

Info Only: Comments from Service Engineering and Stormwater Engineering are in blue text.

> HRGREEN.COM

Flying Horse North Filing No. 5 Final Drainage Report

October 2024

Prepared For:

Mr. Drew Balsick

Vice President / Project Manager

Flying Horse Development, LLC
2138 Flying Horse Club Drive

Colorado Springs, CO 80921

(719) 785-3237

Prepared By:

HR Green Development, LLC
1975 Research Parkway, Ste. 160
Colorado Springs, CO 80920
Contact: Richie Lyon, PE
Richie.Lyon@hrgreen.com
719-318-0871

PCD File No. SF____ SF2427

Table of Contents

Engi	neer's Statement	1
Deve	eloper's Statement	1
El Pa	aso County:	1
Final	l Drainage Report – Flying Horse North	2
I.	General Purpose, Location and Description	2
a.	Purpose and Scope	2
b.	DBPS Investigations	2
C.	Stakeholder Process	2
d.	Agency Jurisdictions	3
e.	General Project Description	3
f.	Data Sources	3
g.	Applicable Criteria and Standards	4
II.	Project Characteristics	5
a.	Location in Drainage Basin, Offsite Flows, Size	5
b.	Compliance with DBPS	7
C.	Site Characteristics	7
d.	Major Drainage Ways and Structures	7
e.	Existing and proposed land uses	8
III.	Hydrologic Analysis	8
a.	Major Basins and Sub-basins	8
M	ajor Basin Description	8
E	xisting Subbasin Description	9
Pr	roposed Subbasin Description	9
b.	Water Quality and Detention Facilities	12
c.	Methodology	15
IV.	Hydraulic Analysis	16
a.	Major Drainageways	16
b.	Storm Sewer Infrastructure and Culvert Pipes	16
V.	Environmental Evaluations	16
a.	Significant Existing or Potential Wetland and Riparian Areas Impacts	16
C.	Stormwater Quality Considerations and Proposed Practices	16

d.	Permitting Requirements	17
e.	4-Step Process	17
VI.	Drawings	18
VII.	Drainage and Bridge Fees	18
VIII.	Summary	19
IX.	References	20

Appendices

- A. Maps & Exhibits
- B. Hydrology Calculations
- C. Hydraulic Calculations
- D. Referenced Report Excerpts
- E. Site Drainage Maps

Engineer's Statement

This report and plan for the drainage design of the development, Flying Horse North Filing No. 5, was prepared by me (or under my direct supervision) and is correct to the best of my knowledge and belief. Said report and plan has been prepared in accordance with the *El Paso County Drainage Criteria* Manual and is in conformity with the master plan of the drainage basin. I understand that El Paso County does not and will not assume liability for drainage facilities designed by others. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Richie Lyon, PE	Date	
State of Colorado No	. 53921	
For and on behalf of	HR Green Development, LLC	
Developer's	s Statement	
•		the requirements specified in this drainage report and p
Flying Horse Develop	• •	
- '		
Drew Balsick	 Date	
Vice President	Butto	
Flying Horse Develop 2138 Flying Horse Cl		
Colorado Springs, CO) 80921	
El Paso Co	unty:	
	vith the requirements of the El Pa nd 2 and the Engineering Criteri	nso County Land Development Code, Drainage Criteria a Manual, as amended.
Joshua Palmer, P.E.		Date
County Engineer/ECI	√ Administrator	

Final Drainage Report – Flying Horse North

I. General Purpose, Location and Description

Purpose and Scope

The Purpose of this Final Drainage Report (FDR) is to identify specific solutions to drainage concerns for onsite and offsite tributary areas resulting from the development of the subdivision to be platted. The FDR is to describe the onsite and offsite drainage patterns, existing and proposed storm infrastructure as it relates to water quality and stormwater detention for any proposed or existing facilities, the planned storm water management for Flying Horse North Filing No. 5.

The Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1 is a combined Preliminary Drainage Report (PDR) and Final Drainage Report (FDR) that was developed by Classic Consulting, latest revision June 2018. The combined PDR/FDR was approved by the County in September of 2018 and is included in Appendix E.

A more recent Master Development Drainage Plan (MDDP) was prepared by HR Green Development, LLC. and was approved by the County in September of 2022, entitled *Flying Horse North Master Development Drainage Plan* latest revision date of September 9, 2022. This MDDP also referenced the Classic Consulting report from 2018 for master drainage design of the proposed Filing No. 5 area.

The items discussed in this FDR include final plat layout, land uses, and drainage patterns for Flying Horse North Filing No. 5. Included in this report are final hydrologic and hydraulic drainage calculations and design as required for the final design of the development of the single-family residential estate lot areas. This report references the aforementioned reports to compare and contrast findings in the final design to ensure that existing infrastructure and facilities are not negatively impacted by this development.

DBPS Investigations

Flying Horse North is split by the Arkansas River Basin and South Platte Basin. Within the South Platte Basin, the site is withing the East Cherry Creek Drainage Basin. A Drainage Basin Planning Study (DBPS) does not currently exist for the East Cherry Creek Drainage Basin. This FDR is consistent with the 2022 MDDP which complies with standard El Paso County regulations regarding drainage within this corridor.

The Filing No. 5 area falls within the East Cherry Creek Basin which is to consist of 21 single-family residential estate lots of 2.5-acres minimum area within 58 acres. The remainder of the filing consists of a 52.7-acre open space park area. Proposed developed areas are provided with water quality and full spectrum detention (FSD) prior to release offsite. Areas that are tributary to Flying Horse Filing No. 5 have no increase in required stormwater quality or detention volumes. The west side of the Filing No. 5 site drains to the west through the existing golf course into the existing Irrigation Reservoir. The east side of the site drains to the north to the existing detention facility, Pond B, within Filing No. 4. Development of the Filing No. 5 areas tributary to this pond were accounted for within the Filing No. 4 Final Drainage Report (FDR) and pond design.

Stakeholder Process

There are no amendments to the current DBPS.

Agency Jurisdictions

Listed below are the jurisdictions that this project will conform to:

El Paso County

Federal Emergency Management Agency

General Project Description

Flying Horse North Filing No. 5 is in El Paso County jurisdiction and is located within the larger Flying Horse North subdivision. The overall Flying Horse North development is bordered by Highway 83 to the west, Black Forest Road to the east, Cathedral Pines to the south, and High Forest Ranch to the north. The greater Flying Horse North area contains approximately 1,459 acres within the whole Section 36, Township 11 South, Range 66 West of the Sixth Principal Meridian, and a portion of Section 30 and 31, Township 11 South, and Range 65 West of the Sixth Principal Meridian.

The Filing No. 5 area totals approximately 115 acres including 21 total 2.5-acre single-family residential estate lots for 58 acres (50%) of the filing. There is a park area within Tract A that consists of 52.7 acres (46%) of the filing. The remained of the filing area is right-of-way consisting of 4.5 acres (4%). The development includes the single-family residential estate lots, 60' width rights-of-way that consist of asphalt paved roadways with roadside swale sections, electric easements, and storm infrastructure including culverts.

Filing No. 5 was previously assessed in the 2018 Classic Consulting report with a similar land use plan that included 2-acre single-family residential estate lots and roadways. This report assesses the lots as 2.5-acre lots. The layout shown in the developed conditions hydrology map of this report and the corresponding construction drawings differs slightly from the approved FDR/PDR with adjusted roadway alignments and lot lines. However, the drainage patterns, typical roadway section, and land use densities are similar.

The existing vegetative cover is 90 percent as evidenced by a field survey and aerial imagery. The existing vegetation includes native grasses and weeds, shrubs, and pinyon pine trees. Previous clearing of future planned roadways was done several years ago, and native grass and weeds have covered those areas.

Data Sources

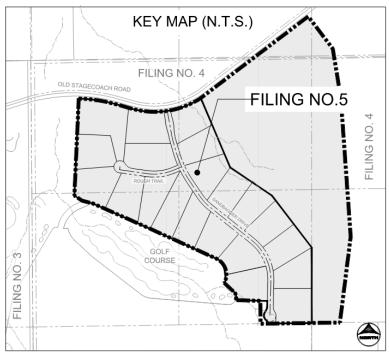


Figure 1 - Vicinity Map

Listed Below are the technical resources reviewed in the preparation of this FDR:

El Paso County Drainage Criteria Manual (DCM)

Mile High Flood District

NOAA Atlas 14

NRCS Soil Survey for El Paso County Area, Colorado

FEMA FIRM 08041C0305G and FIRM 08041C0315G (eff. 12/7/2018)

El Paso County Assessor Property Records

Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1 prepared by Classic Consulting – June 2018

Flying Horse North Master Development Drainage Report prepared by HR Green Development, LLC. – latest revision September 9, 2022

Flying Horse North Final Drainage Report prepared by HR Green Development, LLC. – latest revision September 2024

Applicable Criteria and Standards

Per El Paso County Criteria Manual, flows from the proposed site will be limited to historic flows to maintain the stability of the existing channels within the drainage basins. The final drainage plan follows the Drainage Criteria Manual for El Paso County which refers to the City of Colorado Springs Drainage Criteria Manuals as amended. Criteria within the County and City manuals refer to the Mile High Flood

District manuals, particularly for extended detention basin design and runoff reduction calculations which are utilized in this report.

A distinct difference in the 2018 FDR/PDR and this report are the hydrologic methodologies utilized to compute peak runoff values. The 2018 Classic Consulting report utilized the NRCS Curve Number method in order to be consistent with their previous MDDP for the greater Flying Horse North master development. The NRCS Curve Number method was used for Filing No. 1 and the future development of Filing No. 5 for sub-basins that did not exceed 100 acres. Typically, the Rational Method is used for hydrologic computations when basin analysis is under 100 acres due to the NRCS Curve Number method yielding smaller minor and major storm event peak runoff values. The resultant hydraulics in this report are similar to that of the approved 2018 FDR/PDR on a basin-by-basin basis, however, any differences in calculated stormwater runoff will be discussed. The difference in methodologies between the 2018 report and this report result in larger cumulative stormwater runoff values reported for the minor and major storm events. Due to the more conservative nature of the Rational Method, cumulative peak flow rates are greater than that of the 2018 FDR/PDR for the minor and major storm events for downstream design points.

HR Green has discussed this discrepancy in hydrologic methodology with El Paso County engineering staff and it has been expressed that the chosen method for hydrologic computations is the Rational Method for this report to ensure sound design of the storm infrastructure for Filing No. 5 including swales, channels, culvert pipes, inlets, and roadway capacities. Due to the use of the NRCS Curve Number method in the 2018 FDR/PDR, the peak runoff values in this report are larger than that of the approved 2018 FDR/PDR. To complete a fair assessment of the impacts downstream of the site, existing hydrology calculations have been completed and included in appendix B. There are no anticipated negative impacts to downstream offsite infrastructure because of this development as all other drainage parameters remain consistent with the 2018 FDR/PDR.

II. Project Characteristics

Location in Drainage Basin, Offsite Flows, Size

Flying Horse North Filing No. 5 is located within the East Cherry Creek Basin. There is not a current planning study of the drainage basin, but generally it slopes from southwest to northeast. The basin eventually flows into the South Platte River.

Within the portion of the East Cherry Creek Basin investigated with this Report, two major drainage basins have been designated by the detention facility in which the area is draining to. One drainage basin consists of seven sub-basins, "B" basins, conveyed to the existing detention pond, Pond B. This pond is located to the north of Old Stagecoach Road and drainage from the Filing No. 5 site will reach this pond via and existing 48-inch culvert. The respective contributing flow from the sub-basins is shown in the table below:

Discuss the

projects these facilities were constructed under and provide EDARP project numbers

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
B1	57.78	15.9	97.5
B2.1	9.19	5.6	23.1
B2.2	5.24	3.0	12.4
B2.3	2.80	1.8	7.3
B2.4	2.61	1.8	6.9
B2.5	1.09	0.8	3.3
B2.6	18.82	9.5	38.4

Drainage within the "B" drainage basin flows ultimately from the southwest to northeast to reach the existing Pond B. Design points are located at proposed culverts and inlets within roadside ditches that direct flow to the detention pond. Drainage outfalls from Pond B into an existing channel that ultimately outfalls to the South Platte River. Drainage Basin B1 is an existing basin that was analyzed in the Filing No. 4 Final Drainage Report and has been included in this analysis to ensure consistency in routing calculations and final flow rates.

The second drainage basin consists of three sub-basins, "I" basins, conveyed to the existing Irrigation Reservoir. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
I1	1.02	0.8	3.4
l2	22.90	13.2	54.4
l3	2.48	1.6	6.8

Drainage within the "I" drainage basin flows ultimately from the southeast to the north and west to reach the irrigation facility. Drainage from these basins flows offsite, through an existing golf course and then collected in the existing reservoir.

This Filing No. 5 FDR utilizes similar tributary areas, runoff coefficients (when comparing the NRCS Curve Number method and the Rational Method), and percent imperviousness for respective sub-basins and downstream detention facilities compared to 2018 Classic Consulting FDR/PDR. Any deviation in the sub-basin area, coefficient, or percent imperviousness is due to slight roadway alignment adjustments for the final design as compared to the preliminary layout in the 2018 report. Any change in the peak runoff numbers as compared to the 2018 report are due to the change in hydrologic computation methodology as discussed in a previous section of this report. Due to these differences in the computational methodology between the previously approved 2018 FDR and the values being reported in this report, additional analysis of existing conditions has been completed on the entire site. The existing conditions major flow values have been added to Appendix B. A table showing the Classic 2018 FDR/PDR NRCS Method peak runoff values compared to the HR Green 2024 FDR Rational Method peak runoff values for proposed and existing conditions is provided below. This table is for basins that qualify for large lot exclusion under ECM code I.7.1.B.5.

There is no existing condition shown in appendix. Cannot use future developed condition by Classic to be existing condition for this project.

Why are all these basins qualified for exclusion under ECM code I.7.1.B.5? The large lot exclusion applies only to water quality, and detention requirements still need to be evaluated. Additionally, roadways are not included in the large lot exclusion—only driveways are. Please provide an exhibit map showing the areas being treated and those being excluded. This comment also applies to

the SF2422.

Page | 6

These numbers are for the developed condition as calculated by Classic.

Please include the proposed Q5 when comparing the existing FCondition to the No. 5

Basin Na	ame	Area	(acre)	Propos (c	ed fs)	Q100
Classic	HRG	Classic	HRG	Classic	Υ	HRG
CC-10	B1	85.6	57.78	91.9	<	97.5
CC-8	B2.1	7.7	9.19	12.0	1	23.1
CC-3	B2.2	52.5	5.24	54.5		12.4
	B2.3		2.80			7.3
CC-10	B2.4	85.6	2.61	01.0		6.9
	B2.5	00.0	1.09	91.9		3.3
	C2.6		18.82			38.4
CC-9	I1	5.6	1.02	9.8	7	3.4
CC-4A	12	108.7	22.9	156.0	~	54.4
CC-3	13	52.5	2.48	54.5	4	6.8

While there is an increase in peak runoff for these basins as compared to the 2018 report, there is a discrepancy in methodology. The difference is insignificant as proposed improvements will be designed using the updated values and pond sizing, which relies on a historic model, was designed using CUHP / SWMM including a historic model. Additionally, as seen in the Flying Horse North Filing No. 4 Final Drainage Report, the total flowrates being released 60 significant increase in runoff compared to the proposed overall.

Compliance with DBPS

This FDR is in general conformance with the design desimals flows rount of Exits Chersyit Creeke as incefer to Flying Horse North will construct multiple full ditectromic detentions facilities propiose the certificians of development and mimic natural flow patterns. Stay this phore North Filing No. 5 development will follow historic drainage patterns and utilize the existing natural swales throughout the area for conveyance of stormwater runoff toward respective proposed detention facilities.

calculations by Classic. A comparison between the

existing and proposed conditions is required at each

Site Characteristics

Per the NRCS web soil survey, the site is made up entirely of Type B soils. Filing No. 5 is within the East Cherry Creek Basin which consists of Peyton sandy loam and Peyton-Pring complex. See Appendix A for the NRCS soil map.

The current ground cover in Filing No. 5 is short to mid-grass prairie grasslands and former farmland which consists of non-native weeds and grasses. This portion of the site has very few, if any, trees and a minimal number of shrubs are found on the site.

Major Drainage Ways and Structures

No major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries. These informal drainage ways are assessed within this report for stormwater runoff capacity and water surface elevations during the 100-year event as future development of single-family residential lots with basement or walkout conditions is considered. Roadside swales are included as a part of the typical roadway section and are assessed within sub-basins to ensure that swale and culvert pipe capacities are met and do not result in excessive pooling in the roadway sections per code.

Clearly

which

to)

identify how

water quality

is addressed for each

sub-basin (ie lidentifying

exclusion or

basins drain

pond the

The existing minor drainage channels within the site are planned to be maintained to the maximum extent possible. These will continue to be used for conveyance of storm drainage flows. The limits of construction and disturbance plan for no significant earthwork alterations to the existing minor drainage channels that would affect the drainage patterns or capacity of the sections throughout the filing as they are proven to have sufficient capacities for their respective tributary areas and to maintain the natural features of the site including existing trees and vegetation.

Drainageways of note including roadside swales are described within this report with parameters to demonstrate compliance with swale design criteria and capacities. Culvert pipes are sized to convey upstream flow under proposed roadways and maintain historic drainage patterns.

Existing and proposed land uses

The existing Filing No. 5 area is open rangeland within a forested area consisting of sparse native grasses, weeds, and pinyon pine trees as well as baren pervious soil. An open space area was planned for in the approved 2016 PUD and is consistent with this filing. The park area is approximately 53 acres Excerpts are required, including text and is to be developed as a public park. discussions, hydrologic calculations, and

The 2018 Classic Consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-acre single family residential estate of the consulting PDR/FDR assumed 2-ac with the same percent imperviousness within the filing area เหาียเราะบัยนี้เกา เป็นสิราโยก โดยได้สาเลย layout คโลกร 2.5-acre lots with rural roadway sections. Any deviations in spasiniaréas and resultant composite coefficients are shown within this report and demonstrated to meet the mee runoff and volume capacities for proposed and existing facilities rectly uses the proposed condition

from MDDP HG Green 2022, and

existing condition. Please refer to

comments on SF2422. Additionally,

excerpts should be sourced from the

proposed condition by the Classic as the

III. Hydrologic Analysis

Major Basins and Sub-basins

Major Basin Description

Per FEMA FIRM 08041C0315G (eff. 12/7/2018), there are no REMA Flooding at 15th in this ctiling ary

The site has been divided into several major drainage basins where each basin is tributary to a full spectrum detention pond facility. These basins and associated sub-basins are described in more detail in the next section of this report.

Existing Subbasin Description

The existing conditions for Filing No. 5 are consistent with the conditions and hydrology map presented within the Filing No. 4 FDR. The previous report's existing and developed conditions drainage maps are included in Appendix E of this report for reference.

The onsite basins relevant to this report that are utilized in the 2018 Classic Consulting report are the following: Basins CC-3, CC-4A, CC-8, CC-9, and CC-10

There are no offsite basins relevant to this report from the 2018 import.

Proposed Subbasin Description

The net area of some basins described in this report may differ from the 2018 Classic Consulting FDR/PDR due to changes of alignment of proposed roads and slight adjustments of the delineations with new topographic survey information. The net Q_5 & Q_{100} values may differ in this report because of the different methodologies used between the reports. Classic Consulting's FDR had used a Curve Number

Please refer to the previous comment. The proposed condition calculated by Classic cannot Page | 8

be used as the existing condition for this project.

Please remove suggestions from El Paso County.

Flying Horse North Filing No. 5 Final Development Drainage Plan Project No.: 211030.250

Method to report 5-year and 100-year drainage flows while this report utilizes the Rational Method to determine peak flow values. The Rational Method yields higher minor and major storm peak runoff values. Because of these two discrepancies, the values reported in this FDR may be higher across all design points that had also been evaluated in Classic Consulting's FDR from 2018. After conversations with El Paso County, discrepancies in design, basin delineation, and calculation methodology do not require HR Green to redesign any existing storm infrastructure that has been built in previous filings for Flying Horse North including culvert pipes, channels, and rock chutes.

The following design points are presented on the Developed Conditions Drainage Map and are described as follows:

Q5 and Q100 for all

Basin B2.1: 9.19 acres, residential (2.5 acre lots)

- sub-basins, and design points

through the text.
Runoff generated in this basin travels first overland through existing topography to the north and east and travels shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2_1) and directed east through a 24-in PyROPetro learning to the large shallow that the shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2_1) and directed east through a 24-in PyROPetro learning to the north and east and travels shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2_1) and directed east through a 24-in PyROPetro learning to the north and east and travels shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2_1) and directed east through a 24-in PyROPetro learning to the pyropetro learning to the north and east and travels shallow concentrated flow in roadside ditches along Holmes Road.

From Classic Consulting's FDR for Flying Horse North (Fling No. 1), Basin B2.1 (and part of Basin B2.3) was identified as Basin CC-8. Classic's FDR reported a total basin area for CC-10 to be 7.7 acres with a of all storm infrastructures

Q₅=2.5 CFS and a Q₁₀₀=12.0 CFS.

through the text and drainage

Basin B2.2: 5.24 acres, residential (2.5 acre lots) maps.

Runoff generated in this basin travels first overland through existing topography to the north and travels shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2.2) and directed east through a 24-inch RCP to outfall into Basin B2.6.

Please provide information: aboutcres, residential (2.5 acre lots)

Pond B, including its condition and ownership. It appeared in this basin travels first overland through existing topography to the north and travels is proposed by Firmal Two concentrated flow in roadside ditches along Holmes Road and Rough Trail. The flows are specify the timing the through an 18-inch RCP culvert at design point 2.3 to Basin B2.4.

construction. This as in 1821.4:22.6 Pacies, roadway (minor collector) / residential (2.5 acrellets) e provide approved until SF2422 is approved.

Additionally, please up care and travels first overland through existing topography to the north and travels excerpts such as half wisconsentrated flow in roadside ditches along Holmes Road and take the road are pond calculations; oldered right a type-C Inlet (IN-B2.4) and directed east through a 24-inch RCP to eventually outfall into handle the proposed maps once SF2423sige 2.6 approved.

Basin B2.5: 1.09 acres, roadway (minor collector) / residential (2.5 acres)n B2.1 to Basin

Runoff generated in this basin travels first overland through existing topograph) to the north and travels shallow concentrated flow in roadside ditches along Holmes Road. The flows are collected in a Type-C Inlet (IN-B2.5) and directed east through a 24-inch RCP to out all into Basin B2.6.

Basin B2.6: 18.82 acres, residential (2.5 acre lots)

Runoff generated in this basin travels overland flow over existing topography to the north. Runoff is eventually collected in an existing drainage channel (Section A-A) flowing north to design point B2 where drainage will be directed through an existing 48-inch RCP culvert to Basin B3. Stormwater will eventually be collected in a water quality and detention pond, Pond B.

B2 in Filling No. 4 has Q5=33.2cfs. Please revise.

These numbers do not match the summary table which is 318.3cfs. Please revise them accordingly. The Q100 for this project is higher than that in Filing No. 4. Please explain whether Ponds can accommodate the difference for the 100-year storm event.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin B2.6 (and Basin B2.2, Basin B2.4, and Basin B2.5) was identified as Basin CC-10. Classic's FDR reported a total basin area for CC-10 to be 85.6 acres with a Q_5 =14.1 CFS and a Q_{100} =91.9 CFS. The cumulative flow at design point 26 (this includes basins CC-8 and CC-10) shown in this report have a net area of 93.3 acres, a net Q_5 = 15.9 CFS, and a net Q_{100} =102 CFS.

From Flying Horse North Filing No. 4 FDR, Basin B2 was analyzed as one basin draining to Pond B. Basin B2 has been delineated into more detailed basins in this report to provide a more accurate analysis based on detailed grading, and finalized lot locations and road alignments. The total combined flows at design point B2 in the Filing No. 4 report are $Q_5 = 35.4$ CFS and $Q_{100} = 285.8$ CFS. The new combined flows total at design point B2 calculated in this report are $Q_5 = 27.9$ QFS and $Q_{100} = 277.5$ CFS.

Basin I1: 1.02 acres, residential (2.5 acre lots)

Runoff generated in this basin will travel through the street and in roadside ditches along Rough Trail to a proposed 18-inch culvert that will outfall to Basin I2.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin I1 was identified as Basin CC-9. Classic's FDR reported a total basin area for CC-9 to be 5.6 acres with a Q_5 =2.1 CFS and a Q_{100} =9.8 CFS.

Basin I2: 22.90 acres, residential (2.5 acre lots)

Runoff generated in this basin will travel overland flow over existing topography before eventually flowing off site to the west to an existing Irrigation Reserve (Pond-13).

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin I2 was identified as a part of Basin CC-4A. Classic's FDR reported a total basin area for CC-4A to be 108.7 acres with a Q_5 =39.0 CFS and a Q_{100} =156.0 CFS.

Please use Pond-13 throughout the report.

Basin I3: 2.48 acres, residential (2.5 acre lots)

Sometimes it is just called an existing irrigation reservoir and sometimes it is called Pond-13.

Runoff generated in this basin will travel overland flow over existing topography before eventually flowing off site to the west. Offsite flow will first travel through an existing golf course before being collected in an existing Irrigation Reserve (Pond-13) located just west of the Filing No. 5 site.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin I3 was identified as a part of Basin CC-3. Classic's FDR reported a total basin area for CC-3 to be 52.5 acres with a Q_5 =8.8 CFS and a Q_{100} =54.5 CFS.

Water Quality and Detention Facilities

Add project numbers for both ponds.

There is an existing irrigation reservoir (Pond-13) located just west of Flying Horse North Filing No. 5. This irrigation reservoir is designed with Flying Horse North Filing No. 1 as a retention pond using the Mile High Flood District (MHFD) Detention workbook. The reservoir facility provides detention and water quality through a concrete outlet box design outside of the reservoirs dam embankment. The total tributary area contributing to Pond-13 as identified in *The Irrigation Reservoir Embankment Design Report* by Classic Consulting is 366.80 acres and of that area, only 23.5 acres comes from within the Filing No. 5 boundary. The proposed area analyzed in this report contributing to Pond-13 is slightly higher at 26.40 acres. The contributing area to Pond-13 in the Classic Consulting design report included 2-acre residential land use and golf course, so an overall imperviousness of 8.5% was calculated. The area co

Clarify, is the pond partially a retention pond and partially detention with the outlet structure? This statement is confusing because 100% retention ponds usually do not have outlet structures aside from a spillway.

Page | 10

ntributing to the pond from Filing No. 5 contains only residential land use, making the calculated imperviousness 11%.

An existing Full Spectrum Detention Pond (Pond B), designed with Filing No. 4, will collect runoff from the Filing No. 5 site. Full Spectrum Detention (FSD) is a design concept introduced by the Mile High Flood District (MHFD, Urbonas and Wulliman 2005) that provides better control of the full range of runoff rates that pass through detention facilities than the conventional multi-stage concept. This concept also provides some mitigation of increased runoff volumes by releasing a portion of the increased runoff volume at a low rate over an extended period of time. Site detention ponds are designed as FSDs to provide the required volume stages for Water Quality Capture Volume (WQCV), Excess Urban Runoff Volume (EURV), and the 100-year stage (flood control volume). In FSDs, the flood volume is equal to the entire volume and is inclusive of the EURV and the WQCV. A full analysis of Pond B can be found in The Flying Horse North Filing No. 4 Final Drainage Report in Appendix E. The Pond B hydraulics are summarized in the table below:

	Peak Inflow (cfs)	Design Release/Outflow (cfs)	Time to Drain 99% of Inflow Volume (hrs)	Historic Peak Flowrate at O_BASIN_B	Developed Peak Flowrate at O_BASIN_B		
Minor Storm (Q5)	59.1	49.2	50	58	54		
Major Storm (Q100)	247.1	216.0	36	263	262		

Methodology

Design rainfall was determined utilizing Table 6-2 from the City of Colorado Springs Drainage Criteria Manual to determine the 5-year and 100-year rainfall values for the 1-hour events. The 1-hour rainfall depths are 1.5 and 2.52 in/hr respectively.

The proposed development will consist of 21 2.5-acre single-family residential estate lots which are assumed at a percent imperviousness of 11% per the County ECM Table 3-1 Typical Values of Percent Impervious within Appendix L of the ECM which provides guidance for larger rural lot developments. Existing golf course areas are to remain undisturbed and utilize a land use category of "lawn" with a percent imperviousness of 2% per the County ECM Table 6-6 land use table. Composite coefficients, rainfall intensities, and runoff flow rates are calculated on a Rational Method spreadsheet and provided within the Appendix. As discussed previously, the Rational Method used in this report will result in higher peak flow rates for the minor and major storm events as compared to the 2018 Classic Consulting FDR/PDR which utilized the NRCS Curve Number Method. Design points within Filing No. 4 are designed per the findings of this report and existing Filing No. 1 storm infrastructure and design points are to remain as-is.

Reference to the 2018 Classic Consulting PDR/FDR set of calculations and spreadsheets is included to demonstrate compliance and consistency with the previously approved report which anticipated similar land uses and basin acreages tributary to existing stormwater facilities.

IV. Hydraulic Analysis

Major Drainageways

There are no major drainageways that exist within the development of Filing No. 5; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries. These tertiary drainage ways are analyzed within this report to assess the water surface elevation within the swales during the 100-year storm event and determine buildability of lots adjacent to these sections. Roadside swales are to be constructed at a minimum to meet the typical roadway section (4:1 for 10' and 3:1 for 9' resulting in a total swale depth of 2.5'). The roadside swales are assessed along the roadways that capture sub-basins and result in cumulative flow.

Storm Sewer Infrastructure and Culvert Pipes

The Filing No. 5 development consists of rural development with 2.5-acre single family residential estate lots and rural roadway sections with roadside swales. The storm infrastructure within these areas consist of public culvert pipes for roadway crossings and consideration for future public culvert pipes for future driveways for each lot. Culvert calculations and graphics are provided within the Appendix of this report to demonstrate culvert capacities and show any roadway/driveway overtopping as a result of peak flows. The culverts are designed to have full capacity of the minor (5-year) storm event and a maximum of 4" of roadway or driveway pooling during the major (100-year) storm event.

V. Environmental Evaluations

a. Significant Existing or Potential Wetland and Riparian Areas Impacts

There are no significant impacts to potential wetland and riparian areas with this report.

Stormwater Quality Considerations and Proposed Practices

A full spectrum detention facility will be installed with Filing No. 4 prior to this filing to provide water quality for the development. The facility is designed using El Paso County criteria and provide stormwater quality by slowing the release of stormwater captured by the ponds and allowing solids to settle out. Development of the Filing No. 5 areas tributary to the detention pond were accounted for with the Filing No. 4 FDR pond design.

On site practices for the estate homes includes direct discharge of roof and hardscape runoff to the surrounding landscaped areas. This would include discharge of the gutters onto landscape areas vs. directly connecting to storm sewer and as discussed above as well using natural ditches and swales where it is logical and makes sense to convey stormwater in lieu of storm sewer piping.

Permitting Requirements

When work infringes upon the wetlands or floodplain a 404 Permit will be required. If the work within the waterways is minimal, it will likely be covered under a nationwide 404 permit; it is however possible that an individual permit will be required.

The Colorado Department of Public Health and Environment will require permits for any disturbance that exceeds 1 acre of land. Should groundwater be encountered, a dewatering permit will also be required.

El Paso County will require an Erosion and Stormwater Quality Control Permit, and any other construction permits required to complete the construction of the site.

Should development occur which affects the floodplain, FEMA will require a permit for work withing the floodplain prior to the commencement of any construction or development within any special flood hazard area (SFHA). If the infrastructure is to be installed within the channel the designer shall route the design through the proper FEMA channels whether that be with a no rise certification or via the CLOMR/LOMR process should a more major improvement within the floodplain be proposed. At this time the project does not propose any direct development within the floodplain, however storm infrastructure will discharge into the existing FEMA channel.

4-Step Process

In accordance with the Engineering Criteria Manual I.7.2.A and DCM V2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume, and considering the need for Industrial Commercial BMPs.

Step 1 – Reducing Runoff Volumes: The majority of the development of the project site includes the land use categories of 2.5-acre single-family residential and lawn (golf course area). Both land uses have relatively minor imperviousness and runoff coefficients. The developed areas for the homes as designated by pad areas on the plans are disbursed with open land areas of vegetation and trees between which provide runoff reduction into the pervious soil.

Step 2 – Stabilize Drainageways: The existing tertiary drainage ways are assessed for stormwater runoff capacity, velocity, and shear stress. Any altered drainage ways will be designed in a manner that provides water quality benefits through infiltration and the removal of pollutants via phytoremediation. Vegetation and/or matting will also be selected to stabilize the drainage ways by reducing the velocity of flows and decreasing any scour. These improvements help stabilize drainageways and minimize erosion and sediment runoff. Roadside ditches are stabilized swales by way of compaction per the roadway typical section and are also prescribed any required seeding, erosion control blanketing, and/or matting.

Step 3 – Provide WQCV: Runoff from this development is treated through capture and slow release of the WQCV via detention ponds that are designed per current El Paso County DCM V2 and the MHFD. Proposed ponds A, B and C provide WQCV for their respective tributary basins. Areas that are not tributary to a detention pond have been proven to be excluded from WQCV requirements as they fall under the "large lot" exclusion I.7.1.B.5 of the El Paso County ECM. While runoff reduction is not required for these areas, it is being provided with well managed stormwater practices.

Step 4 – Consider the need for Industrial and Commercial BMP's: A site specific storm water quality and erosion control plan and narrative will be prepared with subsequent land use approvals prepared in conjunction with the report prior to any construction. Site specific temporary source control BMPs as well as permanent BMPs are detailed in this plan and narrative. Guidelines detailed in the EI Paso DCM V2 4.2 pertaining to the covering and storage handline and spill containment and control shall be followed as necessary. This filing does not contain any commercial or industrial land use.

Pond B and Pond-13 were

VI. Drawings

Please refer to the appendices for the Vicinity Map, FEMA Floodplain Map, NRCS Soils Map, hydrology

previously the only ponds mentioned. Make sure this is consistent throughout

and hydraulic calculations, and drainage basin maps. Reference materials from previously approved reports are included in the appendix including.

VII. Drainage and Bridge Fees

The East Cherry Creek Basin does not currently have a Drainage Basin Fee.

VIII. Summary

Flying Horse North Filing No. 5 is a 115.1 acre filing within Flying Horse North that consists of approximately 58 acres of single-family residential estate lots.

Pond B and Pond-13 located outside of the Filing No. 5 boundary account for future development within Filing No. 5, anticipated to consist of local rural residential roadways within 60' public rights-of-way and single-family residential estate lots of 2.5 acres FSDs are proposed to provide water quality and detention to release the stormwater at or below historical rates.

The Filing No. 5 final design is assessed for stormwater capacity of roadway sections, roadside swales and the existing tertiary drainage ways to ensure that development of the 2.5-acre single-family residential estate lots will not be negatively impacted by drainage conditions, including existing and proposed altered areas for the roadway and lot construction phases.

All County and MHFD drainage design standards are met. It is anticipated that there will be no negative impacts to downstream and surrounding developments and facilities due to the development of Filing No. 5.

IX. References

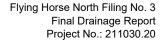
El Paso County - Drainage Criteria Manual, 2014

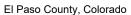
City of Colorado Springs - Drainage Criteria Manual, May 2014

Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018

Mile High Flood District Urban Storm Drainage Criteria Manual Volumes 1, 2, and 3; latest revisions

Mile High Flood District Software Resources and Tools (MHFD-Detention, UD-Inlet, UD-BMP)

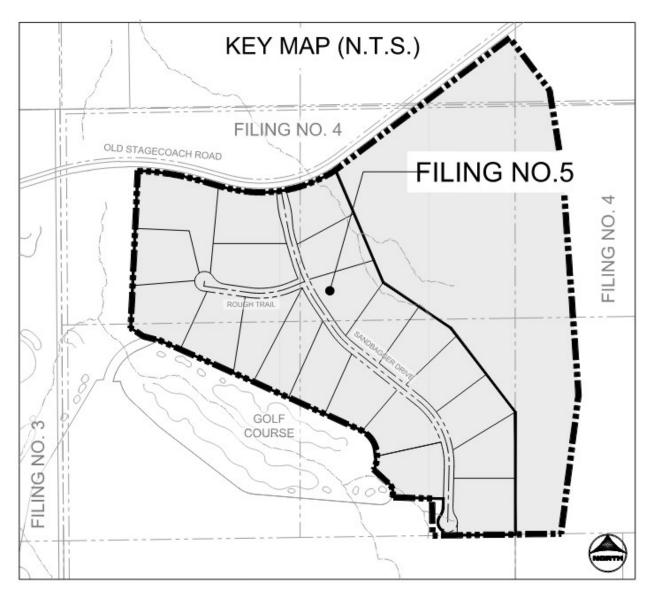

United States Department of Agriculture National Resources Conservation Service Rock Chute Design Data Spreadsheet


Preliminary Drainage Report for Flying Horse North Preliminary Plan and Final Drainage Report for Flying Horse North Filing No. 1, Classic Consulting Engineers and Surveyors, November 2017

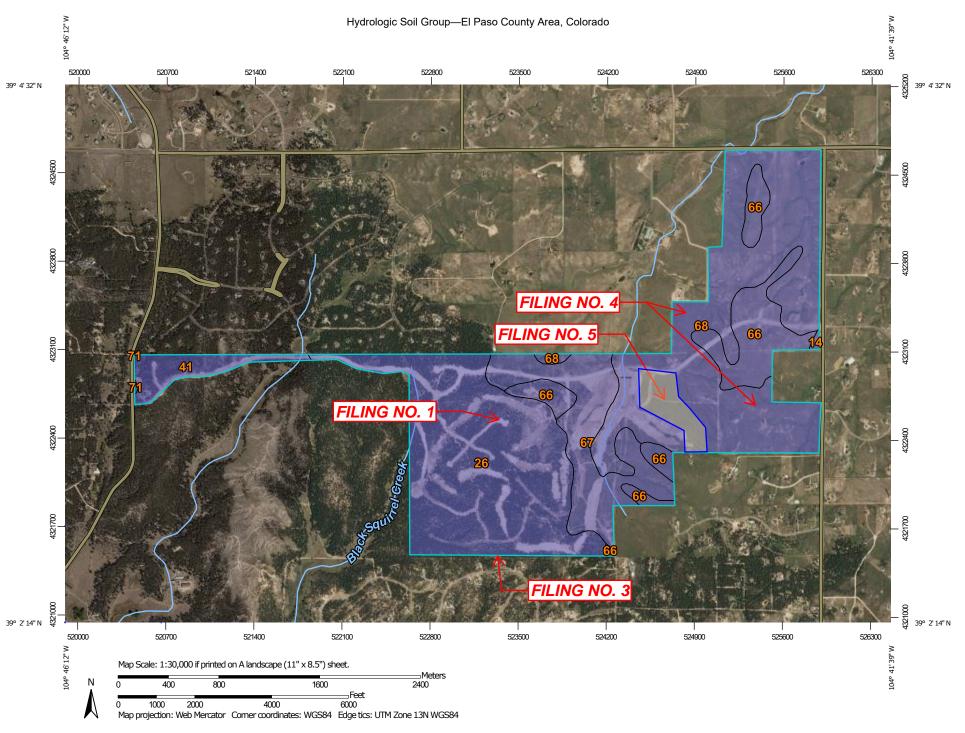
Flying Horse North Master Development Drainage Plan, HR Green Development, LLC., September 2022

Flying Horse North Irrigation Reservoir Embankment Design Report, Classic Consulting Engineers and Surveyors, latest revision June 2018, County approved on September 25, 2018

Flying Horse North Filing No. 4 Final Drainage Report, HR Green Development, LLC., September 2024.


APPENDIX A

VICINITY MAP NRCS SOILS MAP FEMA FLOODPLAIN MAP EL PASO COUNTY MAJOR DRAINAGE BASINS MAP DRAINAGE BASIN FEE TABLE (2024)


VICINITY MAP

FLYING HORSE NORTH FILING NO. 5

A PORTION OF SECTION 36, TOWNSHIP 11 SOUTH, RANGE 66 WEST OF THE SIXTH PRINCIPAL MERIDIAN COUNTY OF EL PASO, STATE OF COLORADO

NO SCALE

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: El Paso County Area, Colorado Soil Rating Lines Survey Area Data: Version 19, Aug 31, 2021 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50.000 or larger. Date(s) aerial images were photographed: Aug 19, 2018—May 26, 2019 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI				
14	Brussett loam, 1 to 3 percent slopes	В	1.9	0.1%				
26	Elbeth sandy loam, 8 to 15 percent slopes	В	474.2	33.7%				
41	Kettle gravelly loamy sand, 8 to 40 percent slopes	В	53.4	3.8%				
66	Peyton sandy loam, 1 to 5 percent slopes	В	160.9	11.4%				
67	Peyton sandy loam, 5 to 9 percent slopes	В	182.8	13.0%				
68	Peyton-Pring complex, 3 to 8 percent slopes	В	533.4	37.9%				
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	0.6	0.0%				
Totals for Area of Inter	rest		1,407.3	100.0%				

NOTES TO USERS

This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management.

Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or floodplain management purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same **vertical datum**. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following

NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/.

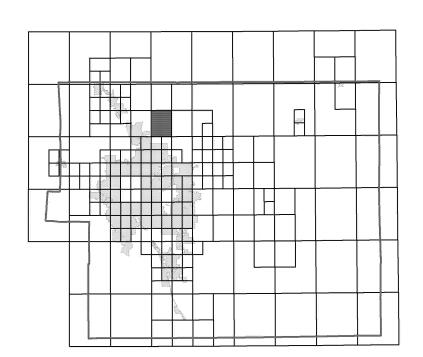
Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channe distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile paselines may deviate significantly from the new base map channel representation and may appear outside of the floodplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

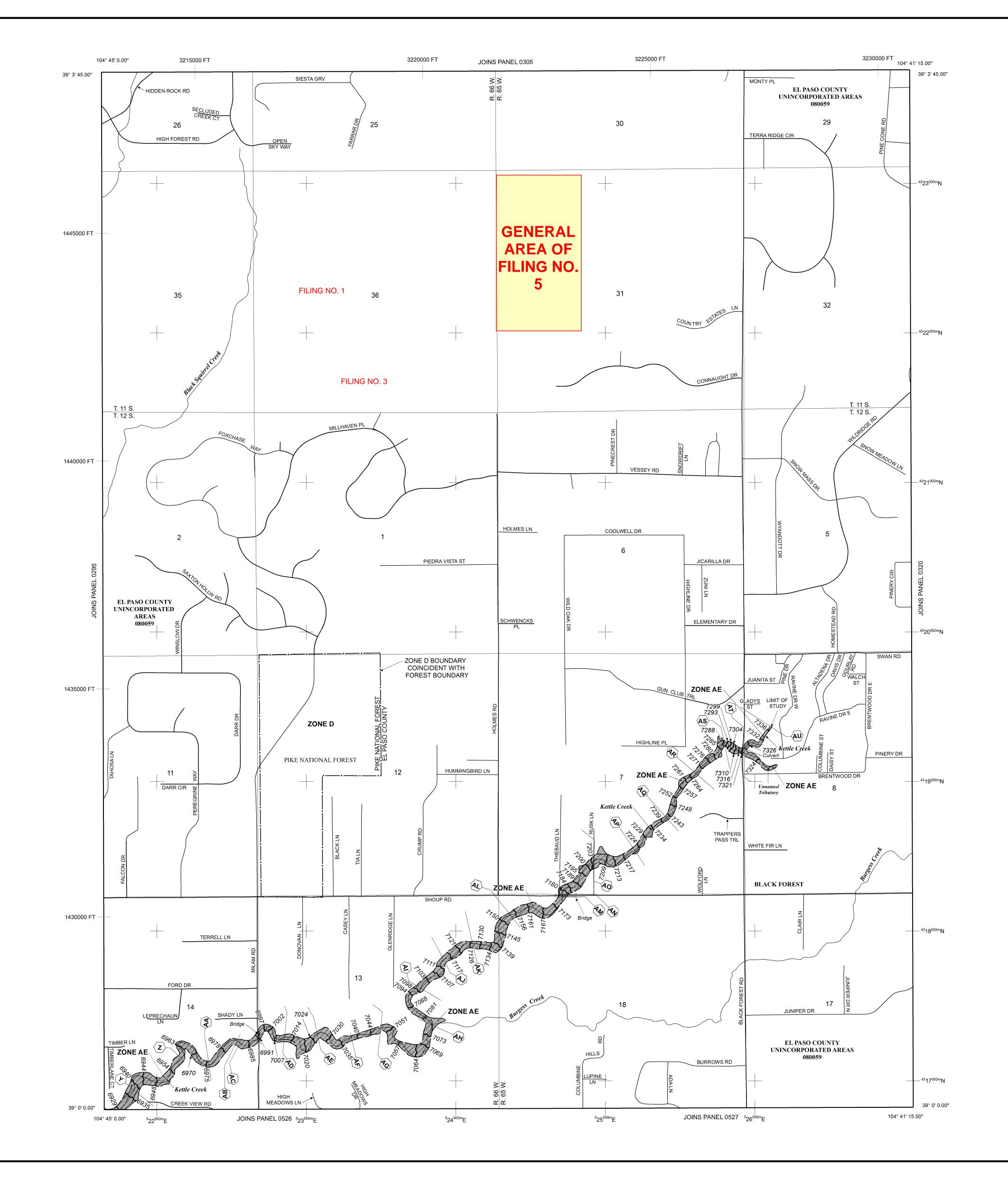
Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website a http://www.msc.fema.gov/.


If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip.

Flooding Source

REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION

El Paso County Vertical Datum Offset Table


Panel Location Map

This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board.

LEGEND

SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD

The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood.

ZONE A No Base Flood Elevations determined. Base Flood Elevations determined.

Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined

Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also

ZONE AR Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.

ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations

Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood

Elevations determined. FLOODWAY AREAS IN ZONE AE

The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.

OTHER FLOOD AREAS

Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.

OTHER AREAS

Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible.

COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS

OTHERWISE PROTECTED AREAS (OPAs)

CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas.

Floodway boundary Zone D Boundary

••••••• CBRS and OPA boundary Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.

~~ 513 ~~ Base Flood Elevation line and value; elevation in feet* Base Flood Elevation value where uniform within zone; (EL 987) elevation in feet*

* Referenced to the North American Vertical Datum of 1988 (NAVD 88) Cross section line

97° 07' 30.00" Geographic coordinates referenced to the North American

32° 22' 30.00" Datum of 1983 (NAD 83) 1000-meter Universal Transverse Mercator grid ticks,

5000-foot grid ticks: Colorado State Plane coordinate 6000000 FT system, central zone (FIPSZONE 0502),

Bench mark (see explanation in Notes to Users section of this FIRM panel)

MAP REPOSITORIES

Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE

FLOOD INSURANCE RATE MAP MARCH 17, 1997

EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.

For community map revision history prior to countywide mapping, refer to the Community

Map History Table located in the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in this community, contact your insurance

agent or call the National Flood Insurance Program at 1-800-638-6620.

PANEL 0315G FIRM

FLOOD INSURANCE RATE MAP EL PASO COUNTY, COLORADO

PANEL 315 OF 1300

(SEE MAP INDEX FOR FIRM PANEL LAYOUT) **CONTAINS:**

NUMBER

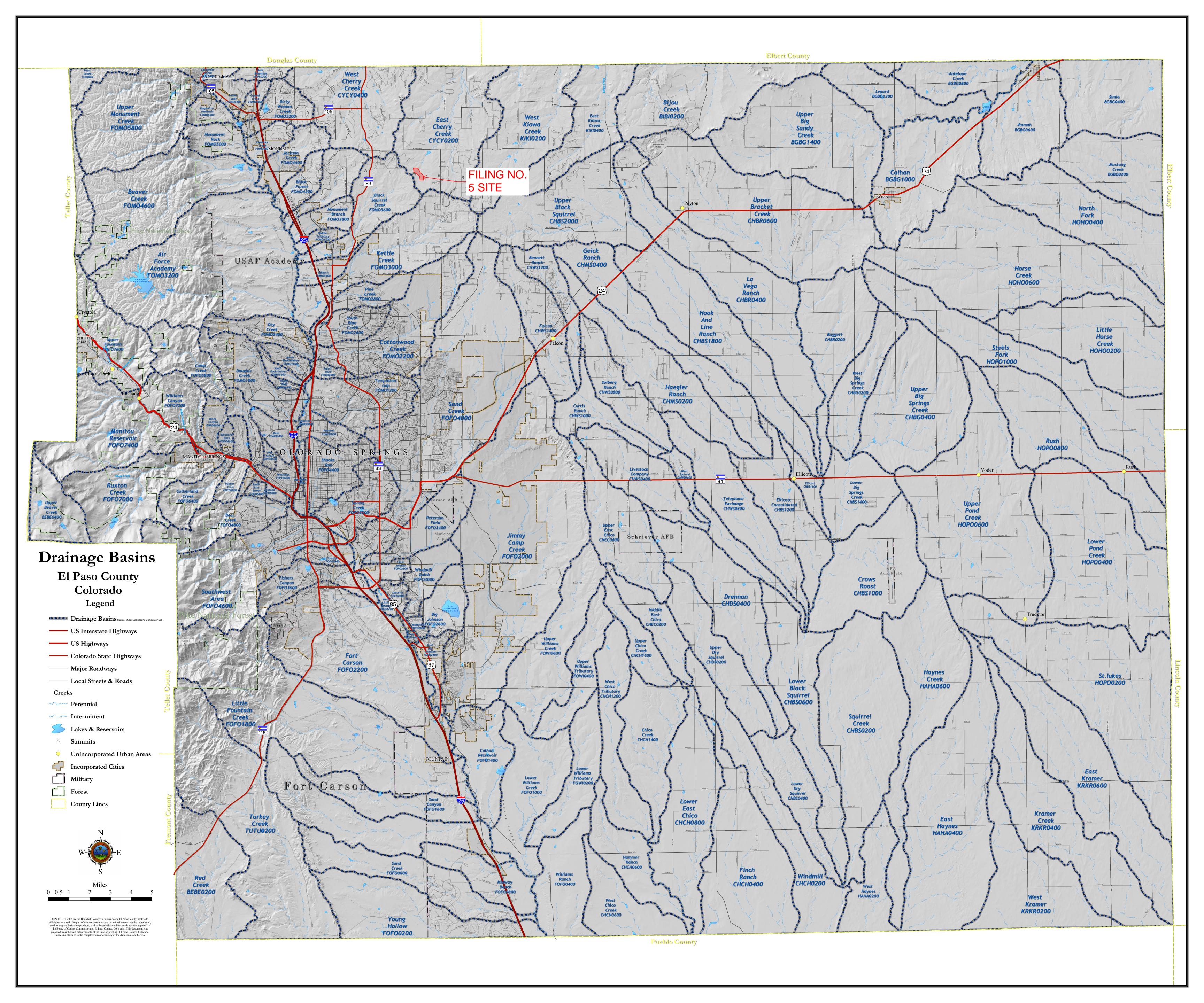
080059

AND INCORPORATED AREAS

EL PASO COUNTY

PANEL

Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the



MAP REVISED **DECEMBER 7, 2018**

MAP NUMBER

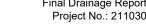
08041C0315G

Federal Emergency Management Agency

El Paso County Drainage Basin Fees

Resolution No. 23-400

Number Drainage Basins with 1 CHMS0200 CHWS1200 CHWS1400 FOFO2000 FOFO2600 FOFO2800 FOFO3000 FOFO3100 / FOFO3200 FOFO3400 FOFO4400 FOFO4400 FOFO4600 FOFO4600 FOFO4600 FOFOM01000 FOM01200 FOM01200 FOM02000 FOMO2200 FOMO2400 FOMO3700	Chico Creek Chico Creek Chico Creek Fountain Creek Monument Creek	2013 2001 2013 2001 1991* 1988* 1988* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971 1994	Haegler Ranch Bennett Ranch Falcon West Fork Jimmy Camp Creek Big Johnson / Crews Gulch Widefield Security Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$13,971 \$15,641 \$40,088 \$17,003 \$24,832 \$24,832 \$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$25,632 \$112,879 \$24,832 \$25,632 \$112,879 \$24,832 \$25,632	\$2,062 \$6,000 \$5,507 \$5,031 \$3,207 \$0 \$0 \$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$1,358 \$0
CHMS0200 CHWS1200 CHWS1200 CHWS1400 FOFO2000 FOFO2600 FOFO3000 FOFO3100 / FOFO3200 FOFO3400 FOFO4000 FOFO4000 FOFO4800 FOFO4800 FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO3600	Chico Creek Chico Creek Chico Creek Fountain Creek Monument Creek	2001 2013 2001 1991* 1988* 1988* 1991* 1984* 1991* 1996 1977 1984* 1991 1964 1977 1971	Bennett Ranch Falcon West Fork Jimmy Camp Creek Big Johnson / Crews Gulch Widefield Security Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$15,641 \$40,088 \$17,003 \$24,832 \$24,832 \$24,832 \$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$24,832 \$24,832 \$24,832 \$15,617 \$16,032	\$6,000 \$5,507 \$5,031 \$3,207 \$0 \$0 \$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$0 \$1,358 \$0
CHWS1200 CHWS1400 FOFO2000 FOFO2000 FOFO2800 FOFO3000 FOFO3100 / FOFO3200 FOFO3400 FOFO3600 FOFO4000 FOFO4000 FOFO5800 FOFO5800 FOMO1200 FOMO1200 FOMO2200 FOMO2200 FOMO2400 FOMO3600	Chico Creek Chico Creek Fountain Creek Monument Creek	2001 2013 2001 1991* 1988* 1988* 1991* 1984* 1991* 1996 1977 1984* 1991 1964 1977 1971	Bennett Ranch Falcon West Fork Jimmy Camp Creek Big Johnson / Crews Gulch Widefield Security Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$15,641 \$40,088 \$17,003 \$24,832 \$24,832 \$24,832 \$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$24,832 \$24,832 \$24,832 \$15,617 \$16,032	\$6,000 \$5,507 \$5,031 \$3,207 \$0 \$0 \$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$0 \$1,358 \$0
CHWS1400 FOFO2000 FOFO2600 FOFO2800 FOFO2900 FOFO3100 / FOFO3200 FOFO3400 FOFO3600 FOFO4000 FOFO4000 FOFOFO4800 FOFO5800 FOFOHO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO2400 FOMO3600	Chico Creek Fountain Creek Monument Creek	2013 2001 1991* 1988* 1988* 1991* 1984* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971	Falcon West Fork Jimmy Camp Creek Big Johnson / Crews Gulch Widefield Security Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$15,641 \$40,088 \$17,003 \$24,832 \$24,832 \$24,832 \$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$24,832 \$24,832 \$24,832 \$15,617 \$16,032	\$5,507 \$5,031 \$3,207 \$0 \$0 \$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$0 \$1,358 \$0
FOFO2000 FOFO2600 FOFO2800 FOFO2900 FOFO3000 FOFO3100 / FOFO3200 FOFO3600 FOFO4000 FOFO4000 FOFO4600 FOFO5800 FOFO5800 FOMO1200 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO2400	Fountain Creek Monument Creek	2001 1991* 1988* 1988* 1991* 1988* 1984* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971	West Fork Jimmy Camp Creek Big Johnson / Crews Gulch Widefield Security Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$17,003 \$24,832 \$24,832 \$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$24,832 \$27,52 \$15,617 \$16,032	\$5,031 \$3,207 \$0 \$0 \$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$0 \$1,358 \$0
FOFO2600 FOFO2800 FOFO2900 FOFO3000 FOFO3100 / FOFO3200 FOFO3600 FOFO4000 FOFO4200 FOFO4600 FOFO4800 FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO2400	Fountain Creek Monument Creek	1991* 1988* 1988* 1991* 1988* 1984* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971	Big Johnson / Crews Gulch Widefield Security Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$24,832 \$24,832 \$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$3,207 \$0 \$0 \$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$1,358 \$0
FOFO2800 FOFO2900 FOFO3000 FOFO3100 / FOFO3200 FOFO3400 FOFO4000 FOFO4200 FOFO4600 FOFO4800 FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO2400	Fountain Creek Monument Creek	1988* 1988* 1991* 1988* 1984* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971	Widefield Security Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$24,832 \$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$0 \$0 \$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$0 \$1,358 \$0 \$345
GOFO2900 GOFO3000 GOFO3100 / FOFO3200 GOFO3400 GOFO4000 GOFO4200 GOFO4800 GOFO5800 GOMO1200 GOMO2000 GOMO2200 GOMO2400 GOMO2400 GOMO3600	Fountain Creek Monument Creek	1988* 1991* 1988* 1984* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971	Widefield Security Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$24,832 \$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$0 \$0 \$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$0 \$1,358 \$0 \$345
GOFO3000 GOFO3100 / FOFO3200 GOFO3400 GOFO4000 GOFO4200 GOFO4600 GOFO4800 GOMO1200 GOMO1200 GOMO2200 GOMO2400 GOMO2400 GOMO3600	Fountain Creek Monument Creek	1991* 1988* 1984* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971	Windmill Gulch Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$24,832 \$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$372 \$0 \$1,358 \$0 \$10,484 \$0 \$0 \$1,358 \$0 \$345
FOFO3100 / FOFO3200 FOFO3400 FOFO4000 FOFO4200 FOFO4600 FOFO4800 FOFO5800 FOMO1000 FOMO1200 FOMO2200 FOMO2200 FOMO2400 FOMO3600	Fountain Creek Monument Creek	1988* 1984* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971	Carson Street / Little Johnson Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$15,147 \$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$0 \$1,358 \$0 \$10,484 \$0 \$0 \$1,358 \$0 \$345
FOFO3400 FOFO3600 FOFO4000 FOFO4200 FOFO4600 FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO2400	Fountain Creek Monument Creek	1984* 1991* 1996 1977 1984* 1991 1964 1981 1977 1971	Peterson Field Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$17,911 \$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$1,358 \$0 \$10,484 \$0 \$0 \$1,358 \$0 \$345
FOFO3600 FOFO4000 FOFO4200 FOFO4600 FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO3600	Fountain Creek Fountain Creek Fountain Creek Fountain Creek Fountain Creek Fountain Creek Monument Creek	1991* 1996 1977 1984* 1991 1964 1981 1977 1971	Fisher's Canyon Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$24,832 \$25,632 \$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$0 \$10,484 \$0 \$0 \$1,358 \$0 \$345
FOFO4000 FOFO4200 FOFO4600 FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO2400	Fountain Creek Fountain Creek Fountain Creek Fountain Creek Fountain Creek Monument Creek	1996 1977 1984* 1991 1964 1981 1977 1971	Sand Creek Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$25,632 \$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$10,484 \$0 \$0 \$1,358 \$0 \$345
FOFO4200 FOFO4600 FOFO4800 FOFO5800 FOMO1000 FOMO2000 FOMO2000 FOMO2200 FOMO2400 FOMO3600	Fountain Creek Fountain Creek Fountain Creek Monument Creek	1977 1984* 1991 1964 1981 1977 1971	Spring Creek Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$12,879 \$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$0 \$0 \$1,358 \$0 \$345
FOFO4600 FOFO4800 FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO3600	Fountain Creek Fountain Creek Fountain Creek Monument Creek	1984* 1991 1964 1981 1977 1971	Southwest Area Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$24,832 \$24,832 \$2,752 \$15,617 \$16,032	\$0 \$1,358 \$0 \$345
FOFO4800 FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO3600	Fountain Creek Fountain Creek Monument Creek Monument Creek Monument Creek Monument Creek Monument Creek Monument Creek	1991 1964 1981 1977 1971 1994	Bear Creek Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$24,832 \$2,752 \$15,617 \$16,032	\$1,358 \$0 \$345
FOFO5800 FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO3600	Fountain Creek Monument Creek Monument Creek Monument Creek Monument Creek Monument Creek Monument Creek	1964 1981 1977 1971 1994	Camp Creek Douglas Creek Templeton Gap Pulpit Rock	\$2,752 \$15,617 \$16,032	\$0 \$345
FOMO1000 FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO3600	Monument Creek Monument Creek Monument Creek Monument Creek Monument Creek Monument Creek	1981 1977 1971 1994	Douglas Creek Templeton Gap Pulpit Rock	\$15,617 \$16,032	\$345
FOMO1200 FOMO2000 FOMO2200 FOMO2400 FOMO3600	Monument Creek Monument Creek Monument Creek Monument Creek Monument Creek	1977 1971 1994	Templeton Gap Pulpit Rock	\$16,032	•
OMO2000 FOMO2200 FOMO2400 FOMO3600	Monument Creek Monument Creek Monument Creek Monument Creek	1971 1994	Pulpit Rock		\$372
FOMO2200 FOMO2400 FOMO3600	Monument Creek Monument Creek Monument Creek	1994	-		
FOMO2400 FOMO3600	Monument Creek Monument Creek		Cattanana d Caral- / C. Din-	\$8,234	\$0
FOMO3600	Monument Creek	1966	Cottonwood Creek / S. Pine	\$24,832	\$1,358
			Dry Creek	\$19,603	\$7 10
FOMO3700		1989*	Black Squirrel Creek	\$11,275	\$710
	Monument Creek	1987*	Middle Tributary	\$20,722	\$0
FOMO3800	Monument Creek	1987*	Monument Branch	\$24,832	\$0
FOMO4000	Monument Creek	1996	Smith Creek	\$10,124	\$1,358
FOMO4200	Monument Creek	1989*	Black Forest	\$24,832	\$676
FOMO5200	Monument Creek	1993*	Dirty Woman Creek	\$24,832	\$1,358
OMO5300	Fountain Creek	1993*	Crystal Creek	\$24,832	\$1,358
<u>Miscellaneous Drainas</u>	e Basins: '				
CHBS0800	Chico Creek		Book Ranch	\$23,300	\$3,373
CHEC0400	Chico Creek		Upper East Chico	\$12,694	\$368
CHWS0200	Chico Creek		Telephone Exchange	\$13,947	\$327
CHWS0400	Chico Creek		Livestock Company	\$22,973	\$27 3
CHWS0600	Chico Creek		West Squirrel	\$ 11,975	\$4,970
CHWS0800	Chico Creek		Solberg Ranch	\$24,832	\$0
FOFO1200	Fountain Creek		Crooked Canyon	\$7,497	\$0
FOFO1400	Fountain Creek		Calhan Reservoir	\$6,259	\$365
OFO1600	Fountain Creek		Sand Canyon	\$4,522	\$0
FOFO2000	Fountain Creek		Jimmy Camp Creek	\$24,832	\$1,161
FOFO2200	Fountain Creek		Fort Carson	\$19,603	\$710
OFO2700	Fountain Creek		West Little Johnson	\$1,636	\$0
OFO3800	Fountain Creek		Stratton	\$11,911	\$533
FOFO5000	Fountain Creek		Midland	\$19,603	\$710
OFO6000	Fountain Creek		Palmer Trail	\$19,603	\$710
OFO6800	Fountain Creek		Black Canyon	\$19,603	\$710
OMO4600	Monument Creek		Beaver Creek	\$14,846	\$0
FOMO3000	Monument Creek		Kettle Creek	\$13,410	\$0
OMO3400	Monument Creek		Elkhorn	\$2,253	\$0
OMO5000	Monument Creek		Monument Rock	\$10,763	\$0
OMO5400	Monument Creek		Palmer Lake	\$17,210	\$0
OMO5600	Monument Creek		Raspberry Mountain	\$5,789	\$0
LPL0200	Monument Creek		Bald Mountain	\$12,337	\$0
Interim Drainage Basin			Time Decided to	do 177	A A
OFO1800	Fountain Creek		Little Fountain Creek	\$3,175	\$0
OMO4400 OMO4800	Monument Creek Monument Creek		Jackson Creek Teachout Creek	\$9,829 \$6,825	\$0 \$1,026

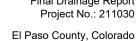

^{1.} The miscellaneous drainage fee previous to September 1999 resolution was the average of all drainage fees for basins with Basin Planning Studies performed within the last 14 years.

Joshua Palmer, P.E.

EAST CHERRY CREEK BASIN
IS NOT INCLUDED

EPC	Stormwater	Management

^{2.} Interim Drainage Fees are based upon draft Drainage Basin Planning Studies or the Drainage Basin Identification and Fee Estimation Report. (Best available information suitable for setting a fee.)



El Paso County, Colorado

APPENDIX B

HYDROLOGY CALCULATIONS

RATIONAL METHOD CALCULATIONS

FLYING HORSE NORTH FILING NO. 5 PROPOSED CONDITIONS Checked by: RDL EL PASO COUNTY, COLORADO Date: 9/30/2024

	COMPOSITE 'C' FACTORS																							
BASIN	GOLF COURSE / UNDEVELOPED	ROADWAY	RESIDENTIAL (2.5 AC LOT)	RESIDENTIAL (5.0 AC LOT)	TOTAL	SOIL TYPE				GOLF COURSE / UNDEVELOPED		ROADW		ROADWAY			RESIDENTIAL (2.5 AC LOT)			D AC L		COMPOSITE IMPERVIOUSNESS & C FACTOR		
	ACRES						%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C5*	C ₁₀₀ *	% I	C ₅ *	C ₁₀₀ *	%I	C ₅	C ₁₀₀			
B1	48.37	0.41	9.00	0.00	57.78	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	7	0.14	0.39	4.1	0.10	0.36			
B2.1	0.00	0.00	9.19	0.00	9.19	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	8	0.14	0.39	11.0	0.17	0.42			
B2.2	0.00	0.00	5.24	0.00	5.24	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	9	0.14	0.39	11.0	0.17	0.42			
B2.3	0.00	0.00	2.80	0.00	2.80	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	10	0.14	0.39	11.0	0.17	0.42			
B2.4	0.00	0.07	2.54	0.00	2.61	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	11	0.14	0.39	13.3	0.19	0.43			
B2.5	0.00	0.02	1.07	0.00	1.09	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	12	0.14	0.39	12.4	0.18	0.43			
B2.6	0.00	0.12	18.70	0.00	18.82	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	7	0.14	0.39	11.6	0.17	0.42			
l1	0.00	0.00	1.02	0.00	1.02	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	8	0.14	0.39	11.0	0.17	0.42			
12	0.00	0.00	22.90	0.00	22.90	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	9	0.14	0.39	11.0	0.17	0.42			
13	0.00	0.00	2.48	0.00	2.48	В	2	0.08	0.35	100	0.90	0.96	11	0.17	0.42	10	0.14	0.39	11.0	0.17	0.42			
TOTAL ONSITE	48.37	1.55	86.12	0.00	136.03														8.81%	14.64%	39.94%			
TOTAL OFFSITE	0.00	0.00	26.58	0.00	26.58														11.00%	17.02%	41.71%			
GRAND TOTAL	48.37	1.55	112.70	0.00	162.61														9.17%	0.15	0.40			

NOTES:

BASIN PULLED DIRECTLY FROM FLYING HORSE NORTH FILING NO. 4 FINAL DRAINAGE REPORT

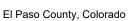
Missing hydrologic calculation for the existing condition.

FLYING HORSE NORTH FILING NO. 5 PROPOSED CONDITIONS

HRGreen EL PASO COUNTY, COLORADO

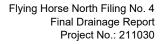
Calc'd by:	тмм
Checked by:	RDL
Date:	9/30/2024

	TIME OF CONCENTRATION														
BAS	IN DATA	\	OVERI	LAND TIM	E (T;)		TRAVI	EL TIME (TOTAL	tc=(L/180)+10	Design tc				
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)	tc max	tc design (min)		
B1	0.10	57.78	300	4.5	19.2	10	2400	6.70	2.6	15.5	34.7	25.0	25.0		
B2.1	0.17	9.19	300	6.3	16.0	10	491	3.60	1.9	4.3	20.3	14.4	14.4		
B2.2	0.17	5.24	300	10.4	13.5	10	890	3.00	1.7	8.6	22.1	16.6	16.6		
B2.3	0.17	2.80	245	6.7	14.2	10	330	3.00	1.7	3.2	17.3	13.2	13.2		
B2.4	0.19	2.61	150	4.6	12.3	10	508	6.40	2.5	3.3	15.7	13.7	13.7		
B2.5	0.18	1.09	20	10.0	3.5	10	900	6.40	2.5	5.9	9.4	15.1	9.4		
B2.6	0.17	18.82	300	11.4	13.1	10	2014	6.70	2.6	13.0	26.0	22.9	22.9		
I1	0.17	1.02	30	10.0	4.3	10	340	6.20	2.5	2.3	6.6	12.1	6.6		
12	0.17	22.90	300	12.9	12.6	10	842	4.30	2.1	6.8	19.4	16.3	16.3		
13	0.17	2.48	250	6.0	14.8	10	50	6.00	2.4	0.3	15.2	11.7	11.7		


FLYING HORSE NORTH FILING NO. 5	Calc'd by:	ТММ
PROPOSED CONDITIONS	Checked by:	RDL
DESIGN STORM: 5-YEAR	Date:	9/30/2024

			DII	RECT	RUNC	FF		TOTAL RUNOFF				REMARKS	
STREET	DESIGN POINT	BASIN ID	AREA (ac)	င်း	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	
	B1	B1	57.78	0.10	25.0	5.77	2.75	15.9					OVERLAND FLOW TO DP B1
	2.1	B2.1	9.19	0.17	14.4	1.56	3.58	5.6					BASIN FLOW IN ROADSIDE DITCH TO DPB2.1
	2.2	B2.2	5.24	0.17	16.6	0.89	3.37	3.0					BASIN FLOW IN ROADSIDE DITCH TO DPB2.2
									31.0	2.46	2.43	6.0	COMBINED PIPE FLOW
	2.3	B2.3	2.80	0.17	13.2	0.48	3.71	1.8					BASIN FLOW IN ROADSIDE DITCH TO DPB2.3
	2.4	B2.4	2.61	0.19	13.7	0.49	3.66	1.8					BASIN FLOW IN ROADSIDE DITCH TO DPB2.4
									26.9	1.0	2.65	2.6	COMBINED PIPE FLOW
	2.5	B2.5	1.09	0.18	9.4	0.20	4.22	0.8					BASIN FLOW IN ROADSIDE DITCH TO DPB2.5
									36.3	1.17	2.20	2.6	COMBINED PIPE FLOW
	B2	B2.6	18.82	0.17	22.9	3.29	2.89	9.5					
									36.3	12.69	2.20	27.9	COMBINED FLOW THROUGH EXISTING CULVERT TO POND B
	I1	l1	1.02	0.17	6.6	0.17	4.75	0.8					OFFSITE BASIN FLOW TO IRRIGATION RESERVE
	12	I2	22.90	0.17	16.3	3.90	3.39	13.2		4.07	2 20	42.0	OFFSITE BASIN FLOW TO IRRIGATION RESERVE
	13	13	2.48	0.17	11.7	0.42	3.90	1.6	16.3	4.07	3.39	13.8	
	13	13	2.40	0.17	11.7	0.42	3.90	1.0					OFFSITE BASIN FLOW TO IRRIGATION RESERVE

FLYING HORSE NORTH FILING NO. 5	Calc'd by:	ТММ
PROPOSED CONDITIONS	Check	RDL
DESIGN STORM: 100-YEAR	Date:	9/30/2024


			DIRECT RUNOFF							OTAL R	UNOF	F	REMARKS
STRUCTURE	DESIGN PONT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)				
	B1	B1	57.78	0.36	25.0	21.08	4.62	97.5					OVERLAND FLOW TO DP B1
	2.1	B2.1	9.19	0.42	14.4	3.83	6.01	23.1					BASIN FLOW IN ROADSIDE DITCH TO DPB2.1
	2.2	B2.2	5.24	0.42	16.6	2.19	5.65	12.4					BASIN FLOW IN ROADSIDE DITCH TO DPB2.2
									31.0	6.02	7.58	45.6	
	2.3	B2.3	2.80	0.42	13.2	1.17	6.23	7.3					BASIN FLOW IN ROADSIDE DITCH TO DPB2.3
	2.4	B2.4	2.61	0.43	13.7	1.12	6.15	6.9					BASIN FLOW IN ROADSIDE DITCH TO DPB2.4
									26.9	2.3	7.80	17.9	
	2.5	B2.5	1.09	0.43	9.4	0.46	7.08	3.3					BASIN FLOW IN ROADSIDE DITCH TO DPB2.5
									36.3	2.76	7.35	20.3	COMBINED PIPE FLOW
	B2	B2.6	18.82	0.42	22.9	7.92	4.85	38.4					
									36.3	37.77	7.35	277.5	COMBINED FLOW THROUGH EXISTING CULVERT TO POND B
	I1	I1	1.02	0.42	6.6	0.43	7.98	3.4					OFFSITE BASIN FLOW TO IRRIGATION RESERVE
	12	12	22.90	0.42	16.3	9.55	5.69	54.4	40.0	0.00	0.54	05.0	OFFSITE BASIN FLOW TO IRRIGATION RESERVE
		10	0.40	0.40	44.7	4.00	0.54		16.3	9.98	8.54	85.2	
	I3	13	2.48	0.42	11.7	1.03	6.54	6.8					OFFSITE BASIN FLOW TO IRRIGATION RESERVE

APPENDIX C

HYDRAULIC CALCULATIONS

El Paso County, Colorado

INLET CALCULATIONS

STORM DRAINAGE SYSTEM DESIGN

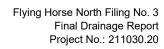
Project #: 211030.25

Project: FLYING HORSE NORTH FILING NO. 5

Location: EL PASO COUNTY, COLORADO

Plan Date: 10/2/2024

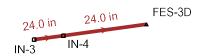
By: T. McMunn
Checked: K. House


Date: 10/2/2024

Date: 10/2/2024

AREA INLET CALCULATIONS

Orifice Equation, Arequired = $Q_{100}/[0.65(2gh)^{1/2}]$ Q_{100} (cfs) = from Rational calculations Ponding Height, h (ft) = from grading plan Gravity, g (ft/s²) = 32.2


		ı							
Design Point	Structure Name	Q ₁₀₀ (cfs)	Inlet / Grate Type	Ponding Height, h (ft)	Area of Opening, Ao (ft²)	Clogging Factor (%)	Ao with Clogging Factor (ft²)	Area Required (ft²)	Size Check
B2.1	IN-1	23.1	Type C Standard	2.4	5.92	50%	2.96	2.85	Good
B2.2	IN-2	12.4	Type C Standard	2.5	5.92	50%	2.96	1.50	Good
B2.4	IN-3	6.9	Type C Standard	2.6	5.92	50%	2.96	0.83	Good
B2.5	IN-4	3.3	Type C Standard	2.5	5.92	50%	2.96	0.40	Good
I1	IN-5	3.4	Type C Standard	2.5	5.92	150%	8.88	0.41	Good

El Paso County, Colorado

PIPE HYDRAULICS

ROUGH TRAIL

SANDBAGGER DRIVE

Active Scenario: 5-Year FlexTable: Conduit Table

Where are the hydraulic calcs for the outfalls? We have calcs for the pipes and inlets but no outfall calcs.

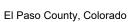
Label	Invert (Start) (US Survey Ft)	Invert (Stop) (US Survey Ft)	Length (Scaled) (ft)	Diameter (in)	Flow (cfs)	Velocity (ft/s)	Manning's n	Capacity (Full Flow) (cfs)	Headloss (ft)	Hydraulic Grade Line (In) (US Survey Ft)	Hydraulic Grade Line (Out) (US Survey Ft)	Energy Grade Line (In) (US Survey Ft)	Energy Grade Line (Out) (US Survey Ft)	Slope (Calculated) (ft/ft)	Depth (Out) (ft)
CULVERT 1	7,576.63	7,576.22	52.0	24.0	5.60	5.47	0.013	20.05	0.52	7,577.47	7,576.94	7,577.78	7,577.41	0.008	0.72
CULVERT 1.1	7,575.89	7,575.43	48.9	24.0	6.00	5.99	0.013	22.13	0.61	7,576.76	7,576.15	7,577.09	7,576.70	0.010	0.72
CULVERT 4	7,561.67	7,557.23	58.4	12.0	0.80	7.53	0.013	9.82	4.62	7,562.04	7,557.42	7,562.18	7,558.30	0.076	0.19
CULVERT 3	7,540.64	7,539.47	51.3	18.0	2.60	6.03	0.013	13.92	1.34	7,541.25	7,539.91	7,541.48	7,540.47	0.018	0.44
CULVERT 3.1	7,539.27	7,537.68	146.4	18.0	2.60	5.19	0.013	11.28	1.71	7,539.88	7,538.17	7,540.11	7,538.59	0.012	0.49

Active Scenario: 5-Year

FlexTable: Catch Basin Table

ID	Label	Notes	Elevation (Ground) (US Survey Ft)	Elevation (Rim) (US Survey Ft)	Elevation (Invert) (US Survey Ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (In) (US Survey Ft)	Hydraulic Grade Line (Out) (US Survey Ft)	Depth (Out) (ft)
90	IN-1	TYPE-C INLET	7,579.96	7,579.96	7,576.63	5.60	7,577.47	7,577.47	0.84
91	IN-2	TYPE-C INLET	7,580.56	7,580.56	7,576.09	6.00	7,576.76	7,576.76	0.66
92	IN-5	TYPE-C INLET	7,565.96	7,565.96	7,561.67	0.80	7,562.04	7,562.04	0.37
93	IN-3	TYPE-C INLET	7,546.51	7,546.51	7,540.29	2.60	7,541.20	7,541.20	0.91
94	IN-4	TYPE-C INLET	7,545.73	7,545.73	7,539.27	2.60	7,539.83	7,539.83	0.56

Active Scenario: 100-Year

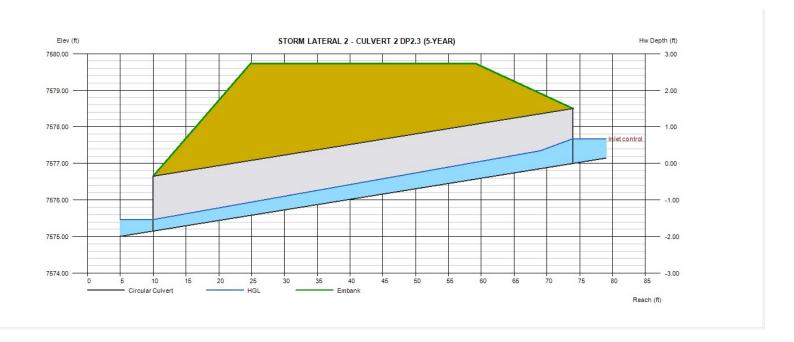

FlexTable: Conduit Table

Label	Invert (Start) (US Survey Ft)	Invert (Stop) (US Survey Ft)	Length (Scaled) (ft)	Diameter (in)	Flow (cfs)	Velocity (ft/s)	Manning's n	Capacity (Full Flow) (cfs)	Headloss (ft)	Hydraulic Grade Line (In) (US Survey Ft)	Hydraulic Grade Line (Out) (US Survey Ft)	Energy Grade Line (In) (US Survey Ft)	Energy Grade Line (Out) (US Survey Ft)	Slope (Calculated) (ft/ft)	Depth (Out) (ft)
CULVERT 1	7,576.63	7,576.22	52.0	24.0	23.10	7.35	0.013	20.05	0.54	7,579.90	7,579.36	7,580.74	7,580.20	0.008	3.14
CULVERT 1.1	7,575.89	7,575.43	48.9	24.0	45.60	14.51	0.013	22.13	1.95	7,579.36	7,577.41	7,582.63	7,580.70	0.010	1.97
CULVERT 4	7,561.67	7,557.23	58.4	12.0	3.40	11.35	0.013	9.82	4.83	7,562.46	7,557.63	7,562.87	7,559.64	0.076	0.41
CULVERT 3	7,540.64	7,539.47	51.3	24.0	17.90	9.97	0.013	29.99	1.54	7,542.16	7,540.62	7,542.92	7,542.04	0.018	1.15
CULVERT 3.1	7,539.27	7,537.68	146.4	24.0	20.30	8.66	0.013	24.29	1.81	7,540.89	7,539.08	7,541.75	7,540.24	0.012	1.40

Active Scenario: 100-Year

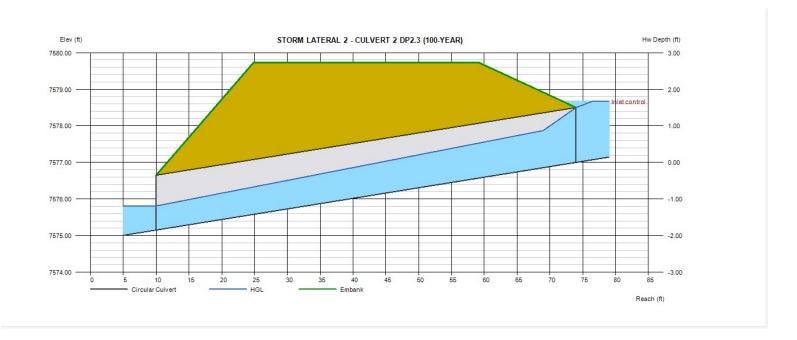
FlexTable: Catch Basin Table

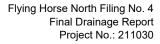
ID	Label	Notes	Elevation (Ground) (US Survey Ft)	Elevation (Rim) (US Survey Ft)	Elevation (Invert) (US Survey Ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (In) (US Survey Ft)	Hydraulic Grade Line (Out) (US Survey Ft)	Depth (Out) (ft)
90	IN-1	TYPE-C INLET	7,579.96	7,579.96	7,576.63	23.10	7,579.90	7,579.90	3.27
91	IN-2	TYPE-C INLET	7,580.56	7,580.56	7,576.09	45.60	7,579.36	7,579.36	3.27
92	IN-5	TYPE-C INLET	7,565.96	7,565.96	7,561.67	3.40	7,562.46	7,562.46	0.79
93	IN-3	TYPE-C INLET	7,546.51	7,546.51	7,540.29	17.90	7,542.16	7,542.16	1.87
94	IN-4	TYPE-C INLET	7,545.73	7,545.73	7,539.27	20.30	7,540.89	7,540.89	1.62



