70 49.44
	2:18:36	0.41	0.84	0.56	0.90	2.35	7.55	11.63	18.13	37.08
	2:23:33	0.29	0.61	0.41	0.66	1.73	5.63	8.83	13.58	27.60
	2:28:30	0.21	0.44	0.29	0.47	1.25	4.16	6.61	10.30	20.70
	2:33:27	0.15	0.32	0.21	0.34	0.91	3.03	4.92	7.75	15.78
	2:38:24	0.10	0.22	0.14	0.24	0.64	2.25	3.67	5.84	11.98
	2:43:21	0.06	0.14	0.09	0.15	0.42	1.58	2.71	4.47	9.20
	2:48:18	0.03	0.08	0.05	0.08	0.25	1.03	1.90	3.30	7.18
	2:53:15	0.01	0.03	0.02	0.04	0.12	0.60	1.23	2.30	5.41
	2:58:12 3:03:09	0.00	0.01	0.00	0.01	0.04	0.28	0.71	1.49	3.89
	3:08:06	0.00	0.00	0.00	0.00	0.00	0.08	0.33	0.85	2.62
	3:13:03	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.39	0.83
	3:18:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30
	3:22:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03
	3:27:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:37:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:42:45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:47:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:39 3:57:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:02:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:07:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:27	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ĺ	4:17:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:22:21	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:18 4:32:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:42:09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:47:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:52:03 4:57:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:01:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:06:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	5:11:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:16:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:21:45 5:26:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:26:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:36:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
[5:41:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:46:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:51:27 5:56:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
l	5:50:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

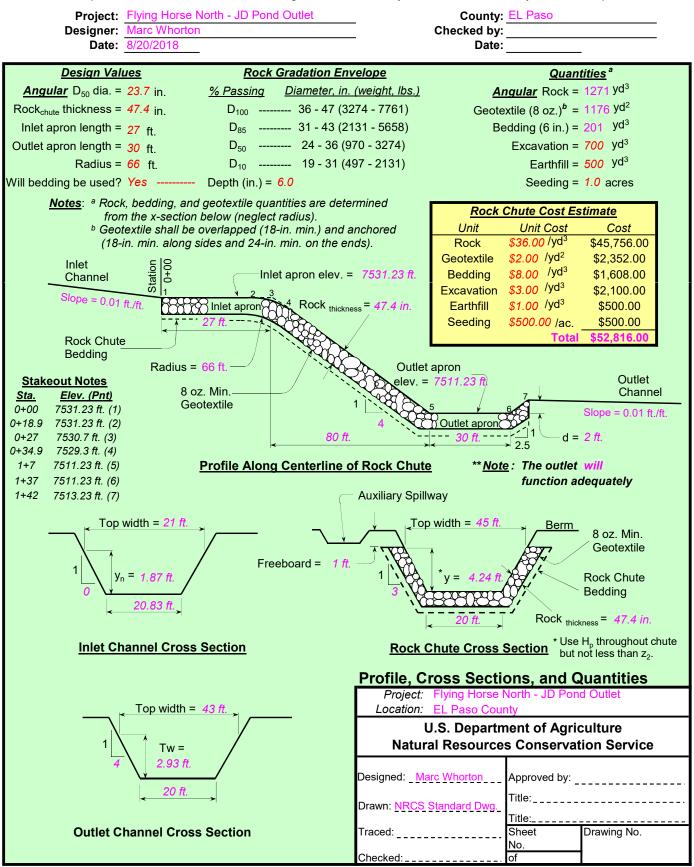
Summary Stage-Area-Volume-Discharge Relationships


