

See all of my comments in the Segment 1 FDR about double WQ treatment and revise this Segment 2 FDR accordingly.

I have provided additional Segment 2 specific comments in this FDR as well.

▷ HRGREEN.COM

Eastonville Road – Londonderry Dr. to Rex Rd. Segment 2 Improvements Stationing 47+00.00 – 79+31.62

Final Drainage Report

January 2025 HR Green Project No: 201662.08

Prepared For:

D.R. Horton Contact: Riley Hillen, P.E. 9555 S. Kingston Ct. Englewood, CO 80112

Prepared By:

HR Green Development, LLC Contact: Colleen Monahan, P.E., LEED AP cmonahan@hrgreen.com (719) 394-2433

> EDARP Filing No: CDR2321

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Date

Colleen Monahan, P.E., LEED A

State of Colorado No. 56067

For and on behalf of HR Green Development, LLC

Owner/Developer's Statement:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Authorized	Signature
------------	-----------

Address: D.R. Horton 9555 S. Kingston Court Englewood, CO

El Paso County Statement

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development code, as amended.

Joshua Palmer, P.E.

County Engineer/ECM Administrator

Conditions:

Date

Date

Table of Contents

Tab	le of Contents	2
I.	General Purpose, Location and Description	3
а	Purpose	3
b	Location	3
C.	Description of Property	3
d	Floodplain Statement	4
II.	Drainage Design Criteria	4
a	Drainage Criteria	4
III.	Drainage Basins and Subbasins	4
a	Major Basin Description	4
b	Existing Subbasin Description	5
C.	Proposed Subbasin Description	6
IV.	Drainage Facility Design	12
a	General Concept	12
b	Water Quality & Detention	12
C.	Inspection and Maintenance	12
V.	Wetlands Mitigation	15
VI.	Four Step Method to Minimize Adverse Impacts of Urbanization	15
VII.	Drainage and Bridge Fees	15
VIII.	Opinion of Probable Cost	15
IX.	Hydraulic Grade Line Analysis	16
Х.	Summary	17
XI.	Drawings	17
XII.	References	17

Appendices

- A. Vicinity Map, FEMA Map, NRCS Soil Survey
- B. Hydrologic Analysis
- C. Hydraulic Analysis
- D. Water Quality and Detention Calculations
- E. Reference Material
- F. Drainage Maps

I. General Purpose, Location and Description

a. Purpose

The purpose of this Final Drainage Report (FDR) for Eastonville Road Segment 2 Improvements is to describe the onsite and offsite drainage patterns, size drainage infrastructure to safely capture and convey developed runoff to water quality and detention facilities, and to safely route detained stormwater to adequate outfalls. This drainage report will detail the improvements of Eastonville Road from Londonderry Dr. to Rex Road for Segment 2. Stations 47+00.00 to 79+32.00 contain the Segment 2 Improvements for the Eastonville Road from Londonderry Drive to Rex Road for the portion of the project north of Grandview Filing No. 1. The development is considered a single project; however, the plan set has been broken into two segments to align with the Grandview Reserve Filings. A separate FDR describes Segment 1 of the project.

b. Location

Eastonville Road from Londonderry Dr. to Rex Road, referred to as 'the site' herein, is an existing 26' wide treated gravel road in El Paso County, Colorado. Per field inspection the existing pavement is not full depth, and therefore described as 'temporary' for the purpose of this report. The site lies in the existing 60' wide El Paso County Right-of-Way within Sections 21 and 28, Township 12 South, Range 64 West of the 6th Principal Meridian, in El Paso County, State of Colorado.

The site is bound by undeveloped land to the east and west that has historically been used as ranching lands. Falcon Regional Park, which contains ballparks and parking, and Falcon High School also border the site to the west. All lands to the east and west of the site are unplatted. A vicinity map is presented in Appendix A.

c. Description of Property

The site is approximately 0.69 miles (2.17 acres) of existing treated gravel roadway north of Londonderry Dr. and south of Rex Road. Per field inspection the existing pavement is not full depth, and therefore described as 'temporary' for the purpose of this report. The existing treated gravel width for the length of the project is 26' wide. There are 4' wide gravel shoulders and native landscaped swales are located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts. See Appendix A for an existing conditions photo.

The existing roadway has slopes ranging from 0.3% up to about 4%. The general topography of the surrounding area is typical of high desert, short prairie grass with gently rolling hillside with slopes ranging from 2% to 4%. The project site drains generally from the west to the east and is tributary to Black Squirrel Creek.

Per a NRCS soil survey, the site is made up of Type A Columbine gravelly sandy loam, Type A Blakeland loamy sand and Type B Stapleton sandy loam. The NRCS soil survey is presented in Appendix A.

Gieck Ranch Tributary #1 (Channel A) is the only drainageway that traverses the site in the west to east direction through an existing culvert under Eastonville Road. The channel is a mapped wetland and a wetland permit will be required and has been obtained for a part of this Eastonville Road improvement project. NWP # SPA-2024-207 and is included in the project CDR-2321. Channel A is not within a FEMA floodplain.

Gieck Ranch Tributary #2 is located on the north end of the project site and contains a mapped floodplain. A CLOMR permit has been obtained (Case No. #24-08-0102R) and is included in the project CDR-2321. There are no known irrigation facilities in the area.

Existing utilities include an underground gas line that runs under Eastonville road through the Grandview reserve property south of the segment 2 improvements, an existing raw water line that follows the west side of Eastonville north of Falcon Regional Park, and an existing aboveground electrical line along the western side of Eastonville Road. An existing drainage map with these facilities is presented in Appendix F.

d. Floodplain Statement

Based on FEMA Firm map 08041C0552G December 7, 2018, the site is not located in any FEMA designated floodplain. See FEMA Firm Map in Appendix A. There is a Zone A floodplain north of the site and a Zone AE south of the site. There is an approved CLOMR for the Zone A floodplain north of the site that will be needed for a portion of Segment 2 of this project. A CLOMR permit has been obtained (Case No. #24-08-0102R) and is included in the project CDR-2321.

II. Drainage Design Criteria

a. Drainage Criteria

Hydrologic data and calculations were performed using Drainage Criteria Manual Volume 1 of El Paso County (EPCDCM), with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual (CCSDCM), May 2014 revised January 2021.

Onsite drainage improvements are designed for the 5-year storm (minor event) and 100-year storm (major event) using rainfall values from the NOAA Atlas 14 Point Precipitation Frequency Data Server. Runoff was calculated per CCSDCM Section 6.3.0 - Rational Method. Private, full spectrum pond design was completed using the latest version of Mile High Flood District's (MHFD) UD-Detention per CCSDCM Section 13.3.2.1 – Private, full spectrum Detention. The detention pond allowable release rate will be limited to less than historic rates.

Rainfall Depths per NOAA Atlas 14						
Return Period (yr) 5 100						
1-hr Rainfall Depth (in)	1.21	2.49				

Inlet sizing was performed per the methods described in EPCDCM Section III Chapter 7 – Street Drainage and Storm Water Inlets. Storm sewer sizing was performed per the methods described in EPCDCM Section III Chapter 8 – Storm Drains and Appurtenances.

III. Drainage Basins and Subbasins

a. Major Basin Description

The site is located within the Gieck Ranch Drainage Basin. The site's drainage characteristics were previously studied in the following reports:

- 1. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 2. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.

3. "Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch" by Tech Contractors, August 2022.

Gieck Ranch Drainage Basin is a 22.05 square mile watershed located in El Paso County, Colorado. Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains to the Arkansas River. The majority of the basin is undeveloped and is rolling range land typical of Colorado's semi-arid climates. It should be noted that the Gieck Ranch DBPS has not been approved at the time of this report.

The Meridian Ranch MDDP and The Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch indicate that the Eastonville Road culvert crossing at the Gieck Ranch Tributary #1, within the project boundary, does not provide enough capacity for the historic flow rates. This culvert will be upgraded as part of this project.

Within the Gieck Ranch Drainage Basin, ranching has historically been the predominant land use, with rolling topography between 2%-4% slopes. Recently urbanization is occurring within the drainage basin, most notably for this project are Meridian Ranch and Latigo Trails Developments. Both are single family residential neighborhoods located upstream to the west and northwest of the Eastonville Segment 2 Improvements project site.

b. Existing Subbasin Description

Eastonville Road Segment 2 (the site) accepts flows from areas to the west and northwest of the site, including portions of Meridian Ranch and Latigo Trails Development. The flows and design points used in the following descriptions are taken from the approved Meridian Ranch MDDP and The Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch provides the detailed analysis of the pond releases and flows as they outfall from those developments upstream of this Eastonville Road site. For the purpose of this report, full buildout of the Meridian Ranch development was assumed; hence the developed peak flow rates from the "future buildout conditions" for the entirety of Meridian Ranch were used to evaluate the existing conditions below.

Basin FG29 is 62.91 acres of undeveloped area and treated gravel to the crown of Eastonville Road roadway. The area and flows from this basin are per the FDR for the Sanctuary Filing 1 at Meridian Ranch. Stormwater from this basin combines drains southeast to design point G06 which is also per the FDR for the Sanctuary Filing 1 at Meridian Ranch ($Q_5 = 22$ cfs $Q_{100} = 491$ cfs). Flows at DP G06 are conveyed across Eastonville to design point G06.1 via an existing 18" CMP culvert and discharges to Gieck Ranch Tributary #1 (Channel A).

Basin FG35 is 19 acres undeveloped area and asphalt roadway to the crown of Rex Road. This basin area and flow are per the FDR for Rex Road through Falcon Regional Park. Stormwater from this basin is conveyed overland to DP G15. Flows at DP G15 ($Q_5 = 3.0$ cfs $Q_{100} = 55$ cfs) are conveyed southerly across Rex Road in an existing 24" RCP culvert and drains to DP G16.

Basin FG36 is 19 acres undeveloped area, parking lot, and treated gravel to the crown of Eastonville Road and Rex Road. This basin area and flow are per the FDR for Rex Road through Falcon Regional Park. Stormwater from this basin is conveyed overland to DP G15a. Flows at DP G15a ($Q_5 = 1.8$ cfs $Q_{100} = 19$ cfs) are conveyed southerly across Rex Road in an existing 24" RCP culvert and drains to DP G16.

Basin FG37 is 48 acres of undeveloped area and the Falcon Regional Park ball fields and treated gravel to the crown of Eastonville Road. This basin and flows are per the FDR for Rex Road through Falcon Regional Park. Stormwater from this basin drains to design point G16 via an existing roadside swale. Flows to DP G16

 $(Q_5 = 6.5 \text{ cfs } Q_{100} = 114 \text{ cfs})$ are conveyed across Eastonville Road in an existing 24" CMP culvert and discharge to Gieck Ranch Tributary #1 (Channel A).

Basin FG 38 is 85 acres of undeveloped area and treated gravel area to the crown of Eastonville Road. This basin area and flows are per the FDR for Falcon Regional Park. Stormwater from this basin combines with flows from Latigo Trails South Pond and is conveyed overland to DP G09 per the Falcon Regional Park FDR. Per the Falcon Regional Park FDR, flows at DP G09 ($Q_5 = 52 \text{ cfs } Q_{100} = 277 \text{ cfs}$) area conveyed east over Eastonville Road and are conveyed "overtopping at various locations". This basin is located upstream of the Eastonville project and is presented here to show where flows go that are upstream of the project site. The Eastonville project will have no impact into this basin and no further analysis done until further extension of the Eatonville Roadway.

Basin EX1 is 12.19 acres of undeveloped area and a future church property on the east side of the Eastonville Roadway. Stormwater from this basin sheet flows east directly to the Gieck Ranch Tributary #1 at DP13.1 ($Q_5 = 3.7$ cfs $Q_{100} = 25.0$ cfs).

Basin EX2 is 0.61 acres of undeveloped area on the future church property on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP G16.2 ($Q_5 = 0.2 \text{ cfs } Q_{100} = 1.4 \text{ cfs}$). Ultimately draining east to the Gieck Ranch Tributary #1.

Basin EX3 is 1.90 acres of undeveloped area on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP O3 ($Q_5 = 0.6$ cfs $Q_{100} = 3.8$ cfs). Ultimately draining east to the Gieck Ranch Tributary #1 combined with flows from DP G16 from the Sanctuary Filing 1.

Basin EX4 is 2.86 acres of undeveloped area on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP O3 ($Q_5 = 0.8$ cfs $Q_{100} = 5.7$ cfs). Ultimately draining east to the Gieck Ranch Tributary #1 combined with flows from DP G06 from the Sanctuary Filing 1.

c. Proposed Subbasin Description

Description of Proposed Project

The proposed project includes improvements to Eastonville Road from Londonderry Drive to Rex Road. As described above, the current condition of the existing roadway in this area consists of 26' wide treated gravel roadway with 4' wide sand shoulders and weedy swales located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts.

The proposed improvements from Rex Road south to the southern property line of the proposed Grandview Reserve Filing 1 include removal of the 26' wide treated gravel and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). This includes Basins EA1-EA11.

Refer to the Eastonville Road Segment 1 improvements FDR for subbasin information and calculations south of subbasins EA10 & EA11.

Eastonville Road Basins

Basin EA1 is 0.22 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.5$ cfs) is conveyed in curb and gutter to DP2.1. Flows at DP2.1 are captured in a 5' Type R sump inlet (Public) and piped to SFB C, a public full spectrum sand filter basin. Basin EA1 will be detained by SFB C. WQ treatment and runoff reduction is provided for disturbed area within this basin

within SFB C. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB C.

Basin EA2 is 0.25 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.9$ cfs $Q_{100} = 1.7$ cfs) is conveyed in curb and gutter to DP3.1. Flows at DP3 are captured in a 5' Type R sump inlet (Public) and piped to Pond C. Basin EA2 will be detained by SFB C. WQ treatment and runoff reduction is provided for disturbed area within this basin within SFB C. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB C.

Basin EA3 is 0.76 acres of undeveloped area and proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section) from Rex Road and the roundabout at its intersection with Eastonville Road. Stormwater ($Q_5 = 2.4 \text{ cfs } Q_{100} = 4.9 \text{ cfs}$) is conveyed in curb and gutter to DP5. This basin is drawn using information from the FDR for Rex Road through Falcon regional park. Flows at DP5 are captured in a 5' Type R sump inlet (Public) and piped to DP6. Basin EA3 will not be detained per the Meridian Ranch MDDP as this basin has been overdetained within Meridian Ranch. The disturbed area in this basin is part of 16,505 sf of disturbed area at the west leg of the Eastonville/Rex Road roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1.

Basin EA4 is 3.11 acres of undeveloped area and proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section) from Rex Road and the roundabout at its intersection with Eastonville Road Stormwater ($Q_5 = 3.8 \text{ cfs } Q_{100} = 11.7 \text{ cfs}$) is conveyed in curb and gutter to DP6. Flows at DP6 are captured in a 10' Type R sump inlet (Public) and piped to DP6.1. Basin EA4 will not be detained per the Meridian Ranch MDDP as this basin has been over-detained within Meridian Ranch. The disturbed area in this basin is part of 16,505 sf of disturbed area at the west leg of the Eastonville/Rex Road roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1.

Basin EA5 is 0.16 acres of undeveloped area and includes the Pond C Sand Filter. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 0.4$ cfs) flows directly into the SFB C Sand Filter. Basin EA5 will be detained by SFB C. WQ treatment and runoff reduction is provided for disturbed area within this basin within SFB C. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB C.

Basin EA6 is 0.25 acres of undeveloped area and the east leg of the Eastonville/Rex Road roundabout. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed east via curb and gutter to design point 10. Temporary Sediment Basin #1 (TSB #1) will be used as an interim BMP for the area. TSB #1 has been sized for the paved area of the roundabout. The disturbed area in this basin is part of 19,279 sf of disturbed area at the east leg of the Eastonville/Rex Road roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1. This area will ultimately be treated by the Grandview Reserve development after the extension of Rex Road.

Basin EA7 is 0.20 acres of undeveloped area and the east leg of the Eastonville/Rex Road roundabout. Stormwater ($Q_5 = 0.4$ cfs $Q_{100} = 1.0$ cfs is conveyed east via curb and gutter to design point 10. Temporary Sediment Basin #1 (TSB #1) will be used as an interim BMP for the area. TSB #1 has been sized for the paved area of the roundabout. The disturbed area in this basin is part of 19,279 sf of disturbed area at the east leg of the Eastonville/Rex Road roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1. This area will ultimately be treated by the Grandview Reserve development after the extension of Rex Road.

Basin EA8 is 2.08 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 5.2$ cfs $Q_{100} = 9.4$ cfs) is conveyed in curb and gutter to DP14. Flows at DP14 are captured in a 10' Type R sump inlet (Public) and piped to EDB B. Basin EA8 will be detained by EDB B. WQ treatment and runoff reduction is provided for disturbed area within this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB B.

Basin EA9 is 3.14 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 5.0 \text{ cfs } Q_{100} = 10.6 \text{ cfs}$) is conveyed in curb and gutter to DP15. Flows at DP15 are captured in a 10' Type R sump inlet (Public) and piped to EDB B. Basin EA9 will be detained by EDB B. WQ treatment and runoff reduction is provided for the disturbed area within this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB B.

Basin EA10 is 0.16 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.6 \text{ cfs } Q_{100} = 1.1 \text{ cfs}$) is conveyed in curb and gutter to DP16.1 Flows from DP16.1 drain south and captured in a 10' Type R sump inlet (Public) at DP 16 and piped to Pond B. WQ treatment and runoff reduction is provided for the disturbed area within this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB B.

Basin EA11 is 0.15 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.5$ cfs $Q_{100} = 1.0$ cfs) is conveyed in curb and gutter to DP17.1. Flows from DP17.1 drain south and captured in a 10' Type R sump inlet (Public) at DP 17 and piped to Pond B. WQ treatment and runoff reduction is provided for the disturbed area within this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB B.

Basin EA12 is 0.36 acres of landscaping east of the Eastonville Roadway. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 1.1$ cfs) is conveyed east to DP G06.1. Flows at DP G06.1 combine with flow from DP G06 per the Sanctuary Filing 1 Report. This design point then drains east offsite in the Geick Ranch Tributary #1. There is approximately 12,172 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA13 is 0.45 acres of Eastonville Roadway at the Dawlish Dr roundabout. Stormwater ($Q_5 = 1.4$ cfs $Q_{100} = 2.8$ cfs) is conveyed east to DP G06.2. Flows to DP G06.2 ultimately drain southeast to the Geick Ranch Tributary #1. Flows in this basin with ultimately be treated and detained by the Grandview Reserve development. Prior to the Grandview Reserve development, WQ treatment is provided via a 30' wide grass buffer adjacent to the roundabout. There is approximately 15,849 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 19% and treat 125 cf of the WQCV. The remaining untreated WQCV will be treated at the development of Filing 1 of the Grandview Reserve property east of the roundabout. The remaining basin area consists of existing landscaping, and 3,532 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be

treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B.

Basin EA14 is 1.48 acres of landscaping and concrete/gravel trail on the east side of Eastonville Rd. Stormwater ($Q_5 = 1.2 \text{ cfs } Q_{100} = 3.8 \text{ cfs}$) is conveyed southeast to DP G06.3. This design point ultimately drains southeast offsite in the Geick Ranch Tributary #1. WQ treatment is provided for the proposed concrete/gravel trail via a 10' wide grass buffer adjacent to the trail. There is approximately 14,183 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 100% and treat all 535 cf of the required WQCV. The remaining basin area consists of existing landscaping, and 34,835 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA15 is 0.76 acres of landscaping and concrete/gravel trail on the east side of Eastonville Rd. Stormwater ($Q_5 = 0.7$ cfs $Q_{100} = 2.1$ cfs) is conveyed southeast to DP G16.1. This design point then drains southeast offsite in the Geick Ranch Tributary #1. WQ treatment is provided for the proposed concrete/gravel trail via a 10' wide grass buffer adjacent to the trail. There is approximately 8,613 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 100% and treat all 359 cf of the required WQCV. The remaining basin area consists of existing landscaping, and 10,902 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA16 is 1.18 acres of landscaping on the east side of Eastonville Rd and south of the church property. Stormwater ($Q_5 = 0.3 \text{ cfs } Q_{100} = 2.5 \text{ cfs}$) is conveyed southeast to DP 13.1. Flows from subbasin EA16 will ultimately be treated and detained by the Grandview Reserve development. Flows to DP 13.1 will outfall and drain southeast offsite in the Geick Ranch Tributary #2. There is approximately 13,040 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA17 is 0.30 acres of landscaping on the east side of Eastonville Rd and south of the church property. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 0.7$ cfs) is conveyed southeast to DP 10.1. This design point drains southeast offsite in the Geick Ranch Tributary #2. There is approximately 11,843 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from

this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA18 is a future development of 11.29 acres. This development will be required to provide its own WQ treatment and detention but will outfall into the public double CDOT type C inlet at DP 12. These flows have been accounted for in the Eastonville storm sewer calculations. Flows to DP 12 will ultimately outfall into the Geick Ranch Tributary #2 ($Q_5 = 3.9$ cfs $Q_{100} = 24.6$ cfs). WQ treatment is provided for the proposed concrete/gravel trail via a 10' wide grass buffer adjacent to the trail. There is approximately 6,468 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 100% and treat all 270 cf of the required WQCV. The remaining basin area consists of existing landscaping, and 20,215 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B. This basin is a part of future development and will ultimately be detained and treated by the future development.

Offsite Basins

Basin FG29 is 62.91 acres of undeveloped area west of the Eastonville Road roadway. The area and flows from this basin are per the FDR for the Sanctuary Filing 1 at Meridian Ranch. Stormwater from this basin drains southeast to design point G06 which is also per the FDR for the Sanctuary Filing 1 at Meridian Ranch $(Q_5 = 22 \text{ cfs } Q_{100} = 491 \text{ cfs})$. Flows at DP G06 are conveyed across Eastonville to design point G06.1 via a proposed dual 3' X 10' public box culvert and discharges to Gieck Ranch Tributary #1 (Channel A). The disturbed impervious area in this basin is part of 1,308 sf of disturbed area at southwest corner of the proposed roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1. There is also approximately 25,936 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. This subbasin will continue to follow existing drainage patterns.

Basin FG29a is 21.40 acres of undeveloped area west of the Eastonville Road roadway. The area and flows from this basin are a portion of basin FG29 used to analyze the 18" RCP culvert at DP G06a ($Q_5 = 6.4$ cfs $Q_{100} = 42.9$ cfs). There is a localized low point at DP G06a that requires a culvert to drain stormwater to DP G06. In the minor storm, all runoff will be conveyed through the proposed culvert to DP G06. In the major storm, runoff will pond up to an elevation of approximately 6999.32. The majority of runoff will drain around the west edge of the proposed roundabout to DP G06. Riprap has been provided at the 18" RCP culvert outfall/box culvert inlet location for erosion protection. Refer to the description for basin FG29 for WQ and disturbed area descriptions.

Basin FG35 is 19 acres undeveloped area and asphalt roadway to the crown of Rex Road. This basin area and flow are per the FDR for Rex Road through Falcon Regional Park. Stormwater from this basin is conveyed overland to DP G15. Flows at DP G15 ($Q_5 = 3.0 \text{ cfs } Q_{100} = 55 \text{ cfs}$) are conveyed southerly across Rex Road in an existing 24" RCP culvert and drains to DP G16. No development will occur in this basin.

Basin FG36a is 14.14 acres undeveloped area, parking lot northwest of the Eastonville/Rex Road roundabout. This basin area is a portion of existing basin FG36. Flows from this basin drain southeast to DP G15a. Flows at DP G15a1 ($Q_5 = 4.6 \text{ cfs } Q_{100} = 27.7 \text{ cfs}$) are conveyed southeast across Rex Road in a proposed public 30" RCP culvert and drains to DP8. There is approximately 1,351 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This subbasin will continue to follow existing drainage patterns.

Basin FG36b is 0.81 acres undeveloped area, parking lot northwest of the Eastonville/Rex Road roundabout. This basin area is a portion of existing basin FG36. Flows from this basin drain southeast to DP7. Flows at DP 7 ($Q_5 = 0.4 \text{ cfs } Q_{100} = 2.0 \text{ cfs}$) are conveyed south across Rex Road in a proposed public 18" RCP culvert and drains to DP8. There is approximately 5,474 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This subbasin will continue to follow existing drainage patterns.

Basin FG37a is 22.39 acres of undeveloped area and the Falcon Regional Park ball fields on the west side of Eastonville Road. This basin is a portion of the existing basin FG37. Flows from this basin drain southeast to a proposed public sump triple CDOT type C inlet at DP G16a. Flows to DP G16a are per the FDR for Rex Road through Falcon Regional Park ($Q_5 = 12.0 \text{ cfs } Q_{100} = 59.0 \text{ cfs}$). Flows are then conveyed across Eastonville Road in a proposed public 36" RCP pipe to DP 11.1. Flows ultimately discharge to Gieck Ranch Tributary #2 (Channel B). There is approximately 13,414 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This subbasin will continue to follow existing drainage patterns.

Basin FG37b is 24.86 acres of undeveloped area and the Falcon Regional Park ball fields on the west side of Eastonville Road. This basin is a portion of the existing basin FG37. Flows from this basin drain southeast to a proposed public 36" FES inlet at DP G16b ($Q_5 = 11.0 \text{ cfs } Q_{100} = 54.9 \text{ cfs}$). Flows are then conveyed across Eastonville Road in a proposed public 36" RCP pipe to DP 11.1. Flows ultimately discharge to Gieck Ranch Tributary #2 (Channel B). The disturbed impervious area in this basin is part of 6,353 sf of disturbed area on the west side of Eastonville Road. All of which will be excluded from WQ treatment per ECM APP 1.7.C.1. There is also approximately 23,591 SF of disturbed landscape area within this basin, all of which will be restabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This subbasin will continue to follow existing drainage patterns.

Basin FG 38 is 85 acres of undeveloped area and treated gravel area to the crown of Eastonville Road. This basin area and flows are per the FDR for Falcon Regional Park. Stormwater from this basin combines with

flows from Latigo Trails South Pond and is conveyed overland to DP G09 per the Falcon Regional Park FDR. Per the Falcon Regional Park FDR, flows at DP G09 ($Q_5 = 52 \text{ cfs } Q_{100} = 277 \text{ cfs}$) area conveyed east over Eastonville Road and are conveyed "overtopping at various locations". This basin is located upstream of the Eastonville project and is presented here to show where flows go that are upstream of the project site. The Eastonville project will have no impact on this basin and no further analysis done until further extension of the Eatonville Roadway.

IV. Drainage Facility Design

a. General Concept

The proposed improvements from Rex Road south to the southern property line of the proposed Grandview Reserve Filing 1 include removal of the 26' wide treated gravel and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). Inlets will be placed at low points and roundabout entrances. Stormwater from this roadway will be piped to either a full spectrum detention pond, sand filter or temporary sediment basin. All ponds and water quality features will discharge at less than historic rates.

b. Water Quality & Detention

Pond C (Sand Filter)

Water quality and stormwater detention for Basins EA1, 2, & 5 is provided in Sand Filter Basin C. SFB C is a public, full spectrum sand filter basin within the Grandview Reserve property to be developed in the future. In Pond C, a total of 0.63 from the proposed project acres at 54% composite imperviousness will be detained. The minimum required acreage of treatment is 0.63 acres. The WQCV is 0.009 ac-ft, the EURV is 0.037 ac-ft, and the 100-year detention volume is 0.062 ac-ft. The WQCV, EURV and 100-year storms are released in 12, 41 and 44 hours, respectively. A 15' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 5' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard south. SFB C outfalls towards the future Channel B improvements at historic runoff rates. Runoff from Pond C will follow historic drainage patterns and not exceed historic flow rates.

SFB C Water Quality Treatment Summary Table								
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to SFB C (ac)					
EA1	0.22	0.22	0.22					
EA2	0.25	0.25	0.25					
EA5	EA5 0.16		0.16					
Total	0.63	0.63	0.63					

Extended Detention Basin B (Full Spectrum EDB) – Ultimate Condition

The interim condition of EDB B was design and built with the Segment 1 FDR. Water quality and detention for Basins EA6 – EA8 per the segment 1 FDR and EA8-11 per the segment 2 FDR is provided in Extended Detention Basin B ultimate condition; a public county owned, full spectrum extended detention basin within

Filing No. 1 of Grandview Reserve within a proposed drainage easement. A total of 9.48 acres of disturbed area from the proposed project at 66% composite imperviousness will be treated and detained by EDB B for the ultimately developed Eastonville Road Improvements. Ultimate conditions include fully built sections of Eastonville Road from Londonderry Road to Rex Road and is anticipated for Spring 2025. Ultimate condition pond sizing calculations have also been provided in the Appendix of this report. The ultimate conditions WQCV is 0.058 ac-ft, the EURV is 0.780 ac-ft, and the 100-year detention volume is 1.158 ac-ft. The WQCV, EURV and 100-year storms are released in 41, 69 and 67 hours, respectively. A forebay is located at the outfall into the pond and a 40" trickle channel conveys flow towards the outlet structure. A 15' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 15.5' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard towards Gieck Ranch Tributary #1. Refer to the Segment 1 FDR for outfall description.

EDB B Water Quality Treatment Summary Table – Ultimate Condition								
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to SFB A (ac)					
EA6*	1.09	1.09	1.09					
EA7*	1.92	1.92	1.92					
EA8 *	0.94	0.94	0.94					
EA8	2.08	2.08	2.08					
EA9	3.14	3.14	3.14					
EA10	0.16	0.16	0.16					
EA11	0.15	0.15	0.15					
Total	9.48	9.48	9.48					

* Per Segment 1 FDR.

Basin ID	Total Area (ac)	Disturbed Area (ac)	Disturbed Area Treatment BMP	Disturbed Area Treated via runoff reduction (ac)	WQCV Reduction %	Notes:
EA1	0.22	0.22	SFB C	0.22	17%	Treatment and detention by SFB C (public County sand filter basin) on Grandview Reserve property.
EA2	0.25	0.25	SFB C	0.25	17%	Treatment and detention by SFB C (public County sand filter basin) on Grandview Reserve property.
EA3	0.76	0.19	Exclusion I.7.1.C.1.	-	-	
EA4	3.11	0.19	Exclusion I.7.1.C.1.	-	-	
EA5	0.16	0.16	SFB C	0.16	11%	Treatment and detention by SFB C (public County sand filter basin) on Grandview Reserve property.
EA6	0.25	0.25	Exclusion I.7.1.C.1.	-	-	Future treatment and detention by Grandview Reserve development.
EA7	0.20	0.20	Exclusion I.7.1.C.1.	-	-	Future treatment and detention by Grandview Reserve development.
EA8	2.08	2.08	EDB B	2.08	11%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve propert
EA9	3.14	3.14	EDB B	3.14	11%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve propert
EA10	0.16	0.16	EDB B	0.16	11%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve propert
EA11	0.15	0.15	EDB B	0.15	11%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve proper
EA12	0.36	0.28	SPA	0.28	100%	
EA13	0.45	0.47	RPA (30' GB)	0.47	19%	Future treatment and detention by Grandview Reserve development.
EA14	1.48	1.38	RPA (10' GB)	1.38	100%	Future treatment and detention by Grandview Reserve development.
EA15	0.76	0.60	RPA (10' GB)	0.60	100%	Future treatment and detention by Grandview Reserve development.
EA16	1.18	0.30	SPA	0.30	100%	Future treatment and detention by Grandview Reserve development.
EA17	0.30	0.27	SPA	0.27	100%	Enture treatment and detection by
EA18	11.29	0.73	RPA (10' GB) SPA / Exclusion	0.73	100%	Future treatment and detention by future development.
FG29 FG35	62.91 18.69	- 0.62	I.7.1.C.1.	0.60	- 100%	
FG35 FG36a	14.14	0.03	- SPA	0.03	- 100%	
FG36b	0.81	0.03	SPA SPA	0.03	100%	
FG37a	22.39	0.31	SPA	0.31	100%	
FG37b	24.86	0.69	SPA / Exclusion I.7.1.C.1.	0.54	100%	
FG38	85.00	-	-	-	-	

c. Inspection and Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated that all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

All public detention ponds are to be owned and maintained by El Paso County, once established, unless an agreement is reached stating otherwise. An agreement for the district to maintain aesthetics of the proposed ponds will be drafted and submitted to the County. Maintenance access for all full spectrum detention facilities will be provided from public Right-of-Way. Maintenance access for the drainageways will be provided through the proposed tracts.

V. Wetlands Mitigation

There is an existing wetland in Gieck Ranch Tributary #1 (Channel A). The wetland is contained entirely within the channel and is classified as jurisdictional. A Nationwide Wetland Permit will be applied for due to the disturbed area at the Dawlish Roundabout. Wetlands maintenance will be the responsibility of the DISTRICT.

VI. Four Step Method to Minimize Adverse Impacts of Urbanization

Step 1 – Reducing Runoff Volumes: Low impact development (LID) practices are utilized to reduce runoff at the source. In general, stormwater discharges are routed across pervious areas prior to capture in storm sewer. This practice promotes infiltration and reduces peak runoff rates. The Impervious Reduction Factor (IRF) method was used and is presented in Appendix D.

Step 2 – Treat and slowly release the WQCV: This step utilizes full spectrum water quality and detention to capture the WQCV and slowly release runoff from the site. Onsite full spectrum detention pond provides water quality treatment for the site. The WQCV is released over a period of at least 12 hours for SFBs and 40 hours for EDBs while the EURV is released over a period of 40-44 hours for SFBs and 68 - 72 hours for EDBs as recommended by the MHFD.

Step 3 – Stabilize stream channels: This step establishes practices to stabilize drainageways and provide scour protection at stormwater outfalls. Erosion protection is provided at all concentrated stormwater discharge points in the form of riprap pads.

Step 4 – Consider the need for source controls: No industrial or commercial uses are proposed within this development and therefore no source controls are proposed.

VII. Drainage and Bridge Fees

Gieck Ranch drainage basin has not been established as a fee basin within El Paso County. Therefore, no drainage basin fees are due at time of platting.

VIII. Opinion of Probable Cost

An engineer's opinion of probable cost has been provided below for public and private drainage infrastructure improvements. This includes cost estimates for the public full spectrum sand filter basin C. All required stormwater infrastructure will be installed per El Paso County Requirements.

1433	
HRGreer	۱

Public Infrastructure Cost Estimate			
Line Item	Quantity	Unit Price	Cost
18" Reinforced Concrete Pipe	490	\$82 LF	\$40,180
24" Reinforced Concrete Pipe	505	\$98 LF	\$49,490
30" Reinforced Concrete Pipe	100	\$123 LF	\$12,300
36" Reinforced Concrete Pipe	789	\$151 LF	\$119,139
48" Reinforced Concrete Pipe	1060	\$245 LF	\$259,700
18" CDOT FES	3	\$492 EA	\$1,476
30" CDOT FES	1	\$738 EA	\$738
36" CDOT FES	2	\$906 EA	\$1,812
48" CDOT FES	1	\$1,470 EA	\$1,470
4' DIA Storm Manhole	3	\$15,130 EA	\$45,390
5' DIA Storm Manhole	1	\$15,130 EA	\$15,130
6' DIA Storm Manhole	5	\$15,130 EA	\$75,650
7' DIA Storm Manhole	1	\$15,130 EA	\$15,130
8' DIA Storm Manhole	2	\$15,130 EA	\$30,260
CDOT Type C Inlet	5	\$6,037 EA	\$30,185
5' CDOT Type R Inlet	3	\$7,212 EA	\$21,636
10' CDOT Type R Inlet	3	\$9,925 EA	\$29,775
Rip Rap, d50 size from 6"-24"	666	\$104 Tons	\$69,264
3' x 10' Concrete Box Culvert	234	\$750 LF	\$175,500
Box Culvert Wing Walls	2	\$45,000 EA	\$90,000
10% Contingency			\$108,423
TOTAL:			\$1,192,648

Public SFB C Cost Estimate							
Line Item	Quantity	Unit P	Unit Price				
Rip Rap, d50 size from 6"-24" (Inflow)	1.5	\$97	Tons	\$146			
Sand Filter Media	44	\$100	/CY	\$4,400			
4" Perforated PVC Underdrain	10	\$10	/LF	\$100			
12" ABC Maintenance Access	19	\$40	/CY	\$760			
Outlet Structure w/ Orifice Plate	1	\$5,000	EA	\$5,000			
Rip Rap, d50 size from 6"-24" (Spillway)	40	\$104	Tons	\$4,160			
4' DIA Storm Manhole	1	\$15,130	EA	\$15,130			
18" RCP Outlet Pipe	180	\$60	/LF	\$10,800			
18" RCP FES	1	\$350	EA	\$350			
10% Contingency				\$4,085			
TOTAL:				\$44,930			

IX. Hydraulic Grade Line Analysis

Hydraulic grade line analysis and final pipe sizes have been sized and calculations are provided in Appendix C. All proposed storm sewer will be designed in accordance with El Paso County Drainage Criteria Manuals.

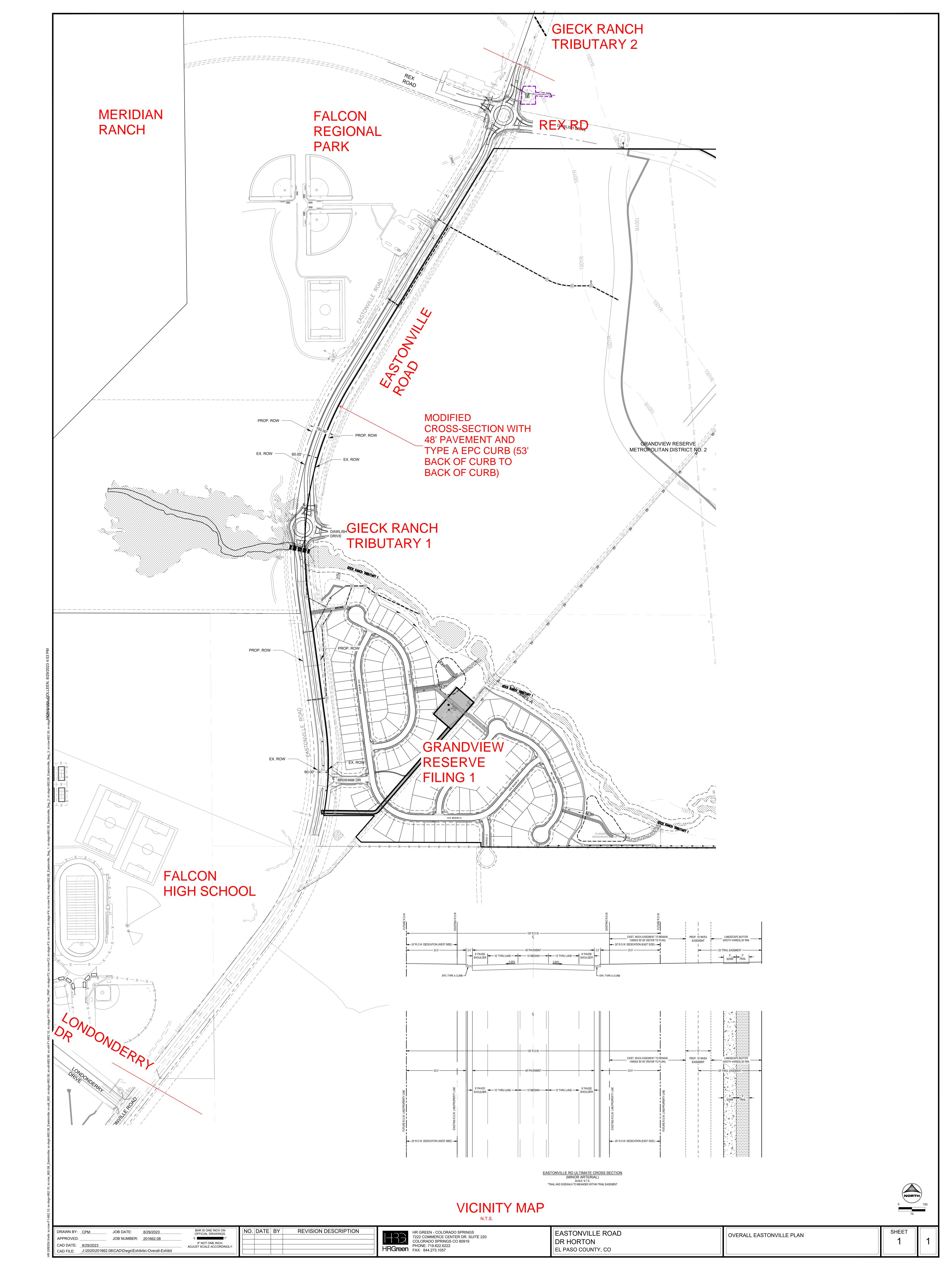
X. Summary

Eastonville Road lies within the Gieck Ranch Drainage Basin. Water quality and detention for the site is provided in full spectrum water quality and detention ponds, sand filters and temporary sediment basins. There is one major drainageway that traverses the site: Gieck Ranch Tributary 1. The water quality and detention features ponds will be maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT). All drainage facilities were sized per the EI Paso County Drainage Criteria Manuals.

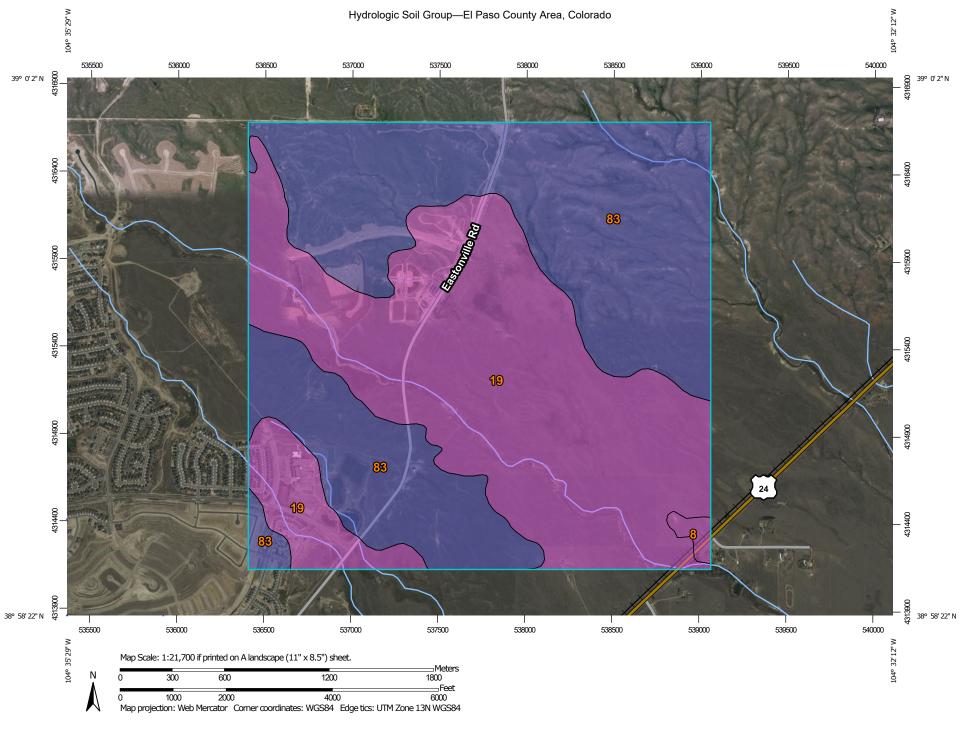
The development of this project will not adversely affect downstream properties.

XI. Drawings

Please refer to the appendices for vicinity and drainage basin maps.

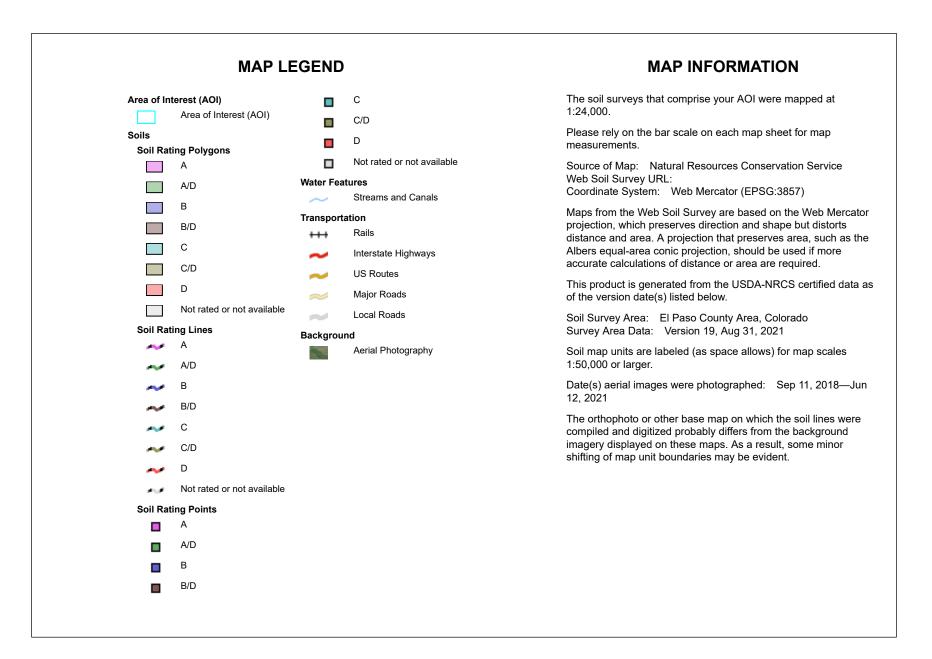

XII. References

- 1. City of Colorado Springs Drainage Criteria Manual, May 2014, Revised January 2021.
- 2. Drainage Criteria Manual of El Paso, Colorado, October 2018.
- 3. Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018.
- 4. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 5. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.
- 6. "The Sanctuary Filing 1 at Meridian Ranch" prepared by Tech Contactors, August 2022.


Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX A - VICINITY MAP, PHOTOS, SOIL MAP, FEMA MAP

Photo - at Londonderry and Eastonville looking north



Natural Resources Conservation Service

USDA

Web Soil Survey National Cooperative Soil Survey

8

19

83

Totals for Area of Interest

	irguix		oup		
	Map unit symbol	Map unit name	Rating	Acres in AOI	
3		Blakeland loamy sand, 1 to 9 percent slopes	A	10.4	

А

в

Hydrologic Soil Group

Columbine gravelly

sandy loam, 0 to 3 percent slopes

Stapleton sandy loam, 3

to 8 percent slopes

Description	
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when t soils are not protected by vegetation, are thoroughly wet, and receive	:he

precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and

three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Percent of AOI

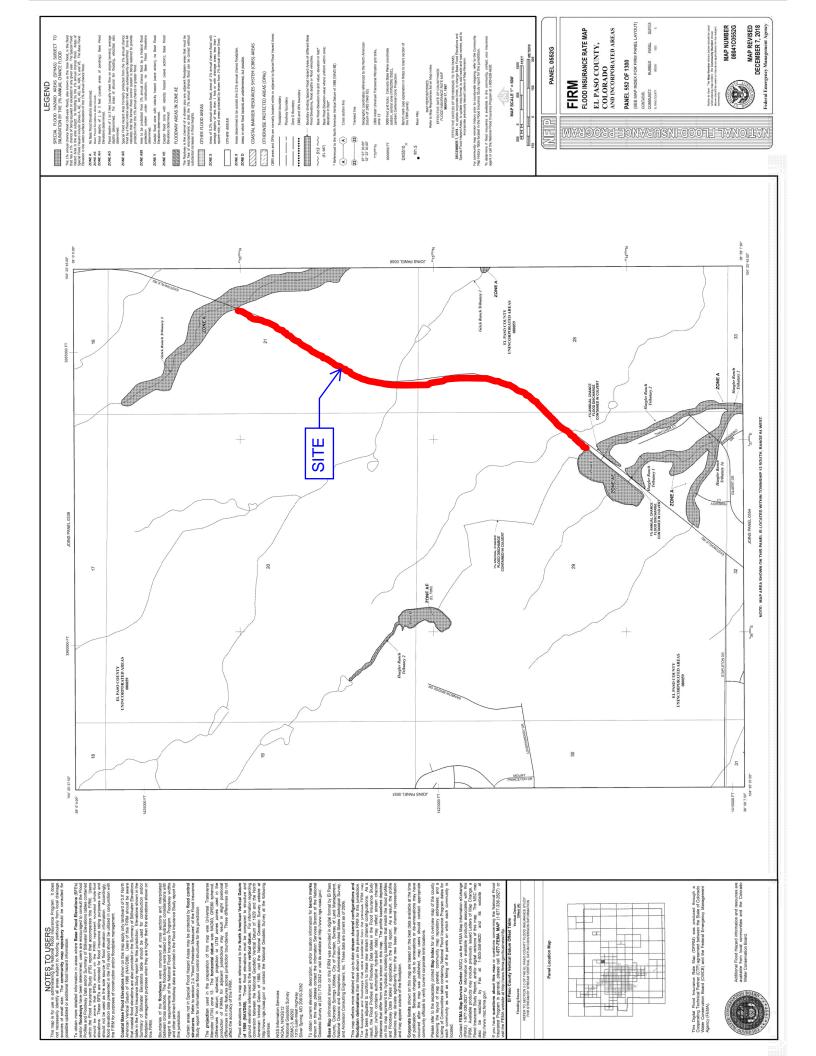
839.5

835.7

1,685.6

0.6%

49.8%


49.6%

100.0%

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Elbert, Colorado, USA* Latitude: 38.9796°, Longitude: -104.5696° Elevation: 6996 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

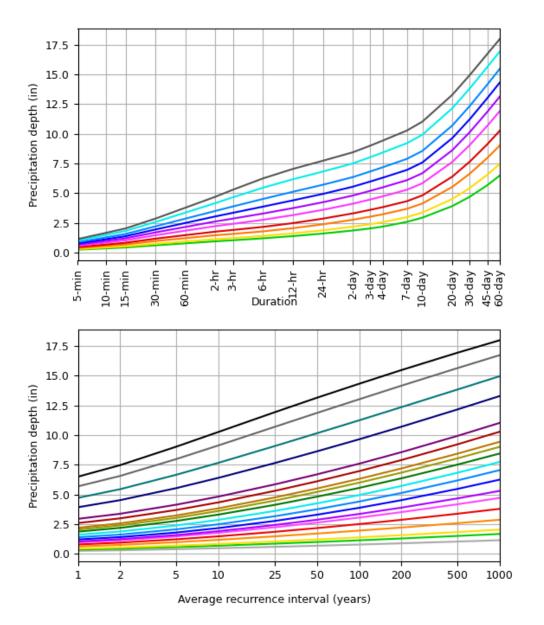
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

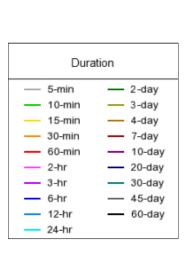
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

PDS-	PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹									
Duration				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.239 (0.189-0.303)	0.291 (0.231-0.370)	0.381 (0.301-0.486)	0.461 (0.361-0.589)	0.576 (0.440-0.768)	0.671 (0.499-0.904)	0.770 (0.554-1.06)	0.875 (0.604-1.24)	1.02 (0.678-1.48)	1.14 (0.733-1.67)
10-min	0.350 (0.277-0.444)	0.426 (0.338-0.542)	0.558 (0.441-0.711)	0.674 (0.529-0.863)	0.844 (0.644-1.12)	0.982 (0.731-1.32)	1.13 (0.811-1.56)	1.28 (0.884-1.81)	1.49 (0.992-2.17)	1.66 (1.07-2.44)
15-min	0.426 (0.338-0.541)	0.520 (0.412-0.660)	0.681 (0.537-0.867)	0.823 (0.645-1.05)	1.03 (0.785-1.37)	1.20 (0.891-1.62)	1.37 (0.988-1.90)	1.56 (1.08-2.21)	1.82 (1.21-2.65)	2.03 (1.31-2.98)
30-min	0.608 (0.482-0.771)	0.740 (0.586-0.940)	0.968 (0.764-1.23)	1.17 (0.916-1.49)	1.46 (1.11-1.94)	1.70 (1.26-2.28)	1.94 (1.40-2.68)	2.20 (1.52-3.12)	2.57 (1.71-3.73)	2.86 (1.84-4.19)
60-min	0.775 (0.615-0.984)	0.933 (0.739-1.18)	1.21 (0.956-1.54)	1.46 (1.15-1.87)	1.84 (1.41-2.47)	2.16 (1.61-2.92)	2.49 (1.80-3.45)	2.85 (1.97-4.05)	3.37 (2.24-4.90)	3.78 (2.44-5.54)
2-hr	0.943 (0.754-1.19)	1.12 (0.898-1.42)	1.46 (1.16-1.84)	1.76 (1.39-2.23)	2.22 (1.72-2.97)	2.62 (1.97-3.52)	3.04 (2.21-4.19)	3.50 (2.45-4.95)	4.16 (2.80-6.03)	4.70 (3.06-6.85)
3-hr	1.03 (0.829-1.29)	1.22 (0.978-1.53)	1.57 (1.25-1.97)	1.90 (1.51-2.40)	2.41 (1.88-3.22)	2.86 (2.17-3.84)	3.34 (2.45-4.60)	3.88 (2.73-5.48)	4.66 (3.15-6.74)	5.29 (3.46-7.69)
6-hr	1.20 (0.968-1.48)	1.40 (1.13-1.74)	1.78 (1.44-2.22)	2.16 (1.73-2.70)	2.76 (2.18-3.66)	3.28 (2.52-4.39)	3.86 (2.86-5.29)	4.51 (3.20-6.34)	5.46 (3.73-7.86)	6.24 (4.12-9.01)
12-hr	1.38 (1.13-1.70)	1.61 (1.31-1.98)	2.05 (1.66-2.53)	2.48 (2.00-3.07)	3.15 (2.51-4.15)	3.74 (2.89-4.96)	4.39 (3.28-5.96)	5.12 (3.66-7.13)	6.17 (4.25-8.82)	7.04 (4.69-10.1)
24-hr	1.60 (1.31-1.95)	1.87 (1.54-2.28)	2.38 (1.94-2.91)	2.85 (2.32-3.51)	3.60 (2.88-4.67)	4.24 (3.29-5.56)	4.94 (3.71-6.63)	5.71 (4.12-7.87)	6.82 (4.73-9.66)	7.73 (5.20-11.0)
2-day	1.85 (1.54-2.24)	2.18 (1.80-2.63)	2.76 (2.28-3.34)	3.29 (2.70-4.01)	4.11 (3.30-5.27)	4.80 (3.76-6.22)	5.54 (4.19-7.36)	6.35 (4.62-8.68)	7.50 (5.25-10.5)	8.44 (5.73-11.9)
3-day	2.03 (1.69-2.44)	2.39 (1.98-2.87)	3.02 (2.50-3.64)	3.60 (2.97-4.36)	4.47 (3.60-5.69)	5.20 (4.08-6.70)	5.98 (4.55-7.90)	6.83 (4.99-9.28)	8.03 (5.65-11.2)	9.00 (6.15-12.7)
4-day	2.18 (1.82-2.61)	2.56 (2.13-3.06)	3.22 (2.68-3.87)	3.82 (3.16-4.62)	4.73 (3.83-6.00)	5.49 (4.33-7.04)	6.30 (4.81-8.30)	7.18 (5.26-9.72)	8.43 (5.94-11.7)	9.43 (6.46-13.3)
7-day	2.58 (2.17-3.07)	2.98 (2.50-3.54)	3.68 (3.08-4.39)	4.32 (3.60-5.18)	5.29 (4.30-6.65)	6.09 (4.84-7.76)	6.96 (5.34-9.09)	7.89 (5.82-10.6)	9.21 (6.55-12.8)	10.3 (7.10-14.4)
10-day	2.93 (2.48-3.47)	3.36 (2.84-3.98)	4.13 (3.47-4.90)	4.81 (4.02-5.74)	5.83 (4.76-7.28)	6.68 (5.32-8.45)	7.58 (5.85-9.86)	8.55 (6.34-11.4)	9.92 (7.08-13.7)	11.0 (7.65-15.4)
20-day	3.91 (3.33-4.58)	4.51 (3.84-5.29)	5.52 (4.68-6.50)	6.39 (5.39-7.55)	7.63 (6.25-9.37)	8.62 (6.90-10.8)	9.64 (7.47-12.4)	10.7 (7.98-14.1)	12.2 (8.74-16.6)	13.3 (9.31-18.4)
30-day	4.70 (4.02-5.47)	5.44 (4.65-6.34)	6.65 (5.66-7.78)	7.66 (6.49-9.00)	9.06 (7.44-11.0)	10.1 (8.15-12.5)	11.2 (8.74-14.3)	12.3 (9.24-16.2)	13.8 (9.98-18.7)	15.0 (10.5-20.6)
45-day	5.67 (4.88-6.57)	6.55 (5.63-7.60)	7.97 (6.82-9.27)	9.12 (7.77-10.7)	10.7 (8.79-12.9)	11.9 (9.56-14.5)	13.0 (10.2-16.4)	14.2 (10.6-18.4)	15.6 (11.3-21.0)	16.7 (11.9-23.0)
60-day	6.48 (5.60-7.48)	7.46 (6.43-8.62)	9.01 (7.74-10.4)	10.3 (8.77-11.9)	11.9 (9.82-14.3)	13.1 (10.6-16.0)	14.3 (11.2-18.0)	15.5 (11.7-20.0)	16.9 (12.3-22.6)	18.0 (12.8-24.6)


Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).


Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

Back to Top

PF graphical

Average recurrence

interval (years)

> 1 2

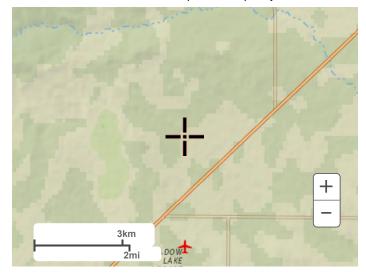
5 10

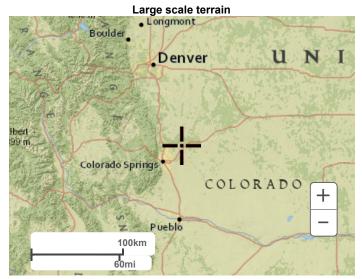
25

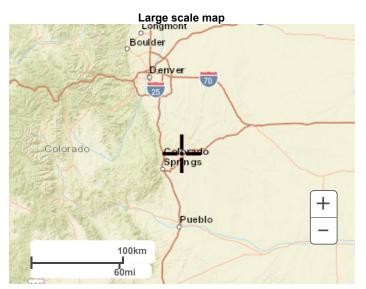
50 100

200 500

· 1000

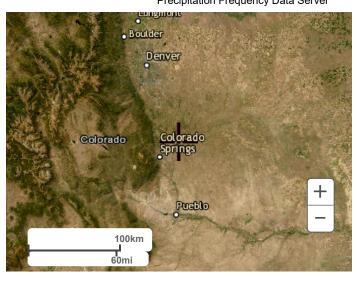

NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Wed Nov 22 20:22:49 2023


Back to Top

Maps & aerials

Small scale terrain



Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX B – HYDROLOGIC CALCULATIONS

`	EASTONVILLE ROAD - SEGMENT 2	<u>Calc'd by:</u>	SPC
1	EXISTING CONDITIONS	Checked by:	СМ
n	EL PASO COUNTY, CO	Date:	10/14/2024

	SUMMARY RUNOFF TABLE														
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)											
EX1	12.19	2	3.7	25.0											
EX2	0.61	2	0.2	1.4											
EX3	1.90	2	0.6	3.8											
EX4	2.86	2	0.8	5.7											
*FG29	62.91	-	2.9	60.0											
**FG35	18.69	-	2.4	25.0											
**FG36	18.88	-	1.8	19.0											
**FG37	48.26	-	2.7	45.0											
***FG38	85.00	-	-	-											

DES	SIGN POINT SUI	MMARY TA	BLE
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ_{100} (cfs)
13.1	EX1	3.7	25.0
*G06	FG29, DP G12	22.0	491.0
G06.1	EX4, DO G06	22.8	496.7
***G09	FG38	52.0	277.0
*G12	-	21.0	450.0
**G15	FG35	3.0	55.0
**G15a	FG36	1.8	19.0
**G16	FG37, DP G15/G15a	6.5	114.0

7.1 0.2

EX3 EX2

117.8 1.4

* Basin/design point name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch". ** Basin/design point name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park". *** Basin/design point name, area, and flows taken from the "FDR for Falcon Regional Park".

G16.1 G16.2

EASTONVILLE ROAD - SEGMENT

EXISTING CONDITIONS

<u>Calc'd by:</u>	SPC
<u>Checked by:</u>	СМ
<u>Date:</u>	10/14/2024

SOIL TYPE:	HSG	A&B																		
	-		•				С	OMP	OSIT	E 'C'	' FAC	CTOR	S							
	LAND USE TYPE																			
		Paved			c Flow Ar pelts, Agr		Land	Use Un	defined	Land	Use Un	defined	Land	Use Un	defined		COMPOSITE			
	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	,	IMPERVIOUSNESS &				
	100	0.90	0.96	2	0.09	0.36	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	TOTAL		FACTOR		
BASIN		ACRES	;		ACRES	;		ACRES	;		ACRES	5		ACRES	\$	ACRES	%	C ₅	C ₁₀₀	
EX1					12.19											12.19	2	0.09	0.36	
EX2					0.61											0.61	2	0.09	0.36	
EX3					1.90											1.90	2	0.09	0.36	
EX4					2.86											2.86	2	0.09	0.36	
*FG29																62.91	-	-	-	
**FG35																18.69	-	-	-	
**FG36																18.88	-	-	-	
**FG37																48.26	-	-	-	
***FG38																85.00	-	-	-	
																0.00				
																0.00				

Basin name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

** Basin name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

*** Basin name, area, and flows taken from the "FDR for Falcon Regional Park".

	EAST	ONVILL	E ROAD	- SEGN	IENT 2			Calc'd b	y:		SPC		
+ イン	EXIS	TING CO	ONDITIO	NS				Checked	by:		СМ		
HRGreen	EL PAS		r y , co					Date:		10/1	4/2024		
				TIME OF		NTRATI	ON						
BAS	SIN DATA		OVER		E (T _i)		TRAV	EL TIME (T _t)		TOTAL	tc=(L/180)+10	Design tc
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t _c (min)	tc max	tc design (min)
EX1	0.09	12.19	300	2.8	22.8	10	835	3.0	1.7	8.0	30.8	16.3	16.3
EX2	0.09	0.61	180	1.3	22.8	10	411	1.6	1.3	5.4	28.2	13.3	13.3
EX3	0.09	1.90	116	1.5	17.4	10	1137	1.0	1.0	19.0	36.4	17.0	17.0
EX4	0.09	2.86	60	1.4	12.8	10	1302	1.1	1.0	20.7	33.5	17.6	17.6
*FG29													
**FG35													
**FG36													
**FG37													
***FG38													
-				_									
* Basin name, are					-								
** Basin name, ar				•		ional Park".							
*** Basin name, a	rea, and flov	vs taken from	the "FDR for Fa	Icon Regional	Park".	1						l	
FORMULAS:	0.	$395(1.1 - C_5)$	$)\sqrt{L}$ V	$C = C_v S_w$	0.5	Т	able 6-7. Co	nveyance (Coefficient,	C_{v}			
	$i_i = -$	S ^{0.33}					Type of La	nd Surface		C_{v}			
						Heavy	meadow			2.5			

Tillage/field

Riprap (not buried)*

Nearly bare ground

Grassed waterway

Short pasture and lawns

Paved areas and shallow paved swales

^{*} For buried riprap, select C_v value based on type of vegetative cover.

5

6.5

7 10

15

20

	22						EAS	TON	VIL	LE R	OAI	D - S	EGN	IEN	Т2						Cal	c'd by:	SPC
	ィー									ING											Chee	cked by:	
1 1	DESIGN STORM: 5-YEAR													D)ate:	10/14/2024							
HR	HRGreen																						
				DII	RECT	RUNO	FF		TOTAL RUNOFF				STREET				PII	PE		TR	RAVE		REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₅	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	% SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (mi	
	13.1	EX1	12.19									3.7				•			_				
	G16.2	EX2	0.61		13.3		3.70					0.2											
	G16.1	EAZ	0.01	0.09	13.3							7.1											
		EX3	1.90	0.09	17.0	0.17	3.34	0.6															
	G06.1	EX4	2.86	0.09	17.6	0.26	3.28	0.8				22.8											
	G06	*FG29	62.91		17.0	0.20	0.20	2.9				22.0											
	G15											3.0											
	G15a	**FG35	18.69					2.4				1.8											
	0154	**FG36	18.88					1.8				1.0											
	G16	**FG37	48.26					2.7				6.5											
	G09							2.1				52.0										1	
		***FG38	85.00					-												<u> </u>		I	
	G12											21.0											

1 1	$\overline{)}$	`					EAS		VIL					IEN	T 2							'd by:	
		7							EXIST													ked by:	: CM 10/14/2024
	RGreen														Da	ate:	10/14/2024						
HR																							
				DI	RECT	RUNO	FF		TOTAL RUNOFF ST						STREET PIPE TR							TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _e (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	a (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min	
	13.1									•		25.0	•	•	•/	•					-		
	G16.2	EX1	12.19	0.36	6 16.3	4.39	9 5.70	25.0		-		1.4										-	
	010.2	EX2	0.61	0.36	13.3	0.22	6.22	1.4				1.4											
	G16.1	51/0										117.8											
	G06.1	EX3	1.90		<u>17.0</u>							496.7											
	G06	EX4	2.86	0.36	5 17.6	1.0	3 5.51	5.7				491.0											
		*FG29	62.91					60.0															
	G15	**FG35	18.69					25.0				55.0											
	G15a											19.0											
	G16	**FG36	18.88					19.0				114.0											
		**FG37	48.26					45.0															
	G09	***FG38	85.00					_				277.0											
	G12		22.50					1				450.0								1		1	
																			<u> </u>	<u> </u>			

		-	
	 	く -	_
		- 1	-

EASTONVILLE ROAD SEG 2

PROPOSED CONDITIONS

HRGreen EL PASO COUNTY, CO

<u>Calc'd by:</u>	SPC	
<u>Checked by:</u>	СМ	
Date:	10/28/2024	

SUMMARY RUNOFF TABLE

BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)
EA1	0.22	73	0.8	1.5
EA2	0.25	72	0.9	1.7
EA3	0.76	65	2.4	4.9
EA4	3.11	24	3.8	11.7
EA5	0.16	0	0.1	0.4
EA6	0.25	76	0.8	1.6
EA7	0.20	50	0.4	1.0
EA8	2.08	99	5.2	9.4
EA9	3.14	60	5.0	10.6
EA10	0.16	75	0.6	1.1
EA11	0.15	67	0.5	1.0
EA12	0.36	0	0.1	1.1
EA13	0.45	73	1.4	2.8
EA14	1.48	21	1.2	3.8
EA15	0.76	24	0.7	2.1
EA16	1.18	0	0.3	2.5
EA17	0.30	0	0.1	0.7
EA18	11.29	3	3.9	24.6
*FG29	62.91	-	<mark>2.9</mark>	<mark>60.0</mark>
FG29a	21.40	2	6.4	42.9
**FG35	18.69	-	2.4	25.0
FG36a	14.14	4	4.6	27.7
FG36b	0.81	8	0.4	2.0
FG37a	22.39	0	5.4	39.5
FG37b	24.86	6	11.0	54.9
***FG38	85.00		-	-

Flows do not match with other spreadsheets or report. Please

verify flow and revise tables, text,

map accordingly so all items match

DESIGN POINT SUMMARY TABLE DESIGN CONTRIBUTING ΣQ_5 (cfs) ΣQ_{100} (cfs) POINT BASINS *G06 FG29, DP G06a, G15 22.0 491.0 *G12 21.0 450.0 -FG35 **G15 3.0 55.0 ***G09 FG38 52.0 277.0 2.1 EA1 0.8 1.5 EA2, DP2.1 3.2 3.1 1.6 EA5, DP3.1 1.7 4.1 3.4 5 EA3 2.4 4.9 6 EA4, DP5 5.9 16.0 G15a1 FG36a 4.6 27.7 FG36b 0.4 2.0 7 DPG15a1,7 8 4.9 29.2 DP6,8 9.0 40.2 6.1 DP6.1 9.0 40.2 G15a FG37a, DPG15,G15a **G16a 12.0 59.0 EA5, EA6, SFB C 10 1.3 3.3 OUTFLOW EA7 10.1 0.1 0.7 DPG16a,G16b 23.0 11.1 113.9 EA18 3.9 24.6 12 DP11.1, 12 13 27.0 138.5 13.1 DP13 27.3 141.0 14 EA8 5.2 9.4 15 EA9 5.0 10.6 DP14,15 15.1 19.9 10.2 EA10 16.1 0.6 1.1 17.1 EA11 0.5 1.0 EA15 G16.1 0.7 2.1 G16.2 0.0 -0.0 FG29a G06a 42.9 6.4 G06.1 EA12, DPG06 22.1 492.1 G06.2 EA13 1.4 2.8 G06.3 EA14 1.2 3.8 FG37b G16b 11.0 54.9

* Basin/design point name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

** Basin/design point name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

*** Basin/design point name, area, and flows taken from the "FDR for Falcon Regional Park".

Pr_Drainage_Calcs.xlsx

RBM 10/28/2024 11:07 AM

	EASTONVILLE ROAD SEG 2	<u>Calc'd by:</u>	SPC
	PROPOSED CONDITIONS	Checked by:	СМ
HRGreen	EL PASO COUNTY, CO	Date:	10/28/2024

SOIL TYPE: HSG A&B

							С	OMP	OSITI	E 'C'	FAC	TOR	S						
							LAN	D USE	TYPE										
		Paved	I		ic Flow Aı belts, Agı	-		Lawns	;		Grave	I	Driv	e and V	Valks			OMPOSI	
	%I 100	C₅ 0.90	C ₁₀₀	%I 2	C ₅	C ₁₀₀	%I 0	C ₅	C ₁₀₀ 0.35	%I 80	C₅ 0.59	C ₁₀₀	%I 100	C ₅	C ₁₀₀	TOTAL		VIOUSNE FACTOR	
BASIN		ACRES			ACRES			ACRES			ACRES			ACRES		ACRES	%	C ₅	C ₁₀₀
EA1		0.16						0.06								0.22	73	0.68	0.79
EA2		0.18						0.07								0.25	72	0.67	0.79
EA3		0.49						0.27								0.76	65	0.61	0.74
EA4		0.69			2.27			0.15								3.11	24	0.27	0.49
EA5		0.00						0.16								0.16	0	0.08	0.35
EA6		0.19						0.06								0.25	76	0.71	0.82
EA7		0.10						0.10								0.20	50	0.49	0.65
EA8		2.06						0.02								2.08	99	0.89	0.95
EA9		1.88				1.26							3.14	60	0.57	0.72			
EA10		0.12					0.04							0.16	75	0.70	0.81		
EA11		0.10						0.05								0.15	67	0.63	0.76
EA12								0.36								0.36	0	0.08	0.35
EA13		0.33						0.12								0.45	73	0.68	0.80
EA14								1.16			0.07			0.25		1.48	21	0.24	0.47
EA15								0.57			0.04			0.15		0.76	24	0.27	0.49
EA16								1.18								1.18	0	0.08	0.35
EA17								0.30								0.30	0	0.08	0.35
*FG29																62.91	-	-	-
FG29a					21.40											21.40	2	0.09	0.36
**FG35																18.69	-	-	-
FG36a					13.81						0.33					14.14	4	0.10	0.37
FG36b					0.74						0.07					0.81	8	0.13	0.39
FG37a								22.39								22.39	0	0.08	0.35
FG37b		1.53						23.33								24.86	6	0.13	0.39
***FG38																85.00	-	-	-
EA18					11.16						0.03			0.10		11.29	3	0.10	0.37

J:\2020\201662.08\Design\Calc\Drainage\Segment 2 - FDR\Appendix B - Hydrologic Calcs\Pr_Drainage_Calcs.xlsx

10/28/2024

							С	OMP	OSITI	E 'C'	FAC	TOR	S						
							LAND) USE	TYPE										
		Paved Historic Flow Analysis Greenbelts, Agriculture Lawns Gravel Drive and Walks												lalks			OMPOSI		
	%I	C 5	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	I C ₅ C ₁₀₀ %I C ₅ C ₁₀₀ %I C ₅										VIOUSNE	SS & C
	100	0.90										0.96	TOTAL		FACTOR				
BASIN	ACRES ACRES A							ACRES	5		ACRES	5		ACRES		ACRES	%I	C ₅	C ₁₀₀
SFB C		0.34			0.00			0.29								0.63	54		
EDB B		6.14			0.00			3.23			0.09			0.01		9.48	66		

* Basin name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

** Basin name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

*** Basin name, area, and flows taken from the "FDR for Falcon Regional Park".

			E ROAD					Calc'd by	y:	5	6PC
ברדו ברדו			CONDITI	ONS				Checked	by:		СМ
HRGreen	EL PAS		r y, co					Date:		10/2	8/2024
					F CONCE	NTRATI					
	SIN DATA				E (T _i)			EL TIME (.,		TOTAL
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t _c (min)
EA1	0.68	0.22	34	2.0	3.6	20	137	1.4	2.4	1.0	5.0
EA2	0.67	0.25	34	2.0	3.6	20	60	1.4	2.4	0.4	5.0
EA3	0.61	0.76	34	2.0	4.2	20	126	1.4	2.4	0.9	5.0
EA4	0.27	3.11	34	2.0	7.1	20	126	3.8	3.9	0.5	7.6
EA5	0.08	0.16	20	2.0	6.6	20	20	33.0	11.5	0.0	6.7
EA6	0.71	0.25	26	2.0	2.9	20	630	1.7	2.6	4.0	7.0
EA7	0.49	0.20	24	2.0	4.4	20	630	1.7	2.6	4.0	8.4
EA8	0.89	2.08	26	2.0	1.5	20	2500	0.7	1.7	24.9	26.4
EA9	0.57	3.14	26	2.0	3.9	20	2500	0.7	1.7	24.9	28.8
EA10	0.70	0.16	26	2.0	3.0	20	157	0.6	1.5	1.7	5.0
EA11	0.63	0.15	26	2.0	3.5	20	157	0.6	1.5	1.7	5.2
EA12	0.08	0.36	30	25.0	3.5	10	0	0.0	0.0	0.0	5.0
EA13	0.68	0.45	76	2.0	5.3	10	115	2.0	1.4	1.4	6.7
EA14	0.24	1.48	50	10.0	5.2	10	1300	1.1	1.0	20.7	25.8
EA15	0.27	0.76	50	10.0	5.0	10	1137	1.0	1.0	19.0	24.0
EA16	0.08	1.18	300	3.0	22.5	10	500	3.0	1.7	4.8	27.3
EA17	0.08	0.30	89	5.0	10.3	10	0	0.0	0.0	0.0	10.3
*FG29											
FG29a	0.09	21.40	100	2.0	14.7	10	1190	2.5	1.6	12.5	27.2
**FG35											
FG36a	0.10	14.14	100	2.5	13.5	10	1512	3.0	1.7	14.5	28.0
FG36b	0.13	0.81	100	1.5	15.5	10	250	1.5	1.2	3.4	18.9
FG37a	0.08	22.39	100	2.5	13.8	10	1920	2.5	1.6	20.2	34.0
FG37b	0.13	24.86	100	3.5	11.7	10	1036	3.5	1.9	9.2	20.9
***FG38											
EA18	0.10	11.29	200	11.6	11.5	10	675	3.4	1.8	6.1	17.6
Basin name, are	a, and flows	taken from th	e "FDR for The	e Sanctuary Fi	ling 1 at Merio	dian Ranch".					
Basin name, are	ea, and flow	s taken from t	he "FDR for Re	x Road throu	gh Falcon Re	gional Park".					
* Basin name, ai	rea, and flov	vs taken from	the "FDR for Fa	alcon Regiona	al Park".						
ORMULAS:				-							
	0	205(1.1. C	\sqrt{I} V	C = C S	0.5	Г	able 6-7. Co	nveyance C	Coefficient,	C_{v}	
	$t_i = \frac{0.1}{2}$	$\frac{595(1.1-C_5}{2}$	$)\sqrt{L}$ V	$-C_{v}S_{w}$				-		,	
	1	$S^{0.33}$					Type of La	nd Surface		C_{ν}	
						• • •					10/2

	EAST	ONVILL	E ROAD	SEG 2					Calc'd by	1		SPC
			ONDITI	ONS					Checked	by:		СМ
HRGreen	EL PAS		r y, co						Date:		10/2	28/2024
	1				F CONCE	NT	RATI	ON				
BAS	IN DATA		OVERI	AND TIM	E (T _i)			TRAV	EL TIME (1	Γ _t)		TOTAL
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	_	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t _c (min)
						Γ	Heavy	meadow			2.5	
						3	Tillage	/field			5	
							Riprap	(not buried)*			6.5	
							Short p	asture and lav	vns		7	
							Nearly	bare ground			10	
							Grasse	d waterway			15	
							Paved	areas and shall	low paved swa	les	20	

 Paved areas and shallow paved swales
 20

 * For buried riprap, select C_v value based on type of vegetative cover.

EASTONVILLE ROAD SEG 2 PROPOSED CONDITIONS

DESIGN STORM: 5-YEAR

<u>Calc'd by:</u>

Checked by: Date:

Image: biology Image:		TIME	AVEL	TR		PE	PIF		T	TREE	S	OFF	RUN	OTAL	Т		F	RUNO	RECT	DII				
Geom Tream Ream		TIME	VEL. (FPS)	LENGTH (FT)			C ₅ *A (ac)	Q _{PIPE} (cfs)	SLOPE %	C ₅ *A (ac)	Q _{street} (cfs)	Q (cfs)	/ (in./ hr.)	C ₅ *A (ac)	t _c (min)	Q (cfs)	/ (in./ hr.)	C₅*A (ac)	t _c (min)	C5	AREA (ac)	BASIN ID	DESIGN POINT	STREET
G12 . . . 21.0 . 21.0 .												22.0										*EC:20	G06	
G16												21.0				2.9					02.91		G12	
G09 FG38 85.00 M												3.0				-							G15	
2.1 EA1 0.22 0.68 5.0 0.15 5.17 0.8 5.0 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.17 0.8 0.15 5.1 1.5 3.4 1.34 0.04 0.04 4.1 EAS 0.16 0.08 6.7 0.01 4.7 0.1 6.7 0.33 5.12 1.7 1.8 0.46 5.9 1.0 2.0 4.8 8.4 0.09 0.01 5 EA3 0.76 0.61 5.0 0.46 5.15 2.4 5.9 1.30 2.0 2.0 4.8 8.4 0.09 0.01 3.3 1.5 3.7 1.8 1.4 0.10 1.4 <td></td> <td>52.0</td> <td></td> <td></td> <td></td> <td>2.4</td> <td> </td> <td></td> <td></td> <td></td> <td>18.69</td> <td>**FG35</td> <td>G09</td> <td> </td>												52.0				2.4					18.69	**FG35	G09	
EA1 0.22 0.68 5.0 0.15 5.17 0.8 0		0.16	59	56	1.5	1.0	0 15	0.8				3.0	5 17	0.15	5.0	-					85.00	***FG38	21	
EA2 0.25 0.67 5.0 0.17 5.17 0.9 0																0.8	5.17	0.15	5.0	0.68	0.22	EA1		
Image: condition of the conditing and the condition of the condition of the c		0.04	13.4	34	1.5	5.1	0.32	1.0								0.9	5.17	0.17	5.0	0.67	0.25	EA2		
EA3 0.76 0.61 5.0 0.46 5.15 2.4 0												1.7	5.12	0.33		0.1	4.74	0.01	6.7	0.08	0.16	EA5	4.1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.09	8.4	48	1.5	2.0	0.46	2.4				2.4	5.15	0.46		2.4	5.15	0.46	5.0	0.61	0.76	EA3	5	
G15a1 FG36a 14.14 0.10 19.0 1.44 3.17 4.6 1.44 0.6 2.0 43 5.6 0.13		0.07	10.2	43	2.0	2.0	1.30	5.9				5.9	4.54	1.30	7.6								6	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		0.13	5.6	43	2.0	0.6	1.44	4.6				4.6	3.17	1.44	19.0								G15a1	
8		0.06	10.8	37	1.5	3.3	0.11	0.4				0.4	3.86	0.11	11.9								7	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.14	6.8	56	2.0	0.9	1.54	4.9				4.9	3.16	1.54		0.4	3.86	0.11	11.9	0.13	0.81	FG36b	8	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.09	11.4	60	2.0	2.5	2.84	9.0				9.0	3.15	2.84	19.2								6.1	
G16a FG37a 22.39 0.08 21.2 1.79 3.00 5.4 12.0 12.0 1.0									21	2.84														
FG37a 22.39 0.08 21.2 1.79 3.00 5.4 a b b c <td></td> <td>3.50</td> <td>2.9</td> <td>015</td> <td></td> <td></td> <td></td> <td></td> <td>2.1</td> <td>2.04</td> <td></td> <td></td> <td>5.15</td> <td>2.04</td> <td>19.2</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>		3.50	2.9	015					2.1	2.04			5.15	2.04	19.2									
EA6 0.25 0.71 7.0 0.18 4.67 0.8 <																5.4	3.00	1.79	21.2	0.08	22.39	FG37a		
EA7 0.20 0.49 8.4 0.10 4.39 0.4 and been and be	BASIN E											1.3	4.39	0.28		0.8	4.67	0.18	7.0	0.71	0.25	EA6	10	
12 EA18 11.29 0.10 14.9 1.12 3.53 3.9 3.9 3.9 1.12 1.0 1.5 28 5.9 0.08 13 13 13 11.29 0.10 14.9 1.12 3.53 3.9 27.0 1.12 1.0 1.5 28 5.9 0.08																								
13 13 27.0 27.0 27.0		0.08	5.9	28	1.5	1.0	1.12	3.9				3.9	3.53	1.12	14.9								12	
14 24.0 1.86 2.81 5.2 1.86 7.0 1.5 8 15.7 0.01												27.0				3.9	3.53	1.12	14.9	0.10	11.29	EATO	13	
		0.01	15.7	8	1.5	7.0	1.86	5.2				5.2	2.81	1.86	24.0								14	
EA8 2.08 0.89 24.0 1.86 2.81 5.2 Image: Constraint of the state		0.11	7.9	54	1.5	1.8	1.79	5.0				5.0	2.81	1.79		5.2	2.81	1.86	24.0	0.89	2.08	EA8	15	
EA9 3.14 0.57 24.0 1.79 2.81 5.0 Image: Comparison of the comparison of th	COME																2.81	1.79	24.0	0.57	3.14	EA9	15 1	
																							10.1	
16.1 5.0 0.11 5.17 0.6	BASIN EATO CONVETED											0.6	5.17	0.11		0.6	E 17	0.11	FO	0.70	0.16	E 4 1 0	16.1	
EA10 0.16 0.70 5.0 0.11 5.17 0.6 Image: Comparison of the state	BASIN EA11 CONVEYED											0.5	5.11	0.09		0.6	5.17	0.11	5.0	0.70	0.16	EATU	17.1	
EA11 0.15 0.63 5.2 0.09 5.11 0.5																0.5	5.11	0.09	5.2	0.63	0.15	EA11		
G16.1 EA15 0.76 0.27 16.6 0.21 3.37 0.7 16.6 0.21 3.37 0.7												0.7	3.37	0.21		0.7	3.37	0.21	16.6	0.27	0.76	EA15	G16.1	
G16.2 NA 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.												0.0				0.0						NA	G16.2	
G06a FG29a 21.40 0.09 17.2 1.93 3.32 6.4												6.4	3.32	1.93	17.2		3 20	1.02	17.0	0.00	21 40		G06a	

SPC

СМ

10/28/2024

REMARKS

BASIN EA1 CAPTURED IN 5' TYPE R INLET @ DP2.1, PIPE TO DP3.1

BASIN EA2 CAPTURED IN 5' TYPE R INLET@ DP3.1, PIPE TO DP4.1 (SFB C)

SFB C BASIN

BASIN EA3 CAPTURED IN TYPE R INLET @ DP5, PIPE TO DP6

BASIN EA4 CAPTURED IN TYPE R INLET @ DP6, PIPE TO DP6.1

BASIN FG36a CAPUTURED BY 24" FES, PIPE TO DP8

BASIN FG36b CAPTURED IN 18" FES, PIPE TO DP8

DPG15a1 AND 7 COMBINED, PIPE TO DP6.1

DP8 & DP 6 COMBINED, PIPE TO DP G15a

DP6.1 DISCHARGE TO ROADSIDE SWALE TO DPG15a

DP G16a PER THE FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK

N EA6 & EA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1) INCLUDES SFB C OUTFLOW

BASIN EA18 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13

COMBINED DP11.1 & DP12, PIPE TO CHANNEL B (DP13.1)

BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP14, PIPE TO DP15.1

BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1

MBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR

ED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR

ED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR

OFFSITE FLOW AT DP G16.1

OFFSITE FLOW AT DP G16.2

BASIN FG29a FLOW CAPTURED BY 24" FES AT DP G06a

EASTONVILLE ROAD SEG 2Calc'd by:PROPOSED CONDITIONSChecked by:DESIGN STORM: 5-YEARDate:

				DI	RECT	RUNOF	F		т	DTAL	RUNC	OFF	S	TREE	ET		PIF	PE		TR	AVEL	TIME	
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C5	t _c (min)	C₅*A (ac)	/ (in./ hr.)	Q (cfs)	<i>t_c (</i> min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (min	
	G06.1								5.0	0.03	5.17	22.1											
		EA12	0.36	0.08	5.0	0.03	5.17	0.1															
	G06.2								6.7	0.30	4.73	1.4											
		EA13	0.45	0.68	6.7	0.30	4.73	1.4															
	G06.3								17.5	0.36	3.29	1.2											
		EA14	1.48	0.24	17.5	0.36	3.29	1.2															
	G16b								16.3	3.24	3.40	11.0				11.0	3.24	1.0	4.0	610	11.4	0.89	
	10.1	FG37b	24.86	0.13	16.3	3.24	3.40	11.0			1.00												
	10.1				10.0	0.00	4.00	.	10.3	0.02	4.08	0.1											
	44.4	EA17	0.30	0.08	10.3	0.02	4.08	0.1				00.0											
	11.1											23.0											
	40.4								444	0.00	0.50	07.0											
	13.1		1 10	0.00	111	0.00	2 5 0	0.0	14.4	0.09	3.58	27.3											
		EA16	1.18	0.08	14.4	0.09	3.58	0.3															

СМ

10/28/2024

REMARKS

OFFSITE FLOW AT DPG06.1

OFFSITE FLOW AT DPG06.2

OFFSITE FLOW AT DP G06.3

BASIN FG37b FLOW CAPTURED BY 36" FES AT DP G16b

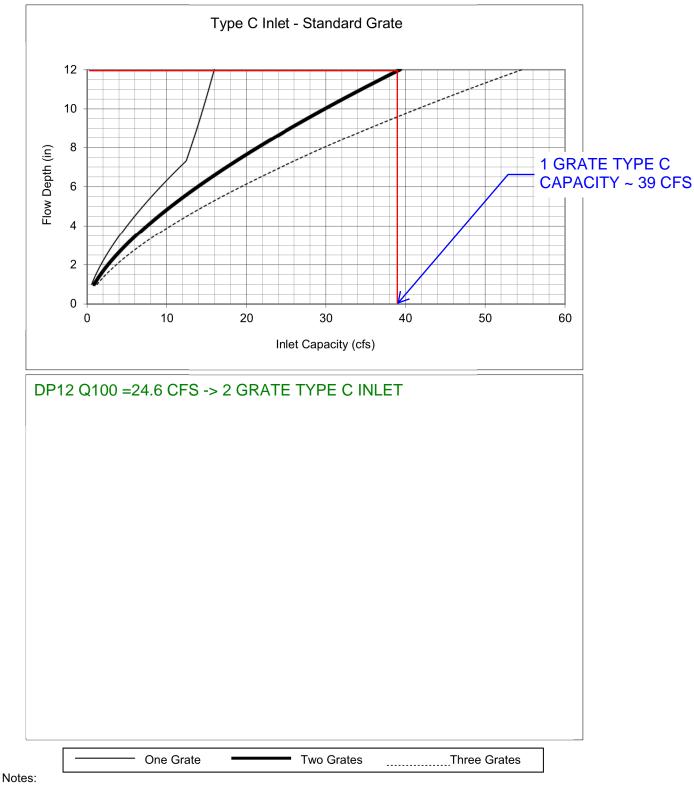
OFFSITE FLOW AT DP10.1

DP G16a & G16b COMBINED AT DP11.1

TOTAL FLOW OFFSITE AT DP 13.1

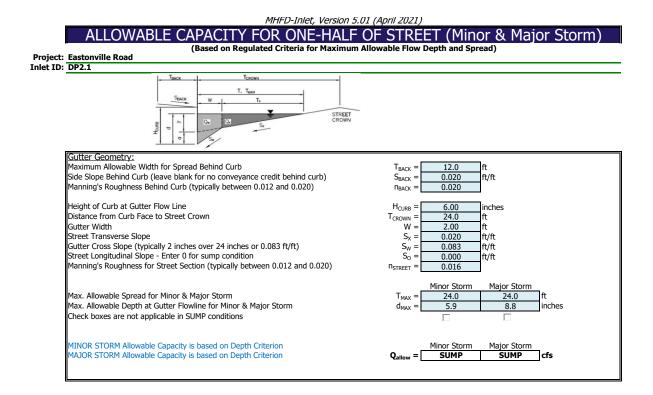
								EA	STON	IVILI		OAD	SEC	32							Calc	'd by:	SPC
	$+2^{-}$								PROP													ked by:	СМ
		1						D	ESIGN	I STO	RM:	100-Y	EA R	R							Da	te:	10/28/2024
HR	Gree	n																					
				DIF	RECT	RUNO	FF		Т	OTAL	RUNO	FF	S	TREE	т		PI	PE		TR	AVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C100	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	G06	*FG29						60.0				491.0											
	G12	1020						00.0				450.0											
	G15	-						-				55.0											
	G09	**FG35						25.0				277.0											
	2.1	***FG38						-	5.0	0.17	8.68	1.5				1.5	0.17	1.0	1.5	56	5.9	0.16	BASIN EA1 CAPTURED IN 5' TYPE R INLET @ DP2.1, PIPE TO DP3.1
	3.1	EA1	0.22	0.79	5.0	0.17	8.68	1.5		2 0.37	8.60	3.2				3.2	0.37	5.1	1.5		13.4	0.04	BASIN EA2 CAPTURED IN 5' TYPE R INLET@ DP3.1, PIPE TO DP4.1 (SFB C)
	4.1	EA2	0.25	0.79	5.0	0.20	8.68	1.7		0.43													SFB C BASIN
	5	EA5	0.16	0.35	6.7	0.06	7.95	0.4								4.0	0.57	2.0	1 5	40	0.4	0.00	BASIN EA3 CAPTURED IN TYPE R INLET @ DP5, PIPE TO DP6
		EA3	0.76	0.74	5.0	0.57	8.66	4.9		0.57							0.57				8.4	0.09	
	6	EA4	3.11	0.49	7.6	1.53	7.63	11.7		2.10							2.10			43	10.2	0.07	BASIN EA4 CAPTURED IN TYPE R INLET @ DP6, PIPE TO DP6.1
	G15a1	FG36a	14.14	0.37	19.0	5.20	5.32	27.7		5.20	5.32	27.7				27.7	5.20	0.6	2.0	43	5.6	0.13	BASIN FG36a CAPUTURED BY 24" FES, PIPE TO DP8
	7	FG36b	0.81	0.39	11.9	0.31	6.48	2.0		0.31	6.48	2.0				2.0	0.31	3.3	1.5	37	10.8	0.06	BASIN FG36b CAPTURED IN 18" FES, PIPE TO DP8
	8									5.51	5.30	29.2				29.2	5.51	0.9	2.0	56	6.8	0.14	DPG15a1 AND 7 COMBINED, PIPE TO DP6.1
	6.1								19.2	7.61	5.29	40.2				40.2	7.61	2.5	2.0	60	11.4	0.09	DP8 & DP 6 COMBINED, PIPE TO DP G15a
	G15a								19.2	7.61	5.29	40.2	40.2	7.61	2.1					615	2.9	3.56	DP6.1 DISCHARGE TO ROADSIDE SWALE TO DPG15a
	G16a	5007		0.05		7.04	5.04	00.5				59.0											DP G16a PER THE FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK
	10	FG37a				7.84			8.4	0.34	7.37	3.3											BASIN EA6 & EA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1) INCLUDES SFB C OUTFLOW
		EA6	0.25				7.85																
	12	EA7	0.20	0.65	8.4	0.13	7.37	1.0		4.14	5.93	24.6				24.6	4.14	1.0	1.5	28	5.9	0.08	BASIN EA18 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13
	13	EA18	11.29	0.37	14.9	4.14	5.93	24.6				138.5											COMBINED DP11.1 & DP12, PIPE TO CHANNEL B (DP13.1)
	14								24.0) 1.98	4.72					94	1.98	7.0	1.5	8	15.7	0.01	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP14, PIPE TO DP15.1
	15	EA8	2.08	0.95	24.0	1.98	4.72	9.4		2.25							2.25		1.5		7.9	0.01	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1
		EA9	3.14	0.72	24.0	2.25	4.72	10.6								10.0	2.23	1.0	6.1	- 34	1.9	0.11	
	15.1								24.1	4.23	4.71	19.9											COMBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR
	16.1		0.10	0.04		0.40	0.00		5.0	0.13	8.68	1.1											BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
	17.1	EA10 EA11	0.16			0.13			5.2	2 0.11	8.58	1.0											BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
	G16.1									0.37	5.66	2.1											OFFSITE FLOW AT DP G16.1
	G16.2	EA15	0.76	0.49	16.6	0.37	5.66	2.1				0.0											OFFSITE FLOW AT DP G16.2
	G06a	NA								2 7.70	5.57	42.9											BASIN FG29a FLOW CAPTURED BY 24" FES AT DP G06a
	G06.1	FG29a	21.40	0.36	17.2	7.70	5.57	42.9		0.13	8.68	492.1											OFFSITE FLOW AT DPG06.1
		EA12	0.36	0.35	5.0	0.13	8.68	1.1															