CULVERT CALCULATIONS

STORM LATERAL 2 - CULVERT 2 DP2.3 (5-YEAR)


Invert Elev Dn (ft)	= 7575.15	Calculations	
Pipe Length (ft)	= 63.98	Qmin (cfs)	= 1.80
Slope (%)	= 2.89	Qmax (cfs)	= 1.80
Invert Elev Up (ft)	= 7577.00	Tailwater Elev (ft)	= Normal
Rise (in)	= 18.0	, ,	
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 1.80
No. Barrels	= 1	Qpipe (cfs)	= 1.80
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 6.71
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 3.45
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7575.46
		HGL Up (ft)	= 7577.50
Embankment		Hw Elev (ft)	= 7577.68
Top Elevation (ft)	= 7579.73	Hw/D (ft)	= 0.45
Top Width (ft)	= 34.30	Flow Regime	= Inlet Control
Crest Width (ft)	= 50.00	-	



Friday, Sep 27 2024

STORM LATERAL 2 - CULVERT 2 DP2.3 (100-YEAR)

= 7575.15	Calculations	
= 63.98	Qmin (cfs)	= 7.30
= 2.89	Qmax (cfs)	= 7.30
= 7577.00	Tailwater Elev (ft)	= Normal
= 18.0		
= Circular	Highlighted	
= 18.0	Qtotal (cfs)	= 7.30
= 1	Qpipe (cfs)	= 7.30
= 0.012	Qovertop (cfs)	= 0.00
Circular Concrete	Veloc Dn (ft/s)	= 9.75
Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.55
= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 7575.81
	HGL Up (ft)	= 7578.05
	Hw Elev (ft)	= 7578.67
= 7579.73	Hw/D (ft)	= 1.11
= 34.30	Flow Regime	= Inlet Control
= 50.00		
	= 63.98 = 2.89 = 7577.00 = 18.0 = Circular = 18.0 = 1 = 0.012 = Circular Concrete = Square edge w/headwall (C) = 0.0098, 2, 0.0398, 0.67, 0.5	= 63.98

El Paso County, Colorado

SWALE CALCULATIONS

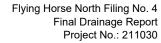
Worksheet for Street Section 1 - Basin B2.1

	Workshoet it	oticet ocotion i Basin Bei
Project Description		
Friction Method	Manning	
Triction Metriod	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.00 %	
Left Side Slope	3.000 H:V	
Right Side Slope	4.000 H:V	
Discharge	23.10 cfs	
Results		
Normal Depth	1.2 ft	
Flow Area	5.4 ft ²	
Wetted Perimeter	9.1 ft	
Hydraulic Radius	0.6 ft	
Top Width	8.71 ft	
Critical Depth	1.2 ft	
Critical Slope	2.22 %	
Velocity	4.26 ft/s	
Velocity Head	0.28 ft	
Specific Energy	1.53 ft	
Froude Number	0.953	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.2 ft	
Critical Depth	1.2 ft	
Channel Slope	2.00 %	
Critical Slope	2.22 %	

Worksheet for Street Section 1 - Basin B2.2

	Workshoot	DI GUIGGE GOGUIGH I BUGHI BEIE
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.00 %	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	12.40 cfs	
Results		
Normal Depth	1.0 ft	
Flow Area	3.4 ft ²	
Wetted Perimeter	7.2 ft	
Hydraulic Radius	0.5 ft	
Top Width	6.90 ft	
Critical Depth	1.0 ft	
Critical Slope	2.41 %	
Velocity	3.65 ft/s	
Velocity Head	0.21 ft	
Specific Energy	1.19 ft	
Froude Number	0.916	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	1.0 ft	
Critical Depth	1.0 ft	
Channel Slope	2.00 %	
Critical Slope	2.41 %	

Worksheet for Street Section 2 - Basin B2.4


Project Description		
Project Description		
Friction Method	Manning	
Solve For	Formula Normal Depth	
Solve For	поппат Берит	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	7.60 %	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	17.90 cfs	
Results		
Normal Depth	0.9 ft	
Flow Area	2.7 ft ²	
Wetted Perimeter	6.4 ft	
Hydraulic Radius	0.4 ft	
Top Width	6.16 ft	
Critical Depth	1.1 ft	
Critical Slope	2.30 %	
Velocity	6.60 ft/s	
Velocity Head	0.68 ft	
Specific Energy	1.56 ft	
Froude Number	1.752	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.9 ft	
Critical Depth	1.1 ft	
Channel Slope	7.60 %	
Critical Slope	2.30 %	

Worksheet for Street Section 2 - Basin B2.5

	Workshoot	or otrect occion 2	Busin Brio
Project Description			
Friction Method	Manning		
	Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient	0.035		
Channel Slope	7.60 %		
Left Side Slope	4.000 H:V		
Right Side Slope	3.000 H:V		
Discharge	3.30 cfs		
Results			
Normal Depth	0.5 ft		
Flow Area	0.8 ft ²		
Wetted Perimeter	3.4 ft		
Hydraulic Radius	0.2 ft		
Top Width	3.27 ft		
Critical Depth	0.6 ft		
Critical Slope	2.88 %		
Velocity	4.32 ft/s		
Velocity Head	0.29 ft		
Specific Energy	0.76 ft		
Froude Number	1.577		
Flow Type	Supercritical		
GVF Input Data			
Downstream Depth	0.0 ft		
Length	0.0 ft		
Number Of Steps	0		
GVF Output Data			
Upstream Depth	0.0 ft		
Profile Description	N/A		
Profile Headloss	0.00 ft		
Downstream Velocity	Infinity ft/s		
Upstream Velocity	Infinity ft/s		
Normal Depth	0.5 ft		
Critical Depth	0.6 ft		
Channel Slope	7.60 %		
Critical Slope	2.88 %		

Worksheet for Street Section 3 - Basin I1

	Workshoet	ioi oti oot oootioii o Basiii i i
Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	4.20 %	
Left Side Slope	4.000 H:V	
Right Side Slope	3.000 H:V	
Discharge	3.40 cfs	
Results		
Normal Depth	0.5 ft	
Flow Area	1.0 ft ²	
Wetted Perimeter	3.8 ft	
Hydraulic Radius	0.3 ft	
Top Width	3.69 ft	
Critical Depth	0.6 ft	
Critical Slope	2.87 %	
Velocity	3.49 ft/s	
Velocity Head	0.19 ft	
Specific Energy	0.72 ft	
Froude Number	1.196	
Flow Type	Supercritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	Infinity ft/s	
Upstream Velocity	Infinity ft/s	
Normal Depth	0.5 ft	
Critical Depth	0.6 ft	
Channel Slope	4.20 %	
Critical Slope	2.87 %	

El Paso County, Colorado

DRAINAGE CHANNEL SECTION CALCULATIONS

Worksheet for Section A-A

Project Description		
Friction Method	Manning	
	Formula	
Solve For	Normal Depth	
Input Data		
Roughness Coefficient	0.035	
Channel Slope	2.00 %	
Left Side Slope	7.000 H:V	
Right Side Slope	6.000 H:V	
Bottom Width	12.00 ft	
Discharge	38.40 cfs	
Results		
Normal Depth	0.6 ft	
Flow Area	10.2 ft ²	
Wetted Perimeter	20.3 ft	
Hydraulic Radius	0.5 ft	
Top Width	20.20 ft	
Critical Depth	0.6 ft	
Critical Slope	2.28 %	
Velocity	3.78 ft/s	
Velocity Head	0.22 ft	
Specific Energy	0.85 ft	
Froude Number	0.941	
Flow Type	Subcritical	
GVF Input Data		
Downstream Depth	0.0 ft	
Length	0.0 ft	
Number Of Steps	0	
GVF Output Data		
Upstream Depth	0.0 ft	
Profile Description	N/A	
Profile Headloss	0.00 ft	
Downstream Velocity	0.00 ft/s	
Upstream Velocity	0.00 ft/s	
Normal Depth	0.6 ft	
Critical Depth	0.6 ft	
Channel Slope	2.00 %	
Critical Slope	2.28 %	

El Paso County, Colorado

CHANNEL LINING CALCULATIONS

FROUDE NUMBER CALCULATIONS C		CALCULATED BY:	тмм	DATE:	9/30/2024	
PROJECT: 211030 FILING NO. 5		CHECKED BY:	RHL			
Froude Number Calculations: 100-YR						
Section	Velocity	Gravitational Constant	Hydraulic depth	Xsectional Area	top Width	Froude #
-	ft/s	ft/s^2	ft	ft^2	ft	N/A
A-A	3.78	32.17	0.50	10.20	20.20	0.94
STREET SECTION 1	4.26	32.17	0.62	5.4	8.71	0.95
STREET SECTION 2	6.6	32.17	0.44	2.7	6.16	1.76
STREET SECTION 3	3.49	32.17	0.27	1.0	3.69	1.18

Please state lining material for each swale.

SHEA	AR STRESS & CHANNEL LINING	GS	CALC	CULATED BY:	TMM	DATE:	9/30/2024				
PR	OJECT: 211030 FILING NO. 5		СН	ECKED BY:	RHL						
Shear Stress Calculations: 100-YR						Channel Lini	ng Determination				
Section	unit weight of water	Depth of flow	Slope	Shear Stress		Ca	Iculated Values		P300 Max \	/alues	
-	lb/ft^3	ft	ft/ft	lb/ft^2		Section	Shear Stress	Velocity	Shear Stress	Velocity	Lining Required
A-A	62.43	0.60	0.020	0.75		A-A	0.75	3.78	3	9	P300
STREET SECTION 1	62.43	1.20	0.020	1.50		STREET SECTION	1.50	4.26	3	9	P300
STREET SECTION 2	62.43	0.90	0.076	4.27		STREET SECTION	4.27	6.60	3	9	TMAX
STREET SECTION 3	62.43	0.50	0.042	1.31		STREET SECTION	1.31	3.49	3	9	P300

Please include cross-sectional views for all swales, ensuring a 1-foot freeboard is shown.

El Paso County, Colorado

RIPRAP SIZING ANALYSIS

FLYING HORSE NORTH FILING NO. 4	Calc'd by:	ТММ
211030	Checked by:	RHL
FES 1D RIPRAP	<u>Date:</u>	9/18/2024

Input Parame	ters	
Flow (Q)	45.6	cf
Tailwater depth (Y _t)	1.20	ft
Conduit Diameter (D _c)	36	in
Expansion Factor (per Fig. 9-35)	4.5	
Soil Type	Non-Cohesive Soils	

Calculated Parar	neters	ı
Froude Parameter (Q/D ^{2.5})	2.93	
D ₅₀ =	7.27	in
UDFCD Riprap Type =	Type L	
Design D ₅₀ =	9	in
Minimum Mantle Thickness =	18	in
Minimum Length of Apron =	20.7	ft

Calculated D₅₀ for riprap was calculated using Equation 9-16 in the USDCM Vol 2.

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_p = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_t}{Y_t} - W\right)$$

Equation 9-1

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 $Y_t = \text{tailwater depth (ft)}$

 A_t = required area of flow at allowable velocity (ft²)

 θ = the expansion angle of the culvert flow

¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

 $^{^3}$ This spreadsheet assumes $y_t/D_t=0.4$ in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.

 $^{^4}$ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6

FLYING HORSE NORTH FILING NO. 4	Calc'd by:	ТММ
211030	Checked by:	RHL
FES 2D RIPRAP	<u>Date:</u>	9/18/2024

Input Parame	ters
Flow (Q)	7.3
Tailwater depth (Y _t)	0.60
Conduit Diameter (D _c)	18 i
Expansion Factor (per Fig. 9-35)	4.75
Soil Type	Non-Cohesive Soils

Calculated Parameters		
Froude Parameter (Q/D ^{2.5})	2.65	
D ₅₀ =	3.29	in
UDFCD Riprap Type =	Type VL	
Design D ₅₀ =	6	in
Minimum Mantle Thickness =	12	in
Minimum Length of Apron =	4.5	ft

Calculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM Vol 2.

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_p = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_t}{Y_t} - W\right)$$

Equation 9-1

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 $Y_t = \text{tailwater depth (ft)}$

 A_t = required area of flow at allowable velocity (ft²)

 θ = the expansion angle of the culvert flow

¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

 $^{^{3}}$ This spreadsheet assumes y_{t}/D_{t} =0.4 in cases where y_{t} is unknown or a hydraulic jump is suspected downstream of the outlet.

 $^{^4}$ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6

FLYING HORSE NORTH FILING NO. 4	Calc'd by:	ТММ
211030	Checked by:	RHL
FES 3D RIPRAP	Date:	9/18/2024

Input Parame	ters
Flow (Q)	20.3
Tailwater depth (Y _t)	1.20
Conduit Diameter (D _c)	36 i
Expansion Factor (per Fig. 9-35)	6.25
Soil Type	Non-Cohesive Soils

Calculated Parameters		
Froude Parameter (Q/D ^{2.5})	1.30	
D ₅₀ =	3.24	in
UDFCD Riprap Type =	Type VL	
Design D ₅₀ =	6	in
Minimum Mantle Thickness =	12	in
Minimum Length of Apron =	9	ft

Calculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM Vol 2.

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_p = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_t}{Y_t} - W\right)$$

Equation 9-1

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 $Y_t = \text{tailwater depth (ft)}$

 A_t = required area of flow at allowable velocity (ft²)

 θ = the expansion angle of the culvert flow

¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

 $^{^{3}}$ This spreadsheet assumes y_{t}/D_{t} =0.4 in cases where y_{t} is unknown or a hydraulic jump is suspected downstream of the outlet.

 $^{^4}$ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6

FLYING HORSE NORTH FILING NO. 4	Calc'd by:	ТММ
211030	Checked by:	RHL
FES 4D RIPRAP	Date:	9/18/2024

Input Parameters					
Flow (Q)	3.4	cfs			
Tailwater depth (Y _t)	0.60	ft			
Conduit Diameter (D _c)	18 i	in			
Expansion Factor (per Fig. 9-35)	6.25				
Soil Type	Non-Cohesive Soils				

Calculated Parar	neters	
Froude Parameter (Q/D ^{2.5})	1.23	
D ₅₀ =	1.53	in
UDFCD Riprap Type =	Type VL	
Design D ₅₀ =	6	in
Minimum Mantle Thickness =	12	in
Minimum Length of Apron =	4.5	ft

Calculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM Vol 2.

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_p = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_t}{Y_t} - W\right)$$

Equation 9-1

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

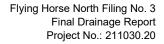
Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 $Y_t = \text{tailwater depth (ft)}$

 A_t = required area of flow at allowable velocity (ft²)


 θ = the expansion angle of the culvert flow

¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

 $^{^{3}}$ This spreadsheet assumes y_{t}/D_{t} =0.4 in cases where y_{t} is unknown or a hydraulic jump is suspected downstream of the outlet.

 $^{^4}$ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6

El Paso County, Colorado

APPENDIX D

REFERENCE MATERIALS

INNOVATIVE DESIGN. CLASSIC RESULTS.

PRELIMINARY DRAINAGE REPORT FOR FLYING HORSE NORTH PRELIMINARY PLAN AND FINAL DRAINAGE REPORT FOR FLYING HORSE NORTH FILING NO. 1

NOVEMBER 2017 Revised June 2018

Prepared for:
PRI #2 LLC
6385 CORPORATE DRIVE SUITE 200
COLORADO SPRINGS CO 80919
(719) 592-9333

Prepared by:
CLASSIC CONSULTING ENGINEERS &
SURVEYORS
619 N. CASCADE AVE SUITE 200
COLORADO SPRINGS CO 80903

(719) 785-0790

Job no. 1096.11 PCD File No. SP-17-012 and SF-18-001

and B-B channel calculations) These facilities not only meet all current drainage criteria but also remain consistent with the intent of the DBPS. It is also noted that these facilities release well under the predevelopment flows as established by the DBPS. Thus, the downstream corridor within the existing Reach 13 on the adjacent property will not be significantly affected with the installation of these full-spectrum facilities. Portions of the Cathedral Pines Development to the south contributes developed flows to this property. These flows will be accommodated in the various on-site facility designs. A smaller on-site basin at the southeast corner of section 36 releases historic flows onto the Cathedral Pines and the Edmonds Subdivision. An on-site detention/storm water quality facility is planned in this corridor to help mitigate development.

East Cherry Creek Drainage Basin

The Palmer Divide traverses the eastern half of section 36 which defines the major basin line between the Black Squirrel Creek and the East Cherry Creek Basins. The vegetation also changes drastically in this area. The majority of the East Cherry Creek Basin contains very little trees and more grazing prairie land and meadows. This area defines the edge of Black Forest. In general, historic flow patterns in this basin travel in a northeasterly direction towards Hodgen Road. The MDDP designates several major design points along the north boundary. Again, multiple detention/storm water quality facilities are planned for these corridors and to be constructed along with future land development. This report has analyzed the downstream corridors along the north property line for the pre-development condition (per MDDP hydrology) and post-development condition (per UD-detention designed release). No significant erosion currently exists in these channels and we have been consistently maintaining proper BMPs along this property boundary. This effort will continue through final construction and revegetation of the permanent detention/SWQ facilities. (See Appendix for Sections D-D and E-E channel calculations). Portions of the Palmer Divide Subdivision and multiple large unplatted properties the south contribute developed flows to this property. These flows will be accommodated in the various on-site facility designs.

PROPOSED DRAINAGE CONDITIONS

The proposed land development within the Flying Horse North Filing No. 1 and future development within the remaining portions of the Preliminary Plan will be 2.5-5 acre large lot residential with associated paved streets and roadside ditches. The 18-hole private Golf Course with a club house site, driving range and

maintenance facility is also planned as a part of Filing No. 1. Based on the current El Paso County ECM Section I.7.1.B. and given the size of the lots within this entire development area, stormwater quality is not required to be provided. However, detention/EURV will still be provided in specific locations on-site to limit the on-site development flow release to remain consistent with pre-development conditions within the major drainage corridors. These proposed facilities will aide in limiting any detrimental effects on downstream corridors. At specific areas where the Filing No. 1 development creates concentrated flows into future development areas, temporary sediment basins will be constructed to minimize sediment transfer downstream and off-site. The Filing No. 1 Final Drainage Report portion of this report will define the permanent facilities providing an Excess Urban Runoff Volume (EURV) in the lower portion of the facility storage volume with an outlet control device. Frequent and infrequent inflows are released at rates approximating undeveloped conditions. This concept provides some mitigation of increased runoff volume by releasing a portion of the increased runoff at a low rate over an extended period of time, up to 72 hours. This means that frequent storms, smaller than the 2 year event, will be reduced to very low flows near or below the sediment carrying threshold value for downstream drainage ways. Also, by incorporating an outlet structure that limits the 100-year runoff to the undeveloped condition rate, the discharge hydrograph for storms between the 2 year and the 100 year event will approximate the hydrograph for the undeveloped conditions and will help effectively mitigate the effects of this development. Again, prior to any land development beyond the Filing No. 1 Final Plat area, additional final drainage reports, final plats and construction plans will be required detailing this criteria.

Given the rural nature of this development, roadside ditches are planned along all roadways. Concrete curb and gutter will only be used at the round-about locations and along the jurisdictional dam embankment as required by the State. The typical roadside ditch will be designed as a V-ditch with a depth of 24 inches. The natural terrain within much of this development creates some steeper slopes on many of the roadways. These slopes range from 1% to 10%. An analysis of the roadside ditches was performed in order to determine the necessary ditch lining required to maintain allowable velocity and shear stress.

The following three basic ditch improvements are recommended throughout the development: (See Appendix for reference)

Revegetation with native seeding (Grass lined only)
 Slope 2% or less and minimal flow

- 2. Erosion Control Blanket (North American Green SC150 or equiv.) with native seeding Slope 5% or less and max. flow range of 7-43 cfs.
- 3. Turf Reinforcement Mat (North American Green P300 or equiv.) with natives seeding Slope 10% or less and max. flow of 70 cfs.

The specific ditch lining locations will be shown on the street improvements plans

The following hydrology descriptions will start at the western edge of the Flying Horse North property and move east into the East Cherry Creek Basin, describing the development within the Filing No. 1 area first.

FLYING HORSE NORTH FILING NO. 1

Black Squirrel Creek Drainage Basin

As mentioned previously, Flying Horse North is located in the upper region of the Black Squirrel Creek Drainage Basin. Per the approved DBPS for Black Squirrel Creek, the reaches in this area were proposed to remain as natural as possible. There were no recommendations for detention facilities within the area that is Flying Horse North, but due to current drainage criteria, detention/EURV facilities will be proposed with this development.

High Forest Ranch Detention Pond 26 outfalls onto the property at the very northwest corner of the site. These existing flows will continue to enter the site and travel within the natural channel towards the existing 48" CMP culvert crossing at Hwy. 83. Drainage easements across the proposed lots in this area will be provided on the final plat. The existing stock pond within lots 2 and 3 will be removed with grading of the road in this area. Tract B is platted in order to provide a detention/EURV facility for the lots and public road in this area. This facility will be constructed with Filing No. 1 with ownership and maintenance by the Flying Horse North HOA.

Design Point 1 ($Q_2 = 2$ cfs $Q_5 = 3$ cfs, $Q_{100} = 11$ cfs) represents the existing off-site and on-site developed flows from Basins OS-1A and BS-2B. The combined flow from these basins travel to a low point just east of Stagecoach Road where a proposed 24" RCP culvert will be installed to convey these flows under the road. (See Appendix for culvert design)

Design Point 26 ($Q_2 = 3$ cfs $Q_5 = 16$ cfs, $Q_{100} = 102$ cfs) represents the full build-out developed flows from Basins CC-8 and CC-10. Basin CC-8 represents future residential lots and CC-10 mostly future passive park area. These flows will continue to sheet flow towards the low-point where a 48" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) After crossing Stagecoach Road, these flows will continue to flow directly into the existing stock pond just north of the roadway. This facility will provided sediment control for the small developed roadway area. Upon future development and plating of the lots planned within these basins, this stock pond will be formally designed into a detention facility.

Basin CC-15 ($Q_2 = 1$ cfs $Q_5 = 4$ cfs, $Q_{100} = 20$ cfs) represents the full build-out developed flows from the future residential lots tributary to this basin. These flows will continue to sheet flow towards the low-point where a 30" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

Basin CC-16 ($Q_2 = 1$ cfs $Q_5 = 5$ cfs, $Q_{100} = 24$ cfs) represents the full build-out developed flows from the future residential lots tributary to this basin. These flows will continue to sheet flow towards the low-point at the southwest corner of Old Stagecoach Road and Rubble Drive where a 24" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

Design Point 30 ($Q_2 = 0.7$ cfs $Q_5 = 2$ cfs, $Q_{100} = 10$ cfs) represents the full build-out developed flows from Basin CC-18. This Basin represents future residential lots. The flows will continue to sheet flow towards the low-point where a 24" RCP culvert is sized to handle the fully developed flows at this location. (See Appendix for culvert design) A downstream sediment basin will be installed to provide sediment control for the small developed roadway area.

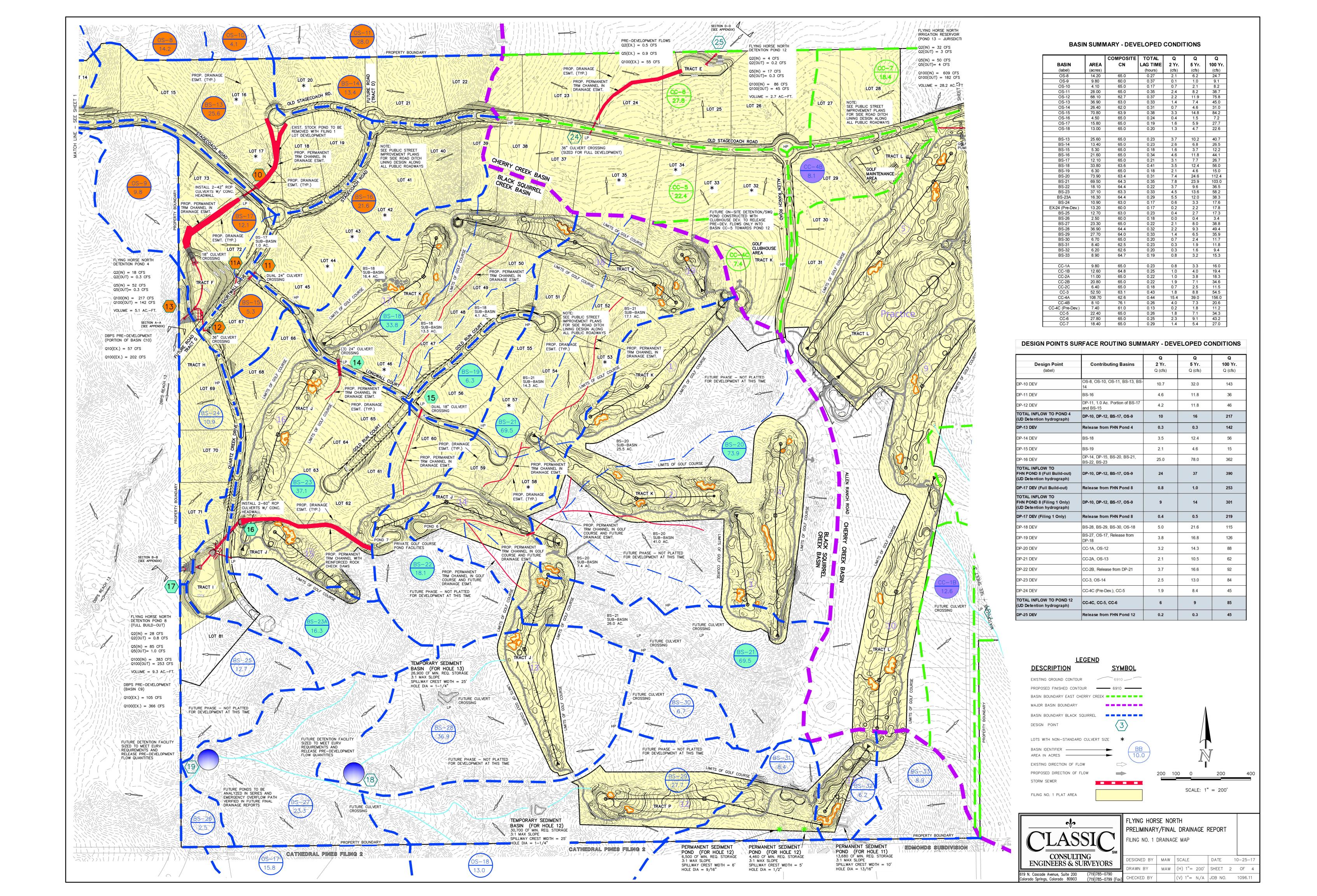
Design Point 31 (Q₂ = **0.9 cfs Q**₅ = **3 cfs, Q**₁₀₀ = **15 cfs)** represents the full build-out developed flows from Basin CC-19 and the upstream release from DP-30. This Basin represents future residential 5 ac. lots. The flows will continue to sheet flow within a proposed drainage easement towards the existing low-point where an existing 24" CMP culvert will adequately handle the fully developed flows at this location.

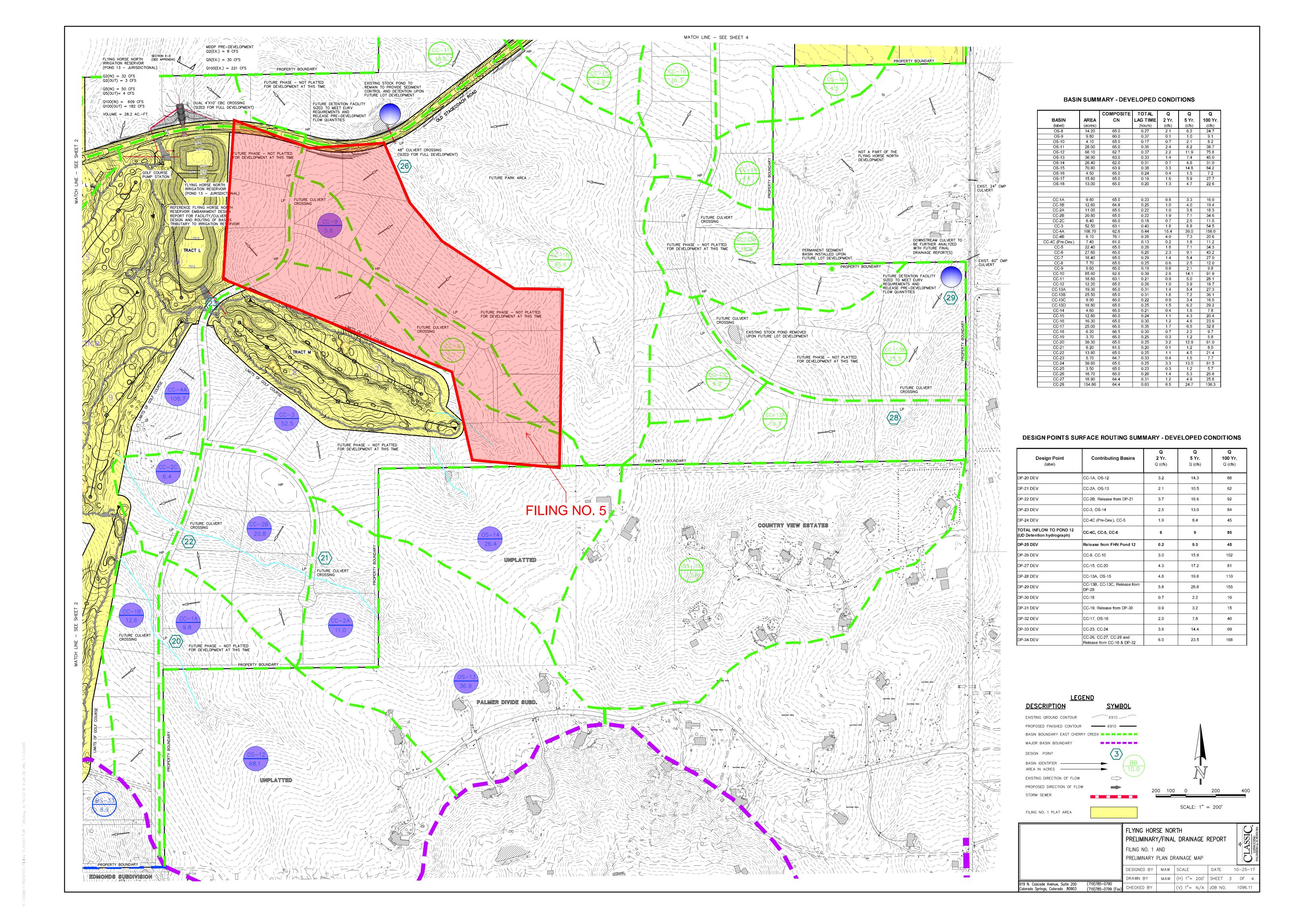
ALL LAND ASSUMED 2 ACRE RESIDENTIAL LOTS, UNDEVELOPED WOODS OR GOOD CONDITION OPEN SPACE (LAWNS, PARKS GOLF COURSES, CEMETARIES ETC.)

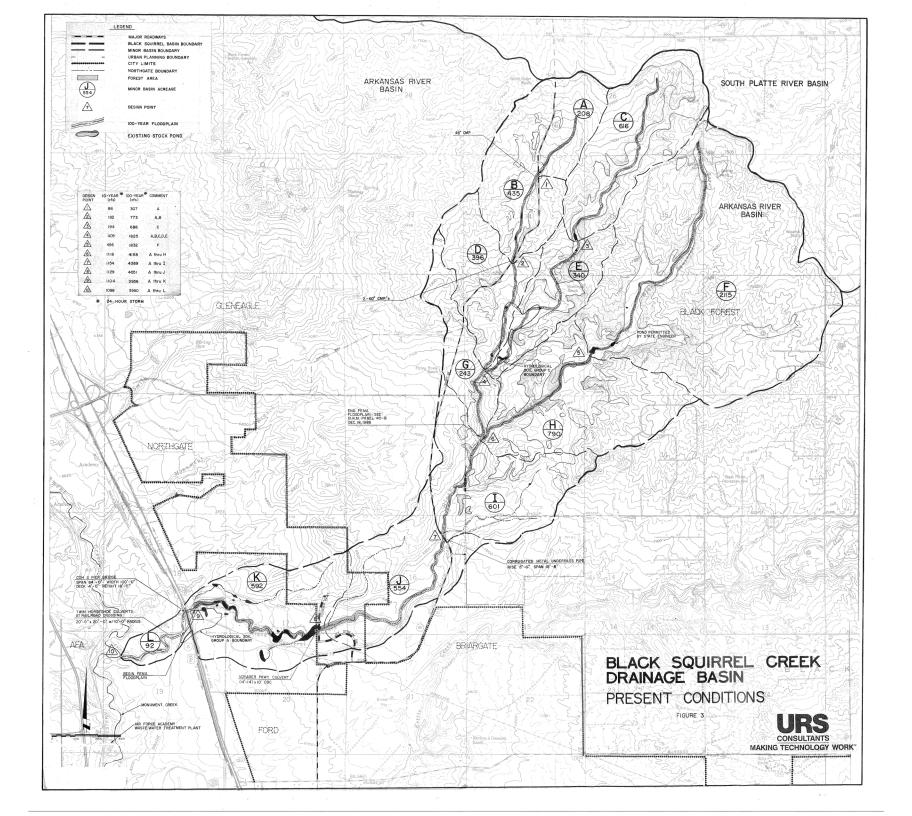
CN VALUES - DEVELOPED CONDITIONS

BASIN	BASIN	N GOLF COURSE / WOODS (B) 2 AC. RESIDENTIAL (2 AC. RESIDENTIAL (B)		GOLF COURSE / WOODS (B) 2 AC. RESIDENTIAL (B)		
(label)	AREA					Cn		
	(Ac)	CN	AREA	CN	AREA			
			(Ac.)		(Ac.)			
CC-1A	9.8	61	0.0	65	9.8	65.0		
CC-1B	12.6	61	0.5	65	12.1	64.8		
CC-2A	11.0	61	0.0	65	11.0	65.0		
CC-2B	20.8	61	0.0	65	20.8	65.0		
CC-2C	6.4	61	0.0	65	6.4	65.0		
CC-3	52.5	61	25.0	65	27.5	63.1		
CC-4A	108.7	61	65.0	65	43.7	62.6		
CC-4B	8.1	85	4.5	65	3.6	76.1		
CC-4C (Pre-Dev.)	7.4	61	7.4	65	0.0	61.0		
CC-5	22.4	61	0.0	65	22.4	65.0		
CC-6	27.8	61	0.0	65	27.8	65.0		
CC-7	18.4	61	0.0	65	18.4	65.0		
CC-8	7.7	61	0.0	65	7.7	65.0		
CC-9	5.6	61	0.0	65	5.6	65.0		
CC-10	85.6	61	51.0	65	34.6	62.6		
CC-11	18.6	61	9.0	65	9.6	63.1		
CC-12	12.2	61	0.0	65	12.2	65.0		
CC-13A	19.3	61	0.0	65	19.3	65.0		
CC-13B	25.5	61	0.0	65	25.5	65.0		
CC-13C	9.9	61	0.0	65	9.9	65.0		
CC-13D	18.8	61	0.0	65	18.8	65.0		
CC-14	4.6	61	0.0	65	4.6	65.0		
CC-15	12.8	61	0.0	65	12.8	65.0		
CC-16	16.3	61	0.0	65	16.3	65.0		
CC-17	25.0	61	0.0	65	25.0	65.0		
CC-18	6.2	65	5.8	89	0.4	66.5		
CC-19	3.7	61	0.0	65	3.7	65.0		
CC-20	39.3	61	0.0	65	39.3	65.0		
CC-21	6.2	61	6.2	65	0.0	61.0		
CC-22	13.8	61	0.0	65	13.8	65.0		
CC-23	5.7	61	0.4	65	5.3	64.7		
CC-24	39.6	61	0.0	65	39.6	65.0		
CC-25	3.5	61	0.0	65	3.5	65.0		
CC-26	16.7	61	0.0	65	16.7	65.0		
CC-27	18.9	61	3.0	65	15.9	64.4		
CC-28	154.8	61	23.0	65	131.8	64.4		

TIME OF CONCENTRATION - DEVELOPED


COMPOSITE				OVERLAND		STREET / CHANNEL FLOW (DCM Vol. 1 Fig. 6-25)				Tc	Tc	Tc
BASIN	Cn	C(5)	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	LAG (0.6tc)	LAG (0.6tc)
		. ,	(ft)	(ft)	(min)	(ft)	(%)	(fps)	(min)	(min)	(min)	(hr)
CC-1A	65.0	0.08	300	16	18.4	500	5.0%	1.7	4.9	23.3	14.0	0.23
CC-1B	64.8	0.08	300	14	19.2	700	4.0%	2.0	5.8	25.0	15.0	0.25
CC-2A	65.0	0.08	300	14	19.2	250	3.0%	1.5	2.8	22.0	13.2	0.22
CC-2B	65.0	0.08	300	14	19.2	280	3.0%	1.5	3.1	22.3	13.4	0.22
CC-2C	65.0	0.08	300	18	17.7					17.7	10.6	0.18
CC-3	63.1	0.08	300	18	17.7	2300	3.0%	1.5	25.6	43.2	25.9	0.43
CC-4A	62.6	0.08	300	14	19.2	2700	2.0%	1.8	25.0	44.2	26.5	0.44
CC-4B	76.1	0.08	300	12	20.2	600	3.0%	1.6	6.3	26.4	15.9	0.26
CC-4C (Pre-Dev.)	61.0	0.08	40	0.8	9.3	350	3.0%	1.5	3.9	13.2	7.9	0.13
CC-5	65.0	0.08	300	18	17.7	1000	4.0%	2.0	8.3	26.0	15.6	0.26
CC-6	65.0	0.08	300	14	19.2	550	2.5%	1.6	5.7	24.9	14.9	0.25
CC-7	65.0	0.08	300	16	18.4	1000	3.0%	1.6	10.4	28.8	17.3	0.29
CC-8	65.0	0.08	300	10	21.4	250	2.0%	1.2	3.5	24.9	14.9	0.25
CC-9	65.0	0.08	300	18	17.7	100	2.0%	1.2	1.4	19.0	11.4	0.19
CC-10	62.6	0.08	300	22	16.5	2400	3.0%	1.8	22.2	38.7	23.2	0.39
CC-11	63.1	0.08	300	18	17.7	450	5.0%	2.1	3.6	21.2	12.7	0.21
CC-12	65.0	0.08	300	11	20.8	650	4.0%	2.0	5.4	26.2	15.7	0.26
CC-13A	65.0	0.08	300	14	19.2	1400	4.0%	2.0	11.7	30.9	18.5	0.31
CC-13B	65.0	0.08	300	18	17.7	1300	3.0%	1.6	13.5	31.2	18.7	0.31
CC-13C	65.0	0.08	300	14	19.2	350	4.0%	2.0	2.9	22.1	13.3	0.22
CC-13D	65.0	0.08	300	20	17.1	900	4.0%	2.0	7.5	24.6	14.7	0.25
CC-14	65.0	0.08	300	10	21.4					21.4	12.9	0.21
CC-15	65.0	0.08	300	14	19.2	550	3.0%	1.8	5.1	24.3	14.6	0.24
CC-16	65.0	0.08	300	10	21.4	650	2.5%	1.3	8.3	29.8	17.9	0.30
CC-17	65.0	0.08	300	9	22.2	950	2.0%	1.2	13.2	35.4	21.2	0.35
CC-18	66.5	0.08	300	7	24.1	400	2.0%	1.2	5.6	29.7	17.8	0.30
CC-19	65.0	0.08	300	8	23.1	100	2.0%	1.0	1.7	24.7	14.8	0.25
CC-20	65.0	0.08	300	9	22.2	350	6.0%	2.2	2.7	24.8	14.9	0.25
CC-21	61.0	0.08	300	18	17.7	200	3.0%	1.8	1.9	19.5	11.7	0.20
CC-22	65.0	0.08	300	14	19.2	700	4.0%	2.0	5.8	25.0	15.0	0.25
CC-23	64.7	0.08	300	10	21.4	850	2.0%	1.2	11.8	33.2	19.9	0.33
CC-24	65.0	0.08	300	20	17.1	900	4.0%	1.9	7.9	25.0	15.0	0.25
CC-25	65.0	0.08	300	16	18.4	500	3.0%	1.8	4.6	23.0	13.8	0.23
CC-26	65.0	0.08	300	14	19.2	900	5.0%	2.1	7.1	26.3	15.8	0.26
CC-27	64.4	0.08	300	14	19.2	1300	3.0%	1.8	12.0	31.2	18.7	0.31
CC-28	64.4	0.08	300	14	19.2	4700	3.0%	1.8	43.5	62.7	37.6	0.63


BASIN SUMMARY - DEVELOPED CONDITIONS


		COMPOSITE	TOTAL	Q	Q	Q
BASIN	AREA	CN	LAG TIME	2 Yr.	5 Yr.	100 Yr.
(label)	(acres)		(hours)	(cfs)	(cfs)	(cfs)
CC-1A	9.80	65.0	0.23	0.8	3.3	16.0
CC-1B	12.60	64.8	0.25	1.0	4.0	19.4
CC-2A	11.00	65.0	0.22	1.0	3.8	18.3
CC-2B	20.80	65.0	0.22	1.9	7.1	34.6
CC-2C	6.40	65.0	0.18	0.7	2.5	11.5
CC-3	52.50	63.1	0.43	1.8	8.8	54.5
CC-4A	108.70	62.6	0.44	15.4	39.0	156.0
CC-4B	8.10	76.1	0.26	4.0	7.3	20.6
CC-4C (Pre-Dev.)	7.40	61.0	0.13	0.2	1.8	11.2
CC-5	22.40	65.0	0.26	1.8	7.1	34.3
CC-6	27.80	65.0	0.25	2.3	9.1	43.2
CC-7	18.40	65.0	0.29	1.4	5.4	27.0
CC-8	7.70	65.0	0.25	0.6	2.5	12.0
CC-9	5.60	65.0	0.19	0.6	2.1	9.8
CC-10	85.60	62.6	0.39	2.6	14.1	91.9
CC-11	18.60	63.1	0.21	0.9	5.0	28.1
CC-12	12.20	65.0	0.26	1.0	3.9	18.7
CC-13A	19.30	65.0	0.31	1.4	5.4	27.3
CC-13B	25.50	65.0	0.31	1.8	7.2	36.1
CC-13C	9.90	65.0	0.22	0.9	3.4	16.5
CC-13D	18.80	65.0	0.25	1.5	6.2	29.2
CC-14	4.60	65.0	0.21	0.4	1.6	7.8
CC-15	12.80	65.0	0.24	1.1	4.3	20.4
CC-16	16.30	65.0	0.30	1.2	4.6	23.6
CC-17	25.00	65.0	0.35	1.7	6.5	32.8
CC-18	6.20	66.5	0.30	0.7	2.2	9.7
CC-19	3.70	65.0	0.25	0.3	1.2	5.8
CC-20	39.30	65.0	0.25	3.2	12.9	61.0
CC-21	6.20	61.0	0.20	0.1	1.2	8.5
CC-22	13.80	65.0	0.25	1.1	4.5	21.4
CC-23	5.70	64.7	0.33	0.4	1.5	7.7
CC-24	39.60	65.0	0.25	3.3	13.0	61.5
CC-25	3.50	65.0	0.23	0.3	1.2	5.7
CC-26	16.70	65.0	0.26	1.4	5.3	25.6
CC-27	18.90	64.4	0.31	1.2	4.9	25.8
CC-28	154.80	64.4	0.63	6.5	24.7	136.3

DESIGN POINTS SURFACE ROUTING SUMMARY - DEVELOPED CONDITIONS

OS-18 5.0 e from 3.8	21.6	115
3.8		
	16.8	126
3.2	14.3	88
2.1	10.5	62
DP-21 3.7	16.6	92
2.5	13.0	84
-5 1.9	8.4	45
6	9	85
ond 12 0.2	0.3	45
3.0	15.9	102
4.3	17.2	81
4.6	19.8	110
ease from 5.8	26.6	155
0.7	2.2	10
OP-30 0.9	3.2	15
2.0	7.8	40
26	14.4	69
3.0		
	4.3 4.6 ease from 5.8 0.7 DP-30 0.9 2.0	4.3 17.2 4.6 19.8 ease from 5.8 26.6 0.7 2.2 DP-30 0.9 3.2 2.0 7.8

Flying Horse North Master Development Drainage Plan

March 09, 2022

Revised: July 28, 2022

Revised: September 9th, 2022

HR Green Project No: 211030.01

Prepared For:

Mr. Drew Balsick

Vice President / Project Manager

Flying Horse Development, LLC 2138 Flying Horse Club Drive

Colorado Springs, CO 80921

(719) 785-3237

Prepared By:

HR Green Development, LLC
Contact: Gregory Panza, PE
gpanza@hrgreen.com
720-602-4956

PCD File No. SKP223

c. Site Characteristics

Per the NRCS web soil survey, the site is made up entirely of Type B soils. The ridge line between the Arkansas River and South Platte River Basins creates different soil environments for each. The portion of site that is within the Black Squirrel Drainage Basin, which includes Flying Horse Norse Filing No. 2 and No. 3, are predominately Elbeth sandy loam. The remaining filings are within the East Cherry Creek Basin which consists of Peyton sandy loam and Peyton-Pring complex. See Appendix A for the NRCS soil map.

