Mountain View Academy Stormwater Management Plan **Prepared For:** National Heritage Academies 3850 Broadmoor SE Grand Rapids, MI 49512 616-285-1589 Client Contact names: Jacques Soumis Joe Sprys # Prepared By: 5970 Greenwood Plaza Blvd. Greenwood Village, CO 80111 303-353-3695 Contact: Kristofer K. Wiest, PE | Qualifi | ed Stormwater Manager | |---------|-----------------------| | Name | : | | Comp | any: | | Addre | , | | | | | | | # Contractor Name: _____ Company: Gilbane Building Company Address: 2355 East Camelback Road, Suite 850 Phoenix, AZ 85016 > January 17, 2020 Rev. March 18, 2020 MERRICK PROJECT NO. 65120399 # **TABLE OF CONTENTS** | TABLE OF CONTENTS | I | |---|----------| | INTRODUCTION | 2 | | PROJECT AND SITE DESCRIPTIONPROPOSED PROJECT SEQUENCINGSOILS | 3 | | EXISTING VEGETATION
EARTH MOVING ACTIVITIES | | | GEC PLANS | 5 | | SWMP / GEC CONTACTS | 6 | | POTENTIAL POLLUTANT SOURCES | 7 | | EROSION AND SEDIMENT CONTROL MEASURES | 10 | | STORMWATER MANAGEMENT PRACTICESBMP INSPECTION AND MAINTENANCE PROCEDURES | | | MATERIALS HANDLING, SPILL PREVENTION, AND WASTE MANAGEMENT AND DIS | SPOSAL14 | | MATERIALS HANDLING AND SPILL PREVENTIONWASTE MANAGEMENT AND DISPOSAL INCLUDING CONCRETE WASHOUT | 15 | | ALLOWABLE NON-STORMWATER DISCHARGES | 16 | | PROJECT PHASING | 16 | | FINAL STABILIZATION | | | FINAL STABILIZATION METHODS | 18
18 | | INSPECTION REQUIREMENTS | 20 | | APPENDIX A | 21 | | PERMITS | 21 | | APPENDIX B | 22 | | BMP DETAILS/SPECIFICATIONS | | | APPENDIX C | 23 | | INSPECTION REPORTS | 23 | | APPENDIX D | 24 | | MISCELLANEOUS INFORMATION | 24 | | APPENDIX E | 25 | | PRE DEVELOPEMNT GRADING & CEC PLANS | 25 | National Heritage Academies El Paso County, CO # INTRODUCTION ## PROJECT AND SITE DESCRIPTION This project encompasses the grading of the property located at 2103 Meadowbrook Pkwy, Tract H, Claremont Ranch Filing 4 in the Northeast Quarter of Section 4, Township 14 South, Range 65 West of the Sixth Principal Meridian in El Paso County, CO. Tract H consists of 7.88 acres of currently vacant land covered with low lying native plants and weeds. This property was previously graded during construction activities related to Claremont Ranch Filing 4 construction, sometime around 2003. It is expected that the entirety of the property will be disturbed during the lifetime of the project. Since more than 1 acre of disturbed land will be associated with this project, a Colorado Stormwater Discharge Permit will be required. This purpose of this project is to prepare the property for the eventual construction of a charter school to be run by National Heritage Academies as sanctioned by El Paso School District 49. The scope of work for this project will consist only of the grading of the property. No construction other than earthwork will be preformed during the lifetime of this project. Access to the project site will be off of Pinyon Jay Drive, a paved road running generally north-south, in the southeastern corner of the City of Colorado Springs, though the property itself is unincorporated. No building materials will be used during this phase of construction however a stabilized staging area will be constructed in the southern portion of the property in order to provide for the storage of vehicles and equipment. The staging area will eventually be used for material storage during subsequent phases of construction. The southeast portion of the property is relatively flat and is at a higher elevation than surrounding properties. From this high point the ground slopes gently and generally to the north and west. No streams/drainages begin on or cross the property/project area. Stormwater on the site flows in several different directions. The southern portion of the site drains towards Hames Drive to the south and enters a storm inlet located at roughly the midpoint of the southern property boundary where a low point exists in Hames Drive. The western portion of the site drains to the west and into a neighboring undeveloped property owned by Cherokee Metropolitan District. The northern portion of the site drains generally north towards Meadowbrook Parkway. Some stormwater in the north portion of the property will enter the storm inlet located at the corner of Pinyon Jay Drive and Meadowbrook Parkway. The majority will flow west along Meadowbrook Parkway where it eventually enters a storm inlet on Meadowbrook Parkway roughly 200 ft south of the intersection with Killdeer Ct. This storm line eventually outfalls to East Fork Sand Creek through a 54" storm outlet approximately 500 ft due west of the National Heritage Academies El Paso County, CO property. The storm system connected to the inlet on Hames Drive runs south and then west of the site where it eventually outfalls into the East Fork Sand Creek through a 36" storm outlet approximately 750 ft due west of the southwest corner of the property. Upon completion of this project the high point of the property will be located in the center of the property and stormwater will drain in all directions from this high point. The southern portion of the site will be sloped gently towards Hames Road at a grade of approximately 2%. A nearly flat area will exist on the north side of the property where an AstroTurf field is planned during the next phase of construction. Grade along the north and much of the west property lines will be quite steep approaching 3:1 in many places. Along the eastern and southern boundaries slopes will be milder ranging between 2% and 10%. # PROPOSED PROJECT SEQUENCING The expected duration of construction is 2 months with an anticipated start date of March 1, 2020 (or as soon as possible thereafter pending required reviews, permitting, and approvals) and completion date of May 1, 2020. Final stabilization is projected to be complete by August 2022. Stormwater BMP's will be inspected biweekly during active construction activities and monthly upon completion of initial stabilization efforts. Poststorm event inspections are required to be performed within 24 hours of any storm event resulting in run-off during active construction. Pre-construction activities will include the installation of stormwater control measures. It is expected that pre-construction activities will take approximately one week. Construction will begin immediately upon completion of pre-construction activities and is expected to take approximately 6 weeks. Planned activities include clearing and grubbing of the property, the stripping and stockpiling of topsoil, and performing preliminary site grading. Initial stabilization of the project area will begin immediately upon completion of earth disturbing activities and is expected to take one week. # **SOILS** On-site soils consist entirely of Blakeland loamy sands (National map unit symbol 369v) with slopes ranging from 1-9%. According to the Geotechnical report by Terracon, subsurface soils consist of sand and silty sand to a depth of at least 5 feet and possibly as deep as 30 feet (several borings were only 5 feet in depth). The hydrologic soil National Heritage Academies El Paso County, CO group of these soils is group A, soils with high infiltration rate and low runoff potential. USDA's soil report for this property and Terracon's Geotechnical Report are included as Appendix D. ### **EXISTING VEGETATION** Vegetation at the site consists entirely of low-lying species of native grasses and weeds. Existing vegetative cover is somewhat patchy and large nearly bare spots are present in the central and southeast corner of the property. Relative vegetative cover is approximately 70%, this figure was estimated by direct visual observation of the property. # EARTH MOVING ACTIVITIES The project site is approximately 7.88 acres in size and it is expected that the entirety of the property will be disturbed during construction activities. No soil will be imported or exported during this project. The purpose of this project is preliminary grading only with the objective being to prepare the site for vertical construction and supporting civil infrastructure (which will be the subject of an additional project and applied for separately). With this goal in mind, the contractor will grade the area where the foundation is planned to be constructed to final grade. The remainder of the site will be graded as close as possible to the proposed grade using existing soils on-site only. No soil will be imported or exported with this project. National Heritage Academies El Paso County, CO # **GEC PLANS** The Pre-Development Grading and GEC Plans are a stand alone CD set and are included as Appendix E. # **Stormwater** Management Plan National Heritage Academies El Paso County, CO # **SWMP / GEC CONTACTS** | Owner/Operator | Client Representative | |------------------------------|------------------------------------| | National Heritage Academies | Bill Torres | | Jacques Soumis | Gilbane | | Construction Project Manager | Superintendent | | 3850 Broadmoor SE | 720-633-1268 | | Grand Rapids, MI 49512 | wtorres@gilbaneco.com | | 616-285-1589 | | | jsoumis@nhaschools.com | | | SWMP / GEC Developer | Qualified Stormwater Manager (TBD) | | Merrick & Company | | | Tom Habberfield, PE | | | Engineer | | | 5970 Greenwood Plaza Blvd | | | Greenwood Village, CO 80111 | | | 303-353-3927 | | | Tom.habberfield@merrick.com | | | BMP Contractor (TBD) | Stormwater Inspector (TBD) | | | | | | | | | | | | | | | | | | | National Heritage Academies El Paso County, CO # POTENTIAL POLLUTANT SOURCES As required by the CDPS General Permit (COR-400000), the following sources and activities were evaluated for their potential to contribute pollutants to stormwater discharges. | Potential Pollutant
Source | Expected on this Project | Processes, Storage Areas, or Activities Associated with this Pollutant and Mitigation Practices |
---|--------------------------|--| | Disturbed/Stockpiled
Soils | yes | Disturbed soils will be created wherever clearing, grubbing, grading, excavating, or heavy vehicle traffic operations are performed. Stockpiled soils created by any of these soil disturbing activities will be located in the SSA. | | | | Mitigation of disturbed soils will be achieved mainly through the use of silt fence, sediment control logs, inlet protection, and surface roughening to increase infiltration. Soils present on site have a high hydraulic conductivity so surface roughening will greatly reduce runoff. | | Vehicle Tracking on to
Public Roadways | yes | Vehicle tracking occurs when vehicles contact disturbed soil areas and move off the site on to paved roadways. | | | | The main technique that will be used to mitigate this pollutant source is through the use of a VTC at the properties access point, the use of a stabilized staging area (SSA) and controlling site access. Vehicles not directly involved in construction activities should remain in the SSA whenever possible. If these mitigation techniques are insufficient, street sweeping or scraping of vehicle tires prior to exiting the property may also be required. | | Management of Contaminated Soils | no | Contaminated soils are not known to be present on this site. If soils suspected to be contaminated are encountered during construction, all work in the area will halt until a proper assessment has been performed. | # **Stormwater** Management Plan National Heritage Academies El Paso County, CO | | | Soils contaminated with non-hazardous materials | |---|-----|--| | | | during construction activity (i.e. from minor spills or leaky equipment) will be dug up and moved to the on-site dumpster immediately. | | Loading and Unloading Operations | yes | Loading and unloading operations will occur only within the SSA. | | | | Since this project consists of preliminary grading operations only, no loading/unloading operations are expected other than the delivery of heavy equipment. | | Outdoor Storage
Activities | yes | Any chemicals, liquids, powders, etc. stored in small containers should be placed indoors by the end of the workday. Larger containers such as drums, totes or tanks are required to be double-walled or stored in sufficiently sized secondary containment. All materials stored on site should be kept within the SSA. | | Vehicle and Equipment
Maintenance and
Fueling | yes | Any leaking equipment should be removed from service and placed in the SSA until repairs are complete. On-site refueling tanks need to be double-walled or placed within secondary containment. A spill kit will be available nearby during all refueling or vehicle maintenance activities. | | | | Vehicle maintenance/refueling areas must be located away from any surface water, drainages, or stormwater outfalls. Any soils contaminated during refueling/maintenance operations must be cleaned up ASAP and moved to the dumpster. | | Dust and/or particulate generating processes | yes | Site soils consist almost entirely of sand. Sand particles are relatively large compared with most other soils and are less likely to create significant dust. However smaller particles do exist in the soil and coupled with the semi-arid climate of the region the potential for dust generation does exist. | | | | Should dust generation become an issue, the main technique to mitigate this hazard will be through suppression (usually by wetting the materials. | # **Stormwater** Management Plan National Heritage Academies El Paso County, CO | | 1 | NI | |---|-----|--| | | | No particulate generating processes are | | | | expected on this site. | | Routine Maintenance | no | N/A | | Waste Management | yes | Dumpsters will be located in the SSA. | | | | Non-hazardous solid wastes will be stored in the dumpster located in the stabilized staging area. Whenever the dumpster becomes full it should be removed and replaced ASAP. Liquid wastes will be stored in closed containers either indoors or within secondary containment until they can be disposed of properly. | | Concrete
Truck/Equipment
Washing | no | No concrete work will be preformed during this project. However, a CWA is planned to be installed in the SSA in preparation for future construction activities. | | Dedicated Asphalt and Concrete Batch Plants | no | N/A | | Non-industrial Waste
Sources | yes | Non-industrial waste such as worker trash will be disposed of in trash cans located throughout the property. Larger trash such as scrap building materials and their packaging will be disposed of in larger dumpsters located in the SSA. Portable toilets will be used for sanitary waste and will be located in the SSA and regularly serviced by a licensed sanitation contractor. | | | | Good housekeeping will be the main BMP for small refuse such as litter or worker trash. Worker trash and litter will be picked up as necessary, placed into small bins, and properly disposed of offsite. Larger refuse will be stored in dumpsters and managed as described under the "Waste Management" section. Portable toilets will be secured in place to avoid tipping over and cleaned out regularly by a subcontractor. Portable toilets will not be located adjacent to surface water or storm drains. | | Other Potential Pollutants | no | No other potential pollutants or processes or procedures that could result in a spill were identified for this project. | #### National Heritage Academies El Paso County, CO # **EROSION AND SEDIMENT CONTROL MEASURES** Structural Best Management Practices (BMP's) utilized on site and their exact locations are noted in the GEC Plans located in Appendix E. BMP's expected or likely to be utilized on site include: silt fence (SF), a VTC, a SSA, sediment control logs (SCL's), inlet protection (IP), surface roughening (SR), erosion control blankets (ECB), diversion ditches (DD), temporary sediment basins (SB), and seeding and mulching (SM). ## Site Control Construction Fence (CF) consists of orange plastic fencing material, or other El Paso County approved material, attached to support posts and used to limit access to the construction site. A Concrete Washout Area (CWA) is a shallow excavation with a small perimeter berm to isolate concrete truck washout operations. The washout area shall be combined with a vehicle tracking control pad to control tracking of mud. A CWA will be installed in the SSA. # Sediment Control BMP's Silt Fence (SF) is a temporary sediment barrier constructed of woven fabric stretched across supporting posts. The bottom edge of the fabric is placed in an anchor trench that is backfilled with compacted soil. Silt fence will be installed along the entire perimeter of the site except at the site access point. Vehicle Tracking Control (VTC) consists of a pad of 3" to 6" rock at all entrance/exit points for a site that is intended to help strip mud from tires prior to vehicles leaving the construction site. A VTC will be installed at the access point to the property. A Sediment Control Log (SCL) consists of a cylindrical bundle of wood, coconut, compost, excelsior, or straw fiber designed to form a semi-porous filter, able to withstand overtopping. The log can be staked into the ground and promotes sediment deposition on its upstream side. SCL's will be installed along the majority of the northern property line in conjunction with the SF. Inlet Protection (IP) consists of a reinforced rock berm placed in front of (but not blocking) a curb opening inlet or around an area inlet to reduce sediment in runoff approaching the inlet. Inlet protection will be installed at all inlets in vicinity of the site and along some gutters. National Heritage Academies El Paso County, CO A Sediment Basin (SB) is an impoundment that captures sediment laden runoff and releases it slowly, providing prolonged settling times to capture coarse and fine-grained soil particles. Three sediment basins are planned for this site. One to be located in the southern portion of the property that will capture runoff from approximately 3.7 acres of the site. The second in the northern portion of the property that will capture runoff from approximately 3 acres of the site. The last along the central portion of the western property boundary that will capture runoff from approximately 0.9 acres of the site. # **Erosion Control BMP's** A Stabilized Staging Area (SSA) consists of stripping topsoil and spreading a layer of granular material in the area to be used for a trailer, parking, storage, unloading and loading. A stabilized staging
area reduces the likelihood that the vehicles most frequently entering a site are going to come in contact with mud. A stabilized staging area will be constructed in the southern portion of the property. A Diversion Ditch (DD) is a small earth channel used to divert and convey runoff. Depending on slope, the diversion swale may need to be lined with erosion control matting, plastic (for temporary installations only), or riprap. Diversion ditches will be constructed in several areas in order to convey water to the planned sediment basins. A Temporary Slope Drain (TSD) is a small culvert or plastic liner to convey runoff down a slope or channel bank to reduce the occurrence of rill and gully erosion. TSD's are required to be installed at all inlets to temporary sediment basins. Surface Roughening (SR) consists of creating a series of grooves or furrows on the contour in all disturbed, graded areas to trap rainfall and reduce the formation of rill and gully erosion. Surface roughening will be used throughout the property in all temporarily inactive areas prior to seeding and mulching. Seeding and Mulching (SM) consists of drill seeding disturbed areas with grasses and crimping in straw mulch to provide immediate protection against raindrop and wind erosion and, as the grass cover becomes established, to provide long-term stabilization of exposed soils. Seeding and mulching will be used across the entire site upon completion of grading activities with the exception of the SSA and VTC areas which will remain in place for future project work. If the operator chooses to remove the SSA or VTC, that remaining area will also be seeded and mulched National Heritage Academies El Paso County, CO Erosion Control Blankets (ECB) are a fibrous blanket of straw, jute, coconut or excelsior material trenched in and staked down over prepared, seeded soil. The blanket reduces both wind and water erosion and helps to establish vegetation. Erosion control blankets will be installed upon completion of grading activities in all areas where grade exceeds 4:1. #### STORMWATER MANAGEMENT PRACTICES The major mechanism for reducing runoff and erosion on site will be through SR, DD's, and SB's. Combined with the high hydraulic conductivity of site soil these methods alone should nearly eliminate all runoff from the site. Maintaining SB's and DD's and making sure SR is implemented properly are the most important aspect of managing stormwater on site. VTC's must always be used when exiting the property and vehicles not used for construction should remain in the SSA whenever possible. Likewise, vehicles used in construction activities should refrain from exiting the property whenever possible. General worker training is an important aspect of stormwater management. Workers who are trained to notice and report damaged or ineffective control measures assist greatly in maintaining an effective stormwater management strategy outside of the scheduled weekly inspections. Good housekeeping, and proper waste management and storage techniques are important in keeping a clean and orderly project site. Messy sites not only look bad, but spills are more likely, damage to vehicles or building materials are more common, and there are generally higher incidences of worker injury. #### BMP INSPECTION AND MAINTENANCE PROCEDURES During active construction, an inspection of the project site to assess whether BMP's are performing adequately, if any BMP's require maintenance, or if additional BMP's are necessary will occur biweekly. Additional inspections will be required to be conducted within 24 hours following any storm event that results in stormwater runoff conditions. An inspection report form (See Appendix C) must be completed, dated, and signed by the person performing the inspection after every inspection has concluded. These forms will be stored along with this SWMP for the lifetime of the project. Inspections may be suspended if snow cover exists across the entirety of the project site and construction has been temporarily halted. As soon as construction resumes, or snowmelt conditions exist inspections of the project site will resume. National Heritage Academies El Paso County, CO Any BMP's found to be damaged or no longer functioning properly will be repaired, maintained, or replaced as necessary. If a BMP is found to be inadequate the stormwater manager will assess the situation and make changes to the plans as necessary to comply with the stormwater permit. The stormwater manager is free to add additional BMP's as they deem necessary to comply with the stormwater permit as long as the changes are noted in the plans. Any of the aforementioned conditions should be addressed as soon as possible. El Paso County shall be notified of any changes to the SWMP. Upon completion of construction and initial stabilization of the disturbed areas, inspections will be conducted monthly until relative vegetative cover has rebounded to at least 70% of pre-construction levels. During this phase of the project post-storm event inspections are not required. This report is to be stored on site for the lifetime of this project including the post-construction phase prior to achieving final stabilization. The report will be stored in the job trailer during active construction and at a yet-to-be-determined location after initial stabilization efforts have concluded when the trailer has been scheduled for removal. In general, the SWMP, and accompanying GEC, are "living documents" that are constantly updated to 1) show location and describe pollutants and pollutant generating activities on site; and 2) show and describe BMPs used to mitigate against the offsite discharge of pollutants; and 3) show removal of same. The initial matrix of construction activity, potential pollutant sources, and mitigating BMPs contained herein is generally sufficient for a construction site of this size and nature. However, the SWMP Manager is free to choose any other BMP he / she may desire as long as it follows good hydrologic and pollution control practices. A new BMP or control measure would be deemed a SWMP change. The location needs to be noted on the GEC maps, descriptions / details need to be included in the SWMP, and the assigned El Paso County municipal inspector shall be notified. National Heritage Academies El Paso County, CO # MATERIALS HANDLING, SPILL PREVENTION, AND WASTE MANAGEMENT AND DISPOSAL # MATERIALS HANDLING AND SPILL PREVENTION All materials used during construction with the potential to impact stormwater quality are required to have a procedure in place designed to minimize potential impacts to stormwater. Procedures or significant materials required to have these procedures in place include (but are not limited to) the following: - The storage of exposed building materials - Concrete (including concrete mix, spoils, and washout) - o Any hydrocarbon containing liquids - o Paints, solvents, and detergents - o Fertilizers or chemicals - Waste materials - Equipment maintenance or fueling procedures - Plastic pellets/wrapping - o Metallic products - o Ashes, slag, and sludge - Any hazardous substance (CERCLA section 101(14)) Any of these materials must be stored, used and managed in such a way that any stormwater contacting them does not contribute pollutants to runoff. Any of these processes or procedures that have the potential to cause a spill must have a spill prevention and response procedure in place. All liquids that may contribute pollutants to stormwater runoff will be stored in secondary containment or indoors. Containers used to store these liquids should be checked frequently for signs of leaks or flaws and any issues shall be addressed immediately. Any equipment found to be leaking fluids will be put out of service immediately, a drip pan will be placed beneath the leak, and the equipment will not be allowed to return to service until proper maintenance/repairs are complete. All procedures that involve the use of these chemicals (such as fueling or spray-on application of paints/chemicals) must have spill kits on hand in the event that a release occurs. Any soils that come in contact with spilled liquids shall be removed and disposed of in accordance with state, local, and/or national laws and regulations. All spills or releases that enter surface water or sanitary sewers must be reported to CDPHE immediately and written notification must be provided to CDPHE within 5 days of the discovery of the release. Any spill/release of hazardous substances or National Heritage Academies El Paso County, CO spill/release of more than 25 gallons of fuel must also be reported regardless of whether or not the substance comes into contact with water. ### WASTE MANAGEMENT AND DISPOSAL INCLUDING CONCRETE WASHOUT Solid wastes generated from construction activity will be moved off-site as soon as is practical. If temporary storage of solid waste materials on-site is necessary, all waste materials will be placed into a dumpster. As soon as dumpsters are full, they will be removed from the project site and sent to a recycling center or waste processing facility as applicable. If any waste materials are found outside of their designated areas project personnel will move them to the proper location as soon as possible. Portable restroom facilities will be located away from high traffic areas, any areas where surface water exists all or part of the time, storm drain locations, areas where concentrated flow of stormwater runoff is likely, and if possible, paved surfaces. Portable sanitary facilities will be anchored in such a way as to prevent tipping over and cleaned and maintained by a licensed contractor. Excess concrete and/or washout water may only be discharged to the ground surface if a formal designated Concrete Washout Area (CWA) has been installed on site (See Appendix E for design details and requirements for a CWA) and must never be discharged to surface waters, drainages, or