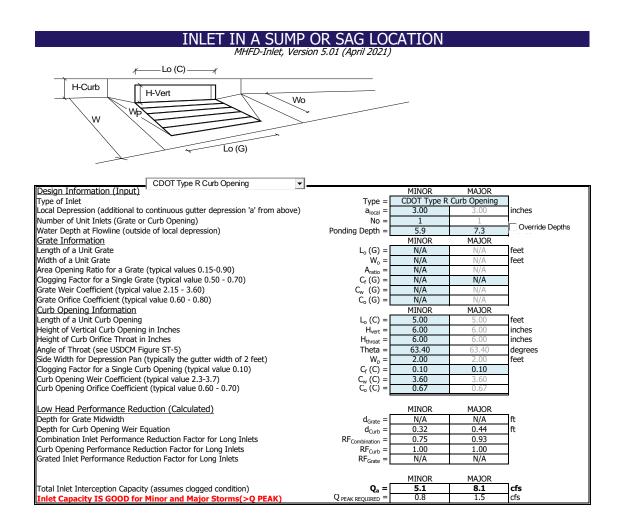
1 .1								EA	STON	VILI	E R	OAD	SEC	3 2							Calc	d by:	SPC
	$- \prec -$								PROPO	OSED	CON	IDITIC	DNS								Chec	ked by:	СМ
1 1		1						D	ESIGN	STO	RM:	100-Y	EAR	R							Da	ate:	10/28/2024
HR	Gree	n																					
				DI	RECT	RUNO	FF		тс		RUNOI	FF	S	TREE	Т		PIF	РЕ		TR	AVEL	ТІМЕ	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	G06.2	EA13	0.45	0.80	6.7	0.36	7.95	2.8	6.7	0.36	7.95	2.8										-	OFFSITE FLOW AT DPG06.2
	G06.3	EA14	1.48				5.52		17.5	0.69	5.52	3.8											OFFSITE FLOW AT DP G06.3
	G16b	FG37b						54.9	16.3	9.63	5.70	54.9				54.9	9.63	1.0	4.0	610	11.4	0.89	BASIN FG37b FLOW CAPTURED BY 36" FES AT DP G16b
	10.1	EA17	0.30						10.3	0.11	6.85	0.7											OFFSITE FLOW AT DP10.1
	11.1											113.9				113.9	0.00	1.5	4.0	890	14.0	1.06	DP G16a & G16b COMBINED AT DP11.1
	13.1	EA16	1.18	0.35	14.4	0.41	6.01	2.5	14.4	0.41	6.01	141.0											TOTAL FLOW OFFSITE AT DP 13.1

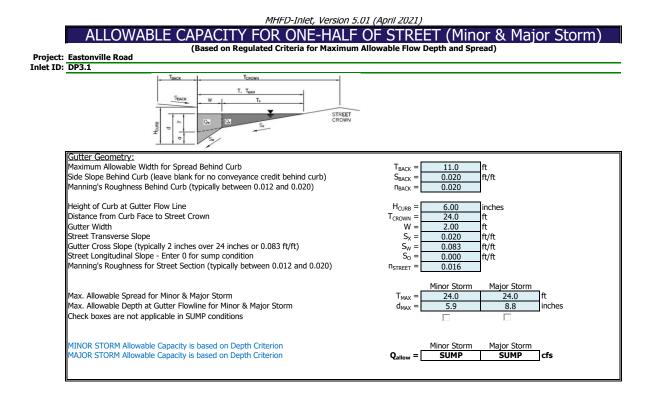

			Desig	n Procedu	re Form: I	Runoff Red	luction					
				UD-BMP (Ve	ersion 3.07, Ma	rch 2018)						Sheet 1 of
Designer:	SPC										-	
Company:	HR GREEN										-	
Date:	October 15, 2										-	
Project:		egment 2 - RR									-	
Location:	COLORADO	SPRINGS, CO									-	
SITE INFORMATION (Us		lue Cells) Rainfall Depth	0.60	inches								
Depth of Average Rur			0.43		Vatersheds O	utside of the	Denver Regio	n, Figure 3-1	in USDCM V	ol. 3)		
Area Type	UIA:RPA	SPA	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA	SPA	SPA	SPA	SPA	UIA:RPA	SPA
Area ID	SFB C	SFB C SPA	EDB B - RR (PART	EDB B - RR (PART	EDB B - RR (PART		EDB B SPA	FG36b	EA17	FG37a	EA18 UIA	EA18 SPA
ownstream Design Point ID	4.1	4.1	<u> </u>	2) 19	3) 19	<u>4)</u> 19	19	7	10.1	G16a	12	12
Downstream BMP Type	SF	SF	EDB	EDB	EDB	EDB	EDB	None	None	None	None	None
DCIA (ft ²)												
UIA (ft ²)	14,819		68,074	68,074	68,074	68,074					6,468	
RPA (ft ²)	574		1,392	1,392	1,392	1,392					4,931	
SPA (ft ²)		12,050					128,550	5,474	11,843	13,414		20,215
HSG A (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
HSG B (%)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
HSG C/D (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Average Slope of RPA (ft/ft)	0.005		0.005	0.005	0.005	0.005					0.100	
JIA:RPA Interface Width (ft)	20.00		70.00	70.00	70.00	70.00					485.00	
CALCULATED RUNOFF												
Area ID	SFB C				B - RR (PA		EDB B SPA	FG36b	EA17	FG37a	EA18 UIA	EA18 SP/
UIA:RPA Area (ft ²)	15,393		69,466	69,466	69,466	69,466					11,399	
L / W Ratio UIA / Area	16.00 0.9627		14.18 0.9800	14.18 0.9800	14.18 0.9800	14.18 0.9800					0.06	
Runoff (in)	0.9027	0.00	0.9300	0.9800	0.9800	0.9800	0.00	0.00	0.00	0.00	0.00	0.00
Runoff (ft ³)	533	0.00	2521	2521	2521	2521	0.00	0.00	0.00	0.00	0.00	0.00
Runoff Reduction (ft ³)	85	603	316	316	316	316	6428	274	592	671	270	1011
CALCULATED WQCV RE Area ID	SFB C	SFB C SPA	B - RR (PAR	B - RR (PA	B - RR (PA		EDB B SPA	FG36b	EA17	FG37a	EA18 UIA	EA18 SPA
WQCV (ft ³)	494	0	2836	2836	2836	2836	0	0	0	0	270	0
WQCV Reduction (ft ³)	85	0	316	316	316	316	0	0	0	0	270	0
WQCV Reduction (%)	17%	0%	11%	11%	11%	11%	0%	0%	0%	0%	100%	0%
Untreated WQCV (ft ³)	409	0	2521	2521	2521	2521	0	0	0	0	0	0
CALCULATED DESIGN F	POINT RESU	ILTS (sums r	esults from a	all columns v	with the sam	e Downstrea	ım Desian Pa	oint ID)				
ownstream Design Point ID	4.1	4.1	19	19	19	19	19	7	10.1	G16a	12	12
DCIA (ft ²)	0	0	0	0	0	0	0	0	0	0	0	0
UIA (ft ²)	14,819	14,819	272,296	272,296	272,296	272,296	272,296	0	0	0	6,468	6,468
RPA (ft ²)	574	574	5,568	5,568	5,568	5,568	5,568	0	0	0	4,931	4,931
SPA (ft ²)	12,050	12,050	128,550	128,550	128,550	128,550	128,550	5,474	11,843	13,414	20,215	20,215
Total Area (ft ²)	27,443	27,443	406,414	406,414	406,414	406,414	406,414	5,474	11,843	13,414	31,614	31,614
Total Impervious Area (ft ²)	14,819	14,819	272,296	272,296	272,296	272,296	272,296	0	0	0	6,468	6,468
WQCV (ft ³)	494	494	11,346	11,346	11,346	11,346	11,346	0	0	0	270	270
WQCV Reduction (ft ³)	85	85	1,262	1,262	1,262	1,262	1,262	0	0	0	270	270
WQCV Reduction (%)	17%	17%	11%	11%	11%	11%	11%	0%	0%	0%	100%	100%
Untreated WQCV (ft ³)	409	409	10,083	10,083	10,083	10,083	10,083	0	0	0	0	0
CALCULATED SITE RES	ULTS (sums	s results fron	n all columns	s in workshe	et)							
Total Area (ft ²)		1										
Total Impervious Area (ft ²)	1,404,054											
WQCV (ft ³)	12,109											
WQCV Reduction (ft ³)	1,616											
WQCV Reduction (%) Untreated WQCV (ft ³)	13% 10,493											

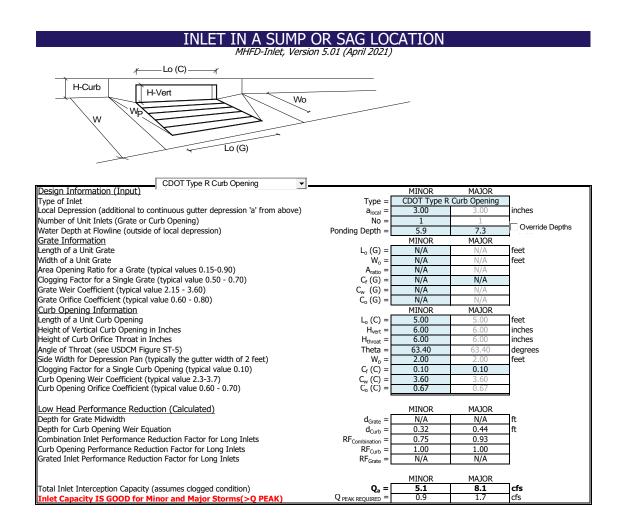
			Desig	n Procedu	re Form: I	Runoff Rec	luction					
				UD-BMP (Ve	rsion 3.07, Ma	rch 2018)						Sheet 1 of '
	SPC										-	
	HR GREEN										-	
-	October 15, 2024 Eastonville Segment 2 - RR											
-		•									-	
Location:	COLORADO	SPRINGS, CO									-	
SITE INFORMATION (Use	WQCV R	ainfall Depth	0.60 0.43	inches inches (for W	/atersheds O	utside of the I	Denver Regio	on, Figure 3-1	in USDCM V	'ol. 3)		
Area Type	SPA	SPA	UIA:RPA	SPA	SPA	SPA	SPA	UIA:RPA	SPA	UIA:RPA	SPA	
Area ID	EA16	FG37b	EA15 UIA	EA15 SPA	FG36a	FG29	EA12	EA13 UIA	EA13 SPA	EA14 UIA	EA14 SPA	
ownstream Design Point ID	13.1	G16b	G16.1	G16.1	G15a1	G06	G06.1	G06.2	G06.2	G06.3	G06.3	
Downstream BMP Type	None	None	None	None	None	None	None	None	None	None	None	
DCIA (ft ²)												
UIA (ft ²)			8,613					15,849		14,183		
RPA (ft ²)			6,625		-			1,265		10,910		
SPA (ft ²)	13,040	23,591		10,902	1,351	25,936	12,172		3,532		34,835	
HSG A (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
HSG B (%)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	
HSG C/D (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	
Average Slope of RPA (ft/ft)			0.100					0.330		0.100		
JIA:RPA Interface Width (ft)			662.50					40.00		1091.00		
CALCULATED RUNOFF	RESULTS											
Area ID	EA16	FG37b	EA15 UIA	EA15 SPA	FG36a	FG29	EA12	EA13 UIA	EA13 SPA	EA14 UIA	EA14 SPA	
UIA:RPA Area (ft ²)			15,238		-	-		17,114		25,093		
L / W Ratio			0.06					10.70		0.06		
UIA / Area			0.5652			-		0.9261		0.5652		
Runoff (in)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.38	0.00	0.00	0.00	
Runoff (ft ³)	0	0	0	0	0	0	0	535	0	0	0	
Runoff Reduction (ft ³)	652	1180	359	545	68	1297	609	125	177	591	1742	
CALCULATED WQCV RE	SULTS											
Area ID	EA16	FG37b	EA15 UIA	EA15 SPA	FG36a	FG29	EA12	EA13 UIA	EA13 SPA	EA14 UIA	EA14 SPA	
WQCV (ft ³)	0	0	359	0	0	0	0	660	0	591	0	
WQCV Reduction (ft ³)	0	0	359	0	0	0	0	125	0	591	0	
WQCV Reduction (%)	0%	0%	100%	0%	0%	0%	0%	19%	0%	100%	0%	
Untreated WQCV (ft ³)	0	0	0	0	0	0	0	535	0	0	0	
CALCULATED DESIGN F		I TS (sume r	esults from	all columne s	with the sam	e Downstroa	m Design P	oint ID)				
ownstream Design Point ID	13.1	G16b	G16.1	G15a1	G06	G06.1	G06.2	G06.3			1	
DCIA (ft ²)	0	0	0	0	0	0	0	0	-			
UIA (ft ²)	0	0	8,613	0	0	0	15,849	14,183				
RPA (ft ²)	0	0	6,625	0	0	0	1,265	10,910				
SPA (ft ²)	13,040	23,591	10,902	1,351	25,936	12,172	3,532	34,835				
Total Area (ft ²)	13,040	23,591	26,140	1,351	25,936	12,172	20,646	59,928				
Total Impervious Area (ft ²)	0	0	8,613	0	23,930	0	15,849	14,183				
	0	0	050	0	0	0	000	504	-			
WQCV (ft ³) WQCV Reduction (ft ³)	0	0	359	0	0	0	125	591				
WQCV Reduction (ff) WQCV Reduction (%)	0%	0%	100%	0%	0%	0%	125	100%				
Untreated WQCV (ft ³)	0 /8	078	0	0%	0%	0 /8	535	0				
CALCULATED SITE RES			n all column	s in worksho	et)							
Total Area (ft ²)	182,804	, results if Of		S III WOLKSILE								
Total Area (ft ²) Total Impervious Area (ft ²)	38,645											
WQCV (ft ³)	1,610 1,075											
WQCV Reduction (ft ³) WQCV Reduction (%)	67%											
Untreated WQCV (ft ³)	535	l										

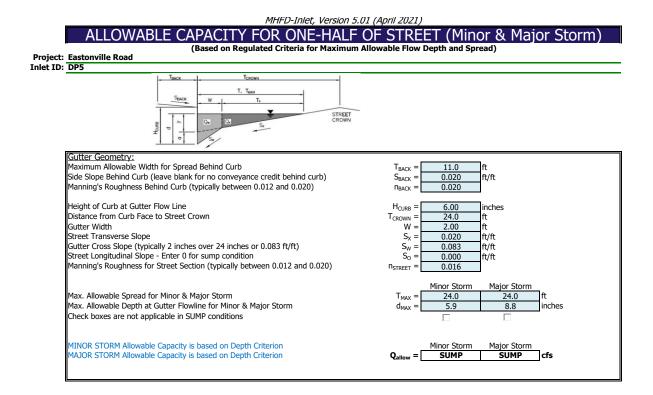
Eastonville Road Final Drainage Report Project No.: 201662.08

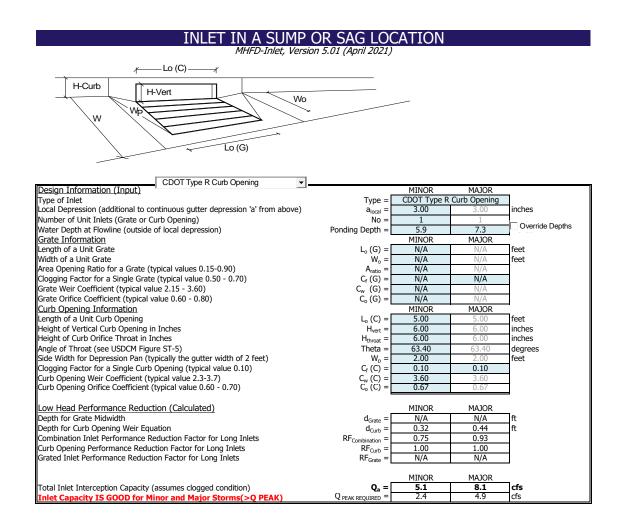

APPENDIX C – HYDRAULIC CALCULATIONS

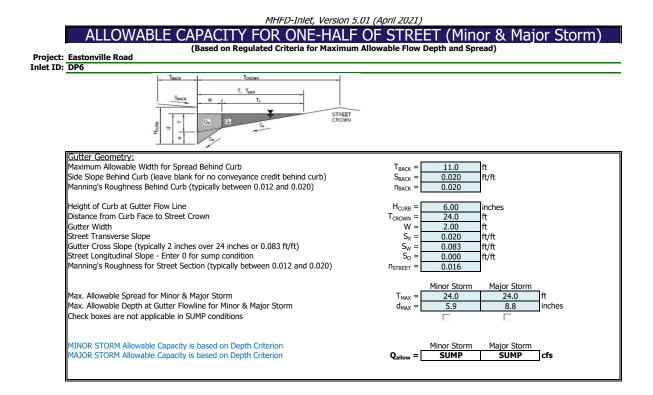


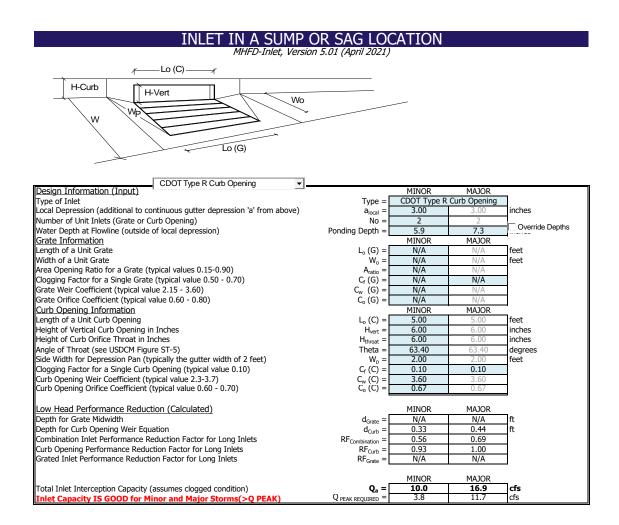


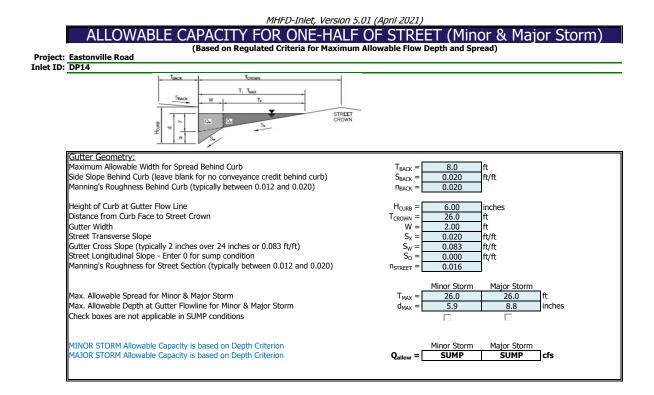

1. The standard inlet parameters must apply to use these charts.

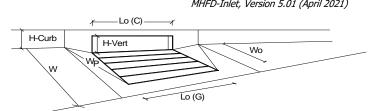

8-15

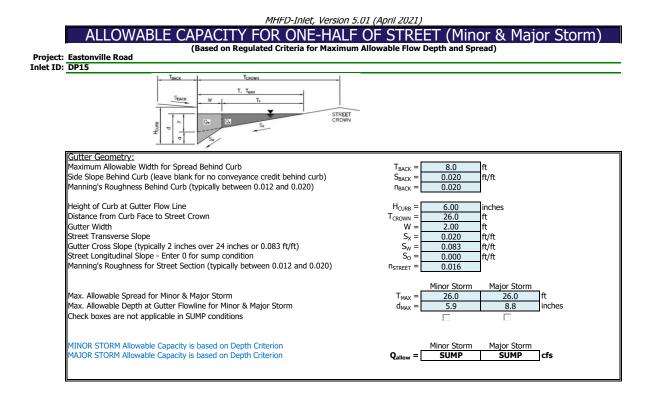


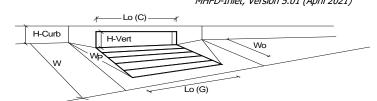


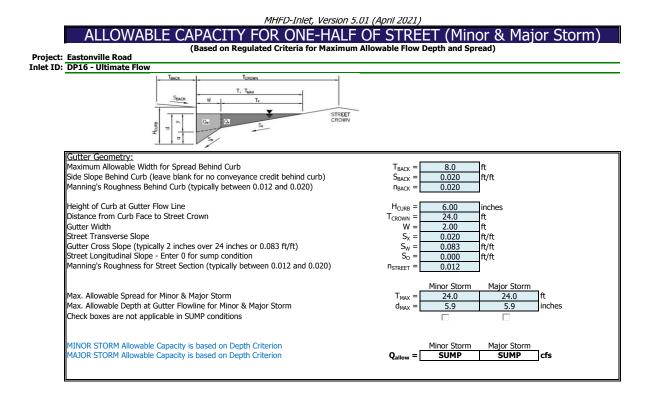


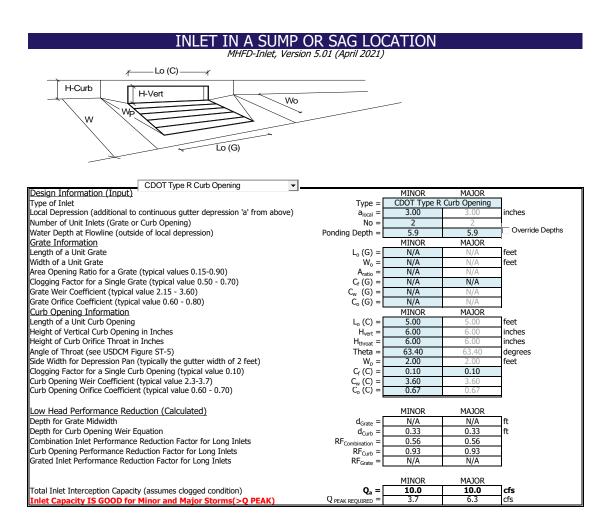


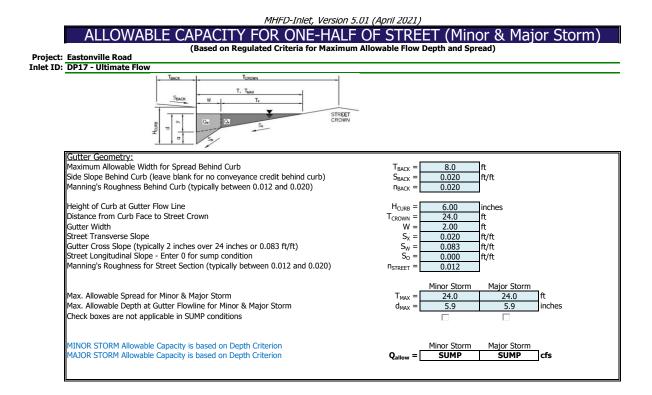


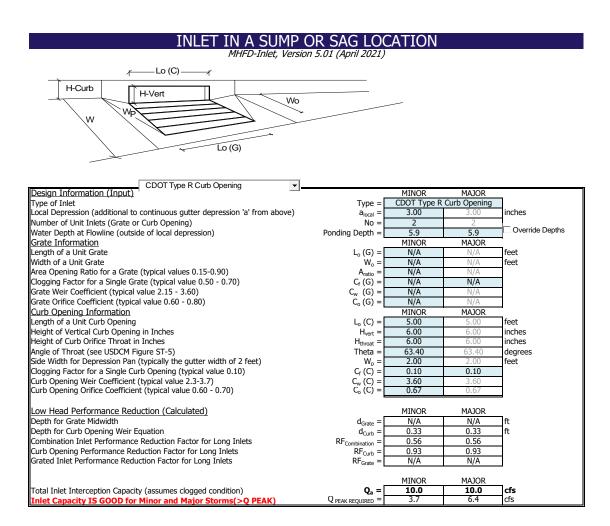



INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)


CDOT Type R Curb Opening				
Design Information (Input)	-	MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	Council Deaths
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.8	Override Depths
Grate Information	_	MINOR	MAJOR	_
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
······	Giate			
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.9	18.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	5.2	9.4	cfs




INLET IN A SUMP OR SAG LOCATION MHFD-Inlet, Version 5.01 (April 2021)

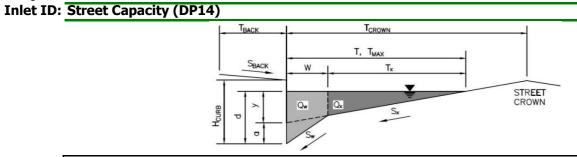


CDOT Type R Curb Opening				
Design Information (Input)	-	MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.8	Override Depths
Grate Information	=	MINOR	MAJOR	
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information	=	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
	_			
Low Head Performance Reduction (Calculated)	r	MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR		
	• 1	MINOR	MAJOR	٦.
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	9.9	18.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	5.0	10.6	cfs

MHFD-Inlet, Version 5.01 (April 2021)

 $T_{BACK} =$

 $S_{BACK} =$


2.0

0.020

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown

Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor & Major Storm

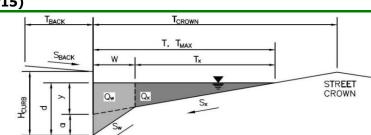
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

n _{BACK} =	0.015		
-			
H _{CURB} =	6.00	inches	
T _{CROWN} =	26.0	ft	
W =	2.00	ft	
S _X =	0.020	ft/ft	
S _W =	0.083	ft/ft	
S ₀ =	0.005	ft/ft	
n _{street} =	0.012		
	Minor Storm	Major Storm	_
T _{MAX} =	26.0	26.0	ft
d _{MAX} =	5.9	8.8	inches
_			_

ft

ft/ft

 MINOR STORM Allowable Capacity is based on Depth Criterion
 Minor Storm
 Major Storm


 MAJOR STORM Allowable Capacity is based on Spread Criterion
 Qallow = 12.3
 30.5
 cfs

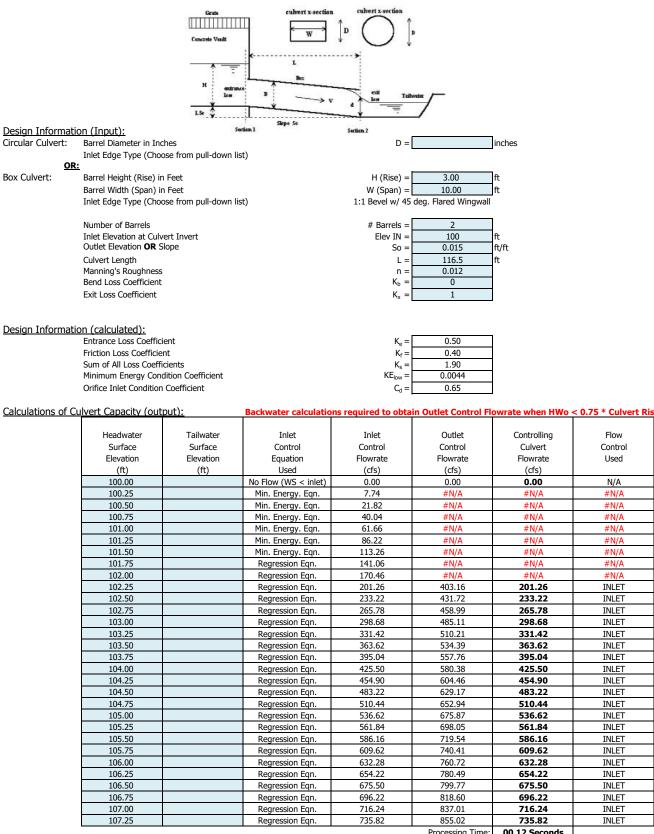
 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
 Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

MHFD-Inlet, Version 5.01 (April 2021)

APACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) ALLOWABLE CAPACITY

Project: Eastonville Road Inlet ID: Street Capacity (DP15)

Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	T _{BACK} = S _{BACK} =	0.020 0.015	ft/ft	
Manning's Roughness benind curb (typically between 0.012 and 0.020)	n _{BACK} =	0.015	J	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	$T_{CROWN} =$	26.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =		ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 =$	0.005	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.012	1	
		Minor Storm	Major Storm	7.
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	26.0	26.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	5.9	8.8	inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)				
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Spread Criterion	Q _{allow} =	12.3	30.9	cfs

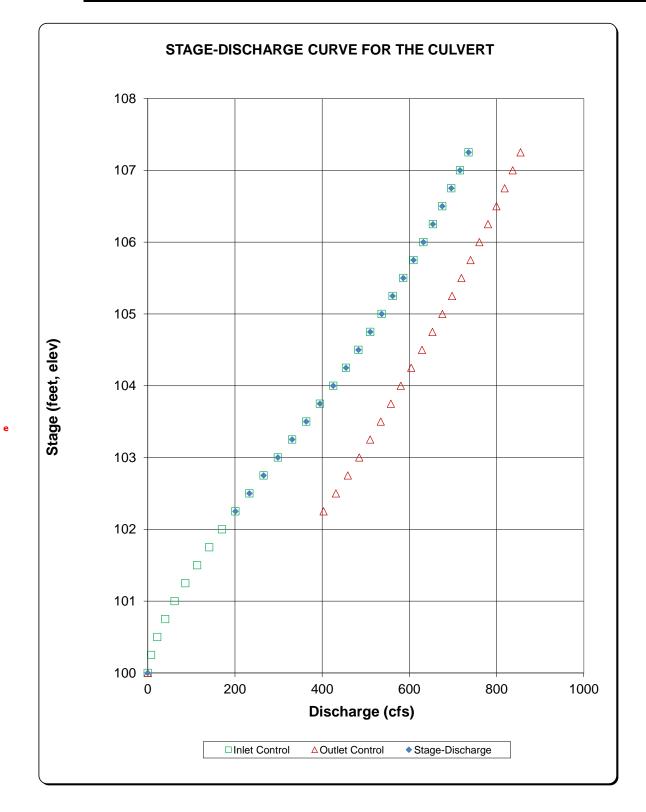

BOX CONDUIT FLOW (Normal & Critical Depth Computation) MHFD-Culvert, Version 4.00 (May 2020) Project: Eastonville Road Segment 2 Box ID: Geick Ranch Tributary 1 Box Culvert (DP G06)

← w	, н н
Design Information (Input)	1
Box conduit invert slope	So = 0.0150 ft/ft
Box Manning's n-value	n = 0.0120
Box Width	W = 10.00 ft
Box Height	H = 3.00 ft
Design discharge	Q = 491.00 cfs
Full-flow capacity (Calculated)	
Full-flow area	Af = 30.00 sq ft
Full-flow wetted perimeter	Pf = 26.00 ft
Full-flow capacity	Qf = 501.88 cfs
Calculations of Normal Flow Condition	
Normal flow depth (<h)<="" td=""><td>Yn = 2.36 ft</td></h>	Yn = 2.36 ft
Flow area	An = 23.58 sq ft
Wetted perimeter	Pn = <u>14.72</u> ft
Flow velocity	Vn = 20.82 fps
Discharge	Qn = 491.02 cfs
Percent of Full Flow	Flow = 97.8% of full flow
Normal Depth Froude Number	Fr _n = 2.39 supercritical
Calculation of Critical Flow Condition	
Critical flow depth	Yc = 3.00 ft
Critical flow area	Ac = <u>30.00</u> sq ft
Critical flow velocity	Vc = <u>16.37</u> fps
Critical Depth Froude Number	$Fr_c = 1.67$

CULVERT SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

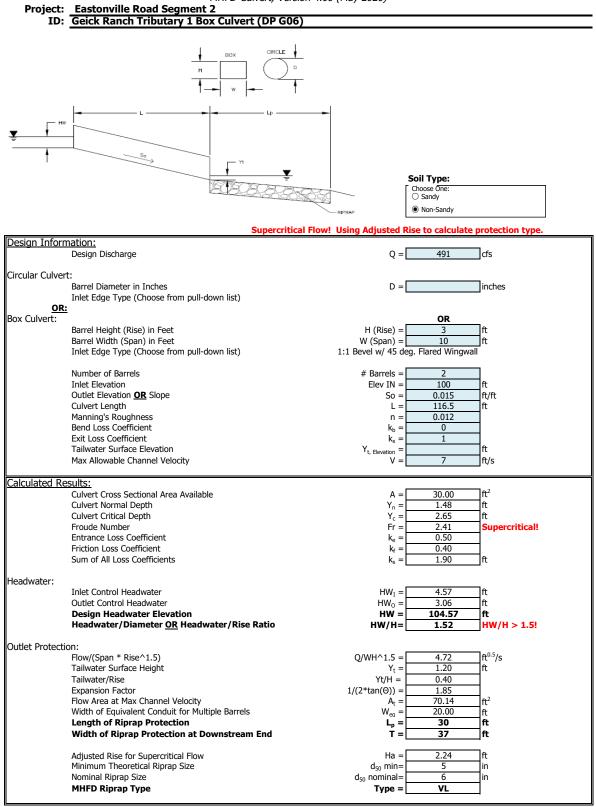
MHFD-Culvert, Version 4.00 (May 2020)

Project: EASTONVILLE ROAD ID: Geick Ranch Tributary 1 Box Culvert (DP G06)



00.12 Seconds Processing Time:

CULVERT SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)


MHFD-Culvert, Version 4.00 (May 2020)

Project: EASTONVILLE ROAD ID: Geick Ranch Tributary 1 Box Culvert (DP G06)

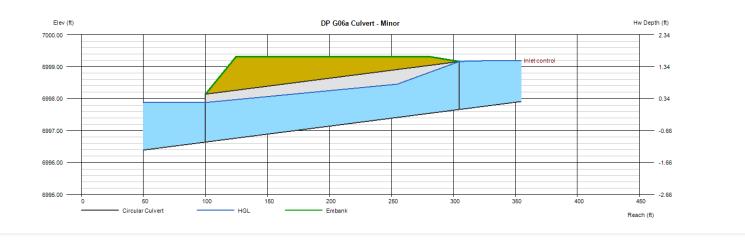
DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION

MHFD-Culvert, Version 4.00 (May 2020)

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024


DP G06a Culvert - Minor

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6996.64 = 204.64 = 0.50 = 6997.66 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 6.40 = 6.40 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 6.40
No. Barrels	= 1	Qpipe (cfs)	= 6.40
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 4.10
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.25
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6997.88
		HGL Up (ft)	= 6998.64
Embankment		Hw Elev (ft)	= 6999.19
Top Elevation (ft)	= 6999.32	Hw/D (ft)	= 1.02
Top Width (ft)	= 155.00	Flow Regime	= Inlet Contro
		-	

ievation (it) Top Width (ft) Crest Width (ft)

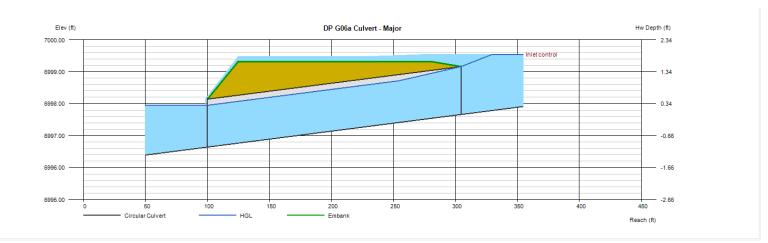
= 155.00 = 110.00

= Inlet Control

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

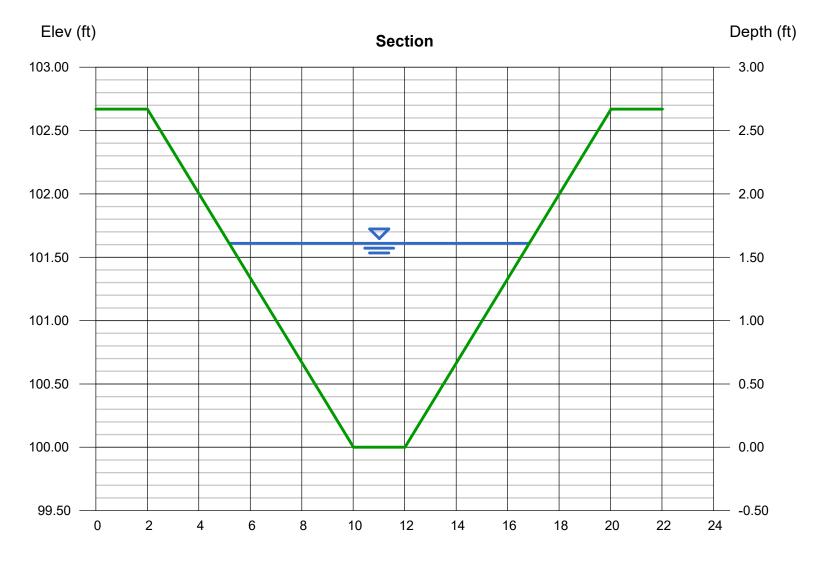

DP G06a Culvert - Major

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6996.64 = 204.64 = 0.50 = 6997.66 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 42.90 = 42.90 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 42.90
No. Barrels	= 1	Qpipe (cfs)	= 8.30
n-Value	= 0.012	Qovertop (cfs)	= 34.60
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 5.08
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.09
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6997.95
		HGL Up (ft)	= 6998.97
Embankment		Hw Elev (ft)	= 6999.54
Top Elevation (ft)	= 6999.32	Hw/D (ft)	= 1.25

Top Width (ft) Crest Width (ft)

=	6999.32
=	155.00
=	110.00

inginginea	
Qtotal (cfs)	= 42.90
Qpipe (cfs)	= 8.30
Qovertop (cfs)	= 34.60
Veloc Dn (ft/s)	= 5.08
Veloc Up (ft/s)	= 5.09
HGL Dn (ft)	= 6997.95
HGL Up (ft)	= 6998.97
Hw Elev (ft)	= 6999.54
Hw/D (ft)	= 1.25
Flow Regime	= Inlet Control

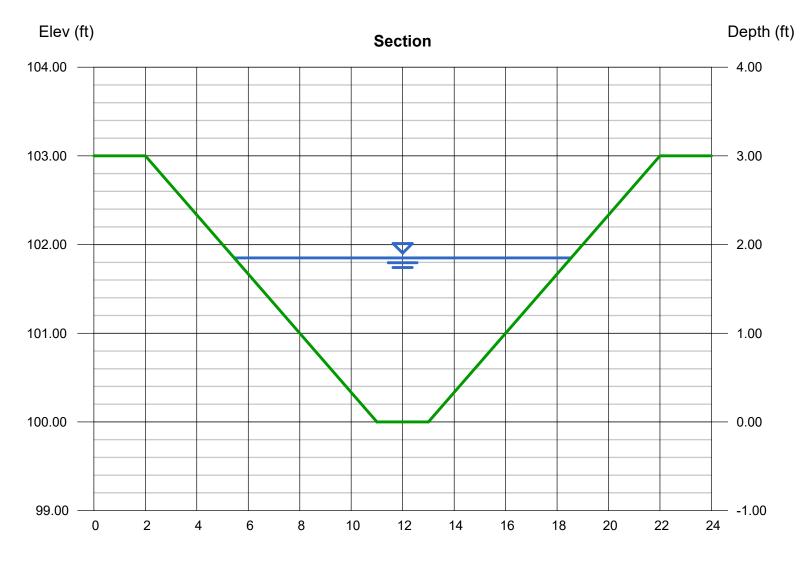


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

DPG06A Swale

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.61
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 42.90
Total Depth (ft)	= 2.67	Area (sqft)	= 11.00
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.90
Slope (%)	= 0.50	Wetted Perim (ft)	= 12.18
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.37
		Top Width (ft)	= 11.66
Calculations		EGL (ft)	= 1.85
Compute by:	Known Q		
Known Q (cfs)	= 42.90		

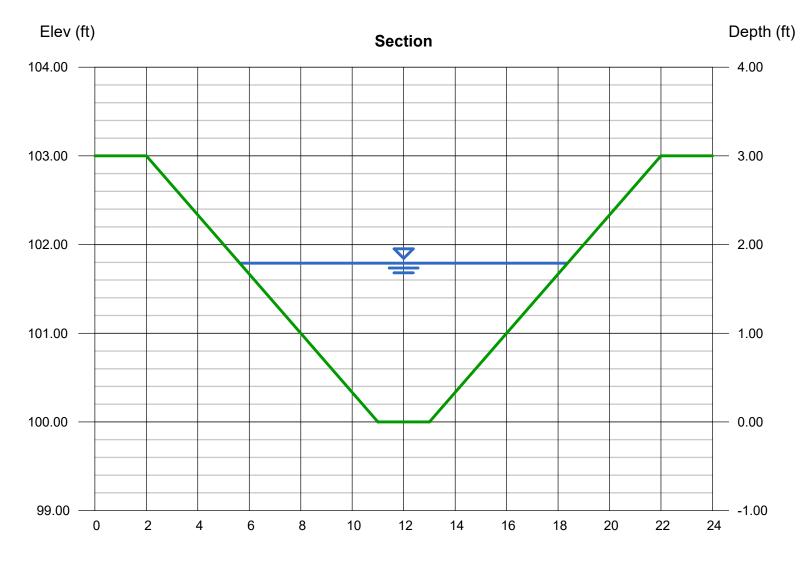

Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

DPG16a Swale

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.85
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 59.00
Total Depth (ft)	= 3.00	Area (sqft)	= 13.97
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.22
Slope (%)	= 0.50	Wetted Perim (ft)	= 13.70
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.60
		Top Width (ft)	= 13.10
Calculations		EGL (ft)	= 2.13
Compute by:	Known Q		
Known Q (cfs)	= 59.00		


Reach (ft)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

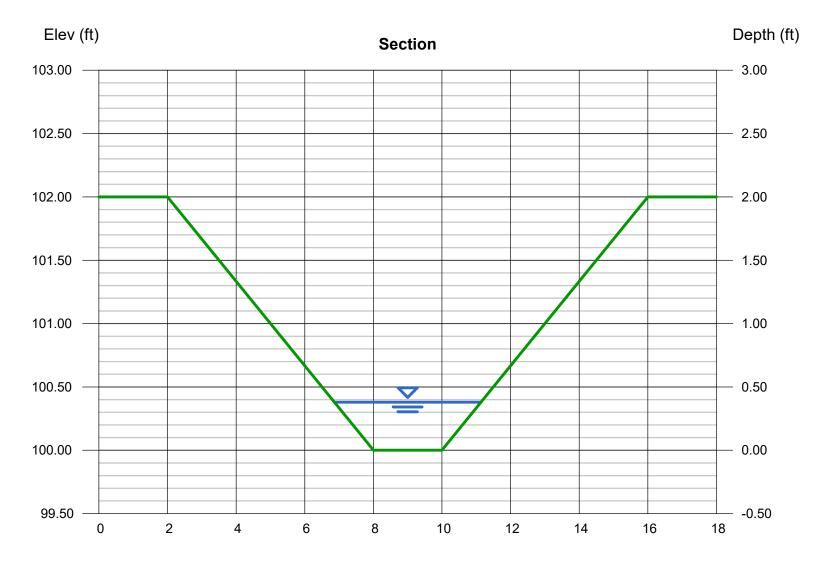
Wednesday, Oct 16 2024

DPG16b Swale

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.79
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 54.90
Total Depth (ft)	= 3.00	Area (sqft)	= 13.19
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 4.16
Slope (%)	= 0.50	Wetted Perim (ft)	= 13.32
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.54
		Top Width (ft)	= 12.74
Calculations		EGL (ft)	= 2.06
Compute by:	Known Q		
Known Q (cfs)	= 54.90		
Compute by:	-		2.00

Reach (ft)