Current ground cover varies between the two basins as well. Filings No. 2 and 3 are predominantly covered by Ponderosa Pine trees as a part of Black Forest and pasture. The remaining filings are short-to mid-grass prairie grasslands and former farmland which consists of non-native weeds and grasses. This portion of the site has very few, if any, trees and a minimal number of shrubs are found on the site.

d. Major Drainage Ways and Structures

No major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries of the East Cherry Creek and Black Squirrel Creek. Additionally, as part of the Flying Horse North Filing 1 development, a large irrigation pond was built for water storage and flood control. This drains to the north and to the aforementioned unnamed tributary.

Existing minor drainage channels within the site are planned to be maintained to the maximum extent possible within parkways and greenways with the development. These will continue to be used for conveyance of storm drainage flows.

The Franktown Parker Dam (080130) is located near the northwest corner of site. The dam is designated as a jurisdictional dam and has a low hazard class. It is located along East Cherry Creek. See Appendix A for characteristics and location of dam.

e. Existing and proposed land uses

The existing site is open rangeland on the eastern portion of the site and the western site is single family homes on large (~2.5 acre) home site within a heavily forested area. As part of Filing 1, a road was constructed along with facilities to support a golf course. Structures, outside of the homes are scattered throughout the overall development which will either be removed as part of the project or were built as part of Filing 1. The proposed development will consist of estate, low and medium lots, along with a future hotel site and multiple green spaces and small parks. The current land plan assumes approximately 897 dwelling units will be constructed on the site, not including an approximate 225 provided the proposed hotel.

Land Use	MAX DU/AC
Estate Lots (2.5 Acres)	0.32
Estate Lots (5 Acres)	0.2
Low	1.9
Medium	3.0

III. Hydrologic Analysis

a. Major Basins and subbasins

Major Basin Description

- Previous basin study: Black Squirrel Drainage Basin Planning Study
- Per FEMA FIRM 08041C0305G and 08041C0315G (eff. 12/7/2018), Flying Horse North has the East Cherry Creek run through the northwest portion of the site. Currently, FEMA shows a LOMR effective April 4th, 2019 Base Flood Elevations and Zone A. Per the El Paso County Land Development Code Chapter 8 Section 8.4.2.B.1.e.i, the base flood elevations for Zone A will be determined once the platted lots are solidified and are confirmed within 300-ft of the current floodplain designation. Certification of the flood elevations will be via the FEMA CLOMR/LOMR process or Floodplain Certification Letter.
- There is a large irrigation pond that accounts for water storage and water control on the east side of the site.

The site has been divided into several major drainage basins per where each basin is tributary to a full spectrum detention pond facility. These basins and associated sub basins are described in more detail in the next section of this report.

Existing Subbasin Description

The site's flows are split by the major ridgeline of the Arkansas River Basin and South Platte Basin. Within the South Platte Basin, flow is generally carried northeast throughout the site. On the other side of the ridgeline, the Arkansas River Basin flows in a southwest direction. Subbasin IDs with single letters are part of the South Platte Basin and Subbasin IDs with double letters are part of the Arkansas River Basin.

- Subbasin A is located off site and on the southeast corner. The basin drains towards the
 northwest and towards Subbasin B1. The basin is 18.99 acres, with a composite impervious
 value of 2.00% and runoff rates for the 5 and 100 year of 20.84 cfs and 43.83 cfs respectively.
- Subbasin B is located north of Subbasin A. The basin drains towards the northwest into a natural drainageway that flows directly to an existing irrigation pond. The basin is 59.74 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 103.48 cfs and 221.28 cfs respectively.
- Subbasin C is located off site and on the southeast corner. The basin drains towards the
 northwest and towards Subbasin B2. The basin is 36.39 acres, with a composite impervious
 value of 2.00% and runoff rates for the 5 and 100 year of 33.36 cfs and 71.27 cfs respectively.
- Subbasin D is located north of Subbasin B. The basin drains towards the northwest and towards the existing irrigation pond. The basin is 38.84 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 31.56 cfs and 67.84 cfs respectively.
- Subbasin E is in a central location of the site and includes the existing irrigation pond. The basin drains towards the north and towards existing irrigation pond. The basin is 106.53 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 223.69 cfs and 483.10 cfs respectively.

- Subbasin F is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin G. The basin is 25.25 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 24.27 cfs and 51.63 cfs respectively.
- Subbasin G is directly north of Subbasin D and east of Subbasin E. The basin drains towards the northwest and towards Subbasin E with the irrigation pond. The basins consist of the existing golf course. The basin Is 52.19 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 79.17 cfs and 166.51 cfs respectively.
- Subbasin H is located directly downstream of Subbasin E and on the north side of Stagecoach
 Rd. The basin drains towards the north through a natural drainageway. There are existing lots on
 the west side of the basin. The basin is 20.63 acres, with a composite impervious value of 2.00%
 and runoff rates for the 5 and 100 year of 18.59 cfs and 39.78 cfs respectively.
- Subbasin I is located west of Subbasin E and northeast of the major ridgeline between basins.
 The basin drains towards the northwest and towards an existing culvert. There are existing lots on the west side of the basin. The basin is 31.93 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 34.58 cfs and 72.63 cfs respectively
- Subbasin J is located downstream of Subbasin I. The basin drains towards the northeast to an
 unnamed tributary of the East Cherry Creek. The basin is 28.47 acres, with a composite
 impervious value of 2.00% and runoff rates for the 5 and 100 year of 56.31 cfs and 120.46 cfs
 respectively.
- Subbasin K is located south of proposed section of Stagecoach Rd. The basin drains towards the northwest and into an existing 48" culvert. The basin is 93.15 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 92.05 cfs and 195.43 cfs respectively
- Subbasin L is downstream of Subbasin K and is located on the north side of the proposed section of Stagecoach Rd. The basin drains towards the northwest to a natural drainageway of East Cherry Creek. The basin is 16.39 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 107.58 cfs and 228.73 cfs respectively.
- Subbasin M is located on the east side of the site and between Subbasin N and V1. The basin
 drains towards the northwest and into an existing 30" culvert. The basin is 13.85 acres, with a
 composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 11.48 cfs and
 24.61 cfs respectively.
- Subbasin N is located south of Subbasin O and north of proposed Stagecoach Rd. The basin drains towards the northwest to a nearby unnamed tributary and eventually East Cherry Creek.
 The basin is 49.00 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 64.68 cfs and 143.11 cfs respectively.
- Subbasin O is located south of Subbasin P. The basin drains towards the northwest and towards the north. The basin is 24.76 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 22.69 cfs and 48.54 cfs respectively.
- Subbasin P is in the northeast corner of the site and downstream of Subbasin O. The basin drains towards the northeast to an unnamed tributary of East Cherry Creek. The basin is 43.80 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 38.52 cfs and 82.17 cfs respectively.

Proposed Subbasin Description

- Subbasin A is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin B1. The basin is 18.99 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 20.84 cfs and 43.83 cfs respectively.
- Subbasin B1 is located north of Subbasin A. The basin drains towards the northwest and towards proposed Detention Pond 11. Current planning documents call for low density dwelling units. The basin is 59.74 acres, with a composite impervious value of 29.83% and runoff rates for the 5 and 100 year of 66.93 cfs and 133.69 cfs respectively.
- Subbasin B2 is located northeast of Subbasin B1. The basin drains towards the northwest and towards the proposed Detention Pond 11. Current planning documents call for low density dwelling units. The basin is 19.99 acres, with a composite impervious value of 24.55% and runoff rates for the 5 and 100 year of 17.99 cfs and 37.14 cfs respectively.
- Subbasin C is located off site and on the southeast corner. The basin drains towards the
 northwest and towards Subbasin B2. The basin is 36.39 acres, with a composite impervious
 value of 2.00% and runoff rates for the 5 and 100 year of 35.31 cfs and 75.28 cfs respectively.
- Subbasin D is located north of north of Subbasins B1 and B2. The basin drains towards the
 northwest and towards Detention Pond 15. Current planning documents call for low density
 dwelling units. The basin is 40.87 acres, with a composite impervious value of 37.20% and
 runoff rates for the 5 and 100 year of 61.12 cfs and 117.38 cfs respectively.
- Subbasin E is in a central location of the site and includes the existing irrigation pond. The basin
 drains towards the north and towards existing irrigation pond. Current planning documents call for
 two small parking lots. The basin is 106.53 acres, with a composite impervious value of 14.35%
 and runoff rates for the 5 and 100 year of 74.68 cfs and 157.91 cfs respectively.
- Subbasin F is located off site and on the southeast corner. The basin drains towards the northwest and towards Subbasin G. The basin is 25.25 acres, with a composite impervious value of 2.00% and runoff rates for the 5 and 100 year of 24.27 cfs and 51.63 cfs respectively.
- Subbasin G is directly north of Subbasin D and east of Subbasin E. The basin drains towards the
 northwest and towards Subbasin E. Current planning documents call for a small amount of low
 density dwelling units, where most of the basin consist of the existing golf course. The basin is
 31.45 acres, with a composite impervious value of 12.48% and runoff rates for the 5 and 100 year
 of 27.18 cfs and 57.12 cfs respectively.
- Subbasin H is located located directly downstream of Subbasin E and on the north side of Stagecoach Rd. The basin drains towards the north and towards Detention Pond 10. Current planning documents call for medium density dwelling units. There are existing lots on the west side of the basin. The basin is 21.96 acres, with a composite impervious value of 10.00% and runoff rates for the 5 and 100 year of 17.86 cfs and 37.8 cfs respectively.
- Subbasin I is located west of Subbasin E and northeast of the major ridgeline between basins.
 The basin drains towards the northwest and towards proposed Detention Pond 16. There are
 existing lots on the west side of the basin. Current planning documents call for a commercial golf
 club. The basin is 28.99 acres, with a composite impervious value of 34.66% and runoff rates for
 the 5 and 100 year of 40.37 cfs and 78.06 cfs respectively

- Subbasin J is located downstream of Subbasin I. The basin drains towards the northeast to an unnamed tributary of the East Cherry Creek. Current planning documents do not call for any changes to this basin. The basin is 28.07 acres, with a composite impervious value of 10% and runoff rates for the 5 and 100 year of 24.25 cfs and 51.19 cfs respectively.
- Subbasin K is located south of proposed section of Stagecoach Rd. The basin drains towards the northwest and towards proposed Detention Pond 7. Current planning documents call for high, medium, and low density dwelling units and a few pocket parks. The basin is 114.73 acres, with a composite impervious value of 38.08% and runoff rates for the 5 and 100 year of 200.94 cfs and 382.3 cfs respectively
- Subbasin L is downstream of Subbasin K and is located on the north side of the proposed section
 of Stagecoach Rd. The basin drains towards the northwest into proposed Detention Pond 8.
 Current planning documents call for medium density dwelling units. The basin is 15.89 acres, with
 a composite impervious value of 24.82% and runoff rates for the 5 and 100 year of 15.97 cfs and
 32.4 cfs respectively. The pond will discharge at predevelopment rates into an unnamed tributary
 of the East Cherry Creek via the ponds outlet structure.
- Subbasin M is located on the east side of the site and between Subbasin N and V1. The basin drains towards the northwest and towards proposed Detention Pond 6. Detention Pond 6 outlets into a culvert under proposed Stagecoach Rd. and eventually to Subbasin N. Current planning documents call for medium density dwelling units, potential fitness center, and a park. The basin is 26.83 acres, with a composite impervious value of 33.19% and runoff rates for the 5 and 100 year of 46.54 cfs and 89.08 cfs respectively.
- Subbasin N is located south of Subbasin O and North of proposed Stagecoach Rd. The basin drains towards the northwest towards proposed Detention Pond 5. Detention Pond 5 outlets to a nearby unnamed tributary and eventually East Cherry Creek. Current planning documents call for medium density dwelling units along with a pocket park. The basin is 41.57 acres, with a composite impervious value of 29.60% and runoff rates for the 5 and 100 year of 73.48 cfs and 141.24 cfs respectively.
- Subbasin O is located south of Subbasin P. The basin drains towards the northwest and towards
 Detention Pond 3. Current planning documents call for medium density dwelling units. The basin
 is 52.52 acres, with a composite impervious value of 30.10% and runoff rates for the 5 and 100
 year of 63.86 cfs and 127.4 cfs respectively. The pond will discharge at predevelopment rates
 and into Pond 1 via a swale.
- Subbasin P is in the northeast corner of the site and downstream of Subbasin O. The basin drains towards the northeast to proposed Detention Pond 1. Current planning documents call for low density dwelling units. The basin is 43.71 acres, with a composite impervious value of 20.71% and runoff rates for the 5 and 100 year of 40 cfs and 82.83 cfs respectively. The pond will discharge at predevelopment rates into an unnamed tributary of the East Cherry Creek via the ponds outlet structure.
- Subbasin Q is located off site and on the southeast corner. The basin drains towards the
 northeast and towards Subbasin R. The basin is 72.29 acres, with a composite impervious value
 of 2.00% and runoff rates for the 5 and 100 year of 64.68 cfs and 137.8 cfs respectively.

The above-mentioned basins are large planning area basins and as drainage reports are developed for the individual developed parcels additional drainage reports and calculations will be required. It is expected that storm drainage infrastructure consisting of inlets, storm sewer and open drainage channels will be constructed as the property develops.

 Although mentioned above, offsite basins include basins A, C, F, and Q. Flow contributing to the site from these basins will be routed through the proposed detention ponds. Flow rates are shown below.

	Offsite Flow Summary											
Basin Description	Ultimate Design Point	Basin Area (ac)	Receiving Detention Pond	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)							
Α	Α	18.99	Pond 11	20.84	43.83							
С	С	36.39	Pond 11	33.36	71.27							
F	F	25.25	Irr. Pond	24.27	51.63							
Q	Q	72.29	Pond 9	64.68	137.80							

b. Methodology

Design rainfall was determined utilizing Table 6-2 from the City of Colorado Springs Drainage Criteria Manual to determine the 5-year and 100-year rainfall values for the 1-hour events. The 1-hour rainfall depths are 1.5 and 2.52 in/hr respectively.

Composite percent impervious calculations were completed for each subbasin based on the density of lots and can be found in Appendix B. The El Paso County Drainage Criteria Manual Table 5-1 was used for reference when correlating land use to percent impervious values and located in Appendix F. Impervious values for 5-Acre Lots, 2.5-Acre Lots, Medium Density, Low Density, and Commercial Lots had impervious values of 10%, 15%, 45%, 55% and 75% respectively. The rainfall and percent impervious values were then used as inputs into the Colorado Urban Hydrograph Procedure (CUHP) spreadsheets to determine runoff values for both pre-development and post-development site.

CUHP is an evolution of the Snyder unit hydrograph and is calibrated for use along the Colorado Front Range. 1 Hour rainfall amounts are input into the program to produce a storm hydrograph that is then uses to calculate a storm hydrograph for each basin depending on the subbasins properties including slope, length, shape, impervious area, pervious depression storage area, and various infiltration rates. Tabular hydrographs are then computed and can be used in EPA SWMM. The CUHP results are included within Appendix B.

EPA SWMM was used to determine flow routing via the kinematic wave method. Subbasins were routed to their respective design points and detention ponds for both the developed and predeveloped condition to determine peak runoff amounts for the 5-year and 100-year storm events. Information from these models along with information and calculations performed in the Mile High Flood District BMP spreadsheets was used to determine pond sizing calculations and release rates.

c. Basin Hydrology

A summary of the flows for both the predeveloped and developed cases for each basin, subbasin and Pond are found on next page along with the full computation found in Appendix B.

Existing SWMM Basin Summary										
Basin Description	Basin Area (ac)	% Impervious	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)						
A	18.99	2.00	20.84	43.83						
В	59.74	2.00	103.48	221.48						
С	34.87	2.00	33.36	71.27						
D	38.84	2.00	31.56	67.84						
E	127.86	2.00	223.69	483.10						
F	25.25	2.00	24.27	51.63						
G	52.19	2.00	79.17	166.51						
Н	20.63	2.00	18.59	39.78						
1	31.93	2.00	34.58	72.63						
J	28.47	2.00	56.31	120.46						
K	93.14	2.00	92.05	195.43						
L	16.39	2.00	107.58	228.73						
M	13.87	2.00	11.48	24.61						
N	49.00	2.00	68.16	143.11						
0	24.76	2.00	22.69	48.54						
P	43.80	2.00	38.52	82.17						
Q	72.29	2.00	64.68	137.80						
R	54.98	2.00	108.65	232.13						
S	24.36	2.00	25.99	48.54						
T	5.24	2.00	4.04	8.68						
U	5.48	2.00	4.15	8.95						
V	38.47	2.00	29.63	63.92						
W	3.76	2.00	3.45	7.33						
Х	190.88	2.00	167.76	361.56						
AA	33.49	10.00	38.76	80.22						
ВВ	37.15	10.00	40.62	84.15						
CC	6.33	10.00	6.53	13.57						
DD	70.06	10.00	58.42	123.69						
EE	69.47	10.00	81.16	167.45						
FF	17.62	2.00	162.77	340.42						
GG	16.35	2.00	14.93	31.99						
НН	12.61	2.00	13.01	27.42						
II	97.53	2.00	81.77	175.59						
JJ	8.72	2.00	9.74	20.50						
KK	8.12	2.00	7.51	15.99						
LL	6.10	2.00	6.88	14.48						

Proposed SWMM Basin and Pond Summary										
Basin Description	Basin Area (ac)	%	5 Year Peak Runoff (cfs)	100 Year Peak Runoff (cfs)	5 Year Pond Volume (ac- ft)	100 Year Pond Volume (ac- ft)				
Р	43.71	20.71%	40.00	82.83	-,	,				
-				ond 1	1.03	1.97				
X1	76.38	29.50%	80.91	163.27						
	l .	·	Po	ond 2	6.56	8.80				
0	52.52	30.10%	63.86	127.40						
	•	•	Po	ond 3	3.79	6.37				
X2	36.33	33.33%	41.46	82.46						
Х3	61.99	13.53%	47.59	100.73						
V2	15.34	15.00%	16.15	33.25						
V1	11.57	38.62%	13.99	27.67		1				
	ī	T	Po	ond 4	7.21	7.35				
N	41.57	29.60%	73.48	141.24						
	T	T		ond 5	1.86	2.55				
M	26.83	33.19%	46.54	89.09						
	ı	T		ond 6	0.84	0.94				
K	114.73	38.03%	200.94	382.30		1				
	T	T		ond 7	8.38	12.59				
L	15.89	24.82%	15.97	32.40	4.05	1.00				
	24.67	40.000/		ond 8	1.05	1.09				
S	21.67	40.88%	30.83	58.96						
R Q	56.16 72.29	21.81%	56.59 64.68	116.06 137.80						
<u> </u>	72.23	2.00%		ond 9	6.28	10.31				
Н	21.96	10.00%	17.86	37.80	0.20	10.31				
	21.50	10.0070		ond 10	0.66	0.94				
B2	19.99	24.55%	17.99	37.14						
B1	59.74	29.83%	66.93	133.69						
А	18.99	2.00%	20.84	43.83						
С	36.39	2.00%	35.31	75.28						
			Po	nd 11	1.94	3.23				
J	28.07	10.00%	24.25	51.19						
				g Pond 12						
EE2	16.36	75.00%	35.71	63.62						
EE3	6.67	55.00%	10.38	19.93						
	T	T		nd 13	1.33	1.61				
II3	23.97	10.0%	28.32	58.65						
II2	23.13	10.0%	28.04	116.62						
II1	50.43	10.0%	34.94	74.39	4	0.55				
	40.07	27.2004		ond 14	1.06	3.99				
D	40.87	37.20%	61.12	117.38	1.04	2 22				
F	106 52	1/1 250/		ond 15	1.94	3.23				
Е	106.53	14.35%	74.68	157.91						

l 1	26.99	34.66%	40.37	78.06		
			Po	nd 16	1.40	1.79
JJ	8.9	20.70%	11.49	22.8		
KK	8.4	12.09%	8.14	16.95		
LL	6.2	10.00%	7.36	15.07		
			Po	nd 17	1.09	1.23
G	31.45	12.48%	37.69	107.75		
			Irrigat	ion Pond		
IJ	8.90	20.70%	11.06	28.04		
LL	6.2	12.09%	5.85	15.68		
KK	8.4	10.00%	5.9	16.72		
			Natural D	rainage Way		
DD	69.5	10.0%	42.26	120.76		
EE1	50.87	10.0%	42.6	154.16		
	1		North Dete	ention Pond 6		
CC	6.33	10.0%	4.74	13.39		
FF	18.1	10.0%	100.02	325.29		
			_	lying Horse		
	1			ention Pond 7		
GG	16.35	10.0%	11.25	32.04		
AA	33.8	10.0%	28.57	80.08		
BB	37.15	10.0%	29.52	83.01		
			Existing Flyi			
	1			ntion Pond 8		
НН	12.7	10.0%	9.86	27.77		
	1		•	rainage Way		
Т	5.24	2.00%	2.92	8.56		
U	5.86	10.0%	3.63	10.37		
W	3.76	10.0%	2.6	7.36		
			Natural D	rainage Way		

IV. Hydraulic Analysis

a. Major Drainageways

There are no major drainage ways exist within the development; however, small tertiary tributaries are within the site currently and function to convey flows to unnamed tributaries of the East Cherry Creek and Black Squirrel Creek.

V. Environmental Evaluations

a. Significant Existing or Potential Wetland and Riparian Areas Impacts

As part of this work, the developer has engaged Bristlecone Ecology, LLC to perform environmental studies of the site that will be submitted with the planning documents. Major information in the report concerning wetlands concludes that there is a wetland associated with Black Squirrel Creek. Black Squirrel Creek is known to be a jurisdictional stream.

At this time, there are no improvements proposed for Black Squirrel Creek. The minimal impact to the stream will keep the natural habitat intact and the natural function of the Creek as it is to maintain the wetland habitat.

b. Stormwater Quality Considerations and Proposed Practices

As part of the development, full spectrum detention facilities will be installed to provide water quality for the development. The facilities will be designed using El Paso County criteria and provide stormwater quality by slowing the release of stormwater captured by the ponds and allowing solids to settle out. Additionally, when possible, the existing natural drainage ways will be used to convey stormwater to more closely mimic the natural hydrologic and hydraulic cycle. Some of the drainage ways will be used to convey water to the ponds and others will receive water from the ponds and in both scenarios will provide additional water quality benefits.

On site practices for the homes, schools, churches, and other buildings should use means such that impervious areas drain across pervious area to allow for infiltration during the minor events. This would include discharge of the gutters onto landscape areas vs. directly connecting to storm sewer and as discussed above as well using natural ditches and swales where it is logical and makes sense to convey stormwater in lieu of storm sewer piping.

c. Permitting Requirements

When work infringes upon the wetlands or floodplain a 404 Permit will be required. If the work within the waterways is minimal, it will likely be covered under a nationwide 404 permit; it is however possible that an individual permits will be required.

The Colorado Department of Public Health and Environment will require permits for any disturbance that exceed 1 acre of land. Should groundwater be encountered, a dewatering permit will also be required.

El Paso County will require an Erosion and Stormwater Quality Control Permit and any other construction permits required to complete the construction of the site.

Should development occur which effects the floodplain, FEMA will require a permit for work withing the floodplain prior to the commencement of any construction or development within any special flood hazard area (SFHA). If the infrastructure is to be installed within the channel the designer shall route the design through the proper FEMA channels whether that be with a no rise certification or via the CLOMR/LOMR process should a more major improvement within the floodplain be proposed. At this time the project does not propose any direct development within the floodplain however storm infrastructure will discharge into the existing FEMA channel.

d. 4-Step Process

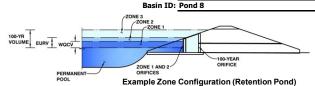
In accordance with the Engineering Criteria Manual I.7.2.A and DCM V2, this site has implemented the four-step process to minimize adverse impacts of urbanization. The four-step process includes reducing runoff volumes, stabilizing drainageways, treating the water quality capture volume, and considering the need for Industrial Commercial BMPs.

Step 1 – Reducing Runoff Volumes: The development of the project site includes a variety of land uses including open and vegetated areas interspersed to help disconnect imperious areas and reduce runoff volumes.

- Pond 2 is located to the east of Pond 1 and and discharges into another unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 8.8 ac-ft during the 100-year event and have a peak outflow of 74.6 cfs which is slightly below the predevelopment peak outflow of 81.0 cfs. The 5-year storage volume is 6.56 ac-ft with a peak outflow of 27.8 cfs.
- Pond 3 is located on the eastern portion of the site and south of Pond 1. The pond discharges into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 6.37 ac-ft during the 100-year event and have a peak outflow of 46.1 cfs which is slightly below the predevelopment peak outflow of 48.5 cfs. The 5-year storage volume is 3.79 ac-ft with a peak outflow of 22.7 cfs.
- Pond 4 is located near the eastern portion of the site adjacent to Black Forest Rd. The pond discharges into a natural drainage way, which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 7.35 ac-ft during the 100-year event and have a peak outflow of 198.8 cfs which is slightly below the predevelopment peak flow rate of 231.6 cfs. The 5-year storage volume is 7.12 ac-ft with a peak outflow of 70.6 cfs.
- Pond 5 is located in the northwest portion of the site. The pond discharges natural drainageway, which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 2.5 ac-ft during the 100-year event and have a peak outflow of 103.1 cfs which is greater than the predevelopment peak outflow of 116.9 cfs. The 5-year storage volume is 1.86 ac-ft with a peak outflow of 39.4 cfs.
- Pond 6 is located near the northwest corner of the site and upstream of Pond 5. The pond discharges into a natural drainageway which outlets into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 2.93 ac-ft during the 100-year event and have a peak outflow of 48.2 cfs which is greater than the predevelopment peak outflow of 47.5 cfs. The 5-year storage volume is 1.77 ac-ft with a peak outflow of 12.2 cfs.
- Pond 7 is located in the central portion of site. The pond discharges into a natural drainageway that eventually outlets to an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 12.59 ac-ft during the 100-year event and have a peak outflow of 172.2 cfs which is slightly lower than the predevelopment peak outflow of 191.6 cfs. The 5-year storage volume is 8.38 ac-ft with a peak outflow of 65.4 cfs.
- Pond 8 is located near the central portion of the site and downstream of Pond 7. The pond discharges into an unnamed tributary of East Cherry Creek. The pond is planned to store a maximum of 0.94 ac-ft during the 100-year event and have a peak outflow of 28.9 cfs which lowe than the predevelopment peak outflow of 32.7. The 5-year storage volume is 0.84 ac-ft with a peak outflow of 11.4 cfs.
- Pond 9 is located near the southeast corner of the site just and adjacent to Black Forest Road.
 The pond discharges into a natural drainageway and flows under Black Forest Rd. via culvert.
 The natural drainageway is southeast of the existing property and eventually drains northeast to East Cherry Creek. The pond is planned to store a maximum of 10.31 ac-ft during the 100-year

Why is Pond 8 circled? Pond B and the Irrigation reservoir are discussed as providing treatment, if Pond 8 is also providing treatment discuss above or clarify with some additional text why this section is boxed.

Basin	Park/Open						Total	Total	Composite Percent	Predominant Soil	5 Year C	100 Year
Description	Space	5 Acre	2.5 Acre	Low Density	Med Density	Commercial	Impervious	Acreage	Impervious	Group	Factor	C Factor
Impervious					_		•					
Percentage	10%	10%	15%	45%	55%	75%						
Р	15.55	14.78	0.00	13.38	0.00	0.00	9.05	43.71	20.71%	В	0.15	0.42
						Pond 1		43.71	20.71%			
X1	38.32	3.30	0.00	25.66	0.00	9.10	22.53	76.38	29.50%	В	0.24	0.47
						Pond 2		76.38	29.50%			
0	13.17	0.00	10.72	28.63	0.00	0.00	15.81	52.52	30.10%	В	0.19	0.44
						Pond 3		52.52	30.10%			
X2	12.11	0.00	0.00	24.22	0.00	0.00	12.11	36.33	33.33%	В	0.19	
Х3	38.88	16.85	0.00	6.26	0.00	0.00	8.39	61.99	13.53%	В	0.13	0.40
V2	0.00	0.00	15.34	0.00	0.00	0.00	2.30	15.34	15.00%	В		
V1	2.11	0.00	0.00	9.46	0.00	0.00	4.47	11.57	38.62%	В	0.20	0.45
						Pond 4		125.23	20.85%			
N	10.44	11.52	0.00	6.77	12.84	0.00	12.30	41.57	29.60%	В	0.19	0.46
						Pond 5		41.57	29.60%			
М	14.55	0.00	0.00	1.24	6.94	4.10	8.91	26.83	33.19%	В	0.28	0.52
						Pond 6		26.83	33.19%			
K	26.45	2.93	0.00	61.89	23.46	0.00	43.69	114.73	38.08%	В	0.21	0.47
						Pond 7		114.73	38.08%			
L	6.93	5.54	0.00	0.00	2.72	0.00	2.74	15.19	18.06%	В	0.15	0.42
				T		Pond 8		15.19	18.06%			
S	2.31	0.24	0.00		0	0.00	8.86	21.67	40.88%	В	0.21	0.45
R	26.63	16.11	0.00	21.77	0.00	0.00	14.07	64.51	21.81%	В	0.15	0.41
						Pond 9		86.18	21.81%			
Н	17.65	4.31	0.00	0.00	0.00	0.00	2.20	21.96	10.00%	В	0.12	0.39
22	7.20	1.40	0.00	0.04	0.00	Pond 10	4.04	21.96	10.00%		0.10	
B2	7.20	4.48	0.00	8.31	0.00	0.00	4.91	19.99	24.55%	В	0.16	
B1	12.86	13.03	0.00	33.85	0.00	0.00	17.82	59.74	29.83%	В	0.18	0.43
J	20.07	0.00	0.00	0.00	0.00	Pond 11	2.01	79.73 28.07	28.51%		0.12	0.20
J	28.07	0.00	0.00	0.00	0.00	0.00 Exisiting Pon	2.81	26.07	10.00%	В	0.12	0.39
1	17.99	0.00	0.00	0.00	0.00	11.00	10.05	28.99	34.66%	В	0.38	0.58
'	17.99	0.00	0.00	0.00	0.00	Pond 16	10.05	57.06	22.53%	В	0.30	0.50
EE2	0.00	0.00	0.00	0.00	0.00	16.36	12.27	16.36	75.00%	В	0.81	0.88
EE3	0.00	0.00	0.00	0.00	6.67	0.00	3.67	6.67	55.00%	В	0.30	
LLS	0.00	0.00	0.00	0.00	0.07	Pond 13	3.07	23.03	69.21%	- B	0.30	0.50
II2	0.00	23.13	0.00	0.00	0.00	0.00	2.31	23.13	10.00%	В	0.12	0.39
113	0.00	23.97	0.00	0.00	0.00	0.00	2.40	23.97	10.00%	В	0.12	0.39
II1	15.77	34.66	0.00	0.00	0.00	0.00	5.04	50.43	10.00%	В	0.12	
						Pond 14		97.53	10.00%	<u> </u>	-	-
D	4.41	4.70	0.00	31.76	0.00	0.00	15.20	40.87	37.20%	В	0.20	0.44
	1	1			I	Pond 15		40.87	37.20%			
E	99.63	8.80	0.00	1.72	0.00	6.90	16.79	117.05	14.35%	В	0.16	0.42
G	25.81	3.41	0.00	2.23	0.00	0.00	3.93	31.45	12.48%	В	0.13	0.39
	1				l .	Irrigation Por		148.50	13.95%			
JJ	1.86	4.32	0.00	2.72	0.00	0.00	1.84	8.90	20.70%	В	0.15	0.43
LL	4.39	1.44	0.00	0.37	0.00	0.00	0.75	6.20	12.09%	В	0.13	0.39
		U				Pond 17		15.10	17.16%			
KK	5.98	2.42	0.00	0.00	0.00	0.00	0.84	8.40	10.00%	В	0.12	0.3
AA	0.00	33.88	0.00	0.00	0.00	0.00	3.39	33.88	10.00%	В	0.12	0.3
BB	0.00	37.15	0.00	0.00	0.00	0.00	3.72	37.15	10.00%	В	0.12	0.3
CC	0.00	6.33	0.00	0.00	0.00	0.00	0.63	6.33	10.00%	В	0.12	
DD	0.00	69.5	0.00	0.00	0.00	0.00	6.95	69.50	10.00%	В	0.12	0.3
FF	0.00	18.1	0.00	0.00	0.00	0.00	1.81	18.10	10.00%	В	0.12	0.3
GG	0.00	16.35	0.00	0.00	0.00	0.00	1.64	16.35	10.00%	В	0.12	0.3
НН	0.00	12.7	0.00	0.00	0.00	0.00	1.27	12.70	10.00%	В	0.12	0.3


^{*2%} imperviousness for all, and runoff coefficients are .09 and .36 for 5 and 100 yr respectively

See comment above, why are the Pond 8 calcs provided? Clarify with some text.

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Project: Flying Horse North MDDP

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.39	0.178	Orifice Plate
Zone 2 (EURV)	3.67	0.221	Circular Orifice
one 3 (100-year)	5.97	0.543	Weir&Pipe (Restrict)
•	Total (all zones)	0.942	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

ft (distance below the filtration media surface) Underdrain Orifice Invert Depth = N/A Underdrain Orifice Diameter = N/A inches

	Calculated Parame	<u>ters for Underdrain</u>
Underdrain Orifice Area =	N/A	ft ²
Underdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.39	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	9.60	inches
Orifice Plate: Orifice Area per Row -	0.65	sq inches (diameter – 7/8 inch)

<u>MP)</u>	Calculated Parame	ers for Pi
VQ Orifice Area per Row =	4.514E-03	ft ²
Elliptical Half-Width =	N/A	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²

Calculated Parameters for Outlet Pipe w/ Flow Restriction Pla

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.80	1.59					
Orifice Area (sq. inches)	0.65	0.65	0.65					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (ontional)	Row 13 (ontional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)		rton 10 (optional)	rion 11 (optional)	TOTAL (optionar)	rtorr 15 (optional)	rion 11 (optional)	rion 15 (optional)	rion 10 (optional)
Orifice Area (sq. inches)								

Jser Input: Vertical Orifice (Circular or Rectangu	ılar)			_	Calculated Paramet	ers for Vertical Orif
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected
Invert of Vertical Orifice =	2.39	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.05	N/A
Depth at top of Zone using Vertical Orifice =	3.67	N/A	ft (relative to basin bottom at Stage = 0 ft) Verti	ical Orifice Centroid =	0.12	N/A
Vertical Orifice Diameter =	2.88	N/A	inches	•		

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe) Calculated Parameters for Overflow W Zone 3 Weir Not Selected Zone 3 Weir Not Selected Height of Grate Upper Edge, H_t Overflow Weir Front Edge Height, Ho 5.00 N/A ft (relative to basin bottom at Stage = 0 ft) 5.00 N/A Overflow Weir Slope Length Overflow Weir Front Edge Length 4.00 N/A feet 5.00 N/A Overflow Weir Grate Slope 0.00 N/A H:V Grate Open Area / 100-yr Orifice Area 5.22 N/A Horiz. Length of Weir Sides = 5.00 N/A feet Overflow Grate Open Area w/o Debris : 13.92 N/A Overflow Grate Type : Overflow Grate Open Area w/ Debris = 6.96 Type C Grate N/A N/A Debris Clogging % = 50% N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	1.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	2.67	N/A	
Outlet Pipe Diameter =	24.00	N/A	inches	Outlet Orifice Centroid =	0.87	N/A	
Restrictor Plate Height Above Pipe Invert =	19.00		inches Half-Central Angle of I	Restrictor Plate on Pipe =	2.19	N/A	

User Input: Eme

Freeho

nergency Spillway (Rectangular or	Trapezoidal)			Calculated Paramet	ters for Spillway
Spillway Invert Stage=	6.30	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	0.85	feet
Spillway Crest Length =	11.00	feet	Stage at Top of Freeboard =	8.15	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	0.38	acres
ooard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	1.66	acre-ft

Routed Hydrograph Results	The user can over	ride the default CUF	HP hydrographs and	runoff volumes by	entering new value	es in the Inflow Hyd	drographs table (Col	lumns W through Al
Design Storm Return Period =		EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52
CUHP Runoff Volume (acre-ft) =	0.178	0.399	0.416	0.713	0.991	1.426	1.746	2.181
User Override Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.416	1.850	0.991	1.426	1.746	3.383
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	1.6	4.6	6.9	12.4	15.5	19.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A		11.1				32.7
Predevelopment Unit Peak Flow, q (cfs/acre) =		N/A	0.10	0.70	0.44	0.78	0.98	2.06
Peak Inflow Q (cfs) =		N/A	4.8	15.9	10.8	16.6	20.1	32.3
Peak Outflow Q (cfs) =	0.1	0.3	0.3	11.4	3.5	9.4	13.5	28.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.0	0.5	0.8	0.9	0.9
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1
Max Velocity through Grate 1 (fps) =		N/A	N/A	0.8	0.2	0.6	0.9	2.1
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	49	51	48	55	51	49	38
Time to Drain 99% of Inflow Volume (hours) =	40	52	54	59	62	60	59	54
Maximum Ponding Depth (ft) =	2.39	3.67	3.51	5.52	5.22	5.46	5.58	5.99
Area at Maximum Ponding Depth (acres) =	0.15	0.19	0.19	0.26	0.25	0.26	0.27	0.28
Maximum Volume Stored (acre-ft) =	0.179	0.399	0.369	0.821	0.741	0.802	0.837	0.946

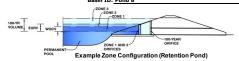
FHN_POND8_MHFD, Outlet Structure 7/28/2022, 11:43 AM

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.