storm sewer systems. CWA's consist of a shallow excavation with bermed areas on 3 sides and a small ramp leading down to the washout area. CWA's must also be equipped with a Vehicle Tracking Control (VTC) on the ramp side and proper signage. As with other BMP's, proper inspection and maintenance of a CWA is required. Concrete waste must be removed from the CWA by an approved disposal contractor whenever the excavated area reaches 2/3 of its maximum capacity. A concrete washout may be installed as part of the SSA, but concrete work is not expected to be performed with this phase of the project, which is limited to predevelopment grading. National Heritage Academies El Paso County, CO # ALLOWABLE NON-STORMWATER DISCHARGES Allowable non-stormwater discharges include: - Emergency fire-fighting activities - Concrete washout water - Construction dewatering activities Though not anticipated, the discharge of water associated with emergency fire-fighting activities is always a possibility. Likewise, the point of discharge cannot be determined as there is no way to predict the location of any fire-fighting activity. The use of concrete is not anticipated during this phase of the project however concrete will be used during subsequent phases of the project but will be a part of the Phase's SWMP design. In the event that these phases overlap, concrete washout water may be discharged to a designated CWA that is constructed to El Paso County standards. Though unlikely, it is possible that groundwater may be encountered during this project. Should groundwater be encountered in an excavation, the contractor may discharge the water to the ground surface provided that they have previously obtained an excavation dewatering permit for the site from Colorado Department of Public Health and Environment (CDPHE). The locations of all sources (if encountered) of allowable non-stormwater discharges will be noted in the SWMP and on the accompanying GEC maps. # **PROJECT PHASING** | Project Phase | BMPs to be implemented during each phase* | |--|---| | Pre-construction – 1 week | Install initial BMP's, perimeter controls, and access points. Initial BMP's include CS, IP, SF, VTC's, SSA, and SCL's | | Pre-construction Inspection | Meet with the City Engineering Inspector prior to the start of construction Install and/or alter BMP's as instructed by the Engineering Inspector | | Construction – Initial Grading – 6 weeks | Begin grading operations, use surface roughening on all idled disturbed surfaces | | Construction – Initial Stabilization
Preparation – 1 week | Surface roughen all exposed soil on site Apply seed and mulch to exposed soils SSA to remain in place for subsequent construction activity or removed if subsequent activity is delayed or postponed. | | Post-construction – 2 years (or until additional construction phases have been approved) | Perform monthly inspections to monitor vegetation growth Perform BMP maintenance/repairs and reseed where necessary | # **Stormwater** Management Plan National Heritage Academies El Paso County, CO | Final Inspection | Apply noxious weed control measures as necessary Continue to monitor until 70% vegetative cover is achieved Meet with the City Engineering Inspector Make changes or repairs as instructed by the inspector. If requirements have been met, receive approval from the inspector that requirements have been met. | |------------------|--| | Permit Closure | Submit a termination application to the CDPHE WQCD notifying them that the required vegetative cover has been achieved and request a Notice of Termination The stormwater permit is considered closed as soon as the Notice of Termination from CDPHE WQCD is received. Follow up with El Paso County for closure of any local grading or erosion control permits (ESQCP) Ensure return of surety | National Heritage Academies El Paso County, CO # FINAL STABILIZATION ## FINAL STABILIZATION METHODS Final stabilization is the process that is undertaken at the completion of construction activities in order to provide of means of mitigating stormwater pollutants, particularly erosion and sedimentation, on a permanent basis. Several different methods are commonly used achieve permanent stabilization of disturbed areas including: - Hardscaping includes the use of concrete, asphalt, gravel, or other impervious surfaces - Landscaping gardens are an acceptable method of final stabilization and do not need to meet the 80% revegetation criteria - Soil preparation includes addition of fertilizer, soil buffers to control pH, and/or tilling of the soil to provide an adequate seed bed - Stabilizing the soil includes the use of crimp mulch and erosion control blankets to prevent soils from mobilizing - Selection of an appropriate seed mix this depends largely on the region in which the project is located and the future use of the property. - Maintenance of any structural BMP's necessary to prevent erosion and sedimentation prior to achieving final stabilization - Removal of BMP's once final stabilization is achieved #### PLAN TO ACHIEVE FINAL STABILIZATION Upon completion of construction activities, remaining disturbed areas will undergo initial stabilization. Initial stabilization will consist seeding and mulching of the entirety of the site using a native grasses seed mix. See plan drawings located in Appendix E. #### COMPLETION OF FINAL STABILIZATION Final stabilization is reached when all ground surface disturbing activities at the site have been completed, and uniform vegetative cover has been established with an individual plant density of at least 70% of pre-disturbance levels, or equivalent permanent, physical erosion reduction methods have been employed. Upon attaining the required vegetation coverage, all temporary BMP's must be removed prior to terminating the permit. National Heritage Academies El Paso County, CO # LONG-TERM STORMWATER MANAGEMENT No long-term control measures will exist on site at the completion of this project, which is limited to pre-development site grading. Eventually a detention pond will be constructed along the south property boundary during later phases of the project. National Heritage Academies El Paso County, CO # **INSPECTION REQUIREMENTS** Inspection requirements are detailed in the permits located in Appendix A. The City of Colorado Springs inspection form, as adopted by El Paso County is included as Appendix C. Note that all inspections, whether self-performed by the contractor, or by a third party inspector, become a permanent part of the SWMP document and they need to be signed and kept onsite with the rest of the SWMP materials. National Heritage Academies El Paso County, CO # APPENDIX A PERMITS CDPS Permit Certification COR [#####] **CDPS General Permit** El Paso Erosion and Stormwater Quality Control Permit (ESQCP) # **COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT Water Quality Control Division** #### CDPS GENERAL PERMIT #### STORMWATER DISCHARGES ASSOCIATED WITH #### **CONSTRUCTION ACTIVITY** AUTHORIZATION TO DISCHARGE UNDER THE COLORADO DISCHARGE PERMIT SYSTEM (CDPS) In compliance with the provisions of the Colorado Water Quality Control Act, (25-8-101 et seq., CRS, 1973 as amended) and the Federal Water Pollution Control Act, as amended (33 U.S.C. 1251 et seq.; the "Act"), this permit authorizes the discharge of stormwater associated with construction activities (and specific allowable non-stormwater discharges in accordance with Part I.A.1. of the permit) certified under this permit, from those locations specified throughout the State of Colorado to specified waters of the State. Such discharges shall be in accordance with the conditions of this permit. This permit specifically authorizes the facility listed on the certification to discharge in accordance with permit requirements and conditions set forth in Parts I and II hereof. All discharges authorized herein shall be consistent with the terms and conditions of this permit. This permit becomes effective on April 1, 2019, and shall expire at midnight March 31, 2024. Issued and signed this 1st day of November 2018. COLORADO DEPARTMENT OF PUBLIC HEALTH AND ENVIRONMENT Ellen Howard Kutzer, Permits Section Manager Water Quality Control Division GleHalkty **Permit History** Originally signed and issued October 31, 2018; effective April 1, 2019. # **Table of Contents** | Part | I | 1 | |------|--|------| | A. | COVERAGE UNDER THIS PERMIT | 1 | | | 1. Authorized Discharges | 1 | | | 2. Limitations on Coverage | 1 | | | 3. Permit Certification and Submittal Procedures | 2 | | В. | EFFLUENT LIMITATIONS | 6 | | | 1. Requirements for Control Measures Used to Meet Effluent Limitations | 6 | | | 2. Discharges to an Impaired Waterbody | 9 | | | 3. General Requirements | . 10 | | C. | STORMWATER MANAGEMENT PLAN (SWMP) REQUIREMENTS | . 11 | | | 1. SWMP General Requirements | . 11 | | | 2. SWMP Content | . 11 | | | 3. SWMP Review and Revisions | . 13 | | | 4. SWMP
Availability | . 14 | | D. | SITE INSPECTIONS | . 14 | | | 1. Person Responsible for Conducting Inspections | . 14 | | | 2. Inspection Frequency | . 14 | | | 3. Inspection Frequency for Discharges to Outstanding Waters | . 15 | | | 4. Reduced Inspection Frequency | . 15 | | | 5. Inspection Scope | . 16 | | E. | DEFINITIONS | . 17 | | F. | MONITORING | . 20 | | G. | Oil and Gas Construction | . 21 | | Part | II: Standard Permit Conditions | . 22 | | A. | DUTY TO COMPLY | . 22 | | В. | DUTY TO REAPPLY | . 22 | | c. | NEED TO HALT OR REDUCE ACTIVITY NOT A DEFENSE | . 22 | | D. | DUTY TO MITIGATE | . 22 | | E. | PROPER OPERATION AND MAINTENANCE | . 22 | | F. | PERMIT ACTIONS | . 22 | | G. | PROPERTY RIGHTS | . 22 | | н. | DUTY TO PROVIDE INFORMATION | . 23 | | ١. | INSPECTION AND ENTRY | . 23 | | J. | MONITORING AND RECORDS | . 23 | | K. | SIGNATORY REQUIREMENTS | . 24 | | | 1. Authorization to Sign: | 24 | |----|---|----| | | 2. Electronic Signatures | 25 | | | 3. Change in Authorization to Sign | 25 | | L. | REPORTING REQUIREMENTS | 25 | | | 1. Planned Changes | 25 | | | 2. Anticipated Non-Compliance | 25 | | | 3. Transfer of Ownership or Control | 25 | | | 4. Monitoring reports | 26 | | | 5. Compliance Schedules | 26 | | | 6. Twenty-four hour reporting | 26 | | | 7. Other non-compliance | 27 | | | 8. Other information | 27 | | Μ. | BYPASS | 27 | | | 1. Bypass not exceeding limitations | 27 | | | 2. Notice of bypass | 27 | | | 3. Prohibition of Bypass | 27 | | N. | . UPSET | 28 | | | 1. Effect of an upset | 28 | | | 2. Conditions necessary for demonstration of an Upset | 28 | | | 3. Burden of Proof | 28 | | 0. | RETENTION OF RECORDS | 28 | | | 1. Post-Expiration or Termination Retention | 28 | | | 2. On-site Retention | 29 | | Ρ. | REOPENER CLAUSE | 29 | | | 1. Procedures for modification or revocation | 29 | | | 2. Water quality protection | 29 | | Q. | . SEVERABILITY | 29 | | R. | NOTIFICATION REQUIREMENTS | 29 | | | 1. Notification to Parties | 29 | | S. | RESPONSIBILITIES | 30 | | | 1. Reduction, Loss, or Failure of Treatment Facility | 30 | | Т. | Oil and Hazardous Substance Liability | | | | Emergency Powers | | | ٧. | Confidentiality | 30 | | W | Fees | 30 | | | PART | |----|-----------------------| | | Permit No.: COR400000 | | Х. | Duration of Permit30 | | Υ. | Section 307 Toxics | # Part I Note: At the first mention of terminology that has a specific connotation for the purposes of this permit, the terminology is electronically linked to the definitions section of the permit in Part I.E. #### A. COVERAGE UNDER THIS PERMIT #### 1. Authorized Discharges This general permit authorizes permittee(s) to discharge the following to state waters: stormwater associated with construction activity and specified non-stormwater associated with construction activity. The following types of stormwater and non-stormwater discharges are authorized under this permit: - a. Allowable Stormwater Discharges - i. Stormwater discharges associated with construction activity. - ii. Stormwater discharges associated with producing earthen materials, such as soils, sand, and gravel dedicated to providing material to a single contiguous site, or within ¼ mile of a construction site (i.e. borrow or fill areas) - iii. Stormwater discharges associated with dedicated asphalt, concrete batch plants and masonry mixing stations (Coverage under this permit is not required if alternative coverage has been obtained.) # b. Allowable Non-Stormwater Discharges The following non-stormwater discharges are allowable under this permit if the discharges are identified in the stormwater management plan in accordance with Part I.C. and if they have appropriate control measures in accordance with Part I.B.1. - i. Discharges from uncontaminated springs that do not originate from an area of land disturbance. - ii. Discharges to the ground of concrete washout water associated with the washing of concrete tools and concrete mixer chutes. Discharges of concrete washout water must not leave the site as surface runoff or reach receiving waters as defined by this permit. - iii. Discharges of landscape irrigation return flow. #### c. Emergency Fire Fighting Discharges resulting from emergency firefighting activities are authorized by this permit. ## 2. Limitations on Coverage Discharges not authorized by this permit include, but are not limited to, the discharges and activities listed below. Permittees may seek individual or alternate general permit coverage for the discharges, as appropriate and available. a. Discharges of Non-Stormwater Discharges of non-stormwater, except the authorized non-stormwater discharges listed in Part I.A.1.b., are not eligible for coverage under this permit. - b. Discharges Currently Covered by another Individual or General Permit - c. Discharges Currently Covered by a Water Quality Control Division (division) Low Risk Guidance Document #### 3. Permit Certification and Submittal Procedures a. Duty to apply The following activities shall apply for coverage under this permit: - i. Construction sites that will disturb one acre or more; or - ii. Construction sites that are part of a common plan of development or sale; or - iii. Stormwater discharges that are designated by the division as needing a stormwater permit because the discharge: - (a) Contributes to a violation of a water quality standard; or - (b) is a significant contributor of pollutants to state waters. # b. Application Requirements To obtain authorization to discharge under this permit, applicants applying for coverage following the effective date of the renewal permit shall meet the following requirements: - i. Owners and operators submitting an application for permit coverage will be copermittees subject to the same benefits, duties, and obligations under this permit. - ii. Signature requirements: Both the owner and operator (permittee) of the construction site, as defined in Part I.E., must agree to the terms and conditions of the permit and submit a completed application that includes the signature of both the owner and the operator. In cases where the duties of the owner and operator are managed by the owner, both application signatures may be completed by the owner. Both the owner and operator are responsible for ensuring compliance with all terms and conditions of the permit, including implementation of the stormwater management plan. - iii. Applicants must use the paper form provided by the division or the electronic form provided on the division's web-based application platform when applying for coverage under this permit. - iv. The applicant(s) must develop a stormwater management plan (SWMP) in accordance with the requirements of Part I.C. The applicant(s) must also certify that the SWMP is complete, or will be complete, prior to commencement of any construction activity. v. The applicant(s) must submit a complete, accurate, and signed permit application electronically, by mail or hand delivery to the division at least 10 days prior to the commencement of construction activity except that construction activities that are in response to a public emergency related site shall apply for coverage no later than 14 days after the commencement of construction activities. The provisions of this part in no way remove a violation of the Colorado Water Quality Control Act if a point source discharge occurs prior to the issuance of a CDPS permit. vi. The application must be signed in accordance with the requirements of Part IA. Applications submitted by mail or hand delivered should be directed to: Colorado Department of Public Health and Environment Water Quality Control Division Permits Section, WQCD-PS-B2 4300 Cherry Creek Drive South Denver, CO 80246 - vii. The applicant(s) must receive written notification that the division granted permit coverage prior to conducting construction activities except for construction activities that are in response to a public emergency related site - c. Division Review of Permit Application Within 10 days of receipt of the application, and following review of the application, the division may: - i. Issue a certification of coverage; - ii. request additional information necessary to evaluate the discharge; - iii. delay the authorization to discharge pending further review; - iv. notify the applicant that additional terms and conditions are necessary; or - v. deny the authorization to discharge under this general permit. - d. Alternative Permit Coverage - i. Division Required Alternate Permit Coverage: The Division may require an applicant or permittee to apply for an individual permit or an alternative general permit if it determines the discharge does not fall under the scope of this general permit. In this case, the Division will notify the applicant or permittee that an individual permit application is required. - ii. Permittee Request for alternate permit coverage: A permittee authorized to discharge stormwater under this permit may request to be excluded from coverage under this general permit by applying for an individual permit. In this case, the permittee must submit an individual application, with reasons supporting the request, to the Division at least 180 days prior to any discharge. When an individual permit is issued, the permittee's authorization to discharge under this permit is terminated on the effective date of the individual permit. - e. Submittal Signature Requirements Documents required for submittal to the division in accordance with this permit, including applications for permit coverage and other documents as requested by the division, must include signatures by both the <u>owner</u> and the <u>operator</u>, except for instances where the duties of the owner and operator are managed by the owner. Signatures on all documents submitted to the division as required by this permit must meet the Standard Signatory Requirements in Part II.K. of this permit in accordance
with 40 C.F.R. 122.41(k). i. Signature Certification Any person(s) signing documents required for submittal to the Division must make the following certification: "I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significant penalties for submitting false information, including the possibility of fine and imprisonment for knowing violations." - f. Compliance Document Signature Requirements Documents which are required for compliance with the permit, but for which submittal to the division is not required unless specifically requested by the division, must be signed by the individual(s) designated as the <u>Qualified Stormwater Manager</u>, as defined in Part I.E. - i. Any person(s) signing inspection documents required for compliance with the permit must make the following statement: "I verify that, to the best of my knowledge and belief, all corrective action and maintenance items identified during the inspection are complete, and the site is currently in compliance with the permit." - g. Field Wide Permit Coverage for Oil and Gas Construction At the discretion of the division, a single permit certification may be issued to a single oil and gas permittee to cover construction activity related discharges from an oil and gas field at multiple locations that are not necessarily contiguous. - h. Permit Coverage without Application Qualifying Local Program: When a small construction site is within the jurisdiction of a qualifying local program, the owner and operator of the construction activity are authorized to discharge stormwater associated with small construction activity under this general permit without the submittal of an application to the division. Sites covered by a qualifying local program are exempt from the following sections of this general permit: Part I.A.3.a.; Part I.A.3.b.; Part I.A.3.c.; Part I.A.3.d.; Part I.A.3.g.; Part I.A.3.i.; Part I.A.3.j.; Part I.A.3.k. Sites covered by a qualifying local program are subject to the following requirements: - i. Local Agency Authority: This permit does not pre-empt or supersede the authority of local agencies to prohibit, restrict, or control discharges of stormwater to storm drain systems or other water courses within their jurisdiction. - ii. Permit Coverage Termination: When a site under a Qualifying Local Program is finally stabilized, coverage under this permit is automatically terminated. - iii. Compliance with Qualifying Local Program: Qualifying Local Program requirements that are equivalent to the requirements of this permit are incorporated by reference. Permittees authorized to discharge under this permit, must comply with the equivalent requirements of the Qualifying Local Program that has jurisdiction over the site as a condition of this permit. - iv. Compliance with Remaining Permit Conditions. Requirements of this permit that are in addition to or more stringent than the requirements of the Qualifying Local Program apply in addition to the requirements of the Qualifying Local Program. - v. Written Authorization of Coverage: The division or local municipality may require any permittee within the jurisdiction of a Qualifying Local Program covered under this permit to apply for, and obtain written authorization of coverage under this permit. The permittee must be notified in writing that an application for written authorization of coverage is required. - i. Permittee Initiated Permit Actions Permittee initiated permit actions, including but not limited to modifications, contact changes, transfers, reassignments, and terminations, shall be conducted following division guidance and using appropriate division-provided forms. j. Sale of Residence to Homeowner **Residential construction sites only:** The permittee may remove residential lots from permit coverage once the lot meets the following criteria: - i. the residential lot has been sold to the homeowner(s) for private residential use; - ii. a certificate of occupancy, or equivalent, is maintained on-site and is available during division inspections; - iii. the lot is less than one acre of disturbance; - iv. all construction activity conducted on the lot by the permittee is complete; - v. the permittee is not responsible for final stabilization of the lot; and - vi. the SWMP was modified to indicate the lot is no longer part of the construction activity. If the residential lot meets the criteria listed above then activities occurring on the lot are no longer considered to be construction activities with a duty to apply and maintain permit coverage. Therefore, the permittee is not required to meet the final stabilization requirements and may terminate permit coverage for the lot. k. Permit Expiration and Continuation of Permit Coverage Authorization to discharge under this general permit shall expire at midnight on March 31, 2024. While Regulation 61.4 requires a permittee to submit an application for continuing permit coverage 180 days before the permit expires, the division is requiring that permittees desiring continued coverage under this general permit must reapply at least 90 days in advance of this permit expiration. The Division will determine if the permittee may continue to discharge stormwater under the terms of the general permit. An individual permit may be required for any facility not reauthorized to discharge under the reissued general permit. If this permit is not reissued or replaced prior to the expiration date, it will be administratively continued and remain in force and effect. For permittees that have applied for continued permit coverage, discharges authorized under this permit prior to the expiration date will automatically remain covered by this permit until the earliest of: - i. An authorization to discharge under a reissued permit, or a replacement of this permit, following the timely and appropriate submittal of a complete application requesting authorization to discharge under the new permit and compliance with the requirements of the new permit; or - ii. The issuance and effect of a termination issued by the Division; or - iii. The issuance or denial of an individual permit for the facility's discharges; or - iv. A formal permit decision by the Division not to reissue this general permit, at which time the Division will identify a reasonable time period for covered dischargers to seek coverage under an alternative general permit or an individual permit. Coverage under this permit will cease when coverage under another permit is granted/authorized; or - v. The Division has informed the permittee that discharges previously authorized under this permit are no longer covered under this permit. # **B. EFFLUENT LIMITATIONS** 1. Requirements for Control Measures Used to Meet Effluent Limitations The permittee must implement control measures to minimize the discharge of pollutants from all potential pollutant sources at the site. Control measures must be installed prior to commencement of activities that may contribute pollutants to stormwater discharges. Control measures must be selected, designed, installed and maintained in accordance with good engineering, hydrologic and pollution control practices. Control measures implemented at the site must be designed to prevent pollution or degradation of state waters. a. Stormwater Pollution Prevention The permittee must implement structural and/or nonstructural control measures that effectively minimize erosion, sediment transport, and the release of other pollutants related to construction activity. i. Control Measures for Erosion and Sediment Control Control measures for erosion and sediment control may include, but are not limited to, wattles/sediment control logs, silt fences, earthen dikes, drainage swales, sediment traps, subsurface drains, pipe slope drains, inlet protection, outlet protection, gabions, sediment basins, temporary vegetation, permanent vegetation, mulching, geotextiles, sod stabilization, slope roughening, maintaining existing vegetation, protection of trees, and preservation of mature vegetation. Specific non-structural control measures must meet the requirements listed below. Specific control measures must meet the requirements listed below. - (a) Vehicle tracking controls shall either be implemented to minimize vehicle tracking of sediment from disturbed areas, or the areas where vehicle tracking occurs shall meet subsection Part I.B.1.a.i(b); - (b) Stormwater runoff from all disturbed areas and soil storage areas for which permanent or temporary stabilization is not implemented, must flow to at least one control measure to minimize sediment in the discharge. This may be accomplished through filtering, settling, or straining. The control measure must be selected, designed, installed and adequately sized in accordance with good engineering, hydrologic and pollution control practices. The control measure(s) must contain or filter flows in order to prevent the bypass of flows without treatment and must be appropriate for stormwater runoff from disturbed areas and for the expected flow rate, duration, and flow conditions (i.e., sheet or concentrated flow); - (c) Outlets that withdraw water from or near the surface shall be installed when discharging from basins and impoundments, unless infeasible. - (d) Maintain pre-existing vegetation or equivalent control measures for areas within 50 horizontal feet of receiving waters as defined by this permit, unless infeasible. - (e) Soil compaction must be minimized for areas where infiltration control measures