PROJECT: EASTONVILLE RD SEGMENT 2 CHECKED BY: CM Image: Constant of the system of	FROUDE	NUMBER CAL	CULATIONS	CALCULATED BY:	SPC	DATE:	10/28/2024
Froude Number Calculations: 100-YRDPVelocityGravitational ConstantHydraulic depthXsectional Areatop WidthFroude #-ft/sft/s^2ftft^2ftN/AG06a3.9032.170.9411.0011.660.71G16a4.2232.171.0713.9713.10.72G16b4.1632.171.0613.4912.740.71							
- ft/s ft/s^2 ft ft^2 ft N/A G06a 3.90 32.17 0.94 11.00 11.66 0.71 G16a 4.22 32.17 1.07 13.97 13.1 0.72 G16b 4.16 32.17 1.06 13.49 12.74 0.71							
G06a3.9032.170.9411.0011.660.71G16a4.2232.171.0713.9713.10.72G16b4.1632.171.0613.4912.740.71	DP	Velocity	Gravitational Constant	Hydraulic depth	Xsectional Area	top Width	Froude #
G16a4.2232.171.0713.9713.10.72G16b4.1632.171.0613.4912.740.71	-	ft/s	ft/s^2	ft	ft^2	ft	
G16b 4.16 32.17 1.06 13.49 12.74 0.71	G06a	3.90	32.17	0.94	11.00	11.66	0.71
		4.22	32.17	1.07	13.97	13.1	0.72
7 1.68 33.17 0.28 1.19 4.28 0.55 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	G16b	4.16	32.17	1.06	13.49	12.74	
Image: series of the series	7	1.68	33.17	0.28	1.19	4.28	0.55
Image: section of the section of th							
Image: section of the section of th							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: series of the series							
Image: section of the section of th							
Image: section of the section of th							
Image: section of the section of th							
Image: state of the state of							
Image: series of the series							
Image: section of the section of th							
Image: state of the state of							
Image: section of the section of th							
Image: series of the series							
Image: state of the state of							
Image: section of the section of th							
Image: selection of the							
Image: state of the state of							
Image: state of the state of							


	SHEAR STRESS & CHANNEL I	LININGS	CALC	CULATED BY:	SPC	DATE:	10/28/2024]			
	PROJECT: EASTONVILLE RD SE	GMENT 2	CH	ECKED BY:	СМ						
	Shear Stress	Calculations: 100-	-YR					Channel L	ining Determinat	ion	
DP			Slope	Shear Stress			Calculated Values		P300 Max		
-	lb/ft^3	ft		lb/ft^2		DP			Shear Stress	Velocity	Lining Required
G06a	62.43	1.61	0.005	0.50		G06a	0.50	3.90	3		NO LINING RQD
G16a	62.43	1.85	0.005	0.58		G16a	0.58	4.22	3		NO LINING RQD
G16b	62.43	1.79	0.005	0.56		G16b	0.56	4.16	3		NO LINING RQD
	7 63.43	0.38	0.005	0.12		7	0.12	1.68	3	9	NO LINING RQD
]						
					1						
					1						
					1						
					1						
					1						
]						
					1						
					1						
					1						
					1						
					1						
					1		Ī				
					1					1	
					1						
					1		1				
					1					1	
	1				1	L				1	L

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

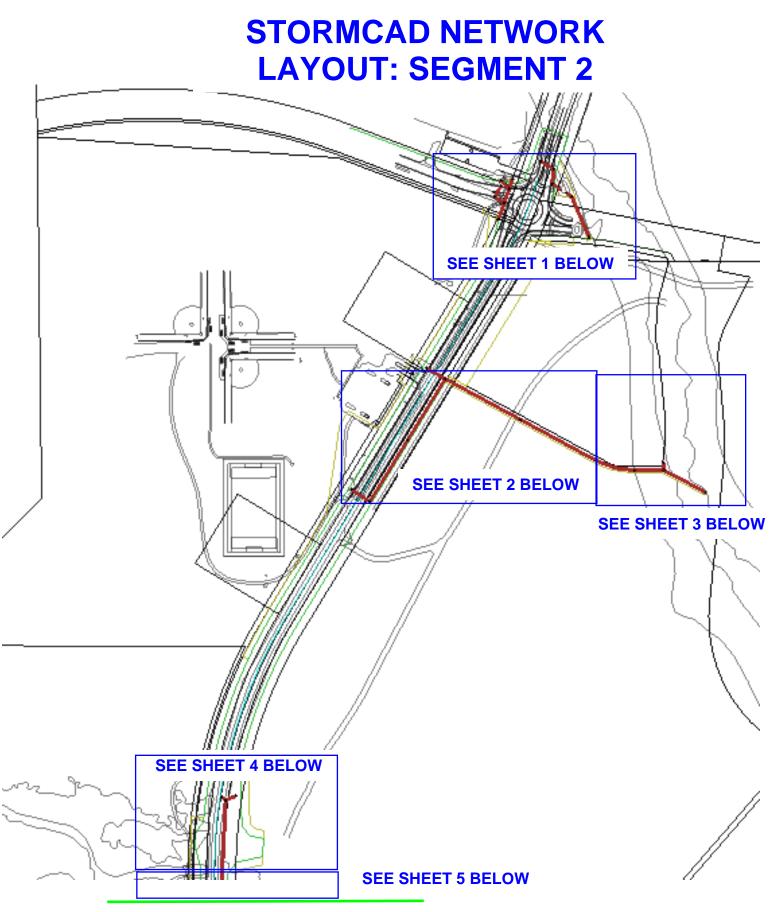
DP7 SWALE

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.38
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 2.000
Total Depth (ft)	= 2.00	Area (sqft)	= 1.19
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 1.68
Slope (%)	= 0.50	Wetted Perim (ft)	= 4.40
N-Value	= 0.025	Crit Depth, Yc (ft)	= 0.28
		Top Width (ft)	= 4.28
Calculations		EGL (ft)	= 0.42
Compute by:	Known Q		
Known Q (cfs)	= 2.00		

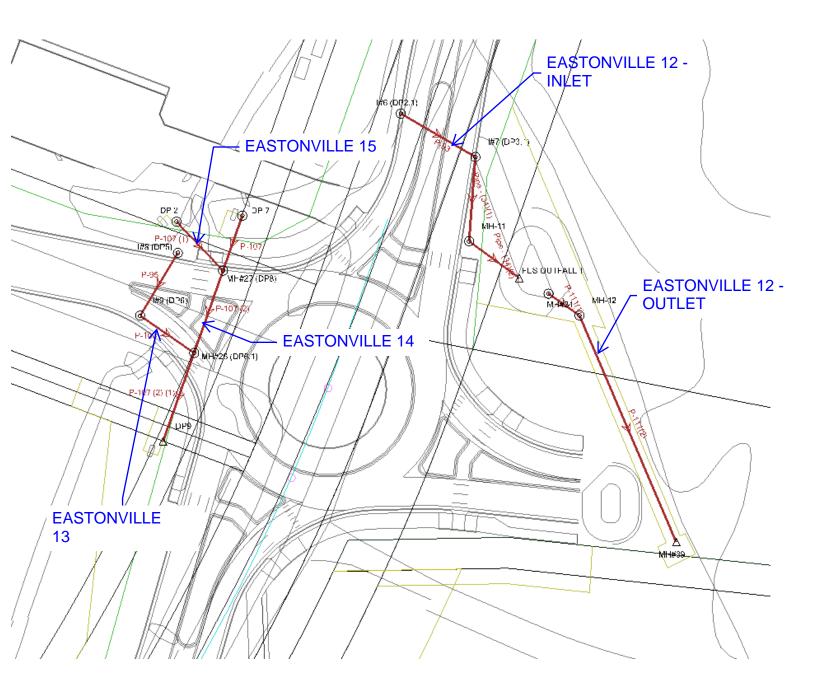
Reach (ft)

201662.08DP GO6 (18" RCP OUTLET)Input ParametersFlow (Q)Input ParametersTailwater depth (Y ₁)Conduit Diameter (D _c)Expansion Factor (per Fig. 9-35)Soil TypeSoil TypeNon-CohesiveCalculated ParametersFroude Parameter (Q/D ^{2.5})D ₅₀ =UDFCD Riprap Type =UDFCD Riprap Type =TypeDesign D ₅₀ =Minimum Mantle Thickness =Minimum Length of Apron (L _p) =Minimum Width of Apron (T) =Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM $d_{s} = \frac{0.023Q}{Y_i^{12}D_c^{0.3}}$ Calculated minimum length of apron was calculated using Equations 9-11 and 9-12	3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	CM 10/16/2024
Input Parameters Flow (Q) Tailwater depth (Yt) Conduit Diameter (Dc) Expansion Factor (per Fig. 9-35) Soil Type Non-Cohesive Calculated Parameters Froude Parameter (Q/D ^{2.5}) Dso = UDFCD Riprap Type = Type Design Dso = Minimum Mantle Thickness = Minimum Length of Apron (Lp) = Minimum Width of Apron (T) = Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM $d_s = \frac{0.023Q}{Y_t^{12}D_c^{0.3}}$	8.3 cfs 0.60 ft 18 in 4.33 Soils 3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	10/16/2024
Input Parameters Flow (Q) Tailwater depth (Yt) Conduit Diameter (Dc) Expansion Factor (per Fig. 9-35) Soil Type Non-Cohesive Calculated Parameters Froude Parameter (Q/D ^{2.5}) Non-Cohesive D50 = UDFCD Riprap Type = Ty Design D50 = Minimum Mantle Thickness = Minimum Length of Apron (Lp) = Minimum Width of Apron (T) = Minimum Width of Apron (T) = Calculated D50 for riprap was calculated using Equation 9-16 in the USDCM $d_{so} = \frac{0.023Q}{Y_t^{12}D_c^{0.3}}$ Ty Design D	0.60 ft 18 in 4.33 Soils 3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	
Flow (Q)Tailwater depth (Yt)Conduit Diameter (Dc)Expansion Factor (per Fig. 9-35)Soil TypeNon-CohesiveCalculated ParametersFroude Parameter (Q/D ^{2.5})D50 =UDFCD Riprap Type =TypDesign D50 =Minimum Mantle Thickness =Minimum Length of Apron (Lp) =Minimum Width of Apron (T) =Calculated D50 for riprap was calculated using Equation 9-16 in the USDCM $d_{so} = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$	0.60 ft 18 in 4.33 Soils 3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	
Tailwater depth (Yt)Conduit Diameter (Dc)Expansion Factor (per Fig. 9-35)Soil TypeNon-CohesiveCalculated ParametersFroude Parameter (Q/D ^{2.5})D50 =UDFCD Riprap Type =TypeDesign D50 =Minimum Mantle Thickness =Minimum Length of Apron (Lp) =Minimum Width of Apron (T) =Calculated D50 for riprap was calculated using Equation 9-16 in the USDCM $d_{so} = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$	0.60 ft 18 in 4.33 Soils 3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	
Conduit Diameter (D_c)Expansion Factor (per Fig. 9-35)Soil TypeNon-CohesiveCalculated ParametersFroude Parameter (Q/D ^{2.5})D_{50} =UDFCD Riprap Type =TypDesign D_{50} =Minimum Mantle Thickness =Minimum Length of Apron (L_p) =Minimum Width of Apron (T) =Calculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM $d_{so} = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$	18 in 4.33 Soils 3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	
Expansion Factor (per Fig. 9-35)Soil TypeNon-CohesiveCalculated ParametersFroude Parameter (Q/D ^{2.5})D ₅₀ =UDFCD Riprap Type =TypeDesign D ₅₀ =Minimum Mantle Thickness =Minimum Length of Apron (L _p) =Minimum Width of Apron (T) =Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM $d_{so} = \frac{0.023Q}{Y_t^{12}D_c^{0.3}}$	4.33 Soils 3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	
Soil TypeNon-CohesiveCalculated ParametersFroude Parameter (Q/D2.5)D50 =UDFCD Riprap Type =TypeDesign D50 =Minimum Mantle Thickness =Minimum Length of Apron (Lp) =Minimum Width of Apron (T) =Calculated D50 for riprap was calculated using Equation 9-16 in the USDCM $d_{50} = \frac{0.023Q}{Y_t^{12}D_c^{0.3}}$	3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	
Calculated Parameters Calculated Parameters Froude Parameter (Q/D ^{2.5}) D ₅₀ = UDFCD Riprap Type = UDFCD Riprap Type = Type Design D ₅₀ = Minimum Mantle Thickness = Minimum Length of Apron (L _p) = Minimum Width of Apron (T) = Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM $d_{50} = \frac{0.023Q}{Y_t^{12}D_c^{0.3}}$	3.01 3.74 in pe VL 6 in 12 in 6 ft 2 ft	
Froude Parameter (Q/D2.5) D_{50} =UDFCD Riprap Type =UDFCD Riprap Type =Type =Design D50 =Minimum Mantle Thickness =Minimum Length of Apron (Lp) =Minimum Width of Apron (T) =Calculated D50 for riprap was calculated using Equation 9-16 in the USDCM $d_{50} = \frac{0.023Q}{Y_t^{12}D_c^{0.3}}$	3.74 in pe VL 6 in 12 in 6 ft 2 ft	
$D_{50} =$ $UDFCD Riprap Type = Typ$ $Design D_{50} =$ $Minimum Mantle Thickness =$ $Minimum Length of Apron (L_p) =$ $Minimum Width of Apron (T) =$ $Calculated D_{50} \text{ for riprap was calculated using Equation 9-16 in the USDCM}$ $d_{50} = \frac{0.023Q}{Y_t^{12} D_c^{0.3}}$	3.74 in pe VL 6 in 12 in 6 ft 2 ft	
$D_{50} =$ $UDFCD Riprap Type = Typ$ $Design D_{50} =$ $Minimum Mantle Thickness =$ $Minimum Length of Apron (L_p) =$ $Minimum Width of Apron (T) =$ $Calculated D_{50} \text{ for riprap was calculated using Equation 9-16 in the USDCM}$ $d_{50} = \frac{0.023Q}{Y_t^{12} D_c^{0.3}}$	3.74 in pe VL 6 in 12 in 6 ft 2 ft	
UDFCD Riprap Type =TypeDesign D_{50} =Minimum Mantle Thickness =Minimum Length of Apron (L_p) =Minimum Width of Apron (T) =Calculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM $d_{50} = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$	pe VL 6 in 12 in 6 ft 2 ft	
Design D_{50} =Minimum Mantle Thickness =Minimum Length of Apron (L_p) =Minimum Width of Apron (T) =Calculated D_{50} for riprap was calculated using Equation 9-16 in the USDCM $d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$	6 in 12 in 6 ft 2 ft	
Minimum Mantle Thickness =Minimum Length of Apron (Lp) =Minimum Width of Apron (T) =Calculated D50 for riprap was calculated using Equation 9-16 in the USDCM $d_{50} = \frac{0.023Q}{Y_t^{1/2}D_c^{0.3}}$	6 ft 2 ft	
Minimum Width of Apron (T) = Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM $d_{\infty} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$	2 ft	
Calculated D ₅₀ for riprap was calculated using Equation 9-16 in the USDCM $d_{\infty} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$		
$d_{50} = \frac{0.023Q}{Y_t^{1.2} D_c^{0.3}}$	Vol 2.	
$L_{p} = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_{t}}{Y_{t}} - W\right) \qquad \text{Equation 9-11} \qquad A_{t} = \frac{Q}{V}$	2 in the USDCM Vol. 2	Equation 9-12
Where: Where:		
L_p = length of protection (ft) Q = design discharge (cfs) W = width of the conduit (ft, use diameter for circular conduits) V = the allowable non-proton		1 1/0/ >
$V = \text{tailwater depth}(\hat{\mathbf{f}})$		n channel (ft/sec)
A_t = required area of flow at a θ = the expansion angle of the culvert flow	llowable velocity (ff*)	
۔ Calculated minimum width of apron was calculated using Equations 9-14 in the US	SDCM Vol. 2	
$T = 2(L_{\nu}\tan\theta) + W$ Equation 9-14		
Note:		
¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9		
² Calculations assume a circular culvert		
³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where y_t is unknown or a hydownstream of the outlet.	draulic jump is suspe	ected
⁴ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p ne	ed to be greater tha	n 10D
whenever the Froude parameter is less than 6.0.		
increase the maximum L_p required by 1/4 D_c for each whole number by wh	-	
greater than 6. The minimum width of Apron (T) should not be less than the		

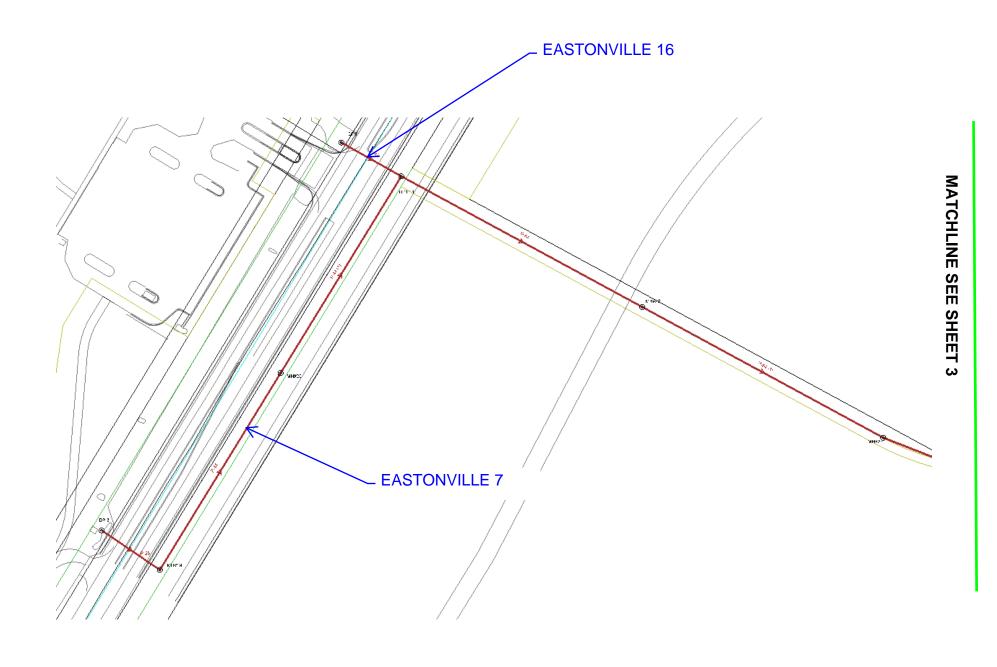
	EASTONVILI	LE RD SEG 2	<u>Calc'd by:</u>	SPC
十イナ	2016	62.08	Checked by:	СМ
HRGreen	DP13.1 (48" F	RCP OUTLET)	Date:	10/16/2024
	Input Pai	rameters		
	Flow (Q)	141	cfs	
	Tailwater depth (Y _t)	1.60	ft	
	Conduit Diameter (D _c)	48	in	
	Expansion Factor (per Fig. 9-3	3.5) 3.5		
	Soil Type	Non-Cohesive Soils		
	Calculated	Darameters		
	Froude Parameter (Q/D ^{2.5})	4.41		
	$D_{50} =$	14.61	in	
	UDFCD Riprap Type =	Туре Н		
	Design $D_{50} =$	18	in	
	Minimum Mantle Thickness =			
	Minimum Length of Apron (L			
	Minimum Width of Apron (T)	5-		
Calculated minimum l	$d_{so} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ ength of apron was calculated using		alculation e USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	- W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	W	/here:		
$L_p = $ length of protecti	ion (ft)	Q = design discharge (cfs)		
W = width of the cond	luit (ft, use diameter for circular conduits)	V = the allowable non-eroding velocity	ty in the downstream	channel (ft/sec)
Y_t = tailwater depth (f		A_t = required area of flow at allowable	e velocity (ft2)	
θ = the expansion ang	le of the cuivert flow			
Calculated minimum	width of apron was calculated usir	ng Equations 9-14 in the USDCM	Vol. 2	
$T=2(L_{\mathbb{P}}\tan\theta)+W$		Equation 9-14		
Note:				
¹ Calculations follow	<pre>/ criteria in the USDCM Vol.2 Cl</pre>	hapter 9		
² Calculations assum	ne a circular culvert			
³ This spreadsheet a	ssumes y _t /D _t =0.4 in cases when	re y _t is unknown or a hydraulio	c jump is suspe	cted
downstream of the			• • • • • • • •	
	ol.2 in no case should L_p be less	than 3D, nor does L_ need to	be greater than	10D
	le parameter is less than 6.0. w			
	um L_p required by 1/4 D_c for ea	-	-	
	minimum width of Apron (T) sh			
-				

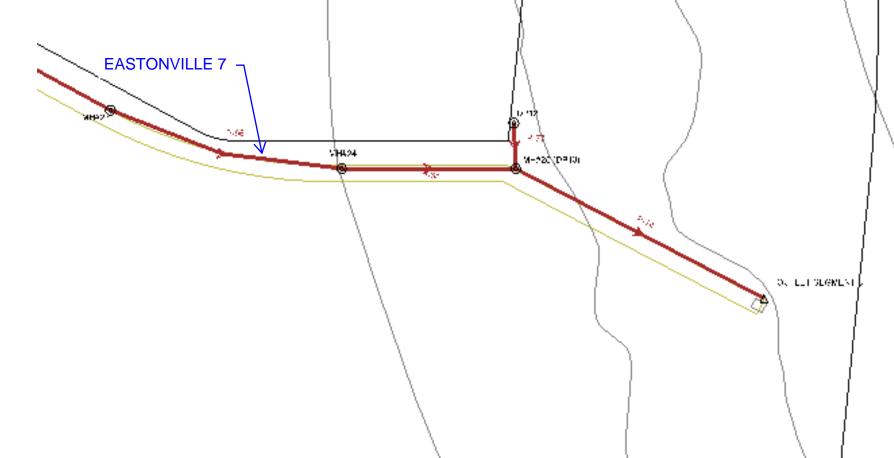

	EASTONVILI	LE RD SEG 2	<u>Calc'd by:</u>	SPC
	2016	62.08	Checked by:	СМ
HRGreen	DP G15a (36"	RCP OUTLET)	Date:	10/16/2024
	Input Pai	rameters		
	Flow (Q)	40.2	cfs	
	Tailwater depth (Y _t)	1.20	ft	
	Conduit Diameter (D _c)	36	in	
	Expansion Factor (per Fig. 9-3	5) 5		
	Soil Type	Non-Cohesive Soils		
	Calculated	Parameters		
	Froude Parameter (Q/D ^{2.5})	2.58		
	D ₅₀ =	6.41	in	
	UDFCD Riprap Type =	Type L		
	Design D ₅₀ =		in	
	Minimum Mantle Thickness =	- 18	in	
	Minimum Length of Apron (L	_) = <u>19</u>	ft	
	Minimum Width of Apron (T)	= 26	ft	
Calculated minimum $L_p = \left(\frac{1}{2 \tan \theta}\right) \left(\frac{A_t}{Y_t}\right)$	ength of apron was calculated usin - W Equation 9-11	ng Equations 9-11 and 9-12 in th $A_t = \frac{Q}{V}$	e USDCM Vol. 2	
		V		Equation 9-12
Where:	W	v vhere:		Equation 9-12
Where: $L_p = \text{length of protection}$,		Equation 9-12
$L_p =$ length of protection		/here:	ty in the downstream	-
$L_p =$ length of protection	ion (ft) luit (ft, use diameter for circular conduits)	There: Q = design discharge (cfs)	-	-
L_p = length of protection W = width of the cond	ion (ft) luit (ft, use diameter for circular conduits) t)	There: Q = design discharge (cfs) V = the allowable non-eroding veloci	-	-
L_p = length of protecti W = width of the cond Y_t = tailwater depth (ft θ = the expansion angle	ion (ft) luit (ft, use diameter for circular conduits) t)	There: Q = design discharge (cfs) V = the allowable non-eroding veloci $A_t = \text{required area of flow at allowabl}$	e velocity (ft ²)	-
L_p = length of protecti W = width of the cond Y_t = tailwater depth (ft θ = the expansion angle	ion (ft) duit (ft, use diameter for circular conduits) t) le of the culvert flow	There: Q = design discharge (cfs) V = the allowable non-eroding veloci $A_t = \text{required area of flow at allowabl}$	e velocity (ft ²)	-
L_p = length of protection W = width of the cond Y_t = tailwater depth (fftt) θ = the expansion angle Calculated minimum v $T = 2(L_p \tan \theta) + W$	ion (ft) duit (ft, use diameter for circular conduits) t) le of the culvert flow	There: Q = design discharge (cfs) V = the allowable non-eroding veloci $A_t = \text{required area of flow at allowable}$ ng Equations 9-14 in the USDCM	e velocity (ft ²)	-
$L_{\rho} = \text{length of protection}$ W = width of the conditional $Y_t = \text{tailwater depth (find)}$ $\theta = \text{the expansion angle}$ Calculated minimum v $T = 2(L_{\rho} \tan \theta) + W$ Note:	ion (ft) duit (ft, use diameter for circular conduits) t) le of the culvert flow	There: Q = design discharge (cfs) V = the allowable non-eroding veloci $A_t = \text{required area of flow at allowabl}$ ing Equations 9-14 in the USDCM The Equation 9-14	e velocity (ft ²)	-
L_p = length of protection W = width of the cond Y_t = tailwater depth (ff θ = the expansion angle Calculated minimum w $T = 2(L_p \tan \theta) + W$ Note: Calculations follow	ion (ff) luit (ft, use diameter for circular conduits) t) le of the culvert flow width of apron was calculated usir	There: Q = design discharge (cfs) V = the allowable non-eroding veloci $A_t = \text{required area of flow at allowabl}$ ing Equations 9-14 in the USDCM The Equation 9-14	e velocity (ft ²)	-
L_p = length of protection W = width of the cond Y_t = tailwater depth (from θ = the expansion angle Calculated minimum we $T = 2(L_p \tan \theta) + W$ Note: Calculations follow Calculations assume	ion (ft) huit (ft, use diameter for circular conduits) t) le of the culvert flow width of apron was calculated usin v criteria in the USDCM Vol.2 Cl ne a circular culvert	There: Q = design discharge (cfs) V = the allowable non-eroding veloci $A_i = \text{required area of flow at allowable}$ and Equations 9-14 in the USDCM The Equation 9-14 Hapter 9	e velocity (ft²) Vol. 2	channel (ft/sec)
$L_{\rho} = \text{length of protection}$ W = width of the conditional $Y_t = \text{tailwater depth (find)}$ $\theta = \text{the expansion angle}$ Calculated minimum with $T = 2(L_{\tau} \tan \theta) + W$ Note: Calculations follow Calculations assume This spreadsheet a	ion (ff) huit (ft, use diameter for circular conduits) t) le of the culvert flow width of apron was calculated usin v criteria in the USDCM Vol.2 Cl ne a circular culvert ssumes y _t /D _t =0.4 in cases when	There: Q = design discharge (cfs) V = the allowable non-eroding veloci $A_i = \text{required area of flow at allowable}$ and Equations 9-14 in the USDCM The Equation 9-14 Hapter 9	e velocity (ft²) Vol. 2	channel (ft/sec)
L_p = length of protection W = width of the conduct Y_t = tailwater depth (from θ = the expansion angle Calculated minimum with $T = 2(L_p \tan \theta) + W$ Note: Calculations follow Calculations assume This spreadsheet a downstream of the set	ion (ff) huit (ff, use diameter for circular conduits) t) le of the culvert flow width of apron was calculated usin v criteria in the USDCM Vol.2 Cl ne a circular culvert ssumes $y_t/D_t=0.4$ in cases when outlet.	There: Q = design discharge (cfs) V = the allowable non-eroding veloci $A_t = \text{required area of flow at allowable}$ ing Equations 9-14 in the USDCM The Equation 9-14 hapter 9 re y _t is unknown or a hydraulie	e velocity (ft²) Vol. 2 c jump is suspec	cted
$L_{\rho} = \text{length of protection}$ W = width of the conditional $Y_t = \text{tailwater depth (find)}$ $\theta = \text{the expansion angle}$ Calculated minimum with $T = 2(L_{r} \tan \theta) + W$ Note: Calculations follow Calculations assume This spreadsheet a downstream of the office of the USDCM Volume Per the USDCM Volume	ion (ff) huit (ft, use diameter for circular conduits) t) le of the culvert flow width of apron was calculated usin v criteria in the USDCM Vol.2 Cl he a circular culvert ssumes $y_t/D_t=0.4$ in cases when outlet. ol.2 in no case should L_p be less	There: Q = design discharge (cfs) V = the allowable non-eroding veloci A _t = required area of flow at allowable ng Equations 9-14 in the USDCM TEquation 9-14 hapter 9 re y _t is unknown or a hydraulie than 3D, nor does L _p need to	e velocity (fl²) Vol. 2 c jump is suspen be greater thar	cted
L_p = length of protection W = width of the conduct Y_r = tailwater depth (from θ = the expansion angle Calculated minimum work $T = 2(L_p \tan \theta) + W$ Note: Calculations follow Calculations assume This spreadsheet and downstream of the ob- Per the USDCM Vor whenever the Froud	ion (ff) huit (ff, use diameter for circular conduits) t) le of the culvert flow width of apron was calculated usin v criteria in the USDCM Vol.2 Cl ne a circular culvert ssumes $y_t/D_t=0.4$ in cases when outlet.	There: Q = design discharge (cfs) $V = the allowable non-eroding veloci A_t = required area of flow at allowable ng Equations 9-14 in the USDCM Equation 9-14 hapter 9 re yt is unknown or a hydraulion than 3D, nor does Lp need to vhenever the Froude paramet$	e velocity (ft²) Vol. 2 be greater thar er is greater that	cted 10D an 6,

	EASTONVIL	<u>Calc'd by:</u>	SPC	
IHYJ.	2016	62.08	Checked by:	СМ
HRGreen	DP10 (SFE	Date:	10/16/2024	
			_	
	Input Pa	rameters		
	Flow (Q)	0.8	cfs	
	Tailwater depth (Y _t)	0.60	ft	
	Conduit Diameter (D _c)	18	in	
	Expansion Factor (per Fig. 9-3			
	Soil Type	Non-Cohesive Soils		
	Calculated	Parameters		
	Froude Parameter (Q/D ^{2.5})	0.29		
	$D_{50} =$	0.36	in	
	UDFCD Riprap Type =	Type VL		
	Design D_{50} =	6	in	
	Minimum Mantle Thickness =	= 12	in	
	Minimum Length of Apron (L	_p) = 5	ft	
	Minimum Width of Apron (T)	= 6	ft	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	<i>,</i>	$A_t = \frac{Q}{V}$	e USDCM Vol. 2	Equation 9-12
Where:		/here:		
$L_p =$ length of protect	ion (II) duit (ft, use diameter for circular conduits)	Q = design discharge (cfs)		
Y_t = tailwater depth (f		V = the allowable non-eroding veloci	-	channel (ft/sec)
θ = the expansion ang		A_t = required area of flow at allowabl	e velocity (ft ²)	
- Calculated minimum	width of apron was calculated usir	p_{α} Equations Q_{-14} in the USDCM	Vol 2	
$T = 2(L_{p} \tan \theta) + W$	which of aprofit was calculated usin	Equation 9-14	V01. Z	
		-		
Note:		hantar 0		
-	v criteria in the USDCM Vol.2 C	napter 9		
_	ne a circular culvert			
	ssumes $y_t/D_t=0.4$ in cases when	re y _t is unknown or a hydrauli	c jump is suspe	cted
downstream of the				
1	ol.2 in no case should L _p be less			
		1 • • • • • • • • • • • • • • • • • • •	or ic graatar the	
whenever the Frou	de parameter is less than 6.0. w	•	-	
whenever the Frou increase the maxim	de parameter is less than 6.0. w um L _p required by 1/4 D _c for ea minimum width of Apron (T) sl	ach whole number by which th	ne Froude parar	neter is

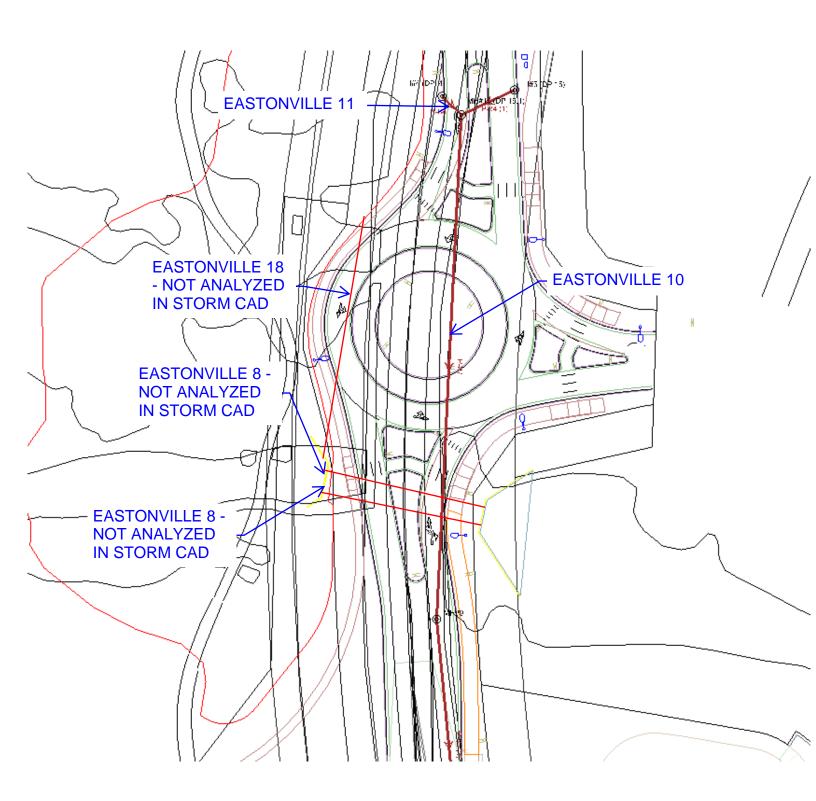

	EASTONVIL	<u>Calc'd by:</u>	SPC	
	2016	Checked by:	СМ	
HRGreen	DP3.1 (SF	Date:	10/16/2024	
	Input Pa	rameters		
	Flow (Q)	3.2	cfs	
	Tailwater depth (Y _t)	0.60	ft	
	Conduit Diameter (D _c)	18	in	
	Expansion Factor (per Fig. 9-3	35) 6.25		
	Soil Type	Non-Cohesive Soils		
	Calculated	Parameters		
	Froude Parameter (Q/D ^{2.5})	1.16		
	D ₅₀ =	1.44	in	
	UDFCD Riprap Type =	Type VL		
	Design D ₅₀ =	6	in	
	Minimum Mantle Thickness =	= 12	in	
	Minimum Length of Apron (L	_p) = 5	ft	
	Minimum Width of Apron (T)	= 2	ft	
Calculated minimum $L_{p} = \left(\frac{1}{2 \tan \theta}\right) \left(\frac{A_{t}}{Y_{t}}\right)$	$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$ length of apron was calculated usi - W Equation 9-11	ng Equations 9-11 and 9-12 in th $A_t = \frac{Q}{V}$	e USDCM Vol. 2	Equation 9-12
	-")	$A_t = \frac{1}{V}$		
Where:	W	/here:		
$L_p = \text{length of protect}$		Q = design discharge (cfs)		
	duit (ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)
Y_t = tailwater depth (i) θ = the expansion ang	tt) gle of the culvert flow	A_t = required area of flow at allowabl	e velocity (ft²)	
Calculated minimum	width of apron was calculated usir	ng Equations 9-14 in the USDCM	Vol. 2	
$T=2\big(L_{\scriptscriptstyle P}\tan\theta\big)+W$		Equation 9-14		
Note:				
	v criteria in the USDCM Vol.2 C	hapter 9		
_	ne a circular culvert			
2	assumes y _t /D _t =0.4 in cases when	re v. is unknown or a hydrauli	r iumn is susno	hat
downstream of the		te yt is unknown of a flyurdull	c Jamp is susper	
		than 2D nor door ! nood to	bo groater they	100
	bl.2 in no case should L _p be less			
	de parameter is less than 6.0. w		-	
increase the maxim				
increase the maxim	minimum width of Apron (T) sh			

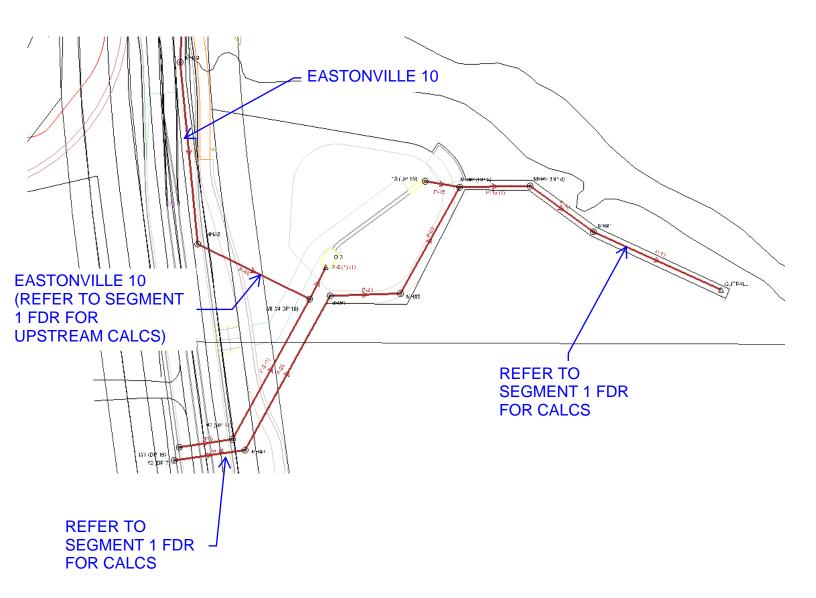
	Riprap Sizing - Spillway					
q (cfs/ft) S (ft/ft)	C_{f}	n	D ₅₀ min. (in)		
0.40	0.33	3	0.025	4.25		
Type V	L Riprap (D ₅₀			r the spillway		
		protectio				
	S ^{0.43} (1.350) re:	$(C_{f} q)^{0.56}$				
$D_{50} = 5.22$ When	·e:		ock size (in)		
	$ \begin{array}{l} \text{re:} \\ D_{50} &= \\ S &= \end{array} $	median ro	ock size (in nal slope (f			
	$ \begin{array}{l} \text{re:} \\ D_{5\theta} &= \\ S &= \end{array} $	median ro longitudi	nal slope (f			
	$ \begin{array}{l} \text{re:} \\ D_{50} &= \\ S &= \end{array} $	median ro longitudi concentra	nal slope (f	t/ft) (1.0 to 3.0)		
	re: $D_{50} =$ S = $C_f =$ q =	median ro longitudi concentra	nal slope (f	t/ft) (1.0 to 3.0)		


Unresolved: Provide calculations for Pond B spillway riprap sizing.


MATCHLINE REFER TO SEGMENT 2 FDR



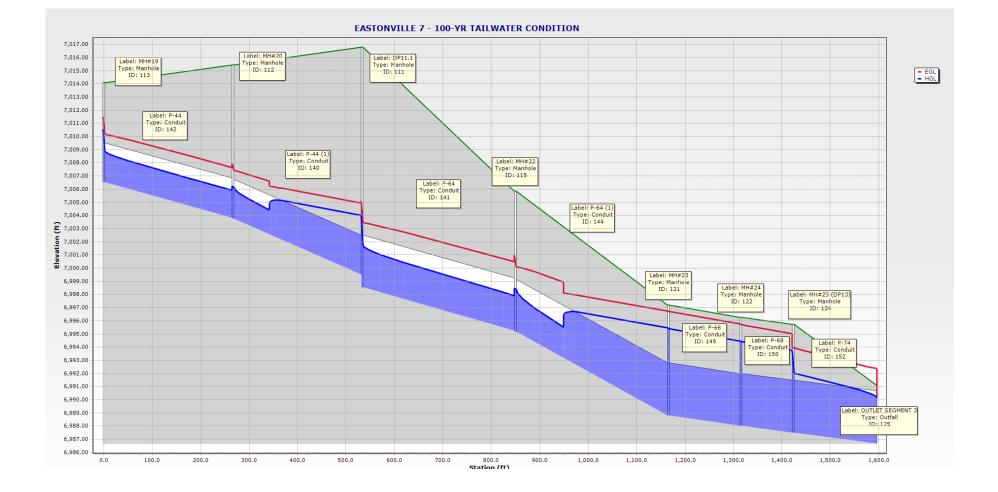


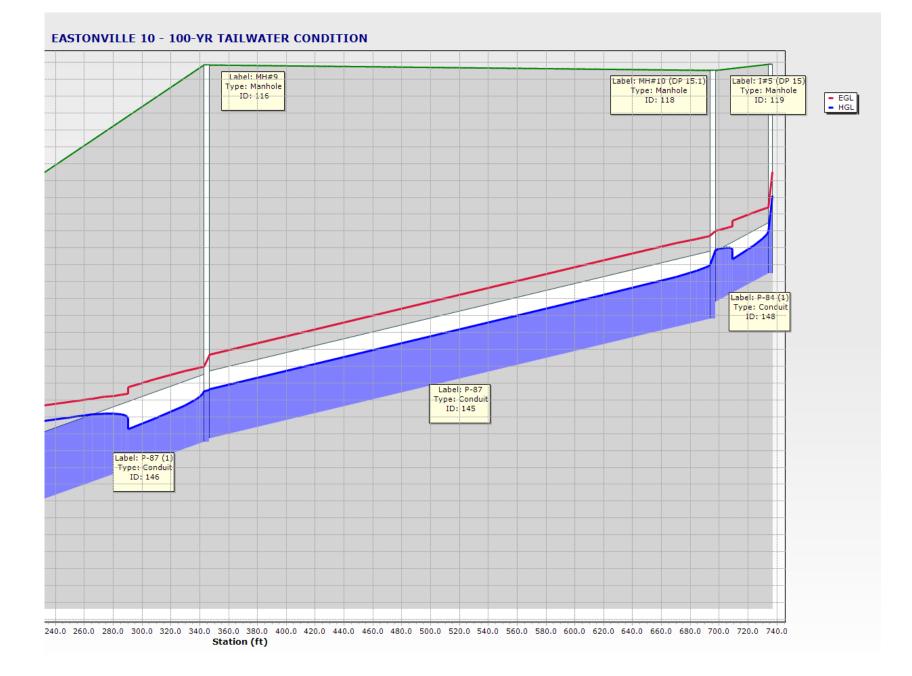


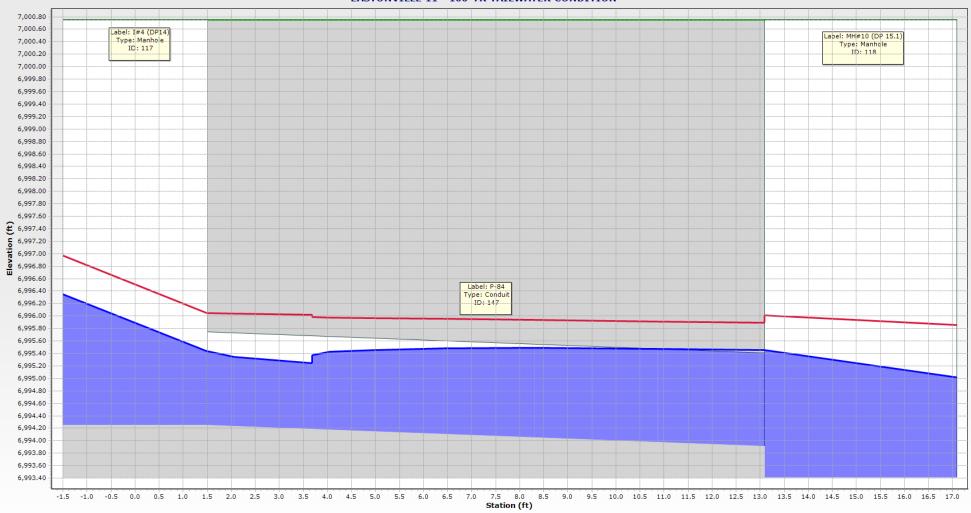
SHEET 5

100 YEAR TAILWATER CONDITION: PIPE SUMMARY TABLE

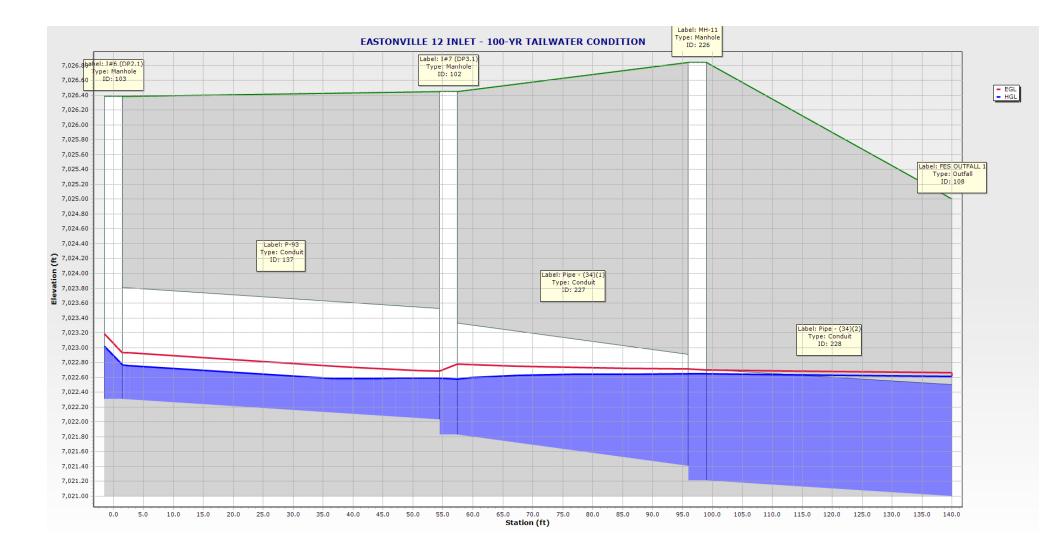
	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.74	DP G15a	7,020.44	60.7	0.005	36.0	0.013	40.20	7.46	46.89	85.7	7,022.88	7,022.50
132: P-103	I#9 (DP6)	7,022.17	MH#26 (DP6.1)	7,021.74	42.7	0.010	24.0	0.013	16.00	5.09	22.71	70.4	7,024.62	7,024.41
133: P-107 (2)	MH#27 (DP8)	7,021.52	MH#26 (DP6.1)	7,021.24	56.6	0.005	30.0	0.013	29.20	5.95	28.85	101.2	7,024.70	7,024.41
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,022.72	37.8	0.008	18.0	0.013	2.00	1.13	9.21	21.7	7,025.20	7,025.19
135: P-107 (1)	MH#27 (DP8)	7,021.72	DP G15a1	7,022.00	43.9	-0.006	30.0	0.013	27.70	5.64	32.77	84.5	7,025.39	7,025.19
136: P-95	I#8 (DP5)	7,023.14	I#9 (DP6)	7,022.67	47.5	0.010	18.0	0.013	4.90	2.77	10.45	46.9	7,024.98	7,024.88
137: P-93	I#6 (DP2.1)	7,022.31	I#7 (DP3.1)	7,022.03	55.9	0.005	18.0	0.013	1.50	3.29	7.43	20.2	7,022.77	7,022.59
140: P-44 (1)	MH#20	7,003.74	DP11.1	6,999.51	266.5	0.016	36.0	0.013	54.90	12.67	84.03	65.3	7,006.15	7,004.01
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	113.90	12.84	145.88	78.1	7,001.75	6,997.92
142: P-44	MH#19	7,006.50	MH#20	7,003.84	266.5	0.010	36.0	0.013	54.90	10.53	66.63	82.4	7,008.91	7,005.91
143: P-26	DP G16b	7,007.68	MH#19	7,006.80	81.5	0.011	36.0	0.013	54.90	7.77	69.32	79.2	7,011.13	7,010.58
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	113.90	16.63	203.15	56.1	6,998.38	6,995.48
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	19.90	8.17	22.76	87.5	6,995.01	6,991.31
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	17.20	9.29	27.70	62.1	6,991.26	6,989.91
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	9.40	9.31	15.77	59.6	6,995.44	6,995.45
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	10.60	9.29	15.18	69.8	6,995.99	6,995.45
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	113.90	9.06	106.64	106.8	6,995.41	6,994.48
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	113.90	9.06	97.84	116.4	6,994.41	6,993.73
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	36.0	0.013	24.60	3.48	113.85	21.6	6,993.77	6,993.73
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	138.50	11.02	99.34	139.4	6,992.04	6,990.17
225: P-42	DP G16a	7,001.22	DP11.1	6,999.51	85.7	0.020	36.0	0.013	59.00	8.35	94.22	62.6	7,004.68	7,004.01
227: Pipe - (34	I#7 (DP3.1)	7,021.83	MH-11	7,021.41	41.5	0.010	18.0	0.013	3.20	5.24	10.56	30.3	7,022.58	7,022.65
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	3.20	4.03	7.38	43.3	7,022.65	7,022.61
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	1.00	2.91	7.35	13.6	7,019.04	7,018.94
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	1.00	3.76	10.56	9.5	7,018.74	7,017.08

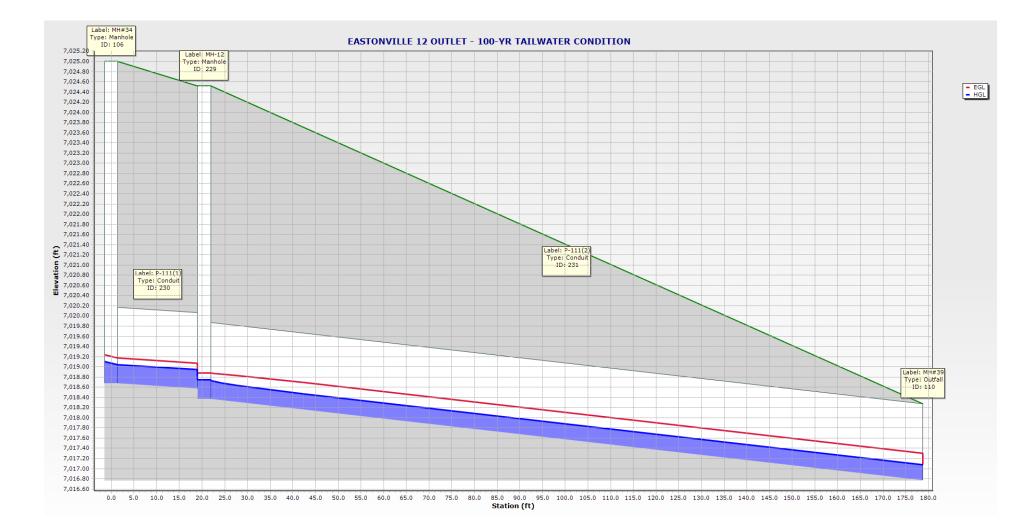

NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.