The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft^2]	[acres]	[ft^3]	[ac-ft]	Outflow [cfs]	
PERMANENT WSE	0.00	311,545	7.152	0	0.000	0.00	For best results, include
WQCV	0.15	313,949	7.207	46,912	1.077	2.53	stages of all grade slope
2 YR. WSE	0.13	314,910	7.229	65,778	1.510	2.99	changes (e.g. ISV and Fl
EURV	0.33	316,673	7.270	100,515	2.308	3.69	from the S-A-V table on
5 YR. WSE	0.35	316,994	7.277	106,852	2.453	3.80	Sheet 'Basin'.
50 YR. WSE	2.96	363,656	8.348	992,161	22.777	104.11	Also include the inverts
100 YR. WSE	3.61	375,226	8.614	1,232,372	28.291	182.18	outlets (e.g. vertical ori
							overflow grate, and spil
							where applicable).
							_
							4
							_
							-
							4
							4
							-
							-
							-
							-
							-
							-
							-
							1
							1
							1
							1
							1
							1
]
							_
							-
							-
							-
							-
							-
							-
							-
							-
							1
							1
							1
]
]
							_
							-
							-
							1
]
							-
							4
							1
							1
]
							1
							4
						-	4
							-
							4

Rock Chute Design Data


(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

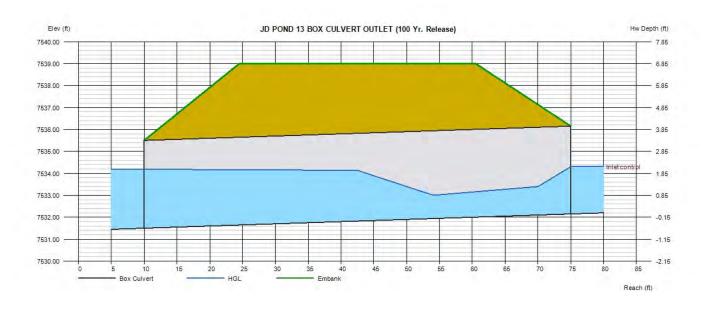
Page 1 of 1

Rock Chute Design - Plan Sheet

(Version 4.0 - 07/10/00, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

Monday, Aug 20 2018


JD POND 13 BOX CULVERT OUTLET (100 Yr. Release)

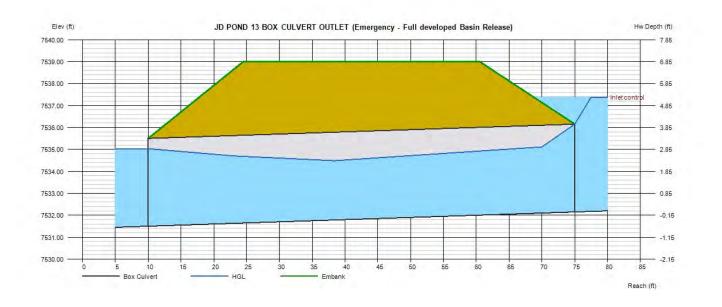
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7531.50 = 65.00 = 1.00 = 7532.15 = 48.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 182.00 = (dc+D)/2
Shape	= Box	Highlighted	
Span (in)	= 120.0	Qtotal (cfs)	= 182.00
No. Barrels	= 2	Qpipe (cfs)	= 182.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Flared Wingwalls	Veloc Dn (ft/s)	= 3.39
Culvert Entrance	= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 6.64
Coeff. K,M,c,Y,k	= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 7534.19
		HGL Up (ft)	= 7533.52
Embankment		Hw Elev (ft)	= 7534.30
Top Elevation (ft)	= 7539.00	Hw/D (ft)	= 0.54

Top Width (ft) Crest Width (ft)

=	7539.00
=	36.00
=	230.00

Qtotal (cfs)	= 182.00
Qpipe (cfs)	= 182.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 3.39
Veloc Up (ft/s)	= 6.64
HGL Dn (ft)	= 7534.19
HGL Up (ft)	= 7533.52
Hw Elev (ft)	= 7534.30
Hw/D (ft)	= 0.54
Flow Regime	= Inlet Control