will occur or where final stabilization will be achieved through vegetative cover. - (f) Unless infeasible, topsoil shall be preserved for those areas of a site that will utilize vegetative final stabilization. - (g) Minimize the amount of soil exposed during construction activity, including the disturbance of steep slopes. ## ii. Practices for Other Common Pollutants - (a) Bulk storage, 55 gallons or greater, for petroleum products and other liquid chemicals must have secondary containment, or equivalent protection, in order to contain spills and to prevent spilled material from entering state waters. - (b) Control measures designed for concrete washout waste must be implemented. This includes washout waste discharged to the ground as authorized under this permit and washout waste from concrete trucks and masonry operations contained on site. The permittee must ensure the washing activities do not contribute pollutants to stormwater runoff, or receiving waters in accordance Part I.A.1.b.ii. Discharges that may reach groundwater must flow through soil that has buffering capacity prior to reaching groundwater, as necessary to meet the effluent limits in this permit, including Part I.B.3.a. The concrete washout location shall be not be located in an area where shallow groundwater may be present and would result in buffering capacity not being adequate, such as near natural drainages, springs, or wetlands. This permit authorizes discharges to the ground of concrete washout waste. ## iii. Stabilization Requirements The following requirements must be implemented for each site. - (a) Temporary stabilization must be implemented for earth disturbing activities on any portion of the site where ground disturbing construction activity has permanently ceased, or temporarily ceased for more than 14 calendar days. Temporary stabilization methods may include, but are not limited to, tarps, soil tackifier, and hydroseed. The permittee may exceed the 14-day schedule when either the function of the specific area of the site requires it to remain disturbed, or, physical characteristics of the terrain and climate prevent stabilization. The SWMP must document the constraints necessitating the alternative schedule, provide the alternate stabilization schedule, and identify all locations where the alternative schedule is applicable on the site map. - (b) Final stabilization must be implemented for all construction sites. Final stabilization is reached when all ground surface disturbing activities at the construction site are complete; and, for all areas of ground surface disturbing activities, either a uniform vegetative cover with an individual plant density of at least 70 percent of pre-disturbance levels is established, or equivalent permanent alternative stabilization methods are implemented. The division may approve alternative final stabilization criteria for specific operations. - (c) Final stabilization must be designed and installed as a permanent feature. Final stabilization measures for obtaining a vegetative cover or alternative stabilization methods include, but are not limited to, the following as appropriate: - (1) Seed mix selection and application methods; - (2) Soil preparation and amendments; - (3) Soil stabilization methods (e.g., crimped straw, hydro mulch or rolled erosion control products); - (4) Appropriate sediment control measures as needed until final stabilization is achieved; - (5) Permanent pavement, hardscape, xeriscape, stabilized driving surfaces; - (6) Other alternative stabilization practices as applicable; (d) The permittee(s) must ensure all temporary control measures are removed from the construction site once final stabilization is achieved, except when the control measure specifications allow the control measure to be left in place (i.e., bio-degradable control measures). #### b. Maintenance The permittee must ensure that all control measures remain in effective operating condition and are protected from activities that would reduce their effectiveness. Control measures must be maintained in accordance with good engineering, hydrologic and pollution control practices. Observations leading to the required maintenance of control measures can be made during a site inspection, or during general observations of site conditions. The necessary repairs or modifications to a control measure requiring routine maintenance, as defined in Part I.E., must be conducted to maintain an effective operating condition. This section is not subject to the requirements in Part I.B.1.c. below. #### c. Corrective Actions The permittee must assess the adequacy of control measures at the site, and the need for changes to those control measures, to ensure continued effective performance. When an inadequate control measure, as defined in Part I.E., is identified (i.e., new or replacement control measures become necessary), the following corrective action requirements apply. The permittee is in noncompliance with the permit until the inadequate control measure is replaced or corrected and returned to effective operating condition in compliance with Part I.B.1. and the general requirements in Part I.B.3. If the inadequate control measure results in noncompliance that meets the conditions of Part II.L., the permittee must also meet the requirements of that section. - i. The permittee must take all necessary steps to minimize or prevent the discharge of pollutants, until a control measure is implemented and made operational and/or an inadequate control measure is replaced or corrected and returned to effective operating condition. If it is infeasible to install or repair of control measure immediately after discovering the deficiency, the following must be documented and kept on record in accordance with the recordkeeping requirements in Part II. - (a) Describe why it is infeasible to initiate the installation or repair immediately; and - (b) Provide a schedule for installing or repairing the control measure and returning it to an effective operating condition as soon as possible. - ii. If applicable, the permittee must remove and properly dispose of any unauthorized release or discharge (e.g., discharge of non-stormwater, spill, or leak not authorized by this permit.) The permittee must also clean up any contaminated surfaces to minimize discharges of the material in subsequent storm events. #### 2. Discharges to an Impaired Waterbody a. Total Maximum Daily Load (TMDL) If the permittee's discharge flows to or could reasonably be expected to flow to any water body for which a TMDL has been approved, and stormwater discharges associated with construction activity were assigned a pollutant-specific Wasteload Allocation (WLA) under the TMDL, the division may: - i. ensure the WLA is implemented properly through alternative local requirements, such as by a municipal stormwater permit; or - ii. notify the permittee of the WLA and amend the permittee's certification to add specific effluent limits and other requirements, as appropriate. The permittee may be required to do the following: - (a) under the permittee's SWMP, implement specific control measures based on requirements of the WLA, and evaluate whether the requirements are met through implementation of existing stormwater control measures or if additional control measures are necessary. Document the calculations or other evidence demonstrating that the requirements are expected to be met; and - (b) if the evaluation shows that additional or modified control measures are necessary, describe the type and schedule for the control measure additions or modifications. - iii. Discharge monitoring may also be required. The permittee may maintain coverage under the general permit provided they comply with the applicable requirements outlined above. The division reserves the right to require individual or alternate general permit coverage. ## 3. General Requirements - a. Discharges authorized by this permit shall not cause, have the reasonable potential to cause, or measurably contribute to an exceedance of any applicable water quality standard, including narrative standards for water quality. - b. The division may require sampling and testing, on a case-by-case basis, in the event that there is reason to suspect that the SWMP is not adequately minimizing pollutants in stormwater or in order to measure the effectiveness of the control measures in removing pollutants in the effluent. Such monitoring may include Whole Effluent Toxicity testing. - c. The permittee must comply with the lawful requirements of federal agencies, municipalities, counties, drainage districts and other local agencies including applicable requirements in Municipal Stormwater Management Programs developed to comply with CDPS permits. The permittee must comply with local stormwater management requirements, policies and guidelines including those for erosion and sediment control. - d. All construction site wastes must be properly managed to prevent potential pollution of state waters. This permit does not authorize on-site waste disposal. - e. This permit does not relieve the permittee of the reporting requirements in 40 CFR 110, 40 CFR 117 or 40 CFR 302. Any discharge of hazardous material must be handled in accordance with the division's Noncompliance Notification Requirements (see Part II.L. of the permit). PART I Permit No.: COR400000 #### C. STORMWATER MANAGEMENT PLAN (SWMP) REQUIREMENTS #### 1. SWMP General Requirements - a. A SWMP shall be developed for each construction site covered by this permit. The SWMP must be prepared in accordance with good engineering, hydrologic and pollution control practices. - i. For public emergency related sites a SWMP shall be created no later than 14 days after the commencement of construction activities. - b. The permittee must implement the provisions of the SWMP as written and updated, from commencement of construction activity until final stabilization is complete. The
division may review the SWMP. - c. A copy of the SWMP must be retained onsite or be onsite when construction activities are occurring at the site unless the permittee specifies another location and obtains approval from the division. #### 2. SWMP Content - a. The SWMP, at a minimum, must include the following elements. - i. <u>Qualified Stormwater Manager</u>. The SWMP must list individual(s) by title and name who are designated as the site's qualified stormwater manager(s) responsible for implementing the SWMP in its entirety. This role may be filled by more than one individual. - ii. Spill Prevention and Response Plan. The SWMP must have a spill prevention and response plan. The plan may incorporate by reference any part of a Spill Prevention Control and Countermeasure (SPCC) plan under section 311 of the Clean Water Act (CWA) or a Spill Prevention Plan required by a separate CDPS permit. The relevant sections of any referenced plans must be available as part of the SWMP consistent with Part I.C.4. - iii. <u>Materials Handling</u>. The SWMP must describe and locate all control measures implemented at the site to minimize impacts from handling significant materials that could contribute pollutants to runoff. These handling procedures can include control measures for pollutants and activities such as, exposed storage of building materials, paints and solvents, landscape materials, fertilizers or chemicals, sanitary waste material, trash and equipment maintenance or fueling procedures. - iv. <u>Potential Sources of Pollution.</u> The SWMP must list all potential sources of pollution which may reasonably be expected to affect the quality of stormwater discharges associated with construction activity from the site. This shall include, but is not limited to, the following pollutant sources: - (a) disturbed and stored soils; - (b) vehicle tracking of sediments; - (c) management of contaminated soils; - (d) loading and unloading operations; - (e) outdoor storage activities (erodible building materials, fertilizers, chemicals, etc.); - (f) vehicle and equipment maintenance and fueling; - (g) significant dust or particulate generating processes (e.g., saw cutting material, including dust); - (h) routine maintenance activities involving fertilizers, pesticides, herbicides, detergents, fuels, solvents, oils, etc.; - (i) on-site waste management practices (waste piles, liquid wastes, dumpsters); - (j) concrete truck/equipment washing, including washing of the concrete truck chute and associated fixtures and equipment; - (k) dedicated asphalt, concrete batch plants and masonry mixing stations; - (l) non-industrial waste sources such as worker trash and portable toilets. - v. <u>Implementation of Control Measures.</u> The SWMP must include design specifications that contain information on the implementation of the control measure in accordance with good engineering hydrologic and pollution control practices; including as applicable drawings, dimensions, installation information, materials, implementation processes, control measure-specific inspection expectations, and maintenance requirements. The SWMP must include a documented use agreement between the permittee and the owner or operator of any control measures located outside of the permitted area, that are utilized by the permittee's construction site for compliance with this permit, but not under the direct control of the permittee. The permittee is responsible for ensuring that all control measures located outside of their permitted area, that are being utilized by the permittee's construction site, are properly maintained and in compliance with all terms and conditions of the permit. The SWMP must include all information required of and relevant to any such control measures located outside the permitted area, including location, installation specifications, design specifications and maintenance requirements. - vi. <u>Site Description</u>. The SWMP must include a site description which includes, at a minimum, the following: - (a) the nature of the construction activity at the site; - (b) the proposed schedule for the sequence for major construction activities and the planned implementation of control measures for each phase. (e.g.: clearing, grading, utilities, vertical, etc.); - (c) estimates of the total acreage of the site, and the acreage expected to be disturbed by clearing, excavation, grading, or any other construction activities; - (d) a summary of any existing data used in the development of the construction site plans or SWMP that describe the soil or existing potential for soil erosion; - (e) a description of the percent of existing vegetative ground cover relative to the entire site and the method for determining the percentage; - (f) a description of any allowable non-stormwater discharges at the site, including those being discharged under a division low risk discharge guidance policy; - (g) a description of areas receiving discharge from the site. Including a description of the immediate source receiving the discharge. If the stormwater discharge is to a municipal separate storm sewer system, the name of the entity owning that system, the location of the storm sewer discharge, and the ultimate receiving water(s); and - (h) a description of all stream crossings located within the construction site boundary. - vii. <u>Site Map</u>. The SWMP must include a site map which includes, at a minimum, the following: - (a) construction site boundaries; - (b) flow arrows that depict stormwater flow directions on-site and runoff direction; - (c) all areas of ground disturbance including areas of borrow and fill; - (d) areas used for storage of soil; - (e) locations of all waste accumulation areas, including areas for liquid, concrete, masonry, and asphalt; - (f) locations of dedicated asphalt, concrete batch plants and masonry mixing stations: - (g) locations of all structural control measures; - (h) locations of all non-structural control measures; - (i) locations of springs, streams, wetlands and other state waters, including areas that require pre-existing vegetation be maintained within 50 feet of a receiving water, where determined feasible in accordance with Part I.B.1.a.i.(d).; and - (j) locations of all stream crossings located within the construction site boundary. - viii. Final Stabilization and Long Term Stormwater Management. The SWMP must describe the practices used to achieve final stabilization of all disturbed areas at the site and any planned practices to control pollutants in stormwater discharges that will occur after construction operations are completed. Including but not limited to, detention/retention ponds, rain gardens, stormwater vaults, etc. - ix. Inspection Reports. The SWMP must include documented inspection reports in accordance with Part ID. - 3. SWMP Review and Revisions Permittees must keep a record of SWMP changes made that includes the date and identification of the changes. The SWMP must be amended when the following occurs: - a. a change in design, construction, operation, or maintenance of the site requiring implementation of new or revised control measures; - **b.** the SWMP proves ineffective in controlling pollutants in stormwater runoff in compliance with the permit conditions; - c. control measures identified in the SWMP are no longer necessary and are removed; and - d. corrective actions are taken onsite that result in a change to the SWMP. For SWMP revisions made prior to or following a change(s) onsite, including revisions to sections addressing site conditions and control measures, a notation must be included in the SWMP that identifies the date of the site change, the control measure removed, or modified, the location(s) of those control measures, and any changes to the control measure(s). The permittee must ensure the site changes are reflected in the SWMP. The permittee is noncompliant with the permit until the SWMP revisions have been made. #### 4. SWMP Availability A copy of the SWMP must be provided upon request to the division, EPA, and any local agency with authority for approving sediment and erosion plans, grading plans or stormwater management plans within the time frame specified in the request. If the SWMP is required to be submitted to any of these entities, the submission must include a signed certification in accordance with Part I.A.3.e., certifying that the SWMP is complete and compliant with all terms and conditions of the permit. All SWMPs required under this permit are considered reports that must be available to the public under Section 308(b) of the CWA and Section 61.5(4) of the CDPS regulations. The permittee must make plans available to members of the public upon request. However, the permittee may claim any portion of a SWMP as confidential in accordance with 40 CFR Part 2. #### D. SITE INSPECTIONS Site inspections must be conducted in accordance with the following requirements. The required inspection schedules are a minimum frequency and do not affect the permittee's responsibility to implement control measures in effective operating condition as prescribed in the SWMP. Proper maintenance of control measures may require more frequent inspections. Site inspections shall start within 7 calendar days of the commencement of construction activities on site. #### 1. Person Responsible for Conducting Inspections The person(s) inspecting the site may be on the permittee's staff or a third party hired to conduct stormwater inspections under the direction of the permittee(s). The permittee is responsible for ensuring that the inspector is a qualified stormwater manager. #### 2. Inspection Frequency Permittees must conduct site inspections in accordance with one of the following minimum frequencies, unless the site meets the requirements of Part ID.3 a. At least one inspection every 7 calendar days. Or - b. At least one inspection every 14 calendar days, if post-storm event inspections are conducted