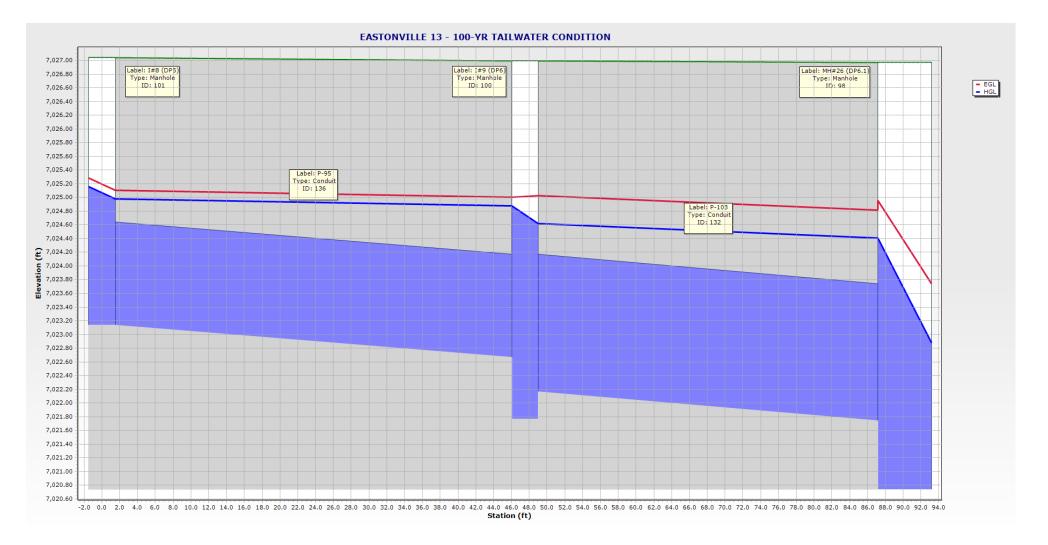

100 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

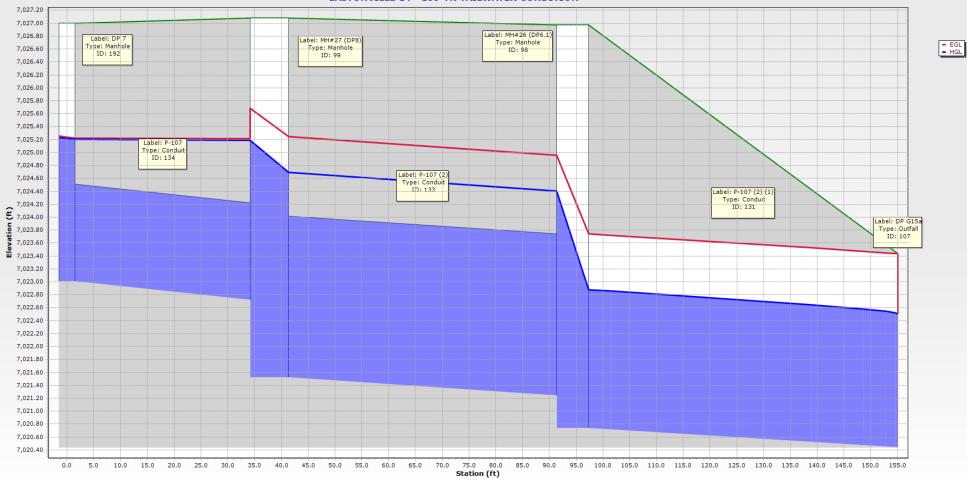

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
98: MH#26 (D	7,026.97	7,026.97	7,021.74	40.20	7,022.88	Standard	7,024.41
99: MH#27 (D	7,027.08	7,027.08	7,022.72	29.20	7,024.70	Standard	7,025.19
100: I#9 (DP6)	7,026.99	7,026.99	7,022.67	16.00	7,024.62	Standard	7,024.88
101: I#8 (DP5)	7,027.04	7,027.04	(N/A)	4.90	7,024.98	Standard	7,025.16
102: I#7 (DP3.	7,026.45	7,026.45	7,022.03	3.20	7,022.58	Standard	7,022.59
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	1.50	7,022.77	Standard	7,023.02
106: MH#34	7,025.00	7,025.00	(N/A)	1.00	7,019.04	Standard	7,019.11
111: DP11.1	7,016.78	7,016.78	6,999.51	113.90	7,001.75	Standard	7,004.01
112: MH#20	7,015.43	7,015.43	7,003.84	54.90	7,006.15	Standard	7,006.21
113: MH#19	7,014.08	7,014.08	7,006.80	54.90	7,008.91	Standard	7,010.58
115: MH#22	7,005.85	7,005.85	6,995.26	113.90	6,998.38	Standard	6,998.46
116: MH#9	7,000.92	7,000.92	6,989.86	17.20	6,991.26	Standard	6,991.29
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	9.40	6,995.44	Standard	6,996.35
118: MH#10 (7,000.75	7,000.75	6,993.91	19.90	6,995.01	Standard	6,995.45
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	10.60	6,995.99	Standard	6,997.05
121: MH#23	6,997.20	6,997.20	6,988.82	113.90	6,995.41	Standard	6,995.48
122: MH#24	6,996.25	6,996.25	6,988.00	113.90	6,994.41	Standard	6,994.48
123: DP12	6,996.40	6,996.40	(N/A)	24.60	6,993.77	Standard	6,994.05
124: MH#25 (6,995.75	6,995.75	6,987.50	138.50	6,992.04	Standard	6,993.73
192: DP 7	7,027.00	7,027.00	(N/A)	2.00	7,025.20	Standard	7,025.23
193: DP G15a1	7,027.00	7,027.00	(N/A)	27.70	7,025.39	Standard	7,026.13
194: DP G16b	7,013.60	7,013.60	(N/A)	54.90	7,011.13	Standard	7,012.54
224: DP G16a	7,010.95	7,010.95	(N/A)	59.00	7,004.68	Absolute	7,004.68
226: MH-11	7,026.84	7,026.84	7,021.41	3.20	7,022.65	Absolute	7,022.65
229: MH-12	7,024.52	7,024.52	7,018.57	1.00	7,018.74	Absolute	7,018.74

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
107: DP G15a	7,023.44	7,020.44	Free Outfall		7,022.50	40.20
108: FES OUTF	7,025.00	7,021.00	User Defined Tailwater	7,022.61	7,022.61	3.20
110: MH#39	7,018.27	7,016.77	Free Outfall		7,017.08	1.00
125: OUTLET S	6,991.09	6,986.67	Free Outfall		6,990.17	138.50

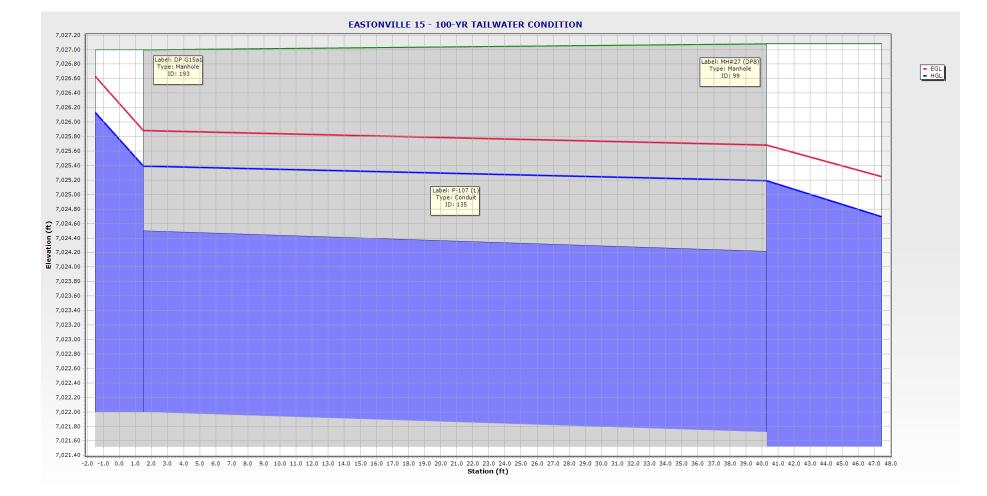

NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.

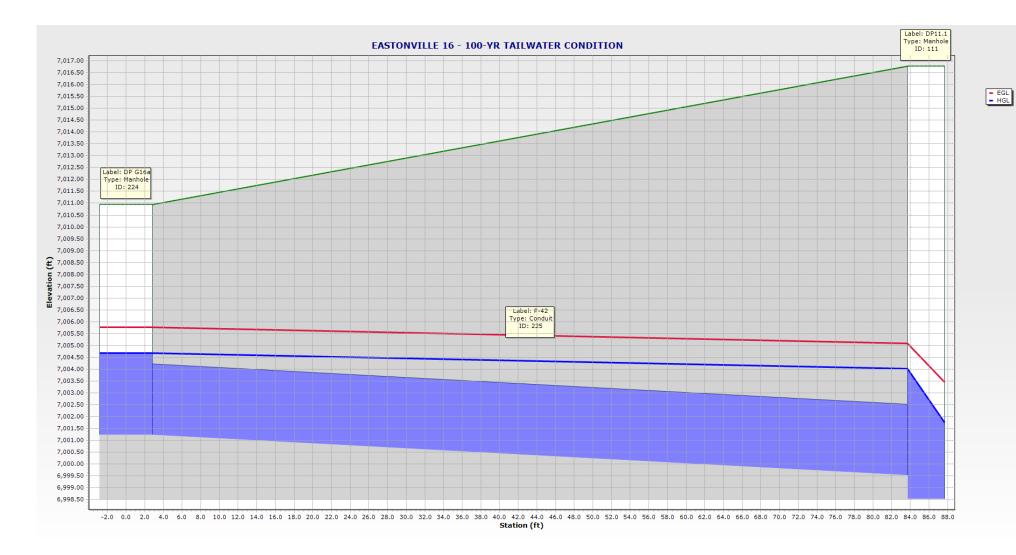






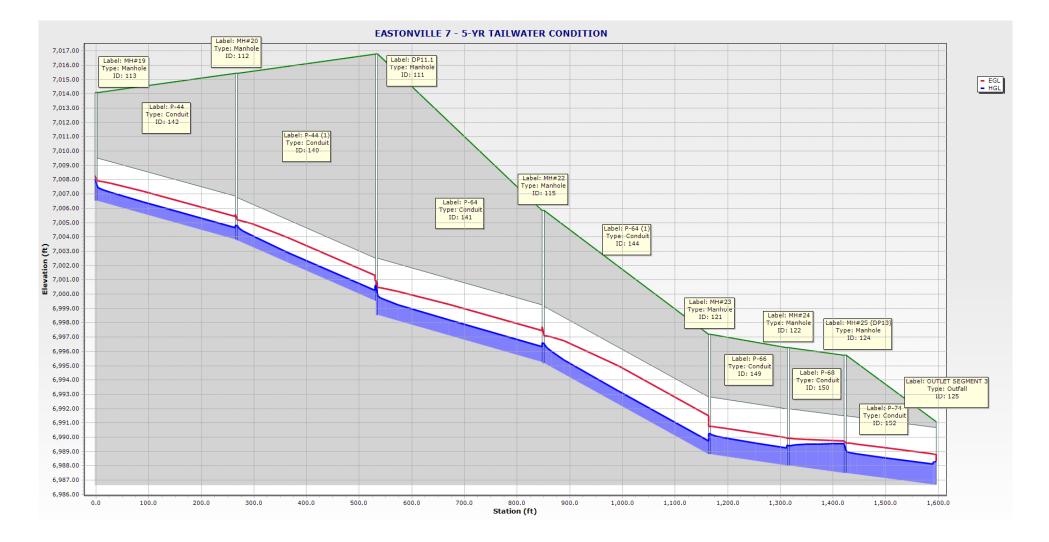
EASTONVILLE 11 - 100-YR TAILWATER CONDITION

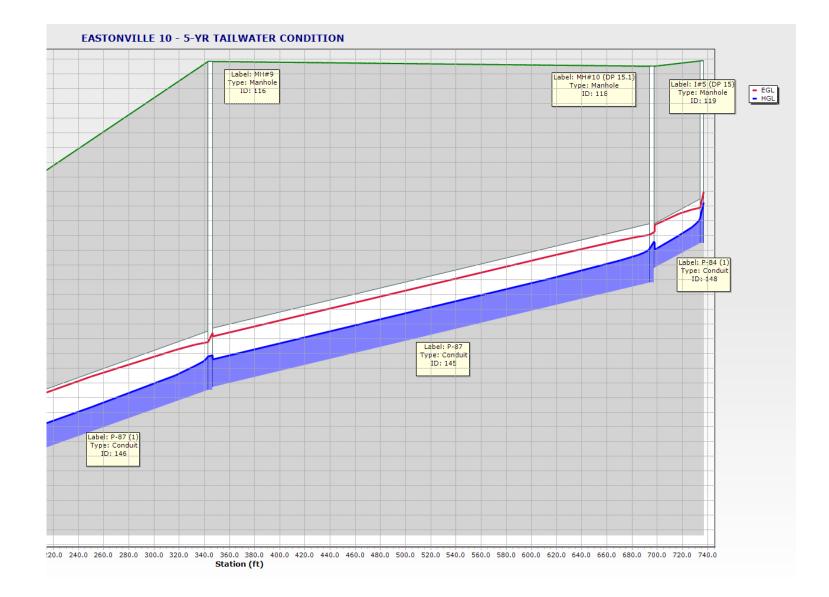




EASTONVILLE 14 - 100-YR TAILWATER CONDITION

	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.74	DP G15a	7,020.44	60.7	0.005	36.0	0.013	9.00	5.12	46.89	19.2	7,021.69	7,021.33
132: P-103	I#9 (DP6)	7,022.17	MH#26 (DP6.1)	7,021.74	42.7	0.010	24.0	0.013	5.90	6.07	22.71	26.0	7,023.03	7,022.44
133: P-107 (2)	MH#27 (DP8)	7,021.52	MH#26 (DP6.1)	7,021.24	56.6	0.005	30.0	0.013	4.90	4.38	28.85	17.0	7,022.25	7,022.29
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,022.72	37.8	0.008	18.0	0.013	0.40	2.60	9.21	4.3	7,023.24	7,022.93
135: P-107 (1)	MH#27 (DP8)	7,021.72	DP G15a1	7,022.00	43.9	-0.006	30.0	0.013	4.60	4.71	32.77	14.0	7,022.71	7,022.49
136: P-95	I#8 (DP5)	7,023.14	I#9 (DP6)	7,022.67	47.5	0.010	18.0	0.013	2.40	4.80	10.45	23.0	7,023.73	7,023.16
137: P-93	I#6 (DP2.1)	7,022.31	I#7 (DP3.1)	7,022.03	55.9	0.005	18.0	0.013	0.80	2.75	7.43	10.8	7,022.64	7,022.36
140: P-44 (1)	MH#20	7,003.74	DP11.1	6,999.51	266.5	0.016	36.0	0.013	11.00	8.22	84.03	13.1	7,004.79	7,000.63
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	23.00	8.47	145.88	15.8	6,999.94	6,996.33
142: P-44	MH#19	7,006.50	MH#20	7,003.84	266.5	0.010	36.0	0.013	11.00	6.97	66.63	16.5	7,007.55	7,004.66
143: P-26	DP G16b	7,007.68	MH#19	7,006.80	81.5	0.011	36.0	0.013	11.00	7.17	69.32	15.9	7,008.73	7,008.06
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	23.00	10.72	203.15	11.3	6,996.57	6,990.26
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	10.20	7.04	22.76	44.8	6,994.55	6,990.80
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	10.20	8.15	27.70	36.8	6,990.90	6,988.20
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	5.20	8.00	15.77	33.0	6,995.13	6,994.80
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	5.00	7.70	15.18	32.9	6,995.60	6,994.80
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	23.00	6.77	106.64	21.6	6,990.24	6,989.44
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	23.00	6.36	97.84	23.5	6,989.42	6,989.55
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	36.0	0.013	3.90	7.49	113.85	3.4	6,990.94	6,989.90
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	27.00	6.73	99.34	27.2	6,989.04	6,988.30
225: P-42	DP G16a	7,001.22	DP11.1	6,999.51	85.7	0.020	36.0	0.013	12.00	9.14	94.22	12.7	7,002.32	7,000.63
227: Pipe - (34	I#7 (DP3.1)	7,021.83	MH-11	7,021.41	41.5	0.010	18.0	0.013	1.60	4.31	10.56	15.1	7,022.31	7,022.16
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	1.60	3.34	7.38	21.7	7,022.16	7,022.16
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	0.10	1.46	7.35	1.4	7,018.79	7,018.69
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	0.10	1.89	10.56	0.9	7,018.49	7,016.87

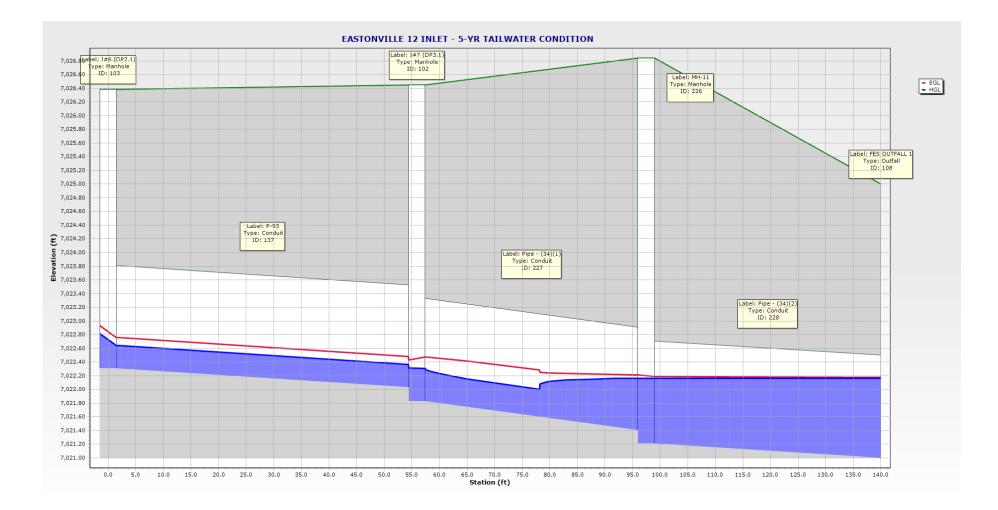

NOTE: EASTONVILLE 12 - INLET, EASTONVILLE 10, & EASTONVILLE 11 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

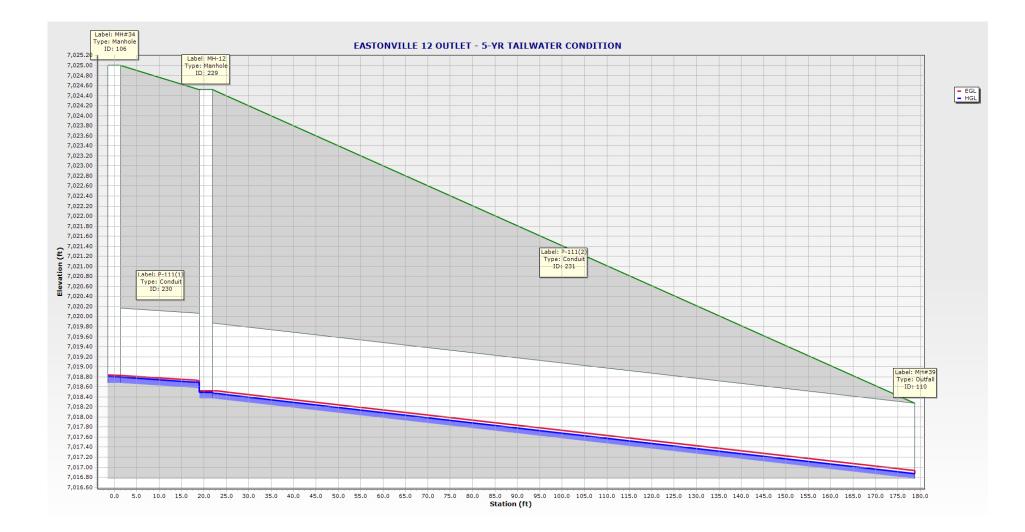

5 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
98: MH#26 (D	7,026.97	7,026.97	7,021.74	9.00	7,021.69	Standard	7,022.29
99: MH#27 (D	7,027.08	7,027.08	7,022.72	4.90	7,022.25	Standard	7,022.49
100: I#9 (DP6)	7,026.99	7,026.99	7,022.67	5.90	7,023.03	Standard	7,023.24
101: I#8 (DP5)	7,027.04	7,027.04	(N/A)	2.40	7,023.73	Standard	7,024.05
102: I#7 (DP3.	7,026.45	7,026.45	7,022.03	1.60	7,022.31	Standard	7,022.31
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	0.80	7,022.64	Standard	7,022.82
106: MH#34	7,025.00	7,025.00	(N/A)	0.10	7,018.79	Standard	7,018.81
111: DP11.1	7,016.78	7,016.78	6,999.51	23.00	6,999.94	Standard	7,000.63
112: MH#20	7,015.43	7,015.43	7,003.84	11.00	7,004.79	Standard	7,004.81
113: MH#19	7,014.08	7,014.08	7,006.80	11.00	7,007.55	Standard	7,008.06
115: MH#22	7,005.85	7,005.85	6,995.26	23.00	6,996.57	Standard	6,996.60
116: MH#9	7,000.92	7,000.92	6,989.86	10.20	6,990.90	Standard	6,990.93
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	5.20	6,995.13	Standard	6,995.67
118: MH#10 (7,000.75	7,000.75	6,993.91	10.20	6,994.55	Standard	6,994.80
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	5.00	6,995.60	Standard	6,996.13
121: MH#23	6,997.20	6,997.20	6,988.82	23.00	6,990.24	Standard	6,990.26
122: MH#24	6,996.25	6,996.25	6,988.00	23.00	6,989.42	Standard	6,989.44
123: DP12	6,996.40	6,996.40	(N/A)	3.90	6,990.94	Standard	6,991.26
124: MH#25 (6,995.75	6,995.75	6,987.50	27.00	6,989.04	Standard	6,989.55
192: DP 7	7,027.00	7,027.00	(N/A)	0.40	7,023.24	Standard	7,023.36
193: DP G15a1	7,027.00	7,027.00	(N/A)	4.60	7,022.71	Standard	7,023.09
194: DP G16b	7,013.60	7,013.60	(N/A)	11.00	7,008.73	Standard	7,009.31
224: DP G16a	7,010.95	7,010.95	(N/A)	12.00	7,002.32	Absolute	7,002.32
226: MH-11	7,026.84	7,026.84	7,021.41	1.60	7,022.16	Absolute	7,022.16
229: MH-12	7,024.52	7,024.52	7,018.57	0.10	7,018.49	Absolute	7,018.49

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
107: DP G15a	7,023.44	7,020.44	Free Outfall		7,021.33	9.00
108: FES OUTF	7,025.00	7,021.00	User Defined Tailwater	7,022.16	7,022.16	1.60
110: MH#39	7,018.27	7,016.77	Free Outfall		7,016.87	0.10
125: OUTLET S	6,991.09	6,986.67	User Defined Tailwater	6,988.30	6,988.30	27.00

NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.

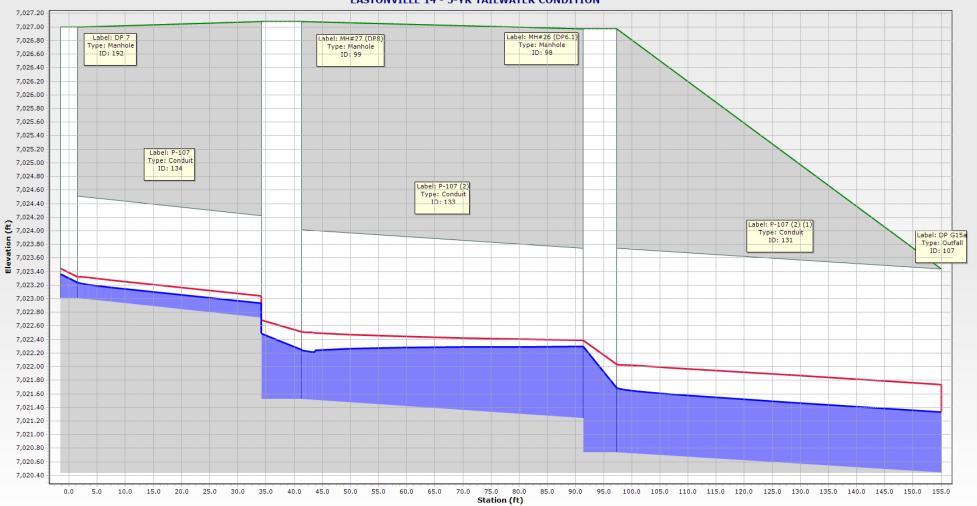


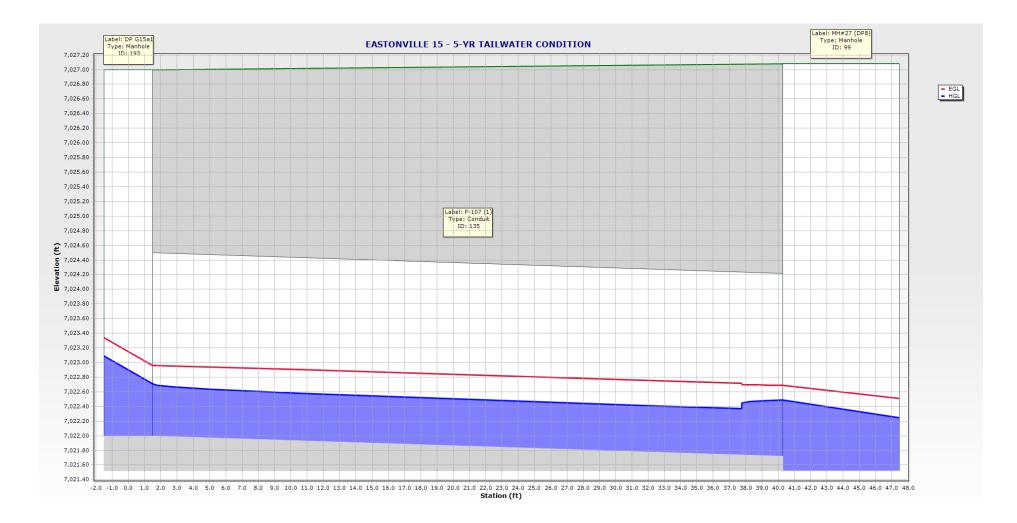


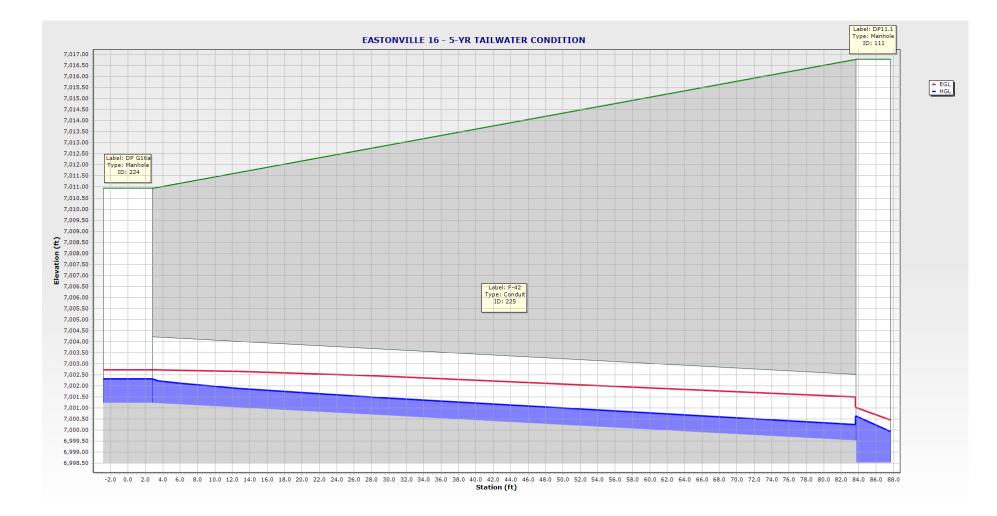


EASTONVILLE 11 - 5-YR TAILWATER CONDITION

= EGL = HGL

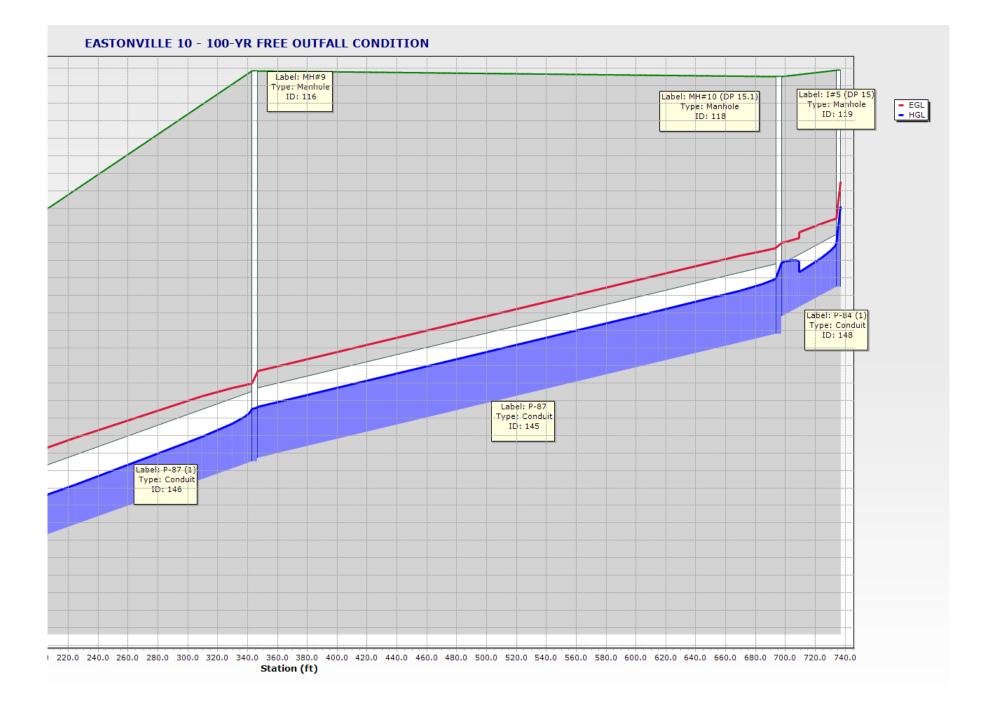


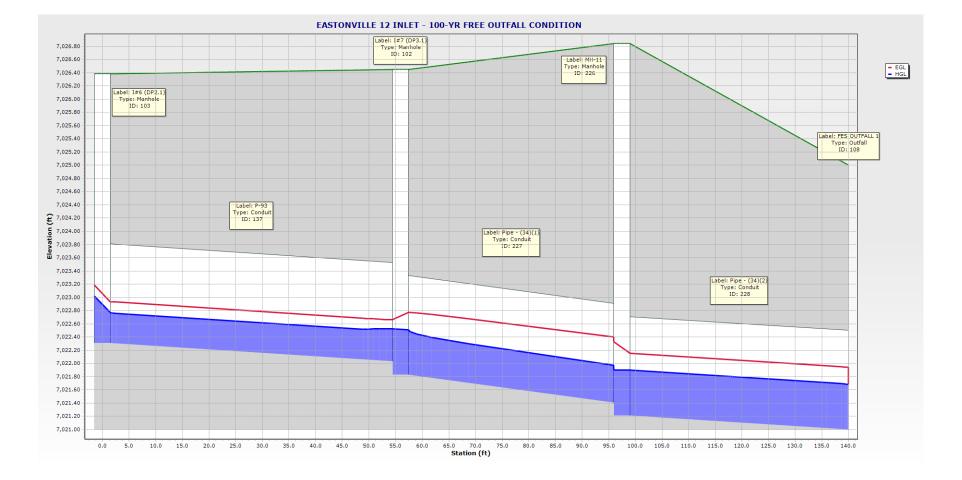

EASTONVILLE 13 - 5-YR TAILWATER CONDITION


= EGL = HGL

EASTONVILLE 14 - 5-YR TAILWATER CONDITION

- EGL - HGL


100 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE

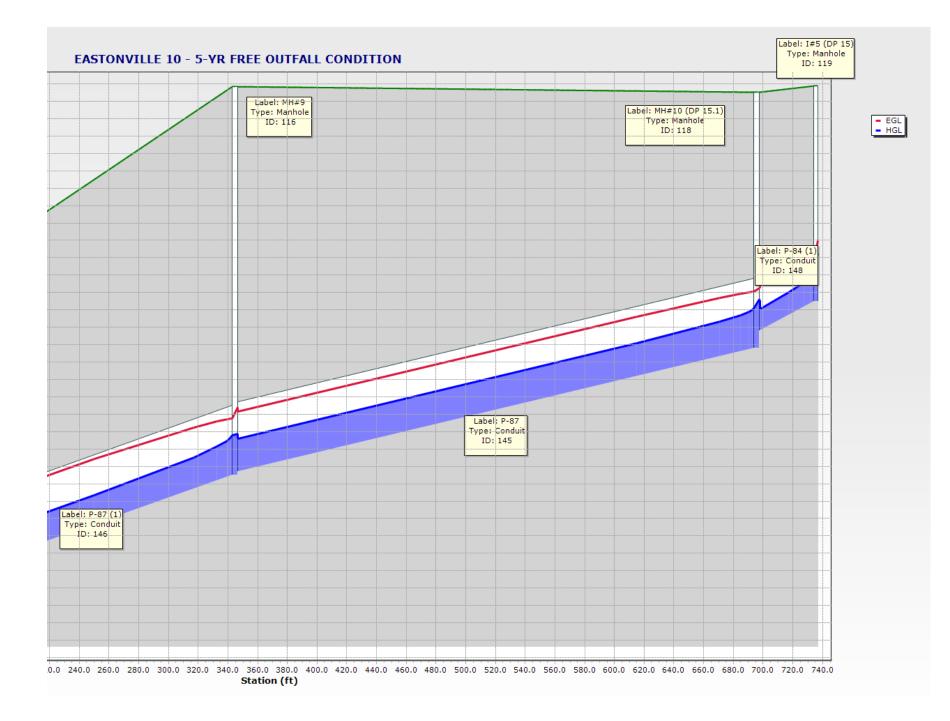

	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.74	DP G15a	7,020.44	60.7	0.005	36.0	0.013	40.20	7.46	46.89	85.7	7,022.88	7,022.50
132: P-103	I#9 (DP6)	7,022.17	MH#26 (DP6.1)	7,021.74	42.7	0.010	24.0	0.013	16.00	5.09	22.71	70.4	7,024.62	7,024.41
133: P-107 (2)	MH#27 (DP8)	7,021.52	MH#26 (DP6.1)	7,021.24	56.6	0.005	30.0	0.013	29.20	5.95	28.85	101.2	7,024.70	7,024.41
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,022.72	37.8	0.008	18.0	0.013	2.00	1.13	9.21	21.7	7,025.20	7,025.19
135: P-107 (1)	MH#27 (DP8)	7,021.72	DP G15a1	7,022.00	43.9	-0.006	30.0	0.013	27.70	5.64	32.77	84.5	7,025.39	7,025.19
136: P-95	I#8 (DP5)	7,023.14	I#9 (DP6)	7,022.67	47.5	0.010	18.0	0.013	4.90	2.77	10.45	46.9	7,024.98	7,024.88
137: P-93	I#6 (DP2.1)	7,022.31	I#7 (DP3.1)	7,022.03	55.9	0.005	18.0	0.013	1.50	3.29	7.43	20.2	7,022.77	7,022.52
140: P-44 (1)	MH#20	7,003.74	DP11.1	6,999.51	266.5	0.016	36.0	0.013	54.90	12.67	84.03	65.3	7,006.15	7,004.01
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	113.90	12.84	145.88	78.1	7,001.75	6,997.92
142: P-44	MH#19	7,006.50	MH#20	7,003.84	266.5	0.010	36.0	0.013	54.90	10.53	66.63	82.4	7,008.91	7,005.91
143: P-26	DP G16b	7,007.68	MH#19	7,006.80	81.5	0.011	36.0	0.013	54.90	7.77	69.32	79.2	7,011.13	7,010.58
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	113.90	16.63	203.15	56.1	6,998.38	6,995.48
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	19.90	8.17	22.76	87.5	6,995.01	6,991.31
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	17.20	9.29	27.70	62.1	6,991.26	6,989.07
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	9.40	9.31	15.77	59.6	6,995.44	6,995.45
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	10.60	9.29	15.18	69.8	6,995.99	6,995.45
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	113.90	9.06	106.64	106.8	6,995.41	6,994.48
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	113.90	9.06	97.84	116.4	6,994.41	6,993.73
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	36.0	0.013	24.60	3.48	113.85	21.6	6,993.77	6,993.73
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	138.50	11.02	99.34	139.4	6,992.04	6,990.17
225: P-42	DP G16a	7,001.22	DP11.1	6,999.51	85.7	0.020	36.0	0.013	59.00	8.35	94.22	62.6	7,004.68	7,004.01
227: Pipe - (34	I#7 (DP3.1)	7,021.83	MH-11	7,021.41	41.5	0.010	18.0	0.013	3.20	5.24	10.56	30.3	7,022.51	7,021.98
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	3.20	4.03	7.38	43.3	7,021.90	7,021.68
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	1.00	2.91	7.35	13.6	7,019.04	7,018.94
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	1.00	3.76	10.56	9.5	7,018.74	7,017.08

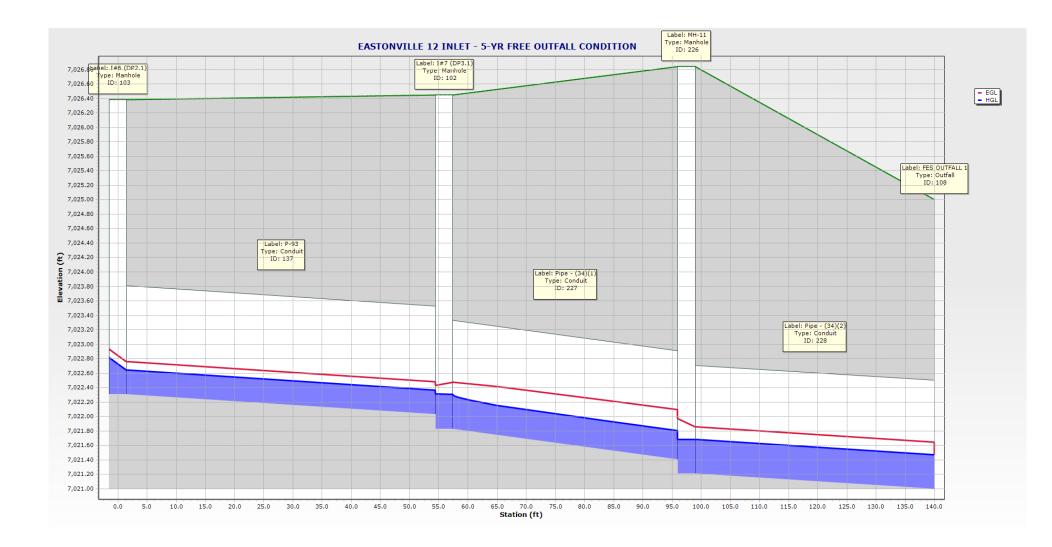
100 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
98: MH#26 (D	7,026.97	7,026.97	7,021.74	40.20	7,022.88	Standard	7,024.41
99: MH#27 (D	7,027.08	7,027.08	7,022.72	29.20	7,024.70	Standard	7,025.19
100: I#9 (DP6)	7,026.99	7,026.99	7,022.67	16.00	7,024.62	Standard	7,024.88
101: I#8 (DP5)	7,027.04	7,027.04	(N/A)	4.90	7,024.98	Standard	7,025.16
102: I#7 (DP3.	7,026.45	7,026.45	7,022.03	3.20	7,022.51	Standard	7,022.52
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	1.50	7,022.77	Standard	7,023.02
106: MH#34	7,025.00	7,025.00	(N/A)	1.00	7,019.04	Standard	7,019.11
111: DP11.1	7,016.78	7,016.78	6,999.51	113.90	7,001.75	Standard	7,004.01
112: MH#20	7,015.43	7,015.43	7,003.84	54.90	7,006.15	Standard	7,006.21
113: MH#19	7,014.08	7,014.08	7,006.80	54.90	7,008.91	Standard	7,010.58
115: MH#22	7,005.85	7,005.85	6,995.26	113.90	6,998.38	Standard	6,998.46
116: MH#9	7,000.92	7,000.92	6,989.86	17.20	6,991.26	Standard	6,991.29
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	9.40	6,995.44	Standard	6,996.35
118: MH#10 (7,000.75	7,000.75	6,993.91	19.90	6,995.01	Standard	6,995.45
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	10.60	6,995.99	Standard	6,997.05
121: MH#23	6,997.20	6,997.20	6,988.82	113.90	6,995.41	Standard	6,995.48
122: MH#24	6,996.25	6,996.25	6,988.00	113.90	6,994.41	Standard	6,994.48
123: DP12	6,996.40	6,996.40	(N/A)	24.60	6,993.77	Standard	6,994.05
124: MH#25 (6,995.75	6,995.75	6,987.50	138.50	6,992.04	Standard	6,993.73
192: DP 7	7,027.00	7,027.00	(N/A)	2.00	7,025.20	Standard	7,025.23
193: DP G15a1	7,027.00	7,027.00	(N/A)	27.70	7,025.39	Standard	7,026.13
194: DP G16b	7,013.60	7,013.60	(N/A)	54.90	7,011.13	Standard	7,012.54
224: DP G16a	7,010.95	7,010.95	(N/A)	59.00	7,004.68	Absolute	7,004.68
226: MH-11	7,026.84	7,026.84	7,021.41	3.20	7,021.90	Absolute	7,021.90
229: MH-12	7,024.52	7,024.52	7,018.57	1.00	7,018.74	Absolute	7,018.74