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


JD POND 13 BOX CULVERT OUTLET (Emergency - Full developed Basin Release)

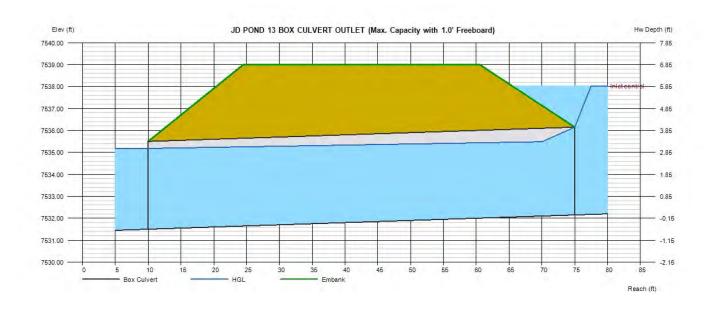
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Pice (in)	= 7531.50 = 65.00 = 1.00 = 7532.15 = 48.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 609.00 = (dc+D)/2
Rise (in) Shape	= 46.0 = Box	Highlightod	
Span (in)	= 120.0	Highlighted	- 600.00
,		Qtotal (cfs)	= 609.00
No. Barrels	= 2	Qpipe (cfs)	= 609.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Flared Wingwalls	Veloc Dn (ft/s)	= 8.62
Culvert Entrance	= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 9.94
Coeff. K,M,c,Y,k	= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 7535.03
		HGL Up (ft)	= 7535.21
Embankment		Hw Elev (ft)	= 7537.38
Top Elevation (ft)	= 7539.00	Hw/D (ft)	= 1.31

Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 7539.00 = 36.00 = 230.00

підпіідпіей	
Qtotal (cfs)	= 609.00
Qpipe (cfs)	= 609.00
Qovertop (cfs)	= 0.00
Veloc Dn (ft/s)	= 8.62
Veloc Up (ft/s)	= 9.94
HGL Dn (ft)	= 7535.03
HGL Up (ft)	= 7535.21
Hw Elev (ft)	= 7537.38
Hw/D (ft)	= 1.31
Flow Regime	= Inlet Control

Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.


JD POND 13 BOX CULVERT OUTLET (Max. Capacity with 1.0' Freeboard)


Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 7531.50 = 65.00 = 1.00 = 7532.15 = 48.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 0.00 = 700.00 = (dc+D)/2
Shape	= Box	Highlighted	
Span (in)	= 120.0	Qtotal (cfs)	= 700.00
No. Barrels	= 2	Qpipe (cfs)	= 700.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Flared Wingwalls	Veloc Dn (ft/s)	= 9.51
Culvert Entrance	= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 10.42
Coeff. K,M,c,Y,k	= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 7535.18
		HGL Up (ft)	= 7535.51
Embankment		Hw Elev (ft)	= 7538.03
Ton Elevation (ft)	= 7539.00		= 1.47