within 24 hours after the end of any precipitation or snowmelt event that causes surface erosion. Post-storm inspections may be used to fulfill the 14-day routine inspection requirement. - c. When site conditions make the schedule required in this section impractical, the permittee may petition the Division to grant an alternate inspection schedule. The alternative inspection schedule may not be implemented prior to written approval by the division and incorporation into the SWMP. - 3. Inspection Frequency for Discharges to Outstanding Waters Permittees must conduct site inspections at least once every 7 calendar days for sites that discharge to a water body designated as an Outstanding Water by the Water Quality Control Commission. 4. Reduced Inspection Frequency The permittee may perform site inspections at the following reduced frequencies when one of the following conditions exists: a. Post-Storm Inspections at Temporarily Idle Sites For permittees choosing to combine 14-day inspections and post-storm-eventinspections, if no construction activities will occur following a storm event, post-storm event inspections must be conducted prior to re-commencing construction activities, but no later than 72 hours following the storm event. The delay of any post-storm event inspection must be documented in the inspection record. Routine inspections must still be conducted at least every 14 calendar days. #### b. Inspections at Completed Sites/Areas When the site, or portions of a site are awaiting establishment of a vegetative ground cover and final stabilization, the permittee must conduct a thorough inspection of the stormwater management system at least once every 30 days. Post-storm event inspections are not required under this schedule. This reduced inspection schedule is allowed if all of the following criteria are met: - i. all construction activities resulting in ground disturbance are complete; - ii. all activities required for final stabilization, in accordance with the SWMP, have been completed, with the exception of the application of seed that has not occurred due to seasonal conditions or the necessity for additional seed application to augment previous efforts; and - iii. the SWMP has been amended to locate those areas to be inspected in accordance with the reduced schedule allowed for in this paragraph. - c. Winter Conditions Inspections Exclusion Inspections are not required for sites that meet all of the following conditions: construction activities are temporarily halted, snow cover exists over the entire site for an extended period, and melting conditions posing a risk of surface erosion do not exist. This inspection exception is applicable only during the period where melting conditions do not exist, and applies to the routine 7-day, 14-day and monthly inspections, as well as the post-storm-event inspections. When this inspection exclusion is implemented, the following information must be documented in accordance with the requirements in Part II: - i. dates when snow cover existed; - ii. date when construction activities ceased; and - iii. date melting conditions began. #### 5. Inspection Scope #### a. Areas to be Inspected When conducting a site inspection the following areas, if applicable, must be inspected for evidence of, or the potential for, <u>pollutants</u> leaving the construction site boundaries, entering the stormwater drainage system, or discharging to state waters: - i. construction site perimeter; - ii. all disturbed areas; - iii. designated haul routes; - iv. material and waste storage areas exposed to precipitation; - v. locations where stormwater has the potential to discharge offsite; and - vi. locations where vehicles exit the site. #### b. Inspection Requirements - i. Visually verify whether all implemented control measures are in effective operational condition and are working as designed in their specifications to minimize pollutant discharges. - ii. Determine if there are new potential sources of pollutants. - iii. Assess the adequacy of control measures at the site to identify areas requiring new or modified control measures to minimize pollutant discharges. - iv. Identify all areas of non-compliance with the permit requirements and, if necessary, implement corrective action in accordance with Part IB.1.c. #### c. Inspection Reports The permittee must keep a record of all inspections conducted for each permitted site. Inspection reports must identify any incidents of noncompliance with the terms and conditions of this permit. Inspection records must be retained in accordance with Part I.O. and signed in accordance with Part I.A.3.f. At a minimum, the inspection report must include: i. the inspection date; - ii. name(s) and title(s) of personnel conducting the inspection; - iii. weather conditions at the time of inspection; - iv. phase of construction at the time of inspection; - v. estimated acreage of disturbance at the time of inspection - vi. location(s) of discharges of sediment or other pollutants from the site; - vii. location(s) of control measures needing maintenance; - viii. location(s) and identification of inadequate control measures; - ix. location(s) and identification of additional control measures are needed that were not in place at the time of inspection; - x. description of the minimum inspection frequency (either in accordance with Part I.D.2., I.D.3. or I.D.4.) utilized when conducting each inspection. - xi. deviations from the minimum inspection schedule as required in Part I.D.2.; - xii. after adequate corrective action(s) and maintenance have been taken, or where a report does not identify any incidents requiring corrective action or maintenance, the report shall contain a statement as required in Part I.A.3.f. #### E. DEFINITIONS For the purposes of this permit: - (1) Bypass the intentional diversion of waste streams from any portion of a treatment facility in accordance with 40 CFR 122.41(m)(1)(i) and Regulation 61.2(12). - (2) Common Plan of Development or Sale A contiguous area where multiple separate and distinct construction activities may be taking place at different times on different schedules, but remain related. The Division has determined that "contiguous" means construction activities located in close proximity to each other (within ¼ mile). Construction activities are considered to be "related" if they share the same development plan, builder or contractor, equipment, storage areas, etc. "Common plan of development or sale" includes construction activities that are associated with the construction of field wide oil and gas permits for facilities that are related. - (3) Construction Activity Ground surface disturbing and associated activities (land disturbance), which include, but are not limited to, clearing, grading, excavation, demolition, installation of new or improved haul roads and access roads, staging areas, stockpiling of fill materials, and borrow areas. Construction does not include routine maintenance to maintain the original line and grade, hydraulic capacity, or original purpose of the facility. Activities to conduct repairs that are not part of routine maintenance or for replacement are construction activities and are not routine maintenance. Repaving activities where underlying and/or surrounding soil is exposed as part of the repaving operation are considered construction activities. Construction activity is from initial ground breaking to final stabilization regardless of ownership of the construction activities. - (4) Control Measure Any best management practice or other method used to prevent or reduce the discharge of pollutants to state waters. Control measures include, but are not limited to, best management practices. Control measures can include other methods such as the installation, operation, and maintenance of structural controls and treatment devices. - (5) Control Measure Requiring Routine Maintenance Any control measure that is still operating in accordance with its design and the requirements of this permit, but requires maintenance to prevent a breach of the control measure. See also inadequate control measure. - (6) Dedicated Asphalt, Concrete Batch Plants and Masonry Mixing Stations are batch plants or mixing stations located on, or within ¼ mile of, a construction site and that provide materials only to that specific construction site. - (7) Final Stabilization The condition reached when all ground surface disturbing activities at the site have been completed, and for all areas of ground surface disturbing activities where a uniform vegetative cover has been established with an individual plant density of at least 70 percent of predisturbance levels, or equivalent permanent, physical erosion reduction methods have been employed. - (8) Good Engineering, Hydrologic and Pollution Control Practices: are methods, procedures, and practices that: - a. Are based on basic scientific fact(s). - b. Reflect best industry practices and standards. - c. Are appropriate for the conditions and pollutant sources. - d. Provide appropriate solutions to meet the associated permit requirements, including practice based effluent limits. - (9) Inadequate Control Measure Any control measure that is not designed or implemented in accordance with the requirements of the permit and/or any control measure that is not implemented to operate in accordance with its design. See also Control Measure Requiring Routine Maintenance. - (10) Infeasible Not technologically possible, or not economically practicable and achievable in light of best industry practices. - (11) Minimize reduce or eliminate to the extent achievable using control measures that are technologically available and economically practicable and achievable in light of best industry practice. - (12) Municipality A city, town, county, district, association, or other public body created by, or under, State law and having jurisdiction over disposal of sewage, industrial
wastes, or other wastes, or a designated and approved management agency under section 208 of CWA (1987). - (13) Municipal Separate Storm Sewer System (MS4) A conveyance or system of conveyances (including roads with drainage systems, municipal streets, catch basins, curbs, gutters, ditches, man-made channels, or storm drains): - a) owned or operated by a State, city, town, county, district, association, or other public body (created by or pursuant to State law) having jurisdiction over disposal of sewage, industrial wastes, stormwater, or other wastes, including special districts under State law such as a sewer district, flood control district or drainage district, or similar entity, or a designated and approved management agency under section 208 of the CWA that discharges to state waters; - i. designed or used for collecting or conveying stormwater; - ii. are not a combined sewer; and - iii. are not part of a Publicly Owned Treatment Works (POTW). See 5 CCR 1002-61.2(62). - (14) Municipal Stormwater Management Program A stormwater program operated by a municipality, typically to meet the requirements of the municipalities MS4 discharge certification. (15) Operator - The party that has operational control over day-to-day activities at a project site which are necessary to ensure compliance with the permit. This party is authorized to direct individuals at a site to carry out activities required by the permit. (e.g. the general contractor) - (16) Owner The party that has overall control of the activities and that has funded the implementation of the construction plans and specifications. This is the party with ownership of, a long term lease of, or easements on the property on which the construction activity is occurring (e.g., the developer). - (17) Permittee(s) The owner <u>and</u> operator named in the discharge certification issued under this permit for the construction site specified in the certification. - (18) Point Source Any discernible, confined, and discrete conveyance, including, but not limited to, any pipe, ditch, channel, tunnel, conduit, well, discrete fissure, container, rolling stock, concentrated animal feeding operation, or vessel or other floating craft, from which pollutants are or may be discharged. Point source does not include irrigation return flow. See 5 CCR 102-61.2(75). - (19) Pollutant Dredged spoil, dirt, slurry, solid waste, incinerator residue, sewage, sewage sludge, garbage, trash, chemical waste, biological nutrient, biological material, radioactive material, heat, wrecked or discarded equipment, rock, sand, or any industrial, municipal or agricultural waste. See 5 CCR 1002-61.2(76). - (20) Presentation of credentials a government issued form of identification, if in person; or (ii) providing name, position and purpose of inspection if request to enter is made via telephone, email or other form of electronic communication. A Permittee's non-response to a request to enter upon presentation of credentials constitutes a denial to such request, and may result in violation of the Permit. - (21) Process Water Any water which, during manufacturing or processing, comes into contact with or results from the production of any raw material, intermediate product, finished product, by product or waste product. - (22) Public Emergency Related Site a project initiated in response to an unanticipated emergency (e.g., mud slides, earthquake, extreme flooding conditions, disruption in essential public services), for which the related work requires immediate authorization to avoid imminent endangerment to human health or the environment, or to reestablish essential public services. - (23) Qualified Stormwater Manager An individual knowledgeable in the principles and practices of erosion and sediment control and pollution prevention, and with the skills to assess conditions at construction sites that could impact stormwater quality and to assess the effectiveness of stormwater controls implemented to meet the requirements of this permit. - (24) Qualifying Local Program A municipal program for stormwater discharges associated with small construction activity that was formally approved by the division as a qualifying local program. - (25) Receiving Water Any classified or unclassified surface water segment (including tributaries) in the State of Colorado into which stormwater associated with construction activities discharges. This definition includes all water courses, even if they are usually dry, such as borrow ditches, arroyos, and other unnamed waterways. - (26) Severe Property Damage substantial physical damage to property, damage to the treatment facilities which causes them to become inoperable, or substantial and permanent loss of natural resources which can reasonably be expected to occur in the absence of a bypass. Severe property damage does not mean economic loss caused by delays in production. See 40 CFR 122.41(m)(1)(ii). (27) Significant Materials - Include, but not limited to, raw materials; fuels; materials such as solvents, detergents, and plastic pellets; finished materials such as metallic products; raw materials used in food processing or production; hazardous substances designated under section 101(14) of CERCLA; any chemical the permittee is required to report under section 313 of Title III of the Superfund Amendments and Reauthorization Act (SARA); fertilizers; pesticides; and waste products such as ashes, slag and sludge that have the potential to be released with stormwater discharges. - (28) Small Construction Activity The discharge of stormwater from construction activities that result in land disturbance of equal to, or greater than, one acre and less than five acres. Small construction activity also includes the disturbance of less than one acre of total land area that is part of a larger common plan of development or sale, if the larger common plan ultimately disturbs equal to, or greater than, one acre and less than five acres. - (29) Spill An unintentional release of solid or liquid material which may pollute state waters. - (30) State Waters means any and all surface and subsurface waters which are contained in or flow in or through this state, but does not include waters in sewage systems, waters in treatment works of disposal systems, waters in potable water distribution systems, and all water withdrawn for use until use and treatment have been completed. - (31) Steep Slopes: where a local government, or industry technical manual (e.g., stormwater BMP manual) has defined what is to be considered a "steep slope", this permit's definition automatically adopts that definition. Where no such definition exists, steep slopes are automatically defined as those that are 3:1 or greater. - (32) Stormwater Precipitation runoff, snow melt runoff, and surface runoff and drainage. See 5 CCR 1002-61.2(103). - (33) Total Maximum Daily Loads (TMDLs) -The sum of the individual wasteload allocations (WLA) for point sources and load allocations (LA) for nonpoint sources and natural background. For the purposes of this permit, a TMDL is a calculation of the maximum amount of a pollutant that a waterbody can receive and still meet water quality standards, and an allocation of that amount to the pollutant's sources. A TMDL includes WLAs, LAs, and must include a margin of safety (MOS), and account for seasonal variations. See section 303(d) of the CWA and 40 C.F.R. 130.2 and 130.7. - (34) Upset an exceptional incident in which there is unintentional and temporary noncompliance with permit effluent limitations because of factors beyond the reasonable control of the permittee. An upset does not include noncompliance to the extent caused by operational error, improperly designed treatment facilities, inadequate treatment facilities, lack of preventative maintenance, or careless or improper operation in accordance with 40 CFR 122.41(n) and Regulation 61.2(114). #### F. MONITORING The division may require sampling and testing, on a case-by-case basis. If the division requires sampling and testing, the division will send a notification to the permittee. Reporting procedures for any monitoring data collected will be included in the notification. If monitoring is required, the following applies: - 1. the thirty (30) day average must be determined by the arithmetic mean of all samples collected during a thirty (30) consecutive-day period; and - 2. a grab sample, for monitoring requirements, is a single "dip and take" sample. #### G. Oil and Gas Construction Stormwater discharges associated with construction activities directly related to oil and gas exploration, production, processing, and treatment operations or transmission facilities are regulated under the Colorado Discharge Permit System Regulations (5 CCR 1002-61), and require coverage under this permit in accordance with that regulation. However, references in this permit to specific authority under the CWA do not apply to stormwater discharges associated with these oil and gas related construction activities, to the extent that the references are limited by the federal Energy Policy Act of 2005. #### Part II: Standard Permit Conditions #### A. DUTY TO COMPLY The permittee must comply with all conditions of this permit. Any permit noncompliance constitutes a violation of the Water Quality Control Act and is grounds for: - a. enforcement action; - b. permit termination, revocation and reissuance, or modification; or - c. denial of a permit renewal application. #### B. DUTY TO REAPPLY If the permittee wishes to continue an activity regulated by this permit after the expiration date of this permit, the permittee must apply for and obtain authorization as required by Part I.A.3.k. of the permit. #### C. NEED TO HALT OR REDUCE ACTIVITY NOT A DEFENSE It shall not be a defense for a permittee in an enforcement action that it would have been necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions
of this permit. #### D. DUTY TO MITIGATE A permittee must take all reasonable steps to minimize or prevent any discharge in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment. #### E. PROPER OPERATION AND MAINTENANCE A permittee must at all times properly operate and maintain all facilities and systems of treatment and control (and related appurtenances) that are installed or used by the permittee to achieve compliance with the conditions of this permit. Proper operation and maintenance also includes adequate laboratory controls and appropriate quality assurance procedures. This provision requires the operation of backup or auxiliary facilities or similar systems which are installed by the permittee only when the operation is necessary to achieve compliance with the conditions of this permit. This requirement can be met by meeting the requirements for Part I.B., I.C., and I.D. above. See also 40 C.F.R. § 122.41(e). #### F. PERMIT ACTIONS This permit may be modified, revoked and reissued, or terminated for cause. The permittee request for a permit modification, revocation and reissuance, or termination, or a notification of planned changes or anticipated noncompliance does not stay any permit condition. Any request for modification, revocation, reissuance, or termination under this permit must comply with all terms and conditions of Regulation 61.8(8). #### G. PROPERTY RIGHTS In accordance with 40 CFR 122.41(g) and 5 CCR 1002-61, 61.8(9): 1. The issuance of a permit does not convey any property or water rights in either real or personal property, or stream flows or any exclusive privilege. 2. The issuance of a permit does not authorize any injury to person or property or any invasion of personal rights, nor does it authorize the infringement of federal, state, or local laws or regulations. 3. Except for any toxic effluent standard or prohibition imposed under Section 307 of the Federal act or any standard for sewage sludge use or disposal under Section 405(d) of the Federal act, compliance with a permit during its term constitutes compliance, for purposes of enforcement, with Sections 301, 302, 306, 318, 403, and 405(a) and (b) of the Federal act. However, a permit may be modified, revoked and reissued, or terminated during its term for cause as set forth in Section 61.8(8) of the Colorado Discharge Permit System Regulations. #### H. DUTY TO PROVIDE INFORMATION The permittee shall furnish to the division, within a reasonable time, any information which the division may request to determine whether cause exists for modifying, revoking and reissuing, or terminating this permit, or to determine compliance with this permit. The permittee shall also furnish to the division, upon request, copies of records required to be kept by this permit in accordance with 40 CFR 122.41(h) and/or Regulation 61.8(3)(q). #### I. INSPECTION AND ENTRY The permittee shall allow the division and the authorized representative, upon the presentation of credentials as required by law, to allow for inspections to be conducted in accordance with 40 CFR 122.41(i), Regulation 61.8(3), and Regulation 61.8(4): - 1. to enter upon the permittee's premises where a regulated facility or activity is located or in which any records are required to be kept under the terms and conditions of this permit; - 2. at reasonable times to have access to and copy any records required to be kept under the terms and conditions of this permit; - 3. at reasonable times, inspect any monitoring equipment or monitoring method required in the permit; and - 4. to enter upon the permittee's premises in a reasonable manner and at a reasonable time to inspect or investigate, any actual, suspected, or potential source of water pollution, or any violation of the Colorado Water Quality Control Act. The investigation may include: sampling of any discharges, stormwater or process water, taking of photographs, interviewing site staff on alleged violations and other matters related to the permit, and assessing any and all facilities or areas within the site that may affect discharges, the permit, or an alleged violation. The permittee shall provide access to the division or other authorized representatives upon presentation of proper credentials. A permittee's non-response to a request to enter upon presentation of credentials constitutes a denial of such request, and may result in a violation of the permit. #### J. MONITORING AND RECORDS 1. Samples and measurements taken for the purpose of monitoring must be representative of the volume and nature of the monitored activity. - 2. The permittee must retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by this permit, and records of all data used to complete the application for this permit, for a period of at least three years from the date the permit expires or the date the permittee's authorization is terminated. This period may be extended by request of the division at any time. - 3. Records of monitoring information must include: - a. The date, exact place, and time of sampling or measurements; - b. The individual(s) who performed the sampling or measurements; - c. The date(s) analyses were performed - d. The individual(s) who performed the analyses; - e. The analytical techniques or methods used; and - f. The results of such analyses. - 4. Monitoring must be conducted according to test procedures approved under 40 CFR Part 136, unless other test procedures have been specified in the permit. #### K. SIGNATORY REQUIREMENTS 1. Authorization to Sign: All documents required to be submitted to the division by the permit must be signed in accordance with the following criteria: - a. For a corporation: By a responsible corporate officer. For the purpose of this subsection, a responsible corporate officer means: - i. a president, secretary, treasurer, or vice president of the corporation in charge of a principal business function, or any other person who performs similar policy- or decision-making functions for the corporation, or - ii. the manager of one or more manufacturing, production, or operating facilities, provided, the manager is authorized to make management decisions which govern the operation of the regulated facility including having the explicit or implicit duty of making major capital investment recommendations, and initiating and directing other comprehensive measures to assure long term environmental compliance with environmental laws and regulations; the manager can ensure that the necessary systems are established or actions taken to gather complete and accurate information for permit application requirements; and where authority to sign documents has been assigned or delegated to the manager in accordance with corporate procedures. - b. For a partnership or sole proprietorship: By a general partner or the proprietor, respectively; or - c. For a municipality, state, federal, or other public agency: By either a principal executive officer or ranking elected official. For purposes of this subsection, a principal executive officer of a federal agency includes - i. (i) the chief executive officer of the agency, or ii. (ii) a senior executive officer having responsibility for the overall operations of a principal geographic unit of the agency. (e.g., Regional Administrator of EPA) #### 2. Electronic Signatures For persons signing applications for coverage under this permit electronically, in addition to meeting other applicable requirements stated above, such signatures must meet the same signature, authentication, and identity-proofing standards set forth at 40 CFR § 3.2000(b) for electronic reports (including robust second-factor authentication). Compliance with this requirement can be achieved by submitting the application using the Colorado Environmental Online Service (CEOS) system. #### 3. Change in Authorization to Sign If an authorization is no longer accurate because a different individual or position has responsibility for the overall operation of the facility, a new authorization must be submitted to the division, prior to the re-authorization, or together with any reports, information, or applications to be signed by an authorized representative. #### L. REPORTING REQUIREMENTS #### 1. Planned Changes The permittee shall give advance notice to the division, in writing, of any planned physical alterations or additions to the permitted facility in accordance with 40 CFR 122.41(l) and Regulation 61.8(5)(a). Notice is required only when: - a. The alteration or addition to a permitted facility may meet one of the criteria for determining whether a facility is a new source in 40 CFR 122.29(b); or - b. The alteration or addition could significantly change the nature or increase the quantity of pollutants discharged. This notification applies to pollutants which are subject neither to effluent limitations in the permit, nor to notification requirements under 40 CFR 122.41(a)(1). #### 2. Anticipated Non-Compliance The permittee shall give advance notice to the division, in writing, of any planned changes in the permitted facility or activity that may result in noncompliance with permit requirements. The timing of notification requirements differs based on the type of non-compliance as described in subparagraphs 5, 6, 7, and 8 below. #### 3. Transfer of Ownership or Control The permittee shall notify the division, in writing, ten (10) calendar days in advance of a proposed transfer of the permit. This permit is not transferable to any person except after notice is given to the division. a. Where a facility wants to change the name of the permittee, the original permittee (the first owner or operators) must submit a Notice of Termination. - **b.** The new owner or operator must submit an application. See