	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]		10 Year [cfs]		50 Year [cfs]		
	0:00:00									
5.00 min	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.02	0.00	0.00	0.00	0.06	0.00
	0:15:00	0.00	0.00	0.00	0.34 2.78	0.00	0.00 0.25	0.02	0.34 2.31	0.07 0.44
	0:20:00	0.00	0.00	0.16	10.46	1.64	0.65	0.80	9.50	1.64
	0:25:00	0.00	0.00	2.63	14.81	7.18	2.58	3.15	22.52	7.13
	0:30:00	0.00	0.00	4.43	15.89	10.39	11.21	13.94	29.84	22.90
	0:35:00	0.00	0.00	4.81	15.66	10.85	15.07	18.39	32.21	30.64
	0:40:00	0.00	0.00	4.71	15.11	10.40	16.58	20.07	32.32	32.92
	0:45:00	0.00	0.00	4.31	14.56	9.75	16.12	19.49	31.57	32.76
	0:50:00	0.00	0.00	3.95	13.85	8.98	15.64	18.90	30.25	31.70
	0:55:00	0.00	0.00	3.62	13.31	8.27	14.42	17.48	28.95	30.01
	1:00:00 1:05:00	0.00	0.00	3.35 3.13	12.85	7.71	13.24 12.28	16.11	27.97	28.37
	1:10:00	0.00	0.00	2.85	12.39 11.75	7.26 6.83	11.17	15.01 13.71	26.11 24.14	27.13 24.72
	1:15:00	0.00	0.00	2.57	10.98	6.41	10.13	12.46	21.80	22.36
	1:20:00	0.00	0.00	2.30	10.25	5.80	9.02	11.10	19.55	19.70
	1:25:00	0.00	0.00	2.04	9.75	5.13	7.96	9.80	17.56	17.19
	1:30:00	0.00	0.00	1.82	9.39	4.59	6.91	8.50	16.06	14.90
	1:35:00	0.00	0.00	1.66	8.88	4.19	6.09	7.51	14.87	13.13
	1:40:00	0.00	0.00	1.55	8.36	3.86	5.46	6.74	13.83	11.76
	1:45:00	0.00	0.00	1.45	7.87	3.57	4.94	6.10	12.89	10.57
	1:50:00 1:55:00	0.00	0.00	1.35 1.22	7.42 6.93	3.30 3.01	4.47 4.05	5.53 5.01	12.01 11.18	9.51 8.53
	2:00:00	0.00	0.00	1.10	6.06	2.68	3.65	4.51	9.79	7.61
	2:05:00	0.00	0.00	0.95	5.17	2.31	3.17	3.91	8.39	6.58
	2:10:00	0.00	0.00	0.81	4.34	1.94	2.70	3.34	7.04	5.61
	2:15:00	0.00	0.00	0.67	3.57	1.60	2.25	2.78	5.79	4.67
	2:20:00	0.00	0.00	0.53	2.90	1.28	1.82	2.25	4.63	3.76
	2:25:00	0.00	0.00	0.41	2.39	0.98	1.40	1.73	3.63	2.89
	2:30:00	0.00	0.00	0.30	2.01	0.74	1.01	1.25	2.90	2.09
	2:35:00 2:40:00	0.00	0.00	0.22	1.68	0.59	0.70	0.88	2.34	1.50
	2:45:00	0.00	0.00	0.18 0.15	1.40 1.16	0.48	0.51 0.38	0.65 0.49	1.89 1.51	0.82
	2:50:00	0.00	0.00	0.13	0.96	0.32	0.29	0.43	1.21	0.60
	2:55:00	0.00	0.00	0.10	0.78	0.26	0.22	0.29	0.97	0.44
	3:00:00	0.00	0.00	0.08	0.64	0.21	0.17	0.22	0.78	0.32
	3:05:00	0.00	0.00	0.07	0.52	0.16	0.13	0.17	0.64	0.23
	3:10:00	0.00	0.00	0.05	0.42	0.13	0.10	0.13	0.52	0.17
	3:15:00	0.00	0.00	0.04	0.32	0.10	0.08	0.10	0.42	0.14
	3:20:00 3:25:00	0.00	0.00	0.03	0.25	0.08	0.06	0.08	0.32	0.11
	3:30:00	0.00	0.00	0.03 0.02	0.18 0.13	0.06 0.04	0.05 0.04	0.06 0.05	0.24 0.18	0.09
	3:35:00	0.00	0.00	0.02	0.08	0.03	0.03	0.03	0.12	0.05
	3:40:00	0.00	0.00	0.01	0.05	0.02	0.02	0.02	0.07	0.03
	3:45:00	0.00	0.00	0.01	0.03	0.01	0.01	0.02	0.04	0.02
	3:50:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00 4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

FHN_POND8_MHFD, Outlet Structure 7/28/2022, 11:43 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Project: <u>Flying Horse North MDDP</u> Basin ID: <u>Pond 8</u>

Watershed Information

tersired milorination						
Selected BMP Type =	EDB					
Watershed Area =	15.89	acres				
Watershed Length =	1,507	ft				
Watershed Length to Centroid =	741	ft				
Watershed Slope =	0.040	ft/ft				
Watershed Imperviousness =	24.82%	percent				
Percentage Hydrologic Soil Group A =	0.0%	percent				
Percentage Hydrologic Soil Group B =	100.0%	percent				
Percentage Hydrologic Soil Groups C/D =	0.0%	percent				
Target WQCV Drain Time =	40.0	hours				
Location for 1-hr Rainfall Depths = User Input						

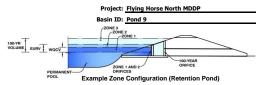
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure.								
Water Quality Capture Volume (WQCV) =	0.178	acre-feet						
Excess Urban Runoff Volume (EURV) =	0.399	acre-feet						
2-yr Runoff Volume (P1 = 1.19 in.) =	0.416	acre-feet						
5-yr Runoff Volume (P1 = 1.5 in.) =	0.713	acre-feet						
10-yr Runoff Volume (P1 = 1.75 in.) =	0.991	acre-feet						
25-yr Runoff Volume (P1 = 2 in.) =	1.426	acre-feet						
50-yr Runoff Volume (P1 = 2.25 in.) =	1.746	acre-feet						
100-yr Runoff Volume (P1 = 2.52 in.) =	2.181	acre-feet						
500-yr Runoff Volume (P1 = 3.14 in.) =	3.010	acre-feet						
Approximate 2-yr Detention Volume =	0.280	acre-feet						
Approximate 5-yr Detention Volume =	0.407	acre-feet						
Approximate 10-yr Detention Volume =	0.620	acre-feet						
Approximate 25-yr Detention Volume =	0.740	acre-feet						
Approximate 50-yr Detention Volume =	0.781	acre-feet						
Approximate 100-yr Detention Volume =	0.942	acre-feet						

Optional User Overrides							
	acre-feet						
	acre-feet						
1.19	inches						
1.50	inches						
1.75	inches						
2.00	inches						
2.25	inches						
2.52	inches						
	inches						

Define Zones and Basin Geometry

erine zones and basin deometry		
Zone 1 Volume (WQCV) =	0.178	acre-fee
Zone 2 Volume (EURV - Zone 1) =	0.221	acre-fee
Zone 3 Volume (100-year - Zones 1 & 2) =	0.543	acre-fee
Total Detention Basin Volume =	0.942	acre-fee
Initial Surcharge Volume (ISV) =	23	ft ³
Initial Surcharge Depth (ISD) =	0.33	ft
Total Available Detention Depth (H _{total}) =	6.00	ft
Depth of Trickle Channel (H _{TC}) =	0.50	ft
Slope of Trickle Channel (S _{TC}) =	0.004	ft/ft
Slopes of Main Basin Sides (Smain) =	4	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	2	
		•


Initial Surcharge Area (A _{ISV}) =	70	ft²
Surcharge Volume Length $(L_{ISV}) =$	8.4	ft
Surcharge Volume Width (W _{ISV}) =	8.4	ft
Depth of Basin Floor $(H_{FLOOR}) =$	0.35	ft
Length of Basin Floor (L_{FLOOR}) =	97.3	ft
Width of Basin Floor $(W_{FLOOR}) =$	52.1	ft
Area of Basin Floor $(A_{FLOOR}) =$	5,073	ft²
Volume of Basin Floor (V_{FLOOR}) =	670	ft ³
Depth of Main Basin $(H_{MAIN}) =$	4.82	ft
Length of Main Basin $(L_{MAIN}) =$	135.8	ft
Width of Main Basin $(W_{MAIN}) =$	90.7	ft
Area of Main Basin $(A_{MAIN}) =$	12,321	ft²
Volume of Main Basin (V _{MAIN}) =	40,648	ft ³
Calculated Total Basin Volume (V _{total}) =	0.950	acre-fee

	0.10	Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft) 0.00	Stage (ft)	(ft) 8.4	(ft) 8.4	(ft ²)	Area (ft 2)	(acre)	(ft³)	(ac-ft)
op of Micropool							0.002		
ISV	0.33		8.4	8.4	70		0.002	23	0.001
	0.40		8.4	8.4	70		0.002	28	0.001
	0.50		8.4	8.4	70		0.002	35	0.001
	0.60		8.4	8.4	70		0.002	42	0.001
	0.70		8.4	8.4	70		0.002	49	0.001
	0.80		8.4	8.4	70		0.002	56	0.001
	0.90		26.2	17.1	449		0.010	75	0.002
	1.00		51.6	29.6	1,528		0.035	168	0.004
	1.10		77.0	42.1	3,243		0.074	402	0.009
Floor	1.18		97.3	52.1	5,073		0.116	732	0.017
	1.20		97.4	52.3	5,096		0.117	833	0.019
	1.30		98.2	53.1	5,217		0.120	1,349	0.031
	1.40		99.0	53.9	5,339		0.123	1,877	0.043
	1.50		99.8	54.7	5,462		0.125	2,417	0.055
	1.60		100.6	55.5	5,586		0.128	2,969	0.068
	1.70		101.4	56.3	5,711		0.131	3,534	0.081
	1.80		102.2	57.1	5,838		0.134	4,111	0.094
	1.90		103.0	57.9	5,966		0.137	4,702	0.108
	2.00		103.8	58.7	6,096		0.140	5,305	0.122
	2.10		104.6	59.5	6,226		0.143	5,921	0.136
	2.20		105.4	60.3	6,358		0.146	6,550	0.150
	2.30		106.2	61.1	6,492		0.149	7,192	0.165
Zone 1 (WQCV)	2.39		107.0	61.8	6,613		0.152	7,782	0.179
	2.40		107.0	61.9	6,626		0.152	7,848	0.180
	2.50		107.8	62.7	6,762		0.155	8,518	0.196
	2.60		108.6	63.5	6,899		0.158	9,201	0.211
	2.70		109.4	64.3	7,037		0.162	9,898	0.227
	2.80		110.2	65.1	7,177		0.165	10,608	0.244
	2.90		111.0	65.9	7,318		0.168	11,333	0.260
	3.00		111.8	66.7	7,460		0.171	12,072	0.277
	3.10		112.6	67.5	7,604		0.175	12,825	0.294
	3.20		113.4	68.3	7,748		0.178	13,593	0.312
	3.30		114.2	69.1 69.9	7,894 8,042		0.181	14,375	0.330
								15,172	
	3.50		115.8	70.7	8,190		0.188	15,983	0.367
7 2 (FUE) 0	3.60		116.6	71.5	8,340		0.191	16,810	0.386
Zone 2 (EURV)	3.67		117.2	72.1	8,446		0.194	17,397	0.399
	3.70		117.4	72.3	8,491		0.195	17,651	0.405
	3.80		118.2	73.1	8,644		0.198	18,508	0.425
	3.90		119.0	73.9	8,798		0.202	19,380	0.445
	4.00		119.8	74.7	8,953		0.206	20,268	0.465
	4.10		120.6	75.5	9,109		0.209	21,171	0.486
	4.20		121.4	76.3	9,266		0.213	22,089	0.507
	4.30		122.2	77.1 77.9	9,425		0.216	23,024	0.529
					9,585			23,975	
	4.50		123.8	78.7	9,747		0.224	24,941	0.573
	4.60 4.70		124.6 125.4	79.5 80.3	9,909		0.227	25,924	0.595 0.618
							0.235	26,923	
	4.80		126.2	81.1	10,239			27,939	0.641
			127.0	81.9	10,405		0.239	28,971	0.665
	5.00		127.8	82.7	10,573 10,742		0.12.10	30,020	0.689
	5.10		128.6	83.5			0.247	31,085	0.714
	5.20		129.4	84.3	10,912		0.251	32,168	0.738
			130.2	85.1	11,084			33,268	0.764
	5.40		131.0	85.9	11,257		0.258	34,385	0.789
	5.50		131.8	86.7 87.5	11,431 11,607		0.262	35,519	0.815
	5.60 5.70		132.6 133.4	87.5 88.3	11,607		0.266	36,671 37,841	0.842
	5.80		134.2	89.1	11,961		0.275	39,028	0.896
one 3 /100	5.90 5.97		135.0 135.6	89.9 90.5	12,141 12,267		0.279 0.282	40,233 41,087	0.924 0.943
one 3 (100-year)	6.00		135.6	90.5	12,267		0.282	41,456	0.952
	6.10		136.6	91.5	12,503		0.287	42,697	0.980
	6.20 6.30		137.4 138.2	92.3 93.1	12,686 12,871		0.291 0.295	43,957 45,235	1.009
	6.40		139.0	93.9	13,057		0.300	46,531	1.068
	6.50		139.8	94.7	13,244		0.304	47,846	1.098
	6.60		140.6 141.4	95.5 96.3	13,432 13,621		0.308	49,180 50,532	1.129
	6.80		142.2	97.1	13,812		0.317	51,904	1.192
	6.90 7.00		143.0 143.8	97.9 98.7	14,004 14,198		0.321 0.326	53,295 54,705	1.223
	7.10		144.6	99.5	14,392		0.330	56,135	1.289
	7.20		145.4	100.3	14,588		0.335	57,584	1.322
	7.30 7.40		146.2 147.0	101.1 101.9	14,786 14,984		0.339 0.344	59,052 60,541	1.356
	7.50		147.8	102.7	15,184		0.349	62,049	1.424
	7.60 7.70		148.6 149.4	103.5 104.3	15,385		0.353 0.358	63,578	1.460 1.495
	7.80		149.4 150.2	105.1	15,587 15,791		0.363	65,126 66,695	1.531
	7.90		151.0	105.9	15,996		0.367	68,284	1.568
	8.00 8.10		151.8 152.6	106.7 107.5	16,202 16,410		0.372	69,894 71,525	1.605
	8.20		153.4	108.3	16,618		0.382	73,176	1.680
	8.30		154.2	109.1	16,828		0.386	74,849	1.718
	8.40 8.50		155.0 155.8	109.9 110.7	17,040 17,252		0.391	76,542 78,257	1.757 1.797
	8.60		156.6	111.5	17,466		0.401	79,992	1.836
	8.70 8.80		157.4 158.2	112.3 113.1	17,681		0.406	81,750	1.877
	8.80		158.2	113.1 113.9	17,898 18,115		0.411	83,529 85,329	1.918
	9.00		159.8	114.7	18,334		0.421	87,152	2.001
	9.10 9.20		160.6	115.5	18,555		0.426	88,996 90,863	2.043
	9.20		161.4 162.2	116.3 117.1	18,776 18,999		0.431	90,863	2.086
	9.40		163.0	117.9	19,223		0.441	94,663	2.173
	9.50		163.8	118.7	19,449		0.446	96,596	2.218

FHN_POND8_MHFD, Basin 7/28/2022, 11:43 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

Watershed Information

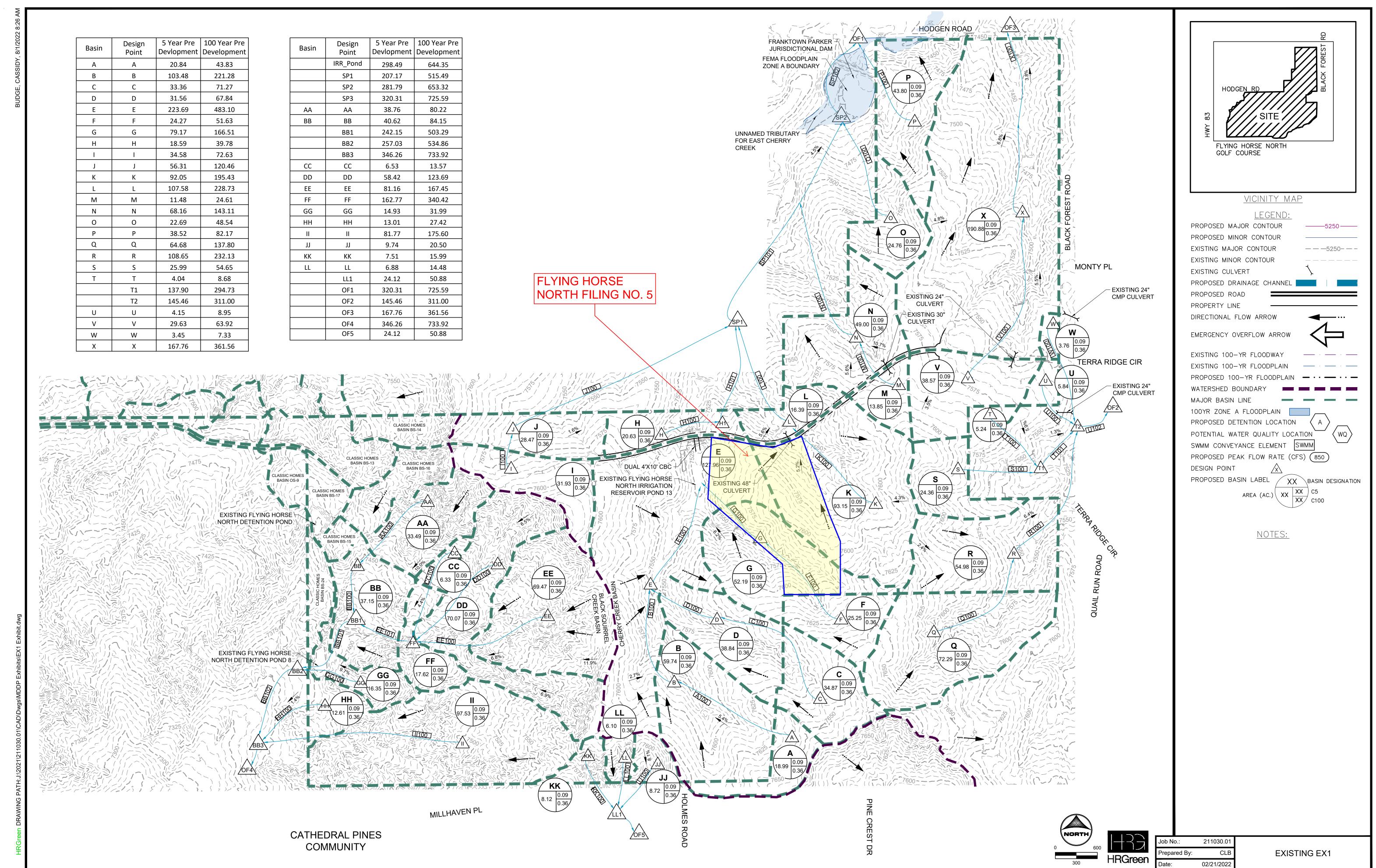
Selected BMP Type =	EDB					
Watershed Area =	86.18	acres				
Watershed Length =	2,354	ft				
Watershed Length to Centroid =	1,434	ft				
Watershed Slope =	0.039	ft/ft				
Watershed Imperviousness =	21.81%	percent				
Percentage Hydrologic Soil Group A =	0.0%	percent				
Percentage Hydrologic Soil Group B =	100.0%	percent				
Percentage Hydrologic Soil Groups C/D =	0.0%	percent				
Target WQCV Drain Time =	40.0	hours				
Location for 1-hr Rainfall Depths = User Input						

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

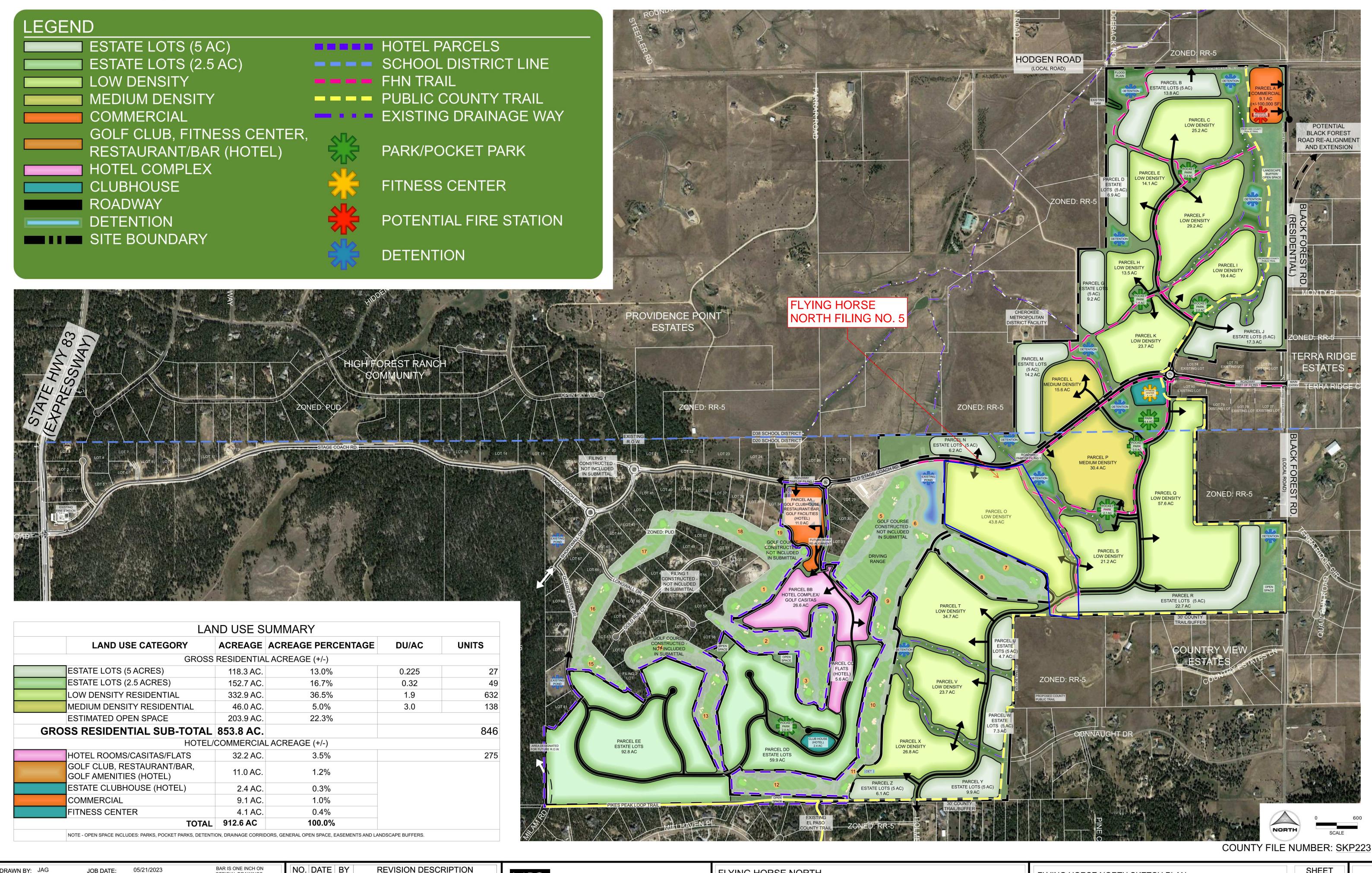
the embedded Colorado Orban Hydro	grapii Procedu	re.
Water Quality Capture Volume (WQCV) =	0.883	acre-feet
Excess Urban Runoff Volume (EURV) =	1.880	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	2.026	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	3.599	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	5.087	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	7.473	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	9.201	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	11.580	acre-feet
500-yr Runoff Volume (P1 = 3.14 in.) =	16.065	acre-feet
Approximate 2-yr Detention Volume =	1.301	acre-feet
Approximate 5-yr Detention Volume =	1.913	acre-feet
Approximate 10-yr Detention Volume =	3.018	acre-feet
Approximate 25-yr Detention Volume =	3.681	acre-feet
Approximate 50-yr Detention Volume =	3.888	acre-feet
Approximate 100-yr Detention Volume =	4.742	acre-feet

Optional User Overrides

puona osci	Overnaco
	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
	inches


Define Zones and Basin Geometry

enne zones and basin deomedy		
Zone 1 Volume (WQCV) =	0.883	acre-feet
Zone 2 Volume (5-year - Zone 1) =	1.030	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	2.829	acre-feet
Total Detention Basin Volume =	4.742	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth (H _{total}) =	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides (Smain) =	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	


Initial Surcharge Area $(A_{ISV}) =$	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor (L_{FLOOR}) =	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor (A_{FLOOR}) =	user	ft 2
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft 2
Volume of Main Basin (V _{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V _{total}) =	user	acre-f

Depth Increment =	0.10	ft Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft 2)	(acre)	(ft ³)	(ac-ft)
Top of Micropool		0.00				510	0.012		
		0.10				510	0.012	51	0.001
		0.20	-			510	0.012	102	0.002
		0.30	-			510	0.012	153	0.004
		0.40	-			510	0.012	204	0.005
		0.50	-			510	0.012	255	0.006
		0.60				510	0.012	306	0.007
		0.70	-			1,331	0.031	398	0.009
		0.80				3,124	0.072	620	0.014
		0.90	-			5,648	0.130	1,059	0.024
		1.00	-			8,903	0.204	1,786	0.041
		1.10	-			12,887	0.296	2,876	0.066
		1.20	-			17,602	0.404	4,400	0.101
		1.30	-			23,047	0.529	6,433	0.148
		1.40				29,222	0.671	9,046	0.208
		1.50				36,128	0.829	12,314	0.283
		1.60				43,764	1.005	16,308	0.374
		1.70				52,130	1.197	21,103	0.484
		1.80				57,500	1.320	26,584	0.610
		1.90				57,673	1.324	32,343	0.742
		2.00				58,107	1.334	38,132	0.875
		2.10				58,542	1.344	43,964	1.009
		2.20				58,979	1.354	49,840	1.144
		2.30				59,418	1.364	55,760	1.280
		2.40				59,858	1.374	61,724	1.417
		2.50				60,299	1.384	67,732	1.555
		2.60				60,742	1.394	73,784	1.694
		2.70				61,187	1.405	79,880	1.834
		2.80				61,632	1.415	86,021	1.975
		2.90				62,080	1.425	92,207	2.117
		3.00				62,529	1.435	98,437	2.260
		3.10				62,979	1.446	104,713	2.404
		3.20	-			63,431	1.456	111,033	2.549
		3.30				63,884	1.467	117,399	2.695
		3.40	-			64,338	1.477	123,810	2.842
		3.50	-			64,795	1.487	130,267	2.991
		3.60				64,840	1.489	136,748	3.139
		3.70				65,252	1.498	143,253	3.289
		3.80	-			65,711	1.509	149,801	3.439
		3.90				66,172	1.519	156,395	3.590
		4.00				66,634	1.530	163,036	3.743
		4.10	-			67,097	1.540	169,722	3.896
		4.20	-			67,562	1.551	176,455	4.051
		4.30 4.40	-			68,029	1.562	183,235	4.206 4.363
		4.40				68,497 68,966	1.572	190,061 196,934	4.521
		4.60				69,437	1.594	203,854	4.680
		4.70				69,909	1.605	210,822	4.840
		4.80	-			70,383	1.616	217,836	5.001
		4.90				70,858	1.627	224,898	5.163
		5.00				71,335	1.638	232,008	5.326
		5.10				71,813	1.649	239,165	5.490
		5.20				72,293	1.660	246,371	5.656
		5.30				72,774	1.671	253,624	5.822
		5.40	-			73,257	1.682	260,926	5.990
		5.50	-			73,741	1.693	268,275	6.159
		5.60	-			74,227	1.704	275,674	6.329
		5.70	-			74,714	1.715	283,121	6.500
		5.80				75,202	1.726	290,617	6.672
		5.90	-			75,692	1.738	298,161	6.845
		6.00				76,184 76,233	1.749	305,755 313,376	7.019 7.194
	-	6.20	-			76,677	1.760	321,021	7.370
		6.30 6.40				77,171	1.772 1.783	328,714 336,456	7.546 7.724
		6.50	-			77,667 78,164	1.794	344,247	7.724
		6.60	-			78,663	1.806	352,089	8.083
		6.70 6.80				79,163 79,665	1.817 1.829	359,980 367,921	8.264 8.446
		6.90				80,168	1.840	375,913	8.630
		7.00 7.10				80,673 81,179	1.852 1.864	383,955 392,048	8.814 9.000
		7.20				81,687	1.875	400,191	9.187
		7.30				82,196	1.887	408,385	9.375
		7.40 7.50	-			82,707 83,219	1.899	416,630 424,927	9.565 9.755
		7.60	-			83,732	1.922	433,274	9.947
		7.70 7.80				84,247 84,764	1.934	441,673 450,124	10.139 10.333
		7.90	-			85,282	1.958	458,626	10.529
		8.00 8.10				85,801 86,322	1.970 1.982	467,180 475,786	10.725 10.923
		8.20				86,845	1.994	484,445	11.121
	-	8.30	-			87,368	2.006	493,155	11.321
		8.40 8.50				87,894 88,421	2.018	501,918 510,734	11.522 11.725
		8.60				88,949	2.042	519,603	11.928
		8.70 8.80				89,479 90,010	2.054 2.066	528,524 537,498	12.133 12.339
		8.90	-			90,543	2.079	546,526	12.547
		9.00	-			91,077	2.091	555,607	12.755
		9.10 9.20	-			91,612 92,149	2.103	564,741 573,930	12.965 13.176
		9.30	-			92,688	2.128	583,171	13.388
		9.40 9.50				93,228	2.140 2.153	592,467	13.601
		9.60	-			93,770 94,313	2.153	601,817 611,221	13.816 14.032
		9.70	-			94,857	2.178	620,680	14.249
		9.80	-			95,403	2.190	630,193	14.467

FHN_POND9_MHFD, Basin 7/25/2022, 3:15 PM

FLYING HORSE NORTH SKETCH PLAN

DRAWN BY: JAG JOB DATE: 05/21/2023

APPROVED: PLS JOB NUMBER: 211030

CAD DATE: 07/01/2022

CAD FILE: J:\2021\211030\CAD\Dwgs\C\Sketch-Plan\BUBBLE-PLAN

BAR IS ONE INCH ON OFFICIAL DRAWINGS.

0 IF NOT ONE INCH, ADJUST SCALE ACCORDINGLY.

REVISION DESCRIPTION

HRGreen.com

FLYING HORSE NORTH
DEVELOPMENT, LLC.
EL PASO COUNTY, COLORADO

FLYING HORSE NORTH SKETCH PLAN
SKETCH PLAN DRAWING

SP.2

9/9/2022

Flying Horse North Filing No. 4 Final Drainage Report

September 2024

Prepared For:

Mr. Drew Balsick
Vice President / Project Manager
Flying Horse Development, LLC
2138 Flying Horse Club Drive
Colorado Springs, CO 80921
(719) 785-3237

Prepared By:

HR Green Development, LLC
1975 Research Parkway, Ste. 160
Colorado Springs, CO 80920
Contact: Richie Lyon, PE
Richie.Lyon@hrgreen.com
719-318-0871

PCD File No. SF____

2018 FDR/PDR. Review of the CUHP / SWMM generated hydrology results in peak values generally less than calculated with the Rational Method. The resultant peak runoff figures are used to assess all existing and proposed stormwater infrastructure associated with Filing No. 4's development, as well as a future Filing No. 5 development for Pond B in particular.

II. Project Characteristics

a. Location in Drainage Basin, Offsite Flows, Size

Filing No. 4 is located within the East Cherry Creek Basin. There is not a current planning study of the drainage basin, but generally it slopes from southwest to northeast. The basin eventually flows into the South Platte River.

Within the portion of the East Cherry Creek Basin investigated with this Report, three major drainage basins have been designated by the proposed pond in which the area is draining to. One drainage basin consists of seven sub-basins, "A" basins, conveyed to the proposed detention pond at Design Point A6, Pond A. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
A1	9.6	5.2	22.1
A2	10.8	6.7	27.6
A3	72.7	21.2	126.2
A4	18.4	10.2	42.0
A5	6.1	3.7	15.4
A6	2.8	1.8	7.2
A7	8.1	5.1	20.9

Drainage within the "A" drainage basin flows ultimately from the southwest to northeast to reach Pond A. Design points are located at proposed culverts underneath roadways and proposed swales that direct flow to the detention pond. Drainage outfalls from Pond A into an existing channel that ultimately outfalls to the South Platte River.

The second drainage basin consists of six sub-basins, "B" basins, conveyed to the proposed detention pond at Design Point B3, Pond B. Two Basins, B5 and B6, flow directly offsite. Additional volume has been included in Pond B to compensate for these basins, see additional discussion below. The respective contributing flow from the sub-basins is shown in the table below:

Basin Name	Acreage	5 Year Flow (cfs)	100 Year Flow (cfs)
B1	57.8	15.9	97.5
B2	35.8	18.2	73.1
B3	1.1	1.4	3.8
B4	11.0	8.0	28.1
B5	10.6	6.3	25.9
B6	16.0	8.7	35.8

Drainage within the "B" drainage basin flows ultimately from the southeast to northwest to reach Pond B. Design points are located at an existing culvert under Old Stagecoach Road and at existing and proposed

Basin A4: 18.39 acres, residential (2.5 acre lots)

Runoff generated in this basin combines with upstream tributary basins and travels overland through the 2.5-acre lots and via shallow concentrated flow in the proposed roadside ditches and a proposed channel represented as section A-A. Developed flows are directed to the north to design point A6 through a 28-inch RCP culvert (Culvert 2).

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin A4 was identified as Basin CC-13A. Classic's FDR reported a total basin area for CC-13A to be 19.3 acres with a Q_5 =5.4 CFS and a Q_{100} =27.3 CFS. The cumulative flow at design point 28 (this includes basins CC-13A and OS-15) shown in this report has a net area of 90.1 acres, a net Q_5 =19.8 CFS, and a net Q_{100} =110 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Basin A5: 6.10 acres, residential (2.5 acre lots)

Runoff generated in this basin combines with upstream tributary basins and travels overland through the 2.5-acre lots and via shallow concentrated flow in the proposed roadside ditches and a proposed channel represented as section I-I. The flows are directed to the northeast to design point A6 through a 30-inch RCP culvert (Culvert 12).

Basin A6: 2.76 acres, residential (2.5 acre lots)

Runoff generated in this basin combines with upstream tributary basins and travels overland through the 2.5-acre lots and via shallow concentrated flow in the proposed roadside swales and a proposed channel represented as section H-H. The combined 100-year flow totaling to 102.7 CFS is collected in Pond A at design point A6 through a proposed rundown rock chute.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin A6 was identified as Basin CC-13B. Classic's FDR reported a total basin area for CC-13B to be 25.5 acres with a Q_5 =7.2 CFS and a Q_{100} =36.1 CFS. The cumulative flow at design point 29 (this includes basins CC-13A – CC-13C and OS-15) shown in this report have a net area of 125.5 acres, a net Q_5 = 26.6 CFS, and a net Q_{100} =155 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Basin A7: 8.11 acres, residential (2.5 acre lots)

Runoff generated in this basin travels via overland flow into the proposed Pond A. Within the pond, flows travel through trickle channels and outfall through an outlet structure. The reduced 100-year flow from Pond A is 156 CFS.

Basin B1: 57.78 acres, undeveloped / roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels overland east to west first through two acre-lots and over existing terrain. Discharge is eventually collected in existing channels proposed roadside ditches. The flows are directed to the northwest to design point B2.

Basin B2: 35.77 acres roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels overland through existing topography from south to north. Minimal flow produced within Basin B2 will travel shallow concentrated flow in existing roadside ditches. The flows are directed to the north to design point B3 through an existing 48-inch RCP culvert.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin B2 (and Basin B1) was identified as Basin CC-10. Classic's FDR reported a total basin area for CC-10 to be 85.6 acres with a Q_5 =14.1 CFS and a Q_{100} =91.9 CFS. The cumulative flow at design point 26 (this includes basins CC-8 and CC-10) shown in this report have a net area of 93.3 acres, a net Q_5 = 15.9 CFS, and a net Q_{100} =102 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Basin B3: 1.10 acres, roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels overland and shallow concentrated flow in existing roadside ditches and a proposed channel represented as section F-F. The combined 100-year flow totaling to 102.8 CFS is collected in Pond B at design point B3 through a proposed rundown rock chute.

Basin B4: 11.00 acres, roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin travels overland to Pond B. within Pond B, runoff travels through trickle channels to a Type-C modified outfall structure. The reduced 100-year flow from Pond B is 214.6 CFS

Basin B5: 10.62 acres, residential (2.5 acre lots)

Runoff in from this basin is generated completely within the proposed 2.5 acres lots. The runoff will follow existing drainage patterns and sheet flow directly offsite to the west to existing channels and tributaries. The drainage from this basin is included in the water quality calculations for Pond B.

Basin B6: 15.96 acres, residential (2.5 acre lots)

Runoff in from this basin is generated completely within the proposed 2.5 acres lots. The runoff will follow existing drainage patterns and sheet flow directly offsite to the north to existing channels and tributaries. The drainage from this basin is included in the water quality calculations for Pond B.

Basin C1: 15.94 acres, undeveloped / roadway (minor collector) / residential (2.5 acre lots)

Runoff generated from this basin will overland flow to the north and east. Some flow will reach the proposed roadside ditches along Gimme Way and will concentrated flow to a proposed 18-inch culvert (Culvert 7). Runoff outfalls from this culvert into a proposed swale represented as section E-E that diverts flow to an existing 30-inch culvert under Old Stage Coach Road to basin C2.

Basin C2: 1.98 acres, roadway (minor collector) / residential (2.5 acre lots)

Runoff generated in this basin overland flows to a proposed swale represented as section G-G. Runoff is collected in the swale from Basin C1 when it outfalls from the existing 30-inch culvert under Old Stage Coach Road. The combined flows of Basin C1 and C2 travel concentrated flow to Pond C and enter the detention basin via a rundown rock chute.

From Classic Consulting's FDR for Flying Horse North Filing No. 1, Basin C2 was identified as Basin CC-20. Classic's FDR reported a total basin area for CC-20 to be 39.3 acres with a Q_5 = 12.9 CFS and a Q_{100} = 61.0 CFS. The cumulative flow at design point 29 (this includes basins CC-15 and CC-20) shown in this report have a net area of 52.1 acres, a net Q_5 = 17.2 CFS, and a net Q_{100} = 81 CFS. See the statement preceding Basin A1 description for an explanation of discrepancies between values reported here and values reported in Classic Consulting's 2018 FDR.

Basin H2: 14.46 acres, residential (2.5 acre lots)

Runoff generated in this basin travels overland through 2.5-acre lots and travels shallow concentrated flow in an existing channel represented as section C-C. The flows in this channel are directed to the east offsite further downstream the existing channel.

Basin H3: 36.80 acres, roadway (minor arterial) ($Q_5 = 15.6$ CFS, $Q_{100} = 26.3$ CFS)

Runoff generated in this basin is offsite flow collected in an existing channel that captures all the flows from Basins G1 and G2 and Basins H1 and H2. This existing channel flows offsite to the east and its and is represented as section D-D in calculations in Appendix C.

b. Water Quality and Detention Facilities

There are three Full Spectrum Detention ponds that are proposed within this filing. Full Spectrum Detention (FSD) is a design concept introduced by the Mile High Flood District (MHFD, Urbonas and Wulliman 2005) that provides better control of the full range of runoff rates that pass through detention facilities than the conventional multi-stage concept. This concept also provides some mitigation of increased runoff volumes by releasing a portion of the increased runoff volume at a low rate over an extended period of time. Site detention ponds are designed as FSDs to provide the required volume stages for Water Quality Capture Volume (WQCV), Excess Urban Runoff Volume (EURV), and the 100-year stage (flood control volume). In FSDs, the flood volume is equal to the entire volume and is inclusive of the EURV and the WQCV.

