

Eastonville Road – Londonderry Dr. to Rex Rd. Segment 2 Improvements Stationing 47+00.00 – 79+31.62

Final Drainage Report

March 2024

HR Green Project No: 201662.08

Prepared For:

D.R. Horton

Contact: Riley Hillen, P.E.

9555 S. Kingston Ct.

Englewood, CO 80112

Prepared By:

HR Green Development, LLC

Contact: Colleen Monahan, P.E., LEED AP

cmonahan@hrgreen.com

(719) 394-2433

EDARP Filing No:

CDR2321

Engineer's Statement:

County Engineer/ECM Administrator

Conditions:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

preparing this		y any magnification, and to a mission on my part in
	en Monahan	OR ADOLICENS
Colleen Mon	ahan, P.E., LEED AP	Date (56067)
State of Colo	orado No. 56067	3/22/2024
For and on b	ehalf of HR Green Development, LLC	ONAL ENGINEER
Owner/[Developer's Statement:	
I, the develop	per, have read and will comply with all of	the requirements specified in this drainage report and plan.
By:		
Authorized S	ignature	Date
Address:	D.R. Horton	
	9555 S. Kingston Court	
	Englewood, CO	
El Paso	County Statement	
Filed in acco	•	nage Criteria Manual, Volumes 1 and 2, El Paso County code, as amended.
Joshua Palm	ner, P.E.	Date

Table of Contents

Tak	ole (of Contents	2
I.	G	eneral Purpose, Location and Description	3
a	а.	Purpose	3
k	٥.	Location	3
c	Э.	Description of Property	3
c	d.	Floodplain Statement	4
II.	D	rainage Design Criteria	4
á	а.	Drainage Criteria	4
III.		Drainage Basins and Subbasins	4
a	а.	Major Basin Description	4
k	٥.	Existing Subbasin Description	5
c	Э.	Proposed Subbasin Description	5
IV.		Drainage Facility Design	8
á	а.	General Concept	8
k	٥.	Water Quality & Detention	8
C	Э.	Inspection and Maintenance	8
V.	W	/etlands Mitigation	9
VI.		Four Step Method to Minimize Adverse Impacts of Urbanization	9
VII.		Drainage and Bridge Fees	9
VIII	l.	Opinion of Probable Cost	9
IX.		Hydraulic Grade Line Analysis	9
X.	S	ummary	10
XI.		Drawings	10
XII.		References	11

Appendices

- A. Vicinity Map, FEMA Map, NRCS Soil Survey
- B. Hydrologic Analysis
- C. Hydraulic Analysis
- D. Water Quality and Detention Calculations
- E. Drainage Maps

General Purpose, Location and Description

a. Purpose

The purpose of this Final Drainage Report (FDR) for Eastonville Road Segment 2 Improvements is to describe the onsite and offsite drainage patterns, size drainage infrastructure to safely capture and convey developed runoff to water quality and detention facilities, and to safely route detained stormwater to adequate outfalls. This drainage report will detail the improvements of Eastonville Road from Londonderry Dr. to Rex Road for Segment 2. Stations 47+00.00 to 79+32.00 contain the Segment 2 Improvements for the Eastonville Road from Londonderry Drive to Rex Road for the portion of the project north of Grandview Filing No. 1. The project is all one project, however, the planset has been broken into two segments to align with the Grandview Reserve Filings. A separate FDR describes Segment 2 of the project.

b. Location

Eastonville Road from Londonderry Dr. to Rex Road, referred to as 'the site' herein, is an existing 26' wide temporary pavement road in El Paso County, Colorado. Per field inspection the existing pavement is not full depth, and therefore described as 'temporary' for the purpose of this report. The site lies in the existing 60' wide El Paso County Right-of-Way within Sections 21 and 28, Township 12 South, Range 64 West of the 6th Principal Meridian, in El Paso County, State of Colorado.

The site is bound by undeveloped land to the east and west that has historically been used as ranching lands. Falcon Regional Park, which contains ballparks and parking, and Falcon High School also border the site to the west. All lands to the east and west of the site are unplatted. A vicinity map is presented in Appendix A.

c. Description of Property

The site is approximately 0.69 miles (2.17 acres) of existing temporary pavement roadway north of Londonderry Dr. and south of Rex Road. Per field inspection the existing pavement is not full depth, and therefore described as 'temporary' for the purpose of this report. The existing temporary pavement width for the length of the project is 26' wide. There are 4' wide gravel shoulders and native landscaped swales are located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts. See Appendix A for an existing conditions photo.

The existing roadway has slopes ranging from 0.3% up to about 4%. The general topography of the surrounding area is typical of high desert, short prairie grass with gently rolling hillside with slopes ranging from 2% to 4%. The project site drains generally from the west to the east and is tributary to Black Squirrel Creek.

Per a NRCS soil survey, the site is made up of Type A Columbine gravelly sandy loam, Type A Blakeland loamy sand and Type B Stapleton sandy loam. The NRCS soil survey is presented in Appendix A.

Gieck Ranch Tributary #1 (Channel A) is the only drainageway that traverses the site in the west to east direction through an existing culvert under Eastonville Road. The channel is a mapped wetland and a wetland permit will be required for a part of this Eastonville Road improvement project. Channel A is not within a FEMA floodplain.

Gieck Ranch Tributary #2 is located on the north end of the project site and will not be impacted by this project. There are no known irrigation facilities in the area.

Existing utilities include an underground gas line that runs under Eastonville road through the Grandview reserve property south of the segment 2 improvements, an existing raw water line that follows the west side of Eastonville north of Falcon Regional Park, and an existing aboveground electrical line along the western side of Eastonville Road. An existing drainage map with these facilities is presented in Appendix F.

d. Floodplain Statement

Based on FEMA Firm map 08041C0552G December 7, 2018, the site is not located in any FEMA designated floodplain. See FEMA Firm Map in Appendix A. There is a Zone A floodplain north of the site and a Zone AE south of the site, both of which will not be altered with the associated Eastonville Road improvements.

II. Drainage Design Criteria

a. Drainage Criteria

Hydrologic data and calculations were performed using Drainage Criteria Manual Volume 1 of El Paso County (EPCDCM), with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual (CCSDCM), May 2014 revised January 2021.

Onsite drainage improvements are designed for the 5-year storm (minor event) and 100-year storm (major event) using rainfall values from the NOAA Atlas 14 Point Precipitation Frequency Data Server. Runoff was calculated per CCSDCM Section 6.3.0 - Rational Method. Private, full spectrum pond design was completed using the latest version of Mile High Flood District's (MHFD) UD-Detention per CCSDCM Section 13.3.2.1 – Private, full spectrum Detention. The detention pond allowable release rate will be limited to less than historic rates.

Rainfall Depths per NOAA Atlas 14									
Return Period (yr)	5	100							
1-hr Rainfall Depth (in)	1.21	2.49							

Inlet sizing was performed per the methods described in EPCDCM Section III Chapter 7 – Street Drainage and Storm Water Inlets. Storm sewer sizing was performed per the methods described in EPCDCM Section III Chapter 8 – Storm Drains and Appurtenances.

III. Drainage Basins and Subbasins

a. Major Basin Description

The site is located within the Gieck Ranch Drainage Basin. The site's drainage characteristics were previously studied in the following reports:

- 1. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 2. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.
- 3. "Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch" by Tech Contractors, August 2022.

Gieck Ranch Drainage Basin is a 22.05 square mile watershed located in El Paso County, Colorado. Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains to the Arkansas River. The majority of the basin is undeveloped and is rolling range land typical of Colorado's semi-arid climates. It should be noted that the Gieck Ranch DBPS has not been approved at the time of this report.

The Meridian Ranch MDDP and The Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch indicate that the Eastonville Road culvert crossing at the Gieck Ranch Tributary #1, within the project boundary, does not provide enough capacity for the historic flow rates. This culvert will be upgraded as part of this project.

Within the Gieck Ranch Drainage Basin, ranching has historically been the predominant land use, with rolling topography between 2%-4% slopes. Recently urbanization is occurring within the drainage basin, most notably for this project are Meridian Ranch and Latigo Trails Developments. Both are single family residential neighborhoods located upstream to the west and northwest of the Eastonville Segment 2 Improvements project site.

b. Existing Subbasin Description

Eastonville Road Segment 2 (the site) accepts flows from areas to the west and northwest of the site, including portions of Meridian Ranch and Latigo Trails Development. The flows and design points used in the following descriptions are taken from the approved Meridian Ranch MDDP and The Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch provides the detailed analysis of the pond releases and flows as they outfall from those developments upstream of this Eastonville Road site. For the purpose of this report, full buildout of the Meridian Ranch development was assumed; hence the developed peak flow rates from the "future buildout conditions" for the entirety of Meridian Ranch were used to evaluate the existing conditions below.

Basin EX1 (The Sanctuary Filing 1 FG-38) is 85.16 acres of undeveloped area and temporary pavement area to the crown of Eastonville Road roadway. Stormwater from this basin combines with flows from Latigo Trails South Pond (The Sanctuary Filing 1 G-17) is conveyed overland to DP1 for a total area of 321.5 acres (The Sanctuary Filing 1 G18). Flows at DP1 ($Q_5 = 28.3$ cfs $Q_{100} = 365.2$ cfs) are conveyed across Eastonville Road in an existing 24" CMP culvert and discharges to Gieck Ranch Tributary #2 (Channel B). This basin is located upstream of the Eastonville project and is presented here to show where flows go that are upstream of the project site. The Eastonville project will have no impact on this basin.

Basin EX2 (The Sanctuary Filing 1 FG36) is 18.88 acres undeveloped area, parking lot, and temporary pavement to the crown of Eastonville Road roadway. Stormwater from this basin is conveyed overland to DP2 (The Sanctuary Filing 1 FG36). Flows at DP2 ($Q_5 = 1.7$ cfs $Q_{100} = 18.8$ cfs) are conveyed southerly across Rex Road in an existing 24" RCP culvert and discharges to Basin EX3.

Basin EX3 is 51.06 acres of undeveloped area and the Falcon Regional Park ball fields and temporary pavement to the crown of Eastonville Road roadway. Stormwater from this basin combines with flows from The Sanctuary Filing 1 Design Point G15 via an existing roadside swale where it then combines with DP2 flows. Flows travel to DP3 for a total area of 131.3 acres (The Sanctuary Filing 1 Design Point G16) where they are conveyed across Eastonville Road in an existing 24" CMP culvert ($Q_5 = 6.1$ cfs $Q_{100} = 112.1$ cfs).

Basin EX4 is 62.87 acres of undeveloped area and temporary pavement to the crown of Eastonville Road roadway. Stormwater from this basin combines with flows from The Sanctuary Filing 1 Design Point G12 (Meridian Ranch Pond G) to Gieck Ranch Tributary #1 and an existing roadside swale to DP 4 for a total area of 832.7 acres (The Sanctuary Filing 1 Design Point G06) ($Q_5 = 22.4$ cfs $Q_{100} = 491$ cfs). Flows at DP4 are conveyed across Eastonville Road in an existing 18" CMP culvert and discharges to Gieck Ranch Tributary #1 (Channel A).

c. Proposed Subbasin Description

Description of Proposed Project

The proposed project includes improvements to Eastonville Road from Londonderry Drive to Rex Road. As described above, the current condition of the existing roadway in this area consists of 26' wide temporary pavement roadway with 4' wide sand shoulders and weedy swales located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts.

The proposed improvements from Rex Road south to the southern property line of the proposed Grandview Reserve Filing 1 include removal of the 26' wide temporary pavement and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). This includes Basins EA1-EA11.

Refer to the Eastonville Road Segment 1 improvements FDR for subbasin information and calculations south of subbasins EA10 & EA11.

Eastonville Road Basins

Basin EA1 is 0.22 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.7$ cfs $Q_{100} = 1.3$ cfs) is conveyed in curb and gutter to DP2. Flows at DP2 are captured in a 5' Type R sump inlet (Public) and piped to Pond C, a private full spectrum sand filter basin. Basin EA1 will be detained by the Pond C Sand Filter.

Basin EA2 is 0.25 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.5$ cfs) is conveyed in curb and gutter to DP3. Flows at DP3 are captured in a 5' Type R sump inlet (Public) and piped to Pond C. Basin EA2 will be detained by the Pond C Sand Filter.

Basin EA3 is 0.20 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.7$ cfs $Q_{100} = 1.4$ cfs) is conveyed in curb and gutter to DP5. Flows at DP5 are captured in a 10' Type R sump inlet (Public) and piped to DP9.1. Basin EA3 will not be detained per the Meridian Ranch MDDP as this basin has been over-detained within Meridian Ranch.

Basin EA4 is 0.17 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.5$ cfs $Q_{100} = 1.1$ cfs) is conveyed in curb and gutter to DP6. Flows at DP6 are captured in a 5' Type R sump inlet (Public) and piped to DP9.1. Basin EA4 will not be detained per the Meridian Ranch MDDP as this basin has been over-detained within Meridian Ranch.

Basin EA5 is 0.16 acres of undeveloped area and includes the Pond C Sand Filter. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 0.4$ cfs) is flows directly into the Pond C Sand Filter.

Basin EA6 is 0.70 acres of undeveloped area that will be future roadway (Rex Road) once the Grandview Filing 1 development is constructed. Stormwater ($Q_5 = 3.1$ cfs $Q_{100} = 5.5$ cfs) is conveyed in a swale to DP10: Temporary Sediment Basin #1 (TSB #1). TSB #1 has been sized for the paved area of the roundabout and the future paved area of Rex Road within Basin EA6. The swale will be removed with the construction of Rex Road curb and gutter. Basin EA6 will be detained in TSB #1.

Basin EA7 is 0.65 acres of undeveloped area that will be future roadway (Rex Road) once the Grandview Filing 1 development is constructed. Stormwater ($Q_5 = 2.5$ cfs $Q_{100} = 4.7$ cfs is conveyed in a swale to DP10: Temporary Sediment Basin #1 (TSB #1). TSB #1 has been sized for the paved area of the roundabout and the future paved area of Rex Road within Basin EA7. The swale will be removed with the construction of Rex Road curb and gutter. Basin EA7 will be detained in TSB #1.

Basin EA8 is 2.08 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 5.0$ cfs $Q_{100} = 9.0$ cfs) is conveyed in curb and gutter to DP14. Flows at DP14 are captured in a 10' Type R sump inlet (Public) and piped to Pond B. Basin EA8 will be detained Pond B Full Spectrum Detention Basin.

Basin EA9 is 2.99 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 4.6$ cfs $Q_{100} = 9.5$ cfs) is conveyed in curb and gutter to DP15. Flows at DP15 are captured in a 10' Type R sump inlet (Public) and piped to Pond B. Basin EA9 will be detained Pond B Full Spectrum Detention Basin.

Basin EA10 is 0.12 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.6$ cfs $Q_{100} = 1.1$ cfs) is conveyed in curb and gutter to DP16.1 Flows from DP16.1 drain south and captured in a 10' Type R sump inlet (Public) and piped to Pond B. This inlet design is in the Eastonville Road Segment 1 FDR. Basin EA10 will be detained Pond B Full Spectrum Detention Basin which is detailed in the Eastonville Road Segment 1 FDR.

Basin EA11 is 0.19 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.5$ cfs $Q_{100} = 1.0$ cfs) is conveyed in curb and gutter to DP17.1. Flows from DP17.1 drain south and captured in a 10' Type R sump inlet (Public) and piped to Pond B. This inlet design is in the Eastonville Road Segment 1 FDR. Basin EA10 will be detained Pond B Full Spectrum Detention Basin which is detailed in the Eastonville Road Segment 1 FDR.

Offsite Basins

Basin OS1 (EX1) is 85.16 acres of undeveloped area. Stormwater from this basin combines with flows from Latigo Trails South Pond (The Sanctuary Filing 1 G-17) is conveyed overland to DP1 (The Sanctuary Filing 1 G18). Flows at DP1 ($Q_5 = 28.3$ cfs $Q_{100} = 365.2$ cfs) are conveyed across Eastonville Road in an existing 24" CMP culvert and discharges to Gieck Ranch Tributary #2 (Channel B). This basin is located upstream of the Eastonville project and is presented here to show where flows go that are upstream of the project site. The Eastonville project will have no impact on this basin.

Basin OS2 is 15.03 acres of undeveloped land and parking area north of Rex Road and contains a portion of Rex Road ($Q_5 = 4.2$ cfs $Q_{100} = 21.6$ cfs). Stormwater is conveyed to DP7 and is captured in a proposed 24" RCP culvert and piped south across Rex Road. No development associated with Eastonville Road will occur in Basin OS2.

Basin OS3 is 1.00 acre of undeveloped land ($Q_5 = 0.2$ cfs $Q_{100} = 1.2$ cfs) along the western edge of Eastonville Road. Stormwater is conveyed to DP8 and is captured in a proposed 18" RCP culvert and piped south across Rex Road. No development associated with Eastonville Road will occur in Basin OS3.

Basin OS4 is 9.60 acres of undeveloped land (Q_5 = 3.8 cfs Q_{100} = 17.3 cfs) along the western edge of Eastonville Road. Stormwater is conveyed to DP11 in a roadside swale where it combines with Meridian Ranch DP G15 flows (Q_5 = 8 cfs Q_{100} = 54.0 cfs) before being captured in a proposed 30" RCP culvert and piped to Channel B. The combined flows as it reaches DP11 is Q_5 = 10.5 cfs Q_{100} = 144.5 cfs.

Basin OS5 is 40.26 acres of undeveloped land and Falcon Regional Park (Q_5 = 13.3 cfs Q_{100} = 64.0 cfs) along the western edge of Eastonville Road. Stormwater is conveyed to DP12 in a roadside swale and is captured in a proposed 48" RCP culvert and piped to Channel B.