also signature requirements in Part II.K, above. - c. A permit may be automatically transferred to a new permittee if: - i. The current permittee notifies the Division in writing 30 calendar days in advance of the proposed transfer date; and - ii. The notice includes a written agreement between the existing and new permittee(s) containing a specific date for transfer of permit responsibility, coverage and liability between them; and - iii. The division does not notify the existing permittee and the proposed new permittee of its intent to modify, or revoke and reissue the permit. - iv. Fee requirements of the Colorado Discharge Permit System Regulations, Section 61.15, have been met. #### 4. Monitoring reports Monitoring results must be reported at the intervals specified in this permit per the requirements of 40 CFR 122.41(l)(4). #### 5. Compliance Schedules Reports of compliance or noncompliance with, or any progress reports on, interim and final requirements contained in any compliance schedule in the permit, shall be submitted on the date listed in the compliance schedule section. The fourteen (14) calendar day provision in Regulation 61.8(4)(n)(i) has been incorporated into the due date. #### 6. Twenty-four hour reporting In addition to the reports required elsewhere in this permit, the permittee shall report the following circumstances orally within twenty-four (24) hours from the time the permittee becomes aware of the circumstances, and shall mail to the division a written report containing the information requested within five (5) working days after becoming aware of the following circumstances: - a. Circumstances leading to any noncompliance which may endanger health or the environment regardless of the cause of the incident; - **b.** Circumstances leading to any unanticipated bypass which exceeds any effluent limitations in the permit; - c. Circumstances leading to any upset which causes an exceedance of any effluent limitation in the permit; d. Daily maximum violations for any of the pollutants limited by Part I of this permit. This includes any toxic pollutant or hazardous substance or any pollutant specifically identified as the method to control any toxic pollutant or hazardous substance. e. The division may waive the written report required under subparagraph 6 of this section if the oral report has been received within 24 hours. #### 7. Other non-compliance A permittee must report all instances of noncompliance at the time monitoring reports are due. If no monitoring reports are required, these reports are due at least annually in accordance with Regulation 61.8(4)(p). The annual report must contain all instances of non-compliance required under either subparagraph 5 or subparagraph 6 of this subsection. #### 8. Other information Where a permittee becomes aware that it failed to submit any relevant facts in a permit application, or submitted incorrect information in a permit application, or in any report to the Permitting Authority, it has a duty to promptly submit such facts or information. #### M. BYPASS #### 1. Bypass not exceeding limitations The permittees may allow any bypass to occur which does not cause effluent limitations to be exceeded, but only if it also is for essential maintenance to assure efficient operation. These bypasses are not subject to the provisions of Part II.M.2 of this permit. See 40 CFR 122.41(m)(2). #### 2. Notice of bypass - a. Anticipated bypass. If the permittee knows in advance of the need for a bypass, the permittee must submit prior notice, if possible at least ten days before the date of the bypass. ee 40 CFR §122.41(m)(3)(i) and/or Regulation 61.9(5)(c). - b. Unanticipated bypass. The permittee must submit notice of an unanticipated bypass in accordance with Part II.L.6. See 40 CFR §122.41(m)(3)(ii) . #### 3. Prohibition of Bypass Bypasses are prohibited and the division may take enforcement action against the permittee for bypass, unless: i. the bypass is unavoidable to prevent loss of life, personal injury, or severe property damage; ii. There were no feasible alternatives to the bypass, such as the use of auxiliary treatment facilities, retention of untreated wastes, or maintenance during normal periods of equipment downtime. This condition is not satisfied if adequate backup equipment should have been installed in the exercise of reasonable engineering judgment to prevent a bypass which occurred during normal periods of equipment downtime or preventive maintenance; and iii. proper notices were submitted to the division. #### N. UPSET #### 1. Effect of an upset An upset constitutes an affirmative defense to an action brought for noncompliance with permit effluent limitations if the requirements of Part II.N.2. of this permit are met. No determination made during administrative review of claims that noncompliance was caused by upset, and before an action for noncompliance, is final administrative action subject to judicial review in accordance with Regulation 61.8(3)(j). #### 2. Conditions necessary for demonstration of an Upset A permittee who wishes to establish the affirmative defense of upset shall demonstrate through properly signed contemporaneous operating logs, or other relevant evidence that - a. an upset occurred and the permittee can identify the specific cause(s) of the upset; - b. the permitted facility was at the time being properly operated and maintained; and - c. the permittee submitted proper notice of the upset as required in Part II.L.6.(24-hour notice); and - d. the permittee complied with any remedial measure necessary to minimize or prevent any discharge or sludge use or disposal in violation of this permit which has a reasonable likelihood of adversely affecting human health or the environment. In addition to the demonstration required above, a permittee who wishes to establish the affirmative defense of upset for a violation of effluent limitations based upon water quality standards shall also demonstrate through monitoring, modeling or other methods that the relevant standards were achieved in the receiving water. #### 3. Burden of Proof In any enforcement proceeding, the permittee seeking to establish the occurrence of an upset has the burden of proof. #### O. RETENTION OF RECORDS 1. Post-Expiration or Termination Retention Copies of documentation required by this permit, including records of all data used to complete the application for permit coverage to be covered by this permit, must be retained for at least three years from the date that permit coverage expires or is terminated. This period may be extended by request of EPA at any time. #### 2. On-site Retention The <u>permittee</u> must retain an electronic version or hardcopy of the SWMP at the construction site from the date of the initiation of construction activities to the date of expiration or inactivation of permit coverage; unless another location, specified by the permittee, is approved by the division. #### P. REOPENER CLAUSE 1. Procedures for modification or revocation Permit modification or revocation of this permit or coverage under this permit will be conducted according to Regulation 61.8(8). #### 2. Water quality protection If there is evidence indicating that the stormwater discharges authorized by this permit cause, have the reasonable potential to cause or contribute to an excursion above any applicable water quality standard, the permittee may be required to obtain an individual permit, or the permit may be modified to include different limitations and/or requirements. #### O. SEVERABILITY The provisions of this permit are severable. If any provisions or the application of any provision of this permit to any circumstances, is held invalid, the application of such provision to other circumstances and the application of the remainder of this permit shall not be affected. #### **R. NOTIFICATION REQUIREMENTS** #### Notification to Parties All notification requirements, excluding information submitted using the CEOS portal, shall be directed as follows: a. Oral Notifications, during normal business hours shall be to: Clean Water Compliance Section Water Quality Control Division Telephone: (303) 692-3500 b. Written notification shall be to: Clean Water Compliance Section Water Quality Control Division Colorado Department of Public Health and Environment WQCD-WQP-B2 4300 Cherry Creek Drive South Denver, CO 80246-1530 #### S. RESPONSIBILITIES #### 1. Reduction, Loss, or Failure of Treatment Facility The permittee has the duty to halt or reduce any activity if necessary to maintain compliance with the effluent limitations of the permit. It shall not be a defense for a permittee in an enforcement action that it would be necessary to halt or reduce the permitted activity in order to maintain compliance with the conditions of this permit. #### T. Oil and Hazardous Substance Liability Nothing in this permit shall be construed to preclude the institution of any legal action or relieve the permittee from any responsibilities, liabilities, or penalties to which the permittee is or may be subject to under Section 311 (Oil and Hazardous Substance Liability) of the CWA. #### **U.** Emergency Powers Nothing in this permit shall be construed to prevent or limit application of any emergency power of the division. #### V. Confidentiality Any information relating to any secret process, method of manufacture or production, or sales or marketing data which has been declared confidential by the permittee, and which may be acquired, ascertained, or discovered, whether in any sampling investigation, emergency investigation, or otherwise, shall not be publicly disclosed by any member, officer, or employee of the Water Quality Control Commission or the division, but shall be kept confidential. Any person seeking to invoke the protection of of this section shall bear the burden of proving its applicability. This section shall never be interpreted as preventing full disclosure of
effluent data. #### W. Fees The permittee is required to submit payment of an annual fee as set forth in the 2016 amendments to the Water Quality Control Act. Section 25-8-502 (1.1) (b), and the Colorado Discharge Permit System Regulations 5 CCR 1002-61, Section 61.15 as amended. Failure to submit the required fee when due and payable is a violation of the permit and will result in enforcement action pursuant to Section 25-8-601 et. seq., C.R.S.1973 as amended. #### X. Duration of Permit The duration of a permit shall be for a fixed term and shall not exceed five (5) years. If the permittee desires to continue to discharge, a permit renewal application shall be submitted at least ninety (90) calendar days before this permit expires. Filing of a timely and complete application shall cause the expired permit to continue in force to the effective date of the new permit. The permit's duration may be extended only through administrative extensions and not through interim modifications. If the permittee anticipates there will be no discharge after the expiration date of this permit, the division should be promptly notified so that it can terminate the permit in accordance with Part I.A.3.i. #### Y. Section 307 Toxics If a toxic effluent standard or prohibition, including any applicable schedule of compliance specified, is established by regulation pursuant to Section 307 of the Federal Act for a toxic pollutant which is present in the permittee's discharge and such standard or prohibition is more stringent than any limitation upon such pollutant in the discharge permit, the division shall institute proceedings to modify or revoke and reissue the permit to conform to the toxic effluent standard or prohibition # EROSION AND STORMWATER QUALITY CONTROL PERMIT (ESQCP) EL PASO COUNTY APPLICATION AND PERMIT #### **APPLICANT INFORMATION** | PFR | MIT | NIII | IBER | |------|--------|------|--------------| | FLIN | IVII I | IVUI | <i>no</i> Ln | | APPLICANT INFORMATION | PERIVIT NUIVIBER | |--|--| | Owner Information | | | Owner | Charter Development Company, LLC c/o National Heritage Academies | | Name (person of responsibility) | Joe Sprys | | Company/Agency | | | Position of Applicant | | | Address (physical address, not PO Box) | 3850 Broadmoor SE | | City | Grand Rapids | | State | Michigan | | Zip Code | 49512 | | Mailing address, if different from above | | | Telephone | (616) 929-1290 | | FAX number | N/A | | Email Address | jsprys@nhaschools.com | | Cellular Phone number | (734) 474-8029 | | Contractor/Operator Information | | | Name (person of responsibility) | William "Bill" Torres as General Contractor, however we will subcontract | | | this scope of work to a firm specializing in it. | | Company | Gilbane Building Company | | Address (physical address, not PO Box) | 304 Inverness Way S #200 | | City | Englewood | | State | CO | | Zip Code | 80112 | | Mailing address, if different from above | | | Telephone | 720-633-1268 | | FAX number | | | Email Address | wtorres@gilbaneco.com | | Cellular Phone number | 720-633-1268 | | Erosion Control Supervisor (ECS)* | TBD | | ECS Phone number* | TBD | | | | | ECS Cellular Phone number* | TBD | ^{*}Required for all applicants. May be provided at later date pending securing a contract when applicable. #### **PROJECT INFORMATION** | Project Information | | |--|---| | Project Name | Mountain View Academy. EGP202 and PPR208. | | Legal Description | Tract H, Claremont Ranch Filing No. 4 as recorded under Reception No. 204062712 of the records of the El Paso County Clerk and Recorder, County of El Paso, State of Colorado, containing 7.884 Acres or 343,420 Square Feet, more or less. | | Address (or nearest major cross streets) | 2103 Meadowbrook Parkway, Colorado Springs, CO 80951 | | Acreage (total and disturbed) | Total: 7.88 acres Disturbed: 7.88 acres | | Schedule | Start of Construction: April 01, 2020 Completion of Construction: August 01, 2020 Final Stabilization: August 2022 | | Project Purpose | This application's purpose is to allow for early site grading leading to the construction of a charter school as authorized by El Paso School District 49. | | Description of Project | Early site grading and then construction of civil infrastructure related to construction of a new school building including associated parking, permanent BMPs, and certain outdoor amenities appropriate for schools. | | Tax Schedule Number | 5404121002 | #### FOR OFFICE USE ONLY The following signature from the ECM Administrator signifies the approval of this ESQCP. All work shall be performed in accordance with the permit, the El Paso County Engineering Criteria Manual (ECM) Standards, City of Colorado Springs Drainage Criteria Manual, Volume 2 (DCM2) as adopted by El Paso County Addendum, approved plans, and any attached conditions. The approved plans are an enforceable part of the ESQCP. Construction activity, except for the installation of initial construction BMPs is not permitted until issuance of a Construction permit and Notice to Proceed. | Date | |------| | | #### 1.1 REQUIRED SUBMISSIONS In addition to this completed and signed application, the following items must be submitted to obtain an ESQCP: - Permit fees - Stormwater Management Plan (SWMP) meeting the requirements of DCM2 and ECM either as part of the plan set or as a separate document; - Cost estimates of construction and maintenance of construction and permanent stormwater control measures (Cost estimates shall be provided on a unit cost basis for all stormwater BMPs); - Financial surety in an amount agreeable to the ECM Administrator based on the cost estimates of the stormwater quality protection measures provided. The financial surety shall be provided in the form of a Letter of Credit, Surety with a Bonding Company, or other forms acceptable to El Paso County; - Operation and Maintenance Plan for any proposed permanent stormwater control measures; and - Signed Private Detention Basin/Stormwater Quality Best Management Practice Maintenance Agreement and Easement, if any permanent stormwater control measures are to be located on site. #### 1.2 RESPONSIBILITY FOR DAMAGE The County and its officers and employees, including but not limited to the ECM Administrator, shall not be answerable or accountable in any manner, for injury to or death of any person, including but not limited to a permit holder, persons employed by the permit holder, persons acting in behalf of the permit holder, or for damage to property resulting from any activities undertaken by a permit holder or under the direction of a permit holder. The permit holder shall be responsible for any liability imposed by law and for injuries to or death of any person, including but not limited to the permit holder, persons employed by the permit holder, persons acting in behalf of the permit holder, or damage to property arising out of work or other activity permitted and done by the permit holder under a permit, or arising out of the failure on the permit holder's part to perform the obligations under any permit in respect to maintenance or any other obligations, or resulting from defects or obstructions, or from any cause whatsoever during the progress of the work, or other activity, or at any subsequent time work or other activity is being performed under the obligations provided by and contemplated by the permit. To the extent allowed by law, the permit holder shall indemnify, save, and hold harmless the County and its officers and employees, including but not limited to the BOCC and ECM Administrator, from all claims, suits or actions of every name, kind and description brought for or on account of injuries to or death of any person, including but not limited to the permit holder, persons employed by the permit holder, persons acting in behalf of the permit holder and the public, or damage to property resulting from the performance of work or other activity under the permit, or arising out of the failure on the permit holder's part to perform his obligations under any permit in respect to maintenance or any other obligations, or resulting from defects or obstructions, or from any cause whatsoever during the progress of the work, or other activity or at any subsequent time work or other activity is being performed under the obligations provided by and contemplated by the permit, except as otherwise provided by state law. The permit holder waives any and all rights to any type of expressed or implied indemnity against the County, its officers or employees. #### 1.3 APPLICATION CERTIFICATION We, as the Applicants or the representative of the Applicants, hereby certify that this application is correct and complete as per the requirements presented in this application and the El Paso County <u>Engineering Criteria Manual</u> and <u>Drainage Criteria Manual</u>, <u>Volume 2</u> and El Paso County Addendum. We, as the Applicants or the representatives of the Applicants, have read and will comply with all of the requirements of the specified Stormwater Management Plan and any other documents specifying stormwater best management practices to be used on the site including permit conditions that may be required by the ECM Administrator. We understand that the stormwater control measures are to be maintained on the site and revised as necessary to protect stormwater quality as the project progresses. We further understand that a Construction Permit must be obtained and all necessary stormwater quality control measures are to be installed in accordance with the SWMP, the El Paso County
Engineering Criteria Manual, Drainage Criteria Manual, Volume 2 and El Paso County Addendum before land disturbance begins and that failure to comply will result in a Stop Work Order and may result in other penalties as allowed by law. We further understand and agree to indemnify, save, and hold harmless the County and its officers and employees, including but not limited to the BOCC and ECM Administrator, from all claims, suits or actions of every name, kind and description as outlined in Section 1.2 Responsibility for Damage. | Signature of Owner of | | | Date:_ | 1/17/20 | | |-----------------------|-----------------------|----------------|--------|---------|--| | Print Name of Owne | r or Representative | | | | | | | | | Date:_ | | | | Signature of Operato | or or Representative | | | | | | Print Name of Opera | tor or Representative | | | | | | Permit Fee | \$ | | | | | | Surcharge | \$ | | | | | | Financial Surety | \$ | Type of Surety | | | | | Total | \$ | | | | | StormwaterManagement Plan National Heritage Academies El Paso County, CO #### **APPENDIX B** #### **BMP DETAILS/SPECIFICATIONS** All BMP / Control Measure Details and specifications are contained in the standalone Pre-Development Grading and Erosion Control Plans, contained in Appendix E. # **Stormwater** Management Plan National Heritage Academies El Paso County, CO ### **APPENDIX C INSPECTION REPORTS** # CITY OF COLORADO SPRINGS | DATE/TIME: | |-------------------------------------| | INSPECTOR: | | TYPE OF INSPECTION: Self-Monitoring | | Initial Compliance Follow-Up | | Reconnaissance Complaint Final | | SITE: | DATE OF PERMIT: | |--|----------------------------------| | ADDRESS: | | | CONTRACTOR: | OWNER/OWNER'S REPRESENTATIVE: | | CONTACT: | CONTACT: | | PHONE: | PHONE: | | STAGE OF CONSTRUCTION: Initial BMP Installation/Prior to | Construction Clearing & Grubbing | | Rough Grading Finish Grading Utility Construction | n Building Construction | | Final Stabilization | | | OVERALL SITE INSPECTION | YES/NO/N.A. | REMARKS/ACTIONS | |--|-------------|-----------------| | Is there any evidence of sediment leaving the construction site? If so, note areas. | | | | Have any adverse impacts such as flooding, structural damage, erosion, spillage, or accumulation of sediment, debris or litter occurred on or within public or private property, wetlands or surface waters -to include intermittent drainageways and the City's stormwater system (storm sewers, gutters, ditches, etc.)? | | | | Are the BMPs properly installed and maintained? | | | | Have the BMPs been placed as shown on approved plans? | | | | Are the BMPs functioning as intended? | | | | Is work being done according to approved plans and any phased construction schedule? | | | | Is the construction schedule on track? | | | | Are drainage channels and outlets adequately stabilized? | | | | Is there any evidence of discharges or spills of fuels, lubricants, chemicals, etc.? | | | | BMP MAINTENANCE CHECKLIST | YES/NO/N.A. | REMARKS/ACTIONS
NECESSARY | |--|-------------|------------------------------| | CHECK DAM | | | | Has accumulated sediment and debris been removed per maintenance requirements? | | | | EROSION CONTROL BLANKET | | | | Is fabric damaged, loose or in need of repairs? | | | | INLET PROTECTION | | | | Is the inlet protection damaged, ineffective or in need of repairs? | | | | Has sediment been removed per maintenance requirements? | | | | MULCHING | | | | Distributed uniformly on all disturbed areas? | | | | Is the application rate adequate? | | | | Any evidence of mulch being blown or washed away? | | | | Has the mulched area been seeded, if necessary? | | | | SEDIMENT BASIN | | | | Is the sediment basin properly constructed and operational? | | | | Has sediment and debris been cleaned out of the basin? | | | | SILT FENCE | | | | Is the fence damaged, collapsed, unentrenched or ineffective? | | | | Has sediment been removed per maintenance requirements? | | | | Is the silt fence properly located? | | | | SLOPE DRAIN | | | | Is water bypassing or undercutting the inlet or pipe? | | | | Is erosion occurring at the outlet of the pipe? | | | | STRAW BALE BARRIER | | | | Are the straw bales damaged, ineffective or unentrenched? | | | | Has sediment been removed per maintenance requirements? | | | | Are the bales installed and positioned correctly? | | | | BMP MAINTENANCE CHECKLIST | YES/NO/N.A. | REMARKS/ACTIONS
NECESSARY | |---|-------------|------------------------------| | SURFACE ROUGHENING | | | | Is the roughening consistent/uniform on slopes?? | | | | Any evidence of erosion? | | | | TEMPORARY SEEDING | | | | Are the seedbeds protected by mulch? | | | | Has any erosion occurred in the seeded area? | | | | Any evidence of vehicle tracking on seeded areas? | | | | TEMPORARY SWALES | | | | Has any sediment or debris been deposited within the swales? | | | | Have the slopes of the swale eroded or has damage occurred to the lining? | | | | Are the swales properly located? | | | | VEHICLE TRACKING | | | | Is gravel surface clogged with mud or sediment? | | | | Is the gravel surface sinking into the ground? | | | | Has sediment been tracked onto any roads and has it been cleaned up? | | | | Is inlet protection placed around curb inlets near construction entrance? | | | | OTHER | | | | FINAL INSPECTION CHECKLIST | YES/NO/N.A. | REMARKS/ACTIONS
NECESSARY | |---|-------------|------------------------------| | Has all grading been completed in compliance with the approved Plan, and all stabilization completed, including vegetation, retaining walls or other approved measures? | | | | Has final stabilization been achieved – uniform vegetative cover with a density of at least 70 percent of pre-disturbance levels, and cover capable of adequately controlling soil erosion; or permanent, physical erosion methods? | | | | Have all stockpiles, construction materials and construction equipment been removed? | | | | |--|--|---|---| | Are all paved surfaces clean (on-site and off-site)? | | | | | Has sediment and debris been removed from drainage facilities (on-site and off-site) and other off-site property, including proper restoration of any damaged property? | | | | | Have all permanent stormwater quality BMPs been installed and completed? | | | | | | | | | | The items noted as needing action must be rem The contractor shall notify the inspector when addressed. By signing this inspection form, the owner/own acknowledge that they have received a copy of | all the items note
ner's representati
the inspection re | d above have
ve and the co
port and are | ontractor
aware it is their | | The contractor shall notify the inspector when addressed. By signing this inspection form, the owner/own | all the items note
ner's representati
the inspection rep
date noted above.
esentative of their | d above have
ve and the co
port and are
Failure to so
responsibili | ontractor
aware it is their
ign does not
ity to take the | | The contractor shall notify the inspector when addressed. By signing this inspection form, the owner/own acknowledge that they have received a copy of responsibility to take corrective actions by the crelieve the contractor and owner/owner's representations of their liability. | all the items note
ner's representati
the inspection rep
date noted above.
esentative of their | d above have
ve and the coport and are
Failure to se
responsibility
that have on | ontractor
aware it is their
ign does not
ity to take the | | The contractor shall notify the inspector when addressed. By signing this inspection form, the owner/ownecknowledge that they have received a copy of responsibility to take corrective actions by the crelieve the contractor and owner/owner's representations are contractor and of their liability occur. | all the items note
ner's representati
the inspection rep
date noted above.