Areas tributary to storage facilities are greater than 5 acres. Therefore, detention volumes have been determined using the CUHP/MHFD SWMM methodology. When multiple basins are tributary to a single pond, basins are first routed together within the SWMM program to develop a combined detention pond inflow hydrograph. The hydrographs were then added to a Mile High Flood District MHFD-Detention workbook for each pond. Then the release curve / estimated outlet condition was adjusted until the desired peak pond outflow was achieved. Once the 100-year peak release rate was confirmed, resultant stage-release curves were transferred back to the prepared SWMMs and re-run to confirm the similar results as found with the MHFD-Detention analysis.

The MHFD-Detention workbook is utilized to design the outlet structures with orifice plates and restrictor plates. The outlet structures and plates are designed to achieve the target release rates of the various stages: WQCV at 40 hours, and EURV and 100-year release rates within the requisite 120 hours, with the goal of being in the range of 52 to 72 hours, as feasible for the runoff conditions. The developed condition outlet flow rates are not to exceed predeveloped conditions, and over-detention is provided within the three ponds to account for sub-basins that drain directly offsite without capture per the existing drainage patterns of the site.

The ponds include the required infrastructure such as concrete forebays, an emergency spillway with riprap weirs, concrete trickle channels, and a 2.5-foot depth micro-pool attached to the outlet structure. Ponds include 15'-20' width maintenance paths with vehicular access to the bottom of pond to access forebays and outlet structures for continued maintenance. The pathways have access from the public right-of-way and proper turning radii and longitudinal and cross slopes for a maintenance vehicle. The ponds include 1.0-foot of freeboard to the emergency spillway berm of the pond with the crest elevation at or above the 100-year water surface elevation. The spillways are sized with a trapezoidal weir for the 100-year inflow with rip-rap prescribed for the outflow velocity as energy dissipation.

The B basins consist of Filing No. 4 site area for 2.5-acre single-family residential development and local rural residential roadways. The pond includes a minimum 1.0-foot of freeboard to the top of berm and the 100-year water surface elevation is below the crest of the emergency spillway weir.

The MHFD-Detention / SWMM analysis yields the following pond sizing results:

Proposed Pond B

(Ownership and maintenance by the Flying Horse North HOA)

WQCV (ac-ft)	EURV (ac-ft)	100-year / Total Volume (ac-ft)
0.50	0.81	2.17

Pond B hydraulics are described in the following table:

	Peak Inflow (cfs)	Design Release/Outflow (cfs)	Time to Drain 99% of Inflow Volume (hrs)	Historic Peak Flowrate at O_BASIN_B	Developed Peak Flowrate at O_BASIN_B
Minor Storm (Q5)	59.1	49.2	50	58	54
Major Storm (Q100)	247.1	216.0	36	263	262

Pond B includes a concrete forebay sized for the required volume of the inflow, a 4-foot width concrete trickle channel with 6" vertical concrete curb, a 2.5-foot depth concrete micro pool, and an outlet structure that is includes a top trash rack, orifice plate, and restrictor plate on the outlet pipe.

Pond C (Design Point C) provides WQCV and EURV for the stormwater runoff from the C basins as well as over-detention of nearby sub-basins that drain directly offsite and converge with the ultimate downstream drainageway that Pond C outfalls to. This is confirmed by comparing the routed peak flows of similar basins in the historic condition, to the routed peak flows inclusive of detention in the developed condition. Both historic and developed SWMM models note this location as O_BASIN_C and modeling results at this location are included in the table below.

Proposed Pond C

(Ownership and maintenance by the Flying Horse North HOA)

WQCV (ac-ft)	EURV (ac-ft)	100-year / Total Volume (ac-ft)
0.23	0.39	0.90

Pond C hydraulics are described in the following table:

	Peak Inflow (cfs)	Design Release/Outflow (cfs)	Time to Drain 99% of Inflow Volume (hrs)	Historic Peak Flowrate at O_BASIN_C	Developed Peak Flowrate at O_BASIN_C
Minor Storm (Q5)	18.0	10.2	59	19	11
Major Storm (Q100)	69.0	62.4	50	78	73

Pond C includes a concrete forebay sized for the required volume of the inflow, a 4-foot width concrete trickle channel with 6" vertical concrete curb, a 2.5-foot depth concrete micro pool, and an outlet structure that is includes a top trash rack, orifice plate, and restrictor plate on the outlet pipe.

A comparison of the existing conditions as identified in the 2022 MDDP, and proposed conditions releasing off-site from the identified Filing No. 4 boundary into Cherry Creek is provided below to show that the detention being provided on site from the proposed ponds in Filing No. 4 will negate any impact downstream.

Basin ID	Existing Conditions (HRG MDDP 2022)	Proposed Conditions (HRG Filing 4 FDR 2024)
Cherry Creek	371.2 CFS	24.0 CFS

c. Methodology

Design rainfall was determined utilizing Table 6-2 from the City of Colorado Springs Drainage Criteria Manual to determine the 5-year and 100-year rainfall values for the 1-hour events. The 1-hour rainfall depths are 1.5 and 2.52 in/hr respectively.

The proposed development will consist of 48 2.5-acre single-family residential estate lots which are assumed at a percent imperviousness of 11% per the County ECM Table 3-1 Typical Values of Percent Impervious within Appendix L of the ECM which provides guidance for larger rural lot developments. Existing golf course areas are to remain undisturbed and utilize a land use category of "lawn" with a percent imperviousness of 2% per the County ECM Table 6-6 land use table. Composite coefficients, rainfall intensities, and runoff flow rates are calculated on a Rational Method spreadsheet and provided within the Appendix. As discussed previously, the Rational Method used in this report will result in higher peak flow rates for the minor and major storm events as compared to the 2018 Classic Consulting FDR/PDR which utilized the NRCS Curve Number Method. Design points within Filing No. 4 are designed per the findings of this report which utilizes the Rational Method and CUHP/SWMM modeling.

Mile High Flood District (MHFD) UD-BMP Runoff Reduction calculations are provided to demonstrate WQCV reduction for the sub-basins that drain directly offsite, however the sub-basins that drain directly off-site do fall under ECM code I.7.1.B.5, which excludes areas of "large lots" to require detention. The provided Runoff Reduction calculations are to show the good stormwater management practices of the site.

Areas tributary to storage facilities are greater than 5 acres. Therefore, detention volumes have been determined using the CUHP/MHFD SWMM methodology. When multiple basins are tributary to a single pond, basins are first routed together within the SWMM program to develop a combined detention pond inflow hydrograph. The hydrographs were then added to a MHFD-Detention workbook for each pond. Then the release curve / estimated outlet condition was adjusted until the desired peak pond outflow was achieved. Once the 100-year peak release rate was confirmed, resultant stage-release curves were transferred back to the prepared SWMMs and re-run to confirm the similar results as found with the MHFD-Detention analysis.

The MHFD-Detention workbook is utilized to design the outlet structures with orifice plates and restrictor plates. The outlet structures and plates are designed to achieve the target release rates of the various stages: WQCV at 40 hours, and EURV and 100-year release rates within the requisite 120 hours, with the goal of being in the range of 52 to 72 hours, as feasible for the runoff conditions.

APPENDIX D

WATER QUALITY AND DETENTION CALCULATIONS

Flying Horse North Filing No. 4 - Detention Modeling Summary

Pond A Developed Parameters			
Catchment			Percent
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.
A1	0.017	10.84	10.2
A2	0.017	10.79	11.0
A3	0.111	71.16	4.1
A4	0.029	18.71	11.0
A5	0.004	2.47	11.0
A6	0.010	6.38	11.0
A7	0.013	8.13	11.0
Total		128.48	7.1

Peak Stor	Peak Release	
(cu-ft)	(ac-ft)	(cfs)
111,834	2.6	160.8

Pre-Development Flow		
Catchment Peak Flow		
Name/ID	(cfs)	
A1	97.1	
A2	71.2	
G1	10.8	
H1	94.0	
Total	273.2	
O_BASIN_H	267.4	

pment Flow
Peak Flow
(cfs)
14.3
19.6
101.6
20.0
4.7
11.7
17.1
5.7
7.2
7.7
35.0
66.9
311.6
248.5

Post-Development Flow

Catchment Name/ID

В1

B2

В3

Peak Flow

(cfs) 182.0

49.5

3.0

Direct summation Less than or equal to historic at same location

Pond B Developed Parameters			
Catchment			Percent
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.
B1	0.090	57.78	4.1
B2	0.056	35.77	11.7
В3	0.002	1.10	33.7
Total		94.65	7.3

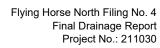
Peak Stor	Peak Release	
(cu-ft)	(ac-ft)	(cfs)
103,808	2.4	216.7

Pond C Developed Parameters			
Catchment			Percent
Name/ID	Area (sq.mi.)	Area (ac.)	Imperv.
C1	0.025	15.94	10.5
C2	0.003	1.98	20.9
C3	0.033	21.39	9.3
Total		39.31	10.4

Peak Storage Volume		Peak Release
(cu-ft)	(cu-ft) (ac-ft)	

Pre-Development Flow		
Catchment	Peak Flow	
Name/ID	(cfs)	
B1	148.9	
B2	75.8	
В3	18.8	
B4	19.6	
Total	263.0	
O_BASIN_B	262.7	

Pre-Development Flow		
Catchment	Peak Flow	
Name/ID	(cfs)	
C1	24.7	
C2	39.8	
C3	9.7	
C4	4.0	
Total	78.2	
O_BASIN_C	78.0	


B4	15.1	Detained
B5	18.9	Undetained
B6	33.9	Undetained
Total	302.3	Direct summation
O_BASIN_B	262.4	Less than or equal to historic at same location
		-
Post-Develo	pment Flow]
Post-Develo	pment Flow Peak Flow]
	•	
Catchment	Peak Flow	Detained

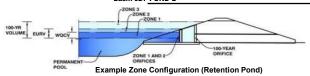
FUSI-Develo	pinentitow	
Catchment	Peak Flow	
Name/ID	(cfs)	
C1	27.7	Detained
C2	3.0	Detained
C3	39.0	Detained
C4	10.3	Undetained
C5	4.0	Undetained
Total	84.1	Direct summation
O_BASIN_C	73.2	Less than or equal to historic at same location

Detained

Detained

Detained

El Paso County, Colorado


POND B

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022)

Project: FLYING HORSE NORTH FILING NO. 4

Basin ID: POND B

Watershed Information

onca imornación		
Selected BMP Type =	EDB	
Watershed Area =	105.65	acres
Watershed Length =	3,000	ft
Watershed Length to Centroid =	1,000	ft
Watershed Slope =	0.035	ft/ft
Watershed Imperviousness =	8.25%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Painfall Denths -	Her Innut	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

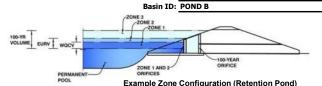
Water Quality Capture Volume (WQCV) = 0.50 acre-feet Excess Urban Runoff Volume (EURV) = 0.81 acre-feet 2-yr Runoff Volume (P1 = 1.19 in.) = 1.27 acre-feet 5-vr Runoff Volume (P1 = 1.5 in.) = 2.93 acre-feet 10-yr Runoff Volume (P1 = 1.75 in.) = 4.61 acre-feet 25-yr Runoff Volume (P1 = 2 in.) = 7.66 acre-feet 50-yr Runoff Volume (P1 = 2.25 in.) = 9.71 acre-feet 100-yr Runoff Volume (P1 = 2.52 in.) = 12.69 acre-feet 500-yr Runoff Volume (P1 = 3.14 in.) = 18.09 acre-feet Approximate 2-yr Detention Volume = 0.50 acre-feet Approximate 5-yr Detention Volume = 0.80 acre-feet Approximate 10-yr Detention Volume = 1.83 acre-feet Approximate 25-yr Detention Volume = 2.63 acre-feet Approximate 50-yr Detention Volume = 2.73 acre-feet Approximate 100-yr Detention Volume = 3.57 acre-feet

Define Zones and Basin Geometry

Zone 1 Volume (WQCV) =	0.50	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.31	acre-feet
Zone 3 Volume (User Defined - Zones 1 & 2) =	1.51	acre-feet
Total Detention Basin Volume =	2.32	acre-feet

Optional User Overrides

	acre-feet
	acre-feet
1.19	inches
1.50	inches
1.75	inches
2.00	inches
2.25	inches
2.52	inches
	inches
	•


Total detention volume is less than 100-year volume.

	Depth Increment =		ft							
	Stage - Storage Description	Stage (ft)	Optional Override Stage (ft)	Length (ft)	Width (ft)	Area (ft²)	Optional Override Area (ft ²)	Area (acre)	Volume (ft 3)	Volume (ac-ft)
7528	Top of Micropool		0.00				10	0.000	(12)	(23.13)
,520	7528.5		0.50				2,046	0.047	514	0.012
	7529.0		1.00				6,923	0.159	2,756	0.063
	7529.5		1.50				12,926	0.297	7,718	0.177
	7530.0		2.00		-		17,329	0.398	15,282	0.351
	7530.5		2.50		1	-	21,190	0.486	24,912	0.572
	7531.0		3.00		1	-	24,525	0.563	36,341	0.834
	7531.5		3.50				26,987	0.620	49,219	1.130
	7532.0		4.00				28,945	0.664	63,202	1.451
	7532.5		4.50		-		30,931	0.710	78,171	1.795
	7533.0		5.00		-		32,981	0.757	94,149	2.161
	7533.5		5.50		-		35,154	0.807	111,182	2.552
	7534.0		6.00		-		37,372	0.858	129,314	2.969
	7534.5		6.50				39,936	0.917	148,641	3.412
ides	7535.0		7.00				42,384	0.973	169,221	3.885
eet										
eet										
5					-					
5										
s										
5										
s					-					
5					-					
5										
ın İ										
- 1						1		1		1

BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Project: FLYING HORSE NORTH FILING NO. 4

	Estimated Stage (ft)	Estimated Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.28	0.500	Orifice Plate
Zone 2 (EURV)	2.84	0.307	Circular Orifice
Zone 3 (User)	4.92	1.513	Weir&Pipe (Restrict)
'	Total (all zones)	2.320	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdrain Underdrain Orifice Area N/A ft2 Underdrain Orifice Centroid = N/A

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Centroid of Lowest Orifice = 0.00 ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = 2.28 ft (relative to basin bottom at Stage = 0 ft)

Orifice Plate: Orifice Vertical Spacing = 9.20 inches

Orifice Plate: Orifice Area per Row = 2.19 sq. inches (diameter = 1-5/8 inches)

Calculated Parameters for Plate WQ Orifice Area per Row = 1.521E-02 ft² Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A feet Elliptical Slot Area : ft² N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.80	1.60					
Orifice Area (sq. inches)	2.19	2.19	2.19					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	2.28	N/A	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Vertical Orifice =	2.84	N/A	ft (relative to basin bottom at Stage = 0 ft)
Vertical Orifice Diameter =	1.00	N/A	inches

Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Vertical Orifice Area 0.01 N/A Vertical Orifice Centroid = 0.04 N/A feet

User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	ctangular/Trapezoidal Weir and No Outlet Pipe)
	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.85	N/A	ft (relative to basin bottom at Stage = 0 ft) Height
Overflow Weir Front Edge Length =	30.00	N/A	feet Ov
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open A
Horiz. Length of Weir Sides =	5.00	N/A	feet Overflow Gra
Overflow Grate Type =	Type C Grate	N/A	0% clogging to ensure program is using pipe/plate to Overflow G
Debris Clogging % =	0%	/ N/A	% limit release, see next sheet

elative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t = Overflow Weir Slope Length = Grate Open Area / 100-yr Orifice Area = Overflow Grate Open Area w/o Debris = 0% clogging to ensure program is using pipe/plate to Overflow Grate Open Area w/ Debris = limit release, see next sheet

Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected 2.85 N/A feet 5.00 N/A feet 5.87 N/A 104.40 N/A 104.40 N/A fť

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	3.70	N/A	ft (dista
Outlet Pipe Diameter =	60.00	N/A	inches
Restrictor Plate Height Above Pipe Invert =	51.00		inches

ft (distance below basin bottom at Stage = 0 ft) inches

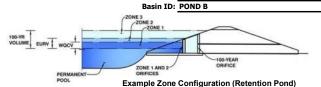
for results with clogging

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Outlet Orifice Area 17.79 N/A Outlet Orifice Centroid 2.29 N/A feet Half-Central Angle of Restrictor Plate on Pipe = 2.35 N/A radians

SWMM volume

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	5.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	40.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet


Calculated Parameters for Spillway Spillway Design Flow Depth= 1.49 feet Stage at Top of Freeboard = 7.99 feet Basin Area at Top of Freeboard = 1.09 acres Basin Volume at Top of Freeboard = 4.33 acre-ft

Routed Hydrograph Results	The user can over	ride the default CUP	HP hydrographs and	d runoff volumes by	entering new value	es in the Inflow Hyd	drographs table (Co	olumns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.500	0.807	1.270	2.932	4.609	7.657	9.710	12.690	18.086
User Override Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.270	3.472	4.609	7.657	9.710	17.082	18.086
CUHP Predevelopment Peak Q (cfs) =		N/A	14.9	41.7	63.1	109.6	138.0	172.8	240.7
OPTIONAL Override Predevelopment Peak Q (cfs) =		N/A						216.0	
Predevelopment Unit Peak Flow, q (cfs/acre) =		N/A	0.14	0.39	0.60	1.04	1.31	2.04	2.28
Peak Inflow Q (cfs) =	N/A	N/A	21.5	59.1	70.7	16.9	1 45. 3	2 4 7.1	248.6
Peak Outflow Q (cfs) =	0.3	0.3	8.4	49.2	6 5/9	1 16 .9	1 \5 .8	213.6	213.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N <mark>X</mark> A	1.2	1X 0	1 X 1	1 X 1	1.0	0.9
Structure Controlling Flow =	Plate	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	0.08	0.5	/0.6	/1.1\	/1.4	2.0	2.0
Max Velocity through Grate 2 (fps) =	N/A	N/A	/ N/A	N/A	/ N/A \	/ N/A \	/ N/A \	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	37	48	/ 48 \	41	/ 38 \	/ 31	27	16	14
Time to Drain 99% of Inflow Volume (hours) =	40	52	53	50	48	44	42	36	35
Maximum Ponding Depth (ft) =	2.28	2.84	2.96	3.21	3.29	3.49	3.60	4.81	4.78
Area at Maximum Ponding Depth (acres) =	0.49	0.60	0.62	0.66	0.67	0.69	0.70	0.83	0.83
Maximum Volume Stored (acre-ft) =	0.50	0.81	0.88	1.04	1.09	1.23	1.30	2.22	2.21
Elevation (ft) =	7528.28	7528.84						7530.81	
Pond Bottom (ft) =	7526.00								-

103,808

MHFD-Detention, Version 4.06 (July 2022)

Project: FLYING HORSE NORTH FILING NO. 4

	Estimated	Estimated	
_	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	2.28	0.500	Orifice Plate
Zone 2 (EURV)	2.84	0.307	Circular Orifice
Zone 3 (User)	4.92	1.513	Weir&Pipe (Restrict)
_	Total (all zones)	2.320	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) Underdrain Orifice Diameter = N/A

Calculated Parameters for Underdrain Underdrain Orifice Area N/A ft2 Underdrain Orifice Centroid = N/A

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate Centroid of Lowest Orifice = WQ Orifice Area per Row = 0.00 ft (relative to basin bottom at Stage = 0 ft) 1.521E-02 ft² Depth at top of Zone using Orifice Plate = 2.28 ft (relative to basin bottom at Stage = 0 ft) Elliptical Half-Width = N/A feet Orifice Plate: Orifice Vertical Spacing = 9.20 inches Elliptical Slot Centroid = N/A feet Elliptical Slot Area : ft² Orifice Plate: Orifice Area per Row = 2.19 sq. inches (diameter = 1-5/8 inches) N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.80	1.60					
Orifice Area (sq. inches)	2.19	2.19	2.19					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

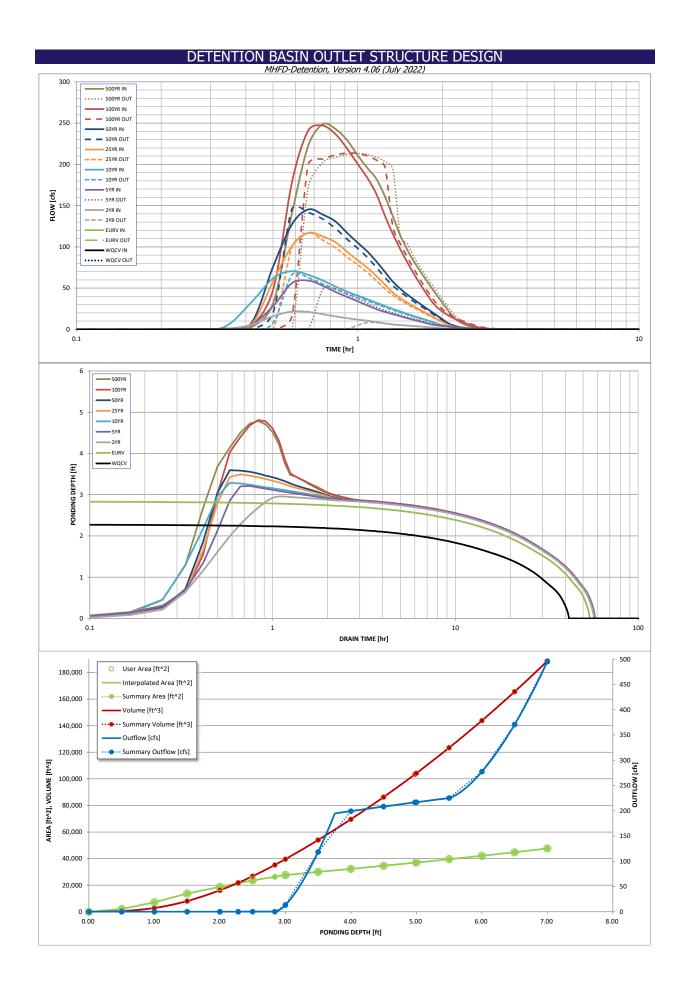
User Input: Vertical Orifice (Circular or Rectangular) Calculated Parameters for Vertical Orifice Zone 2 Circular Not Selected Zone 2 Circular Not Selected Invert of Vertical Orifice = 2.28 N/A ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Area 0.01 N/A ft² Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) 2.84 N/A Vertical Orifice Centroid = 0.04 N/A feet Vertical Orifice Diameter = 1.00 N/A

User Input: Overflow Weir (Dropbox with Flat o	Calculated Parameters for Overflow Weir					
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	1
Overflow Weir Front Edge Height, Ho =	2.85	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	2.85	N/A	feet
Overflow Weir Front Edge Length =	30.00	N/A	feet Overflow Weir Slope Length =	5.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	5.87	N/A	1
Horiz. Length of Weir Sides =	5.00	N/A	feet Overflow Grate Open Area w/o Debris =	104.40	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	50% clogging included to Overflow Grate Open Area w/ Debris =	52.20	N/A	ft ²
Debris Clogging % =	50%	/ N/A	% review velocity through			

<u>User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)</u> Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected

Zone 3 Restrictor Not Selected Depth to Invert of Outlet Pipe = 3.70 Outlet Orifice Area 17.79 N/A ft (distance below basin bottom at Stage = 0 ft) Outlet Pipe Diameter = Outlet Orifice Centroid 2.29 60.00 N/A N/A feet linches Restrictor Plate Height Above Pipe Invert = 51.00 inches Half-Central Angle of Restrictor Plate on Pipe = 2.35 N/A radians

Calculated Parameters for Spillway User Input:


out: Emergency Spiliway (Rectangular or	<u>i rapezoidal)</u>			Calculated Parame	ters for Spill
Spillway Invert Stage=	5.50	ft (relative to basin bottom at Stage = 0 ft)	Spillway Design Flow Depth=	1.49	feet
Spillway Crest Length =	40.00	feet	Stage at Top of Freeboard =	7.99	feet
Spillway End Slopes =	4.00	H:V	Basin Area at Top of Freeboard =	1.09	acres
Freeboard above Max Water Surface =	1.00	feet	Basin Volume at Top of Freeboard =	4.33	acre-ft

Routed Hydrograph Results	The user can over	ride the default CUF	HP hydrographs and	d runoff volumes by	v entering new valu	es in the Inflow Hyd	drographs table (Co	lumns W through A	4 <i>F</i>).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.14
CUHP Runoff Volume (acre-ft) =	0.500	0.807	1.270	2.932	4.609	7.657	9.710	12.690	18.086
User Override Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	1.270	3.472	4.609	7.657	9.710	17.082	18.086
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	14.9	41.7	63.1	109.6	138.0	172.8	240.7
OPTIONAL Override Predevelopment Peak Q (cfs) =		N/A						216.0	
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.14	0.39	0.60	1.04	1.31	2.04	2.28
Peak Inflow Q (cfs) =	N/A	N/A	21.5	59.1	70.7	116.9	145.3	247.1	248.6
Peak Outflow Q (cfs) =	0.3	0.3	7.2	45.1	59.7	109.1	139.2	216.5	217.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	1.1	0.9	1.0	1.0	1.0	0.9
Structure Controlling Flow =	Plate	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	0.06	0.4	0.6	1.0	1.3	2.1	2.1
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	37	48	48	41	38	31	27	16	14
Time to Drain 99% of Inflow Volume (hours) =	40	52	54	50	48	44	42	36	35
Maximum Ponding Depth (ft) =	2.28	2.84	3.00	3.39	3.50	3.83	4.00	4.98	5.02
Area at Maximum Ponding Depth (acres) =	0.49	0.60	0.63	0.68	0.69	0.72	0.74	0.85	0.85
Maximum Volume Stored (acre-ft) =	0.50	0.81	0.91	1.16	1.24	1.47	1.59	2.37	2.40
Elevation (ft) =	7528.28	7528.84						7530.98	

SWMM volume 103,808

Pond Bottom (ft) =

7526.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP	CUHP	CUHP	USER	CUHP	CUHP	CUHP	USER	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.02	0.00	0.00	0.01	0.03	0.05
	0:15:00	0.00	0.00	0.13	0.29	0.25	0.17	0.22	0.32	0.32
	0:20:00	0.00	0.00	0.50	0.84	2.56	0.51	0.61	0.81	2.42
	0:30:00	0.00	0.00	5.28 16.15	5.28 28.18	32.00 61.85	5.01 58.31	6.58 75.74	4.04 47.72	31.16 140.12
	0:35:00	0.00	0.00	21.48	55.99	70.65	100.78	127.30	177.86	222.60
	0:40:00	0.00	0.00	21.19	59.11	66.12	116.93	145.33	240.83	248.61
	0:45:00	0.00	0.00	18.41	52.91	59.32	112.63	139.24	247.06	242.92
	0:50:00	0.00	0.00	15.77	45.39	51.88	105.76	130.83	236.61	229.34
	0:55:00 1:00:00	0.00	0.00	13.51	39.31	45.74	94.10	116.93	219.08	210.73
	1:05:00	0.00	0.00	11.89 10.45	33.91 28.93	40.89 36.47	83.71 74.57	104.89 94.22	200.33 183.22	195.31 182.16
	1:10:00	0.00	0.00	8.87	24.45	32.13	64.62	82.26	163.76	160.97
	1:15:00	0.00	0.00	7.27	21.11	28.23	54.18	69.62	137.51	137.05
	1:20:00	0.00	0.00	6.00	18.47	24.80	44.69	57.74	115.66	114.12
	1:25:00	0.00	0.00	5.21	15.99	21.68	37.99	49.23	97.45	96.67
	1:30:00	0.00	0.00	4.56 3.98	13.64 11.47	18.77 16.17	32.53 27.90	42.20 36.24	81.53 67.41	82.47 70.56
	1:40:00	0.00	0.00	3.40	9.51	13.77	23.69	30.82	54.87	59.85
	1:45:00	0.00	0.00	2.83	7.57	11.49	19.86	25.89	43.86	50.04
	1:50:00	0.00	0.00	2.28	5.83	9.29	16.17	21.17	33.94	40.82
	1:55:00	0.00	0.00	1.71	4.79	7.07	12.63	16.64	26.61	32.21
	2:00:00	0.00	0.00	1.15 0.67	4.12 3.56	4.87 3.31	9.19 5.81	12.28 7.96	21.52 17.61	24.12 16.50
	2:10:00	0.00	0.00	0.67	3.01	2.45	3.59	5.15	14.31	11.29
	2:15:00	0.00	0.00	0.30	2.51	1.89	2.28	3.44	11.60	7.89
	2:20:00	0.00	0.00	0.23	2.04	1.47	1.48	2.35	9.28	5.46
	2:25:00	0.00	0.00	0.18	1.60	1.14	0.95	1.58	7.30	3.68
	2:30:00	0.00	0.00	0.13	1.18	0.86	0.62	1.08	5.61	2.39
	2:40:00	0.00	0.00	0.10 0.07	0.81 0.55	0.63 0.45	0.40 0.25	0.71 0.46	4.07 2.75	1.45 0.84
	2:45:00	0.00	0.00	0.06	0.40	0.31	0.17	0.31	1.87	0.55
	2:50:00	0.00	0.00	0.05	0.31	0.21	0.12	0.22	1.28	0.38
	2:55:00	0.00	0.00	0.04	0.24	0.15	0.09	0.17	0.88	0.30
	3:00:00 3:05:00	0.00	0.00	0.03	0.19	0.11	0.06	0.13	0.58	0.24
	3:10:00	0.00	0.00	0.02	0.15 0.12	0.08	0.05	0.09	0.37 0.23	0.18 0.13
	3:15:00	0.00	0.00	0.01	0.09	0.03	0.02	0.05	0.15	0.09
	3:20:00	0.00	0.00	0.01	0.07	0.02	0.01	0.03	0.11	0.05
	3:25:00	0.00	0.00	0.00	0.05	0.01	0.01	0.02	0.08	0.03
	3:30:00 3:35:00	0.00	0.00	0.00	0.04	0.00	0.00	0.01	0.07	0.01
	3:40:00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.05 0.04	0.00
	3:45:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.03	0.00
	3:50:00	0.00	0.00	0.00	0.01	0.00	0.00	0.00	0.02	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00 4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.06 (July 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition.

Stage - Storage Description	Stage	Area	Area	Volume	Volume	Total Outflow	
	[ft]	[ft²]	[acres]	[ft³]	[ac-ft]	[cfs]	
	0.00	10	0.000	0	0.000	0.00	For best results, include the
	0.50	2,138	0.049	537	0.012	0.05	stages of all grade slope changes (e.g. ISV and Floor)
	1.00	7,169	0.165	2,864	0.066	0.11	from the S-A-V table on
	1.50	13,715	0.315	8,085	0.186	0.15	Sheet 'Basin'.
	2.00	18,729 21,476	0.430 0.493	16,196 21,824	0.372 0.501	0.23 0.26	Also include the inverte of all
	2.28	23,635	0.493	26,787	0.615	0.26	Also include the inverts of all outlets (e.g. vertical orifice,
	2.84	26,333	0.605	35,281	0.810	0.33	overflow grate, and spillway,
	3.00	27,602	0.634	39,596	0.909	13.45	where applicable).
	3.50	30,042	0.690	54,007	1.240	118.57	
	4.00	32,274	0.741	69,586	1.597	199.28	1
	4.50	34,626	0.795	86,311	1.981	208.28	
	4.98	36,955	0.848	103,490	2.376	216.56	
	5.00	37,052	0.851	104,230	2.393	216.90	
	5.50	39,551	0.908	123,381	2.832	225.20	
	6.00	42,125	0.967	143,800	3.301	277.32	_
	6.50	44,776	1.028	165,525	3.800	370.54	-
	7.00	47,667	1.094	188,636	4.330	495.34	+
						+	+
							1
							1
							1
							1
							1
							_
							_
							4
							_
							-
							-
							_
							-
							1
							1
							1
							4
						-	4
						-	4
							4
							+
							1
							1
							1
							-
							-
						-	4
							†
							1
							4
						+	1
							4
						-	4
							+
			1	1		1	

	Area	Stage	Total Outflow	Stage
	[ft ²]	Area	[cfs]	Release
e	10	0 10	0.00	0 0
	2,138	0.5 2138.28	0.05	0.5 0.05
or)	7,169	1 7169.09	0.11	1 0.11
	13,715	1.5 13715.31	0.15	1.5 0.15
	18,729	2 18728.56	0.23	2 0.23
all	21,476	2.28 21475.96	0.26	2.28 0.26
٠,	23,635	2.5 23634.63	0.29	2.5 0.29
ıy,	26,333	2.84 26332.66	0.33	2.84 0.33
	27,602	3 27602.32	13.45	3 13.45
	30,042	3.5 30042.07	118.57	3.5 118.57
	32,274	4 32273.85	199.28	4 199.28
	34,626	4.5 34626.01	208.28	4.5 208.28
	36,955	4.98 36954.82	216.56	4.98 216.56
	37,052	5 37051.85	216.90	5 216.9
	39,551	5.5 39551.39	225.20	5.5 225.2
	42,125	6 42124.62	277.32	6 277.32
	44,776	6.5 44775.53	370.54	6.5 370.54
	47,667	7 47666.69	495.34	7 495.34

These pairs are transfered to the SWMM to model this pond size and release

Design Procedure Form: Extended Detention Basin (EDB)			
	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3	
Designer:	RICHARD LYON, PE		
Company:	HR GREEN August 19, 2024		
Date: Project:	FLYING HORSE NORTH - FILING NO. 4		
Location:	POND B		
1. Basin Storage \	/olume		
A) Effective Imp	perviousness of Tributary Area, I _a	I _a = 7.5 %	
B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	i =	
C) Contributing	Watershed Area	Area = 109.200 ac	
D) For Watersh	neds Outside of the Denver Region, Depth of Average	d ₆ = in	
	lucing Storm	Choose One	
E) Design Con		Water Quality Capture Volume (WQCV)	
(Select EUR	V when also designing for flood control)	Excess Urban Runoff Volume (EURV)	
	me (WQCV) Based on 40-hour Drain Time 1.0 * (0.91 * i³ - 1.19 * i² + 0.78 * i) / 12 * Area)	V _{DESIGN} = ac-ft	
,,	heds Outside of the Denver Region,	V	
Water Quali	ity Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = ac-ft	
(V _{WQCV} OTHE	$R = (d_6^*(V_{DESIGN}/0.43))$		
	of Water Quality Capture Volume (WQCV) Design Volume fferent WQCV Design Volume is desired)	V _{DESIGN USER} = 0.475 ac-ft	
i) Percenta	logic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils	HSG _A = 0 %	
	age of Watershed consisting of Type B Soils tage of Watershed consisting of Type C/D Soils	HSG _B = 100 % HSG _{CID} = 0 %	
J) Excess Urba	an Runoff Volume (EURV) Design Volume		
For HSG A	: EURV _A = 1.68 * i ^{1.28} : EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = ac-f t	
	/D: EURV _{C/D} = 1.30 * i ^{1.08}		
K) User Input o	of Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = 0.752 ac-f t	
(Only if a dit	fferent EURV Design Volume is desired)	·	
2. Basin Shape: Lo	ength to Width Ratio	L:W= 2.0 :1	
	to width ratio of at least 2:1 will improve TSS reduction.)		
2 Posin Cide Ci			
3. Basin Side Slop		7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
,	num Side Slopes distance per unit vertical, 4:1 or flatter preferred)	Z =ft/ft	
4. Inlet			
,	eans of providing energy dissipation at concentrated		
inflow location	ulis.		
5. Forebay			
A) Minimum Fo	orebay Volume	V _{FMIN} = 0.014 ac-ft	
	= 3% of the WQCV)	······	
B) Actual Forel	pay Volume	V _F = 0.014 ac-ft	
C) Forebay Dep		0 - 100	
	= 18 inch maximum)	D _F = 18.0 in	
D) Forebay Disc	charge		
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = 187.60 cfs	
ii) Forebay (Q _F = 0.0	Discharge Design Flow 2 * Q ₁₀₀)	Q _F = 3.75 cfs	
E) Forebay Disc	charge Design	Choose One	
		Berm With Pipe Flow too small for berm w/ pipe	
		Wall with Rect. Notch Wall with V-Notch Weir	
E) D: D:	ing City (minimum 0 inches)	Calculated D _o =	
	pe Size (minimum 8-inches)	· ·	
G) Rectangular	Notch Width	Calculated W _N = 11.0 in	

Filing 4 Pond B - UD BMP, EDB 8/19/2024, 10:36 AM

	Design Procedure Form: I	Extended Detention Basin (EDB)	Short 2 of 2
Designer: Company: Date: Project: Location:	RICHARD LYON, PE HR GREEN August 19, 2024 FLYING HORSE NORTH - FILING NO. 4 POND B		Sheet 2 of 3
Trickle Channel A) Type of Trick F) Slope of Trick	kle Channel	Choose One Concrete Soft Bottom S = 0.0050 ft / ft	
	cropool (2.5-feet minimum) a of Micropool (10 ft ² minimum)	$D_{M} = $	
D) Smallest Din (Use UD-Detent E) Total Outlet A	,	D _{orifice} =inches $A_{ot} =square inches$	
(Minimum red B) Minimum Initi (Minimum vol	e Volume ial Surcharge Volume commended depth is 4 inches) ial Surcharge Volume ume of 0.3% of the WQCV) irge Provided Above Micropool	$D_{is} =$ in $V_{is} =$ 62 $cu ft$ $V_{s} =$ $cu ft$	
B) Type of Scree in the USDCM, it total screen are C) Ratio of Total D) Total Water (E) Depth of Des (Based on of F) Height of Wa	ty Screen Open Area: At = Act * 38.5*(e-0.0950) en (If specifying an alternative to the materials recommended indicate "other" and enter the ratio of the total open are to the for the material specified.) Other (Y/N): N I Open Area to Total Area (only for type 'Other') Quality Screen Area (based on screen type) sign Volume (EURV or WQCV) design concept chosen under 1E) ter Quality Screen Opening (W	User Ratio = square inches Square inches square inches	
G) Width of Wat	ter Quality Screen Opening (W _{opening}) inches is recommended)	W _{opening} = inches	

Filing 4 Pond B - UD BMP, EDB 8/19/2024, 10:36 AM

HR GREEN FOREBAY SIZING

5.83 FT

23.166 FT

DATE: 8/19/2024
DESIGNED BY: RDL

PROJECT: FLYING HORSE NORTH FILING 4

CHECKED BY: RDL
POND OR DP: POND B

INNER DIMENSIONS	OUTER DIMENSIONS
HAINER DIIVIENSIONS	OUTER DIMENSION.

LENGTH	
L1	5
L2	22.333

L3	5 FT		5.83 FT
INNER L	32.333 FT	OUTER TOTAL L	33.999 FT

WIDTH	

W1	5 FI		5.83 FI
W2	16.74975 FT (75% of L2)		17.58 FT
W3	5 FT		5.83 FT
INNER W	26.750 FT	OUTER TOTAL W	28.416 FT

SUFFICIENT

VOLUME?