Basin OS6 is 60.83 acres of undeveloped land (Q_5 = 8.9 cfs Q_{100} = 60.6 cfs) along the western edge of Eastonville Road. Basin OS6 flows are adapted directly from the approved The Sanctuary Filing 1 FDR.

Stormwater is conveyed to DP16 in a roadside swale where it combines with Meridian Ranch DP G12 flows before being conveyed across Eastonville Road in dual 10' \times 3.5' RCBC to Channel A. The combined flows at DP16 (EX4) are $Q_5 = 22.4$ cfs $Q_{100} = 491$ cfs.

Basin OS7 is future outflow of 11.42 acres of a future stormwater detention pond outflow developed land that will be detained to meet existing conditions ($Q_5 = 3.4$ cfs $Q_{100} = 22.7$ cfs) in the southeast corner of Eastonville Road and Rex Road. From there, stormwater is piped to Channel B.

IV. Drainage Facility Design

a. General Concept

The proposed improvements from Rex Road south to the southern property line of the proposed Grandview Reserve Filing 1 include removal of the 26' wide temporary pavement and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). Inlets will be placed at low points and roundabout entrances. Stormwater from this roadway will be piped to either a full spectrum detention pond, sand filter or temporary sediment basin. All ponds and water quality features will discharge at less than historic rates.

b. Water Quality & Detention

Pond C (Sand Filter)

Water quality and stormwater detention for Basins EA1, 2, & 5 is provided in Sand Filter Basin C. SFB C is a private, full spectrum sand filter basin within the Grandview Reserve property to be developed in the future. In Pond C, a total of 0.63 from the proposed project acres at 54% composite imperviousness will be detained. The minimum required acreage of treatment is 0.63 acres. The WQCV is 0.009 ac-ft, the EURV is 0.037 ac-ft, and the 100-year detention volume is 0.062 ac-ft. The WQCV, EURV and 100-year storms are released in 12, 41 and 44 hours, respectively. A 10' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 12' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard south. SFB C outfalls towards the future Channel B improvements at historic runoff rates. Runoff from Pond C will follow historic drainage patterns and not exceed historic flow rates.

Pond B (Full Spectrum Detention Basin)

EDB B "Pond B" will provide detention and water quality treatment for subbasins EA8 & EA9 per this report. Refer to the Eastonville Road Segment 1 FDR for detention basin details.

c. Inspection and Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated that all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

All private detention ponds are to be owned and maintained by the Grandview Reserve Metropolitan District NO. 2 (DISTRICT), once established, unless an agreement is reached stating otherwise. Maintenance access for all full spectrum detention facilities will be provided from public Right-of-Way. Maintenance access for the drainageways will be provided through the proposed tracts.

V. Wetlands Mitigation

There is an existing wetland in Gieck Ranch Tributary #1 (Channel A). The wetland is contained entirely within the channel and is classified as jurisdictional. A Nationwide Wetland Permit will be applied for due to the disturbed area at the Dawlish Roundabout. Wetlands maintenance will be the responsibility of the DISTRICT.

VI. Four Step Method to Minimize Adverse Impacts of Urbanization

Step 1 – Reducing Runoff Volumes: Low impact development (LID) practices are utilized to reduce runoff at the source. In general, stormwater discharges are routed across pervious areas prior to capture in storm sewer. This practice promotes infiltration and reduces peak runoff rates. The Impervious Reduction Factor (IRF) method was used and is presented in Appendix D.

Step 2 – Treat and slowly release the WQCV: This step utilizes full spectrum water quality and detention to capture the WQCV and slowly release runoff from the site. Onsite full spectrum detention pond provides water quality treatment for the site. The WQCV is released over a period of at least 12 hours for SFBs and 40 hours for EDBs while the EURV is released over a period of 40-44 hours for SFBs and 68 - 72 hours for EDBs as recommended by the MHFD.

Step 3 – Stabilize stream channels: This step establishes practices to stabilize drainageways and provide scour protection at stormwater outfalls. Erosion protection is provided at all concentrated stormwater discharge points in the form of riprap pads.

Step 4 – Consider the need for source controls: No industrial or commercial uses are proposed within this development and therefore no source controls are proposed.

VII. Drainage and Bridge Fees

Gieck Ranch drainage basin has not been established as a fee basin within El Paso County. Therefore, no drainage basin fees are due at time of platting.

VIII. Opinion of Probable Cost

An engineer's opinion of probable cost has been provided below for public and private drainage infrastructure improvements. This includes cost estimates for the public full spectrum sand filter basin C. All required stormwater infrastructure will be installed per El Paso County Requirements.

Public Infrastructure Cost Estimate										
Line Item	Quantity	Unit Price	Cost							
15" Reinforced Concrete Pipe	128	\$45 LF	\$5,760							
18" Reinforced Concrete Pipe	808	\$76 LF	\$61,408							
24" Reinforced Concrete Pipe	161	\$114 LF	\$18,354							
48" Reinforced Concrete Pipe	1678	\$187 LF	\$313,786							
15" CDOT FES	1	\$500 EA	\$500							

24" CDOT FES	2	\$684	EA	\$1,368
48" CDOT FES	2	\$912	EA	\$1,824
6' DIA Storm Manhole	12	\$7,734	EA	\$92,808
10' CDOT Type R Inlet	6	\$6,703	EA	\$40,218
Rip Rap, d50 size from 6"-24"	2	\$97	Tons	\$194
3' x 10' Concrete Box Culvert w/ Wingwalls	110	\$400	Tons	\$44,000
10% Contingency				\$58,022
TOTAL:				\$638,242

Public SFB C Cost Estimate									
Line Item	Quantity	Unit F	Cost						
Rip Rap, d50 size from 6"-24" (Inflow)	1.5	\$97	Tons	\$146					
Sand Filter Media	44	\$100	/CY	\$4,400					
4" Perforated PVC Underdrain	10	\$10	/LF	\$100					
12" ABC Maintenance Access	19	\$40	/CY	\$760					
Outlet Structure w/ Orifice Plate	1	\$5,000	EA	\$5,000					
Rip Rap, d50 size from 6"-24" (Spillway)	19.5	\$97	Tons	\$1,892					
12" RCP Outlet Pipe	150	\$60	/LF	\$9,000					
12" RCP FES	1	\$350	EA	\$350					
10% Contingency				\$2,165					
TOTAL:				\$23,812					

IX. Hydraulic Grade Line Analysis

Hydraulic grade line analysis and final pipe sizes have been sized and and calculations are provided in Appendix C. All proposed storm sewer will be designed in accordance with El Paso County Drainage Criteria Manuals.

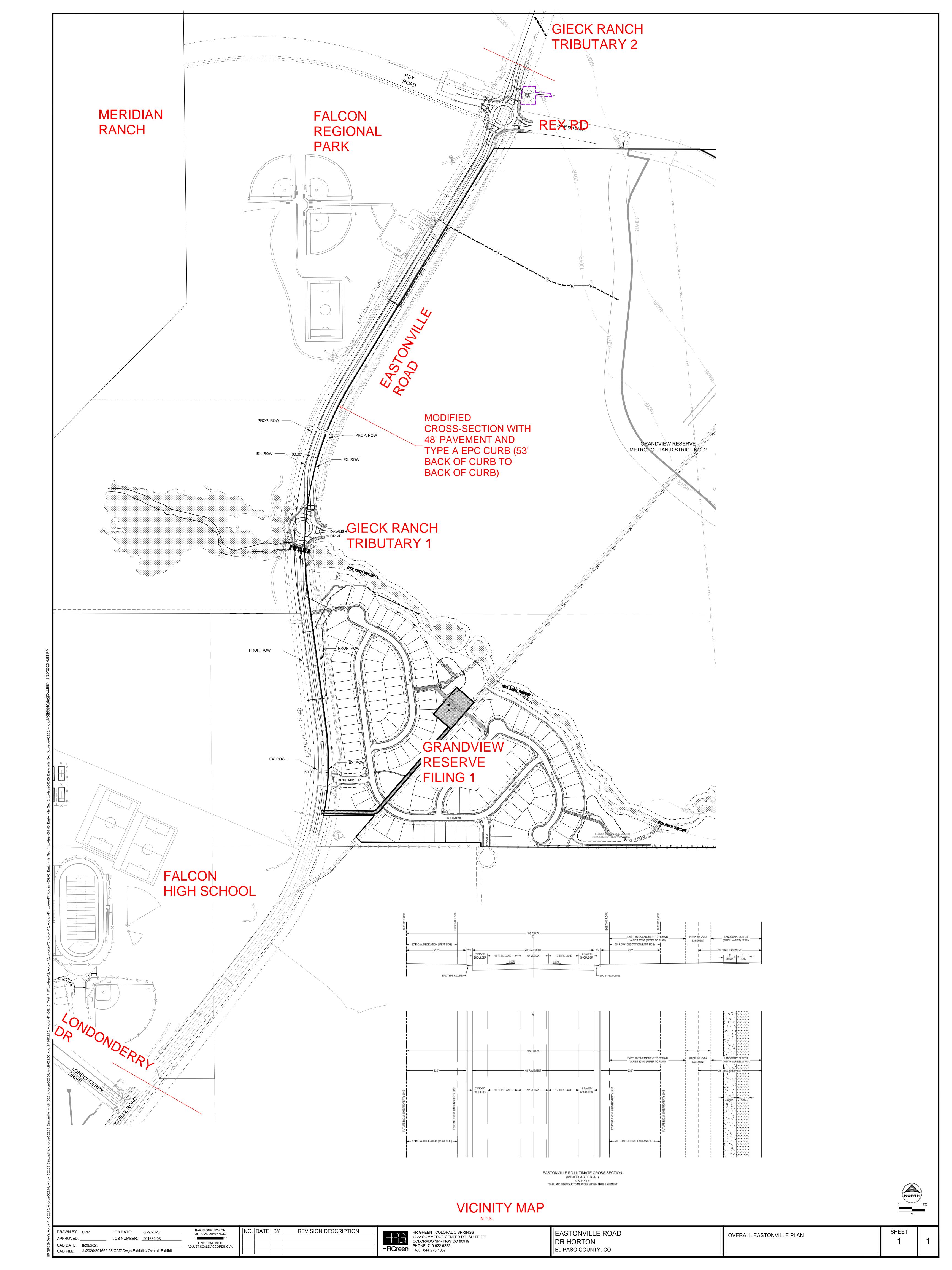
X. Summary

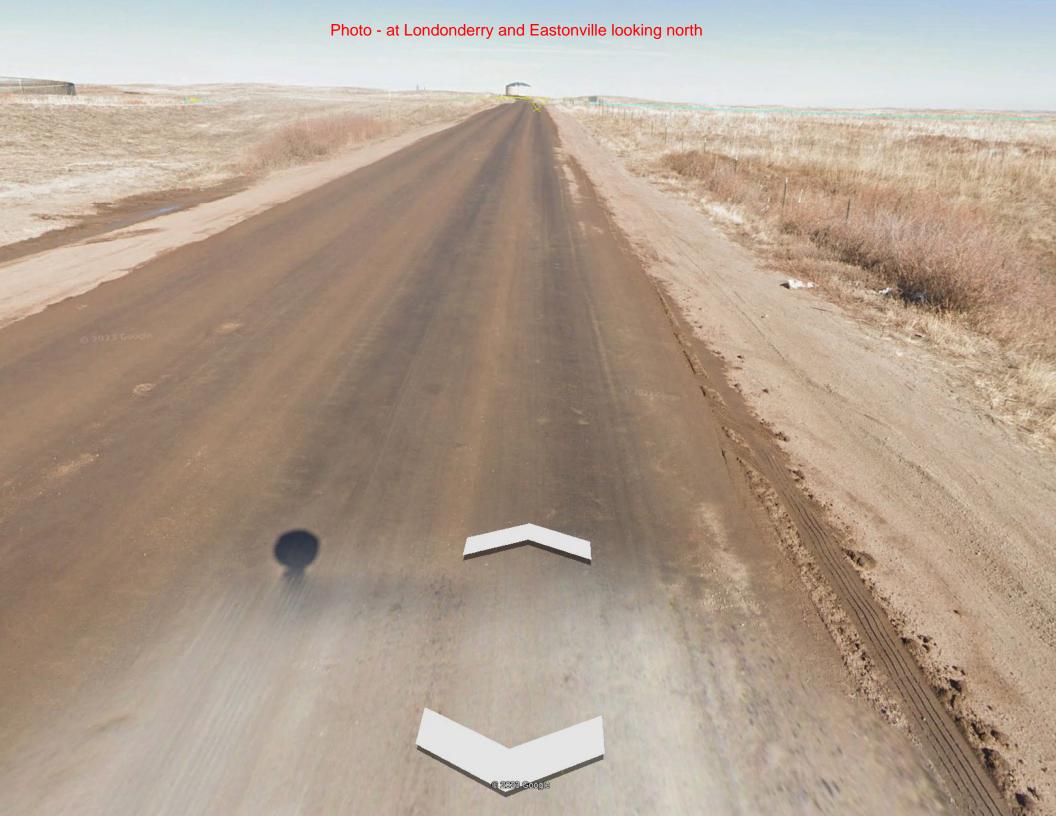
Eastonville Road lies within the Gieck Ranch Drainage Basin. Water quality and detention for the site is provided in full spectrum water quality and detention ponds, sand filters and temporary sediment basins. There is one major drainageway that traverses the site: Gieck Ranch Tributary 1. The water quality and detention features ponds will be maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT). All drainage facilities were sized per the El Paso County Drainage Criteria Manuals.

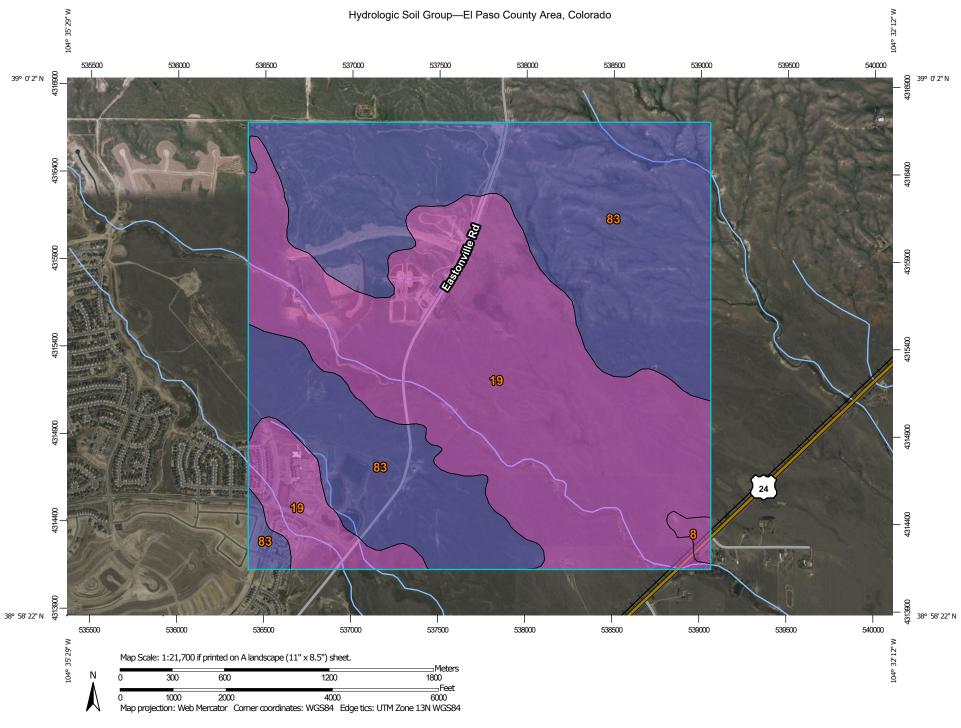
The development of this project will not adversely affect downstream properties.

XI. Drawings

Please refer to the appendices for vicinity and drainage basin maps.


XII. References


- 1. City of Colorado Springs Drainage Criteria Manual, May 2014, Revised January 2021.
- 2. Drainage Criteria Manual of El Paso, Colorado, October 2018.
- 3. Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018.
- 4. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 5. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.
- 6. "The Sanctuary Filing 1 at Meridian Ranch" prepared by Tech Contactors, August 2022.