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
107: DP G15a	7,023.44	7,020.44	Free Outfall		7,022.50	40.20
108: FES OUTF	7,025.00	7,021.00	Free Outfall		7,021.68	3.20
110: MH#39	7,018.27	7,016.77	Free Outfall		7,017.08	1.00
125: OUTLET S	6,991.09	6,986.67	Free Outfall		6,990.17	138.50

5 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE


	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.74	DP G15a	7,020.44	60.7	0.005	36.0	0.013	9.00	5.12	46.89	19.2	7,021.69	7,021.33
132: P-103	I#9 (DP6)	7,022.17	MH#26 (DP6.1)	7,021.74	42.7	0.010	24.0	0.013	5.90	6.07	22.71	26.0	7,023.03	7,022.44
133: P-107 (2)	MH#27 (DP8)	7,021.52	MH#26 (DP6.1)	7,021.24	56.6	0.005	30.0	0.013	4.90	4.38	28.85	17.0	7,022.25	7,022.29
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,022.72	37.8	0.008	18.0	0.013	0.40	2.60	9.21	4.3	7,023.24	7,022.93
135: P-107 (1)	MH#27 (DP8)	7,021.72	DP G15a1	7,022.00	43.9	-0.006	30.0	0.013	4.60	4.71	32.77	14.0	7,022.71	7,022.49
136: P-95	I#8 (DP5)	7,023.14	I#9 (DP6)	7,022.67	47.5	0.010	18.0	0.013	2.40	4.80	10.45	23.0	7,023.73	7,023.16
137: P-93	I#6 (DP2.1)	7,022.31	I#7 (DP3.1)	7,022.03	55.9	0.005	18.0	0.013	0.80	2.75	7.43	10.8	7,022.64	7,022.36
140: P-44 (1)	MH#20	7,003.74	DP11.1	6,999.51	266.5	0.016	36.0	0.013	11.00	8.22	84.03	13.1	7,004.79	7,000.63
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	23.00	8.47	145.88	15.8	6,999.94	6,996.33
142: P-44	MH#19	7,006.50	MH#20	7,003.84	266.5	0.010	36.0	0.013	11.00	6.97	66.63	16.5	7,007.55	7,004.66
143: P-26	DP G16b	7,007.68	MH#19	7,006.80	81.5	0.011	36.0	0.013	11.00	7.17	69.32	15.9	7,008.73	7,008.06
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	23.00	10.72	203.15	11.3	6,996.57	6,990.26
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	10.20	7.04	22.76	44.8	6,994.55	6,990.80
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	10.20	8.15	27.70	36.8	6,990.90	6,988.20
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	5.20	8.00	15.77	33.0	6,995.13	6,994.80
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	5.00	7.70	15.18	32.9	6,995.60	6,994.80
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	23.00	6.77	106.64	21.6	6,990.24	6,989.44
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	23.00	6.36	97.84	23.5	6,989.42	6,989.55
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	36.0	0.013	3.90	7.49	113.85	3.4	6,990.94	6,989.90
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	27.00	6.73	99.34	27.2	6,989.04	6,988.30
225: P-42	DP G16a	7,001.22	DP11.1	6,999.51	85.7	0.020	36.0	0.013	12.00	9.14	94.22	12.7	7,002.32	7,000.63
227: Pipe - (34	I#7 (DP3.1)	7,021.83	MH-11	7,021.41	41.5	0.010	18.0	0.013	1.60	4.31	10.56	15.1	7,022.31	7,021.80
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	1.60	3.34	7.38	21.7	7,021.69	7,021.47
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	0.10	1.46	7.35	1.4	7,018.79	7,018.69
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	0.10	1.89	10.56	0.9	7,018.49	7,016.87


5 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
98: MH#26 (D	7,026.97	7,026.97	7,021.74	9.00	7,021.69	Standard	7,022.29
99: MH#27 (D	7,027.08	7,027.08	7,022.72	4.90	7,022.25	Standard	7,022.49
100: I#9 (DP6)	7,026.99	7,026.99	7,022.67	5.90	7,023.03	Standard	7,023.24
101: I#8 (DP5)	7,027.04	7,027.04	(N/A)	2.40	7,023.73	Standard	7,024.05
102: I#7 (DP3.	7,026.45	7,026.45	7,022.03	1.60	7,022.31	Standard	7,022.31
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	0.80	7,022.64	Standard	7,022.82
106: MH#34	7,025.00	7,025.00	(N/A)	0.10	7,018.79	Standard	7,018.81
111: DP11.1	7,016.78	7,016.78	6,999.51	23.00	6,999.94	Standard	7,000.63
112: MH#20	7,015.43	7,015.43	7,003.84	11.00	7,004.79	Standard	7,004.81
113: MH#19	7,014.08	7,014.08	7,006.80	11.00	7,007.55	Standard	7,008.06
115: MH#22	7,005.85	7,005.85	6,995.26	23.00	6,996.57	Standard	6,996.60
116: MH#9	7,000.92	7,000.92	6,989.86	10.20	6,990.90	Standard	6,990.93
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	5.20	6,995.13	Standard	6,995.67
118: MH#10 (7,000.75	7,000.75	6,993.91	10.20	6,994.55	Standard	6,994.80
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	5.00	6,995.60	Standard	6,996.13
121: MH#23	6,997.20	6,997.20	6,988.82	23.00	6,990.24	Standard	6,990.26
122: MH#24	6,996.25	6,996.25	6,988.00	23.00	6,989.42	Standard	6,989.44
123: DP12	6,996.40	6,996.40	(N/A)	3.90	6,990.94	Standard	6,991.26
124: MH#25 (6,995.75	6,995.75	6,987.50	27.00	6,989.04	Standard	6,989.55
192: DP 7	7,027.00	7,027.00	(N/A)	0.40	7,023.24	Standard	7,023.36
193: DP G15a1	7,027.00	7,027.00	(N/A)	4.60	7,022.71	Standard	7,023.09
194: DP G16b	7,013.60	7,013.60	(N/A)	11.00	7,008.73	Standard	7,009.31
224: DP G16a	7,010.95	7,010.95	(N/A)	12.00	7,002.32	Absolute	7,002.32
226: MH-11	7,026.84	7,026.84	7,021.41	1.60	7,021.69	Absolute	7,021.69
229: MH-12	7,024.52	7,024.52	7,018.57	0.10	7,018.49	Absolute	7,018.49

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
107: DP G15a	7,023.44	7,020.44	Free Outfall		7,021.33	9.00
108: FES OUTF	7,025.00	7,021.00	Free Outfall		7,021.47	1.60
110: MH#39	7,018.27	7,016.77	Free Outfall		7,016.87	0.10
125: OUTLET S	6,991.09	6,986.67	User Defined Tailwater	6,988.30	6,988.30	27.00

NOTE: SEE PROFILES BELOW FOR PIPES STUDIED WITH THIS ANALYSIS

Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX D – WATER QUALITY & DETENTION

	Design Procedure Forr	m: Sand Filter (SF)
	UD-BMP (Version 3.07	7, March 2018) Sheet 1 of 2
Designer: Company:	SPC HR Green	
Date:	October 16, 2024	
Project:	Eastonville Road - Segment 2 Improvements SFB C	
Location:	El Paso County, CO	
1. Basin Sto	rage Volume	
	ve Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of sand filter)	l _a = <u>54.0</u> %
B) Tribut	ary Area's Imperviousness Ratio (i = $I_a/100$)	i = 0.540
	^r Quality Capture Volume (WQCV) Based on 12-hour Drain Time $CV=0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * i)$	WQCV = 0.17 watershed inches
D) Contri	buting Watershed Area (including sand filter area)	Area = 27,443 sq ft
	Quality Capture Volume (WQCV) Design Volume	V _{WQCV} =cu ft
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = in
	/atersheds Outside of the Denver Region, r Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} =cu ft
	Input of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} = 409 cu ft
2. Basin Ge	ometry	
A) WQCV	/ Depth	$D_{WQCV} = 0.7$ ft
	Filter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	Z = <u>3.00</u> ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE
C) Minimu	um Filter Area (Flat Surface Area)	A _{Min} = <u>185</u> sq ft
D) Actual	Filter Area	\checkmark A _{Actual} = 461 sq ft
E) Volum	e Provided	$V_T = 6263$ cu ft
3. Filter Mat	erial	Choose One 18" CDOT Class B or C Filter Material
		O Other (Explain):
4. Underdra	in Svstem	
	derdrains provided?	Choose One VES
· ·	drain system orifice diameter for 12 hour drain time	O NO
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	Refer to MHFD Detention Calcs
	ii) Volume to Drain in 12 Hours	
	iii) Orifice Diameter, 3/8" Minimum	

	Design Procedure For	m: Sand Filter (SF)	
			Sheet 2 of 2
Designer:	SPC		
Company:	HR Green		
Date:	October 16, 2024		
Project:	Eastonville Road - Segment 2 Improvements SFB C		
Location:	El Paso County, CO		
A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One	
	tlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	Engery dissapation at inlet points provide of conveying flows in excess of the WQC modified type 'C' inlet outlet structure grat	V through the outlet is via the
Notes:			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

	Eastonville F	Road		MHFD-	Detention, Version	4.05 (Janu	iary 2022)							
Basin ID:														
	2 ONE 1													
	-1	5					-							
	1 AND 2	ORIFIC			Depth Increment =		ft Optional	1			Optional			
POOL Example Zone		on (Retentio	on Pond)		Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Watershed Information				7021	Description Media Surface	(ft) 	Stage (ft) 0.00	(ft) 	(ft) 	(ft ²) 	Area (ft ²) 461	(acre) 0.011	(ft ³)	(ac-ft)
Selected BMP Type =	SF]			7022		1.00				973	0.022	717	0.016
Watershed Area =	0.63	acres			7023		2.00				1,509	0.035	1,958	0.045
Watershed Length = Watershed Length to Centroid =	171 85	ft ft			7024 7025		3.00 4.00				2,165 2,772	0.050 0.064	3,795 6,263	0.087
Watershed Slope =	0.018	ft/ft									,		,	
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	54.00% 0.0%	percent percent												
Percentage Hydrologic Soil Group B =	100.0%	percent												
Percentage Hydrologic Soil Groups C/D =	0.0%	percent												
Target WQCV Drain Time = Location for 1-hr Rainfall Depths =		hours												
After providing required inputs above incl		rainfall												
depths, click 'Run CUHP' to generate runo the embedded Colorado Urban Hydro			Optional Usor	r Overrides										
Water Quality Capture Volume (WQCV) =		acre-feet	Optional User 0.009	acre-feet										
Excess Urban Runoff Volume (EURV) =	0.037	acre-feet		acre-feet										
2-yr Runoff Volume (P1 = 0.93 in.) = 5-yr Runoff Volume (P1 = 1.21 in.) =		acre-feet acre-feet		inches inches										
10-yr Runoff Volume (P1 = 1.21 iii.) =		acre-feet		inches										
25-yr Runoff Volume (P1 = 1.84 in.) =		acre-feet		inches										
50-yr Runoff Volume (P1 = 2.16 in.) = 100 -yr Runoff Volume (P1 = 2.49 in.) =	0.079 0.097	acre-feet acre-feet		inches inches										
500-yr Runoff Volume (P1 = 3.37 in.) =	0.142	acre-feet		inches										
Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume =	0.022	acre-feet acre-feet												
Approximate 3-yr Detention Volume =	0.031	acre-feet												
Approximate 25-yr Detention Volume =	0.050	acre-feet												
Approximate 50-yr Detention Volume = Approximate 100-yr Detention Volume =	0.054 0.062	acre-feet acre-feet												
		_												
Define Zones and Basin Geometry Zone 1 Volume (WQCV) =	0.009	acre-feet												
Zone 2 Volume (EURV - Zone 1) =		acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =		acre-feet												
Total Detention Basin Volume = Initial Surcharge Volume (ISV) =	0.062 N/A	acre-feet ft ³												
Initial Surcharge Depth (ISD) =	N/A	ft												
Total Available Detention Depth $(H_{total}) =$ Depth of Trickle Channel $(H_{TC}) =$	user N/A	ft ft												
Slope of Trickle Channel (S_{TC}) =		ft/ft												
Slopes of Main Basin Sides $(S_{main}) =$		H:∨												
Basin Length-to-Width Ratio $(R_{L/W}) =$	user													
Initial Surcharge Area $(A_{ISV}) =$		ft ²												
Surcharge Volume Length (L _{ISV}) = Surcharge Volume Width (W _{ISV}) =		ft ft												
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft												
Length of Basin Floor $(L_{FLOOR}) =$ Width of Basin Floor $(W_{FLOOR}) =$		ft ft												
Area of Basin Floor $(A_{FLOOR}) =$		ft ²												
Volume of Basin Floor $(V_{FLOOR}) =$		ft ³												
Depth of Main Basin (H _{MAIN}) = Length of Main Basin (L _{MAIN}) =		ft ft												
Width of Main Basin (W_{MAIN}) =	user	ft												
Area of Main Basin $(A_{MAIN}) =$ Volume of Main Basin $(V_{MAIN}) =$		ft ² ft ³												
Calculated Total Basin Volume (V_{total}) =		acre-feet												

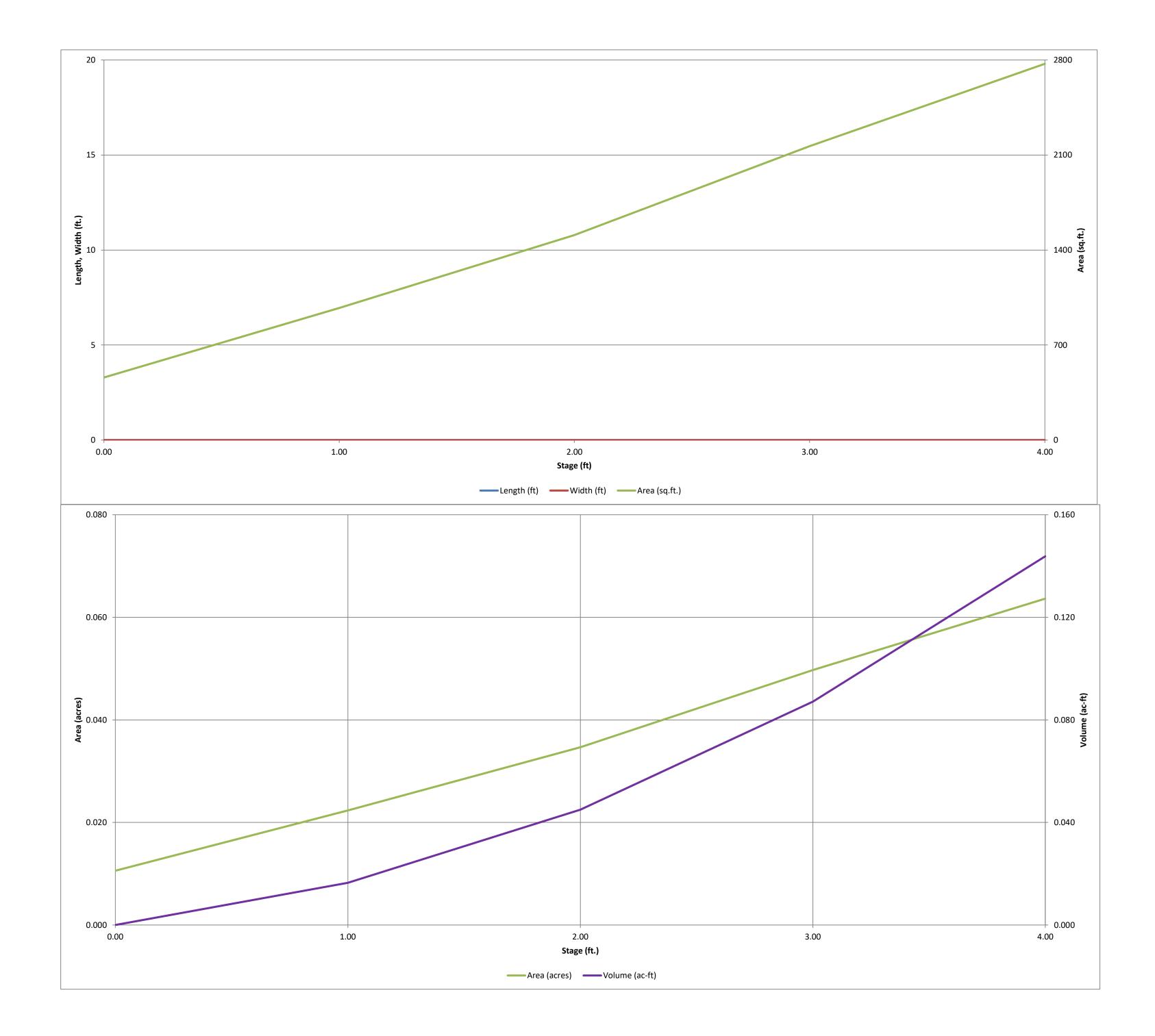
--

--

--

--

--


--

--

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

	DE		BASIN OUT			SIGN			
Project:	Eastonville Road	ורזויז	-D-Delention, ver		y 2022)				
Basin ID:									
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	0.66	0.009	Filtration Media			
	100-YEAR		Zone 2 (EURV)		0.027	Filtration Media			
PERMANENT ORIFICES	ORIFICE		Zone 3 (100-year)		0.025	Weir&Pipe (Restrict)			
DOOL	Configuration (Re	etention Pond)		Total (all zones)	0.062		l		
Jser Input: Orifice at Underdrain Outlet (typical	lv used to drain W(OCV in a Filtration F	SMP)		0.002	l	Calculated Parame	eters for Underdrai	n
Underdrain Orifice Invert Depth =	·	1	the filtration media	surface)	Underd	rain Orifice Area =		ft ²	-
✓ Underdrain Orifice Diameter =		inches		,	Underdrain	Orifice Centroid =	0.02	feet	
ser Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculated Parameters for Plate									
Centroid of Lowest Orifice =	N/A	ft (relative to basiı	n bottom at Stage =	= 0 ft)	WQ Orifi	ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	N/A	ft (relative to basi	n bottom at Stage =	= 0 ft)	Ellij	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =		inches			•	cal Slot Centroid =	,	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	lliptical Slot Area =	N/A	ft ²	
Jser Input: Stage and Total Area of Each Orific Stage of Orifice Centroid (ft)	Row 1 (optional)	Row 2 (optional) N/A	Row 3 (optional) N/A	Row 4 (optional) N/A	Row 5 (optional) N/A	Row 6 (optional) N/A	Row 7 (optional) N/A	Row 8 (optional) N/A]
Orifice Area (sq. inches)		N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A	N/A N/A	-
	N/A	N/A	N/A			11/7	11/7	11/7	J
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	1
Stage of Orifice Centroid (ft)		N/A	1						
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A]
ser Input: Vertical Orifice (Circular or Rectang							Calculated Parame	eters for Vertical O	rifice
	Not Selected	Not Selected	1				Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basir	5	,	tical Orifice Area =		N/A	ft ²
Depth at top of Zone using Vertical Orifice =		N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Vertical	Orifice Centroid =	N/A	N/A	feet
Vertical Orifice Diameter =	N/A	N/A	inches						
lear Inputs Overflow Weir (Drephov with Elet a	r Sloped Crate and	l Outlat Dina OD Da	otangular/Tranazai	dal Wair and No O	itlet Dipe)		Calculated Barama	tors for Overflow	Moir
Jser Input: Overflow Weir (Dropbox with Flat c	Zone 3 Weir	Not Selected						eters for Overflow	<u>7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</u>
✓ Overflow Weir Front Edge Height, Ho =	1.85	N/A	ft (relative to basin b	nottom at Stage – 0	ft) Height of Grate	e Upper Edge, $H_t =$	Zone 3 Weir 1.85	Not Selected N/A	feet
 Overflow Weir Front Edge Length = 		N/A N/A	feet	Jottom at Stage – U	, -	eir Slope Length =		N/A N/A	feet
Overflow Weir Front Edge Length =		N/A	H:V	Gra		0-yr Orifice Area =		N/A N/A	
 Horiz. Length of Weir Sides = 		N/A	feet		-	Area w/o Debris =		N/A	ft ²
Overflow Crate Type -	Turna C Crata				vorflow Croto Open		2.12		

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Type C Grate

50%

3.13

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.11	N/A	ft ²
 Outlet Pipe Diameter = 	18.00	N/A	inches	Outlet Orifice Centroid =	0.10	N/A	feet
Restrictor Plate Height Above Pipe Invert =	2.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	0.68	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Overflow Grate Type =

Debris Clogging % =

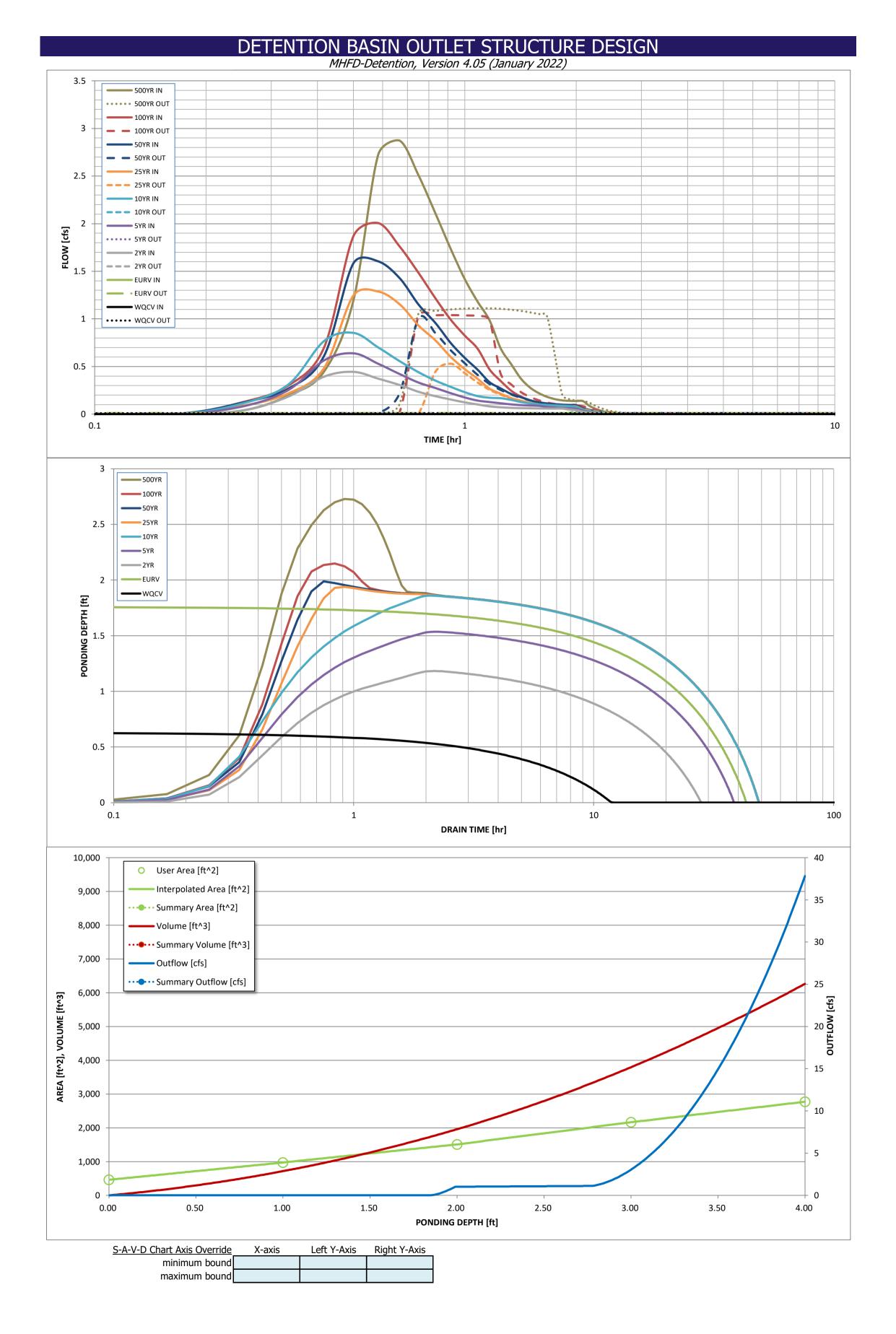
🗸 Spillway Invert Stage=	2.77	ft (relative to basin bottom at Stage = 0 ft)
🗸 Spillway Crest Length =	5.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

N/A

N/A

%

Calculated Parameters for Spillway


ft²

N/A

Spillway Design Flow Depth=	0.23	feet
Stage at Top of Freeboard =	4.00	feet
Basin Area at Top of Freeboard =	0.06	acres
Basin Volume at Top of Freeboard =	0.14	acre-ft

Overflow Grate Open Area w/ Debris =

Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs an	d runoff volumes b	y entering new valu	les in the Inflow Hy	drographs table (C	olumns W through	h AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.93	1.21	1.46	1.84	2.16	2.49	3.37
CUHP Runoff Volume (acre-ft) =	0.009	0.037	0.023	0.032	0.043	0.063	0.079	0.097	0.142
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.023	0.032	0.043	0.063	0.079	0.097	0.142
CUHP Predevelopment Peak Q (cfs) =	•	N/A	0.0	0.1	0.2	0.5	0.8	1.0	1.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.12	0.32	0.87	1.20	1.59	2.49
Peak Inflow Q (cfs) =	N/A	N/A	0.4	0.6	0.9	1.3	1.6	2.0	2.9
Peak Outflow Q (cfs) =	0.0	0.0	0.0	0.0	0.0	0.5	1.0	1.0	1.1
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.1	0.2	1.0	1.3	1.0	0.7
Structure Controlling Flow =	Filtration Media	Filtration Media	Filtration Media	Filtration Media	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =		N/A	N/A	N/A	0.0	0.1	0.2	0.2	0.2
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	42	27	37	47	46	46	45	43
Time to Drain 99% of Inflow Volume (hours) =	12	43	28	38	48	48	48	47	47
Maximum Ponding Depth (ft) =	0.64	1.77	1.18	1.54	1.86	1.94	1.99	2.15	2.73
Area at Maximum Ponding Depth (acres) =	0.02	0.03	0.02	0.03	0.03	0.03	0.03	0.04	0.05
Maximum Volume Stored (acre-ft) =	0.009	0.037	0.021	0.030	0.040	0.043	0.044	0.050	0.074

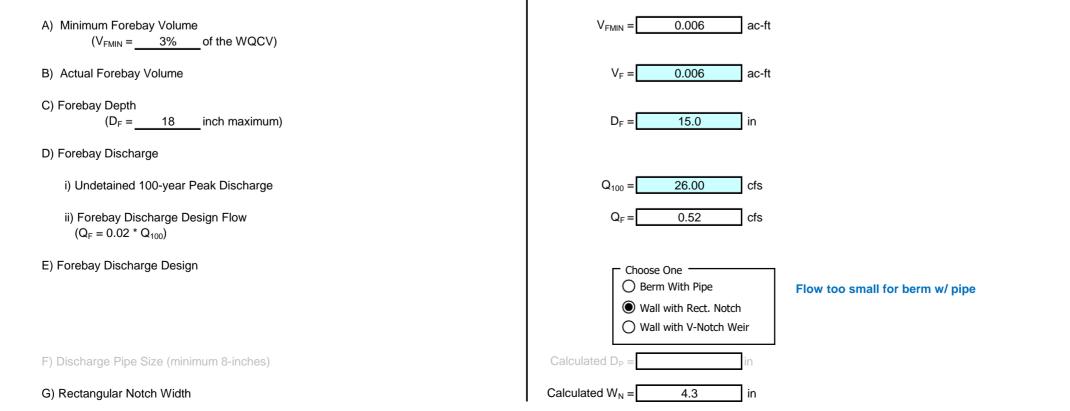
DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

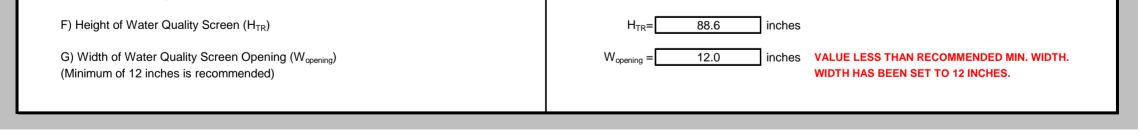
Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o		lated inflow hyd	drographs from	this workbook v	with inflow hydro	ographs develop	ed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	0:15:00	0.00	0.00	0.04	0.08	0.11	0.09	0.12	0.12	0.19
	0:20:00	0.00	0.00	0.18	0.25	0.31	0.22	0.27	0.30	0.45
	0:25:00	0.00	0.00	0.39	0.56	0.77	0.48	0.61	0.70	1.19
	0:30:00	0.00	0.00	0.44	0.64	0.85	1.25	1.58	1.87	2.72
	0:35:00	0.00	0.00	0.37	0.53	0.70	1.29	1.60	2.01	2.87
	0:40:00	0.00	0.00	0.31	0.42	0.56	1.15	1.43	1.76	2.51
	0:45:00	0.00	0.00	0.23	0.33	0.44	0.93	1.15	1.48	2.11
	0:50:00 0:55:00	0.00	0.00	0.19	0.27	0.35	0.77	0.96	1.22	1.73
	1:00:00	0.00	0.00	0.15	0.22 0.18	0.29 0.23	0.60 0.47	0.75	0.99 0.83	1.42 1.18
	1:05:00	0.00	0.00	0.12	0.18	0.23	0.47	0.39	0.69	0.99
	1:10:00	0.00	0.00	0.08	0.13	0.17	0.27	0.34	0.05	0.69
	1:15:00	0.00	0.00	0.07	0.11	0.17	0.22	0.27	0.35	0.53
	1:20:00	0.00	0.00	0.07	0.10	0.15	0.17	0.21	0.25	0.38
	1:25:00	0.00	0.00	0.06	0.10	0.13	0.14	0.18	0.19	0.28
	1:30:00	0.00	0.00	0.06	0.09	0.11	0.12	0.15	0.15	0.22
	1:35:00	0.00	0.00	0.06	0.09	0.10	0.10	0.12	0.12	0.18
	1:40:00	0.00	0.00	0.06	0.08	0.10	0.09	0.11	0.11	0.16
	1:45:00	0.00	0.00	0.06	0.07	0.09	0.09	0.10	0.10	0.14
	1:50:00	0.00	0.00	0.06	0.06	0.09	0.08	0.10	0.09	0.14
	1:55:00 2:00:00	0.00	0.00	0.05	0.06	0.08	0.08	0.10	0.09	0.14
	2:05:00	0.00	0.00	0.04	0.08	0.08	0.08	0.10	0.09	0.14
	2:10:00	0.00	0.00	0.03	0.04	0.03	0.03	0.00	0.00	0.05
	2:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.04
	2:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	2:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00 2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00 3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

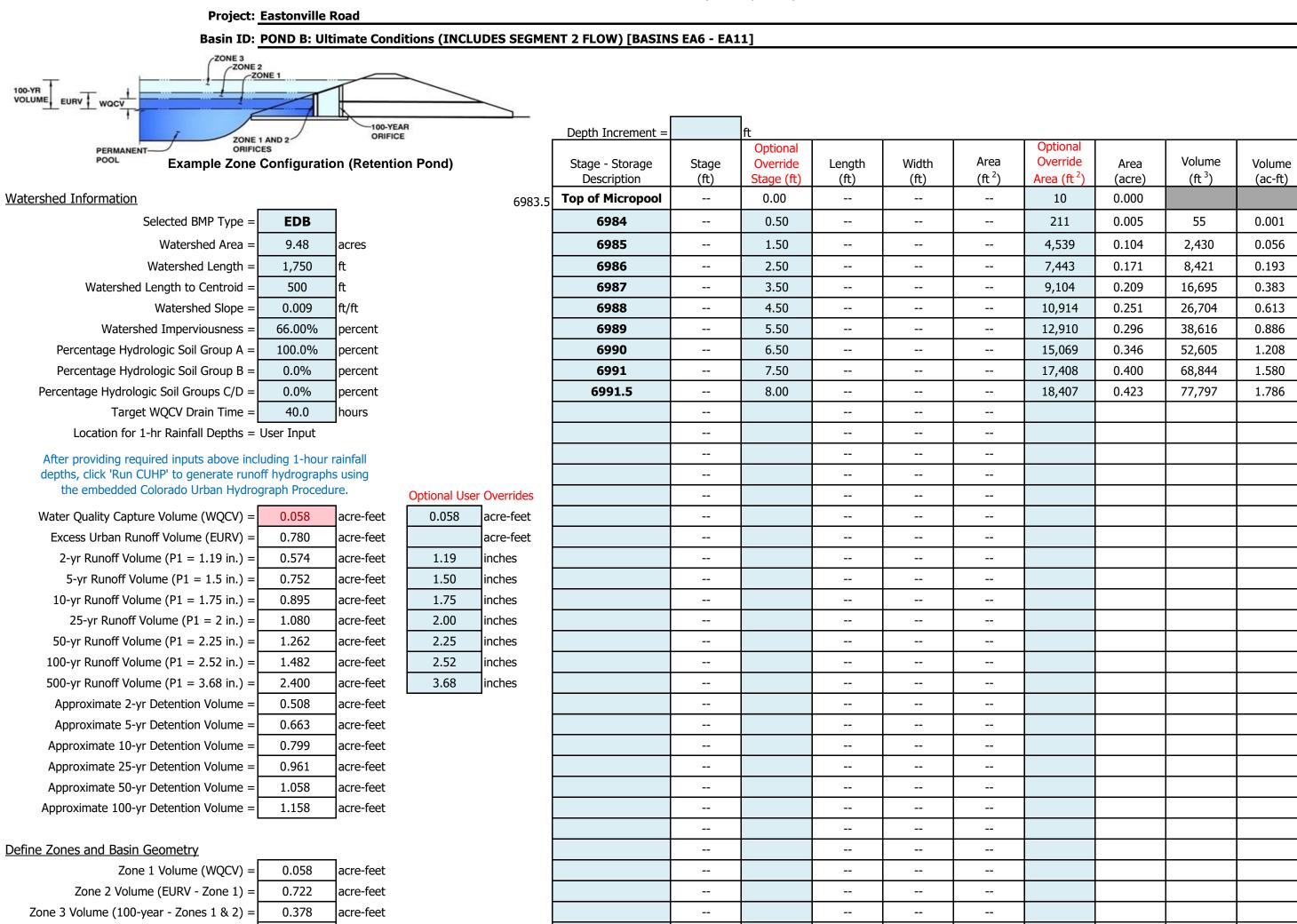

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships


The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor) from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway,
							where applicable).
							-
							4
							1
							1
							1
							1
]
]
							-
]
							-
							1
							1
							1
]
							ļ
							4
							4
							1
							1
							4
							4
							1
							4
							1
							1
							4
							4
							1
							1
							4
							4
							1
							•

	D-BMP (Version 3.07, March 2018) Sheet 1 of
Designer: SPC	
Company: HR Green	
Date: October 28, 2024	
Project: Eastonville Road - Segment 1 Improvements EDB B ULTIMAT	E CONDITIONS
Location: EL PASO COUNTY, CO	
1. Basin Storage Volume	
A) Effective Imperviousness of Tributary Area, I_a	I _a = <u>66.0</u> %
B) Tributary Area's Imperviousness Ratio (i = $I_a / 100$)	i = 0.660
C) Contributing Watershed Area	Area = <u>9.480</u> ac
 D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm 	d ₆ = 0.42 in
E) Design Concept	Choose One
(Select EURV when also designing for flood control)	O Water Quality Capture Volume (WQCV)
	Excess Urban Runoff Volume (EURV)
F) Design Volume (WQCV) Based on 40-hour Drain Time	V _{DESIGN} =ac-ft
(V _{DESIGN} = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
G) For Watersheds Outside of the Denver Region,	V _{DESIGN OTHER} = 0.199 ac-ft
Water Quality Capture Volume (WQCV) Design Volume	
$(V_{WQCV \text{ OTHER}} = (d_6^*(V_{DESIGN}/0.43))$	
 H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) 	V _{DESIGN USER} = ac-ft
I) NRCS Hydrologic Soil Groups of Tributary Watershed	
i) Percentage of Watershed consisting of Type A Soils	$HSG_A = 100\%$
 ii) Percentage of Watershed consisting of Type B Soils iii) Percentage of Watershed consisting of Type C/D Soils 	$HSG_{B} = 0 \%$ $HSG_{C/D} = 0 \%$
ing recentage of watershed consisting of type 0/D Solis	
J) Excess Urban Runoff Volume (EURV) Design Volume	
For HSG A: EURV _A = 1.68 * $i^{1.28}$ For HSG B: EURV _B = 1.36 * $i^{1.08}$	EURV _{DESIGN} = 0.780 ac-f t
For HSG C/D: EURV _{C/D} = $1.20 * i^{1.08}$	
K) User Input of Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = ac-f t
(Only if a different EURV Design Volume is desired)	
2. Basin Shape: Length to Width Ratio	L : W = 2.0 : 1
(A basin length to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Slopes	
 A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 	Z = 4.00 ft / ft
4. Inlet	
 A) Describe means of providing energy dissipation at concentrated inflow locations: 	
5. Forebay	


	Design Procedure Form: Ex	ctended Detention Basin (EDB)
Designer	SPC	Sheet 2 of 3
Designer: Company:	HR Green	
Date:	October 28, 2024	
Project:	Eastonville Road - Segment 1 Improvements EDB B ULTIMATE CONDIT	TIONS
Location:	EL PASO COUNTY, CO	
6. Trickle Channel	I	Choose One Concrete
A) Type of Tric	kle Channel	Soft Bottom
F) Slope of Tric	ckle Channel	S = 0.0050 ft / ft
7. Micropool and 0	Outlet Structure	
A) Depth of Mid	cropool (2.5-feet minimum)	$D_{\rm M} = 2.5$ ft
B) Surface Are	ea of Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft
C) Outlet Type		
		Choose One Choose One One One One One One One One One On
		O Other (Describe):
D) Smallest Dir (Use UD-Deten	mension of Orifice Opening Based on Hydrograph Routing	D _{orifice} = 1.00 inches
E) Total Outlet	Area	A _{ot} = <u>5.50</u> square inches
8. Initial Surcharge	e Volume	
	tial Surcharge Volume	$D_{IS} = 4$ in
(Minimum re	ecommended depth is 4 inches)	
	tial Surcharge Volume	$V_{IS} = 26$ cu ft
(Minimum vo	lume of 0.3% of the WQCV)	
C) Initial Surcha	arge Provided Above Micropool	$V_s = 3.3$ cu ft
9. Trash Rack		
A) Water Quali	ity Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = <u>193</u> square inches
	een (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
	indicate "other" and enter the ratio of the total open are to the e for the material specified.)	
	Other (Y/N): N	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =
	Quality Screen Area (based on screen type)	A _{total} = 321 sq. in.
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= 5.05 feet

	Design Procedure Form: I	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	SPC HR Green October 28, 2024 Eastonville Road - Segment 1 Improvements EDB B ULTIMATE CONI EL PASO COUNTY, CO	DITIONS
B) Slope of Ov	nkment nbankment protection for 100-year and greater overtopping: rerflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Ze = 4.00 ft / ft
11. Vegetation		 Choose One Irrigated Not Irrigated
12. Access A) Describe Se	ediment Removal Procedures	
Notes:		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

--

--

--

--

--

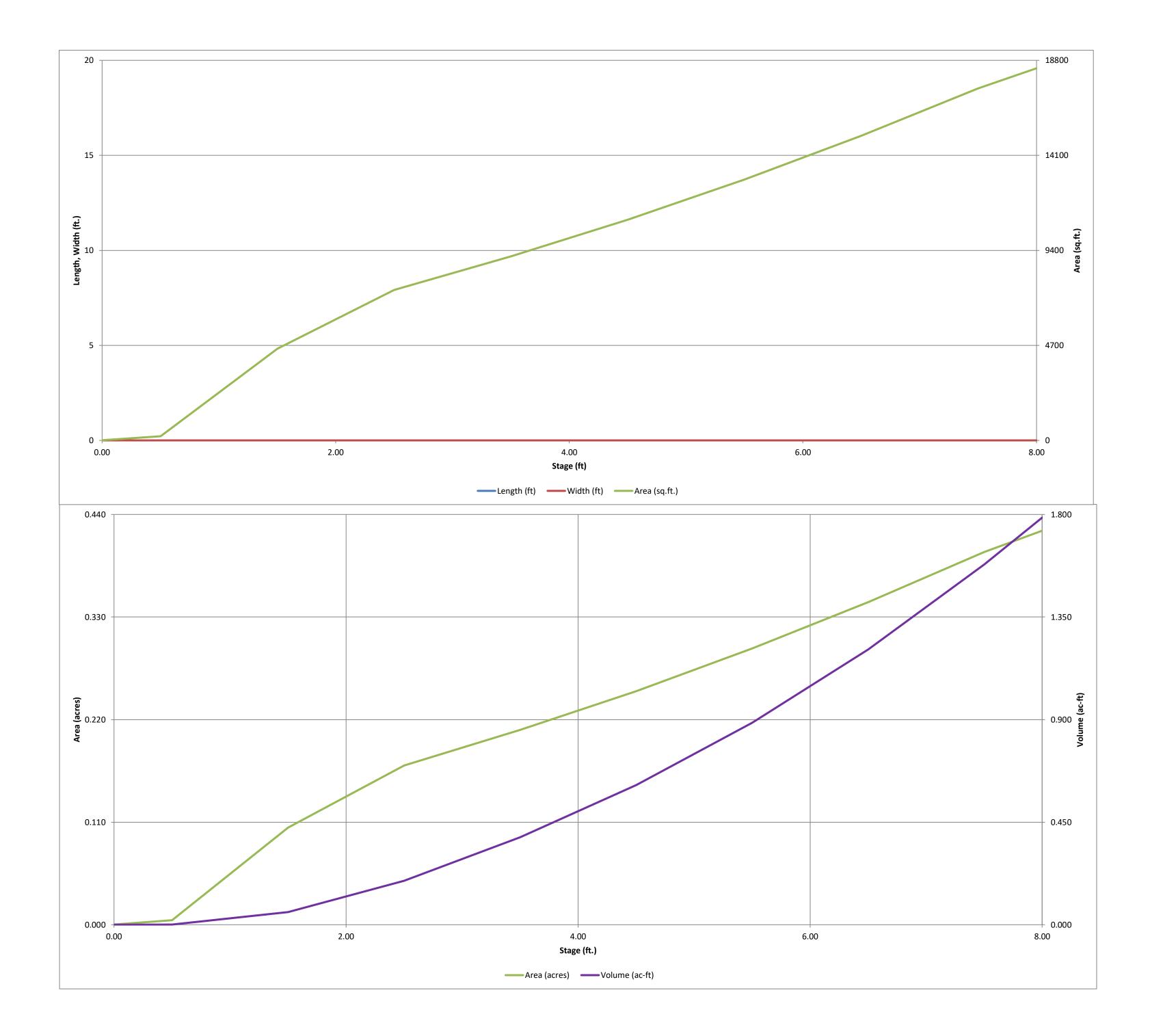
--

--

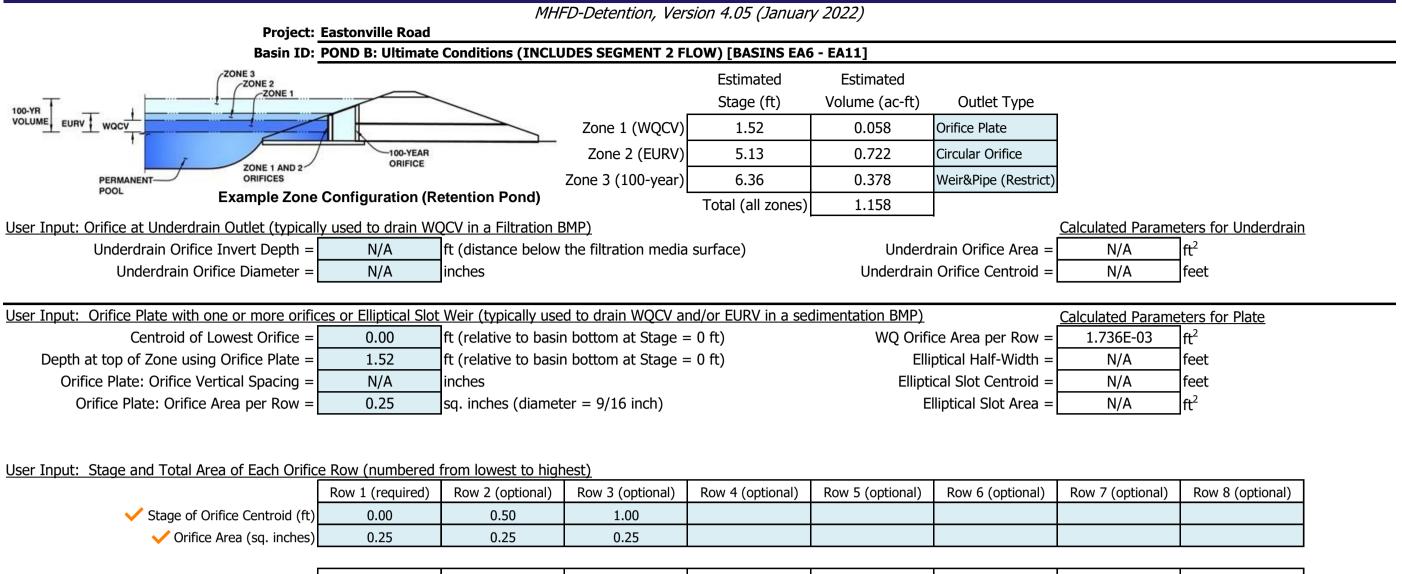
Initial Surcharge Volume (ISV) = user ft ³

Total Detention Basin Volume

,		
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides $(S_{main}) =$	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area (A_{ISV}) =	user	ft²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet


1.158

acre-feet


		 		7

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

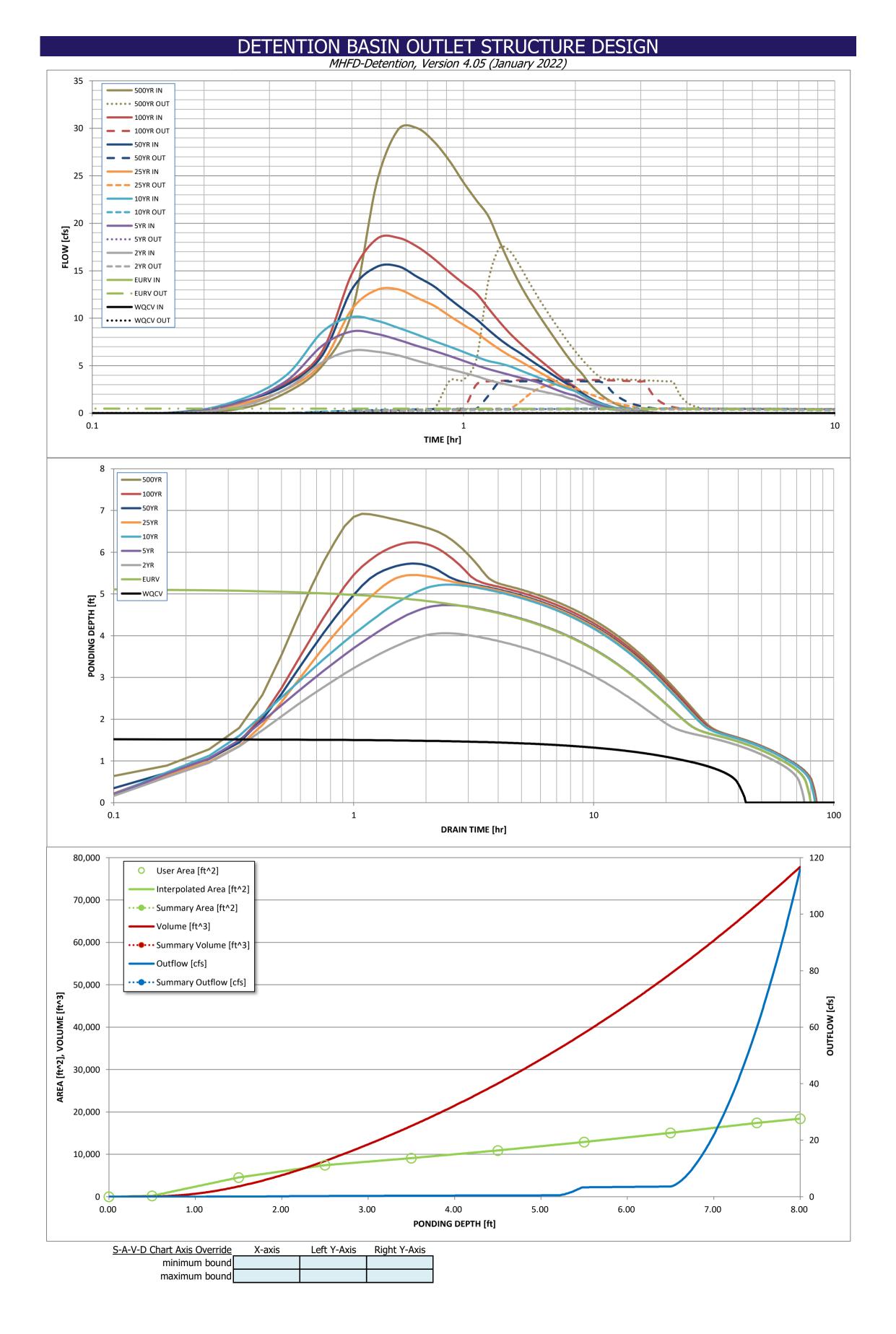
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectang	ular)				Calculated Parame	ters for Vertical O	rifice
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected	
X Invert of Vertical Orifice =	1.60	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.05	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	5.13	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.13	N/A	feet
Vertical Orifice Diameter =	3.00	N/A	inches				

User Input: Overflow Weir (Drophox with Elat o	r Sloped Grate and	Outlet Pine OR R	ectangular/Trapezoidal Weir and No Outlet Pipe)	Calculated Parame	ters for Overflow	Moir
Oser Input. Overnow wen (Dropbox with hat o		•				
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.20	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	5.20	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet Overflow Weir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	21.42	N/A	
Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	6.26	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	3.13	N/A	ft ²
Debris Clogging % =	50%	N/A	%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.29	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.20	N/A	feet
Restrictor Plate Height Above Pipe Invert =	4.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	0.98	N/A	radians


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	15.50	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway

Spillway Design Flow Depth=	0.50	feet
Stage at Top of Freeboard =	8.00	feet
Basin Area at Top of Freeboard =	0.42	acres
Basin Volume at Top of Freeboard =	1.79	acre-ft

Routed Hydrograph Results	The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).								AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.058	0.780	0.574	0.752	0.895	1.080	1.262	1.482	2.400
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.574	0.752	0.895	1.080	1.262	1.482	2.400
CUHP Predevelopment Peak Q (cfs) =		N/A	0.0	0.1	0.1	1.0	2.1	3.5	9.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	,	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.01	0.01	0.11	0.22	0.37	0.99
Peak Inflow Q (cfs) =	N/A	N/A	6.6	8.6	10.1	13.0	15.5	18.5	30.0
Peak Outflow Q (cfs) =	0.0	0.5	0.4	0.5	0.6	3.0	3.4	3.5	17.4
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	5.6	4.9	2.9	1.6	1.0	1.9
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.4	0.5	0.5	0.5
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	56	56	57	57	54	51	48	35
Time to Drain 99% of Inflow Volume (hours) =	41	69	66	69	71	70	68	67	61
Maximum Ponding Depth (ft) =	1.53	5.14	4.06	4.73	5.22	5.45	5.73	6.24	6.92
Area at Maximum Ponding Depth (acres) =	0.11	0.28	0.23	0.26	0.28	0.29	0.31	0.33	0.37
Maximum Volume Stored (acre-ft) =	0.059	0.783	0.504	0.672	0.805	0.872	0.953	1.116	1.354

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calcu	liated inflow hyd	drographs from	this workdook v	vith inflow hydro	ographs develop	ed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 mm	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.48
	0:15:00	0.00	0.00	0.71	1.16	1.44	0.00	1.21	1.18	2.18
	0:20:00	0.00	0.00	2.59	3.41	4.01	2.54	2.97	3.17	5.02
	0:25:00	0.00	0.00	5.38	7.13	8.57	5.34	6.11	6.57	10.59
	0:30:00	0.00	0.00	6.59	8.61	10.13	10.94	13.02	14.66	24.23
	0:35:00	0.00	0.00	6.48	8.35	9.74	12.98	15.41	18.34	29.86
	0:40:00	0.00	0.00	6.09	7.73	9.00	13.04	15.47	18.47	30.02
	0:45:00	0.00	0.00	5.52	7.08	8.28	12.14	14.36	17.54	28.58
	0:50:00	0.00	0.00	5.04	6.56	7.60	11.32	13.35	16.24	26.56
	0:55:00	0.00	0.00	4.64	6.03	7.02	10.25	12.05	14.85	24.30
	1:00:00	0.00	0.00	4.26	5.52	6.45	9.31	10.91	13.66	22.41
	1:05:00	0.00	0.00	3.90	5.05	5.93	8.47	9.90	12.61	20.74
	1:10:00	0.00	0.00	3.49	4.65	5.50	7.54	8.78	11.04	18.07
	1:15:00	0.00	0.00	3.19	4.33	5.25	6.73	7.81	9.62	15.67
	1:20:00	0.00	0.00	2.96	4.03	4.94	6.06	7.01	8.40	13.63
	1:25:00 1:30:00	0.00	0.00	2.76	3.76	4.54	5.50	6.36	7.41	11.96
	1:30:00	0.00	0.00	2.57	3.51	4.15 3.80	4.94 4.42	5.70	6.56 5.79	10.51 9.22
	1:40:00	0.00	0.00	2.39 2.21	3.27 2.92	3.80	4.42 3.94	4.52	5.08	9.22
	1:45:00	0.00	0.00	2.21	2.92	3.45	3.48	3.97	4.40	6.88
	1:50:00	0.00	0.00	1.86	2.38	2.82	3.05	3.47	3.77	5.85
	1:55:00	0.00	0.00	1.61	2.03	2.55	2.66	3.02	3.22	4.93
	2:00:00	0.00	0.00	1.42	1.85	2.31	2.35	2.65	2.75	4.18
	2:05:00	0.00	0.00	1.17	1.53	1.92	1.89	2.13	2.18	3.30
	2:10:00	0.00	0.00	0.95	1.24	1.57	1.51	1.70	1.72	2.58
	2:15:00	0.00	0.00	0.77	1.01	1.28	1.21	1.36	1.35	2.02
	2:20:00	0.00	0.00	0.62	0.82	1.03	0.97	1.08	1.06	1.58
	2:25:00	0.00	0.00	0.50	0.66	0.83	0.77	0.87	0.83	1.23
	2:30:00	0.00	0.00	0.40	0.53	0.66	0.61	0.69	0.65	0.95
	2:35:00	0.00	0.00	0.32	0.42	0.52	0.48	0.54	0.50	0.73
	2:40:00	0.00	0.00	0.25	0.32	0.40	0.37	0.42	0.39	0.56
	2:45:00	0.00	0.00	0.20	0.25	0.31	0.29	0.32	0.30	0.44
	2:50:00 2:55:00	0.00	0.00	0.16	0.20	0.25	0.23	0.26	0.24	0.35
	3:00:00	0.00	0.00	0.12	0.15 0.11	0.19 0.14	0.18	0.20	0.19 0.14	0.27
	3:05:00	0.00	0.00	0.09	0.08	0.14	0.13	0.13	0.14	0.20
	3:10:00	0.00	0.00	0.00	0.05	0.10	0.10	0.07	0.10	0.14
	3:15:00	0.00	0.00	0.02	0.03	0.04	0.04	0.04	0.04	0.06
	3:20:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Image: Control of the second of the secon	
Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams Image: Stages of all grams	include the
Image: Second	de slope
Image: Sheet 'Basin'. Image: Sheet 'Basin'. <td< td=""><td>V and Floor</td></td<>	V and Floor
Image: Constraint of the state of the s	
Image: Constraint of the second se	
overflow grate,	inverts of al
Image: sector of the sector	ical orifice, and snillway
Image: sector of the sector	:).
Image: sector of the sector	
Image: sector of the sector	
Image: sector of the sector	
Image: sector of the sector	
Image: sector of the sector	
Image: set of the	
Image: sector of the sector	
Image: sector of the sector	
Image: sector of the sector	
Image: sector of the sector	
Image Image Image Image 	
Image: sector of the sector	
Image: section of the section of th	
Image: section of the section of th	
Image: section of the section of th	
Image: section of the section of th	
Image: set of the	
Image: set of the	
Image: set of the	
Image: set of the	
Image: set of the	
Image: section of the section of th	
Image: set of the	
Image: section of the section of th	
Image: set of the	
Image: selection of the	
Image: section of the section of th	
Image: set of the	
Image: state s	
Image: set of the	
Image: selection of the	
Image: selection of the	
Image: selection of the	
Image: selection of the	
Image: state of the state of	
Image: selection of the se	

Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX E – REFERENCE MATERIAL

Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch

EL PASO COUNTY, COLORADO

August 2022

Prepared For:

GTL DEVELOPMENT, INC. P.O. Box 80036 San Diego, CA 92138

Prepared By: Tech Contractors 11910 Tourmaline Dr., Ste 130 Falcon, CO 80831 719.495.7444

PCD Project No. SF22-020

Future Drainage - SCS Calculation Method

Following is a tabulation of the surface drainage characteristics for the future conditions using the SCS calculation method. Please refer to Figure 6 - Meridian Ranch SCS Calculations – Future Basins Map

Table 5: Future Drainage Basins-SCS

FUTURE SCS (Full Spectrum)											
	DRAINAGE PEAK PEAK PEAK PEAK PEAK PEAK										
	AREA	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE					
	(SQ. MI.)	Q100	Q50	Q10	Q5	Q2					
	. ,	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)					
OS06	0.1313	80	52	12	3.8	0.5					
G1a	0.1313	80	52	12	3.8	0.5					
G1a-G2	0.1313	79	52	11	3.7	0.5					
OS05	0.0578	39	26	5.6	1.8	0.2					
OS05-G1	0.0578	39	25	5.5	1.7	0.2					
FG01	0.0538	31	22	7.0	3.4	0.9					
FG01-G1	0.0538	31	22	7.0	3.4	0.9					
G1	0.1116	61	41	11	4.9	1.1					
G1-G2	0.1116	61	41	11	4.8	1.1					
FG02	0.0391	32	22	6.4	2.7	0.5					
G2	0.2820	167	112	27	10	1.9					
G2-G3	0.2820	163	108	27	10	1.9					
FG03	0.0203	24	17	5.9	3.0	0.8					
FG04	0.0172	22	16	5.8	3.1	0.9					
G3	0.3195	185	123	31	12	2.4					
FG06	0.0675	56	40	12	5.8	1.3					
FG05	0.0580	45	33	12	6.7	2.4					
OS07ab	0.0170	12 12	7.9	1.8	0.5	0.07					
OS07ab-POND F	0.0170		7.6	1.7	0.5	0.07					
POND F IN	0.4620	293	200	54	23	5.1					
POND F	0.4620	178	121	16	8.0	2.1					
POND F-G7	0.4620	<u>177</u> 19	120 12	16 2.7	8.0 0.9	2.1 0.12					
OS07c	0.0296	19	12			-					
OS07c-G4 FG21a	0.0296 0.0095	5.9	4.0	<u>2.6</u> 1.0	0.9	0.12 0.06					
G2Ta	0.0095	25	16	3.6	1.2	0.00					
G4-G7	0.0391	23	16	3.5	1.2	0.2					
FG21b	0.0391	24	16	6.5	3.9	1.7					
G7	0.5161	194	131	18	8.9	2.3					
G7-G8	0.5161	194	131	18	8.9	2.3					
FG22	0.1354	121	88	32	17	5.4					
OS08a	0.0251	16	11	2.3	0.7	0.10					
OS08-G8	0.0251	16	10	2.3	0.7	0.10					
FG23a	0.0216	21	15	5.2	2.7	0.8					
OS07d	0.0034	2.5	1.6	0.4	0.11	0.01					
OS07d-G8	0.0034	2.4	1.6	0.3	0.11	0.01					
G8	0.7016	279	178	46	24	7.7					
G8-G10	0.7016	278	177	45	24	7.6					
FG24b	0.0589	76	57	24	15	6.5					
FG24a	0.0348	24	16	4.5	2.0	0.4					
OS08b	0.0165	9.5	6.3	1.4	0.5	0.07					
OS08b-G9a	0.0165	9.4	6.0	1.4	0.5	0.07					
OS09a	0.0093	5.3	3.5	0.8	0.3	0.04					
OS09a-G9a	0.0093	5.2	3.4	0.7	0.3	0.04					
G9a	0.1195	97	71	28	16	6.7					

FUTURE SCS (Full Spectrum)									
	DRAINAGE	PEAK	PEAK	PEAK	PEAK	PEAK			
	AREA	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE			
		Q100	Q50	Q10	Q5	Q2			
	(SQ. MI.)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)			
G9a-G9b	0.1195	96	70	27	16	6.6			
FG24c	0.0291	40	30	13	8.4	4.0			
FG24d	0.0262	39	30	14	8.7	4.4			
G9b	0.1748	170	127	53	32	14			
REX RD WQCV	0.1748	158	125	51	31	14			
G9b-G10	0.1748	158	123	50	31	13			
FG23b	0.0236	17	11	2.7	0.9	0.13			
G10	0.9000	390	263	90	46	15			
G10-G11	0.9000	389	254	85	44	15			
FG23c	0.0109	11	7.6	2.2	1.0	0.2			
G11	0.9109	393	258	86	44	15			
FG25	0.1084	111	84	36	22	9.9			
FG28	0.0184	15	10	3.0	1.2	0.2			
POND G IN-WEST	1.0377	503	350	122	63	22			
FG27	0.0679	98	79	42	30	18			
FG26	0.0570	65	50	24	16	8.2			
G13	0.0570	65	50	24	16	8.2			
G13-POND G	0.0570	64	50	24	16	8.1			
POND G IN-EAST	0.1249	160	127	64	44	25			
POND G	1.1626	450	293	52	21	5.3			
G12	1.1626	450	293	52	21	5.3			
G12-G06	1.1626	449	293	52	21	5.3			
FG29	0.0983	60	39	8.9	2.9	0.4			
FG32	0.0402	51	40	20	14	7.5			
FG32-G06	0.0402	50	40	19	13	7.4			
G06	1.3011	491	317	57	22	7.5			

Rational Calculations

The Rational Hydrologic Calculation Method was used to estimate the total runoff from the 5-year and the 100-year design storm and thus establish the storm drainage system design. Using the rational calculation methodology outlined in the Hydrology Section (Ch 6) of the COSDCM coupled with the El Paso County EPCDCM an effective storm drainage design for the Sanctuary Filing 1 has been designed. The storm drainage facilities have been designed such that the minor storm will be captured by the inlets and conveyed by the storm drain pipes such that the street flow does not overtop the curbs. The storm drainage facility has been designed such that the major storm will be captured by the inlets and conveyed by the storm drain pipes such that the street flow does not exceed the right-of-way widths for residential streets and the hydraulic grade line will be less than one foot below the surface.

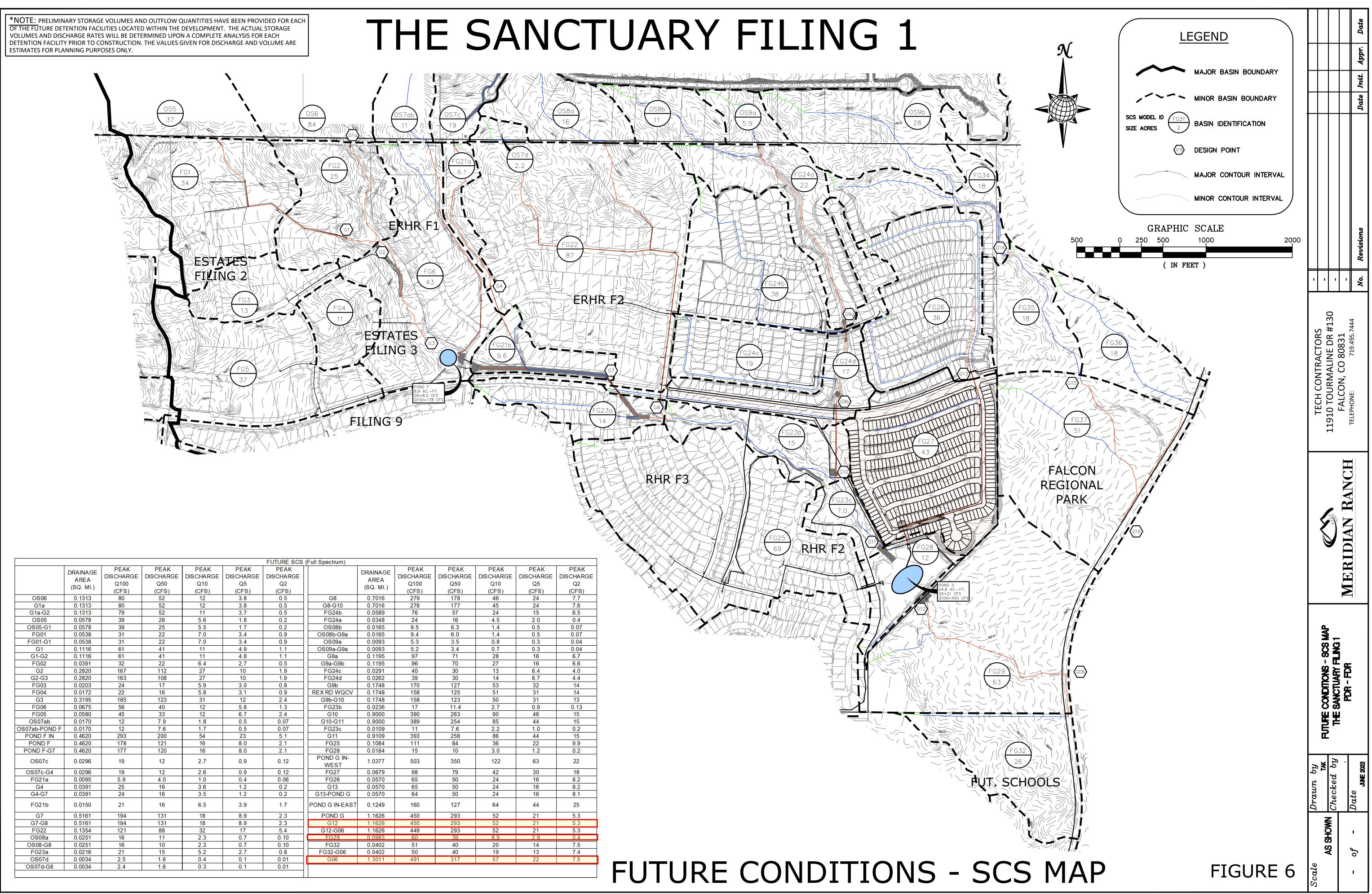
The site is located within the Gieck Ranch Drainage Basin. The storm drain runoff will be collected by a series of inlets and storm drain pipe then conveyed through the project and discharge directly into the existing Pond G that is properly sized to safely convey the storm water flows away from the project without damaging adjacent property.

Rational Narrative

The following is a detailed narrative of the storm drainage system located in the Sanctuary Filing 1. These storm drainage systems meet the requirements of as found in the El Paso

the peak flow rates for the key design points impacted by the development of the Sanctuary Filing 1.

MER	IDIAN RANCH	DISCHARGE	KEY DESIGN	POINTS (INTE	RIM)	
		PEAK	PEAK	PEAK	PEAK	PEAK
		DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE
		Q ₁₀₀	Q ₅₀	Q ₁₀	Q_5	Q ₂
		(CFS)	(CFS)	(CFS)	(CFS)	(CFS)
G12 - DISCHARGE POINT	Historic	536	350	84	30	5.2
AT REGIONAL PARK		466	307	50	19	5.0
(G05 - HISTORIC)	% of Historic	87%	88%	59%	62%	96%
G06 - EASTONVILLE	Historic	551	369	88	32	5.5
ROAD ¹	Interim	491	323	52	20	5.3
NOAD	% of Historic	89%	87%	59%	62%	96%


Flow rate at Eastonville Rd. listed for reference only

The outlet (DP G12) for Pond G located west of the Falcon Regional Park, upstream of Eastonville Rd (DP G06). At full buildout the discharge from Pond G will be 450 CFS during the 100-yr storm event into an existing natural drainage course that traverses the regional park. The 100-year historical peak flow rate at the western boundary of the regional park is 536 CFS. The calculated 100-year future developed flow rate will be 84% of the historic flow rate. The developed peak flow rate for the full spectrum of design storms are calculated to be below that of the corresponding historic peak flow rates. See Table 8 for a complete comparative list of the future developed peak flow rates for the key design points impacted by the development of Rolling Hills Ranch.

MERI	DIAN RANCH I	DISCHARGE K	EY DESIGN P	OINTS (FUTU	RE)	
		PEAK	PEAK	PEAK	PEAK	PEAK
		DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE
		Q ₁₀₀	Q ₅₀	Q ₁₀	Q_5	Q ₂
		(CFS)	(CFS)	(CFS)	(CFS)	(CFS)
G12 - POND G OUTLET	Historic	536	350	84	30	5.2
REGIONAL PARK	Future	450	293	52	21	5.3
(G05 - HISTORIC)	% of Historic	84%	84%	62%	68%	102%
	Historic	551	369	88	32	5.5
G06 - EASTONVILLE ROAD ¹	Future	491	317	57	22	7.5
	% of Historic	89%	86%	65%	71%	136%

 Table 8: Key Design Point Comparison – Future SCS Model

¹ Flow rate at Eastonville Rd. listed for reference only

Preliminary & Final Drainage Report $_{for}$

Rex Road

through Falcon Regional Park

EL PASO COUNTY, COLORADO

June 2023

Prepared For:

GTL DEVELOPMENT, INC. P.O. Box 80036 San Diego, CA 92138

Prepared By: Tech Contractors 11910 Tourmaline Dr., Ste 130 Falcon, CO 80831 719.495.7444

PCD Project No. CDR236

Proposed Drainage - SCS Calculation Method

Following is a tabulation of the surface drainage characteristics for the proposed conditions using the SCS calculation method. Please refer to Figure 5 - Rex Road SCS Calculations - Proposed Basins Map

		PROPOSE	D SCS (Full S	Spectrum)		
HYDROLOGIC ELEMENT	Drainage Area (SQ. Ml.)	Peak Discharge Q100 (CFS)	Peak Discharge Q50 (CFS)	Peak Discharge Q10 (CFS)	Peak Discharge Q5 (CFS)	Peak Discharge Q2 (CFS)
OS09b	0.0435	22	14	3.2	1.1	0.2
OS09b-G14	0.0435	22	14	3.2	1.1	0.2
FG34	0.0275	20	13	3.3	1.3	0.2
G14	0.0710	38	25	5.5	2.0	0.3
G14-G15	0.0710	37	24	5.5	2.0	0.3
FG35	0.0292	25	18	5.5	2.4	0.5
G15	0.1002	55	36	8.0	3.0	0.6
G15-G16	0.1002	54	35	8.0	3.0	0.6
FG37	0.0754	46	31	7.3	2.7	0.4
FG36	0.0295	19	13	3.9	1.8	0.4
G15a	0.0295	19	13	3.9	1.8	0.4
G15a-G16	0.0295	19	13	3.8	1.7	0.4
G16	0.2051	114	74	16	6.5	1.2

 Table 3: Future Drainage Basins-SCS

Rational Calculations

The Rational Hydrologic Calculation Method was used to estimate the total runoff from the 5year and the 100-year design storm and thus establish the storm drainage system design for facilities with less than 100 acres if tributary area. Using the rational calculation methodology outlined in the Hydrology Section (Ch 6) of the COSDCM coupled with the El Paso County EPCDCM an effective drainage design for the Rex Road construction has been designed. The storm drainage facilities have been designed such that the minor storm will be conveyed such that the street flow does not overtop the curbs. The culvert undercrossing has been designed such that the major storm will be safely conveyed downstream under Rex Road.

The site is located within the Gieck Ranch Drainage Basin. The storm drain runoff will be collected by natural swales and conveyed southeasterly toward Eastonville Road and away from the project without damaging adjacent property.

Rational Narrative

The following is a detailed narrative of the proposed storm drainage runoff tributary to Rex Road (see Figure 6 for more information). These storm drainage analysis meets the requirements as found in the El Paso County Engineering Criteria Manual I.7.1.C.5. (ECM) for storm water quality and discharge into Waters of the State. Discharge points are located on the south side of Rex Road (DP15 & DP15a).

- Basin OS9b (28 acres, Q_5 = 5.0 CFS, Q_{100} = 34 CFS) contains off-site area north of Meridian Ranch within the future Latigo Trails subdivision entering Meridian Ranch via existing natural swale at Design Point 1. The surface runoff is collected into natural drainage swales and ultimately directed southerly through Meridian Ranch Basin FG34 to DP G14.
- Basin FG34 (18 acres, Q_5 = 4.7 CFS, Q_{100} = 25 CFS) contains open space area within the future Rolling Hills Ranch North subdivision entering the Falcon Regional Park via a natural swale at Design Point G14. The surface runoff is collected into natural drainage swales and ultimately directed southerly to the Falcon Regional Park. The flow (Q_5 = 7.5 CFS, Q_{100} = 46 CFS) is conveyed downstream via a natural swale to a proposed culvert at Rex Road (DP G15.1).
- Basin FG35a (14 acres, Q_5 = 4.5 CFS, Q_{100} = 23 CFS) contains area within the Falcon Regional Park north of Rex Road. The surface runoff will sheet flow toward natural swales and is directed toward a proposed 36" RCP culvert under Rex Road located at DP G15.1. The total flow at the culvert (Q_5 = 8.0 CFS, Q_{100} = 47 CFS) is conveyed downstream via a 36" RCP where the culvert flow is combined with runoff from Basin FG35b at Inlet I01.
- Basin FG35b (4.9 acres, $Q_5 = 6.3$ CFS, $Q_{100} = 17$ CFS) contains area north of Rex Rd and portions of Rex Road east of Meridian Ranch and west of the above mentioned 36" RCP culvert crossing. The surface runoff will sheet flow off the surrounding areas onto Rex Road and the flow will be directed to a proposed flow-by inlet (Inlet I01) and combined with the flow in the 36" RCP culvert. Most of the flow is captured ($Q_5 = 5.2$ CFS, $Q_{100} = 12$ CFS) with the remaining flow ($Q_5 = 1.2$ CFS, $Q_{100} = 5.3$ CFS) continuing downstream to Design Point G15a. The combined flow in the 30" RCP ($Q_5 = 4.9$ CFS, $Q_{100} = 23$ CFS) from Basin FG36a will continue downstream along a natural channel through Basin FG37.
- Basin FG36a (18 acres, $Q_5 = 5.3$ CFS, $Q_{100} = 26$ CFS) contains Regional Park area north of Rex Road within the Falcon Regional Park west of Eastonville Road. The surface runoff flows to a natural swale toward a proposed 30" RCP culvert near the intersection of Rex Rd with Eastonville Rd. The culvert flow is conveyed downstream to DP15a.
- Basin FG36c (2.8 acres, Q_5 = 3.3 CFS, Q_{100} = 8.0 CFS) contains area north of Rex Road within the Falcon Regional Park west of Eastonville Road. The surface runoff sheet flows onto Rex Rd. The surface runoff is combined with the by-pass flow from Inlet I01 and is carried eastward toward the intersection of Rex Rd with Eastonville Rd. Near the intersection the flow (Q_5 = 4.2 CFS, Q_{100} = 12 CFS) is directed southerly via a down drain to DP15a where it is combined with the culvert flow from FG36a. The total flow (Q_5 = 8.0 CFS, Q_{100} = 32 CFS) is directed to DP16a.
- Basin FG37 (48 acres, Q_5 = 10 CFS, Q_{100} = 62 CFS) contains area within the Falcon Regional Park south of Rex Rd. The surface flow from the area combines with the

runoff from the Rex Rd culvert crossings and is directed to the Eastonville Rd culvert crossing located at DP G16 (Q_5 = 15 CFS, Q_{100} = 78 CFS).

DETENTION POND

There are no existing or proposed detention ponds associated with this project. Water quality is achieved through the benefit of runoff reduction through portions of the adjacent swales and the construction of a bioretention pond near the southeast corner of the intersection of Rex Rd with Eastonville Rd.

DRAINAGE FEES

The proposed project falls in the Gieck Ranch Drainage Basin and there are no drainage or bridge fees associated with the Gieck Ranch Drainage Basin and this is not a final plat.

The following is the imperviousness calculation:

	<u>Acres</u>	Assumed Imperviousness	Impervious Acres
Open Space Right-of-way Residential Lots Total	0.0 4.2 0.0 4.2	3% 90% 65%	0.0 4.6 0.0 3.8=90% imperv.
GIECK RANCH FE	ES:		
Drainage Fee	s: [There are no drainage fees fo	or this basin.
Bridge Fe	es:	There are no bridge fees	for this basin.

CONCLUSION

The rational and SCS based hydrologic calculation methods were used to estimate the historic and developed runoff values to determine the impact of this extension of Rex Road on surrounding property. The resulting calculations were used to estimate the hydraulic impact on the existing natural drainage swales and proposed facilities.. Based on the aforementioned design parameters the extension of Rex Road will not adversely affect downstream properties as the resultant developed flow rates for the various design storms fall below the historic flow rates of the same storms.

Below is a comparison of various flow rates at key design points:

	MERIDIAN RA	NCH DISCHA	RGE KEY DE	SIGN POINTS		
Proposed Condition		Peak Discharge Q100 (CFS)	Peak Discharge ^{Q50} (CFS)	Peak Discharge Q10 (CFS)	Peak Discharge ^{Q5} (CFS)	Peak Discharge ^{Q2} (CFS)
G14 - DISCHARGE POINT	Historic	38	25	5.8	2.2	0.4
TO REGIONAL PARK	Proposed	38	25	5.5	2.0	0.3
(G07 - HISTORIC)	% of Historic	100%	100%	95%	89%	85%
	Historic	116	77	18	6.8	1.2
G16 - EASTONVILLE RD ¹ DOWNSTREAM OF REX RD	Proposed	114	74	16	6.5	1.2
DOWNOTTLEAW OF THEAT	% of Historic	98%	97%	89%	95%	99%

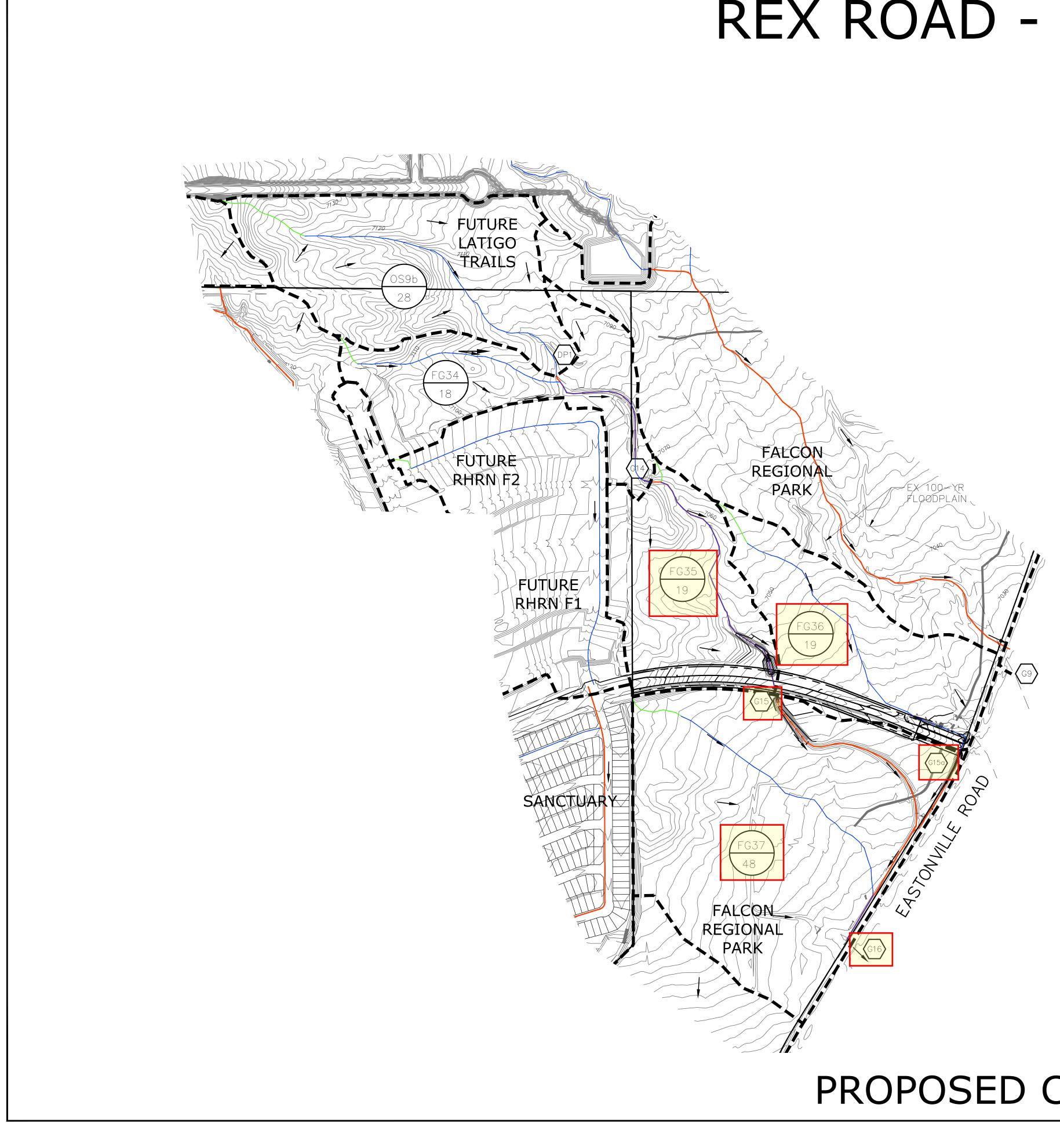
¹ Flow rate at Eastonville Rd. listed for reference only

EROSION CONTROL DESIGN

General Concept

Historically, erosion on this property has been held to a minimum by a variety of natural features and agricultural practices including:

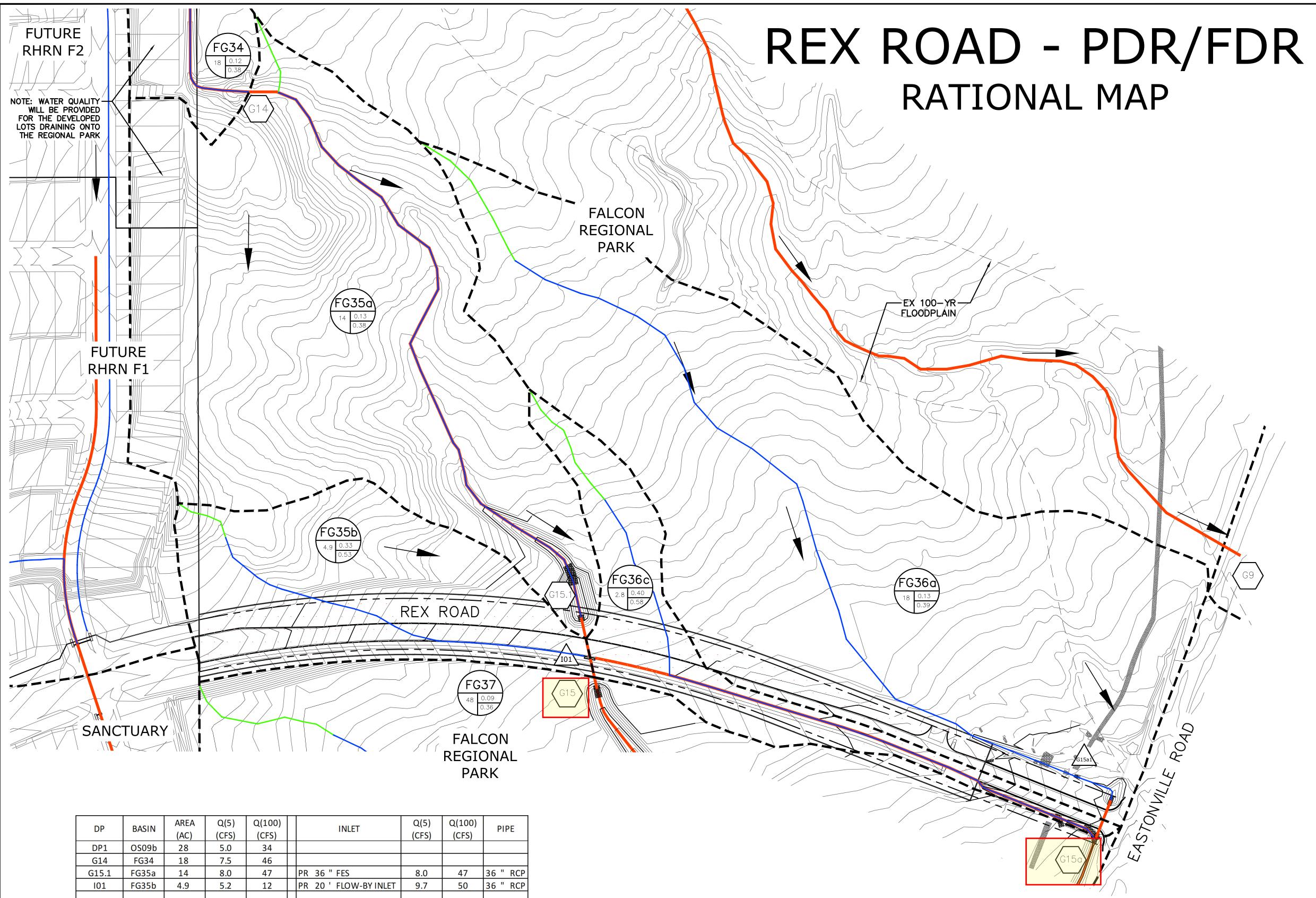
- Substantial prairie grass growth
- Construction of drainage arresting berms
- Construction of multiple stock ponds along drainage courses

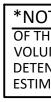

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by the contractor and/or engineer and are not limited to the measures shown on the construction drawing set. The contractor shall minimize the amount of area disturbed during all construction activities.

In general the following shall be applied in developing the sequence of major activities:

- Install down-slope and side-slope perimeter BMP's before the land disturbing activity occurs.
- Do not disturb an area until it is necessary for the construction activity to proceed
- Cover or stabilize as soon as possible.
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project when upstream drainage areas have been stabilized.
- Do not remove the temporary perimeter controls until after all upstream areas are stabilized.

Four Step Process


The following four step process is recommended for selecting structural BMP's in developing urban areas:


PROPOSED CONDITIONS - SCS MAP

R/FDR	N		LEGEND	2			or. Date
				SIN BOUNDARY			Init. Appr.
		,	- MINOR BA	SIN BOUNDARY			Date In
		SCS MODEL ID	(FG31) 2 BASIN IDE	NTIFICATION			
			(19) DESIGN P	DINT			
			MAJOR CO	NTOUR INTERVAL			
			MINOR CC	NTOUR INTERVAL			
			100 YEAR	FLOOD PLAIN			S
			INITIAL TI	ME			Revisions
			OVERLAN	TIME			
			ROUTING	,	╱┝		No.
		GRAF 0 150 300 1 1 in 1 in			1200	TECH CONTRACT 11886 STAPLETON	DIAN RANCH FALCON, CO TELEPHONE: FAX:
	PROPOSED SCS (Full Sp						RI
	PEAK PEAK CHARGE DISCHARGE	PEAK DISCHARGE	PEAK DISCHARGE	PEAK DISCHARGE			MER
ELEMENT (SQ. MI.)	Q100 Q50 CFS) (CFS)	Q10 (CFS)	Q5 (CFS)	Q2 (CFS)	┣		
OS09b 0.0435 OS09b-G14 0.0435	22 14 22 14	3.2 3.2	1.1 1.1	0.2		MAP	
FG34 0.0275	20 13	3.3	1.1	0.2		SCS N	
G14 0.0710	38 25 27 24	5.5	2.0	0.3		<u></u> м	
G14-G15 0.0710 FG35 0.0292	37 24 25 18	5.5 5.5	2.0 2.4	0.3		SNS 4	
G15 0.1002	55 36	8.0	3.0	0.6			
G15-G16 0.1002 FG37 0.0754	54 35 46 31	8.0 7.3	3.0 2.7	0.6		N N	Ĩ
FG37 0.0754 FG36 0.0295	19 13	3.9	1.8	0.4		-	
G15a 0.0295	19 13	3.9	1.8	0.4		PROPOSED	
G15a-G16 0.0295 G16 0.2051	19 13 114 74	3.8 16	1.7 6.5	0.4		Of	
0.2031	114 14	10	0.0	1.2	F		
						Drawn oy Tw Checked bu	Date XXX 2023
					-		
						AS SHOWN	· ·

REX ROAD - PDF

DP	BASIN	AREA (AC)	Q(5) (CFS)	Q(100) (CFS)		INLET	Q(5) (CFS)	Q(100) (CFS)	PIPE
DP1	OS09b	28	5.0	34					
G14	FG34	18	7.5	46					
G15.1	FG35a	14	8.0	47		PR 36 " FES	8.0	47	36 " RCP
101	FG35b	4.9	5.2	12]	PR 20 ' FLOW-BY INLET	9.7	50	36 " RCP
G15a1	FG36a	18	5.3	26		PR 24 " FES	5.3	26	24 " RCP
G15a	FG36c	3	4.2	12		PR GRASS SWALE	4.2	12	
G15a			8.3	34		PR GRASS SWALE	8.3	34	
G15			9.7	50		PR GRASS SWALE	9.7	50	
G16a			12	60		PR GRASS SWALE	12	60	
G16	FG37	48	15	79		EX REX ROAD CULVERT	15	79	

G9

-/X

	INDEX MAP
	N.T.S.
GO1	BASIN DESIGNATION
2.7 0.40	SUB-WATERSHED DESIGNATION
BASIN AR	STORM COEFFICIENT
61	DESIGN POINT DESIGNATION
	MAJOR BASIN BOUNDARY
	SUB-BASIN BOUNDARY
6130	
0	PROPOSED STORM SEWER
	INITIAL OVERLAND TIME (TI)

Drawn by IN Drawn by IN ProposeD countors TECH CONTRACTORS - - -										
HOW Tar Proposed conditions Image: Condition of the conditions Image: Conditenal set in the conditio		Drawn by				•				
And May Rational May Rational May Eating an and an an an an an an an and an		TAK	PROPOSED CONDITIONS			ı				
· · <th></th> <th>Checked by</th> <th>RATIONAL MAP</th> <th></th> <th></th> <th>ı</th> <th></th> <th></th> <th></th> <th></th>		Checked by	RATIONAL MAP			ı				
AR 2023 AR 2023 No. Revisions Date Init. Appr.			REX ROAD - PDR - FDR	MERIDIAN BANCH	UN, CO 8	ı				
	f 3	-				No.	Revisions	Date	Init.	Date

GRAPHIC SCALE 200 (IN FEET) 1 INCH = 100 ft.