YES

BAFFLE (6'x0.83' + 4'x0.83')
AREA 8.33 SF

TRIANGLES 50
RECTANGLE 374.0721668
BAFFLE 8.33
TOTAL SURFACE AREA 415.7421668 SQ FT

FOREBAY HT. 1.5 FT

FOREBAY VOLUME 623.6132501 CF

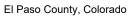
23.09678704 CY 0.01431619 AC-FT

REQ'D VOL (3% WQCV)	0.01425	AC-FT
(per UD-BMP calc)	620.73	CF
Notch Width per UD-BMP	11.0	in

T-5

Extended Detention Basin (EDB)

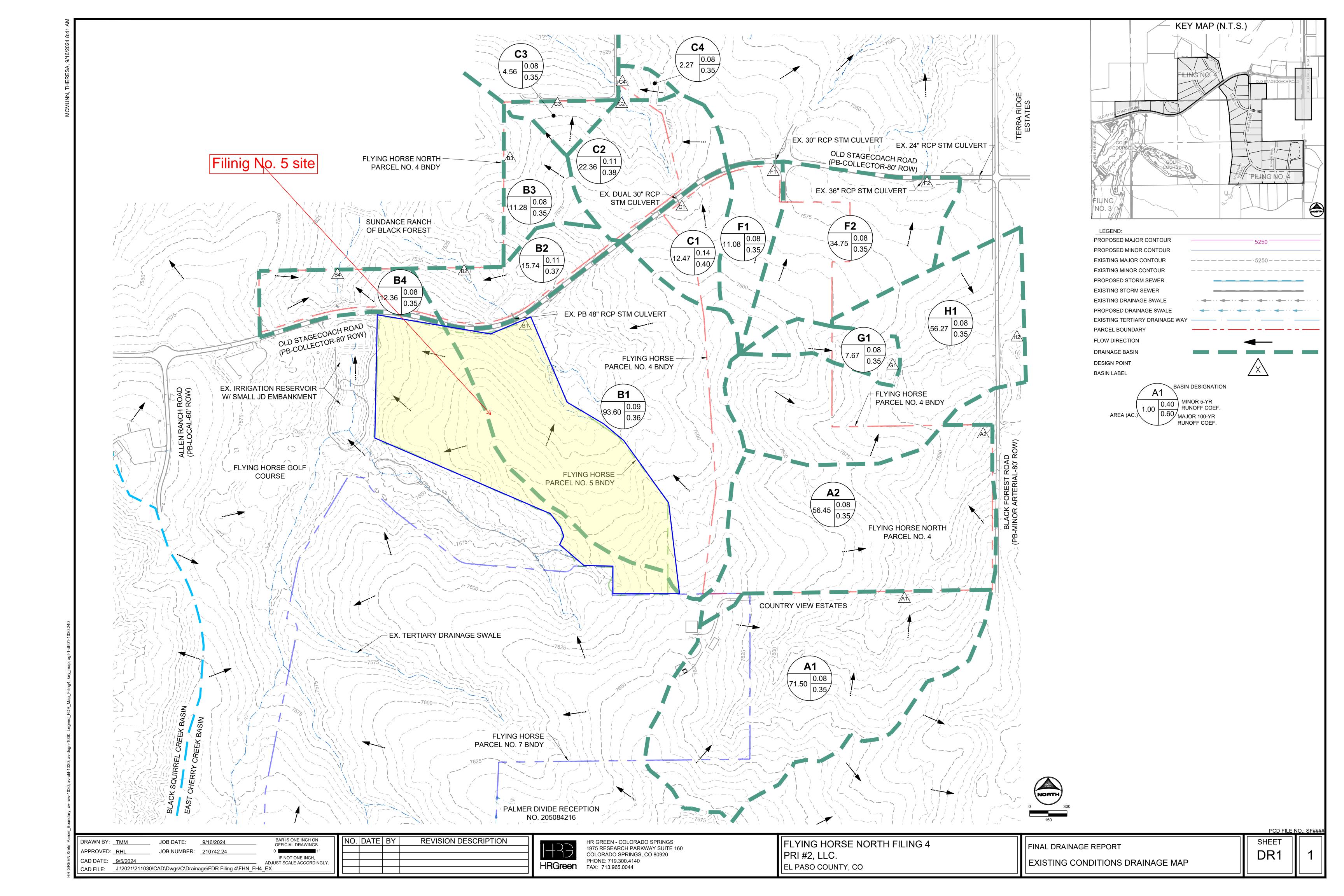
Table EDB-4. EDB component criteria

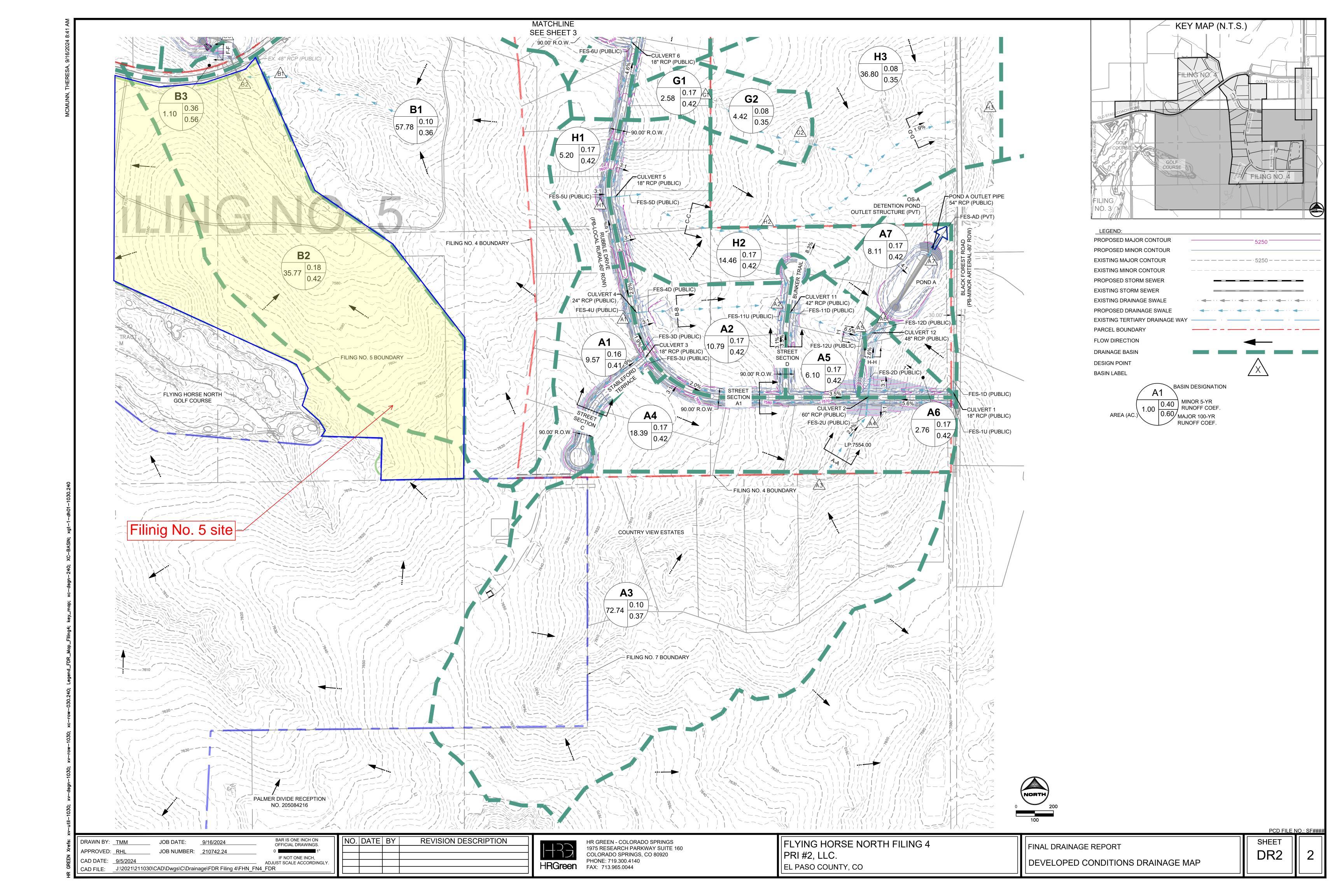

	On-Site EDBs for Watersheds up to 1 Impervious Acre ¹	EDBs with Watersheds between 1 and 2 Impervious Acres ¹	EDBs with Watersheds up to 5 Impervious Acres	EDBs with Watersheds over 5 Impervious Acres	EDBs with Watersheds over 20 Impervious Acres
Forebay Release and Configuration	EDBs should not be used for watersheds with less than 1 impervious acre.	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch configuration	Release 2% of the undetained 100-year peak discharge by way of a wall/notch or berm/pipe ² configuration
Minimum Forebay Volume		1% of the WQCV	2% of the WQCV	3% of the WQCV	3% of the WQCV
Maximum Forebay Depth		12 inches	18 inches	18 inches	30 inches
Trickle Channel Capacity		≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity	≥ the maximum possible forebay outlet capacity
Micropool		Area ≥ 10 ft ²			
Initial Surcharge Volume		Depth ≥ 4 inches	Depth ≥ 4 inches	Depth ≥ 4 in. Volume ≥ 0.3% WQCV	Depth ≥ 4 in. Volume ≥ 0.3% WQCV

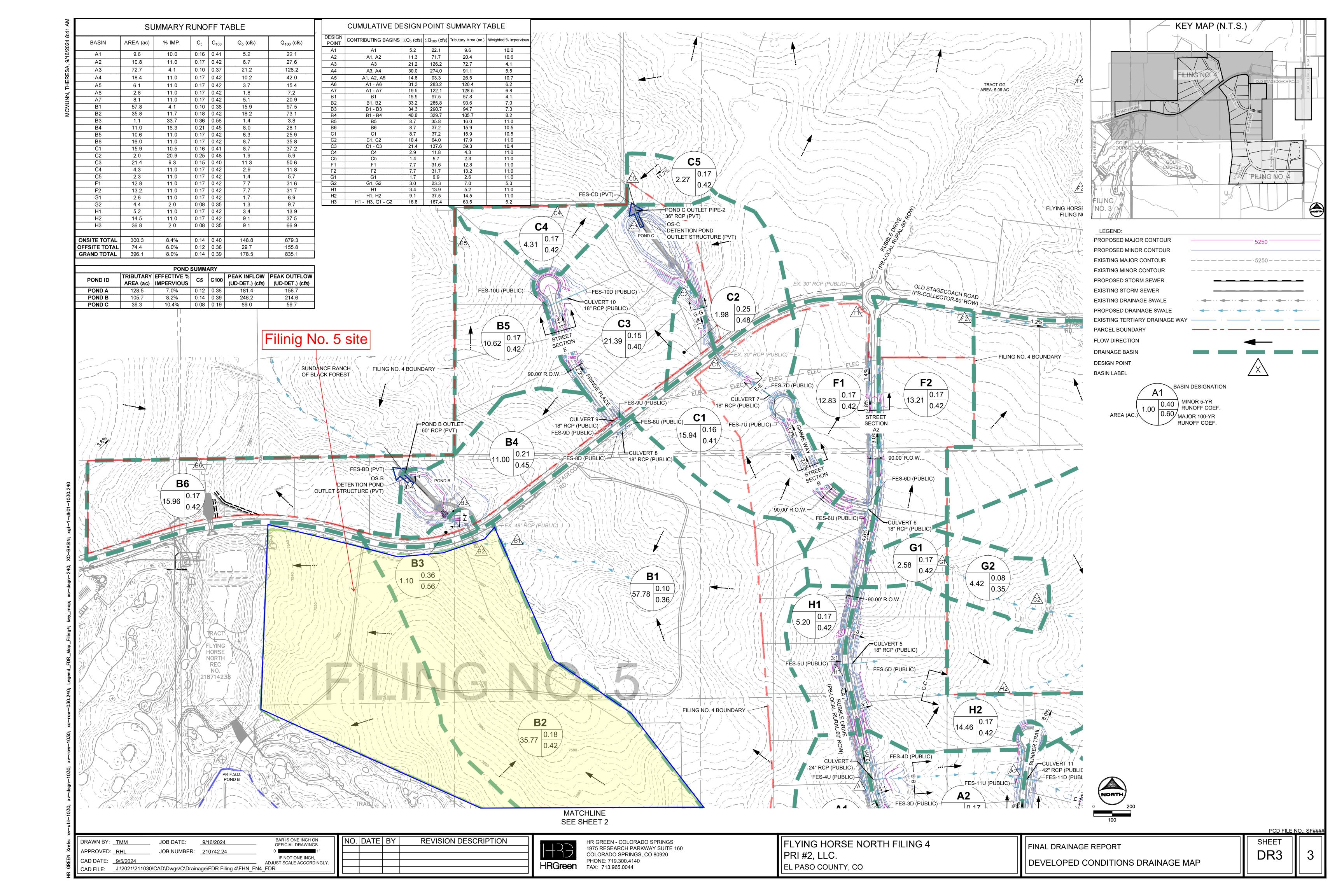
¹ EDBs are not recommended for sites with less than 2 impervious acres. Consider a sand filter or rain garden.

² Round up to the first standard pipe size (minimum 8 inches).

Worksheet for Pond B Spillway


Project Description		
Solve For	Headwater Elevation	
Input Data		
Discharge	187.60 cfs	
Crest Elevation	7,534.00 ft	
Tailwater Elevation	7,522.00 ft	
Crest Surface Type	Gravel	
Crest Breadth	75.00 ft	
Crest Length	68.0 ft	
Results		
Headwater Elevation	7,534.98 ft	
Headwater Height Above Crest	0.98 ft	
Tailwater Height Above Crest	-12.00 ft	
Weir Coefficient	2.82 ft^(1/2)/s	
Submergence Factor	1.000	
Adjusted Weir Coefficient	2.82 ft^(1/2)/s	
Flow Area	66.9 ft ²	
Velocity	2.80 ft/s	
Wetted Perimeter	70.0 ft	
Top Width	68.00 ft	





APPENDIX F

DRAINAGE MAPS

INNOVATIVE DESIGN. CLASSIC RESULTS.

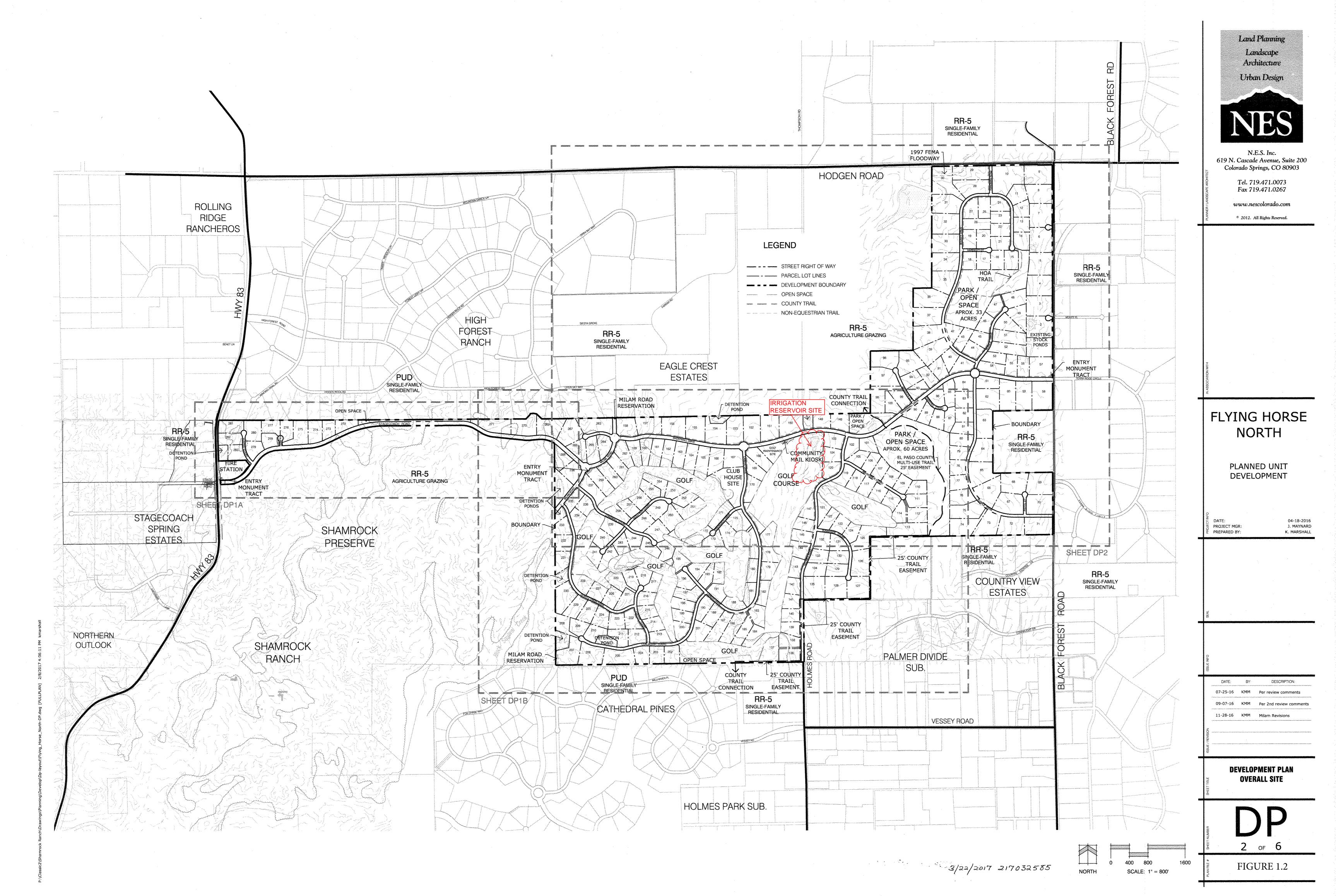
FLYING HORSE NORTH

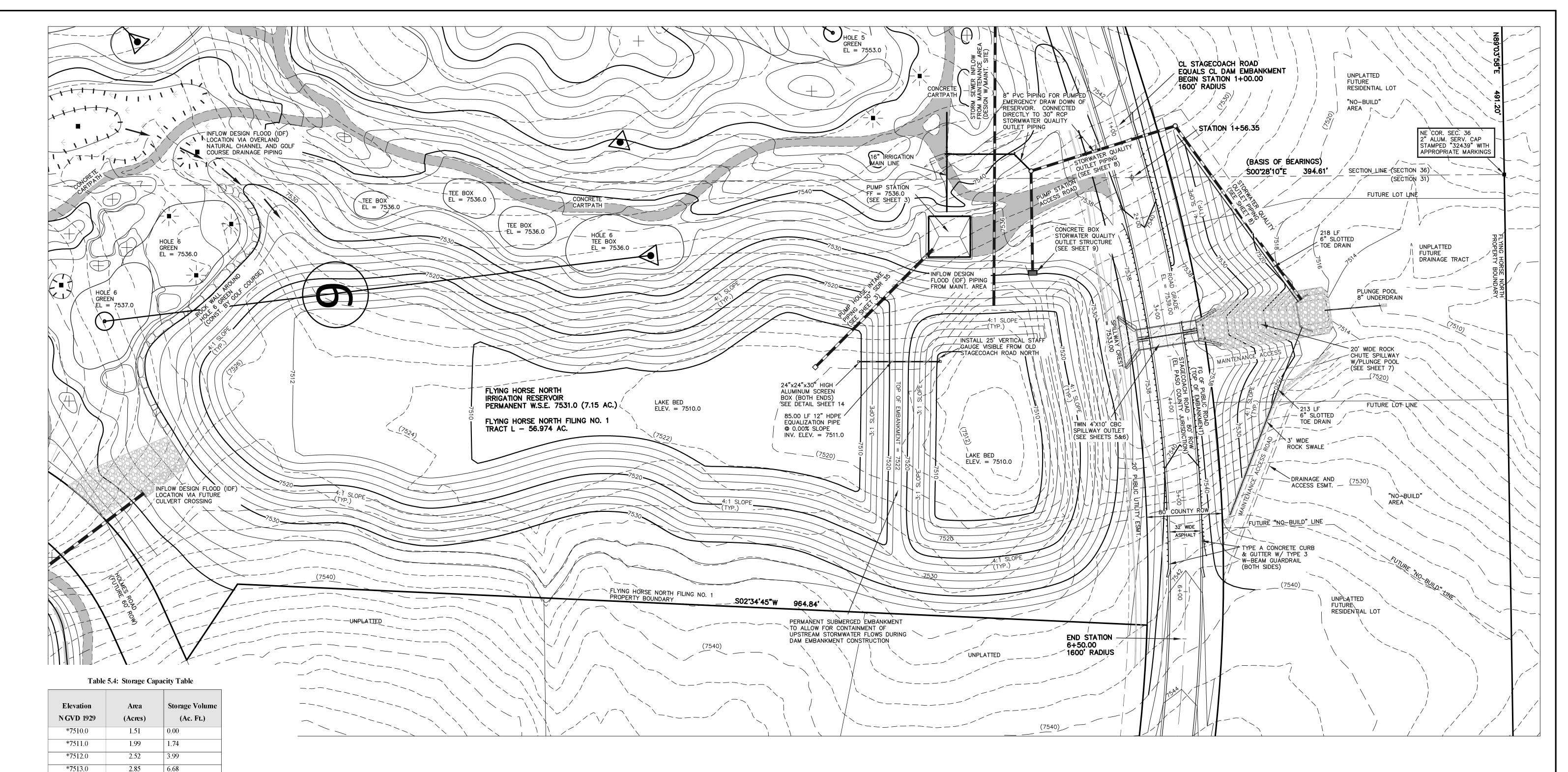
IRRIGATION RESERVOIR EMBANKMENT

DESIGN REPORT

DAMID: 080459 Construction File No.: C-2085

AUGUST 2018


Prepared for:
PRI #2 LLC
6385 CORPORATE DRIVE SUITE 200
COLORADO SPRINGS CO 80919
(719) 592-9333


Prepared by:
CLASSIC CONSULTING ENGINEERS &
SURVEYORS

619 N. CASCADE AVE SUITE 200 COLORADO SPRINGS CO 80903 (719) 785-0790

> Job no. 1096.11 PCD File No. SF-18-001

Table 5.5:	Reservoir Discharge	Table

	Table 3.3. Re	eselvon Discharge Table	•
	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)
Elevation	(SWQ Outlet Box)	(Twin CBC Spillway)	(Total)
7531.0	0.0	0.0	0.0
7532.0	13.89	0.0	13.89
7533.0	27.77	0.0	27.77
7534.0	51.31	49.05	100.36
7535.0	69.52	138.56	208.08
7536.0	74.61	254.72	329.33
D . II	ICID FEO.1 O		

Permanent WSE = 7531.0

6.68

9.63

12.78

19.74

27.60

31.88

36.40

41.16

51.42

56.89

62.61

68.57

74.77

81.22

87.91

94.89

102.22

109.90

118.00

126.57

3.05

3.26

3.48

4.16

4.40

4.64

4.88

5.36

5.59

5.84

6.08

6.33

6.57

6.81

7.15

8.37

*Indicates dead storage below pumping ability

*7514.0

*7515.0

7516.0

7517.0

7518.0

7519.0

7520.0

7521.0

7522.0

7523.0

7524.0

7525.0

7526.0

7527.0

7528.0

7529.0

7530.0

7531.0

7532.0

7533.0

7534.0

7535.0

7536.0

Top of SWQ Outlet box = 7533.0Spillway elevation = 7533.0

NOTES:

- 1. TOPOGRAPHIC BASE MAPPING PRODUCED FROM AERIAL PHOTOGRAPHY PROVIDED BY NORTH AMERICAN MAPPING IN 2009. HORIZONTAL CONTROL IS BASED ON LOCAL CALIBRATION TIED TO SECTION CORNER AND VERTICAL CONTROL IS BASED ON NGVD 1929 DATUM.
- 2. PERMANENT WSE = 7531.0
- 3. RESERVOIR LINER INSTALLED UP TO ELEVATION 7534.0

STAFF GAUGE DETAILS:

- 1. 12"X25'X1/2" PVC
- 2. LASER CUT ACRYLIC NUMBERS AND HATCH MARKS LIQUID WELDED TO PVC ON 1 FT. INCREMENTS
- 3. MOUNTED ON ALUMINUM FRAME WITH CROSS BRACKETS ANCHORED INTO SLOPE
- 4. BASE FASTENED TO 12" PIPE
- 5. ELEVATION DISPLAY RANGE: 7512-7535

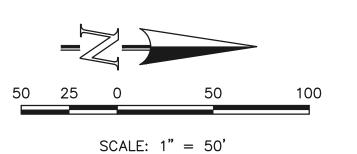


FIGURE 1.3

STATE ENGINEER'S CONSTRUCTION FILE NUMBER: C-2085

48 HOURS BEFORE YOU DIG, CALL UTILITY LOCATORS	NO.	REVISION	DATE	REVIEW:
811	1	REVISED PER STATE COMMENTS	5-14-18	PREPARED UNDER MY DIRECT SUPERVISION FOR AND ON BEHALF
UTILITY NOTIFICATION CENTER OF COLORADO IT'S THE LAW	2	REVISED PER COUNTY COMMENTS	7-31-18	CLASSIC CONSULTING ENGINEERS AND SURVEYORS, LLC
THE LOCATIONS OF EXISTING UNDERGROUND UTILITIES ARE SHOWN IN AN APPROXIMATE WAY ONLY. THE CONTRACTOR SHALL DETERMINE THE EXACT LOCATION OF ALL EXISTING UTILITIES BEFORE COMMENCING WORK. THE CONTRACTOR SHALL BE FULLY RESPONSIBLE FOR ANY AND ALL DAMAGES WHICH MIGHT BE CAUSED BY HIS FAILURE TO EXACTLY LOCATE AND PRESERVE ANY AND ALL UNDERGROUND UTILITIES.				MARC A. WHORTON, COLORADO P.E. #37155 DATE

REVIEW: PREPARED UNDER MY DIRECT SUPERVISION FOR AND ON BEHALF OF CLASSIC CONSULTING ENGINEERS AND SURVEYORS, LLC

FLYING HORSE NORTH CONSULTING **ENGINEERS & SURVEYORS** 619 N. Cascade Avenue, Suite 200 Colorado Springs, Colorado 80903

IRRIGATION RESERVOIR EMBANKMENT SITE LAYOUT WITH GRADING

DAM ID - 080459

DESIGNED BY | MAW | SCALE DATE 1-4-18 MAW | (H) 1"= 50' | SHEET 4 OF 14 DRAWN BY (V) 1"= N/A JOB NO. CHECKED BY

SECTION 4: RESERVOIR AND DAM

4.1 DESIGN CRITERIA

The proposed dam for the Flying Horse North Irrigation Reservoir was designed in accordance with Rule 5 of the State of Colorado Rules and Regulations for Dam Safety and Dam Construction, dated January 2007.

4.2 RESERVOIR

This watershed will contain development of a private golf course (currently under construction) including an outdoor golf maintenance facility, along with 2.5 ac. rural residential lot development accessed by rural County paved roadways. As such, the irrigation reservoir will also be designed with a separate stormwater detention and SWQ component per El Paso County criteria. This separate structure will be in the form of a concrete outlet box with an orifice plate and 30" RCP outlet allowing the release of the smaller storm events to meet the standards as specified per this criteria and the County's MS4 permit with the State. This SWQ release through the 30" RCP will be constructed outside of the reservoir embankment. The specific location of this reservoir is within a portion of Section 36, township 11 south, range 66 west of the sixth principal meridian, and a portion of Section 31 township 11 south, range 65 west of the sixth principal meridian, El Paso County Colorado. (See Figure 1.3)

The reservoir has a surface area at its permanent WSE (Elev. 7531.0) of 7.0 acres with a storage volume of 94.9 acre feet. The maximum depth at this elevation is 21 feet with the lake bed at 7510. The reservoir will have a liner constructed of a flexible membrane. This liner will be laid up to a maximum elevation of 7534. The reservoir is supplied by water from a well located on the Clubhouse site within the development approximately 1/4 mile west of the reservoir. The level in the reservoir is controlled by the two outlet structures. The Detention/SWQ structure will facilitate the State required 72 hr. drain time for the smaller stormwater events and help maintain the permanent water level while the twin box culvert spillway will allow for the County required 100 yr. detention release of the major stormwater events. The total storage capacity table is found in Section 5, Table 5.4.

4.3 DAM EMBANKMENT

The dam embankment for this reservoir will be constructed within the County owned and maintained Old Stagecoach Road (80' ROW - Collector). The subdivision Improvement Agreement (SIA) as required by El

Paso County for this subdivision, will be recorded along with the Final Plat and specify ownership and maintenance responsibilities related to the embankment and associated drainage structures. The crest of the embankment, which will be the finished grade of asphalt for the roadway is at elevation 7539.0 at the lowest point. The regulatory height from the twin box culvert emergency spillway invert to the native channel grade equals 23.0°. The length of the embankment measured from the toe of slopes on each side is approximately 450°. Both the upstream and downstream slopes of the embankment will be constructed at no greater than a 4:1 slope. The roadway will have a typical 2% crown with an asphalt width of 32.0° with El Paso County Type A concrete curb and gutter on both sides and then 6:1 maximum to edge of ROW with a County required clear zone of 14.0°. The twin box culvert emergency spillway structure is outside this clear zone. El Paso County will also require CDOT Type 3 W-Beam guardrail along both sides of the embankment. The embankment itself will be constructed of local material found on-site and tested by the Geotech. According to the State of Colorado Rules and Regulations for Dam Safety and Dam Construction, Rule 4.2.5.4, this facility is considered a "Small Jurisdictional Dam" given the jurisdictional height greater than 20 feet but less than 50 feet and a capacity greater than 100 acre-feet.

4.4 SPILLWAY AND OUTLET WORKS

This facility will be designed with two separate outlet structures. One will facilitate the State/County required detention/SWQ component of the facility while the other will allow for the 100 yr. stormwater event and emergency flow situations. A low level outlet will be built into the pump station design allowing for an emergency drawdown of the reservoir to be with connection to the SWQ outlet piping.

Detention / SWQ Outlet

Per the County's MS4 permit with the State, this development is required to provide detention and stormwater quality within this reservoir facility. The design for this is being handled by a separate concrete outlet box constructed outside the formal dam embankment. This structure is a 4'x8' concrete box with a steel flow control plate and protective well screen located on the front. The control plate is designed with three rectangular holes to facilitate the State required drain times. The first hole is located at elevation 7531.0 with the top of box at elevation 7533.0. The top of box will be constructed with a grate to allow flows to enter the box as well. A 30" RCP outlet pipe will allow for the release of all the flows entering the box structure. The design of this structure meets all State and County requirements for both EURV and

WQCV. The 30" RCP outlet piping will be routed around the dam embankment and into the rock chute and plunge pool at the base of the emergency spillway.

Spillway Outlet

Given that the embankment for this reservoir will be a County roadway, the conventional emergency spillway channel design at the crest of the embankment was not appropriate. But rather a concrete box culvert spillway design under the roadway to allow for both the major stormwater events and emergency release has been employed. Twin 4'x10' concrete box culverts (CBC) will facilitate the required releases. The crest of the spillway will be constructed at elevation 7533.0 where the release will then travel under the roadway and into a 20' wide rock chute. The rock chute will have a 4:1 slope with 3:1 side slopes and a total drop of 18.0' into a 2.0' deep plunge pool. The following roughness coefficients were used: CBCs 0.013 and Rock Chute 0.035. The rip-rap thickness will be 56" with a gradation specified by the Geotech. (See Design Plans) The spillway CBCs and Rock Chute have been designed to accommodate both the 100 yr. release of 182 cfs with a headwater depth ratio (Hw/D) of 0.54 and the total basin inflow of 609 cfs with a (Hw/D) of 1.31. This design is within the maximum County criteria of (Hw/D) of 1.40. The freeboard design is as follows: 100 Yr. = 4.39' and 500 Yr. = 3.03'. The velocity at inlet of chute = 15.6 fps and velocity at outlet of chute = 6.99 fps, both at normal depth. 1.76' of Freeboard is included in chute design.

Low Level Outlet

This reservoir will not be designed with a formal low level outlet given the nature of the facility and the ability for the pump station to facilitate the draining of the reservoir for embankment inspection or emergency purposes. Thus, directly off of the 16" irrigation main just outside the pump station, a 16"x8" tee with gate valves and a 8" drain line will be installed to allow for the pumped release and draining of the reservoir. This 8" drain line will then connect directly to the 30" RCP storm system via a Type II concrete storm manhole constructed as a part of the release of the Detention/SWQ component as required by El Paso County. This 30" storm system then daylights into the base of the rock chute and plunge pool on the backside of the embankment. The 8" drain line @ 110 psi is expected to release 800-1200 GPM. However, using the maximum pump station capacity of 2,250 GPM while opening system drain valves and irrigation heads, the drain time is as follows: As mentioned earlier, the pumps will allow for release down to an elevation of 7515.67. Based on the permanent WSE of 7531, this equates to a total of approximately 26 million gallons (MG) to be drained. The total drain time is estimated at approximately 8 days.

Hazard Classification" as described in section 5.6 of this report the Inflow Design Flood Requirements (IDF) as found in Rule 5.9.1, Table 5.1 utilize the (NOAA 14 – 24 Hr. duration) 100 Yr. storm event. The UD-Detention v3.07 spreadsheet (Per Urban Drainage Vol. 3) will also be utilized in the final design of the Detention and SWQ aspects of this facility. This spreadsheet uses 1 Hr. precipitation depths. See Table 5.1 for precipitation depth comparison. Please note that the higher precipitation amounts have been used for each return period.

Table 5.1: Precipitation Depth Comparison

Return Period	1-Hr. Depth (City/County)	1-Hr. Depth (NOAA 14)	24-Hr. Depth (City/County)	24-Hr. Depth (NOAA 14)
2	1.19	0.92	2.10	1.93
5	1.50	1.20	2.70	2.44
50	2.25	2.15	4.20	4.33
100	2.52	2.49	4.60	5.04

5.2 WATER RIGHTS

Based on the water decree filed October 6, 2017 (See Appendix), PRI #2, LLC has the water rights to pump and store in the on-site Flying Horse North reservoir. PRI #2, LLC has a lease from the State Land Board for the following water rights: 515 AF in the Dawson, 577 AF in the Denver, 239 AF in the Arapahoe and 182 AF in the Laramie Fox Hills. The Arapahoe and Laramie Fox Hills are both deemed non-tributary reservoirs. The Flying Horse North Golf Course will take an average of 200 AF per year from their Arapahoe well that will be pumped into the reservoir. Evaporative loss is not an issue when pumping from a non-tributary source. Upon termination of the State Land Board Lease in 2048, all water rights revert automatically back to PRI #2, LLC who will own them in perpetuity.

5.3 WATERSHED CHARACTERISTICS

The watershed of the irrigation reservoir includes a total area of 366.8 acres within the East Cherry Creek drainage basin and just north of the Palmer Divide. A portion of this area is outside the Flying Horse North development as shown in basins OS-12, OS-13 and OS-14. These basins are both currently undeveloped and developed as County zoned RR-5 (5 ac. rural residential). All the on-site basins are zoned PUD for either 2.5 ac. rural residential or golf course/open space. (See Tables 5.2 and 5.3 for sub-basin CN values and associated Tc times) Nearly the entire watershed is outside of the black forest tree line and mainly consists of prairie grasses with grades ranging from 2%-20% with three major natural ravines that drain in a northwesterly direction directly towards the planned irrigation reservoir. The golf course layout aides in the natural conveyance of the majority of the stormwater flows to the reservoir. The storage capacity table for the reservoir is listed in Table 5.4.

		Table	5.2: Sub-basin	1 CIV Values		
			IED 2 ACRE RES			
GOOD	CONDITION OF	PEN SPACE (L	AWNS, PARKS	GOLF COURSE	S, CEMETARIES	ETC.)
	Cn	VALUES	- DEVELOP	ED COND	DITIONS	
BASIN	BASIN	GOLF C	OURSE (B)	2 AC. RE	SIDENTIAL (B)	COMPOSIT
(label)	AREA					C _N
, ,	(Ac)	CN	AREA	CN	AREA	
			(Ac.)		(Ac.)	
CC-1	22.3	61	0.0	65	22.3	65.0
CC-2	36.4	61	0.0	65	36.4	65.0
CC-3	51.9	61	19.1	65	32.8	63.5
CC-4A	108.2	61	63.2	65	45.0	62.7
CC-4B	17.0	61	5.5	65	11.5	63.7
OS-12	67.7	61	0.0	65	67.7	65.0
OS-13	36.9	61	0.0	65	36.9	65.0
OS-14	26.4	61	0.0	65	26.4	65.0

Table 5.3: Sub-basin Time of Concentration

			TIME	OF CONC	ENTRATIO	ON DEVE	LOPED			
	COMPOSITE		OVERLAND		STREET / C	HANNEL FL	OW(DCM Vo	l. 1 Fig. 6-25)	Tc	Tc
BASIN	Cn	Length	Height	Tc	Length	Slope	Velocity	Тс	TOTAL	LAG (0.6tc)
		(ft)	(ft)	(hr)	(ft)	(%)	(fps)	(hr)	(hr)	(hr)
CC-1	65.0	300	10	0.40	900	2.0%	1.8	0.14	0.53	0.32
CC-2	65.0	300	10	0.40	1700	2.0%	1.8	0.26	0.66	0.39
CC-3	63.5	300	14	0.35	900	2.5%	2.4	0.10	0.45	0.27
CC-4A	62.7	300	14	0.35	2900	2.0%	2.1	0.38	0.73	0.44
CC-4B	63.7	300	12	0.37	900	3.0%	2.5	0.10	0.47	0.28
OS-12	65.0	300	14	0.35	1500	3.0%	2.5	0.17	0.51	0.31
OS-13	65.0	300	16	0.33	900	3.0%	2.5	0.10	0.43	0.26
OS-14	65.0	300	14	0.35	600	3.5%	2.7	0.06	0.41	0.24

Table 5.4: Storage Capacity Table

Elevation NGVD 1929	Area (Acres)	Storage Volume (Ac. Ft.)
*7510.0	1.51	0.00
*7511.0	1.99	1.74
*7512.0	2.52	3.99
*7513.0	2.85	6.68
*7514.0	3.05	9.63
*7515.0	3.26	12.78
7516.0	3.48	16.15
7517.0	3.70	19.74
7518.0	3.93	23.56
7519.0	4.16	27.60
7520.0	4.40	31.88
7521.0	4.64	36.40
7522.0	4.88	41.16

7523.0	5.14	46.17
7524.0	5.36	51.42
7525.0	5.59	56.89
7526.0	5.84	62.61
7527.0	6.08	68.57
7528.0	6.33	74.77
7529.0	6.57	81.22
7530.0	6.81	87.91
7531.0	7.15	94.89
7532.0	7.52	102.22
7533.0	7.83	109.90
7534.0	8.37	118.00
7535.0	8.77	126.57
7536.0	9.17	135.53

^{*}Indicates dead storage below pumping ability

5.4 HYDROLOGIC MODEL

The PondPack model produced peak discharges for the 2-yr, 5-yr, 50-yr and 100-yr storm events assuming a permanent pool elevation of 7531.0. Reference Appendix B for specific hydrologic model results. Table 5.5 below shows the results of these storm events upon the irrigation reservoir.

Table 5.5: Inflow Design Flood (IDF) Summary Table

			Total
Storm Event	Peak Inflow	Max. WSE	Discharge
	(cfs)	(ft.)	(cfs)
2-yr (City/County)	48	7531.40	6
5-yr (City/County)	119	7531.87	12
50-yr (NOAA 14)	431	7533.58	64
100-yr (NOAA 14)	609	7534.23	124

5.5 HYDRAULIC MODEL

Both the SWQ Outlet and the CBC Spillway were modeled using both PondPack (24-hr. precipitation) and the Urban Drainage UD Detention Spreadsheet (1-hr precipitation) as required by County design criteria. Table 5.6 below shows the results of the PondPack model. Reference Appendix B for the UD Detention – Retention Pond Spreadsheet results. As this facility is required to meet both detention and SWQ criteria, the following is applicable to these design components:

Required WQCV = 1.36 ac-ft. Provided WQCV = 15.01 ac-ft. Required EURV = 2.83 ac-ft. Provided EURV = 15.01 ac-ft. Required 100-yr. = 12.42 ac-ft. Provided 100-yr = 27.35 ac-ft.

Table 5.6: Reservoir Discharge Table

	Discharge (cfs)	Discharge (cfs)	Discharge (cfs)
Elevation	(SWQ Outlet Box)	(Twin CBC Spillway)	(Total)
7531.0	0.0	0.0	0.0
7532.0	13.89	0.0	13.89
7533.0	27.77	0.0	27.77
7534.0	51.31	49.05	100.36
7535.0	69.52	138.56	208.08
7536.0	74.61	254.72	329.33

Permanent WSE = 7531.0

Top of SWQ Outlet box = 7533.0

Spillway elevation = 7533.0

The twin 4'x10' CBC Spillway design has the following results:

100-yr storm release = 182 cfs Hw/D = 0.54

Emergency release – Max. basin IDF = 609 cfs Hw/D = 1.31

County Criteria (max.) Hw/D = 1.40

ALL LAND ASSUMED 2 ACRE RESIDENTIAL LOTS OR GOOD CONDITION OPEN SPACE (LAWNS, PARKS GOLF COURSES, CEMETARIES ETC.)