esentative of their | d above have
ve and the coport and are
Failure to ser
responsibility
that have on | ontractor
aware it is their
ign does not
ity to take the
ccurred or may | # Stormwater Management Plan National Heritage Academies El Paso County, CO #### **APPENDIX D** #### **MISCELLANEOUS INFORMATION** NRCS Soils Report Terracon Geotechnical Report FEMA FIRM maps **NRCS** Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants # Custom Soil Resource Report for El
Paso County Area, Colorado #### **Preface** Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment. Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations. Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/?cid=nrcs142p2 053951). Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations. The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey. Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information. The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer. ## **Contents** | Preface | 2 | |--|----| | How Soil Surveys Are Made | 5 | | Soil Map | 8 | | Soil Map | 9 | | Legend | 10 | | Map Unit Legend | 11 | | Map Unit Descriptions | 11 | | El Paso County Area, Colorado | 13 | | 8—Blakeland loamy sand, 1 to 9 percent slopes | 13 | | 10—Blendon sandy loam, 0 to 3 percent slopes | 14 | | 28—Ellicott loamy coarse sand, 0 to 5 percent slopes | 15 | | 84—Stapleton sandy loam, 8 to 15 percent slopes | 16 | | Soil Information for All Uses | 18 | | Soil Properties and Qualities | 18 | | Soil Qualities and Features | 18 | | Hydrologic Soil Group | 18 | | References | | # **How Soil Surveys Are Made** Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity. Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA. The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape. Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries. Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research. The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas. Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape. Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties. While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of
the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil. Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date. After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately. # Soil Map The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit. #### MAP LEGEND ## Area of Interest (AOI) Area of Interest (AOI) #### Soils Soil Survey Areas Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points #### **Special Point Features** Blowout Borrow Pit Clay Spot Closed Depression Gravel Pit Gravelly Spot Landfill Lava Flow Marsh or swamp Mine or Quarry Miscellaneous Water Perennial Water Rock Outcrop Saline Spot Sandy Spot 0 0 Severely Eroded Spot Slide or Slip Sinkhole 35 Ø Sodic Spot Spoil Area Stony Spot Very Stony Spot Wet Spot Other Special Line Features #### Water Features Streams and Canals #### Transportation Rails Interstate Highways US Routes Major Roads Local Roads #### Background 1 Aerial Photography #### MAP INFORMATION The soil surveys that comprise your AOI were mapped at 1:24.000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale. Please rely on the bar scale on each map sheet for map measurements. Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019 Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. Date(s) aerial images were photographed: Jun 7, 2016—May 26, 2019 The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. # **Map Unit Legend** | Map Unit Symbol | Map Unit Name | Acres in AOI | Percent of AOI | |-----------------------------|---|--------------|----------------| | 8 | Blakeland loamy sand, 1 to 9 percent slopes | 172.2 | 68.8% | | 10 | Blendon sandy loam, 0 to 3 percent slopes | 25.7 | 10.3% | | 28 | Ellicott loamy coarse sand, 0 to 5 percent slopes | 41.4 | 16.5% | | 84 | Stapleton sandy loam, 8 to 15 percent slopes | 11.1 | 4.4% | | Totals for Area of Interest | | 250.4 | 100.0% | # **Map Unit Descriptions** The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit. A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils. Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas. An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities. Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement. Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series. Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups. A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example. An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example. An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example. Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example. # El Paso County Area, Colorado # 8—Blakeland loamy sand, 1 to 9 percent slopes #### **Map Unit Setting** National map unit symbol: 369v Elevation: 4,600 to 5,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free
period: 125 to 145 days Farmland classification: Not prime farmland #### **Map Unit Composition** Blakeland and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Blakeland** #### Setting Landform: Hills, flats Landform position (three-dimensional): Side slope, talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium derived from sedimentary rock and/or eolian deposits derived from sedimentary rock #### Typical profile A - 0 to 11 inches: loamy sand AC - 11 to 27 inches: loamy sand C - 27 to 60 inches: sand #### Properties and qualities Slope: 1 to 9 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 5 percent Available water storage in profile: Low (about 4.5 inches) #### Interpretive groups Land capability classification (irrigated): 3e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: Sandy Foothill (R049BY210CO) Hydric soil rating: No #### **Minor Components** #### Other soils Percent of map unit: 1 percent Hydric soil rating: No #### **Pleasant** Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes # 10—Blendon sandy loam, 0 to 3 percent slopes #### **Map Unit Setting** National map unit symbol: 3671 Elevation: 6,000 to 6,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland #### **Map Unit Composition** Blendon and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit. ## **Description of Blendon** #### Setting Landform: Terraces, alluvial fans Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose #### Typical profile A - 0 to 10 inches: sandy loam Bw - 10 to 36 inches: sandy loam C - 36 to 60 inches: gravelly sandy loam #### Properties and qualities Slope: 0 to 3 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Calcium carbonate, maximum in profile: 2 percent Available water storage in profile: Moderate (about 6.2 inches) #### Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: Sandy Foothill (R049BY210CO) Hydric soil rating: No ## **Minor Components** #### Other soils Percent of map unit: 1 percent Hydric soil rating: No #### **Pleasant** Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes # 28—Ellicott loamy coarse sand, 0 to 5 percent slopes #### **Map Unit Setting** National map unit symbol: 3680 Elevation: 5,500 to 6,500 feet Mean annual precipitation: 13 to 15 inches Mean annual air temperature: 47 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland #### **Map Unit Composition** Ellicott and similar soils: 97 percent Minor components: 3 percent Estimates are based on observations, descriptions, and transects of the mapunit. #### **Description of Ellicott** #### **Setting** Landform: Flood plains, stream terraces Landform position (three-dimensional): Tread Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium # **Typical profile** A - 0 to 4 inches: loamy coarse sand C - 4 to 60 inches: stratified coarse sand to sandy loam #### Properties and qualities Slope: 0 to 5 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Somewhat excessively drained Runoff class: Very low Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr) Depth to water table: More than 80 inches Frequency of flooding: Frequent Frequency of ponding: None Available water storage in profile: Low (about 4.1 inches) #### Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7w Hydrologic Soil Group: A Ecological site: Sandy Bottomland LRU's A & B (R069XY031CO) Other vegetative classification: SANDY BOTTOMLAND (069AY031CO) Hydric soil rating: No #### **Minor Components** #### Fluvaquentic haplaquoll Percent of map unit: 1 percent Landform: Swales Hydric soil rating: Yes #### Other soils Percent of map unit: 1 percent Hydric soil rating: No #### **Pleasant** Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes # 84—Stapleton sandy loam, 8 to 15 percent slopes #### **Map Unit Setting** National map unit symbol: 36b0 Elevation: 6,500 to 7,300 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 48 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland #### **Map Unit Composition** Stapleton and similar soils: 95 percent Minor components: 5 percent Estimates are based on observations, descriptions, and transects of the mapunit. # **Description of Stapleton** #### Setting Landform: Hills Landform position (three-dimensional): Side slope Down-slope shape: Linear Across-slope shape: Linear Parent material: Sandy alluvium derived from arkose #### Typical profile A - 0 to 11 inches: sandy loam Bw - 11 to 17 inches: gravelly sandy loam C - 17 to 60 inches: gravelly loamy sand ## **Properties and qualities** Slope: 8 to 15 percent Depth to restrictive feature: More than 80 inches Natural drainage class: Well drained Runoff class: Low Capacity of the most limiting layer to transmit water (Ksat): High (2.00 to 6.00 in/hr) Depth to water table: More than 80 inches Frequency of flooding: None Frequency of ponding: None Available water storage in profile: Low (about 4.7 inches) # Interpretive groups Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 4e Hydrologic Soil Group: B Ecological site: Gravelly Foothill (R049BY214CO) Hydric soil rating: No ## **Minor Components** #### Other soils Percent of map unit: 4 percent Hydric soil rating: No #### **Pleasant** Percent of map unit: 1 percent Landform: Depressions Hydric soil rating: Yes # Soil Information for All Uses # **Soil Properties and Qualities** The Soil Properties and Qualities section includes various soil properties and qualities displayed as thematic maps with a summary table for the soil map units in the selected area of interest. A single value or rating for each map unit is generated by aggregating the interpretive ratings of individual map unit components. This aggregation process is defined for each property or quality. # Soil Qualities and Features Soil qualities are behavior and performance attributes that are not directly measured, but are inferred from observations of dynamic conditions and from soil properties. Example soil qualities include natural drainage, and frost action. Soil features are attributes that are not directly part of the soil. Example soil features include slope and depth to restrictive layer. These features can greatly impact the use and management of the soil. # **Hydrologic Soil Group** Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows: Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission. Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission. Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission. Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission. If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes. #### MAP LEGEND MAP INFORMATION Area of Interest (AOI) The soil surveys that comprise your AOI were mapped at B/D 1:24.000. Area of Interest (AOI) С Soils C/D Warning: Soil Map may not be valid at this scale. Soil Survey Areas D Soil Rating Polygons Enlargement of maps beyond the scale of mapping can cause Not rated or not available Α misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of **Water
Features** A/D contrasting soils that could have been shown at a more detailed Streams and Canals В scale. Transportation B/D Rails ---Please rely on the bar scale on each map sheet for map Interstate Highways measurements. C/D **US Routes** Source of Map: Natural Resources Conservation Service Major Roads Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857) Not rated or not available Local Roads Soil Rating Lines Background Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts Aerial Photography distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required. This product is generated from the USDA-NRCS certified data as of the version date(s) listed below. Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019 Not rated or not available Soil map units are labeled (as space allows) for map scales Soil Rating Points 1:50.000 or larger. Α Date(s) aerial images were photographed: Jun 7, 2016—May A/D 26. 2019 В The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident. # Table—Hydrologic Soil Group | Map unit symbol | Map unit name | Rating | Acres in AOI | Percent of AOI | |-----------------------------|---|--------|--------------|----------------| | 8 | Blakeland loamy sand, 1 to 9 percent slopes | A | 172.2 | 68.8% | | 10 | Blendon sandy loam, 0 to 3 percent slopes | В | 25.7 | 10.3% | | 28 | Ellicott loamy coarse
sand, 0 to 5 percent
slopes | A | 41.4 | 16.5% | | 84 | Stapleton sandy loam, 8 to 15 percent slopes | В | 11.1 | 4.4% | | Totals for Area of Interest | | 250.4 | 100.0% | | # Rating Options—Hydrologic Soil Group Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher # References American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition. American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00. Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31. Federal Register. July 13, 1994. Changes in hydric soils of the United States. Federal Register. September 18, 2002. Hydric soils of the United States. Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States. National Research Council. 1995. Wetlands: Characteristics and boundaries. Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 054262 Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053577 Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2 053580 Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section. United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1. United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/home/?cid=nrcs142p2 053374 United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/landuse/rangepasture/?cid=stelprdb1043084 United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242 United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053624 United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf Mountain View Academy Meadowbrook Parkway and Pinyon Jay Drive Colorado Springs, Colorado November 8, 2019 Terracon Project No. 23195115 # Prepared for: National Heritage Academics Grand Rapids, Michigan # Prepared by: Terracon Consultants, Inc. Colorado Springs, Colorado Environmental Facilities Geotechnical Materials # November 8, 2019 National Heritage Academics 3850 Broadmoor Southeast Grand Rapids, Michigan 49512 Attn: Mr. Joseph Sprys – Director of Facilities and Construction P: (616) 929-1290 E: jsprys@nhaschools.com Re: Geotechnical Engineering Report Mountain View Academy Meadowbrook Parkway and Pinyon Jay Drive Colorado Springs, Colorado Terracon Project No. 23195115 Mr. Sprys: We have completed the Geotechnical Engineering services for the above referenced project. This study was performed in general accordance with Terracon Proposal No. P23195116 dated October 8, 2019. This report presents the findings of the subsurface exploration and provides geotechnical recommendations concerning earthwork and the design and construction of foundations, floor slabs, and pavements for the proposed project. We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report or if we may be of further service, please contact us. Sincerely, Terracon Consultants, Inc. Nick M. Novotny, P.G. Senior Staff Geologist Robert M. Hernandez, P.E. Geotechnical Services Manager Mountain View Academy Colorado Springs, Colorado November 8, 2019 Terracon Project No. 23195115 # **REPORT TOPICS** | INTRODUCTION | 1 | |-------------------------------|----| | SITE CONDITIONS | 1 | | PROJECT DESCRIPTION | 2 | | GEOTECHNICAL CHARACTERIZATION | 3 | | GEOTECHNICAL OVERVIEW | 5 | | EARTHWORK | 6 | | SHALLOW FOUNDATIONS | 10 | | SEISMIC CONSIDERATIONS | | | FLOOR SLABS | 13 | | EXTERIOR FLATWORK | 14 | | LATERAL EARTH PRESSURES | 15 | | PAVEMENTS | | | CORROSIVITY | 20 | | GENERAL COMMENTS | 20 | **Note:** This report was originally delivered in a web-based format. **Orange Bold** text in the report indicates a referenced section heading. The PDF version also includes hyperlinks which direct the reader to that section and clicking on the **GeoReport** logo will bring you back to this page. For more interactive features, please view your project online at client.terracon.com. ## **ATTACHMENTS** EXPLORATION AND TESTING PROCEDURES SITE LOCATION AND EXPLORATION PLANS EXPLORATION RESULTS SUPPORTING INFORMATION **Note:** Refer to each individual Attachment cover page for a listing of contents. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 # **REPORT SUMMARY** A geotechnical engineering exploration has been performed for the Mountain View Academy to be located at Meadowbrook Parkway and Pinyon Jay Drive in Colorado Springs, Colorado. Based on the information obtained from this subsurface exploration and the laboratory testing completed, the site appears suitable for the proposed construction; however, the following geotechnical conditions will need to be considered: - Up to about 6 feet of possible fill materials were encountered in the borings drilled for this exploration. We do not possess any information regarding whether the fill was placed under the observation of a geotechnical engineer. It is our opinion the existing fill should not be used to support foundation, interior slab, pavement, or exterior slab construction without complete removal and modification. Support of pavement construction and exterior slab construction on the existing fill materials can be considered, provided a portion of the existing fill materials are over-excavated, processed, moisture conditioned and recompacted, and potential movement beyond 1-inch can be tolerated. - Based on the results of the laboratory testing and our experience in the area, the sand fill materials and native sand soils have nil expansive potential. - Test boring data indicate that loose soils may be locally present. Consequently, loose soils could be encountered below foundations or other improvements and these conditions will likely require some corrective work. Corrective work could involve removal and re compaction or replacement, in-place soil densification, or deepening footing excavations to suitable bearing materials. - Based on the geotechnical engineering analyses, the proposed school may be constructed on a shallow spread footing foundation system bottomed on a zone of new engineered fill. - Based on the properties of the subsurface materials, the floor system for the proposed structure may consist of a slab-on-grade constructed on a zone of new engineered fill. - Based on the 2015 International Building Code (IBC) Section 1613.3.2, and the subsurface conditions
encountered in the borings, the seismic site classification for this site is D. - Existing fill materials may be encountered at exterior flatwork and pavement construction elevation in other areas of the site where fill materials were not observed. Construction of exterior flatwork and pavements on a zone of new engineered fill is recommended to improve performance. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 The amount of movement associated with foundations, floor slabs, slabs-on-grade, and other structural elements at this site will be related to the wetting of the underlying soils. Therefore, it is imperative the recommendations outlined in the **Grading and Drainage** subsection of **Earthwork** be followed to reduce potential movement. Moisture conditioning and/or replacement of the on-site fill materials and/or native soils should follow the recommendations outlined in **Earthwork**. This summary should be used in conjunction with the entire report for design purposes. It should be recognized that details were not included or fully developed in this section, and the report must be read in its entirety for a comprehensive understanding of the items contained herein. The section titled **General Comments** should be read for an understanding of the report limitations. # Mountain View Academy Meadowbrook Parkway and Pinyon Jay Drive Colorado Springs, Colorado Terracon Project No. 23195115 November 8, 2019 ## INTRODUCTION This report presents the results of our subsurface exploration and geotechnical engineering services performed for the proposed Mountain View Academy Project to be located at Meadowbrook Parkway and Pinyon Jay Drive in Colorado Springs, Colorado. The purpose of these services is to provide information and geotechnical engineering recommendations relative to: - Subsurface soil conditions - Groundwater levels - Earthwork - Drainage - Lateral earth pressures - Seismic site classification - Foundation design and construction - Floor slab design and construction - Pavement design and construction The geotechnical engineering Scope of Services for this project included the advancement of twelve test borings (designated as Boring Nos. B-1 to B-12) to depths ranging from approximately 5 to 30 feet below existing site grades. Plans showing the site and boring locations are shown in the **Site Location and Exploration Plans** section. The results of the laboratory testing performed on soil samples obtained from the site during the field exploration are included on the boring logs and as separate graphs in the **Exploration Results** section. #### SITE CONDITIONS The following description of site conditions is derived from our site visit in association with the field exploration. | Item | Description | |--------------------|--| | Parcel Information | The project is located a Meadowbrook Parkway and Pinyon Jay Drive in Colorado Springs, Colorado. Latitude: 38.8615° N, Longitude: -104.6722° W (approximate) See Site Location | Mountain View Academy Colorado Springs, Colorado November 8, 2019 Terracon Project No. 23195115 | Item | Description | | |--------------------------|--|--| | Existing
Improvements | The site of the proposed Mountain View Academy Project appears to be relatively undeveloped. However, based on historical images available through Google Earth, it appears that mass grading associated with previous adjacent development has occurred on the subject parcel. This site is bordered to the north by Meadowbrook Parkway, to the east by Pinyon Jay drive, to the south by Hanes Drive, and to the west by single-family residential homes followed by Meadowbrook parkway. | | | Current Ground
Cover | Sparse to moderate vegetation and exposed soil. | | | Existing Topography | The site is relatively flat with about 10 feet of elevation change over 300 feet based on the provided ALTA survey. Site topography gently slopes down to the north. | | | Geology | Based on the geologic map of the area ¹ the subsurface materials beneath the site consist of younger eolian sands (Qes ₁). This geologic unit is Pleistocene to Holocene in age (approximately 2.6 million to 14 thousand years ago), and generally consists of coarse sands deposited in an arid environment. | | | 1. Madole, R.F., and Th | orson, J.P., 2003, Geologic Map of the Elsmere 7.5 Minute Quadrangle, El Paso County, Colorado; | | # PROJECT DESCRIPTION Our initial understanding of the project was provided in our proposal and was discussed during project planning. A period of collaboration has transpired since the project was initiated, and our final understanding of the project conditions is as follows. Colorado Geological Survey, Open-File Report OF02-02, scale 1:24,000 | Item | Description | | | |--------------------------|--|--|--| | Information Provided | Email correspondence between September 30 and October 1, 2019 Mountain View Charter School Site Layout, undated, received electronically on September 30, 2019. Mountain View Academy ALTA site survey, dated September 20, 2019 | | | | Project Description | We understand the project consists of the construction of a new one-to-two-story school building occupying a footprint of approximately 42,500 square feet with associated asphalt paved parking lot and landscaping areas. | | | | Building Construction | We assume the proposed school will be of either brick or CMU construction with slab-on-grade floor system supported on shallow reinforced concrete foundations. | | | | Finished Floor Elevation | Assumed to be within 3 feet of existing site grades. | | | | Maximum Loads (assumed) | Columns: 100 to 200 kips Walls: 2 to 5 kips per linear foot (klf) Slabs: 150 to 200 pounds per square foot (psf) | | | Mountain View Academy Colorado Springs, Colorado November 8, 2019 Terracon Project No. 23195115 | Item | Description | | |-------------------------------|--|--| | One din m/Olemen | We assume up to 3 feet of cut and 3 feet of fill will be required to develop final grades. | | | Grading/Slopes | Final slope angles as steep as 3H:1V (Horizontal: Vertical) no greater than 5 feet in height are expected. | | | Below-Grade Structures | None anticipated | | | Free-Standing Retaining Walls | None anticipated. | | | | We understand that paved drive lands and 165 parking stalls will be constructed as part of this project and assume that flexible (asphalt) pavement sections are preferred, but that rigid (Portland cement concrete) pavement sections may be considered. | | | Pavements | Assumed traffic loading is as follows: | | | | Light Duty: 27,000 Equivalent Single Axel Loads (ESALs)Heavy Duty: 110,000 ESALs | | | | The Pavement design period is 20 years. | | # **GEOTECHNICAL CHARACTERIZATION** We have developed a general characterization of the subsurface soil and groundwater conditions based upon our review of the data and our understanding of the geologic setting and planned construction. The following sections provide our geotechnical characterization. The geotechnical characterization forms the basis of our geotechnical calculations and evaluation of site preparation, foundation options, and pavement options. As noted in **General Comments**, the characterization is based upon widely spaced exploration points across the site, and variations are likely. # **Typical Profile** Based on the results of the borings for this exploration, subsurface conditions on the site can be generalized as follows: | Material Description | Approximate Depth to Bottom of Stratum below Existing Site Grade | Relative Density | |---|--|-----------------------| | Existing fill and possible fill materials consisting of poorly graded sand with silt and gravel | About 2 to 6 feet Not encountered in Boring Nos. B-10 and B-12 | Loose to dense | | Native soil consisting of silty sand to poorly graded sand with silt. | Maximum depth explored | Loose to medium dense | Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 Stratification boundaries on the boring logs represent the approximate location of changes in soil and material types; in situ, the transition between materials may be gradual. Further details of the borings can be found on the boring logs in the **Exploration Results**. Based on the results of the laboratory testing and our experience in the area, the sand fill materials and native sand soils have nil expansive potential. A summary of laboratory test results is included in the **Exploration Results**. # **Groundwater Conditions** The borings were observed while drilling and upon completion of