APPENDIX A - VICINITY MAP, PHOTOS, SOIL MAP, FEMA MAP

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: El Paso County Area, Colorado Soil Rating Lines Survey Area Data: Version 19, Aug 31, 2021 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. A/D Date(s) aerial images were photographed: Sep 11, 2018—Jun 12, 2021 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	А	10.4	0.6%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	839.5	49.8%
83	Stapleton sandy loam, 3 to 8 percent slopes	В	835.7	49.6%
Totals for Area of Inter	est	1,685.6	100.0%	

Description

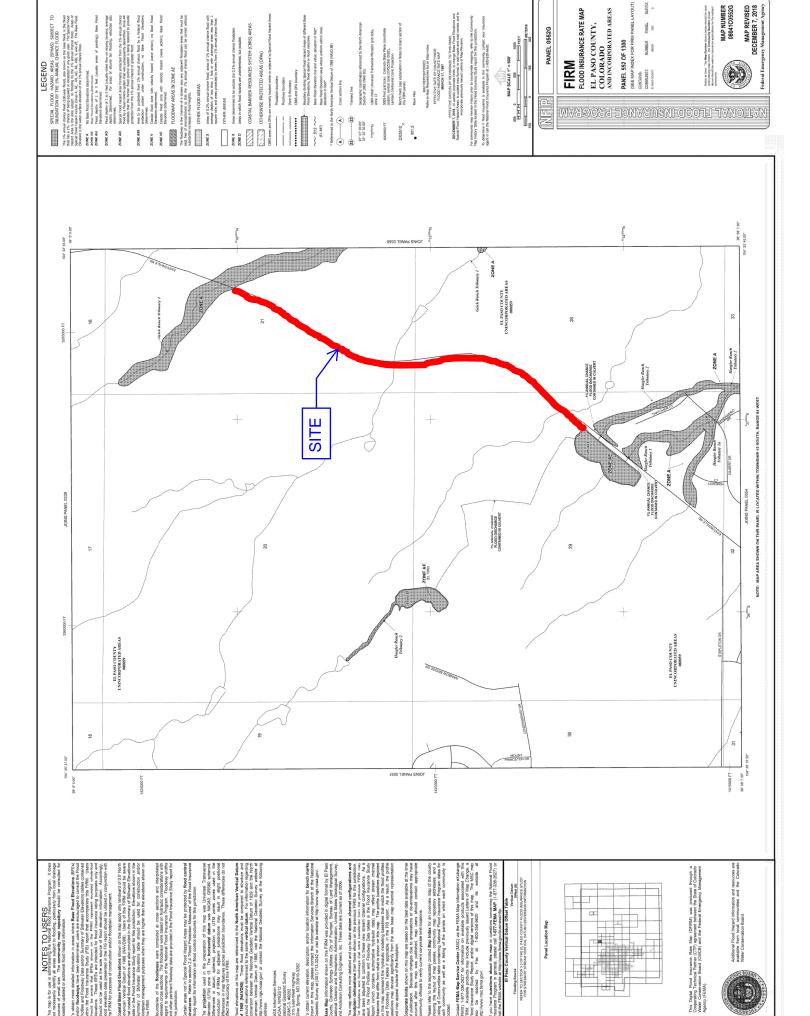
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOAA Atlas 14, Volume 8, Version 2 Location name: Elbert, Colorado, USA* Latitude: 38.9796°, Longitude: -104.5696° Elevation: 6996 ft**

evation: 6996 ft**
source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

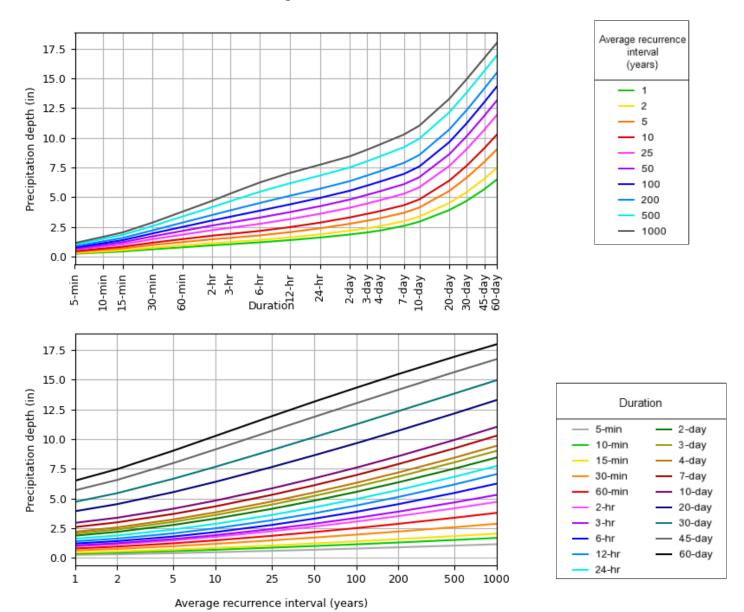
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

D				Average	recurrence	interval (ye	ars)			
Duration	1 2		5	10	25	50	100	200	500	1000
5-min	0.239 (0.189-0.303)	0.291 (0.231-0.370)	0.381 (0.301-0.486)	0.461 (0.361-0.589)	0.576 (0.440-0.768)	0.671 (0.499-0.904)	0.770 (0.554-1.06)	0.875 (0.604-1.24)	1.02 (0.678-1.48)	1.14 (0.733-1.67
10-min	0.350 (0.277-0.444)	0.426 (0.338-0.542)	0.558 (0.441-0.711)	0.674 (0.529-0.863)	0.844 (0.644-1.12)	0.982 (0.731-1.32)	1.13 (0.811-1.56)	1.28 (0.884-1.81)	1.49 (0.992-2.17)	1.66 (1.07-2.44)
15-min	0.426 (0.338-0.541)	0.520 (0.412-0.660)	0.681 (0.537-0.867)	0.823 (0.645-1.05)	1.03 (0.785-1.37)	1.20 (0.891-1.62)	1.37 (0.988-1.90)	1.56 (1.08-2.21)	1.82 (1.21-2.65)	2.03 (1.31-2.98
30-min	0.608 (0.482-0.771)	0.740 (0.586-0.940)	0.968 (0.764-1.23)	1.17 (0.916-1.49)	1.46 (1.11-1.94)	1.70 (1.26-2.28)	1.94 (1.40-2.68)	2.20 (1.52-3.12)	2.57 (1.71-3.73)	2.86 (1.84-4.19
60-min	0.775 (0.615-0.984)	0.933 (0.739-1.18)	1.21 (0.956-1.54)	1.46 (1.15-1.87)	1.84 (1.41-2.47)	2.16 (1.61-2.92)	2.49 (1.80-3.45)	2.85 (1.97-4.05)	3.37 (2.24-4.90)	3.78 (2.44-5.54
2-hr	0.943 (0.754-1.19)	1.12 (0.898-1.42)	1.46 (1.16-1.84)	1.76 (1.39-2.23)	2.22 (1.72-2.97)	2.62 (1.97-3.52)	3.04 (2.21-4.19)	3.50 (2.45-4.95)	4.16 (2.80-6.03)	4.70 (3.06-6.85)
3-hr	1.03 (0.829-1.29)	1.22 (0.978-1.53)	1.57 (1.25-1.97)	1.90 (1.51-2.40)	2.41 (1.88-3.22)	2.86 (2.17-3.84)	3.34 (2.45-4.60)	3.88 (2.73-5.48)	4.66 (3.15-6.74)	5.29 (3.46-7.69)
6-hr	1.20 (0.968-1.48)	1.40 (1.13-1.74)	1.78 (1.44-2.22)	2.16 (1.73-2.70)	2.76 (2.18-3.66)	3.28 (2.52-4.39)	3.86 (2.86-5.29)	4.51 (3.20-6.34)	5.46 (3.73-7.86)	6.24 (4.12-9.01)
12-hr	1.38 (1.13-1.70)	1.61 (1.31-1.98)	2.05 (1.66-2.53)	2.48 (2.00-3.07)	3.15 (2.51-4.15)	3.74 (2.89-4.96)	4.39 (3.28-5.96)	5.12 (3.66-7.13)	6.17 (4.25-8.82)	7.04 (4.69-10.1)
24-hr	1.60 (1.31-1.95)	1.87 (1.54-2.28)	2.38 (1.94-2.91)	2.85 (2.32-3.51)	3.60 (2.88-4.67)	4.24 (3.29-5.56)	4.94 (3.71-6.63)	5.71 (4.12-7.87)	6.82 (4.73-9.66)	7.73 (5.20-11.0)
2-day	1.85 (1.54-2.24)	2.18 (1.80-2.63)	2.76 (2.28-3.34)	3.29 (2.70-4.01)	4.11 (3.30-5.27)	4.80 (3.76-6.22)	5.54 (4.19-7.36)	6.35 (4.62-8.68)	7.50 (5.25-10.5)	8.44 (5.73-11.9)
3-day	2.03 (1.69-2.44)	2.39 (1.98-2.87)	3.02 (2.50-3.64)	3.60 (2.97-4.36)	4.47 (3.60-5.69)	5.20 (4.08-6.70)	5.98 (4.55-7.90)	6.83 (4.99-9.28)	8.03 (5.65-11.2)	9.00 (6.15-12.7)
4-day	2.18 (1.82-2.61)	2.56 (2.13-3.06)	3.22 (2.68-3.87)	3.82 (3.16-4.62)	4.73 (3.83-6.00)	5.49 (4.33-7.04)	6.30 (4.81-8.30)	7.18 (5.26-9.72)	8.43 (5.94-11.7)	9.43 (6.46-13.3)
7-day	2.58 (2.17-3.07)	2.98 (2.50-3.54)	3.68 (3.08-4.39)	4.32 (3.60-5.18)	5.29 (4.30-6.65)	6.09 (4.84-7.76)	6.96 (5.34-9.09)	7.89 (5.82-10.6)	9.21 (6.55-12.8)	10.3 (7.10-14.4)
10-day	2.93 (2.48-3.47)	3.36 (2.84-3.98)	4.13 (3.47-4.90)	4.81 (4.02-5.74)	5.83 (4.76-7.28)	6.68 (5.32-8.45)	7.58 (5.85-9.86)	8.55 (6.34-11.4)	9.92 (7.08-13.7)	11.0 (7.65-15.4)
20-day	3.91 (3.33-4.58)	4.51 (3.84-5.29)	5.52 (4.68-6.50)	6.39 (5.39-7.55)	7.63 (6.25-9.37)	8.62 (6.90-10.8)	9.64 (7.47-12.4)	10.7 (7.98-14.1)	12.2 (8.74-16.6)	13.3 (9.31-18.4
30-day	4.70 (4.02-5.47)	5.44 (4.65-6.34)	6.65 (5.66-7.78)	7.66 (6.49-9.00)	9.06 (7.44-11.0)	10.1 (8.15-12.5)	11.2 (8.74-14.3)	12.3 (9.24-16.2)	13.8 (9.98-18.7)	15.0 (10.5-20.6)
45-day	5.67 (4.88-6.57)	6.55 (5.63-7.60)	7.97 (6.82-9.27)	9.12 (7.77-10.7)	10.7 (8.79-12.9)	11.9 (9.56-14.5)	13.0 (10.2-16.4)	14.2 (10.6-18.4)	15.6 (11.3-21.0)	16.7 (11.9-23.0)
60-day	6.48 (5.60-7.48)	7.46 (6.43-8.62)	9.01 (7.74-10.4)	10.3 (8.77-11.9)	11.9 (9.82-14.3)	13.1 (10.6-16.0)	14.3 (11.2-18.0)	15.5 (11.7-20.0)	16.9 (12.3-22.6)	18.0 (12.8-24.6)

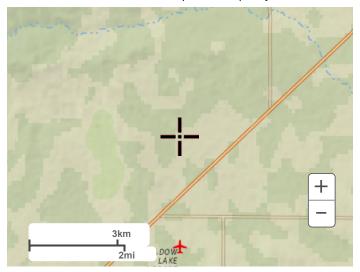

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

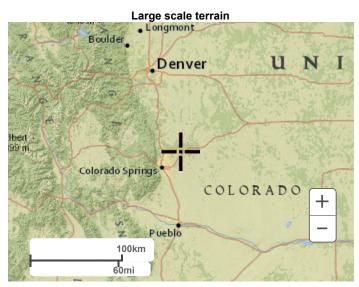
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

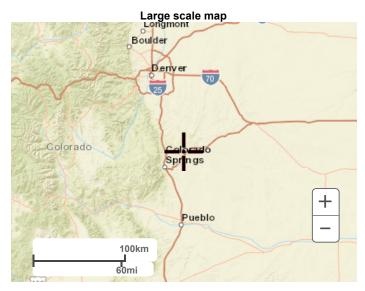
Back to Top

PF graphical

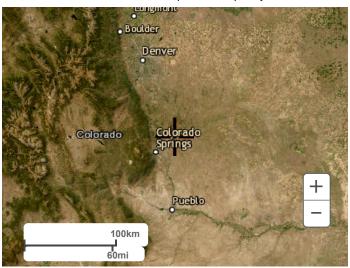
PDS-based depth-duration-frequency (DDF) curves Latitude: 38.9796°, Longitude: -104.5696°


NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Wed Nov 22 20:22:49 2023


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

National Water Center

1325 East West Highway

Silver Spring, MD 20910

Questions?: HDSC.Questions@noaa.gov

Disclaimer

APPENDIX B - HYDROLOGIC CALCULATIONS

EASTONVILLE ROAD	Calc'd by:	СМ
EXISTING CONDITIONS	Checked by:	СМ
EL PASO COUNTY, CO	Date:	2/1/2024

SUMMARY RUNOFF TABLE										
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)						
G18*	321.53	-	28.3	365.2						
FG36*	18.88	-	1.7	18.8						
G16*	131.26	-	6.1	112.1						
G06*										
		ADEA AND O TAKE	N EDOM	THE CANOTI						

DESIGN POINT SUMMARY TABLE											
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ_{100} (cfs)								
1	G18*	28.3	365.2								
2	FG36*	1.7	18.8								
3	G16*	6.1	112.1								
4	G06*	22.4	491.0								

^{*} AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

コンフ	EASTONVILLE ROAD								Calc'd by:		СМ						
	EXISTING CONDITIONS								Checl	ked by:		СМ					
HRGreen	EL PASO COUNTY, CO								Date:	Date:		2/1/2024					
				CO	MPOSI	TE '	C' F	ACTOF	RS								
BASIN	UNDEVELOPED	WALKS & DRIVES	SINGLE FAMILY	TOTAL		SOIL UNDEVELOPED WALKS & DRIVES SINGLE FAMILY IMPERV							COMPOSITE MPERVIOUSNESS & C				
	ACRES		TYPE	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	% I	C ₅	C ₁₀₀		
EX1 - EX4*																	
* ELOWE TO DECL	CN DOINTS 1-4 WEDE	TAKEN EDOM	"THE CANCELIA	DV FILING	1 EDD" SO	CWAS	NOT		TED FOR	CONTRI	DITING						

^{*} FLOWS TO DESIGN POINTS 1-4 WERE TAKEN FROM "THE SANCTUARY FILING 1 FDR" SO C WAS NOT CALCULATED FOR CONTRIBUTING AREAS EX1 - EX4

EASTONVILLE ROAD	Calc'd by:	СМ
EXISTING CONDITIONS	Checked by:	СМ
EL PASO COUNTY, CO	Date:	2/1/2024

	TIME OF CONCENTRATION												
BAS	IN DATA		OVER	LAND TIM		TOTAL							
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)		
EX1-EX4*													

* FLOWS TO THESE DESIGN POINTS WERE TAKEN FROM "THE SANCTUARY FILING 1 FDR" SO TC WAS NOT CALCULATED FOR CONTRIBUTING AREAS EX1 - EX4

FORMULAS:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad V = C_v S_w^{0.5}$$

Table 6-7. Conveyance Coefficient, C_{ν}

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C_v value based on type of vegetative cover.

EASTONVILLE ROAD	Calc'd by:	СМ
EXISTING CONDITIONS	Checked by:	СМ
DESIGN STORM: 5-YEAR	Date:	2/1/2024

									_						_									
				DI	RECT	RUNO	FF		T	OTAL	RUNC	FF	STREET			P	IPE		TI	RAVEI	L TIME	REMARKS		
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₅	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t_c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Ó	C ₅ *A (ac)	Q _{PIPE} (cfs)	C ₅ *A (ac)	P	PIPE SIZE (in)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (min			
	1	G18*	321.53									28.3										DP 1 CAPTURED IN GIECK RANCH TRIB #2 (CHANNEL B)		
	2	FG36*	18.88									1.7										DP 2 CAPTURED IN 24" RCP CULVERT, PIPED TO BASIN EX3		
	3	G16*	131.26									6.1										BASIN EX2, DP2 & DPG15 (SANCTUARY FDR Q5=3 CFS) CAPTURED IN 24" CMP CULVERT, PIPED ACROSS EASTONVILLE ROAD		
	4	G06*	832.70									22.4										BASIN EX4 & DPG12 (SANCTUARY FDR Q5 = 21 CFS) CAPTURED IN 18" CMP CULVERT, PIPED ACROSS EASTONVILLE ROAD TO GIECK RANCH TRIB #1 (CHANNEL A)		
																						* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR		

EASTONVILLE ROAD	Calc'd by:	СМ
EXISTING CONDITIONS	Checked by:	СМ
DESIGN STORM: 100-YEAR	Date:	2/1/2024

				DII	RECT	RUNOF	F		TO	TAL F	RUNOFF	S	TREE	ET		PII	PE		TR	AVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t_c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.) Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	% 3COPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	1	G18*	321.53								365.2	,										DP 1 CAPTURED IN GIECK RANCH TRIB #2 (CHANNEL B)
	'	010	021.00								000.2											DI TOM TORLES IN GLECKTO MACITY TRIB II Z (GITAMINELE D)
	2	FG36*	18.88								18.8	3										DP 2 CAPTURED IN 24" RCP CULVERT, PIPED TO BASIN EX3
	3	G16*	131.26								112.1											BASIN EX2, DP2 & DPG15 (SANCTUARY FDR Q5=3 CFS) CAPTURED IN 24" CMP CULVERT, PIPED ACROSS EASTONVILLE ROAD
	4	G06*	832.70								491.0)										BASIN EX4 & DPG12 (SANCTUARY FDR Q5 = 21 CFS) CAPTURED IN 18" CMP CULVERT, PIPED ACROSS EASTONVILLE ROAD TO GIECK RANCH TRIB #1 (CHANNEL A)
																						* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
EL PASO COUNTY, CO	Date:	2/2/2024