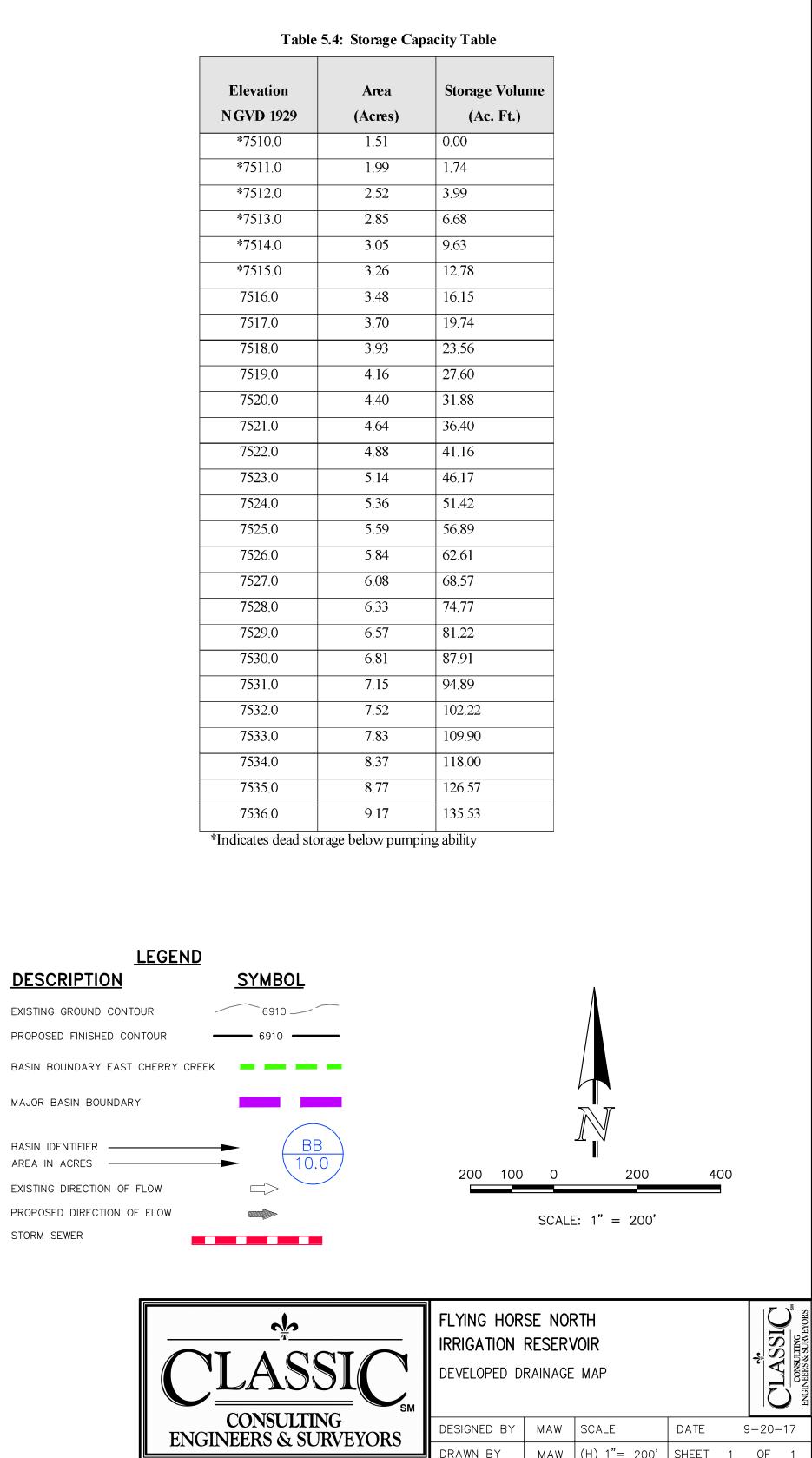
Top Elevation (ft) Top Width (ft) Crest Width (ft)

= 7539.00 = 36.00 = 230.00

inginginoa		
Qtotal (cfs)	=	700.00
Qpipe (cfs)	=	700.00
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	9.51
Veloc Up (ft/s)	=	10.42
HGL Dn (ft)	=	7535.18
HGL Up (ft)	=	7535.51
Hw Elev (ft)	=	7538.03
Hw/D (ft)	=	1.47
Flow Regime	=	Inlet Control

DURSE (B)	2 AC. RE	SIDENTIAL (B)	COMPOSITE
			C _N
AREA	CN	AREA	
(Ac.)		(Ac.)	
0.0	65	22.3	65.0
0.0	65	36.4	65.0
19.1	65	32.8	63.5
63.2	65	45.0	62.7
5.5	65	11.5	63.7
0.0	65	67.7	65.0
0.0	65	36.9	65.0
0.0	65	26.4	65.0