CN VALUES - DEVELOPED CONDITIONS

BASIN	BASIN	GOLF C	OURSE (B)	2 AC. RE	SIDENTIAL (B)	COMPOSITE
(label)	AREA (Ac)	CN	AREA (Ac.)	CN	AREA (Ac.)	Си
CC-1	22.3	61	0.0	65	22.3	65.0
CC-2	36.4	61	0.0	65	36.4	65.0
CC-3	51.9	61	19.1	65	32.8	63.5
CC-4A	108.2	61	63.2	65	45.0	62.7
CC-4B	17.0	61	5.5	65	11.5	63.7
OS-12	67.7	61	0.0	65	67.7	65.0
OS-13	36.9	61	0.0	65	36.9	65.0
OS-14	26.4	61	0.0	65	26.4	65.0

TIME OF CONCENTRATION DEVELOPED

	COMPOSITE		OVERLAND		STREET / (CHANNEL FL	OW (DCM Vol	. 1 Fig. 6-25)	Tc	Tc
BASIN	Cn	Length	Height	Tc	Length	Slope	Velocity	Tc	TOTAL	LAG (0.6tc)
		(ft)	(ft)	(hr)	(ft)	(%)	(fps)	(hr)	(hr)	(hr)
CC-1	65.0	300	10	0.40	900	2.0%	1.8	0.14	0.53	0.32
CC-2	65.0	300	10	0.40	1700	2.0%	1.8	0.26	0.66	0.39
CC-3	63.5	300	14	0.35	900	2.5%	2.4	0.10	0.45	0.27
CC-4A	62.7	300	14	0.35	2900	2.0%	2.1	0.38	0.73	0.44
CC-4B	63.7	300	12	0.37	900	3.0%	2.5	0.10	0.47	0.28
OS-12	65.0	300	14	0.35	1500	3.0%	2.5	0.17	0.51	0.31
OS-13	65.0	300	16	0.33	900	3.0%	2.5	0.10	0.43	0.26
OS-14	65.0	300	14	0.35	600	3.5%	2.7	0.06	0.41	0.24

	Design Procedure	Form: Retention Pond (RF	2)
	UD-BMP (Ve	rsion 3.06, November 2016)	Sheet 1 of 3
Designer:	Marc A. Whorton, F		
Company:	Classic Consultir	<u>-</u>	
Date:	August 20, 2018	3	
Project:	Flying Horse North - J	D Pond	
Location:	Black Forest, CO El Pas	o County	
1. Baseflow		Choose One OrES	THE NET INFLUX OF WATER
A) Is the permane	ent pool established by groundwater?	● NO	MUST BE AVAILABLE THROUGH A PERENNIAL BASEFLOW AND MUST
· // ·- ··- F-····			EXCEED THE LOSSES.
Surcharge Volume	е		
A) Effective Imper	rviousness of Tributary Area, I _a	I _a = 8.3	%
B) Tributary Area's	s Imperviousness Ratio (i = I _a / 100)	i =0.083	
C) Contributing V	Vatershed Area	Area = <u>366.800</u>	ac
D) For Watershee Runoff Produc	ds Outside of the Denver Region, Depth of Average cing Storm	d ₆ =0.42	in
E) Design Conce	ont .	Choose One	
	when also designing for flood control)	OWater Quality Captur	re Volume (WQCV)
		●Excess Urban Runoff	Volume (EURV)
5. W			
	Capture Volume (WQCV) hour Drain Time	V _{wqcv} = 1.395	ac-ft
	* (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)		
	ds Outside of the Denver Region, Capture Volume (WQCV)	V _{WQCV OTHER} = 1.363	ac-ft
	$= (d_6^*(V_{WQCV}/0.43))$		
		.,	
	Water Quality Capture Volume (WQCV) rent WQCV Design Volume is desired)	V _{WQCV USER} =	ас-т
, -		Choose One	
I) Predominant W	/atershed NRCS Soil Group	l Ö	
		● B ○C / D	
	Runoff Volume (EURV) Design Volume EURV _A = 1.68 * i ^{1.28}	<u> </u>	
	EURV _B = 1.36 * i ^{1.08}		
	0: $EURV_{C/D} = 1.20 * i^{1.08}$	EURV = 2.827	ac-f t
3. Basin Shape		L : W =5.0	_:1
(It is recommende	ed to have a basin length-to-width ratio between 2:1 and 3:1)		
4. Dormanat Diri			
Permanent Pool A) Minimum Pern	nanent Pool Volume	V _{POOL} = 1.363	ac-ft
			_
	Safety Wetland Bench en 6 to 12 inches recommended)	D _{LZ} = 12	in
	,		
C) Depth of the C (Maximum de		D _{OWZ} =21.0	ft D > 12 FEET
(Waxiiilaiii de)	put of 12 100ty		
5. Side Slopes			
A) Maximum Side	e Slopes Above the Safety Wetland Bench	Z _{PP} = 4.00	ft / ft
(Horiz. dist. pe	er unit vertical, should be no steeper than 4:1)		
B) Maximum Side	e Slopes Below the Safety Wetland Bench	Z _{OWZ} =4.00	ft / ft
(Horiz. dist. pe	er unit vertical, should be no steeper than 3:1)		

UD-BMP_v3.06 JD Pond.xlsm, RP 8/20/2018, 9:14 AM

Design Procedure Form: Retention Pond (RP)	
	Sheet 2 of 3
Designer:	
Company: Date: August 20, 2018	
Project:	,
Location:	
6. Inlet	Rip-Rap
A) Describe means of providing energy dissipation at concentrated	
inflow locations:	
7. Forebay	
A) Minimum Forebay Volume	V _{FMIN} = 0.041 ac-ft
(V _{FMIN} = 3% of the WQCV)	
B) Actual Forebay Volume	V _F =0.041 ac-ft
8. Outlet	Choose One © Drifice Plate
A) Outlet Type	Obther (Describe):
C) Smallest Dimension of Orifice Opening Based on Hydrograph Routing	D _{orifice} = 15.8 inches
(Use UD-Detention)	
D) Total Outlet Area (A _α)	A _{ot} = 585.000 square inches
9. Trash Rack	
A) Water Quality Screen Open Area: A _t = Aot * 38.5*(e ^{-0.095D})	A _t = 5020 square inches
	Aluminum Amico-Klemp SR Series with Cross Rods 4" O.C.
B) Type of Screen (If specifying an alternative to the materials recommended in the USDCM, indicate "other" and enter the ratio of the	Aluminum Amico-Niemp SR Series with Cross Roas 4 O.C.
total open are to the total screen are for the material specified.)	
Other (Y/N): N	
C) Ratio of Total Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water Quality Screen Area (based on screen type)	A _{total} = 6520 square inches
E) Inundated Depth of Water Quality Screen below Permanent Pool	D _{inundated} =ft
F) Depth of Design Volume (EURV or WQCV) Based on the Design Concept Chosen Under 1.E	H=ft
G) Height of Water Quality Screen (H _{TR})	H _{TR} = 32.04 inches
H) Width of Water Quality Screen Opening (W _{opening})	W _{opening} = 203.5 inches
(Minimum of 12 inches is recommended)	

UD-BMP_v3.06 JD Pond.xlsm, RP 8/20/2018, 9:14 AM

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

UD-Detention, Version 3.07 (February 2017)

Required Volume Calculation

equired volume Calculation		
Selected BMP Type =	RP	
Watershed Area =	366.80	acres
Watershed Length =	5,175	ft
Watershed Slope =	0.015	ft/ft
Watershed Imperviousness =	8.30%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	12.0	hours
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	1.395	acre-feet

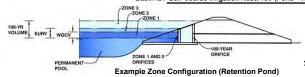
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Desired WQCV Drain Time =	12.0	hours
Location for 1-hr Rainfall Depths =	User Input	
Water Quality Capture Volume (WQCV) =	1.395	acre-feet
Excess Urban Runoff Volume (EURV) =	2.819	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	1.903	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	3.006	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	7.525	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	21.442	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	30.109	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	41.427	acre-feet
500-yr Runoff Volume (P1 = 3.39 in.) =	68.375	acre-feet
Approximate 2-yr Detention Volume =	1.765	acre-feet
Approximate 5-yr Detention Volume =	2.813	acre-feet
Approximate 10-yr Detention Volume =	6.361	acre-feet
Approximate 25-yr Detention Volume =	9.142	acre-feet
Approximate 50-yr Detention Volume =	9.507	acre-feet
Approximate 100-yr Detention Volume =	12.417	acre-feet

Stage-Storage Calculation

acre-fee	1.395	Zone 1 Volume (WQCV) =
acre-fee	1.424	Zone 2 Volume (EURV - Zone 1) =
acre-fee	9.598	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-fee	12.417	Total Detention Basin Volume =
ft^3	N/A	Initial Surcharge Volume (ISV) =
ft	N/A	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth (H _{total}) =
ft	N/A	Depth of Trickle Channel (H _{TC}) =
ft/ft	N/A	Slope of Trickle Channel (S _{TC}) =
H:V	user	Slopes of Main Basin Sides (Smain) =
1	user	Basin Length-to-Width Ratio (R _{L/W}) =
-		

Initial Surcharge Area (A _{ISV}) =	user	ft^2
Surcharge Volume Length (L _{ISV}) =	user	ft
Surcharge Volume Width (W _{ISV}) =	user	ft
Depth of Basin Floor (H _{FLOOR}) =	user	ft
Length of Basin Floor (L _{FLOOR}) =	user	ft
Width of Basin Floor (W _{FLOOR}) =	user	ft
Area of Basin Floor (A _{FLOOR}) =	user	ft^2
Volume of Basin Floor (V _{FLOOR}) =	user	ft^3
Depth of Main Basin (H _{MAIN}) =	user	ft
Length of Main Basin (L _{MAIN}) =	user	ft
Width of Main Basin (W _{MAIN}) =	user	ft
Area of Main Basin (A _{MAIN}) =	user	ft^2
Volume of Main Basin (V _{MAIN}) =	user	ft^3
Calculated Total Basin Volume (Vtotal) =	user	acre-fe

Depth Increment =	0.5	ft Optional				Optional			
Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Description	(ft)	Stage (ft)	(ft)	(ft)	(ft^2)	Area (ft^2)	(acre)	(ft^3)	(ac-ft)
Permanent Pool		0.00				311,545	7.152	(1: 0)	(40 11)
7532	-	1.00	-	-	-	327,571	7.520	316,283	7.261
7533	-	2.00	-	-	-	341,084	7.830	650,475	14.933
7534		3.00	-	-	-	364,597	8.370	1,006,726	23.111
7535	-	4.00	-			382,021	8.770	1,380,035	31.681
7536	-	5.00	-		-	399,445	9.170	1,770,768	40.651
	-								
			_						
								-	
	-		-	-	-				
	-			-	-				
	-				-				
	-			-	-				
	-		-	-	-				
			-						
	-		-		-				
			-		-				
				-	-				
					-				
			-						
	-		-		-				
	-								
	-			-	-				
	-			-	-				
	-				-			-	
	-				-				
	-				-				
	-		-	-	-				
			-	_					
				-	-				
	-							-	
	-		-	-	-				
	-		-	-	-			1	
			_						
	-		-	-	-				
			-						
	-		-		-				
	-		-	-	-				
	-		-		-				
	-		-	-	-				
	-		-		-				
	-		-		-				
	-		-	-	-				
	-		-	-	-				
	-		-	-					
	-		-		-				
	-		_		-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
	-		-	-	-				
				-	-			—	
								-	
	-		-	-					
	-		-	-	-			_	
				-	-				
			-						
			-	-	-				
	-		-		-				
	-		-	-	-				
	-		-	-	-			-	
					-				
			-	-	-				
			-	-	-				
			-	-	-				
	-		-	-	-				
	-		-	-					
			-	-	-				
			-		-				
			_						
	- - - -		-	-	-				
	-		-						
	-		-		-			-	
					-				
	- - - - -								
	-		-	-	-				
	-		-	-	-				
	-		-	-				-	
	-								
			-	-	-				
	-		-	-	-				
			-		-			-	
	-		-	-	-				
	-		-		-				
			_						
	-		-		-				
	- - - -		-	- - - -	-				


UD-Detention_v3.07 JD POND rev.xtem, Basin 8202018, 9:00 AM

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Project: Flying Horse North

Basin ID: Golf Course Irrigation Reservoir (Pond - 13)

	Stage (ft)	Zone Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	0.20	1.395	Orifice Plate
Zone 2 (EURV)	0.40	1.424	Orifice Plate
one 3 (100-year)	1.67	9.598	Weir&Pipe (Restrict)
		12.417	Total

Ve

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface)
Underdrain Orifice Diameter = N/A inches

Calculated Parameters for Underdra							
Underdrain Orifice Area =	N/A	ft ²					
Underdrain Orifice Centroid =	N/A	feet					

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Invert of Lowest Orifice =	0.00	ft (relative to basin bottom at Stage = 0 ft)
Depth at top of Zone using Orifice Plate =	2.00	ft (relative to basin bottom at Stage = 0 ft)
Orifice Plate: Orifice Vertical Spacing =	8.00	inches
Orifice Plate: Orifice Area per Row =	195.00	sq. inches (use rectangular openings)

Calcu	lated Parameters for	Plate
VQ Orifice Area per Row =	1.354E+00	ft ²
Elliptical Half-Width =		feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =		ft ²

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

to Total Area of Each of the Row (numbered from lowest to highest)									
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	0.70	1.40						
Orifice Area (sq. inches)	195.00	195.00	195.00						

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected						
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)					
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage = 0 ft)					
Vertical Orifice Diameter =	N/A	N/A	inches					

Calculated Parameters for Vertical Orifice							
	Not Selected Not S]				
Vertical Orifice Area =	N/A	N/A	ft ²				
ertical Orifice Centroid =	N/A	N/A	feet				

User Input: Overflow Weir (Dropbox) and Grate (Flat or Sloped)

	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.00	N/A	ft (relative to basin bottom at Stage = 0 ft)
Overflow Weir Front Edge Length =	8.00	N/A	feet
Overflow Weir Slope =	4.00	N/A	H:V (enter zero for flat grate)
Horiz. Length of Weir Sides =	4.00	N/A	feet
Overflow Grate Open Area % =	75%	N/A	%, grate open area/total area
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir						
	Zone 3 Weir	Not Selected				
Height of Grate Upper Edge, H_t =	3.00	N/A	feet			
Over Flow Weir Slope Length =	4.12	N/A	feet			
Grate Open Area / 100-yr Orifice Area =	5.04	N/A	should be >			
Overflow Grate Open Area w/o Debris =	24.74	N/A	ft ²			
Overflow Grate Open Area w/ Debris =	12.37	N/A	ft ²			
		•	-			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	4.00	N/A	ft (distance below basin bottom at Stage = 0 ft)
Outlet Pipe Diameter =	30.00	N/A	inches
Restrictor Plate Height Above Pipe Invert =	30.00		inches Half-Cent

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

Zone 3 Restrictor Not Selected

Que = 0 ft) Outlet Orifice Area = 4.91 N/A ft²

Outlet Orifice Centroid = 1.25 N/A feet

Half-Central Angle of Restrictor Plate on Pipe = 3.14 N/A radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	2.00	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	20.00	feet
Spillway End Slopes =	0.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calcula	Calculated Parameters for Spillwa						
Spillway Design Flow Depth=	4.13	feet					
Stage at Top of Freeboard =	7.13	feet					
Basin Area at Top of Freeboard =	9.17	acres					

Routed Hydrograph Results

,,									
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	0.53	1.07	1.19	1.50	1.75	2.00	2.25	2.52	3.39
Calculated Runoff Volume (acre-ft) =	1.395	2.819	1.903	3.006	7.525	21.442	30.109	41.427	68.375
OPTIONAL Override Runoff Volume (acre-ft) =									
Inflow Hydrograph Volume (acre-ft) =	1.395	2.819	1.902	3.006	7.522	21.445	30.113	41.428	68.385
Predevelopment Unit Peak Flow, q (cfs/acre) =	0.00	0.00	0.01	0.02	0.20	0.67	0.93	1.25	2.00
Predevelopment Peak Q (cfs) =	0.0	0.0	4.5	7.8	75.1	247.4	342.3	460.1	734.0
Peak Inflow Q (cfs) =	23.2	46.4	31.5	49.5	121.4	333.1	458.5	608.8	941.9
Peak Outflow Q (cfs) =	2.6	3.7	3.0	3.9	9.0	41.5	103.9	182.0	373.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.5	0.1	0.2	0.3	0.4	0.5
Structure Controlling Flow =	Plate	Plate	Plate	Plate	Plate	Spillway	Spillway	Spillway	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	N/A	0.1	0.7	1.1	1.0
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	11	15	12	15	22	27	27	25	23
Time to Drain 99% of Inflow Volume (hours) =	12	16	14	16	24	31	31	30	29
Maximum Ponding Depth (ft) =	0.15	0.33	0.22	0.35	0.89	2.36	2.96	3.61	4.97
Area at Maximum Ponding Depth (acres) =	7.21	7.27	7.23	7.28	7.48	8.02	8.34	8.61	9.16
Maximum Volume Stored (acre-ft) =	1.077	2.308	1.510	2.453	6.436	17.865	22.693	28.205	40.376
ц									

Detention Basin Outlet Structure Design

Outflow Hydrograph Workbook Filename:

Storm Inflow Hydrographs

UD-Detention, Version 3.07 (February 2017)

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

1								ed in a separate		
	SOURCE	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK	WORKBOOK
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
4.95 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:04:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Hydrograph	0:09:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Constant	0:14:51	1.01	1.97	1.36	2.10	4.69	9.77	11.39	12.89	15.10
1.010	0:19:48	2.74	5.42	3.70	5.77	13.49	31.71	39.07	46.76	59.45
	0:24:45	7.04	13.91	9.51	14.80	34.64	82.12	102.73	124.75	164.90
	0:29:42	19.32	38.17	26.10	40.61	94.81	223.20	277.98	336.63	444.01
	0:34:39	23.19	46.42	31.50	49.46	121.39	323.47	425.12	541.27	768.07
	0:39:36 0:44:33	22.19	44.52	30.16	47.44	118.28	333.14	458.54	608.77	941.94
	0:49:30	20.20 18.10	40.51 36.44	27.45 24.64	43.17 38.84	108.29 97.66	310.79 281.42	431.04 390.98	582.87 535.69	939.56 878.35
	0:54:27	15.70	31.77	21.42	33.89	85.81	250.82	352.31	485.61	800.60
	0:59:24	13.65	27.68	18.60	29.53	75.09	221.36	315.01	438.24	731.15
	1:04:21	12.38	25.04	16.87	26.71	67.46	196.13	281.72	395.12	668.65
	1:09:18	10.29	20.92	14.06	22.33	56.98	169.57	244.05	343.20	594.66
	1:14:15	8.46	17.30	11.59	18.47	47.35	142.96	207.70	294.13	509.61
	1:19:12	6.60	13.63	9.08	14.56	37.87	117.65	173.58	249.28	435.39
	1:24:09	4.99	10.46	6.92	11.19	29.48	94.26	142.59	208.99	372.25
	1:29:06	3.64	7.75	5.08	8.30	22.24	74.08	115.60	173.54	316.50
	1:34:03	2.78	5.85	3.86	6.26	16.51	56.37	91.58	142.20	268.83
	1:39:00	2.28	4.73	3.14	5.06	13.16	42.77	70.68	113.81	225.24
	1:43:57	1.92	3.99	2.65	4.26	11.04	34.92	55.08	89.03	185.28
	1:48:54	1.68	3.48	2.32	3.72	9.57	29.75	45.79	70.94	149.07
	1:53:51 1:58:48	1.51	3.12	2.08	3.33	8.53	26.20	39.69	59.85	118.87
	2:03:45	1.39	2.86	1.91	3.05	7.79 5.92	23.63 18.97	35.39	52.61 43.64	99.74 83.33
	2:08:42	0.75	2.12 1.54	1.41	2.26 1.64	4.27	13.83	28.99 21.64	33.32	65.70
	2:13:39	0.75	1.13	0.76	1.21	3.17	10.12	15.73	24.54	49.44
	2:18:36	0.41	0.84	0.56	0.90	2.35	7.55	11.63	18.13	37.08
	2:23:33	0.29	0.61	0.41	0.66	1.73	5.63	8.83	13.58	27.60
	2:28:30	0.21	0.44	0.29	0.47	1.25	4.16	6.61	10.30	20.70
	2:33:27	0.15	0.32	0.21	0.34	0.91	3.03	4.92	7.75	15.78
	2:38:24	0.10	0.22	0.14	0.24	0.64	2.25	3.67	5.84	11.98
	2:43:21	0.06	0.14	0.09	0.15	0.42	1.58	2.71	4.47	9.20
	2:48:18	0.03	0.08	0.05	0.08	0.25	1.03	1.90	3.30	7.18
	2:53:15	0.01	0.03	0.02	0.04	0.12	0.60	1.23	2.30	5.41
	2:58:12	0.00	0.01	0.00	0.01	0.04	0.28	0.71	1.49	3.89
	3:03:09	0.00	0.00	0.00	0.00	0.00	0.08	0.33	0.85	2.62
	3:08:06	0.00	0.00	0.00	0.00	0.00	0.00	0.09	0.39	1.60
	3:13:03 3:18:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.11	0.83
	3:22:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.30
	3:27:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:32:51	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:37:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:42:45	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:47:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:52:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:57:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:02:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:07:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:12:27 4:17:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:17:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:27:18	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:32:15	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:37:12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:42:09 4:47:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:47:06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:57:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:01:57	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:06:54	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:11:51 5:16:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:16:48	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:26:42	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:31:39	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:36:36	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:41:33	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:46:30	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:51:27 5:56:24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.50.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

	Stage	Area	Area	Volume	Volume	Total] '
Stage - Storage Description						Outflow	
·	[ft]	[ft^2]	[acres]	[ft^3]	[ac-ft]	[cfs]	
PERMANENT WSE	0.00	311,545	7.152	0	0.000	0.00	For best results, include the
WQCV	0.15	313,949	7.207	46,912	1.077	2.53	stages of all grade slope
2 YR. WSE	0.22	314,910	7.229	65,778	1.510	2.99	changes (e.g. ISV and Floor) from the S-A-V table on
EURV	0.33	316,673	7.270	100,515	2.308	3.69	Sheet 'Basin'.
5 YR. WSE	0.35	316,994	7.277	106,852	2.453	3.80	
50 YR. WSE	2.96	363,656	8.348	992,161	22.777	104.11	Also include the inverts of all
100 YR. WSE	3.61	375,226	8.614	1,232,372	28.291	182.18	outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							where applicable).
							1
							-
						-	1
						1	†
]
							1
							1
						-	1
						1	1
		I	l	l	l	1	J

Rock Chute.xls Page 1 of 3

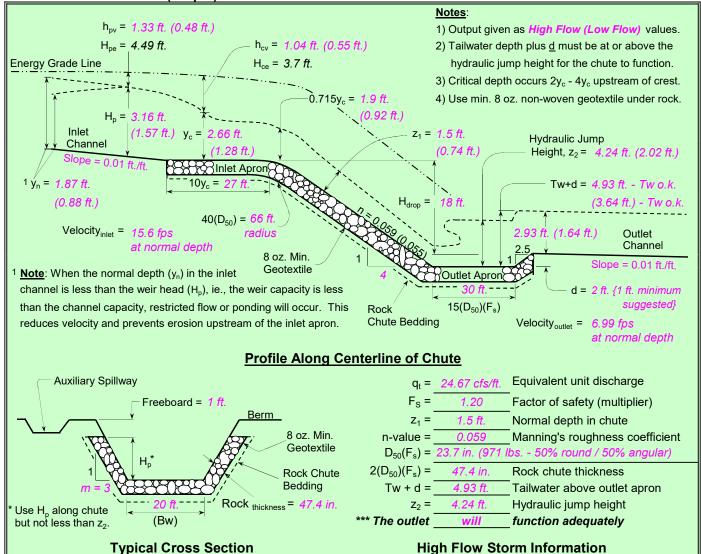
Rock Chute Design Data

(Version 4.01 - 04/23/03, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Flying Horse North - JD Pond Outlet

Designer: Marc Whorton
Date: 8/20/2018

County: EL Paso
Checked by:
Date:


Input Channel Geometry

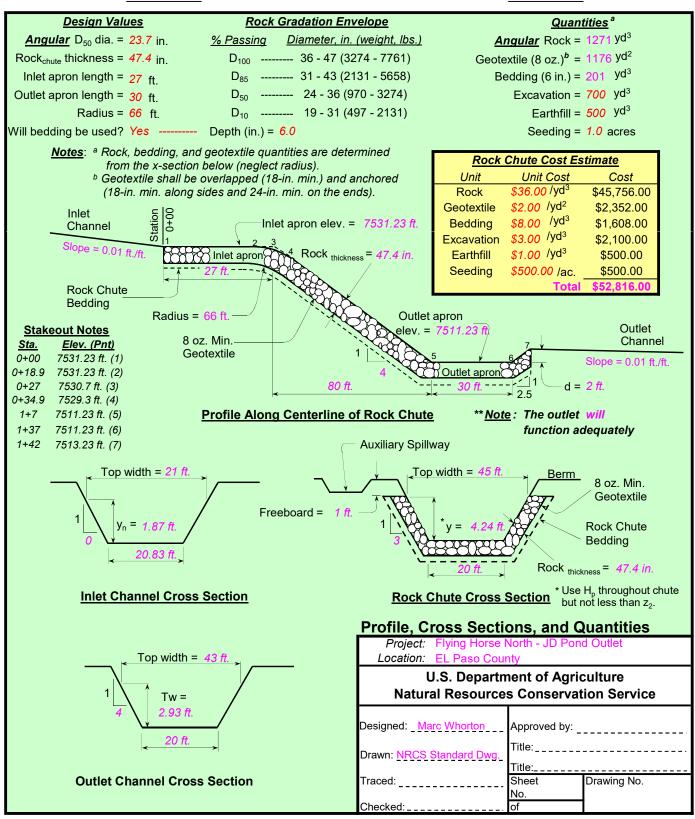
input Gnumor Goomotry		
— → <u>Inlet Channel</u>	→ <u>Chute</u>	→ Outlet Channel
Bw = 20.8 ft.	Bw = 20.0 ft.	Bw = 20.0 ft.
Side slopes = 0.0 (m:1)	Factor of safety = 1.20 (F _s)	Side slopes = 4.0 (m:1)
n-value = 0.013	Side slopes = $3.0 \text{ (m:1)} \rightarrow 2.0:1 \text{ max}$.	n-value = 0.035
Bed slope = 0.0100 ft./ft.	Bed slope (4:1) = 0.250 ft./ft. \rightarrow 2.5:1 max.	Bed slope = 0.0100 ft./ft.
Freeboard = 1.0 ft.	Outlet apron depth, d = 2.0 ft.	Base flow = 40.0 cfs

Design Storm Data (Table 2, NHCP, NRCS Grade Stabilization Structure No. 410)

```
Drainage area =
                                            Rainfall = \bigcirc 0 - 3 in. \bigcirc 3 - 5 in. \bigcirc 5 + in.
                                                                                           Note: The total required capacity is routed
Apron elev. --- Inlet = 7531.2 ft. --- Outlet =7511.2 ft. --- (H<sub>drop</sub> = 18 ft.)
                                                                                           through the chute (principal spillway) or
    Chute capacity = Q25-year
                                        Minimum capacity (based on a 5-year,
                                                                                           in combination with an auxiliary spillway.
      Total capacity = Q100-year 24-hour storm with a 3 - 5 inch rainfall)
                                                                                           Input tailwater (Tw):
                Q_{high} = 609.0 cfs
                                                                                         → Tw (ft.) = Program
                                       High flow storm through chute
                Q_{low} = 182.0 cfs
                                       Low flow storm through chute ——
                                                                                       → Tw (ft.) = Program
```

Profile and Cross Section (Output)

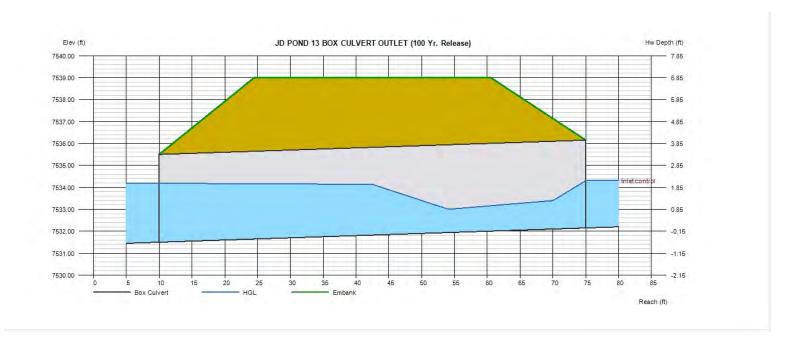
Rock_Chute.xls Page 1 of 1


Rock Chute Design - Plan Sheet

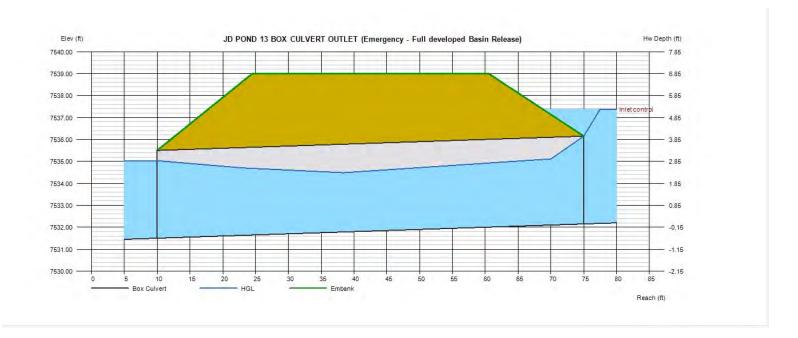
(Version 4.0 - 07/10/00, Based on Design of Rock Chutes by Robinson, Rice, Kadavy, ASAE, 1998)

Project: Flying Horse North - JD Pond Outlet County: EL Paso

Designer: Marc Whorton Checked by:

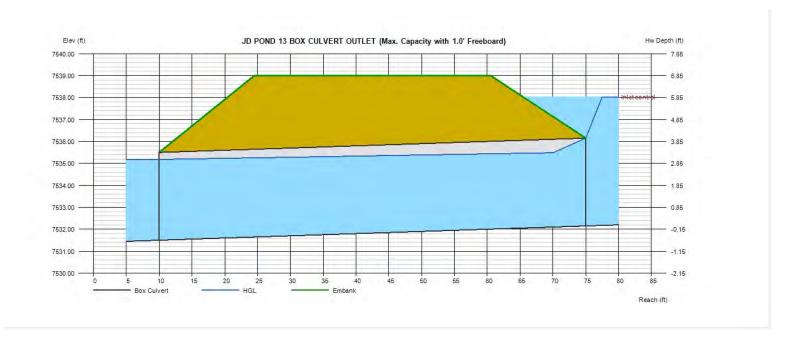

Date: 8/20/2018 Date:

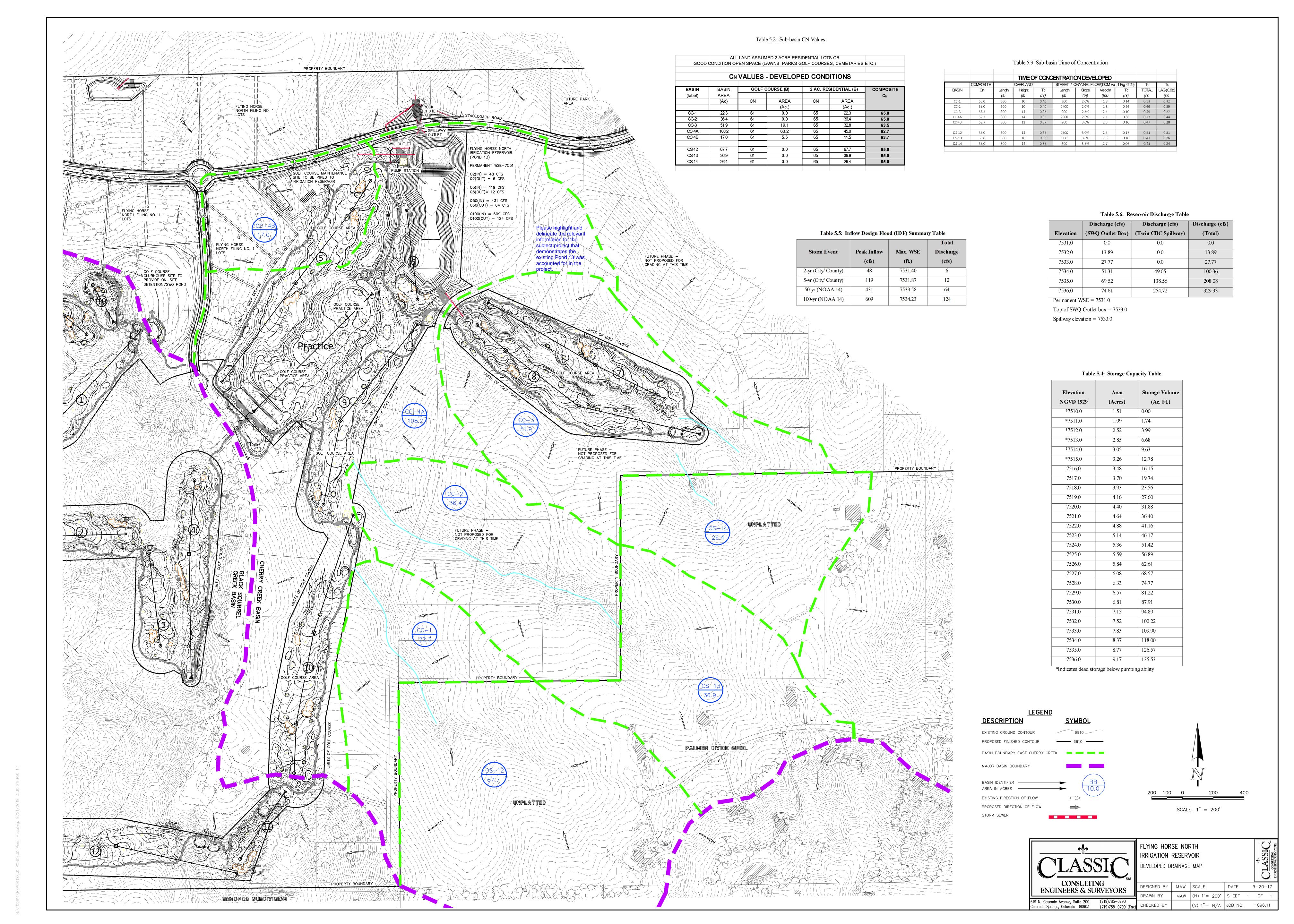
Monday, Aug 20 2018


JD POND 13 BOX CULVERT OUTLET (100 Yr. Release)

Invert Elev Dn (ft)	= 7531.50	Calculations	
Pipe Length (ft)	= 65.00	Qmin (cfs)	= 0.00
Slope (%)	= 1.00	Qmax (cfs)	= 182.00
Invert Elev Up (ft)	= 7532.15	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0	. ,	, ,
Shape	= Box	Highlighted	
Span (in)	= 120.0	Qtotal (cfs)	= 182.00
No. Barrels	= 2	Qpipe (cfs)	= 182.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Flared Wingwalls	Veloc Dn (ft/s)	= 3.39
Culvert Entrance	= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 6.64
Coeff. K,M,c,Y,k	= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 7534.19
		HGL Up (ft)	= 7533.52
Embankment		Hw Elev (ft)	= 7534.30
Top Elevation (ft)	= 7539.00	Hw/D (ft)	= 0.54
Top Width (ft)	= 36.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 230.00	•	
` ,			

JD POND 13 BOX CULVERT OUTLET (Emergency - Full developed Basin Release)


Invert Elev Dn (ft)	= 7531.50	Calculations	
Pipe Length (ft)	= 65.00	Qmin (cfs)	= 0.00
Slope (%)	= 1.00	Qmax (cfs)	= 609.00
Invert Elev Up (ft)	= 7532.15	Tailwater Elev (ft)	= (dc+D)/2
Rise (in)	= 48.0		
Shape	= Box	Highlighted	
Span (in)	= 120.0	Qtotal (cfs)	= 609.00
No. Barrels	= 2	Qpipe (cfs)	= 609.00
n-Value	= 0.013	Qovertop (cfs)	= 0.00
Culvert Type	= Flared Wingwalls	Veloc Dn (ft/s)	= 8.62
Culvert Entrance	= 30D to 75D wingwall flares	Veloc Up (ft/s)	= 9.94
Coeff. K,M,c,Y,k	= 0.026, 1, 0.0347, 0.81, 0.4	HGL Dn (ft)	= 7535.03
		HGL Up (ft)	= 7535.21
Embankment		Hw Elev (ft)	= 7537.38
Top Elevation (ft)	= 7539.00	Hw/D (ft)	= 1.31
Top Width (ft)	= 36.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 230.00		



Hydraflow Express Extension for Autodesk® AutoCAD® Civil 3D® by Autodesk, Inc.

JD POND 13 BOX CULVERT OUTLET (Max. Capacity with 1.0' Freeboard)

)
/2
)
)
8
51
)3
ontrol
). ()

We need to know how much of

impervious surfaces) is treated vs untreated and if there are any

exclusions that apply to the untreated areas. So please create a basic overview map (or modify an existing drainage map) with color shading/hatching that shows areas tributary to

each PBMP (pond, runoff reduction, etc.) and those disturbed areas that are not treated by a PBMP, with the applicable exclusion labeled (ex: 20% up to 1ac of development

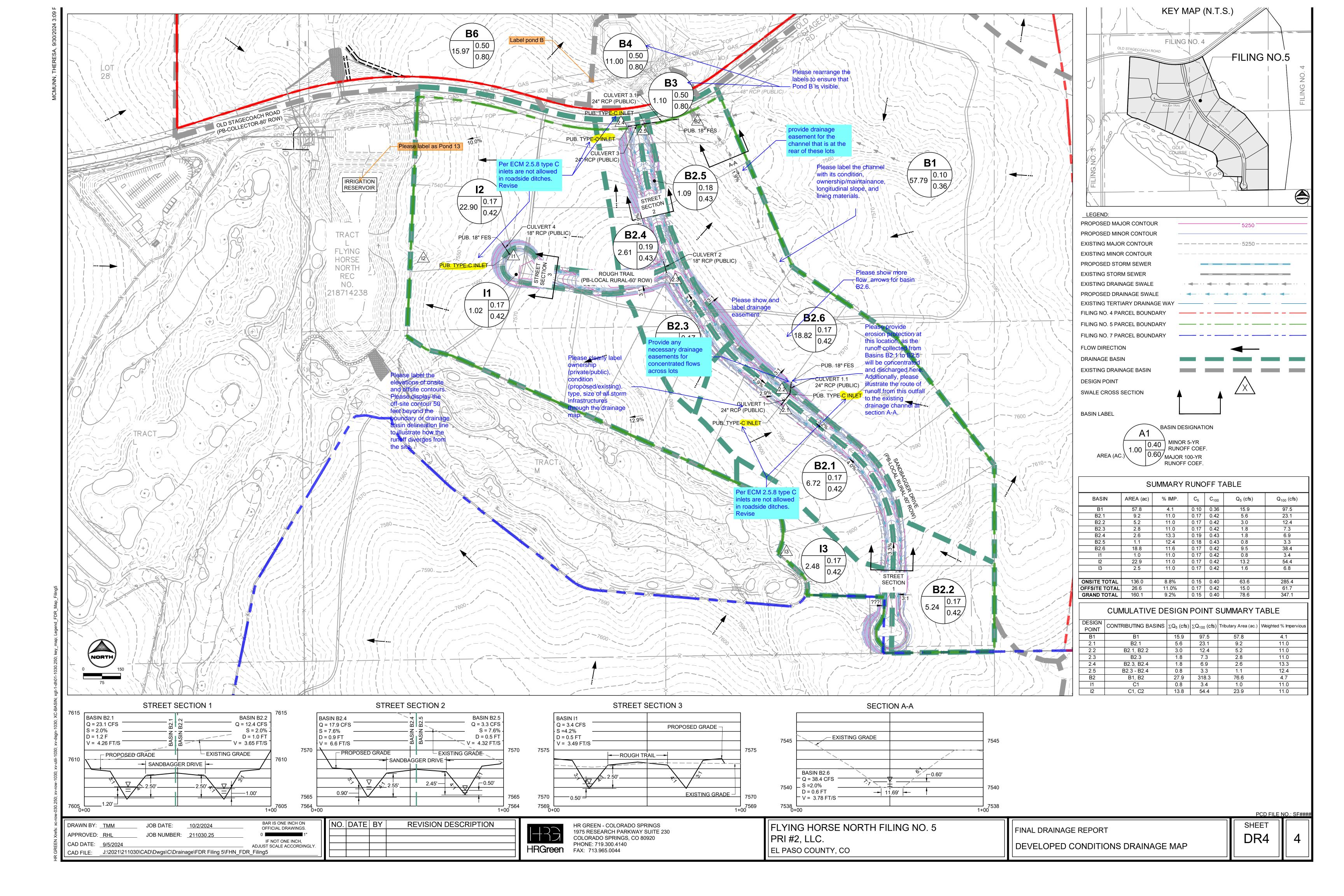
can be excluded per ECM App

FCM App I.7.1.B.#). An

I.7.1.C.1 and exclusions listed in

the proposed area of disturbance (not just the

Flying Horse North Filing No. 3 Final Drainage Report Project No.: 211030.20


El Paso County, Colorado

APPENDIX E

DRAINAGE MAPS

Please include existing drainage map for the subject project.

Water Quality Treatment Summary Table									
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to Pond A (ac)	Disturbed Area Treated via Runoff Reduction (ac)	Disturbed Area Excluded from WQ per ECM App I.7.1.C.1 (ac)	Disturbed Area Excluded from WQ per ECM App I.7.1.B.# (ac)	Applicable WQ Exclusions (App I.7.1.B.#)		
Α	4.50	4.50	4.50						
В	1.25	1.25		1.25					
С	6.00	4.00				4.00	ECM App I.7.1.B.5		
D	2.50	2.50	1.00		0.50	1.00	ECM App I.7.1.B.7		
Е	3.00		3.00						
F	8.25								
Total	25.50	12.25	8.50	1.25	0.50	5.00			
Comments		[For each row, the sum of the values in Columns 4-7 must be greater than or equal to the value in Column 3 above.]	-	[See RR calc spreadsheet.]	[Total must be <20% of site and <1ac.]				
Disturbed Area (ac)		Total Proposed Disturbed Area (ac)	(ed Treated Area ac)	Excluded (a	Disturbed Area from WQ c)	Minimum Area to be Treated (ac)		