SUMMARY RUNOFF TABLE											
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)							
EA1	0.22	73	0.8	1.5							
EA2	0.25	72	0.9	1.7							
EA3	0.20	70	0.7	1.3							
EA4	0.17	65	0.5	1.1							
EA5	0.16	0	0.1	0.4							
EA6	0.70	100	3.2	5.3							
EA7	0.65	89	2.6	4.8							
EA8	2.08	99	5.2	8.8							
EA9	2.99	63	5.0	10.4							
EA10	0.16	75	0.6	1.1							
EA11	0.15	67	0.5	1.0							
*G18	321.53	-	28.3	365.2							
*FG36	18.88	-	1.7	18.8							
OS3	1.00	2	0.3	2.2							
OS4	9.60	9	4.8	21.6							
*G16	131.26	-	6.1	112.1							
*G06	832.70	-	22.4	491.0							
OS7	11.42	2	3.6	24.4							

^{*} AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

DESIGN POINT SUMMARY TABLE											
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ ₁₀₀ (cfs)								
1	G18	28.3	365.2								
2	FG36	1.7	18.8								
2.1	EA1	0.8	1.5								
3	G16, DP11	6.1	112.1								
3.1	EA2, DP2.1	1.6	3.2								
4	G06	22.4	491.0								
4.1	EA5, DP3.1	1.7	3.4								
5	EA3	0.7	1.3								
6	DP5, EA4	1.2	2.4								
6.1	DP6, DP8	2.9	22.4								
7	OS3	0.3	2.2								
8	DP2, DP7	2.0	21.0								
9	DP6.1	2.9	22.4								
10	EA6, EA7	5.6	9.9								
11	OS4, DP9	7.5	44.0								
12	OS7	3.6	24.4								
13	DP3, DP12	26.0	136.4								
14	EA8	5.2	8.8								
15	EA9	5.0	10.4								
15.1	DP14, DP15	10.2	19.1								
16.1	EA10	0.6	1.1								
17.1	EA11	0.5	1.0								

G06

OS7

Pond A

0.34

EASTONVILLE ROAD SEG 2 PROPOSED CONDITIONS

Calc'd by: SPC

Checked by: СМ

832.70

11.42

0.63

2

54

11/27/2023 Date:

SOIL TYPE: HSG A&B

COMPOSITE 'C' FACTORS																				
		LAND USE TYPE																		
	Paved Historic Flow Analysis Greenbelts, Agriculture							Lawns	•	Land (Jse Und	defined	Land (Jse Und	lefined		COMPOSITE			
	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I C ₅ C ₁₀₀			%I C ₅ C ₁₀₀				IMPER	IMPERVIOUSNESS & C		
	100	0.90	0.96	2	0.09	0.36	0	0.08	0.35	0	0 0.00 0.00			0.00	0.00	TOTAL		FACTOR		
BASIN		ACRES ACRES						ACRES	•		ACRES			ACRES		ACRES	%I	C ₅	C ₁₀₀	
EA1		0.16						0.06								0.22	73	0.68	0.79	
EA2		0.18						0.07								0.25	72	0.67	0.79	
EA3		0.14						0.06								0.20	70	0.65	0.78	
EA4		0.11						0.06								0.17	65	0.61	0.74	
EA5		0.00						0.16								0.16	0	0.08	0.35	
EA6		0.70						0.00								0.70	100	0.90	0.96	
EA7		0.58						0.07								0.65	89	0.81	0.89	
EA8		2.06						0.02								2.08	99	0.89	0.95	
EA9		1.88						1.11								2.99	63	0.60	0.73	
EA10		0.12						0.04								0.16	75	0.70	0.81	
EA11		0.10						0.05								0.15	67	0.63	0.76	
G18																321.53				
FG36																18.88				
OS3					1.00											1.00	2	0.09	0.36	
OS4		0.70			8.90										9.60	9	0.15	0.40		
G16											•					131.26				

0.29

0.36

0.68

0.09

0.52

11.42

0.00

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
EL PASO COUNTY, CO	Date:	2/2/2024

				TIME O	F CONCE	NTRATI	ON									
BAS	IN DATA		OVER	LAND TIM	E (T;)		TRAVEL TIME (T _t)									
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)					
EA1	0.68	0.22	34	2.0	3.6	20	137	1.4	2.4	1.0	5.0					
EA2	0.67	0.25	34	2.0	3.6	20	60	1.4	2.4	0.4	5.0					
EA3	0.65	0.20	34	2.0	3.8	20	126	1.4	2.4	0.9	5.0					
EA4	0.61	0.17	34	2.0	4.2	20	126	3.8	3.9	0.5	5.0					
EA5	0.08	0.16	20	2.0	6.6	20	20	33.0	11.5	0.0	6.7					
EA6	0.90	0.70	26	2.0	1.5	20	630	1.7	2.6	4.0	5.5					
EA7	0.81	0.65	24	2.0	2.1	20	630	1.7	2.6	4.0	6.1					
EA8	0.89	2.08	26	2.0	1.5	20	2500	0.7	1.7	24.9	26.4					
EA9	0.60	2.99	26	2.0	3.7	20	2500	0.7	1.7	24.9	28.6					
EA10	0.70	0.16	26	2.0	3.0	20	157	0.6	1.5	1.7	5.0					
EA11	0.63	0.15	26	2.0	3.5	20	157	0.6	1.5	1.7	5.2					
G18																
FG36																
OS3	0.09	1.00	220	2.1	21.4	10	345	2.3	1.5	3.8	25.2					
OS4	0.15	9.60	153	3.1	14.8	10	1124	2.5	1.6	11.8	26.6					
G16																
G06																
OS7	0.09	11.42	200	11.6	11.6	10	675	3.4	1.8	6.1	17.7					

FORMULAS:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad V = C_v S_w^{0.5}$$

Table 6-7. Conveyance Coefficient, C_{ν}

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

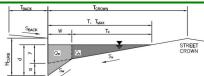
For buried riprap, select C_v value based on type of vegetative cover.

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
DESIGN STORM: 5-YEAR	Date:	2/2/2024

				DIF	RECT	RUNO	FF		Т	OTAL I	RUNO	FF	S'	TREE	т		PIF	E		TF	RAVEL	TIME	REMARKS
	PINIO																		(ft)	Æ		IME (min	
STREET	DESIGN P	BASIN ID	AREA (ac)	C ₅	<i>t_c (</i> min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	% JONE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	% 34018	PIPE SIZE	LENGTH (VEL. (FPS)	TRAVEL T	
	1	G18	321.53					28.3				28.3											
	2	FG36	18.88					1.7				1.7											
	2.1			0.69	F 0	0.45	F 17	<u> </u>	5.0	0.15	5.17	0.8				0.8	0.15	1.0	1.5	56	5.9	0.16	BASIN EA1 CAPTURED IN 5' TYPE R INLET @ DP2, PIPE TO DP3.1
	3	EA1	0.22	0.68	5.0	0.15	5.17					6.1											
	3.1	G16						6.1	5.0	0.32	5.17	1.6				1.6	0.32	5.1	1.5	34	13.4	0.04	BASIN EA2 CAPTURED IN 5' TYPE R INLET@ DP3, PIPE TO DP3.1
	4	EA2	0.25	0.67	5.0	0.17	5.17					22.4											
	4.1	G06						22.4	6.7	0.33	5.17	1.7											COMBINED DP2.1 & DP3.1 @ DP3.1, PIPE TO DP4 (POND A)
	5	EA5	0.16	0.08	6.7	0.01	4.74	0.1	5.0	0.13	5.17	0.7				0.7	0.13	0.5	1.3	48	3.7	0.21	BASIN EA3 CAPTURED IN 5' TYPE R INLET @ DP5, PIPE TO DP6.1
	6	EA3	0.20	0.65	5.0	0.13	5.17	0.7	5.2	0.23	5.11	1.2				1.2	0.23	2.4	1.3	43	8.1	0.09	BASIN EA4 CAPTURED IN 5' TYPE R INLET @ DP6, PIPE TO DP6.1
	6.1	EA4	0.17	0.61	5.0	0.10	5.17	0.5	13.2	0.32	3.71	2.9				2.9	0.32	1.0	2.0	61	7.2	0.14	DP6 & DP8 FLOW @ DP6.1, PIPE TO DP9
	7								13.1		3.72					0.3				43		0.11	BASIN OS3 CAPTURED IN 15" FES, PIPE TO DP8
	8	OS3	1.00	0.09	13.1	0.09	3.72	0.3	13.1		3.72						0.09		1.3			0.10	DP2 & DP7 FLOW @ DP8, PIPE TO DP9
	9	OS3	1.00	0.09	13.1	0.09	3.72	0.3					2.0	0.32	2.1	2.0	0.00	1.0	1.0		2.9	3.56	DP6.1 @ DP9, DISCHARGE TO ROADSIDE SWALE TO DP11
														0.32	۷.۱					015	2.9	3.30	BASIN EA6 & EA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1)
	10	EA6	0.70	0.90	5.5	0.63	5.02	3.2	6.1	1.16	4.88	5.6											BASIN EA6 & EA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1)
		EA7	0.65	0.81	6.1	0.53	4.88	2.6															
	11	OS4	9.60	0.15	17.1	1.43	3.32	4.8			3.32		7.5	1.76	0.5					530		6.25	BASIN OS4, DP9.1 CAPTURED & MERIDIAN RANCH DPG15 (3 CFS) IN 30" FES @ DP11, SWALE TO DP3
	12	OS7	11.42	0.09	14.9	1.03	3.53	3.6	14.9	1.03	3.53	3.6				3.6	1.03	1.0	1.5	28	5.9	0.08	BASIN OS7 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13
	13								14.9	1.03	3.53	26.0											COMBINED DP3 & DP12, PIPE TO CHANNEL B
	14	EA8	2.08	0.89	24.0	1.86	2.81	5.2	24.0	1.86	2.81	5.2				5.2	1.86	7.0	1.5	8	15.7	0.01	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP14, PIPE TO DP15.1
	15	EA9	2.99		24.0		2.81		24.0	1.78	2.81	5.0				5.0	1.78	1.8	1.5	54	7.9	0.11	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1
	15.1			5.55		.,, 0		0.0	24.1	3.64	2.81	10.2											COMBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR
	16.1	EA10	0.16	0.70	5.0	0.11	5.17	0.6	5.0	0.11	5.17	0.6											BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
	17.1	LATO	0.10	0.70	5.0	0.11	5.17	0.0	5.2	0.09	5.11	0.5											BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
		EA11	0.15	0.63	5.2	0.09	5.11	0.5	5														

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
DESIGN STORM: 100-YEAR	Date:	2/2/2024

The color of the	HK	<u> </u>) I																					
The color of the		DIRECT RUNOFF									TOTAL RUNOFF STREET								E		TR	AVEL	TIME	REMARKS
1	T RE	ESIGN	ASIN	AREA (ac)	C ₁₀₀		100 *A (a			<i>t_c (</i> min)	*А (а	/ (in./ hr.)		street	*		PIPE	00*A (a		E SIZE	LENGTH (ft)		TIME	
2 FG36		1	C40						205.0				365.2											
2.1		2											18.8											
EAT 0.22 0.79 6.50 0.77 8.68 1.5 1.5 1.1 12.1 0.0 5.1 1.5 34 13.4 0.04 3.1 EAZ 0.25 0.79 6.0 0.20 8.68 1.7 5.0 0.77 8.68 3.2 1.1 12.1 0.0 5.1 1.5 34 13.4 0.04 4 0.00 4 1.1 12.1 12.1 12.1 12.1 12.1 12.1 12.		2.1	FG36						18.8		0.17	8.68	1.5				1.5	0.17	1.0	1.5	56	5.9	0.16	BASIN EA1 CAPTURED IN 5' TYPE R INLET @ DP2, PIPE TO DP3.1
3.1 EA2			EA1	0.22	0.79	5.0	0.17	8.68	1.5															
EAC 0.26 0.79 0.70 0			G16						112.1								112.1	0.00	5.1	1.5	34	13.4	0.04	
4 000		3.1	EA2	0.25	0.79	5.0	0.20	8.68	1.7		0.37	8.66	3.2											BASIN EA2 CAPTURED IN 5' TYPE R INLET@ DP3, PIPE TO DP3.1
4.1		4											491.0				491.0	0.00	0.5	1.3	48	3.7	0.21	
S		4.1								6.7	0.43	7.95	3.4				3.4	0.43	2.4	1.3	43	8.1	0.09	COMBINED DP2.1 & DP3.1 @ DP3.1, PIPE TO DP4 (POND A)
Fig.		5	EA5	0.16	0.35	6.7	0.06	7.95	0.4		0.16	8.68	1.3				1.3	0.16	1.0	2.0	61	7.2	0.14	BASIN EA3 CAPTURED IN 5' TYPE R INLET @ DP5, PIPE TO DP6.1
6.1 6.1 7 7 7 7 7 7 7 7 7		6	EA3	0.20	0.78	5.0	0.16	8.68	1.3														0.11	PASIN FAA CARTURED IN 5' TYPE B INI ET @ DBC DIRE TO DBC 1
The company of the			EA4	0.17	0.74	5.0	0.13	8.68	1.1															
8 OS3 1.00 0.36 13.1 0.36 6.24 2.2 1 0.36 0.24 2.10 0.36 2.1		6.1								16.7	0.64	5.64	22.4				22.4	0.64	1.5	1.3	38	6.4	0.10	DP6 & DP8 FLOW @ DP6.1, PIPE TO DP9
8 OS 1.00 0.36 13.1 0.36 6.24 2.2 13.1 0.36 6.24 2.2 13.1 0.36 6.24 2.2 13.1 0.36 6.24 2.2 13.1 0.36 6.24 2.2 13.1 0.36 6.24 2.2 13.1 0.36 6.24 2.2 13.1 0.36 6.24 2.2 13.1 0.36 6.24 2.2 15.8 0.64 5.63 22.4 15.1 15.1 15.2 15.2 15.2 15.2 15.2 15.2		7	083	1 00	0.36	12.1	0.36	6.24	2.2		0.36	6.24	2.2				2.2	0.36	1.0	2.0	56	7.2	0.13	BASIN OS3 CAPTURED IN 15" FES, PIPE TO DP8
9		8								13.1	0.36	6.24	21.0	21.0	0.36	2.1					615	2.9	3.56	DP2 & DP7 FLOW @ DP8, PIPE TO DP9
EA6 0.70 0.90 5.5 0.63 8.43 5.3		9	OS3	1.00	0.36	13.1	0.36	6.24	2.2		0.64	5.63	22.4											DP6.1 @ DP9, DISCHARGE TO ROADSIDE SWALE TO DP11
EA6 0.70 0.90 5.5 0.63 8.43 5.3		10								6.1	1 21	8 19	9.9											BASIN FA6 & FA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1)
EA7 0.65 0.89 6.1 0.58 8.19 4.8		10	EA6	0.70	0.90	5.5	0.63	8.43	5.3		1.21	0.13	5.5											Brond Erio d Erit @ Bri to (TEIMI GIVILLE BROND III)
OS4 9.60 0.40 17.1 3.88 5.58 21.6 12 OS7 11.42 0.36 14.9 4.11 5.93 24.4 4.11 5.93 24.4 24.4 4.11 1.0 1.5 28 5.9 0.08 BASIN OS7 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13			EA7	0.65	0.89	6.1	0.58	8.19	4.8					0.0	0.00	0.5					530	1.4	6.25	
12 OS7 11.42 0.36 14.9 4.11 5.93 24.4 14.9 4.11 5.93 24.4 14.9 4.11 5.93 24.4 14.9 4.11 5.93 24.4 14.9 4.11 5.93 24.4 14.9 4.11 5.92 136.4		11	084	9 60	0.40	17 1	3.88	5 58	21.6		4.52	5.58	44.0				44.0	4.52	1.0	4.0	1500	11.4	2.19	BASIN OS4, DP9.1 CAPTURED & MERIDIAN RANCH DPG15 (3 CFS) IN 30" FES @ DP11, SWALE TO DP3
13		12								14.9	4.11	5.93	24.4				24.4	4.11	1.0	1.5	28	5.9	0.08	BASIN OS7 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13
EA8 2.08 0.89 24.0 1.86 4.72 8.8 24.0 2.19 4.72 10.4 10.4 2.19 1.8 1.5 54 7.9 0.11 BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1 15.1 EA9 2.99 0.73 24.0 2.19 4.72 10.4 24.1 4.05 4.71 19.1 COMBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR 16.1 EA10 0.16 0.81 5.0 0.13 8.68 1.1 5.2 0.11 8.58 1.0 BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR 17.1 BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR		13	05/	11.42	0.36	14.9	4.11	5.93	24.4		4.11	5.92	136.4											COMBINED DP3 & DP12, PIPE TO CHANNEL B
EA8 2.08 0.89 24.0 1.86 4.72 8.8 24.0 2.19 4.72 10.4 10.4 2.19 1.8 1.5 54 7.9 0.11 BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1 15.1 EA9 2.99 0.73 24.0 2.19 4.72 10.4 24.1 4.05 4.71 19.1 COMBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR 16.1 EA10 0.16 0.81 5.0 0.13 8.68 1.1 5.2 0.11 8.58 1.0 BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR 17.1 BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR		14								24.0	1.86	4.72	8.8				8.8	1.86	7.0	1.5	8	15.7	0.01	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP14, PIPE TO DP15.1
EA9 2.99 0.73 24.0 2.19 4.72 10.4			EA8	2.08	0.89	24.0	1.86	4.72	8.8															
16.1 EA10 0.16 0.81 5.0 0.13 8.68 1.1 5.0 0.13 8.68 1.1 5.2 0.11 8.58 1.0 BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR			EA9	2.99	0.73	24.0	2.19	4.72	10.4								10.4	2.19	۱.8	1.5	04	7.9	0.11	
16.1		15.1								24.1	4.05	4.71	19.1											COMBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR
17.1 5.2 0.11 8.58 1.0 BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR		16.1	EA10	0.16	0.81	5.0	0.13	8.68	1 1		0.13	8.68	1.1											
		17.1								5.2	0.11	8.58	1.0											