Table 5.3 Sub-basin Time of Concentration


			TIME	OF CONC	ENTRATIO	ON DEVE	LOPED			
	COMPOSITE		OVERLAND		STREET / C	HANNEL FL	OW(DCM Vo	l. 1 Fig. 6-25)	Tc	Tc
BASIN	Cn	Length	Height	Тс	Length	Slope	Veloaity	Тс	TOTAL	LAG(0.6tc)
		(ft)	(ft)	(hr)	(ft)	(%)	(fps)	(hr)	(hr)	(hr)
CC-1	65.0	300	10	0.40	900	2.0%	1.8	0.14	0.53	0.32
CC-2	65.0	300	10	0.40	1700	2.0%	1.8	0.26	0.66	0.39
CC-3	63.5	300	14	0.35	900	2.5%	2.4	0.10	0.45	0.27
CC-4A	62.7	300	14	0.35	2900	2.0%	2.1	0.38	0.73	0.44
CC-4B	63.7	300	12	0.37	900	3.0%	2.5	0.10	0.47	0.28
OS-12	65.0	300	14	0.35	1500	3.0%	2.5	0.17	0.51	0.31
OS-13	65.0	300	16	0.33	900	3.0%	2.5	0.10	0.43	0.26
OS-14	65.0	300	14	0.35	600	3.5%	2.7	0.06	0.41	0.24

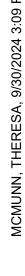
			Total
Storm Event	Peak Inflow	Max. WSE	Discharge
	(cfs)	(ft.)	(cfs)
2-yr (City/ County)	48	7531.40	6
5-yr (City/ County)	119	7531.87	12
50-yr (NOAA 14)	431	7533.58	64
100-yr (NOAA 14)	609	7534.23	124

Table 5.6: Reservoir Discharge Table									
	Discharge (cfs) Discharge (cfs)		Discharge (cfs)						
Elevation	(SWQ Outlet Box)	(Twin CBC Spillway)	(Total)						
7531.0	0.0	0.0	0.0						
7532.0	13.89	0.0	13.89						
7533.0	27.77	0.0	27.77						
7534.0	51.31	49.05	100.36						
7535.0	69.52	138.56	208.08						
7536.0	74.61	254.72	329.33						
Permanent WSE = 7531.0									

Top of SWQ Outlet box = 7533.0Spillway elevation = 7533.0

Elevation	Area	Storag	
NGVD 1929	(Acres)	(A	
*7510.0	1.51	0.00	
*7511.0	1.99	1.74	
*7512.0	2.52	3.99	
*7513.0	2.85	6.68	
*7514.0	3.05	9.63	
*7515.0	3.26	12.78	
7516.0	3.48	16.15	
7517.0	3.70	19.74	
7518.0	3.93	23.56	
7519.0	4.16	27.60	
7520.0	4.40	31.88	
7521.0	4.64	36.40	
7522.0	4.88	41.16	
7523.0	5.14	46.17	
7524.0	5.36	51.42	
7525.0	5.59	56.89	
7526.0	5.84	62.61	
7527.0	6.08	68.57	
7528.0	6.33	74.77	
7529.0	6.57	81.22	
7530.0	6.81	87.91	
7531.0	7.15	94.89	
7532.0	7.52	102.22	
7533.0	7.83	109.90	
7534.0	8.37	118.00	
7535.0	8.77	126.57	
7536.0	9.17	135.53	

	CONSULTING ENGINEERS & SURVEYORS		DESIGNED BY	MAW	SCALE	DATE	9-20-17
			DRAWN BY	MAW	(H) 1"= 200'	SHEET 1	OF 1
	619 N. Cascade Avenue, Suite 200 Colorado Springs, Colorado 80903	(719)785—0790 (719)785—0799 (Fax)	CHECKED BY		(V) 1"= N/A	JOB NO.	1096.11




Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20

El Paso County, Colorado

APPENDIX E

DRAINAGE MAPS