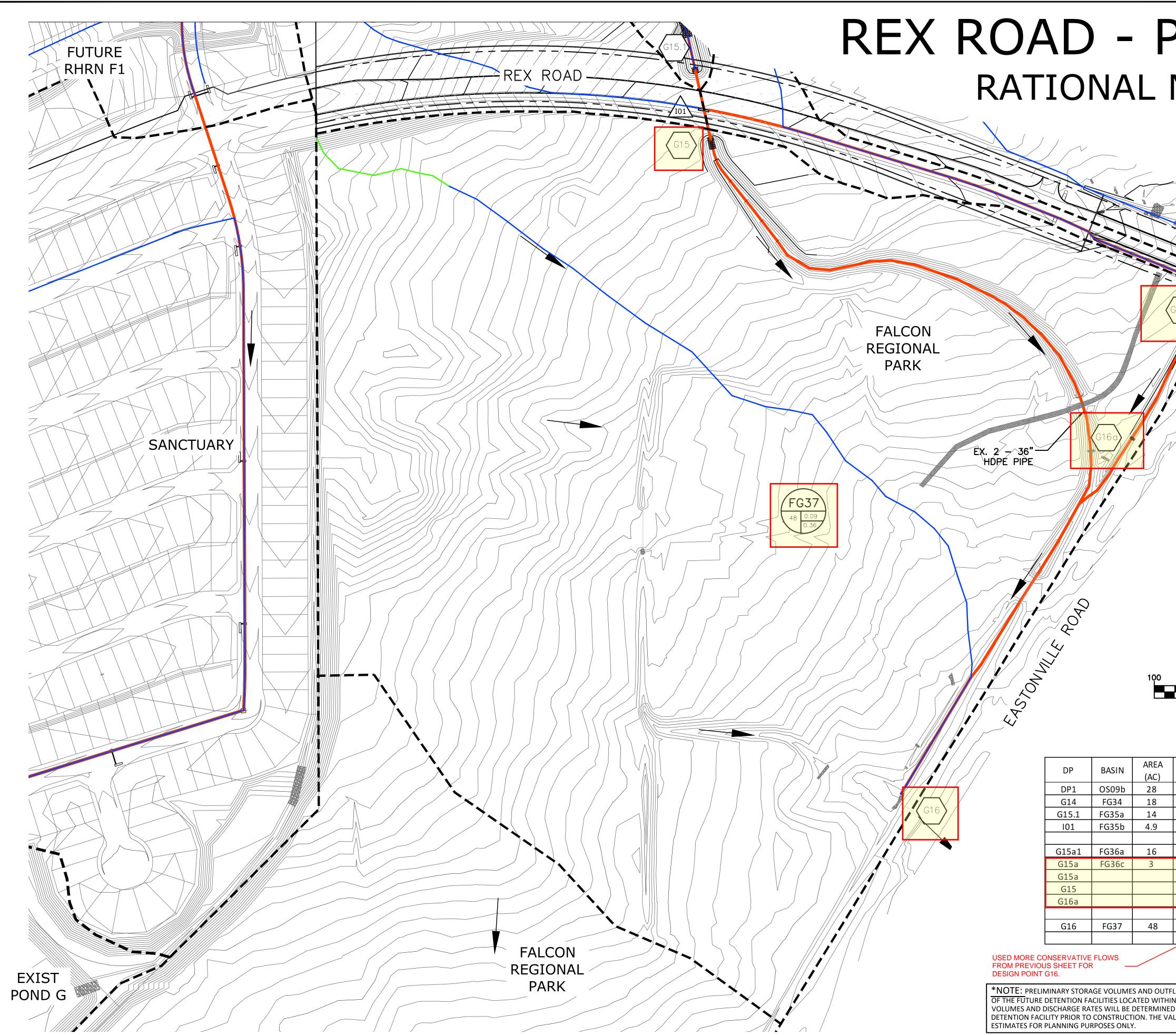

*NOTE: PRELIMINARY STORAGE VOLUMES AND OUTFLOW QUANTITIES HAVE BEEN PROVIDED FOR EACH OF THE FUTURE DETENTION FACILITIES LOCATED WITHIN THE DEVELOPMENT. THE ACTUAL STORAGE VOLUMES AND DISCHARGE RATES WILL BE DETERMINED UPON A COMPLETE ANALYSIS FOR EACH DETENTION FACILITY PRIOR TO CONSTRUCTION. THE VALUES GIVEN FOR DISCHARGE AND VOLUME ARE ESTIMATES FOR PLANNING PURPOSES ONLY.

FIGURE 6

400

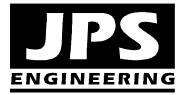
2

cale

)R	/FDR	X						. Date
									Appr.
1Δ	Ϋ́					Γ			Init.
• /						F			Date
515a1				<u>(</u> MAF T.S. ESIGNATION	D				Revisions
		2.7 0.40 0.55			DESIGNATION	F	•	, ,	No.
			MAJOR SUB—E EXISTII — PROPO — PROPO — INITIAI — TRAVE	BASIN BOUN BASIN BOUN BASIN BOUN NG CONTOUR DSED COUNT DSED STORM OVERLAND CL TIME (Tt) AND TIME (UNDARY DARY R OUR SEWER TIME (TI)		TECH CONTRACTORS 11910 TOURMALINE DR #130	FALCON, CO 80831	
								\square	
0	GRA 50 10	APHIC SCALE 0 200	40	0				MERI	
0	50 10		40	0				MER	
Q(5) CFS) 5.0 7.5 8.0 5.2	50 10	0 200 (IN FEET)	Q(5) (CFS) 8.0	Q(100) (CFS) 47 50 23	PIPE 36 " RCP 36 " RCP 24 " RCP		PROPOSED CONDITIONS	RATIONAL MAP REX ROAD - PDR - FDR MER	
Q(5) CFS) 5.0 7.5 8.0 5.2 4.9 4.2	50 10 1 I 2 1 I 2 3 1 2	0 200 (IN FEET) NCH = 100 ft. INLET PR 36 " FES PR 20 ' FLOW-BY INLET PR 24 " FES PR GRASS SWALE	Q(5) (CFS) 8.0 9.7 4.9 4.2	Q(100) (CFS) 47 50 23 12	36 " RCP 36 " RCP		PROPOSED CONDITIONS	WL MAP - PDR - FDR	
Q(5) CFS) 5.0 7.5 3.0 5.2 4.9 4.2 3.0 9.7	50 10 1 I 2 1 I 2 3 2 3 1 2 3 2 3 2 5 0 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1	0 200 (IN FEET) NCH = 100 ft. INLET PR 36 " FES PR 20 ' FLOW-BY INLET PR 24 " FES PR GRASS SWALE PR GRASS SWALE PR GRASS SWALE	Q(5) (CFS) 8.0 9.7 4.9 4.2 8.0 9.7	Q(100) (CFS) 47 50 23 12 32 50	36 " RCP 36 " RCP		TAK Par	vg RATIONAL MAP Image: Image of the im	
0 2(5) 2FS) 5.0 7.5 8.0 5.2 4.9 4.2 8.0 9.7 12	50 10 1 I 2 (100) (CFS) 34 46 47 12 23 12 23 12 32	0 200 (IN FEET) NCH = 100 ft. INLET PR 36 " FES PR 20 ' FLOW-BY INLET PR 24 " FES PR GRASS SWALE PR GRASS SWALE	Q(5) (CFS) 8.0 9.7 4.9 4.2 8.0	Q(100) (CFS) 47 50 23 12 32	36 " RCP 36 " RCP	Draw has	Jak Jak	vg RATIONAL MAP Image: Image of the im	AFR 2023

FINAL DRAINAGE REPORT

for


FALCON REGIONAL PARK

Prepared for:

El Paso County Community Services Department 2002 Creek Crossing Colorado Springs, CO 80905

October 21, 2015

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 fax www.jpsengr.com

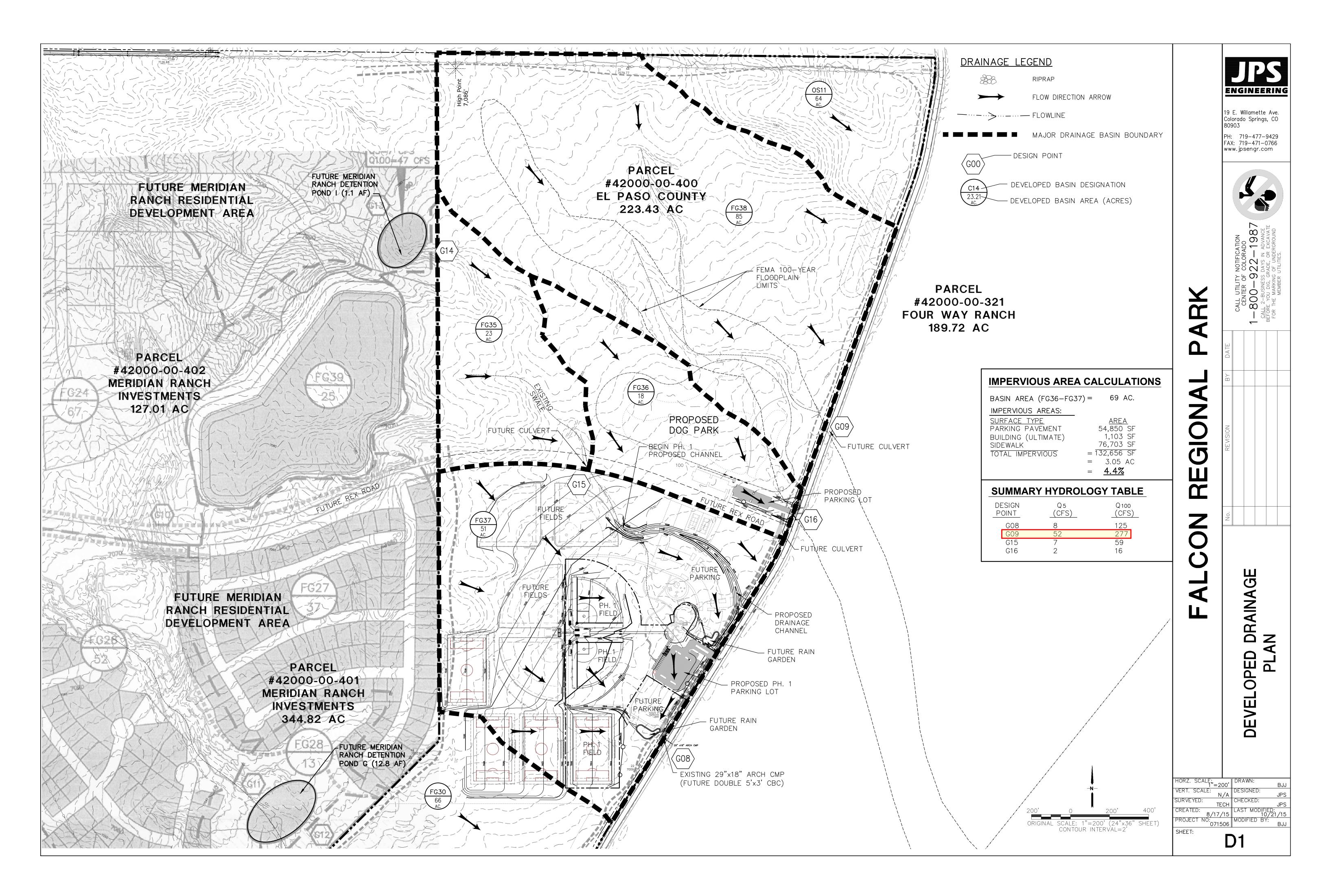
JPS Project No. 071506

Drexel, Barrell & Co., "Gieck Ranch Drainage Basin Planning Study," February 1, 2008.

El Paso County Engineering Criteria Manual, January, 2006, as amended.

Tech Contractors, "Revision to Master Development Drainage Plan, Meridian Ranch," July, 2015.

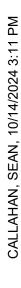
II. EXISTING / PROPOSED DRAINAGE CONDITIONS

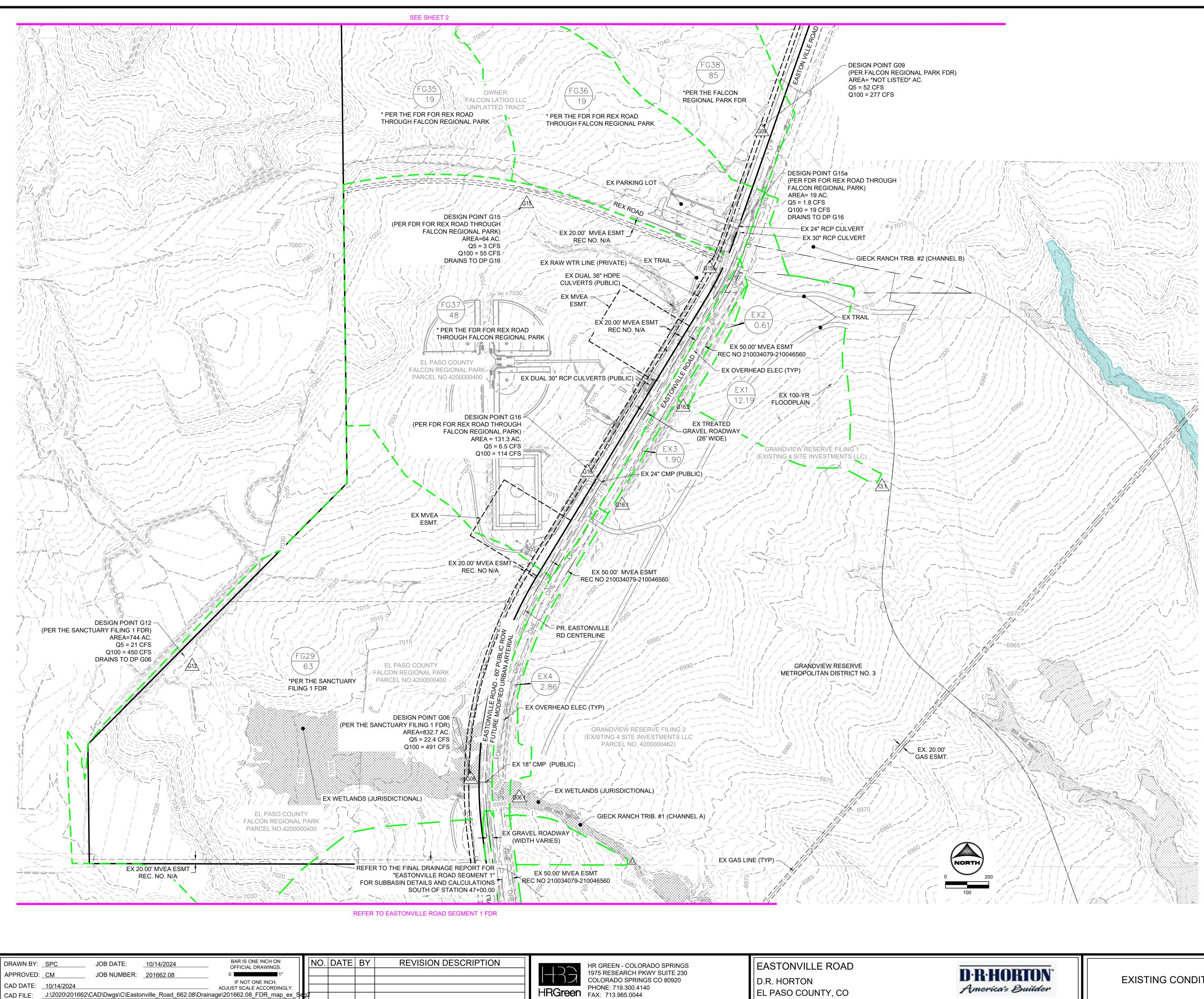

According to the Natural Resources Conservation Service (NRCS) Web Soil Survey for the park site, on-site soils are comprised of Columbine gravelly sandy loam and Stapleton sandy loam. These soils are classified as hydrologic soils group A and B. The existing site topography slopes downward to the southeast with average grades of approximately 2-3 percent.

Drainage planning for the Falcon Regional Park site has been addressed in the "Master Development Drainage Plan (MDDP), Meridian Ranch" by Tech Contractors, dated July, 2015. The enclosed Developed Drainage Plan (Sheet D1, Appendix B) shows the drainage basins impacting the park site consistent with the basin designations identified in the MDDP. As shown on Sheet D1, the park property lies within Basins OS11, FG30, FG35, FG36, FG37, and FG38.

The proposed dog park lies within Basin FG36. Surface drainage in Basin FG36 sheet flows southeasterly to Design Point #G16, with historic peak flows calculated as $Q_5 = 2.3$ cfs and $Q_{100} = 17.9$ cfs (Rational Method). Based on the relatively small impervious area associated with the proposed parking area on the south side of the dog park, the developed peak flow at DP #G16 is calculated as $Q_5 = 3.3$ cfs and $Q_{100} = 19.4$ cfs (Rational Method), showing a minimal increase.

On the north side of the new parking lot for the dog park, an existing drainage swale within Basin FG38 flows southeasterly along a delineated FEMA floodplain, draining to DP #G09. According to the MDDP, peak flows at DP #G09 are calculated as $Q_5 = 52$ cfs and $Q_{100} = 277$ cfs. According to County maintenance staff, flows from this design point currently combine and flow along the west side of Eastonville Road overtopping at various locations near the curve to the south. We recommend that plans for the upcoming PPRTA Eastonville Road improvement project provide for a culvert at this drainage crossing.


The primary active use area of the park lies within Basin FG37. Off-site drainage from the Meridian Ranch area northwest of the site enters the west boundary of the park property at Design Point #G14 and flows southeasterly through an existing drainage swale, ultimately reaching an existing 29"x18" Arch CMP culvert crossing Eastonville Road on the south side of the proposed parking lot.



Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX F – DRAINAGE MAPS

LEGEND:

EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR EX STORM SEWER EX DRAINAGE SWALE EX PROPERTY LINE EXISTING FLOW DIRECTION PROPOSED DRAINAGE BASIN

— — — 5250 [·] — — _ _ _ _____

13

Q100 (cfs)

25.0

1.4

3.8

5.7

60.0

25.0

19.0

45.0

/name`

AREA,

Q5 (cfs)

3.7

0.2

0.6

2.9

1.8

2.7

SQ100 (cfs)

25.0

491.0

496.7

277.0

450.0

55.0

19.0

114.0

117.8

1.4

SQ5 (cfs)

3.7

22.0

22.8

52.0

21.0

3.0

1.8

6.5

7.1

0.2

2.4

0.8

2

2

2

2

-

DESIGN POINT

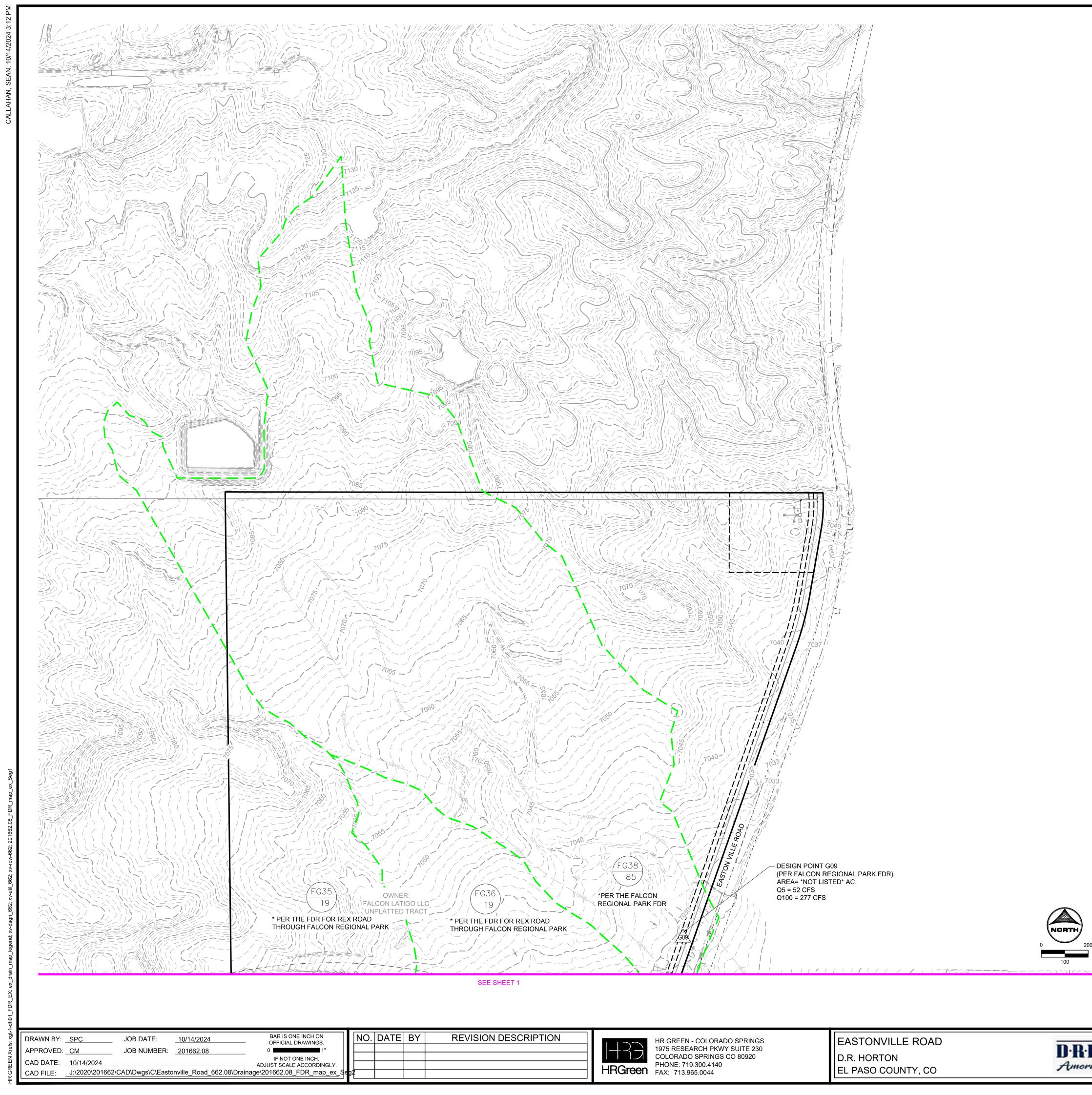
PROPOSED BASIN LABEL

SUMMARY RUNOFF TABLE AREA (ac) % IMPERVIOUS BASIN EX1 12.19 EX2 0.61 EX3 1.90 EX4 2.86 *FG29 62.91 **FG35 18.69 **FG36 18.88 **FG37 48.26 ***FG38 85.00 DESIGN POINT SUMMARY TABLE DESIGN POINT CONTRIBUTING BASINS 13.1 EX1 *G06 FG29, DP G12 G06.1 EX4, DO G06 ***G09 FG38 *G12 **G15 FG35 **G15a FG36 **G16 FG37, DP G15/G15a

G16.1

G16.2

BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR THE SANCTUARY FILING 1 AT MERIDIAN RANCH"


EX3

EX2

BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK"

*** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR FALCON REGIONAL PARK".

SHEET DRN

SION DESCRIPTION			
	HR GREEN - COLORADO SPRINGS 1975 RESEARCH PKWY SUITE 230	EASTONVILLE ROAD	T
	COLORADO SPRINGS CO 80920	D.R. HORTON	1
	HRGreen PHONE: 719.300.4140 FAX: 713.965.0044	EL PASO COUNTY, CO	1
	TH COLORE FAX: 713.965.0044		

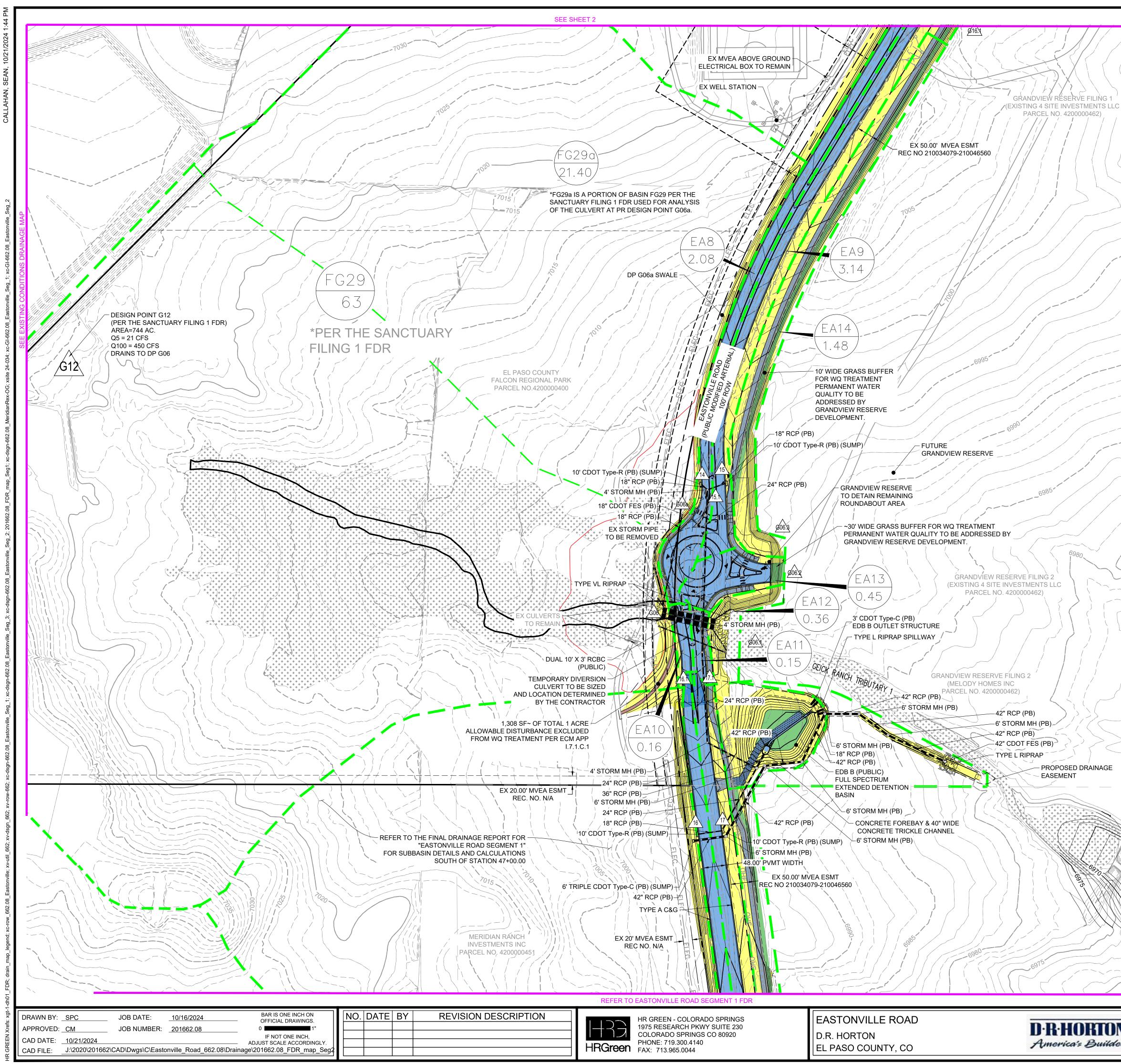
LEGEND:

EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR EX STORM SEWER EX DRAINAGE SWALE EX PROPERTY LINE EXISTING FLOW DIRECTION PROPOSED DRAINAGE BASIN — — — 5250 · — — _ _ _ _ _____

13

DESIGN POINT

PROPOSED BASIN LABEL


	SUMMARY RUNOFF TABLE					
BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs)		
EX1	12.19	2	3.7	25.0		
EX2	0.61	2	0.2	1.4		
EX3	1.90	2	0.6	3.8		
EX4	2.86	2	0.8	5.7		
*FG29	62.91	-	2.9	60.0		
**FG35	18.69	-	2.4	25.0		
**FG36	18.88	-	1.8	19.0		
**FG37	48.26	-	2.7	45.0		
***FG38	85.00	-	-	-		

DESIGN POINT SUMMARY TABLE							
DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)				
13.1	EX1	3.7	25.0				
*G06	FG29, DP G12	22.0	491.0				
G06.1	EX4, DO G06	22.8	496.7				
***G09	FG38	52.0	277.0				
*G12	-	21.0	450.0				
**G15	FG35	3.0	55.0				
**G15a	FG36	1.8	19.0				
**G16	FG37, DP G15/G15a	6.5	114.0				
G16.1	EX3	7.1	117.8				
G16.2	EX2	0.2	1.4				

* BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR THE SANCTUARY FILING 1 AT MERIDIAN RANCH".

** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK".

*** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR FALCON REGIONAL PARK".

LEGEND:	
PROPOSED MAJOR CONTOUR	5250
PROPOSED MINOR CONTOUR	
EXISTING MAJOR CONTOUR	— — — 5250 [.] — —
EXISTING MINOR CONTOUR	
PROPOSED STORM SEWER	
PROPOSED DRAINAGE SWALE	
PROPERTY LINE	
PROPOSED FLOW DIRECTION	◄
EXISTING FLOW DIRECTION	-
PROPOSED DRAINAGE BASIN	_
DESIGN POINT	13
PROPOSED BASIN LABEL	NAME
PRELIMINARY 100-YR FLOODPLAIN	
WETLANDS	$\begin{array}{c} + & + & + & + & + \\ + & + & + & + & + \\ + & + &$

0.0

6.4

22.1

1.4

1.2

SQ100 (cfs)

491.0

450.0

55.0

277.0

1.5

3.2

3.4

4.9

16.0

27.7

2.0

29.2

40.2

40.2

59.0

3.3

0.7

113.9

24.6

138.5

141.0

9.4

10.6

19.9 1.1

1.0

2.1

0.0

42.9

492.1

2.8

3.8

11.0 54.9

	SUMN	ARY RUNOF	F TABLE			DESIGN POINT SUMM	IARY TAB	BLE
BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs)	DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ
EA1	0.22	73	0.8	1.5	*G06	FG29, DP G06a, G15	22.0	
EA2	0.25	72	0.9	1.7	*G12	-	21.0	
EA3	0.76	65	2.4	4.9	**G15	FG35	3.0	
EA4	3.11	24	3.8	11.7	***G09	FG38	52.0	
EA5	0.16	0	0.1	0.4	2.1	EA1	0.8	
EA6	0.25	76	0.8	1.6	3.1	EA2, DP2.1	1.6	
EA7	0.20	50	0.4	1.0	4.1	EA5, DP3.1	1.7	
EA8	2.08	99	5.2	9.4	5	EA3	2.4	
EA9	3.14	60	5.0	10.6	6	EA4, DP5	5.9	
EA10	0.16	75	0.6	1.1	G15a1	FG36a	4.6	
EA11	0.15	67	0.5	1.0	7	FG36b	0.4	
EA12	0.36	0	0.1	1.1	8	DPG15a1,7	4.9	
EA13	0.45	73	1.4	2.8	6.1	DP6,8	9.0	
EA14	1.48	21	1.2	3.8	G15a	DP6.1	9.0	
EA15	0.76	24	0.7	2.1	**G16a	FG37a, DPG15,G15a	12.0	
EA16	1.18	0	0.3	2.5	10	EA5, EA6, SFB C OUTFLOW	1.3	
EA17	0.30	0	0.1	0.7	10.1	EA7	0.1	
EA18	11.29	3	3.9	24.6	11.1	DPG16a,G16b	23.0	
*FG29	62.91	-	<mark>2.9</mark>	60.0	12	EA18	3.9	
FG29a	21.40	2	6.4	42.9	13	DP11.1, 12	27.0	
**FG35	18.69	-	2.4	<mark>25.0</mark>	13.1	DP13	27.3	
FG36a	14.14	4	4.6	27.7	14	EA8	5.2	
FG36b	0.81	8	0.4	2.0	15	EA9	5.0	
FG37a	22.39	0	5.4	39.5	15.1	DP14,15	10.2	
FG37b	24.86	6	11.0	54.9	16.1	EA10	0.6	
***FG38	85.00	- /	-	-	17.1	EA11	0.5	
							0.7	

with flows in adsheets. Ver I revise accordingly items reference same

**

BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR THE SANCTUARY FILING 1 AT MERIDIAN RANCH". BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM

FG29a

EA12, DPG06

EA13

EA14

FG37b

THE "FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK".

*** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR FALCON REGIONAL PARK".

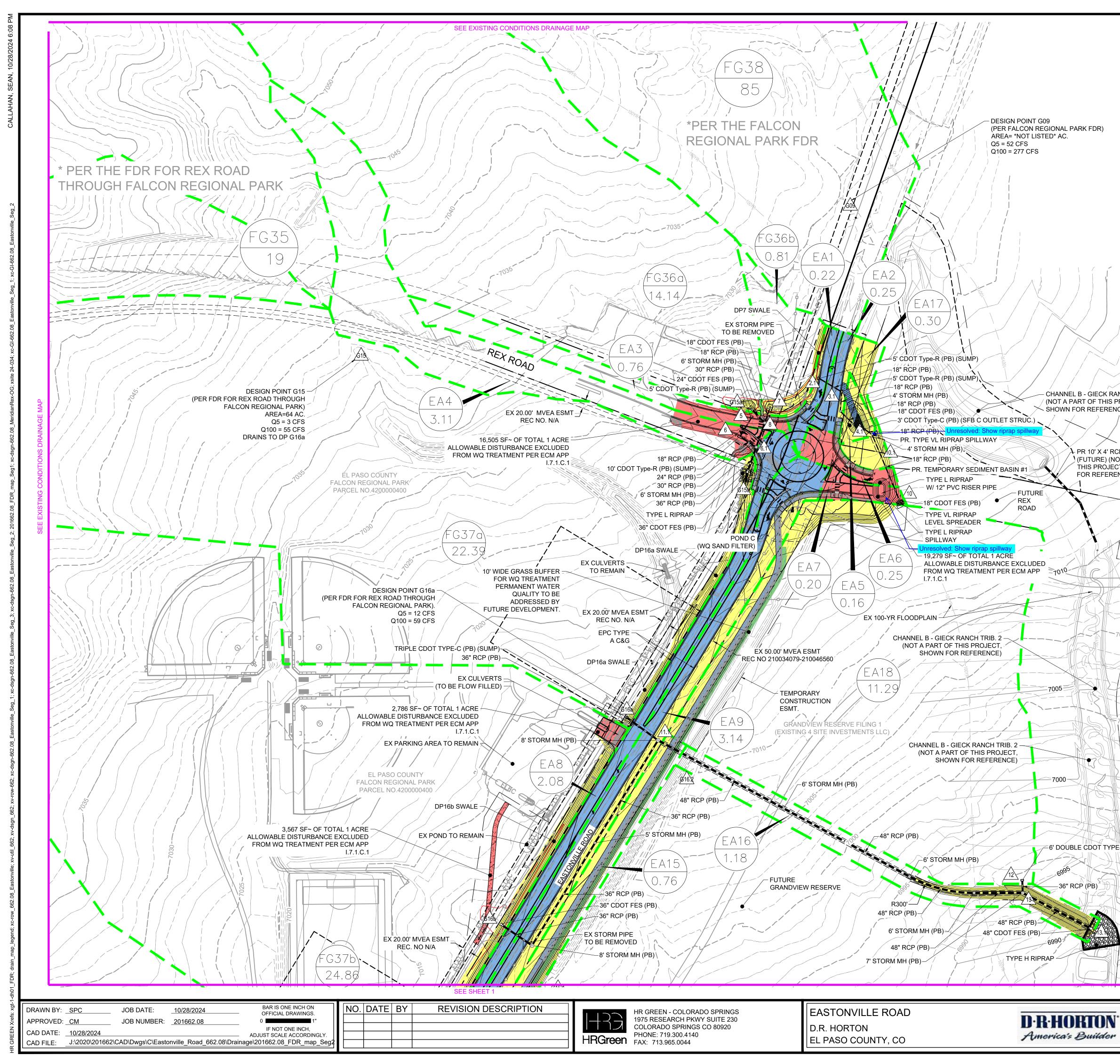
Provide a Legend for the shading colors on this map, like was done with the Segment 1 FDR Drainage Maps

G16.2

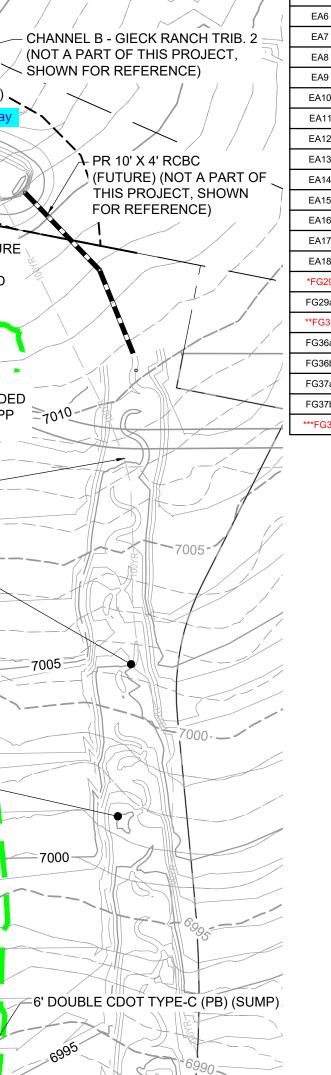
G06a

G06.1

G06.2


G06.3

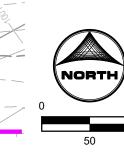
G16b



D·R·HORTON America's Builder

SHEET DRN

LEGEND:	
PROPOSED MAJOR CONTOUR	<u> </u>
PROPOSED MINOR CONTOUR	
EXISTING MAJOR CONTOUR	<u> </u>
EXISTING MINOR CONTOUR	
PROPOSED STORM SEWER	
PROPOSED DRAINAGE SWALE	- > ->->
PROPERTY LINE	
PROPOSED FLOW DIRECTION	◄
EXISTING FLOW DIRECTION	◄
PROPOSED DRAINAGE BASIN	
DESIGN POINT	13
PROPOSED BASIN LABEL	AREA
PRELIMINARY 100-YR FLOODPLAIN	
WETLANDS	+ + + + + + + + + + + + + + + + + + +


	SUMM	IARY RUNOF	F TABLE	-
BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs
EA1	0.22	73	0.8	1.5
EA2	0.25	72	0.9	1.7
EA3	0.76	65	2.4	4.9
EA4	3.11	24	3.8	11.7
EA5	0.16	0	0.1	0.4
EA6	0.25	76	0.8	1.6
EA7	0.20	50	0.4	1.0
EA8	2.08	99	5.2	9.4
EA9	3.14	60	5.0	10.6
EA10	0.16	75	0.6	1.1
EA11	0.15	67	0.5	1.0
EA12	0.36	0	0.1	1.1
EA13	0.45	73	1.4	2.8
EA14	1.48	21	1.2	3.8
EA15	0.76	24	0.7	2.1
EA16	1.18	0	0.3	2.5
EA17	0.30	0	0.1	0.7
EA18	11.29	3	3.9	24.6
*FG29	62.91	-	2.9	60.0
FG29a	21.40	2	6.4	42.9
**FG35	18.69	-	2.4	25.0
FG36a	14.14	4	4.6	27.7
FG36b	0.81	8	0.4	2.0
FG37a	22.39	0	5.4	39.5
FG37b	24.86	6	11.0	54.9
***FG38	85.00	-	-	-

	DESIGN POINT SUMMARY TABLE					
DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)			
*G06	FG29, DP G06a, G15	22.0	491.0			
*G12	-	21.0	450.0			
**G15	FG35	3.0	55.0			
***G09	FG38	52.0	277.0			
2.1	EA1	0.8	1.5			
3.1	EA2, DP2.1	1.6	3.2			
4.1	EA5, DP3.1	1.7	3.4			
5	EA3	2.4	4.9			
6	EA4, DP5	5.9	16.0			
G15a1	FG36a	4.6	27.7			
7	FG36b	0.4	2.0			
8	DPG15a1,7	4.9	29.2			
6.1	DP6,8	9.0	40.2			
G15a	DP6.1	9.0	40.2			
**G16a	FG37a, DPG15,G15a	12.0	59.0			
10	EA5, EA6, SFB C OUTFLOW	1.3	3.3			
10.1	EA7	0.1	0.7			
11.1	DPG16a,G16b	23.0	113.9			
12	EA18	3.9	24.6			
13	DP11.1, 12	27.0	138.5			
13.1	DP13	27.3	141.0			
14	EA8	5.2	9.4			
15	EA9	5.0	10.6			
15.1	DP14,15	10.2	19.9			
16.1	EA10	0.6	1.1			
17.1	EA11	0.5	1.0			
G16.1	EA15	0.7	2.1			
G16.2	-	0.0	0.0			
G06a	FG29a	6.4	42.9			
G06.1	EA12, DPG06	22.1	492.1			
G06.2	EA13	1.4	2.8			
G06.3	EA14	1.2	3.8			
G16b	FG37b	11.0	54.9			

BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR THE SANCTUARY FILING 1 AT MERIDIAN RANCH".

BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM ** THE "FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK".

*** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR FALCON REGIONAL PARK".

SHEET DRN

2

V4_Drainage Report Final - Segment 2.pdf Markup Summary

Subject: SW - Textbox Page Index: 1 Date: 2/10/2025 2:33:34 PM Author: Glenn Reese - EPC Stormwater Color: Layer: Space: Page Label: 1	See all of my comments in the Segment 1 FDR about double WQ treatment and revise this Segment 2 FDR accordingly. I have provided additional Segment 2 specific comments in this FDR as well.
Subject: SW - Highlight Page Index: 9 Date: 2/10/2025 4:44:16 PM Author: Glenn Reese - EPC Stormwater Color: Layer: Space: Page Label: 9	The remaining untreated WQCV will be treated at the development of Filing 1 of the Grandview Reserve
Subject: SW - Textbox with Arrow Page Index: 9 Date: 2/10/2025 4:45:13 PM Author: Glenn Reese - EPC Stormwater Color: Layer: Layer: Space: Page Label: 9	There needs to be more treatment in the interim condition that just 19% reduction via RR. Can you do a TSB like you did with TSB #1 in Segment 1?
Subject: Highlight Page Index: 37 Date: 2/10/2025 3:59:43 PM Author: CDurham Color: Layer: Space: Page Label: 27	2.9 60.0
Subject: Callout Page Index: 37 Date: 2/10/2025 4:00:57 PM Author: CDurham Color: Layer: Space: Page Label: 27	Flows do not match with other spreadsheets or report. Please verify flow and revise tables, text, map accordingly so all items match
	Page Index: 1 Date: 2/10/2025 2:33:34 PM Author: Glenn Reese - EPC Stormwater Color: ■ Layer: Space: Page Label: 1 Subject: SW - Highlight Page Index: 9 Date: 2/10/2025 4:44:16 PM Author: Glenn Reese - EPC Stormwater Color: ■ Layer: Space: Page Label: 9 Subject: SW - Textbox with Arrow Page Index: 9 Date: 2/10/2025 4:45:13 PM Author: Glenn Reese - EPC Stormwater Color: ■ Layer: Space: Page Index: 9 Date: 2/10/2025 4:45:13 PM Author: Glenn Reese - EPC Stormwater Color: ■ Layer: Space: Page Label: 9 Subject: Highlight Page Index: 37 Date: 2/10/2025 3:59:43 PM Author: CDurham Color: ■ Layer: Space: Page Label: 27 Subject: Callout Page Index: 37 Date: 2/10/2025 4:00:57 PM </td

81 (1)		
48 ft 80 ft e USDCM Vol 2. Worth seems rather large Worth seleculation 11 and 9-12 in the USDCM Vol. 2	Subject: Callout Page Index: 81 Date: 2/10/2025 4:17:38 PM Author: CDurham Color: Layer: Space: Page Label: 71	Width seems rather large. Verify calculation
82 (1)		
2 m 1 m 2 m 2 m 1 m 1 m 1 m 2 m 1 m 2 m 1 m 2 m 1 m 2 m 1 m 2 m 1 m 2 m 1 m 1 m 1 m 1 m 1 m 1 m 1 m 1	Subject: Callout Page Index: 82 Date: 2/10/2025 4:18:12 PM Author: CDurham Color: Layer: Space: Page Label: 72	Width seems rather large. Verify calculation
85 (1)		
Unresolved: Provide calculations for Pond B spillway riprap sizing.	Subject: Text Box Page Index: 85 Date: 2/10/2025 4:24:37 PM Author: CDurham Color: Layer: Space: Page Label: 75	Unresolved: Provide calculations for Pond B spillway riprap sizing.
123 (1)		
	Subject: Checkmark Page Index: 123 Date: 2/10/2025 2:36:34 PM Author: Glenn Reese - EPC Stormwater Color: Layer: Space: Page Label: 113	
127 (1)		
	Subject: Checkmark Page Index: 127 Date: 2/10/2025 4:30:50 PM Author: Glenn Reese - EPC Stormwater Color: Layer: Space: Page Label: 117	
137 (1)		
	Subject: Group	

Subject: Group Page Index: 137 Date: 2/10/2025 4:30:59 PM Author: Glenn Reese - EPC Stormwater Color: Layer: Space: Page Label: 127

*** BREINDERIGN FONT NAME, AREA, AND FLORE TAKEN FROM THE YOR FOR PARK ALCON RECORD. PARK	Subject: SW - Textbox	
Bounderstein Hoder MARL, Mark ALDE FLORE TABLEMEN THE THAT FOR FACES INITIALIZED A MARCH Receive at Alignment 19 ERK Desingle Mays	Page Index: 161 Date: 2/10/2025 2:32:13 PM	Provide a Legend for the shading colors on this map, like was done with the Segment 1 FDR Drainage Maps
	Author: Glenn Reese - EPC Stormwater Color: ■ Layer:	Drankge waps
	Space: Page Label: [1] FDR Map 1	
	Subject: Highlight Page Index: 161	2.9
<mark>2.9</mark>	Date: 2/10/2025 4:30:30 PM Author: CDurham Color:	
	Layer: Space: Page Label: [1] FDR Map 1	
<mark>60.0</mark>	Subject: Highlight Page Index: 161 Date: 2/10/2025 4:30:39 PM	60.0
	Author: CDurham Color: Layer:	
	Space: Page Label: [1] FDR Map 1	
	Subject: Highlight Page Index: 161	.4
2 <mark>.4</mark>	Date: 2/10/2025 4:30:42 PM Author: CDurham Color:	
	Layer: Space: Page Label: [1] FDR Map 1	
<mark>25.0</mark>	Subject: Highlight Page Index: 161 Date: 2/10/2025 4:30:44 PM	25.0
	Author: CDurham Color: Layer:	
	Space: Page Label: [1] FDR Map 1	
No. B20 D D D D No. 0.0	Subject: Callout Page Index: 161	Highlighted flows did not match with flows in report or other hydrology spreadsheets. Verify flows and
The second secon	Date: 2/10/2025 4:31:39 PM Author: CDurham Color:	revise accordingly so all items reference same flow.
	Layer: Space: Page Label: [1] FDR Map 1	

162 (2)

Subject: Callout Page Index: 162 Date: 2/10/2025 4:37:57 PM Author: CDurham Color: Layer: Space: Page Label: [1] FDR Map 2

Unresolved: Show riprap spillway

Subject: Callout Page Index: 162 Date: 2/10/2025 4:38:43 PM Author: CDurham Color: Layer: Space: Page Label: [1] FDR Map 2

Unresolved: Show riprap spillway