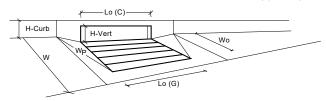
APPENDIX C - HYDRAULIC CALCULATIONS

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road
Inlet ID: DP2

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} : 12.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft S_{BACK} Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 nches Distance from Curb Face to Street Crown T_{CROWN} : 24.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.013 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.9 8.8 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major Storm **30.0**


Project: Eastonville Road
Inlet ID: DP2

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) T_{BACK} ft/ft 0.020 n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown 6.00 nches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_X = 0.020 ft/ft S_w = 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} = 0.016 Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 24.0 inches Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)

				
Design Information (Input) CDOT Type R Curb Opening	-	MINOR	Major	=
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.3	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	1
Curb Opening Information		MINOR	MAJOR	=
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$d_{Grate} =$	N/A	N/A	Trt.
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.75	0.93	1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.1	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.8	1.5	cfs

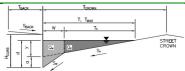
ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road
Inlet ID: DP3

Tencen

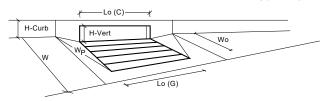
T, Tencen

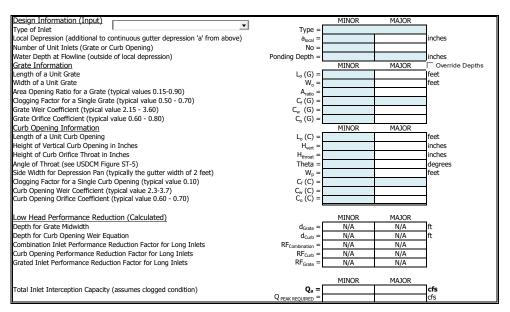

T,

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} : 11.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft S_{BACK} Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 nches Distance from Curb Face to Street Crown T_{CROWN} : 24.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.013 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.9 8.8 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major Storm **30.0**

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

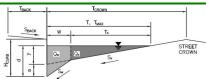

Project: Eastonville Road
Inlet ID: DP3



Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} 0.020 Height of Curb at Gutter Flow Line HCURR 6.00 Distance from Curb Face to Street Crown T_{CROWN} = Gutter Width 2.00 Street Transverse Slone S_X = 0.020 t/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Sw: 0.083 t/ft Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) NSTREET = 0.016 Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 24.0 inches Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion Minor St

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)

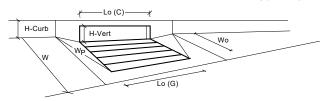


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road
Inlet ID: DP5

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} : 11.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft S_{BACK} Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 nches Distance from Curb Face to Street Crown T_{CROWN} : 24.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.017 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.9 8.8 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major Storm **34.3**


Project: Eastonville Road
Inlet ID: DP5

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) T_{BACK} ft/ft 0.020 n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown 6.00 nches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) S_X = 0.020 ft/ft S_w = 0.083 ft/ft n_{STREET} = 0.016 Minor Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 24.0 inches Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)

P				
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.3	inches
Grate Information	_	MINOR	MAJOR	Override Depths
Length of a Unit Grate	L ₀ (G) =	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Tft .
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.75	0.93	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	0, =	5.1	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.7	1.4	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road
Inlet ID: DP6

Tenone

T, Twax

Speck

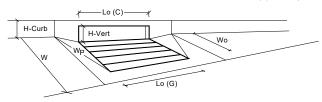
W


T,

STREET

CROWN

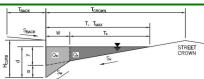
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} : 11.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft S_{BACK} Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 nches Distance from Curb Face to Street Crown T_{CROWN} : 24.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.017 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 24.0 24.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.9 8.8 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major Storm **34.3**


Project: Eastonville Road
Inlet ID: DP6

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) T_{BACK} ft/ft 0.020 n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown 6.00 nches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) S_X = 0.020 ft/ft S_w = 0.083 ft/ft n_{STREET} = 0.016 Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 24.0 Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

MHFD-Inlet, Version 5.01 (April 2021)



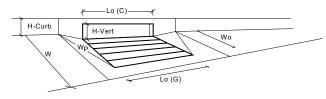
D					
Design Information (Input)	OT Type R Curb Opening		MINOR	MAJOR	-
Type of Inlet		Type =		Curb Opening	
Local Depression (additional to continu		a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb (No =	1	1	
Water Depth at Flowline (outside of lo	cal depression)	Ponding Depth =	3.5	3.5	inches
Grate Information			MINOR	MAJOR	Override Depths
Length of a Unit Grate		$L_o(G) =$	N/A	N/A	teet
Width of a Unit Grate		$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typica	l values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (type	ical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.	.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value	0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		-	MINOR	MAJOR	_
Length of a Unit Curb Opening		$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inc	hes	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	5	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST	Γ-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typical	ly the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Oper	ning (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical	value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typic	al value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction	(Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	<u> </u>	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	1	d _{Curb} =	0.13	0.13	ft
Combination Inlet Performance Reduct		RF _{Combination} =	0.45	0.45	1
Curb Opening Performance Reduction		RF _{Curb} =	0.99	0.99	1
Grated Inlet Performance Reduction Fa		RF _{Grate} =	N/A	N/A]
			MINOR	MAIOR	
Total Inlet Interception Capacity (assu	mes clogged condition)	0, =	1.2	1.2	cfs
Inlet Capacity IS GOOD for Minor		Q PEAK REQUIRED =	0.5	1.1	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)


(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

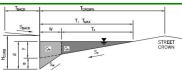
Project: Eastonville Road
Inlet ID: DP14

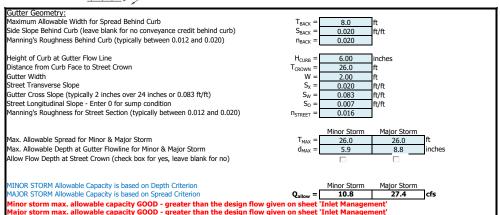
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} : 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft S_{BACK} Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 Height of Curb at Gutter Flow Line $\mathsf{H}_{\mathsf{CURB}}$ 6.00 nches Distance from Curb Face to Street Crown T_{CROWN} : 26.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) S_{W} ft/ft 0.083 Street Longitudinal Slope - Enter 0 for sump condition S_0 0.007 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) n_{STREET} 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm 26.0 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.9 8.8 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Spread Criterion Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' Major Storm 27.4


Project: Eastonville Road
Inlet ID: DP14

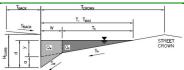
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) T_{BACK} ft/ft 0.020 n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown 6.00 nches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) S_X = 0.020 ft/ft S_w = 0.083 ft/ft n_{STREET} = 0.016 Minor Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 26.0 26.0 inches Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION

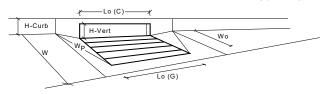

MHFD-Inlet, Version 5.01 (April 2021)



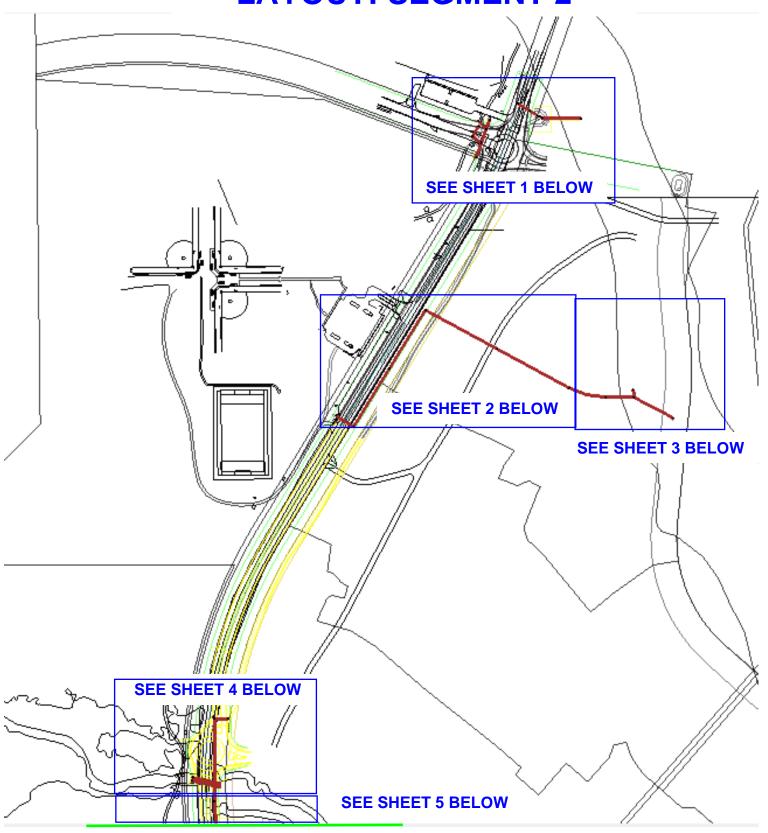
Design Information (Input) CDOT Type R Curb Opening	r	MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Ourb} =	0.32	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	0, =	9.9	18.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.0	9.0	cfs


MHFD-Inlet, Version 5.01 (April 2021) ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

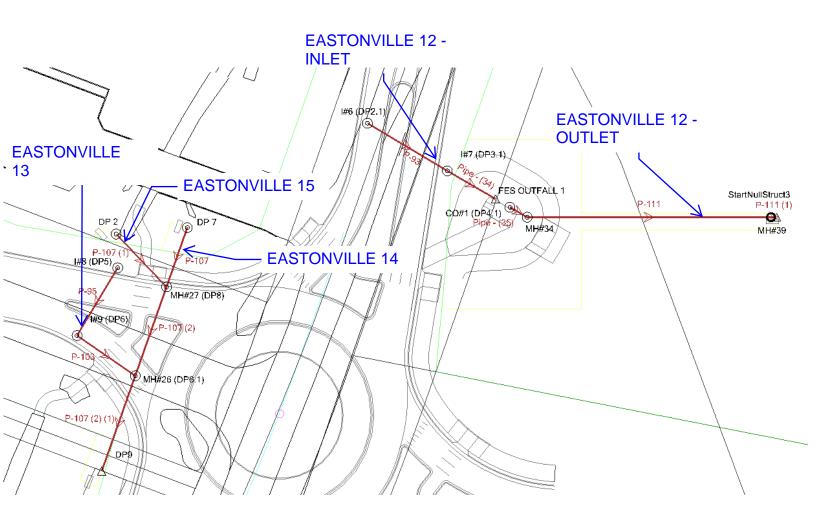
Project: Eastonville Road
Inlet ID: DP15

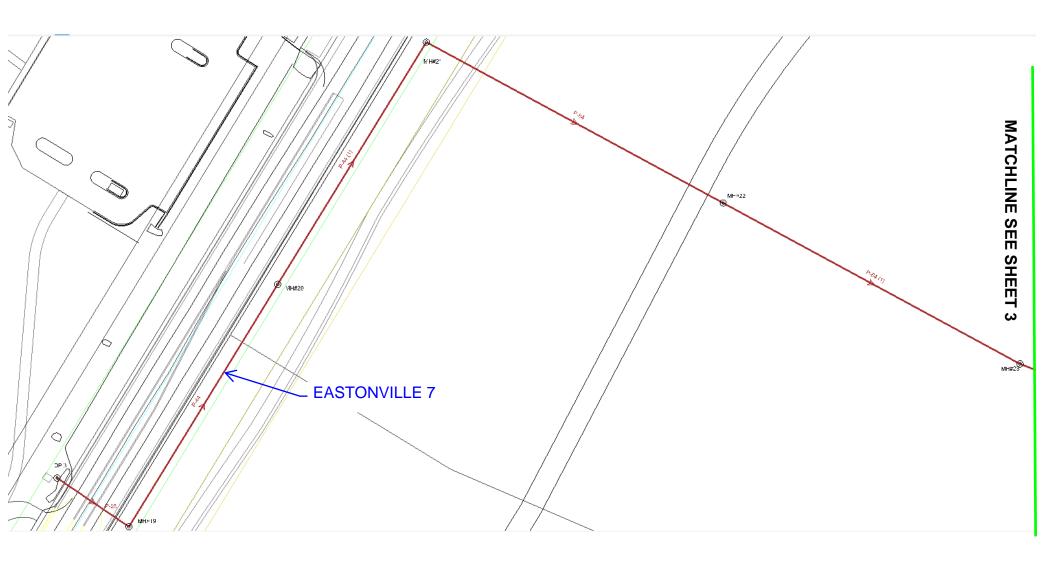

Project: Eastonville Road
Inlet ID: DP15

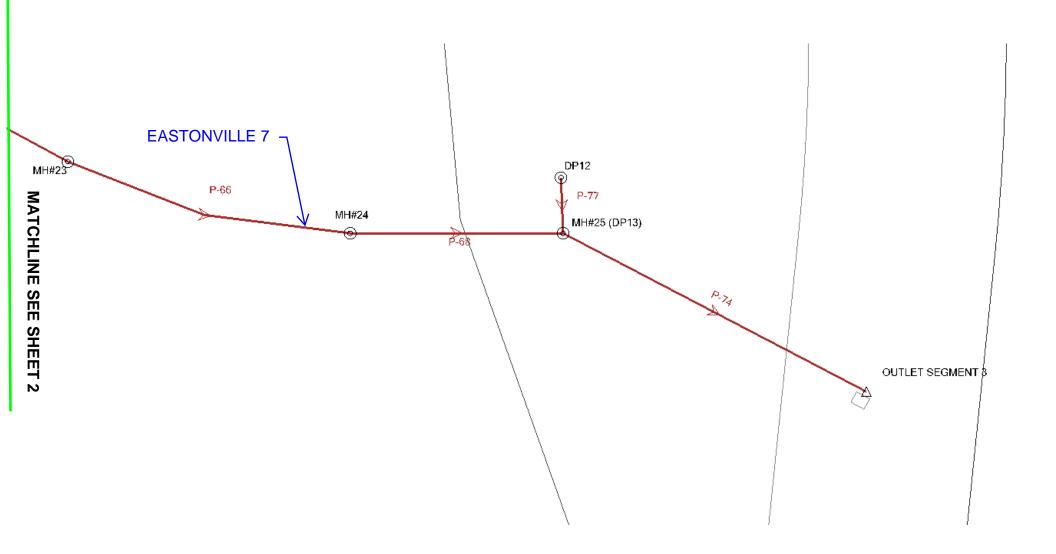
Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) T_{BACK} ft/ft 0.020 n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown 6.00 nches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) S_X = 0.020 ft/ft S_w = 0.083 ft/ft n_{STREET} = 0.016 Minor Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 26.0 26.0 inches Check boxes are not applicable in SUMP conditions MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

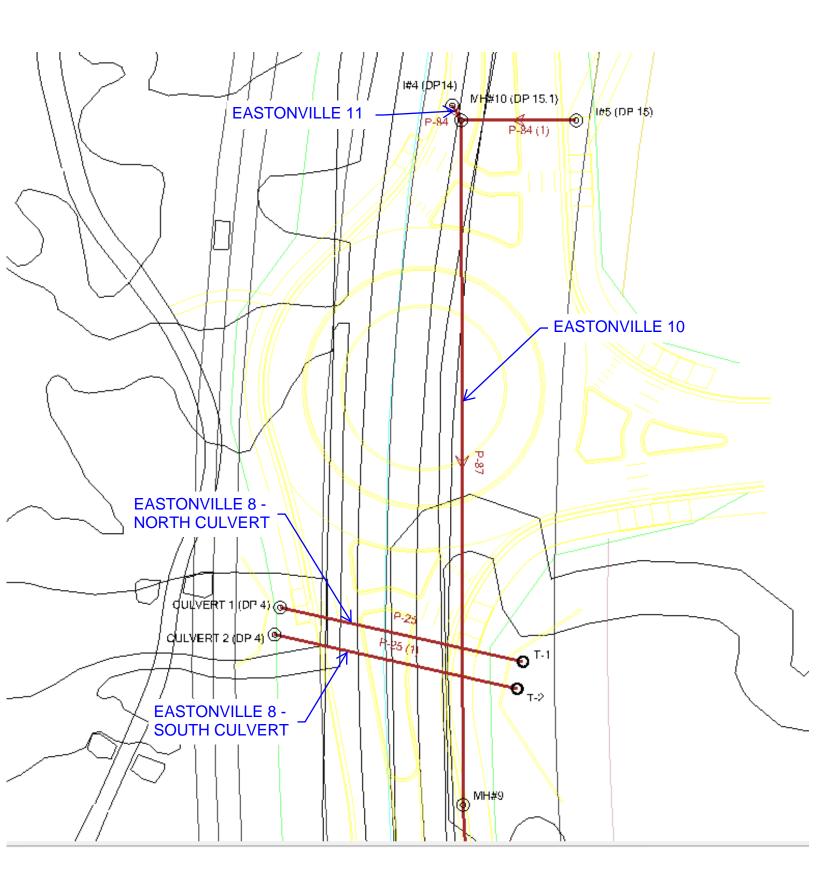

INLET IN A SUMP OR SAG LOCATION

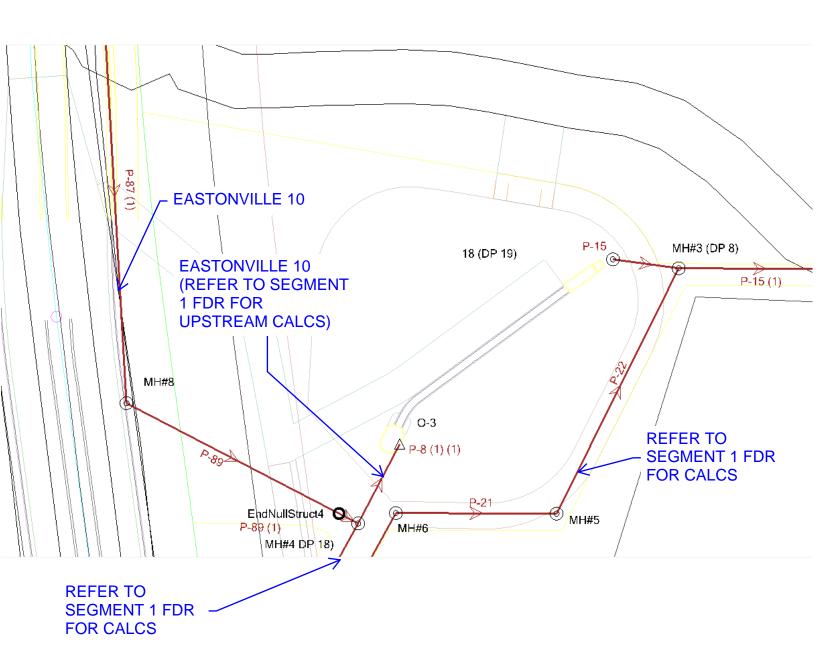
MHFD-Inlet, Version 5.01 (April 2021)