drilling for the presence and level of groundwater. The water levels encountered in the boreholes can be found on the boring logs in **Exploration Results**, and are summarized below. | Boring No. | Shallowest depth to groundwater encountered while or upon completion of drilling ¹ | |------------|---| | B-1 | None encountered | | B-2 | None encountered | | B-3 | None encountered | | B-4 | None encountered | | B-5 | None encountered | | B-6 | None encountered | | B-7 | None encountered | | B-8 | None encountered | | B-9 | None encountered | | B-10 | None encountered | | B-11 | None encountered | | B-12 | None encountered | ^{1.} Due to safety concerns, borings were backfilled immediately after completion. Therefore, subsequent groundwater measurements were not obtained. These observations represent groundwater conditions at the time of the field exploration, and may not be indicative of other times or at other locations. Groundwater levels can be expected to fluctuate with varying seasonal and weather conditions. Groundwater level fluctuations occur due to seasonal variations in the amount of rainfall, runoff, and other factors not evident at the time the borings were performed. Groundwater levels during construction or at other times in the life of the structures may be higher or lower than the levels indicated on the boring logs. The possibility of groundwater level fluctuations should be considered when developing the design and construction plans for the project. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 ## **GEOTECHNICAL OVERVIEW** Based on subsurface conditions encountered in the borings, the site appears suitable for the proposed construction from a geotechnical point of view provided certain precautions and design and construction recommendations outlined in this report are followed. We have identified geotechnical conditions that could impact design and construction of the proposed school building, pavements, and other site improvements. # **Existing Fill Materials** Up to about 6 feet of possible fill materials were encountered within the building footprint and in portions of the parking areas at the site. Fill depths presented on the boring logs are approximate and the depth, lateral extents, and composition of fill should be expected to vary. We do not possess any information regarding whether the fill was placed under the observation of a geotechnical engineer. Based on the relatively high blow counts and relatively high in-situ dry unit weights within portions of the fill when compared to the native soils, it appears the fill was placed with some compactive effort. However, without density and water content records indicating how the fill was placed, the consistency of the fill may vary, and it is unclear whether the fill was placed uniformly across the site for support of structural improvements. Because of this uncertainty, it is our opinion the existing fill should not be used to support foundations, interior slabs, exterior slabs-on-grade, or pavement construction without complete removal and modification. If the owner is willing to accept a higher risk of movement beyond 1-inch for pavements and exterior slabs, consideration could be given to over-excavating a portion of the existing fill materials below these elements, then processing, moisture conditioning and compacting the materials back to subgrade elevation. There exists the potential for construction debris and/or domestic trash to be encountered within the fill on some portions of the site. Because construction debris and trash was not observed in the borings, the potential for encountering these materials is considered to be low. The fill materials should be observed for the presence of trash and debris during site grading and construction. We recommend existing fill soils be removed below planned utilities at this site and replaced as compacted, structural fill. Utilities should be designed with restrained joints and designed to accommodate potential differential movement should existing fill soils be left in place. The existing fill can be reused as engineered fill below foundations, slabs-on-grade, and pavements, provided the material meets the requirements of imported soils in the **Material Types** subsection in **Earthwork**, any deleterious materials are removed, and some movement can be tolerated. Some removal and replacement may be required if unsuitable or soft materials are exposed. Mountain View Academy Colorado Springs, Colorado November 8, 2019 Terracon Project No. 23195115 #### **Loose Soils** Test boring data indicate that loose soils may be locally present. Consequently, loose soils could be encountered below foundations or other improvements and these conditions will likely require some corrective work. Corrective work could involve removal and re-compaction or replacement, in-place soil densification, or deepening footing excavations to suitable bearing materials. In any event, Terracon should be contacted to observe foundation excavations to evaluate bearing conditions and to provide guidance concerning corrective work (if needed). ## **EARTHWORK** The following presents recommendations for site preparation, excavation, subgrade preparation, and placement of engineered fills on the project. All earthwork on the project should be observed and evaluated by Terracon. # **Site Preparation** Strip and remove existing vegetation, organics, and other deleterious materials from proposed building and pavement areas. All exposed surfaces should be free of mounds and depressions that could prevent uniform compaction. Stripped materials consisting of vegetation, unsuitable fills, and organic materials should be wasted from the site or used to revegetate landscaped areas or exposed slopes after completion of grading operations. Where possible, the site should be initially graded to create a relatively level surface to receive fill and to provide for a relatively uniform thickness of fill beneath the proposed building and improvement areas. All exposed areas that will receive fill, once properly cleared, should be scarified to a minimum depth of 12 inches, conditioned to near optimum moisture content, and compacted. It is imperative the moisture content of prepared materials be protected from moisture loss. Although evidence of underground facilities such as grease pits, septic tanks, cesspools, and basements was not observed during our exploration, such features could be encountered during construction. If unexpected fills or underground facilities are encountered, such features should be removed and the excavation thoroughly cleaned prior to backfill placement and/or construction. It is anticipated that excavations for the proposed construction can be accomplished with conventional earthmoving equipment. Depending upon depth of excavation and seasonal conditions, groundwater may be encountered in excavations on the site. Groundwater seeping into excavations at this site could most likely be controlled by shallow trenches leading to a sump pit where the water could be removed by pumping. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 The stability of subgrade soils may be affected by precipitation, repetitive construction traffic, or other factors. If unstable conditions are encountered or develop during construction, workability may be improved by over-excavation of wet zones and mixing these soils with crushed gravel. Use of geotextiles could also be considered as a stabilization technique. Lightweight excavation equipment may be required to reduce subgrade pumping. # **Material Types** Fill required to achieve design grades should be classified as structural fill and general fill. Structural fill is material used below or within 10 feet of structures and within 12 inches of drive lane and parking area subgrade. General fill is material used to achieve grade outside of these areas. Earthen materials used for structural and general fill should meet the following material property requirements: | Fill Type 1,2 | USCS Classification | Acceptable location for placement | |--------------------|---------------------|--| | On-site sand soils | SP-SM, SM | On-site sand soils are considered suitable for reuse as structural fill below foundation, slab, and pavement areas and as general fill for this project. | | Imported soils | Varies | Imported soils meeting the gradation outlined herein can
be considered acceptable for use as structural fill beneath
slabs and pavements. | - 1. Controlled, compacted fill should consist of approved materials that are free of organic matter and debris. Frozen material should not be used, and fill should not be placed on a frozen subgrade. A sample of each material type should be submitted to the geotechnical engineer for evaluation. - 2. Care should be taken during the fill placement process to avoid zones of dis-similar fill. Improvements constructed over varying fill types are at a higher risk of differential movement compared to improvements over a uniform fill zone. Imported soils for use as structural and/or general fill should conform to the following: | Gradation | Percent finer by weight (ASTM C136) | |---------------|-------------------------------------| | 3" | 100 | | No. 4 Sieve | 50-100 | | No. 200 Sieve | 0-25 | | Soil Properties | Value | |-----------------|-------------| | Liquid Limit | Non-plastic | | Plastic Index | | Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 # **Compaction Requirements** Engineered fill should be placed and compacted in horizontal lifts, using
equipment and procedures that will produce recommended moisture contents and densities throughout the lift. Structural and general fill should meet the following compaction requirements: | Item | Structural and General Fill | |--|---| | Maximum lift
thickness | 8 inches or less in loose thickness when heavy, self-propelled compaction equipment is used | | | 4 to 6 inches in loose thickness when hand-guided equipment (i.e. jumping jack, plate compactor) is used | | Minimum compaction requirements ^{1, 2, 3} | 95% of the materials maximum dry density for foundations, slabs, and at depths greater than 12 inches below pavements | | | 98% of the materials maximum dry density for the upper 12 inches of pavement subgrade | | Water content range ^{2, 4} | Within three percent of optimum water content (granular soils) | - We recommend that engineered fill be tested for water content and compaction during placement. Should the results of the in-place density tests indicate the specified water or compaction limits have not been met, the area represented by the test should be reworked and retested as required until the specified water and compaction requirements are achieved. - 2. Maximum dry density and optimum water content as determined by the Modified Proctor test (D1557). - 3. If the granular material is a coarse sand or gravel, or of a uniform size, or has a low fines content, compaction comparison to relative density may be more appropriate. In this case, granular materials should be compacted to at least 70% relative density (ASTM D4253 and D4254). - 4. Water levels should be maintained low enough to allow for satisfactory compaction to be achieved without the compacted fill material becoming unstable under the weight of construction equipment or during proofrolling. Indications of unstable soil can include pumping or rutting. # **Excavation** Excavations into the subsurface soils will encounter a variety of conditions. The individual contractor(s) is responsible for designing and constructing stable, temporary excavations as required to maintain stability of both the excavation sides and bottom. All excavations should be sloped or shored in the interest of safety following local and federal regulations, including current Occupational Safety and Health Administration (OSHA) excavation and trench safety standards. Soils penetrated by the proposed excavations may vary significantly across the site. The soil classifications are based solely on the materials encountered in the exploratory borings. The contractor should verify that similar conditions exist throughout the proposed area of excavation. If different subsurface conditions are encountered at the time of construction, the actual conditions Mountain View Academy Colorado Springs, Colorado November 8, 2019 Terracon Project No. 23195115 should be evaluated to determine any excavation modifications necessary to maintain safe conditions. # **Grading and Drainage** All grades must be adjusted to provide positive drainage away from the building during construction and maintained throughout the life of the proposed project. Infiltration of water into utility or foundation excavations must be prevented during construction. Landscaped irrigation adjacent to the foundation systems should be minimized or eliminated. Water permitted to pond near or adjacent to the perimeter of the structure (either during or post-construction) can result in significantly higher soil movements than those discussed in this report. As a result, any estimations of potential movement described in this report cannot be relied upon if positive drainage is not obtained and maintained, and water is allowed to infiltrate the fill and/or subgrade. Permanent grades should be sloped at a minimum of 10 percent grade for at least 10 feet beyond the perimeter of the building. Asphalt pavement or concrete flatwork should be sloped at a minimum of 2 percent beyond the building perimeters for the life of the building. Where Americans with Disabilities Act (ADA) or other requirements or existing site features limit the gradient, slopes on the order of ½ to 1 percent minimum may be necessary to comply with the ADA, but do increase the risk of unanticipated movement. Backfill against footings, exterior walls, and in utility and sprinkler line trenches should be compacted in accordance with recommendations in this report and free of all construction debris to reduce the possibility of water infiltration. After building construction and prior to project completion, we recommend that verification of final grading be performed to document that positive drainage, as described above, has been achieved. Where paving or flatwork abuts the structure, care should be taken that joints are properly sealed and maintained to prevent the infiltration of surface water. Landscape or xeriscape areas within 10 feet of the foundation systems shall not be hindered by landscape edging, grade variations, or vegetation. In addition, consideration should be given to snow removal practices that will minimize the stockpiling of snow in planter and landscaped areas adjacent to structural improvements. Planters located adjacent to the structure should be watertight. Sprinkler mains and spray heads should be located a minimum of 10 feet away from the building lines. Where drip line irrigation is located near the building, we recommend that drip line irrigation systems be located at least 5 feet from the outside edge of the foundations. Roof drains should discharge on pavements or be extended away from the structure a minimum of 10 feet through the use of splash blocks or downspout extensions. Trees or other vegetation whose root systems have the ability to remove excessive moisture from the subgrade and foundation soils should not be planted next to the building. Trees and shrubbery should be kept away from the exterior edges of foundations, a distance at least equal to their expected mature height. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 #### **Earthwork Construction Considerations** Upon completion of grading operations, care should be taken to maintain the moisture content of the subgrade prior to construction of foundations, slabs-on-grade, pavements, and other structural elements. Construction traffic over prepared subgrade should be minimized and avoided to the extent practical. The site should also be graded to prevent ponding of surface water on prepared subgrade or in excavations. Water collecting over or adjacent to construction areas should be removed. If the subgrade freezes, desiccates, saturates, or is disturbed, the affected material should be removed, or the materials should be scarified, moisture conditioned, and recompacted prior to foundation, floor slab and pavement construction. The geotechnical engineer should be retained during the construction phase of the project to observe earthwork and to perform necessary tests and observations during over-excavation operations, excavations, subgrade preparation; proof-rolling; placement and compaction of controlled compacted fills; backfilling of excavations into the completed subgrade, and just prior to construction of building foundations and floor slabs. # **SHALLOW FOUNDATIONS** Based upon the results of the field exploration and laboratory testing program for this exploration, the following foundation systems were evaluated for use in supporting the proposed building: Spread footing foundations on new engineered fill. # **Spread Footing Foundation Recommendations** Spread footing foundations may be considered for support of the proposed building when constructed on a 3-foot zone of new engineered fill, provided the potential for about 1-inch of movement can be tolerated. New fill materials beneath foundations should be placed and compacted as outlined in the **Earthwork** section of this report. Design recommendations for spread footing foundation systems are presented in the following table and paragraphs. | Description | Value | |---|--| | Thickness of Zone of New Engineered Fill | Minimum of 3 feet below and beyond bottom of lowest foundation element | | Lateral Extent of Zone of New Engineered Fill | 10 feet outside building footprint | | Supporting Stratum | New engineered fill | | Maximum Allowable Bearing Pressure 1,2 | 2,500 psf | Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 | Description | Value | |--|---| | Coefficient of Friction (Sliding) | 0.4 | | Minimum Footing Dimensions | Isolated footings: 24 inches Continuous footings: 18 inches | | Maximum Footing Dimensions | Isolated footings: 8 feet Continuous footings: 3½ feet | | Minimum Embedment Below Finished Grade for Frost Protection ³ | 30 inches | | Approximate Total Movement ⁴ | About 1 inch | | Estimated Differential Movement ^{4,5} | About ½ to ¾ inch | - 1. The recommended maximum allowable bearing pressure assumes that any existing fill or lower strength soils, if encountered, will be excavated and replaced with engineered fill. - 2. The maximum allowable soil bearing pressure can be increased by 1/3 for transient loading conditions. - 3. For perimeter footings, footings beneath unheated areas, and footings that will be exposed to freezing conditions during construction. Interior footings may bottom at a minimum depth of 12 inches below finished grade in heated areas. - 4. Value provided is based on our project understanding noted in the Project Description. Foundation movement will
depend upon the variations within the subsurface soil profile, the structural loading conditions, the embedment depth of the footings, the thickness of engineered fill, the quality of the earthwork operations and footing construction, and maintaining uniform soil water content throughout the life of the structure. The estimated movements are based on maintaining uniform soil water content during the life of the structure. Additional foundation movements could occur if water from any source infiltrates the foundation soils; therefore, proper drainage and irrigation practices should be incorporated into the design and operation of the facility. Failure to maintain soil water content and positive drainage will nullify the movement estimates provided above. - 5. Footings should be proportioned on the basis of equal total dead load pressure to reduce differential movement between adjacent footings. #### **Foundation Construction Considerations** Unstable subgrade conditions should be observed by the geotechnical engineer to assess the subgrade and provide suitable alternatives for stabilization. Stabilized areas should be proofrolled prior to continuing construction to assess the stability of the subgrade. Over-excavation for structural fill placement below footings should be conducted as shown below. The over-excavation should be backfilled up to the footing base elevation with structural fill placed as recommended in the **Earthwork** section. Mountain View Academy Colorado Springs, Colorado November 8, 2019 Terracon Project No. 23195115 The base of all foundation excavations should be free of water and loose soil prior to concrete placement. Concrete should be placed soon after excavating to reduce bearing soil disturbance. Should the soils at bearing level become excessively dry, disturbed or saturated, or frozen, the affected soil should be removed prior to placing concrete. Footings, foundations, and masonry walls should be detailed and reinforced as necessary to reduce the potential for distress caused by differential foundation movement. The use of joints at openings or other discontinuities in masonry walls is recommended. # **SEISMIC CONSIDERATIONS** The following table presents the seismic site classification based on the 2015 International Building Code (IBC), and the subsurface conditions encountered within the borings: | Code Used | Site Classification | |--|---------------------| | 2015 International Building Code (IBC) 1,2 | D | - 1. In general accordance with the 2015 International Building Code, Section 1613.3.2. - 2. The 2015 International Building Code (IBC) requires a site subsurface profile determination extending a depth of 100 feet for seismic site classification. The current scope requested does not include the required 100-foot subsurface profile determination. The deepest boring of this exploration extended to a maximum depth of about 30½ feet and this seismic site class definition considers that similar subsurface conditions exist below the maximum depth of the subsurface exploration. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 # **FLOOR SLABS** # **Interior Floors** Design parameters for floor slabs assume the requirements for **Earthwork** have been followed. Specific attention should be given to positive drainage away from the structure. # Floor Slab Design Parameters | Item | Description | |---|--| | Floor Slab Support ¹ | Minimum 3 feet of compacted structural fill placed on firm, native soil. Recommend removal and replacement of existing fill soils below and a minimum of 10 feet beyond edges of floor slabs. | | Estimated Modulus of Subgrade Reaction ² | 100 pounds per square inch per inch (psi/in) for point loads | - 1. Floor slabs should be structurally independent of building footings or walls to reduce the possibility of floor slab cracking caused by differential movements between the slab and foundation. - 2. Modulus of subgrade reaction is an estimated value based upon our experience with the subgrade condition, the requirements noted in **Earthwork**, and the floor slab support as noted in this table. It is provided for point loads. For large area loads the modulus of subgrade reaction would be lower. Additional floor slab design and construction recommendations are as follows: - Positive separations and/or isolation joints should be provided between slabs and all foundations, columns, or utility lines to allow independent movement. - Control joints should be provided in slabs to control the location and extent of cracking. - Interior trench backfill placed beneath slabs should be compacted in accordance with recommended specifications described previously. - The use of a vapor retarder should be considered beneath concrete slabs on grade that will be covered with wood, tile, carpet, or other moisture sensitive or impervious coverings, or when the slab will support equipment sensitive to moisture. When conditions warrant the use of a vapor retarder, the slab designer and slab contractor should refer to ACI 302 for procedures and cautions regarding the use and placement of a vapor retarder. - Floor slabs should not be constructed on frozen subgrade. - Other design and construction considerations, as outlined in Section 302.1R of the ACI Design Manual, are recommended. Movements of slab-on-grades using the above outlined technique will likely be reduced and tend to be more uniform. The estimates outlined previously assume that the other recommendations in this report are followed. Additional movement could occur should the subsurface soils become wetted, which could result in potential excessive movement causing uneven floor slabs and severe cracking. This could be due to over watering of landscaping, poor drainage, improperly functioning drain systems, and/or broken utility lines. Therefore, it is imperative that the Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 recommendations outlined in this section and in the **Grading and Drainage** subsection of **Earthwork** be followed. # Floor Slab Construction Considerations Finished subgrade, within and for at least 10 feet beyond the floor slab, should be protected from traffic, rutting, or other disturbance and maintained in a relatively moist condition until floor slabs are constructed. If the subgrade should become damaged or desiccated prior to construction of floor slabs, the affected material should be removed and structural fill should be added to replace the resulting excavation. Final conditioning of the finished subgrade should be performed immediately prior to placement of the floor slab support course. The Geotechnical Engineer should approve the condition of the floor slab subgrades immediately prior to placement of the floor slab support course, reinforcing steel, and concrete. Attention should be paid to high traffic areas that were rutted and disturbed earlier, and to areas where backfilled trenches are located. # **EXTERIOR FLATWORK** We recommend that existing fill soils be removed and replaced as compacted, structural fill prior to exterior flatwork construction. If the owner is willing to accept an increased risk of movement beyond 1-inch, exterior slabs-on-grade and flatwork can be constructed on at least 2 feet of over-excavated moisture conditioned and compacted structural fill. New fill materials beneath exterior slabs should be placed and compacted as outlined in the **Earthwork** section of this report. Additional slab design and construction recommendations are as follows: - Minimizing moisture increases in the backfill. - Controlling moisture-density during placement of backfill. - Positive separations and/or isolation joints should be provided between exterior slabs and the building to allow independent movement. - Control joints should be provided in slabs to control the location and extent of cracking. - Exterior slabs should not be constructed on frozen subgrade - Other design and construction considerations, as outlined in Section 302.1R of the ACI Design Manual, are recommended. Movements of exterior slabs-on-grade using the above technique will likely be reduced and tend to be more uniform. Additional movement could occur should the subsurface soils become wetted, which could result in potential excessive movement causing uneven exterior slabs and severe cracking. This could be due to over watering of landscaping, poor drainage, and/or broken utility lines. Therefore, it is imperative that the recommendations outlined in the **Grading and Drainage** subsection of **Earthwork** be followed. Mountain View Academy Colorado Springs, Colorado November 8, 2019 Terracon Project No. 23195115 # LATERAL EARTH PRESSURES Below-grade walls or free-standing retaining walls are not anticipated for this project; however, we have included lateral earth pressures recommendations in case plans should change. Reinforced concrete walls with unbalanced backfill levels on opposite sides should be designed for earth pressures at least equal to those indicated in the following table. Earth pressures will be influenced by structural design of the walls, conditions of wall restraint, methods of construction and/or compaction and the strength of the materials being restrained. Two wall restraint conditions are shown. Active earth pressure is commonly used for design of free-standing cantilever retaining walls and assumes wall movement. The "at-rest" condition assumes no wall movement. The recommended design lateral earth pressures do not include a factor of safety and do not provide
for possible hydrostatic pressure on the walls. | Earth Pressure
Conditions | Lateral Earth
Pressure
Coefficient | Equivalent Fluid
Density (pcf) | Surcharge
Pressure, p ₁ (psf) | Earth Pressure,
p ₂ (psf) | |------------------------------|--|-----------------------------------|---|---| | Active (Ka) | Sand – 0.33 | 40 | (0.33)S | (40)H | | At-Rest (Ko) | Sand – 0.50 | 60 | (0.50)S | (60)H | | Passive (Kp) | Sand – 3.00 | 360 | | | # Applicable conditions to the above include: - For active earth pressure, wall must rotate about base, with top lateral movements of about 0.002 H to 0.004 H, where H is wall height - For passive earth pressure to develop, wall must move horizontally to mobilize resistance. - Uniform surcharge, where S is surcharge pressure - In-situ soil backfill weight a maximum of 120 pcf Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 - Horizontal backfill, compacted to at least 95 percent of standard Proctor maximum dry density - Loading from heavy compaction equipment not included - No hydrostatic pressures acting on wall - No dynamic loading - No safety factor included in soil parameters # **Subsurface Drainage for Below-Grade Walls** A perforated rigid plastic drain line installed behind the base of walls and extends below adjacent grade is recommended to prevent hydrostatic loading on the walls. The invert of a drain line around a below-grade building area or exterior retaining wall should be placed near foundation bearing level. The drain line should be sloped to provide positive gravity drainage to daylight or to a sump pit and pump. The drain line should be surrounded by free-draining granular material having less than 5% passing the No. 200 sieve, such as No. 57 aggregate. The free-draining aggregate should be encapsulated in a filter fabric. The granular fill should extend to within 2 feet of final grade, where it should be capped with compacted cohesive fill to reduce infiltration of surface water into the drain system. As an alternative to free-draining granular fill, a pre-fabricated drainage structure may be used. A pre-fabricated drainage structure is a plastic drainage core or mesh which is covered with filter fabric to prevent soil intrusion, and is fastened to the wall prior to placing backfill. The preceding data are applicable only to cast-in-place concrete or modular block walls up to 5 feet in height. If taller single walls, tiered walls, or Mechanically Stabilized Earth (MSE) walls will be included in the proposed development, additional site-specific studies and laboratory testing will be required. In addition, the wall designer should perform standard wall design practices including analysis for overturning, sliding, bearing capacity, and global stability, and results of these analyses should be provided for our review. Additional sampling, laboratory testing and document review associated with retaining walls is beyond the original scope of work but can be performed as a separate scope, for a separate fee. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 # **PAVEMENTS** Design of privately maintained pavements for the project has been based on the procedures outlined by the Asphalt Institute (AI) and the American Concrete Institute (ACI). We recommend that existing fill soils in pavement areas be removed and replaced as compacted, structural fill. If the owner is willing to accept a higher risk of movement beyond 1-inch for pavements, consideration could be given to over-excavating a minimum of 2 feet of the existing fill materials, then processing, moisture conditioning and compacting the materials back to subgrade elevation. # **Design Traffic** We assumed the following design parameters for Asphalt Institute flexible pavement thickness design: - Automobile Parking Areas - o Parking stalls and parking lots for cars and pick-up trucks, up to 50 stalls - Main Traffic Corridors - Parking lots with a maximum of 5 trucks per day - Subgrade Soil Characteristics - USCS Classification SP-SM to SM (good subgrade) We assumed the following design parameters for ACI rigid pavement thickness design based upon the average daily truck traffic (ADTT): - Automobile Parking Areas - ACI Category A-1: Automobile parking with an ADTT of 1 over 20 years - Main Traffic Corridors - ACI Category B: Commercial entrance and service lanes with an ADTT of 25 over years - Subgrade Soil Characteristics - USCS Classification SP-SM to SM (good support) - Concrete modulus of rupture value of 600 psi We should be contacted to confirm and/or modify the recommendations contained herein if actual traffic volumes differ from the assumed values shown above. # **Subgrade Soils** Based on subgrade soil Unified Soil Classifications of SP-SM to SM, AI classifies the subgrade soil as good, while ACI classifies the subgrade soil as good support. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 # **Recommended Minimum Pavement Sections and Materials** Recommended alternatives for flexible and rigid pavements are summarized for each traffic area as follows: | | Θ | Preliminary Pavement Thickness (Inches | | | | | |-----------------------------------|------------|--|-----------------------------|--------------------------------|-------|--| | Traffic Area | Alternativ | Asphalt