Design Information (Input) CDOT Type R Curb Opening	-	MINOR	MAJOR	=
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqued condition)	Q _a =	9.9	18.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.6	9.5	cfs

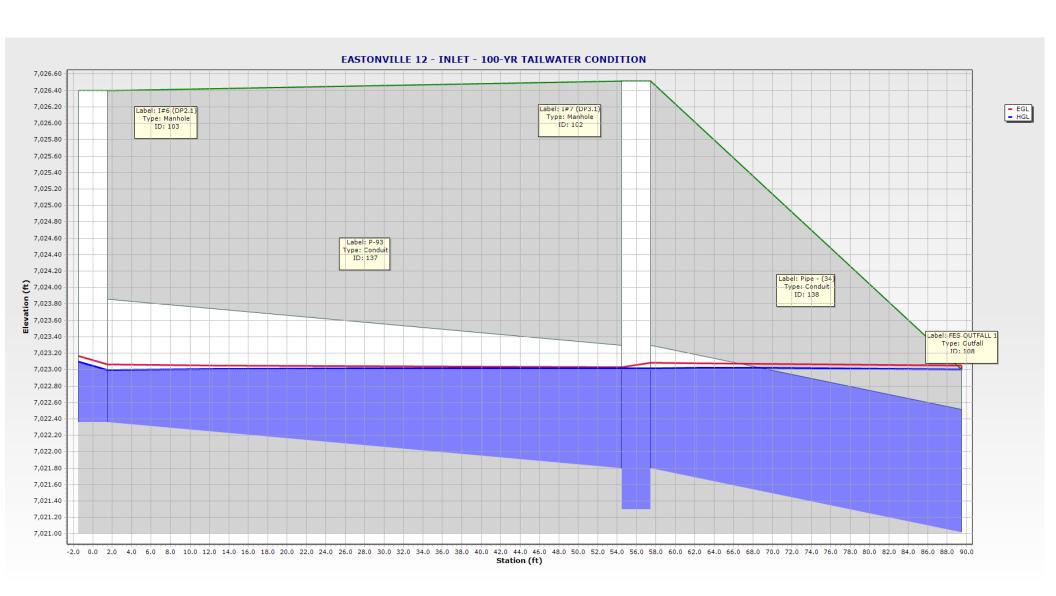

STORMCAD NETWORK LAYOUT: SEGMENT 2



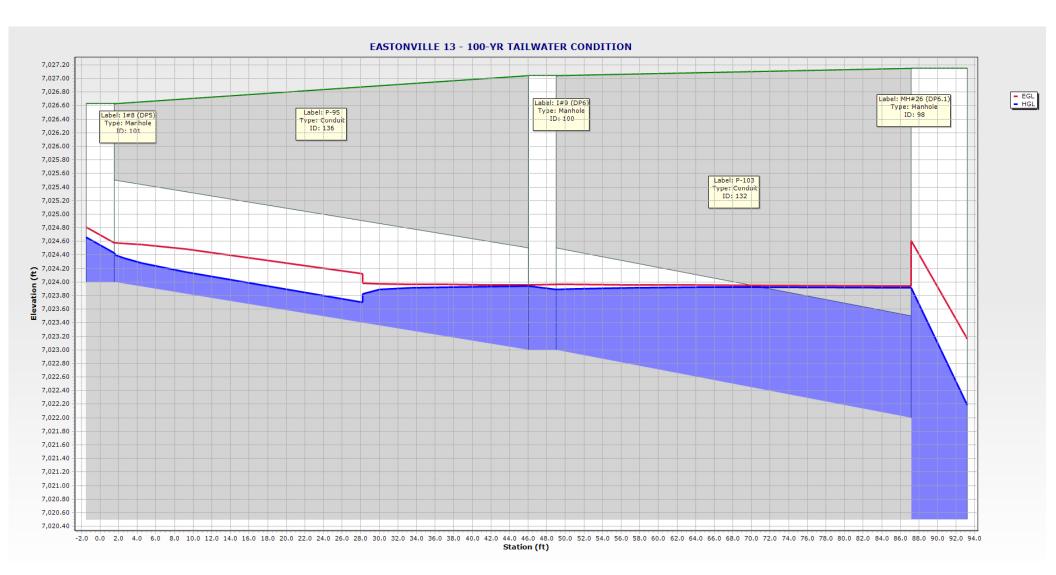

MATCHLINE REFER TO SEGMENT 2 FDR

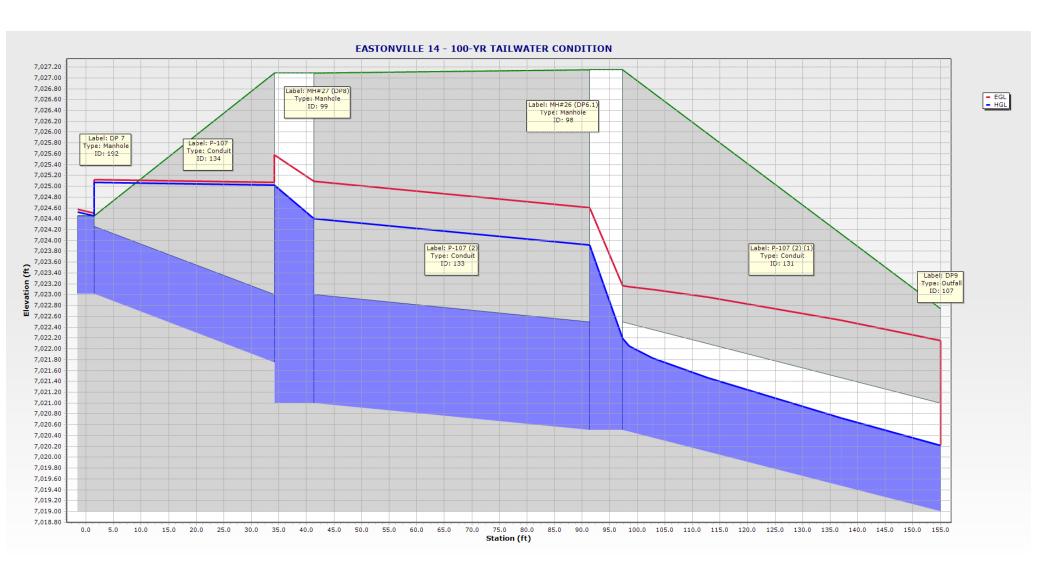
100 YEAR TAILWATER CONDITION: PIPE SUMMARY TABLE

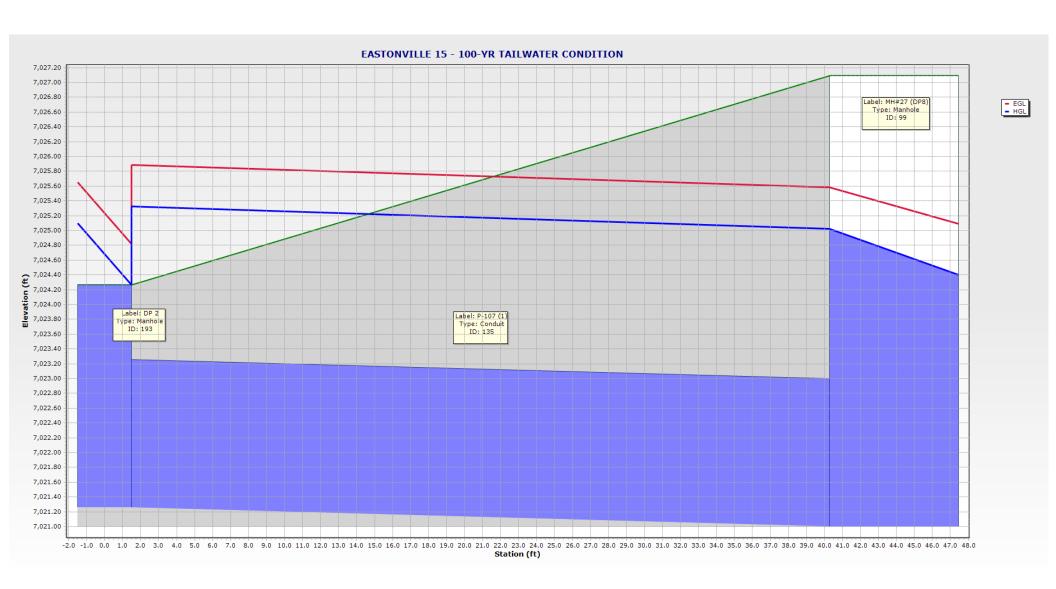
	Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Notes	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
66: P-8 (1) (1)	P-8 (1) (1)	MH#4 DP 18)	6,985.66	O-3	6,984.83	41.6	0.020	24.0	26.20	8.34	31.99	81.9	Concrete Pir	6,988.54	6,987.98
67: P-124	P-124	I#5 (DP 14)	6,981.25	O-5	6,981.08	34.3	0.005	18.0	6.50	4.74	7.43	87.5	Concrete Pip	6,982.33	6,982.10
68: P-121 (2)	P-121 (2)	44 (80)	6,970.65	0-6	6,970.61	9.0	0.005	24.0	9.00	2.86	15.95	56.4	Concrete Pip	6,972.88	6,972.87
69: P-18	P-18	I#3 (DP 7)	6,985.73	MH#7	6,985.38	71.3	0.005	42.0	53.30	8.11	71.14	74.9	Concrete Pip	6,988.48	6,988.38
70: P-20	P-20	MH#7	6,985.38	MH#6	6,984.50	175.6	0.005	42.0	53.30	8.11	71.14	74.9	Concrete Pip	6,987.84	6,987.61
71: P-5	P-5	I#2 (DP 17)	6,989.29	I#1 (DP 16)	6,989.74	52.0	-0.009	18.0	5.10	5.59	9.77	52.2	Concrete Pip	6,990.61	6,990.44
72: P-8 (1)	P-8 (1)	I#2 (DP 17)	6,988.79	MH#4 DP 18)	6,985.66	156.4	0.020	24.0	10.50	9.12	31.99	32.8	Concrete Pip	6,989.95	6,989.64
73: P-21	P-21	MH#6	6,984.50	MH#5	6,984.13	74.6	0.005	42.0	53.30	8.11	71.14	74.9	Concrete Pip	6,987.15	6,987.05
74: P-22	P-22	MH#5	6,984.13	MH#3 (DP 8)	6,980.80	127.1	0.026	42.0	53.30	15.14	162.72	32.8	Concrete Pip	6,986.41	6,983.39
75: P-15	P-15	18 (DP 19)	6,983.26	. ,	6,982.80	30.8	0.015	18.0	3.00	5.95	12.90	23.3	Concrete Pip	6,983.92	6,983.30
	P-15 (1)	MH#3 (DP 8)	6,980.80	MH#2 (DP 8)	6,980.43	75.1	0.005	42.0	1.77	3.11	70.62	2.5	Concrete Pip	6,983.39	6,983.39
77: P-16	P-16	MH#2 (DP 8)	6,980.43		6,980.05	78.1	0.005	42.0	54.30	8.06	70.19	77.4	-	6,982.74	6,982.46
78: P-123	P-123	I#4 (DP 13)	· ·	I#5 (DP 14)	6,981.25	52.0	0.005	18.0	3.40	4.11	7.43	45.8		6,982.73	6,982.69
79: P-17	P-17	MH#1	6,980.05		6,979.36	139.8	0.005	42.0	54.30	8.10	70.67	76.8		6,982.36	6,981.66
80: P-125	P-125	44 (69) (DP 15)	6,978.42	44 (70)	6,977.55	54.5	0.016	18.0	1.20	4.67	13.30		Concrete Pip	6,978.83	6,977.85
83: P-122	P-122	INLET (DP 3)	6,978.16	44 (65)	6,973.52	183.8	0.025	30.0	24.50	12.34	65.19	37.6	Concrete Pip	6,979.85	6,974.58
84: P-121	P-121	I#8 (DP 10)	6,971.18		6,970.65	105.1	0.005	24.0	9.00	5.26	16.06	56.0	Concrete Pip	6,973.05	6,972.89
85: P-130	P-130	I#6 (DP 1)	6,970.85		6,970.04	81.5	0.010	18.0	3.60	5.37	10.47	34.4		6,971.57	6,970.79
	P-130 (1)	44 (81)	6,970.04		6,969.39	65.0	0.010	18.0	3.60	5.39	10.50	34.3		6,970.76	6,970.00
	P-121 (1)	I#8 (DP 10)		I#7 (DP 9)	6,971.95	52.0	-0.005	18.0	4.10	4.37	7.57	54.2	-	6,973.24	6,973.18
88: P-131	P-131	44 (78) (DP 11)	6,968.42		6,967.50	62.5	0.015	18.0	1.40	4.75	12.77	11.0	Concrete Pip	6,968.87	6,967.84
	P-111	MH#34	7,019.01		7,017.01	146.6	0.014	18.0	3.40	5.94	12.28	27.7	Concrete Pip	7,019.72	7,017.55
127: P-89	P-89	MH#8		MH#4 DP 18)	6,985.66	111.1	0.011	24.0	19.10	6.08	23.64	80.8	Concrete Pip	6,990.43	6,989.64
	P-25 (1)	CULVERT 2 (DP 4)	6,997.01		6,995.27	116.5	0.015		295.50	16.72	461.86	64.0		7,000.01	6,997.28
129: P-25	P-25	CULVERT 1 (DP 4)	6,997.01		6,995.27	116.6	0.015		245.50	15.71	461.72	53.2		6,999.67	6,997.02
131: P-107 (2)		MH#26 (DP6.1)	7,020.50		7,019.00	60.7	0.025	24.0	22.40	11.97	35.57	63.0		7,022.19	7,020.22
132: P-103	P-103	I#9 (DP6)		MH#26 (DP6.1)	7,022.00	42.7	0.023	18.0	2.40	6.54	16.08	14.9	Concrete Pip	7,023.89	7,023.91
133: P-107 (2)		MH#27 (DP8)		MH#26 (DP6.1)	7,020.50	56.6	0.009	24.0	21.00	6.68	21.26	98.8	-	7,024.40	7,023.91
134: P-107	P-107	DP 7		MH#27 (DP8)	7,021.75	37.8	0.033	15.0	2.20	1.79	11.81	18.6	Concrete Pip	7,025.07	7,025.03
135: P-107 (1)	- ''	MH#27 (DP8)	7,021.00		7,021.26	43.9	-0.006	24.0	18.80	5.98	17.41		Concrete Pip	7,025.33	7,025.03
136: P-95	P-95	I#8 (DP5)	-	I#9 (DP6)	7,023.00	47.5	0.021	18.0	1.30	5.26	15.24	8.5	-	7,024.43	7,023.94
137: P-93	P-93	I#6 (DP2.1)	,	I#7 (DP3.1)	7,021.80	55.9	0.010	18.0	1.50	4.22	10.51		Concrete Pip	7,022.99	7,023.02
138: Pipe - (34		I#7 (DP3.1)		FES OUTFALL 1	7,021.01	33.5	0.023	18.0	3.20	7.09	16.07	19.9	Concrete Pip	7,023.01	7,023.00
	P-44 (1)	MH#20	7,001.18		6,998.52	266.5	0.010	48.0	112.10	8.92	143.63	78.0		7,005.57	7,003.94
141: P-64	P-64	MH#21	6,998.52		6,995.26	316.5	0.010	48.0	112.10	12.80	145.88	76.8	Concrete Pip	7,001.72	6,997.89
142: P-44	P-44	MH#19	7,003.94		7,001.28	266.5	0.010	48.0	112.10	12.64	143.63	78.0		7,007.14	7,005.63
143: P-26	P-26	DP 3	7,005.01		7,004.04	81.5	0.012	48.0	112.10	8.92	156.73	71.5		7,009.86	7,009.36
	P-64 (1)	MH#22	6,995.15		6,988.82	316.6	0.020	48.0	112.10	16.57	203.15		Concrete Pip	6,998.35	6,995.31
145: P-87	P-87	MH#10 (DP 15.1)	6,994.25		6,989.76	320.7	0.014	24.0	19.10	9.26	26.78	71.3	Concrete Pip	6,995.82	6,992.24
	P-87 (1)	MH#9	6,989.76		6,986.87	197.4	0.015	24.0	19.10	6.08	27.33	69.9		6,992.21	6,990.80
147: P-84	P-84	I#4 (DP14)		MH#10 (DP 1	6,994.25	8.1	0.179	18.0	8.80	4.98	44.40	19.8		6,997.31	6,997.25
	P-84 (1)	MH#10 (DP 15.1)		I#5 (DP 15)	6,995.50	53.9	-0.014	18.0	10.40	5.89	12.40	83.9	Concrete Pip	6,997.78	6,997.25
149: P-66	P-66	MH#23	6,988.82		6,988.00	149.0	0.006	48.0	112.10	8.92	106.64	105.1	Concrete Pip	6,995.25	6,994.34
150: P-68	P-68	MH#24	6,988.00	. ,	6,987.50	107.8	0.005	48.0	112.10	8.92	97.84	114.6	Concrete Pip	6,994.28	6,993.62
151: P-77	P-77	DP12		MH#25 (DP13)	6,989.50	28.1	0.029	24.0 48.0	24.40	7.77	38.62	63.2		6,993.95	6,993.62
152: P-74	P-74	MH#25 (DP13)	0,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	136.40	10.85	99.34	137.3	Concrete Pip	6,991.97	6,990.15