Concrete
Surface | Aggregate
Base
Course | Portland
Cement
Concrete | Total | | | Automobile Parking | Α | 4 | 6 | | 10 | | | (Al Class I and ACI Category A) | В | | | 5 | 5 | | | Main Traffic Corridors | Α | 5 | 6 | | 11 | | | (Al Class III and ACI Category B) | В | | | 6 | 6 | | Each alternative should be investigated with respect to current material availability and economic conditions. A minimum 7-inch thickness of rigid reinforced concrete pavement is recommended at the location of dumpsters where trash trucks park and load, and in areas of tight turning radius. Concrete pavement joint spacing and reinforcement should be in accordance with specifications in ACI 330R-08. For analysis of pavement costs, the following specifications should be considered for each pavement component: | Pavement Component | Colorado Department of Transportation Criteria | |--------------------------|--| | Asphalt Concrete Surface | Grading S or SX | | Aggregate Base Course | Class 5 or 6 | | Portland Cement Concrete | Class P | # **Drainage Adjacent to Pavements** To reduce pavement distress due to wetting of the subgrade in areas of water intensive landscaping or other nearby water sources (if aggregate base course is used) located adjacent to pavements, edge drains should be considered. #### **Pavement Maintenance** Future performance of pavements constructed at this site will be dependent upon several factors, including: Maintaining stable moisture content of the subgrade soils both before and after pavement construction. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 Providing for a planned program of preventative maintenance. The performance of all pavements can be enhanced by minimizing excess moisture, which can reach the subgrade soils. The following recommendations should be implemented: - Site grading at a minimum 2 percent grade onto or away from the pavements. - Water should not be allowed to pond behind curbs. - Compaction of any utility trenches for landscaped areas to the same criteria as the pavement subgrade. - Sealing all landscaped areas in or adjacent to pavements, or providing drains to reduce the risk of moisture migration to subgrade soils. - Placing compacted backfill against the exterior side of curb and gutter. - Placing curb, gutter, and/or sidewalk directly on subgrade soils without the use of base course materials. Preventative maintenance should be planned and provided for an ongoing pavement management program in order to enhance future pavement performance. Preventative maintenance activities are intended to slow the rate of pavement deterioration. Preventative maintenance consists of both localized maintenance (e.g. crack sealing and patching) and global maintenance (e.g. surface sealing). Preventative maintenance is usually the first priority when implementing a planned pavement maintenance program. # **Pavement Construction Considerations** Site grading is generally accomplished early in the construction phase. However, as construction proceeds, the subgrade may be disturbed due to utility excavations, construction traffic, desiccation, or rainfall. As a result, the pavement subgrade may not be suitable for pavement construction and corrective action will be required. The subgrade should be carefully evaluated at the time of pavement construction for signs of disturbance or excessive rutting. If disturbance has occurred, pavement subgrade areas should be reworked, moisture conditioned, and properly compacted to the recommendations in this report immediately prior to paving. We recommend the pavement areas be rough graded and then thoroughly proofrolled with a loaded tandem axle dump truck prior to final grading and paving. Particular attention should be paid to high traffic areas that were rutted and disturbed earlier and to areas where backfilled trenches are located. Areas where unsuitable conditions are located should be repaired by removing and replacing the materials with properly compacted fills. All pavement areas should be moisture conditioned and properly compacted to the recommendations in this report immediately prior to paving. The placement of a partial pavement thickness for use during construction is not recommended without a detailed pavement analysis incorporating
construction traffic. In addition, if the actual Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 traffic varies from the assumptions outlined above, we should be contacted to confirm and/or modify the pavement thickness recommendations outlined above. # **CORROSIVITY** The following table lists the results of laboratory water-soluble sulfate, pH, and electrical resistivity testing performed on samples obtained during our field exploration. These values may be used to estimate potential corrosive characteristics of the on-site soils with respect to contact with the various underground materials which will be used for project construction. | Boring No. | Sample Depth
(feet) | Water-Soluble
Sulfate ¹
(ppm) | рН | Electrical Resistivity
(ohm-cm) | |------------|------------------------|--|------|------------------------------------| | B-3 | 1 – 5 | 99 | 8.05 | 6,063 | ^{1.} Results of water-soluble sulfate testing indicate that sample of the on-site soils has an exposure class of S0 when classified in accordance with Table 19.3.1.1 of the American Concrete Institute (ACI) Design Manual. The results of the testing indicate ASTM Type I Portland Cement is suitable for project concrete in contact with on-site soils. However, if there is no (or minimal) cost differential, use of ASTM Type II Portland Cement is recommended for additional sulfate resistance of construction concrete. Concrete should be designed in accordance with the provisions of the ACI Design Manual, Section 318, Chapter 19. # **GENERAL COMMENTS** Our analysis and opinions are based upon our understanding of the project, the geotechnical conditions in the area, and the data obtained from our site exploration. Natural variations will occur between exploration point locations or due to the modifying effects of construction or weather. The nature and extent of such variations may not become evident until during or after construction. Terracon should be retained as the Geotechnical Engineer, where noted in this report, to provide observation and testing services during pertinent construction phases. If variations appear, we can provide further evaluation and supplemental recommendations. If variations are noted in the absence of our observation and testing services on-site, we should be immediately notified so that we can provide evaluation and supplemental recommendations. Our Scope of Services does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials, or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken. Our services and any correspondence or collaboration through this system are intended for the sole benefit and exclusive use of our client for specific application to the project discussed and are accomplished in accordance with generally accepted geotechnical engineering practices with no third-party beneficiaries intended. Any third-party access to services or correspondence is Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 solely for information purposes to support the services provided by Terracon to our client. Reliance upon the services and any work product is limited to our client, and is not intended for third parties. Any use or reliance of the provided information by third parties is done solely at their own risk. No warranties, either express or implied, are intended or made. Site characteristics as provided are for design purposes and not to estimate excavation cost. Any use of our report in that regard is done at the sole risk of the excavating cost estimator as there may be variations on the site that are not apparent in the data that could significantly impact excavation cost. Any parties charged with estimating excavation costs should seek their own site characterization for specific purposes to obtain the specific level of detail necessary for costing. Site safety, and cost estimating including, excavation support, and dewatering requirements/design are the responsibility of others. If changes in the nature, design, or location of the project are planned, our conclusions and recommendations shall not be considered valid unless we review the changes and either verify or modify our conclusions in writing. # **ATTACHMENTS** Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 # **EXPLORATION AND TESTING PROCEDURES** # Field Exploration **Boring Layout and Elevations:** The locations of the borings are presented in the **Site Location and Exploration Plans**. The borings were located in the field by overlaying the site plan on Google Earth, recording the latitude and longitude coordinates, and staking the borings using a handheld, recreational-grade GPS unit. The accuracy of the latitude and longitude values is typically about +/- 25 feet when obtaining the values using this method. The accuracy of the boring locations and elevations should only be assumed to the level implied by the methods used. Subsurface Exploration Procedures: The borings were drilled with a CME-55 truck-mounted rotary drill rig with solid-stem augers. During the drilling operations, lithologic logs of the borings were recorded by the field engineer. Relatively undisturbed samples were obtained at selected intervals utilizing a 2-inch outside diameter standard split spoon sampler and a 3-inch outside diameter modified Dames & Moore barrel sampler. Bulk samples were obtained from auger cuttings. Penetration resistance values were recorded in a manner similar to the standard penetration test (SPT). This test consists of driving the sampler into the ground with a 140-pound hammer free falling through a distance of 30 inches. The number of blows required to advance the barrel sampler 12 inches (18 inches for standard split-spoon samplers, final 12 inches are recorded) or the interval indicated is recorded and can be correlated to the standard penetration resistance value (N-value). The blow count values are indicated on the boring logs at the respective sample depths, barrel sampler blow counts are not considered N-values. An automatic hammer was used to advance the samplers in the borings performed on this site. A greater efficiency is typically achieved with the automatic hammer compared to the conventional safety hammer operated with a cathead and rope. Published correlations between the SPT values and soil properties are based on the lower efficiency cathead and rope method. This higher efficiency affects the standard penetration resistance blow count value by increasing the penetration per hammer blow over what would be obtained using the cathead and rope method. The effect of the automatic hammer's efficiency has been considered in the interpretation and analysis of the subsurface information for this report. Groundwater measurements were obtained in the borings at the time of drilling. Due to safety concerns, the borings were backfilled with auger cuttings after drilling. Some settlement of the backfill may occur and should be repaired as soon as possible. # **Laboratory Testing** Samples retrieved during the field exploration were returned to the laboratory for observation by the project geotechnical engineer, and were classified in general accordance with the Unified Soil Classification System presented in the **Supporting Information**. Mountain View Academy ■ Colorado Springs, Colorado November 8, 2019 ■ Terracon Project No. 23195115 At this time, an applicable laboratory-testing program was formulated to determine engineering properties of the subsurface materials. Following the completion of the laboratory testing, the field descriptions were confirmed or modified as necessary, and the boring logs were prepared. The boring logs are included in the **Exploration Results**. Laboratory test results are included in the **Exploration Results**. These results were used for the geotechnical engineering analyses and the development of foundation, earthwork, and pavement recommendations. All laboratory tests were performed in general accordance with the applicable local or other accepted standards. Selected soil samples were tested for the following engineering properties: - Water content - Dry density - Grain size distribution - Atterberg limits - Consolidation/expansion - Electrical resistivity - Water-soluble sulfate content - pH # SITE LOCATION AND EXPLORATION PLANS # **Contents:** Site Location Plan Exploration Plan with Project Overlay Exploration Plan with ALTA Overlay Note: All attachments are one page unless noted above. # **SITE LOCATION** Mountain View Academy ■ Colorado Springs, CO November 8, 2019 ■ Terracon Project No. 23195115 # **EXPLORATION PLAN WITH PROJECT OVERLAY** Mountain View Academy Colorado Springs, CO November 8, 2019 Terracon Project No. 23195115 #### **EXPLORATION PLAN WITH ALTA OVERLAY** Mountain View Academy Colorado Springs, CO November 8, 2019 Terracon Project No. 23195115 # **EXPLORATION RESULTS** # **Contents:** Boring Logs (Boring Nos. B-1 to B-12) Grain Size Distribution (2 pages) Consolidation/Expansion (2 Pages) Results of Corrosion Analysis Note: All attachments are one page unless noted above. 11/8/19 11/8/19 #### **GRAIN SIZE DISTRIBUTION** #### **ASTM D422 / ASTM C136** SITE: Hames Drive and Pinyon Jay Drive Colorado Springs, CO PROJECT NUMBER: 23195115 CLIENT: National Heritage Academies Grand Rapids, MI # **GRAIN SIZE DISTRIBUTION** # **ASTM D422 / ASTM C136** # **SWELL CONSOLIDATION TEST** PRESSURE, psf | Spe | ecimen Id | lentification | Classification | γ _d , pcf | WC, % | |-----|-----------|---------------|------------------------|----------------------|-------| | • | B-1 | 4 - 5 ft |
POORLY GRADED SAND(SP) | 106 | 4 | NOTES: PROJECT: Mountain View Academy SITE: Hames Drive and Pinyon Jay Drive Colorado Springs, CO PROJECT NUMBER: 23195115 CLIENT: National Heritage Academies Grand Rapids, MI AXIAL STRAIN, % # **SWELL CONSOLIDATION TEST** PRESSURE, psf | Spe | cimen la | dentification | Classification | γ _d , pcf | WC, % | |-----|----------|---------------|----------------|----------------------|-------| | • | B-6 | 7 - 8 ft | SILTY SAND(SM) | 107 | 7 | NOTES: PROJECT: Mountain View Academy SITE: Hames Drive and Pinyon Jay Drive Colorado Springs, CO PROJECT NUMBER: 23195115 CLIENT: National Heritage Academies Grand Rapids, MI AXIAL STRAIN, % # **CHEMICAL LABORATORY TEST REPORT** **Project Number:** 23195115 **Service Date:** 10/28/19 **Report Date:** 11/04/19 Task: 750 Pilot Road, Suite F Las Vegas, Nevada 89119 (702) 597-9393 Client **Project** National Heritage Academies Mountain View Academy Grand Rapids, MI Sample Submitted By: Terracon (23) Lab No.: 19-1202 **Date Received:** 10/22/2019 # Results of Corrosion Analysis | Sample Number | 1 | |--|---------| | Sample Location | B-3 | | Sample Depth (ft.) | 1.0-5.0 | | pH Analysis, ASTM G 51 | 8.05 | | Water Soluble Sulfate (SO4), ASTM C 1580 (mg/kg) | 99 | | Chlorides, ASTM D 512, (mg/kg) | 45 | | Resistivity, ASTM G 57, (ohm-cm) | 6063 | Analyzed By: Trisha Campo The tests were performed in general accordance with applicable ASTM, AASHTO, or DOT test methods. This report is exclusively for the use of the client indicated above and shall not be reproduced except in full without the written consent of our company. Test results transmitted herein are only applicable to the actual samples tested at the location(s) referenced and are not necessarily indicative of the properties of other apparently similar or identical materials. # **SUPPORTING INFORMATION** # **Contents:** General Notes Unified Soil Classification System Note: All attachments are one page unless noted above. # **GENERAL NOTES** #### **DESCRIPTION OF SYMBOLS AND ABBREVIATIONS** Mountain View Academy Colorado Springs, CO Terracon Project No. 23195115 | SAMPLING | WATER LEVEL | FIELD TESTS | | |---------------------------------|---|-------------|---| | | Water Initially Encountered | N | Standard Penetration Test
Resistance (Blows/Ft.) | | Auger Modified Dames & | Water Level After a Specified Period of Time | (HP) | Hand Penetrometer | | Cuttings Moore Ring Sampler | Water Level After a Specified Period of Time | (T) | Torvane | | Standard
Penetration
Test | Water levels indicated on the soil boring logs are the levels measured in the borehole at the times | (DCP) | Dynamic Cone Penetrometer | | | indicated. Groundwater level variations will occur
over time. In low permeability soils, accurate
determination of groundwater levels is not possible | | Unconfined Compressive
Strength | | | with short term water level observations. | (PID) | Photo-Ionization Detector | | | | (OVA) | Organic Vapor Analyzer | #### **DESCRIPTIVE SOIL CLASSIFICATION** Soil classification is based on the Unified Soil Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency. # **LOCATION AND ELEVATION NOTES** Unless otherwise noted, Latitude and Longitude are approximately determined using a hand-held GPS device. The accuracy of such devices is variable. Surface elevation data annotated with +/- indicates that no actual topographical survey was conducted to confirm the surface elevation. Instead, the surface elevation was approximately determined from topographic maps of the area | | | STRENGTH TER | MS | | | | |-------------------------------|---|-----------------------------------|---|---|--|--| | RELATIVE DENSITY | OF COARSE-GRAINED SOILS | CONSISTENCY OF FINE-GRAINED SOILS | | | | | | | retained on No. 200 sieve.) retained on No. 200 sieve.) retained on No. 200 sieve.) | Consistency de | (50% or more passing the No. 200 s
etermined by laboratory shear strength te
procedures or standard penetration res | sting, field visual-manual | | | | Descriptive Term
(Density) | Standard Penetration or
N-Value
Blows/Ft. | Descriptive Term
(Consistency) | Unconfined Compressive Strength
Qu, (tsf) | Standard Penetration or
N-Value
Blows/Ft. | | | | Very Loose | 0 - 3 | Very Soft | less than 0.25 | 0 - 1 | | | | Loose | 4 - 9 | Soft | 0.25 to 0.50 | 2 - 4 | | | | Medium Dense | 10 - 29 | Medium Stiff | 0.50 to 1.00 | 4 - 8 | | | | Dense | 30 - 50 | Stiff | 1.00 to 2.00 | 8 - 15 | | | | Very Dense | > 50 | Very Stiff | 2.00 to 4.00 | 15 - 30 | | | | | | Hard | > 4.00 | > 30 | | | | RELATIVE PROPORTIONS OF SAND AND GRAVEL | | RELATIVE PROPO | RTIONS OF FINES | | |---|---------------------------------|---|--------------------------|--| | Descriptive Term(s) of other constituents | Percent of
Dry Weight | Descriptive Term(s) of other constituents | Percent of
Dry Weight | | | Trace | <15 | Trace | <5 | | | With | 15-29 | With | 5-12 | | | Modifier | >30 | Modifier | >12 | | | GRAIN SIZE T | ERMINOLOGY | PLASTICITY DESCRIPTION | | | | Major Component of Sample | Particle Size | Term | Plasticity Index | | | Boulders | Over 12 in. (300 mm) | Non-plastic | 0 | | | Doulders | Over 12 III. (300 IIIIII) | Non-plastic | U | | | Cobbles | 12 in. to 3 in. (300mm to 75mm) | Low | 1 - 10 | | | | , , | ' | • | | | Cobbles | 12 in. to 3 in. (300mm to 75mm) | Low | 1 - 10 | | | Criteria for Assigning Group Symbols and Group Names Using Laboratory Tests A | | | | | Soil Classification | | |---|--|---|------------------------------------|-----------------|--------------------------------|--| | | | | | Group
Symbol | Group Name ^B | | | Coarse-Grained Soils:
More than 50% retained
on No. 200 sieve | Gravels:
More than 50% of
coarse fraction
retained on No. 4 sieve | Clean Gravels:
Less than 5% fines ^C | Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E | GW | Well-graded gravel F | | | | | | Cu < 4 and/or [Cc<1 or Cc>3.0] E | GP | Poorly graded gravel F | | | | | Gravels with Fines:
More than 12% fines ^C | Fines classify as ML or MH | GM | Silty gravel F, G, H | | | | | | Fines classify as CL or CH | GC | Clayey gravel F, G, H | | | | Sands:
50% or more of coarse
fraction passes No. 4
sieve | Clean Sands:
Less than 5% fines D | Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E | SW | Well-graded sand | | | | | | Cu < 6 and/or [Cc<1 or Cc>3.0] E | SP | Poorly graded sand | | | | | Sands with Fines: More than 12% fines D | Fines classify as ML or MH | SM | Silty sand G, H, I | | | | | | Fines classify as CL or CH | sc | Clayey sand ^{G, H, I} | | | Fine-Grained Soils:
50% or more passes the
No. 200 sieve | Silts and Clays:
Liquid limit less than 50 | Inorganic: | PI > 7 and plots on or above "A" | CL | Lean clay ^{K, L, M} | | | | | | PI < 4 or plots below "A" line J | ML | Silt K, L, M | | | | | Organic: | Liquid limit - oven dried | OL | Organic clay K, L, M, N | | | | | | Liquid limit - not dried | OL OL | Organic silt K, L, M, O | | | | Silts and Clays:
Liquid limit 50 or more | Inorganic: | PI plots on or above "A" line | CH | Fat clay ^{K, L, M} | | | | | | PI plots below "A" line | MH | Elastic Silt K, L, M | | | | | Organic: | Liquid limit - oven dried | < 0.75 OH | Organic clay K, L, M, P | | | | | | Liquid limit - not dried | 011 | Organic silt K, L, M, Q | | | Highly organic soils: | Primarily organic matter, dark in color, and organic odor | | | PT | Peat | | - A Based on the material passing the 3-inch (75-mm) sieve. - ^B If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name. - Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay. - P Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay. E Cu = $$D_{60}/D_{10}$$ Cc = $\frac{(D_{30})^2}{D_{10} \times D_{60}}$ - $^{\text{F}}$ If soil contains \geq 15% sand, add "with sand" to group name. - ^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM. - $\ensuremath{^{\textbf{H}}}\xspace$ If fines are organic, add "with organic fines" to group name. - If soil contains ≥ 15% gravel, add "with gravel" to group name. - J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay. J - K If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant. - L If soil contains ≥
30% plus No. 200 predominantly sand, add "sandy" to group name. - MIf soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name. - N PI \geq 4 and plots on or above "A" line. - OPI < 4 or plots below "A" line. - P PI plots on or above "A" line. - PI plots below "A" line. NOTES TO USERS This map is for use in administering the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information. To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined, users are encouraged to consult the Flood Profiles and Floodway Data and/or Summary of Stillwater Elevations tables contained within the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whole-foot elevations. These BFEs are intended for flood insurance rating purposes only and should not be used as the sole source of flood elevation information. Accordingly, flood elevation data presented in the FIS report should be utilized in conjunction with the FIRM for purposes of construction and/or floodplain management. Coastal Base Flood Elevations shown on this map apply only landward of 0.0' North American Vertical Datum of 1988 (NAVD88). Users of this FIRM should be aware that coastal flood elevations are also provided in the Summary of Stillwater Elevations table in the Flood Insurance Study report for this jurisdiction. Elevations shown in the Summary of Stillwater Elevations table should be used for construction and/or loodplain management purposes when they are higher than the elevations shown or Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway widths and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction. Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction. The projection used in the preparation of this map was Universal Transverse Mercator (UTM) zone 13. The horizontal datum was NAD83, GRS80 spheroid. Differences in datum, spheroid, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map features across jurisdiction boundaries. These differences do not affect the accuracy of this FIRM. Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared to structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1988, visit the National Geodetic Survey website a http://www.ngs.noaa.gov/ or contact the National Geodetic Survey at the following NGS Information Services NOAA, N/NGS12 National Geodetic Survey SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282 To obtain current elevation, description, and/or location information for bench marks shown on this map, please contact the Information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.noaa.gov/. Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utilities, City of Fountain, Bureau of Land Management, National Oceanic and Atmospheric Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006. This map reflects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplains and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles and Floodway Data tables in the Flood Insurance Study Report (which contains authoritative hydraulic data) may reflect stream channel distances that differ from what is shown on this map. The profile baselines depicted on this map represent the hydraulic modeling baselines that match the flood profiles and Floodway Data Tables if applicable, in the FIS report. As a result, the profile elines may deviate significantly from the new base map channel representation and may appear outside of the floodplain. Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations. Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a Listing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FMIX) 1-877-336-2627 for information on available products associated with this FIRM. Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/. f you have questions about this map or questions concerning the National Flood nsurance Program in general, please call 1-877-FEMA MAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/nfip. El Paso County Vertical Datum Offset Table Flooding Source **Vertical Datum** REFER TO SECTION 3.3 OF THE EL PASO COUNTY FLOOD INSURANCE STUDY FOR STREAM BY STREAM VERTICAL DATUM CONVERSION INFORMATION # Panel Location Map This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA). Additional Flood Hazard information and resources are available from local communities and the Colorado Water Conservation Board. # LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of Special Flood Hazard include Zones A, AE, AH, AO, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood. **ZONE A** No Base Flood Elevations determined. **ZONE AE** Base Flood Elevations determined. Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined protection from the 1% annual chance or greater flood. **ZONE AO** Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also **ZONE AR** Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined. **ZONE VE** Coastal flood zone with velocity hazard (wave action); Base Flood Elevations determined. FLOODWAY AREAS IN ZONE AE The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights. OTHER FLOOD AREAS Areas of 0.2% annual chance flood; areas of 1% annual chance flood with average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood. OTHER AREAS Areas determined to be outside the 0.2% annual chance floodplain. Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS OTHERWISE PROTECTED AREAS (OPAs) CBRS areas and OPAs are normally located within or adjacent to Special Flood Hazard Areas. Floodplain boundary Floodway boundary Zone D Boundary CBRS and OPA boundary Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities ~~ 513 ~~ Base Flood Elevation line and value; elevation in feet* Base Flood Elevation value where uniform within zone; (EL 987) elevation in feet* * Referenced to the North American Vertical Datum of 1988 (NAVD 88) Cross section line 97° 07' 30.00" Geographic coordinates referenced to the North American Datum of 1983 (NAD 83) 32° 22' 30.00" 4275000mN 1000-meter Universal Transverse Mercator grid ticks, 5000-foot grid ticks: Colorado State Plane coordinate 6000000 FT system, central zone (FIPSZONE 0502), this FIRM panel) Bench mark (see explanation in Notes to Users section of MAP REPOSITORIES Refer to Map Repositories list on Map Index EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and
Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision. For community map revision history prior to countywide mapping, refer to the Community Map History Table located in the Flood Insurance Study report for this jurisdiction. To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620. **PANEL 0756G** **FIRM** FLOOD INSURANCE RATE MAP **EL PASO COUNTY,** COLORADO AND INCORPORATED AREAS PANEL 756 OF 1300 (SEE MAP INDEX FOR FIRM PANEL LAYOUT) **CONTAINS:** COLORADO SPRINGS, CITY OF 080060 EL PASO COUNTY Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject MAP REVISED **DECEMBER 7, 2018** Federal Emergency Management Agency # **Stormwater** Management Plan National Heritage Academies El Paso County, CO # **APPENDIX E** PRE DEVELOPEMNT GRADING & GEC PLANS