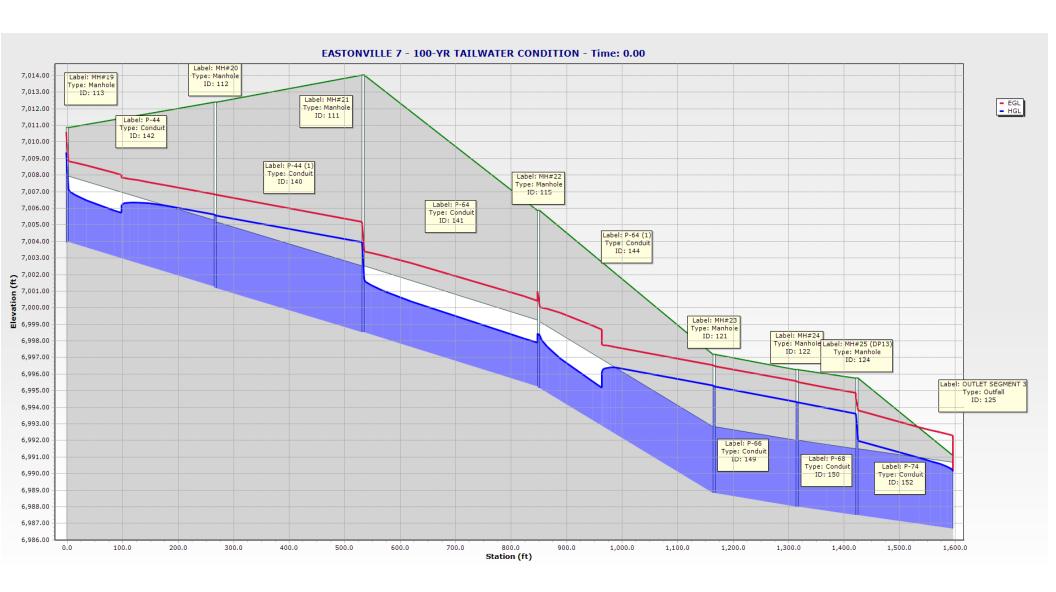

NOTE: SEGMENT 1 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

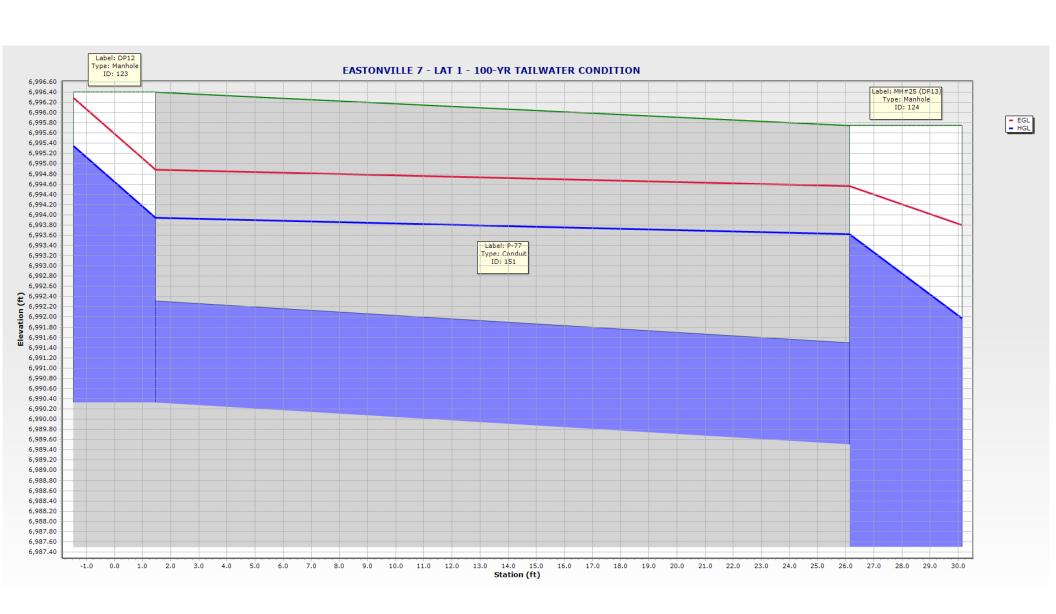
100 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

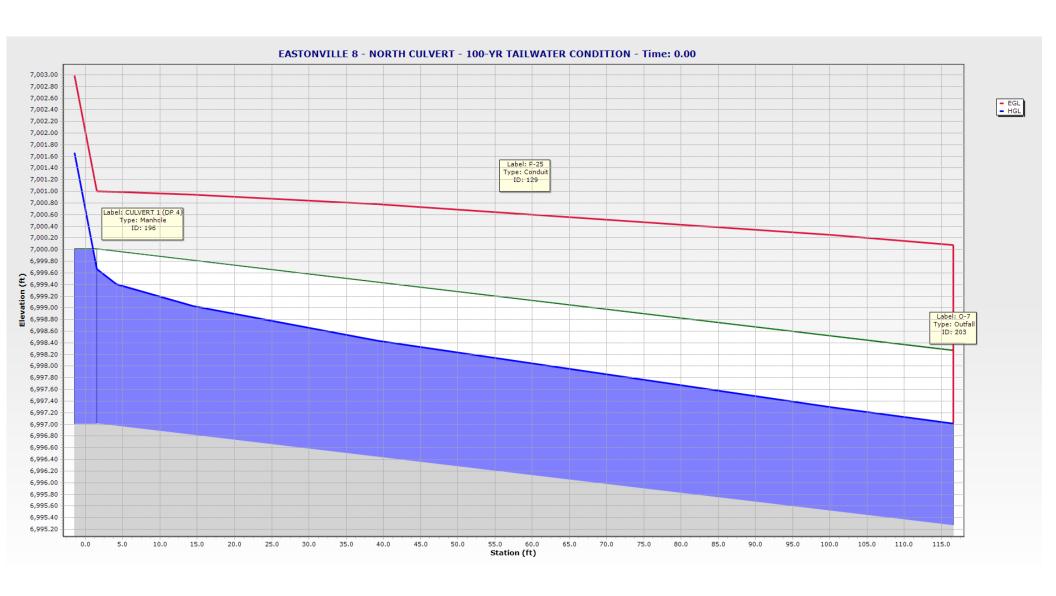

	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Flow (Total Out) (cfs)	Depth (Out) (ft)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)	Notes	Headloss (ft)
35: MH#7	MH#7	6,993.52	6,993.52	53.30	2.47	6,987.84	Standard	6,988.38	STORM MH	0.54
36: I#1 (DP 16	I#1 (DP 16)	6,993.41	6,993.41	5.10	0.87	6,990.61	Standard	6,991.15	CDOT Type-	0.54
37: MH#4 DP	MH#4 DP 18)	6,993.40	6,993.40	26.20	2.88	6,988.54	Standard	6,989.64	STORM MH	1.10
38: I#2 (DP 17	I#2 (DP 17)	6,993.39	6,993.39	10.50	1.17	6,989.95	Standard	6,990.44	CDOT Type-	0.49
39: MH#6	MH#6	6,993.02	6,993.02	53.30	2.65	6,987.15	Standard	6,987.61	STORM MH	0.46
40: MH#5	MH#5	6,991.91	6,991.91	53.30	2.28	6,986.41	Standard	6,987.05	STORM MH	0.64
41: MH#3 (DP	MH#3 (DP 8)	6,991.13	6,991.13	1.77	2.28	6,983.39	Standard	6,983.39	STORM MH	0.00
42: I#3 (DP 7)	I#3 (DP 7)	6,990.73	6,990.73	53.30	2.83	6,988.48	Standard	6,989.49	CDOT Type-	1.01
43: 18 (DP 19)	18 (DP 19)	6,988.71	6,988.71	3.00	2.42	6,983.92	Standard	6,984.30	CDOT Type-	0.38
44: MH#2 (DP	MH#2 (DP 8)	6,985.74	6,985.74	54.30	2.31	6,982.74	Standard	6,983.39	STORM MH	0.65
45: I#4 (DP 13	I#4 (DP 13)	6,985.02	6,985.02	3.40	1.42	6,982.73	Standard	6,982.84	CDOT Type-	0.12
46: I#5 (DP 14	I#5 (DP 14)	6,985.02	6,985.02	6.50	1.28	6,982.33	Standard	6,982.69	CDOT Type-	0.36
47: MH#1	MH#1	6,984,95	6,984.95	54.30	2.31	6,982,36	Standard	6,982,46	STORM MH	0.10
49: 44 (69) (D	44 (69) (DP 15)	6,982.64	6,982.64	1.20	0.41	6,978.83	Standard	6,978.85	CDOT Type-	0.01
55: 44 (80)	44 (80)	6,975,21	6,975.21	9.00	2.13	6,972.88	Standard	6,972.89	Cylindrical S	0.01
56: 44 (81)	44 (81)	6,975.03	6,975.03	3.60	0.72	6,970.76	Standard	6,970.79	Cylindrical S	0.03
57: I#7 (DP 9)	I#7 (DP 9)	6,974.64	6,974.64	4.10	1.29	6,973.24	Standard	6,973.39	CDOT Type-	0.15
58: I#8 (DP 10	· ,	6,974,64	6,974.64	9.00	1.87	6,973.05	Standard	6,973,18	CDOT Type-	0.14
59: I#6 (DP 1)	· ·	6,973.20	6,973.20	3.60	0.72	6,971.57	Standard	6,972.00	CDOT Type-	0.42
60: 44 (78) (D	44 (78) (DP 11)	6,973.16	6,973.16	1,40	0.44	6,968.87	Standard	6,969.03	CDOT Type-	0.16
98: MH#26 (D	MH#26 (DP6.1)	7,027.15	7,027.15	22,40	1.69	7,022.19	Standard	7,023.91	STORM MH	1.73
99: MH#27 (D	MH#27 (DP8)	7,027.09	7,027.09	21.00	3.40	7,024.40	Standard	7,025.03	STORM MH	0.62
100: I#9 (DP6)	_ ` '	7,027.04	7,027.04	2,40	0.89	7,023.89	Standard	7,023.94	CDOT Type-	0.05
101: I#8 (DP5)	· ·	7,026.63	7,026.63	1.30	0.43	7,024,43	Standard	7,024.66	CDOT Type-	0.23
102: I#7 (DP3.		7,026.51	7,026.51	3.20	1.71	7,023.01	Standard	7,023.02	CDOT Type-	0.00
103: I#6 (DP2.	- : - : -	7,026.40	7,026.40	1,50	0.63	7,022.99	Standard	7,023.10	CDOT Type-	0.10
106: MH#34	MH#34	7,023.51	7,023.51	3,40	0.70	7,019.72	Standard	7,019.84	CDOT Type-	0.13
111: MH#21	MH#21	7,014.03	7,014.03	112.10	3.20	7,001.72	Standard	7,003.94	STORM MH	2,22
112: MH#20	MH#20	7,012.41	7,012,41	112.10	4.38	7,005.57	Standard	7,005.63	STORM MH	0.06
113: MH#19	MH#19	7,010.85	7,010.85	112.10	3.20	7,007.14	Standard	7,009.36	STORM MH	2,22
115: MH#22	MH#22	7,005.85	7,005.85	112.10	3.20	6,998.35	Standard	6,998.44	STORM MH	0.08
116: MH#9	MH#9	7,001.03	7,001.03	19.10	2,45	6,992.21	Standard	6,992.24	STORM MH	0.03
	I#4 (DP14)	7,000.17	7,000.17	8.80	1.62	6,997.31	Standard	6,997.89	CDOT Type-	0.58
118: MH#10 (MH#10 (DP 1	7,000.01	7,000.01	19.10	1.57	6,995.82	Standard	6,997.25	STORM MH	1.43
119: I#5 (DP 1		6,999.67	6,999.67	10.40	1.88	6,997.78	Standard	6,998.59	CDOT Type-	0.81
120: MH#8	MH#8	6,996.13	6,996.13	19.10	3.77	6,990.43	Standard	6,990.80	STORM MH	0.37
121: MH#23	MH#23	6,997.20	6,997.20	112.10	6.42	6,995.25	Standard	6,995.31	STORM MH	0.06
122: MH#24	MH#24	6,996.25	6,996.25	112.10	6.28	6,994.28	Standard	6,994.34	STORM MH	0.06
123: DP12	DP12	6,996.40	6,996.40	24.40	3.63	6,993.95	Standard	6,995.35	CDOT Type-	1.41
124: MH#25 (MH#25 (DP13)	6,995.75	6,995.75	136.40	4.47	6,991.97	Standard	6,993.62	STORM MH	1.65
190: INLET (D	INLET (DP 3)	6,980.96	6,980.96	24.50	1.69	6,979.85	Standard	6,980.98	CDOT FES	1.13
192: DP 7	DP 7	7,024.45	7,024.45	2,20	1.44	7.024.45	Standard	7.024.52	CDOT FES	0.07
193: DP 2	DP 2	7,024.45	7,024.45	18.80	3.00	7,024.45	Standard	7,024.32	CDOT FES	0.07
194: DP 3	DP 3	7,024.26	7,024.26	112,10	4.42	7,024.26	Standard	7,025.10	CDOT FES	1.86
194: DP 3 196: CULVERT	CULVERT 1 (7,009.43	7,009.43	245.50	2,66	6,999,67	Standard	7,011.29	Dummy Null:	1.00
		.,	.,			-,		.,	-	2.26
197: CULVERT	COLVERT 2 (7,000.01	7,000.01	295.50	3.00	7,000.01	Standard	7,002.27	Dummy Null	2.26


	Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	Notes
48: OUTFALL	OUTFALL	6,983.32	6,979.44		6,981.66	54.30	CDOT FES
53: 44 (70)	44 (70)	6,979.33	6,977.55		6,977.85	1.20	CDOT FES
54: 44 (65)	44 (65)	6,976.31	6,973.52		6,974.58	24.50	CDOT FES
61: 44 (77)	44 (77)	6,971.10	6,969.39		6,970.00	3.60	CDOT FES
64: 44 (79)	44 (79)	6,969.82	6,967.50		6,967.84	1.40	CDOT FES
107: DP9	DP9	7,022.74	7,019.00		7,020.22	22.40	CDOT FES
108: FES OUTF	FES OUTFALL 1	7,023.00	7,021.01	7,023.00	7,023.00	3.20	CDOT FES
110: MH#39	MH#39	7,018.18	7,017.01		7,017.55	3.40	CDOT FES
125: OUTLET S	OUTLET SEG	6,991.09	6,986.67	6,988.30	6,990.15	136.40	CDOT FES
162: 0-3	O-3	6,987.98	6,984.83	6,987.98	6,987.98	26.20	Dummy Null:
164: 0-5	O-5	6,982.10	6,981.08	6,982.10	6,982.10	6.50	Dummy Null:
165: O-6	0-6	6,972.87	6,970.61	6,972.87	6,972.87	9.00	Dummy Null:
203: 0-7	0-7	6,998.27	6,995.27		6,997.02	245.50	Dummy Null:
207: 0-10	O-10	6,998.27	6,995.27		6,997.28	295.50	Dummy Null:

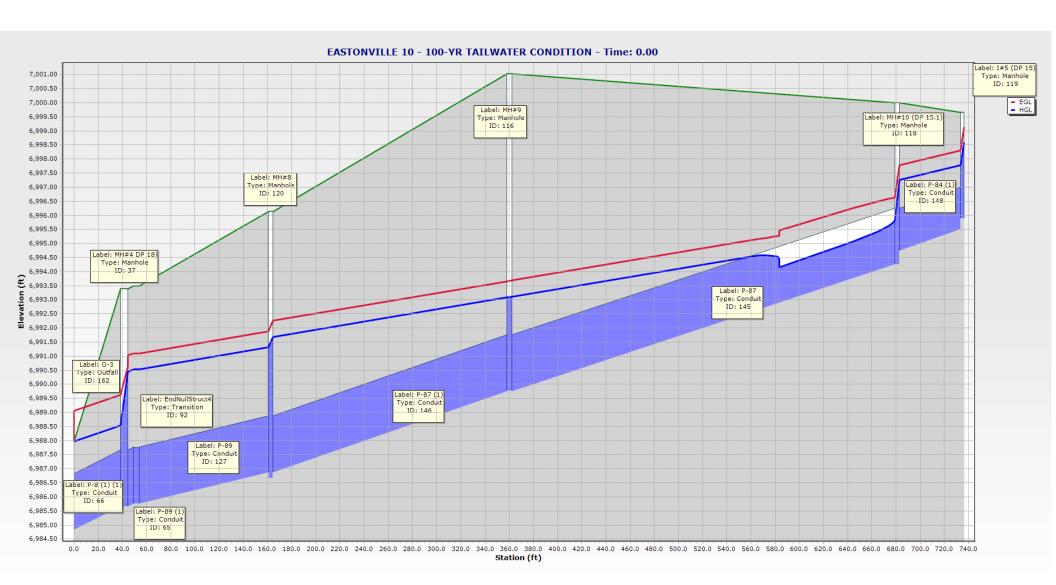

NOTE: SEGMENT 1 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

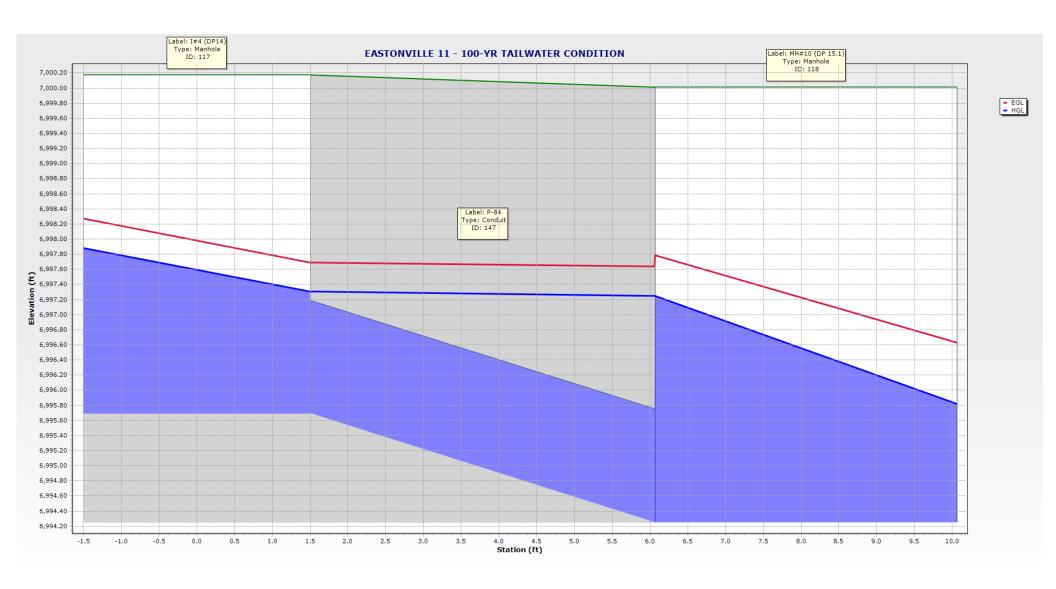






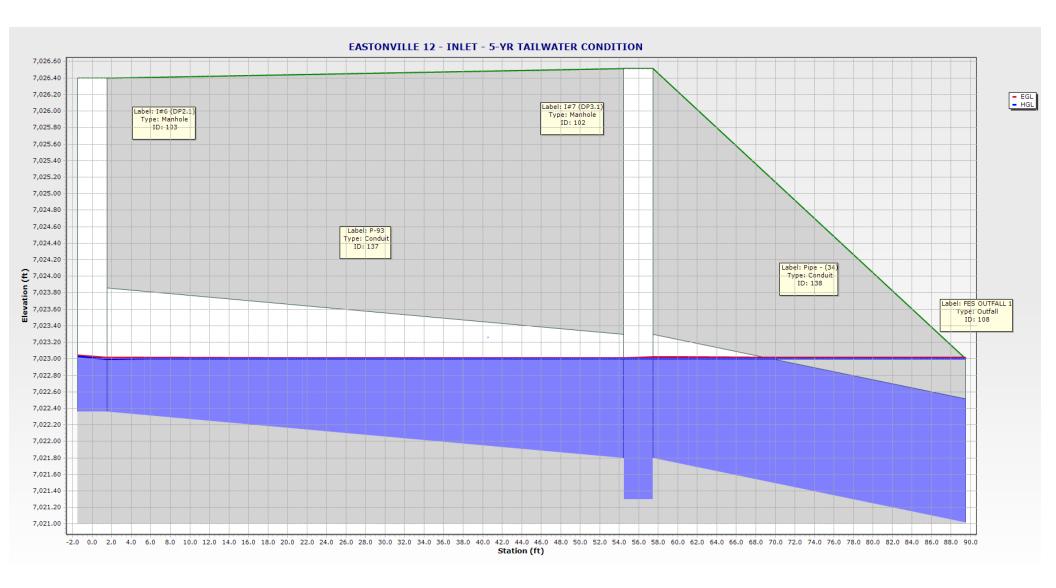




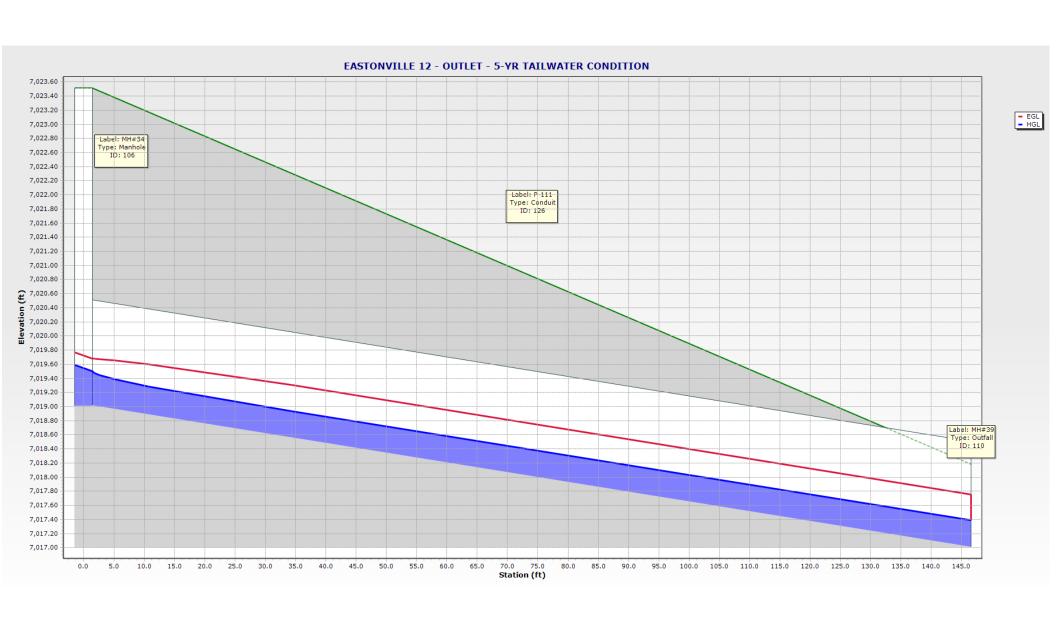


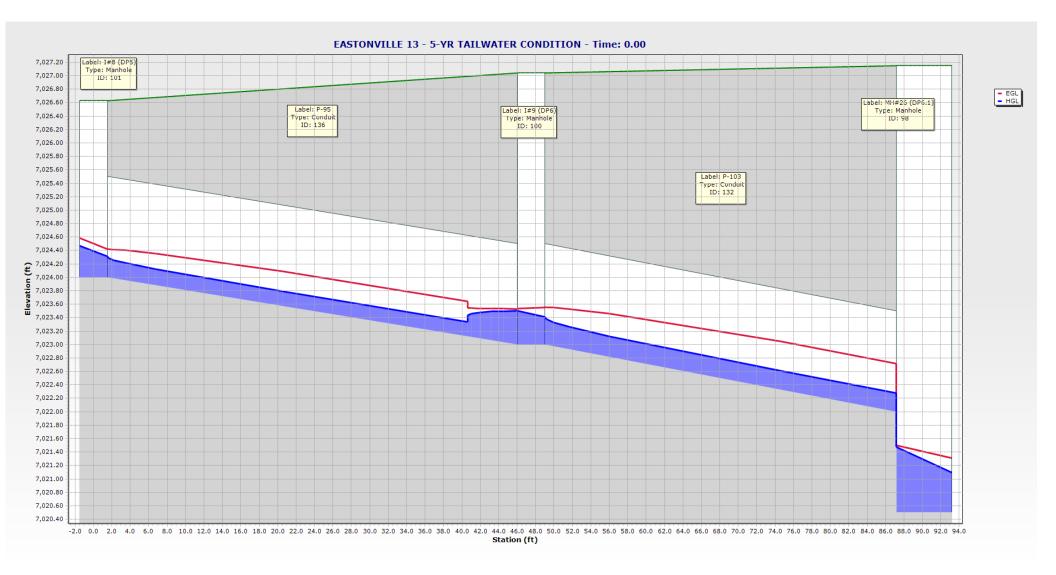
5 YEAR TAILWATER CONDITION: PIPE SUMMARY TABLE

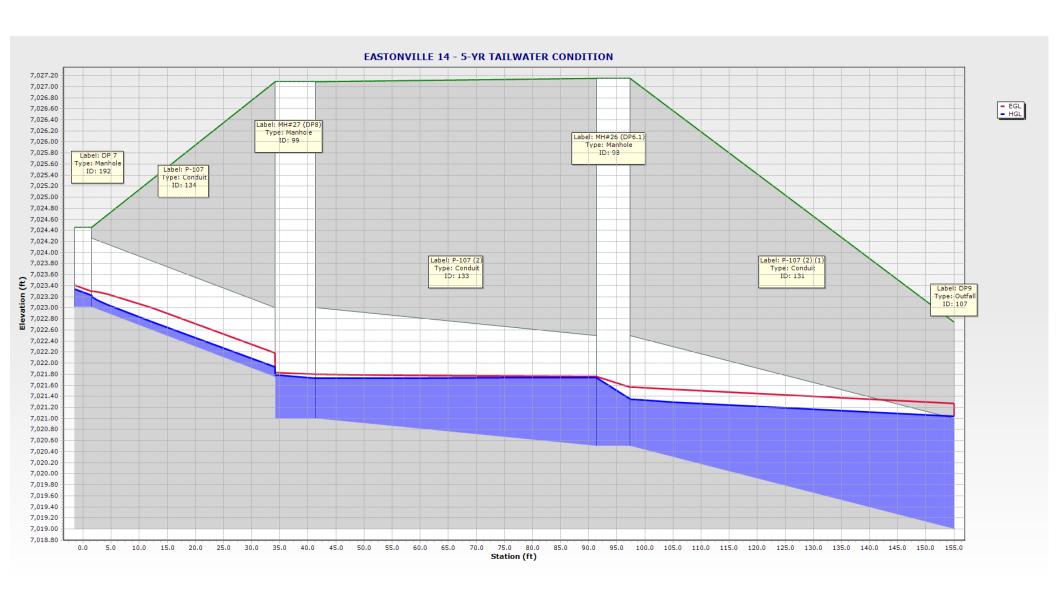
	Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Notes	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
66: P-8 (1) (1)	P-8 (1) (1)	MH#4 DP 18)	6,985.66	O-3	6,984.83	41.6	0.020	24.0	15.60	4.97	31.99	48.8	Concrete Pip	6,988.57	6,988.37
67: P-124	P-124	I#5 (DP 14)	6,981.25	O-5	6,981.08	34.3	0.005	18.0	3.90	4.25	7.43	52.5	Concrete Pip	6,982.28	6,982.25
68: P-121 (2)	P-121 (2)	44 (80)	6,970.65	0-6	6,970.61	9.0	0.005	24.0	4.20	1.34	15.95	26.3	Concrete Pip	6,973.23	6,973.23
69: P-18	P-18	I#3 (DP 7)	6,985.73	MH#7	6,985.38	71.3	0.005	42.0	7.90	4.88	71.14	11.1	Concrete Pip	6,986.58	6,986.42
70: P-20	P-20	MH#7	6,985.38	MH#6	6,984.50	175.6	0.005	42.0	7.90	4.88	71.14	11.1	Concrete Pip	6,986.22	6,985.54
71: P-5	P-5	I#2 (DP 17)	6,989.29	I#1 (DP 16)	6,989.74	52.0	-0.009	18.0	3.00	4.87	9.77	30.7	Concrete Pip	6,990.40	6,990.02
72: P-8 (1)	P-8 (1)	I#2 (DP 17)	6,988.79	MH#4 DP 18)	6,985.66	156.4	0.020	24.0	6.30	7.92	31.99	19.7	Concrete Pip	6,989.68	6,988.96
73: P-21	P-21	MH#6	6,984.50	MH#5	6,984.13	74.6	0.005	42.0	7.90	4.88	71.14	11.1	Concrete Pip	6,985.35	6,985.17
74: P-22	P-22	MH#5	6,984.13	MH#3 (DP 8)	6,980.80	127.1	0.026	42.0	7.90	8.74	162.72	4.9	Concrete Pip	6,984.97	6,981.95
75: P-15	P-15	18 (DP 19)	6,983.26	MH#3 (DP 8)	6,982.80	30.8	0.015	18.0	0.30	3.02	12.90	2.3	Concrete Pip	6,983.47	6,982.96
76: P-15 (1)	P-15 (1)	MH#3 (DP 8)	6,980.80	MH#2 (DP 8)	6,980.43	75.1	0.005	42.0	8.30	4.92	70.62	11.8	Concrete Pip	6,981.67	6,981.50
77: P-16	P-16	MH#2 (DP 8)	6,980.43	MH#1	6,980.05	78.1	0.005	42.0	8.30	4.90	70.19	11.8	Concrete Pip	6,981.30	6,980.95
78: P-123	P-123	I#4 (DP 13)	6,981.51	I#5 (DP 14)	6,981.25	52.0	0.005	18.0	2.10	3.61	7.43	28.3	Concrete Pip	6,982.43	6,982.42
79: P-17	P-17	MH#1	6,980.05	OUTFALL	6,979.36	139.8	0.005	42.0	8.30	4.92	70.67	11.7	Concrete Pip	6,980.92	6,980.17
80: P-125	P-125	44 (69) (DP 15)	6,978.42	44 (70)	6,977.55	54.5	0.016	18.0	0.30	3.09	13.30	2.3	Concrete Pip	6,978.63	6,977.71
83: P-122	P-122	INLET (DP 3)	6,978.16	44 (65)	6,973.52	183.8	0.025	30.0	3.70	7.19	65.19	5.7	Concrete Pip	6,978.80	6,973.93
84: P-121	P-121	I#8 (DP 10)	6,971.18	44 (80)	6,970.65	105.1	0.005	24.0	4.20	1.34	16.06	26.1	Concrete Pip	6,973.27	6,973.23
85: P-130	P-130	I#6 (DP 1)	6,970.85	44 (81)	6,970.04	81.5	0.010	18.0	0.50	3.05	10.47	4.8	Concrete Pip	6,971.11	6,970.31
86: P-130 (1)	P-130 (1)	44 (81)	6,970.04	44 (77)	6,969.39	65.0	0.010	18.0	0.50	3.05	10.50	4.8	Concrete Pip	6,970.30	6,969.61
87: P-121 (1)	P-121 (1)	I#8 (DP 10)	6,971.68	I#7 (DP 9)	6,971.95	52.0	-0.005	18.0	2.20	3.71	7.57	29.1	Concrete Pip	6,973.32	6,973.30
88: P-131	P-131	44 (78) (DP 11)	6,968.42	44 (79)	6,967.50	62.5	0.015	18.0	0.40	3.27	12.77	3.1	Concrete Pip	6,968.66	6,967.68
126: P-111	P-111	MH#34	7,019.01	MH#39	7,017.01	146.6	0.014	18.0	1.70	4.88	12.28	13.8	Concrete Pip	7,019.50	7,017.39
127: P-89	P-89	MH#8	6,986.87	MH#4 DP 18)	6,985.66	111.1	0.011	24.0	10.20	3.25	23.64	43.2	Concrete Pip	6,989.18	6,988.96
128: P-25 (1)	P-25 (1)	CULVERT 2 (DP 4)	6,997.01	O-10	6,995.27	116.5	0.015		11.20	5.01	461.86	2.4	Concrete Bo	6,997.35	6,995.49
129: P-25	P-25	CULVERT 1 (DP 4)	6,997.01	0-7	6,995.27	116.6	0.015		11.20	5.01	461.72	2.4	Concrete Bo	6,997.35	6,995.49
131: P-107 (2)	P-107 (2) (1)	MH#26 (DP6.1)	7,020.50	DP9	7,019.00	60.7	0.025	24.0	2.90	6.82	35.57	8.2	Concrete Pip	7,021.09	7,019.39
132: P-103	P-103	I#9 (DP6)	7,023.00	MH#26 (DP6.1)	7,022.00	42.7	0.023	18.0	1.20	5.34	16.08	7.5	Concrete Pip	7,023.41	7,022.28
133: P-107 (2)	P-107 (2)	MH#27 (DP8)	7,021.00	MH#26 (DP6.1)	7,020.50	56.6	0.009	24.0	2.00	4.25	21.26	9.4	Concrete Pip	7,021.49	7,021.47
134: P-107	P-107	DP 7	7,023.01	MH#27 (DP8)	7,021.75	37.8	0.033	15.0	0.30	4.09	11.81	2.5	Concrete Pip	7,023.22	7,021.89
135: P-107 (1)	P-107 (1)	MH#27 (DP8)	7,021.00	DP 2	7,021.26	43.9	-0.006	24.0	1.70	3.52	17.41	9.8	Concrete Pip	7,021.71	7,021.65
136: P-95	P-95	I#8 (DP5)	7,024.00	I#9 (DP6)	7,023.00	47.5	0.021	18.0	0.70	4.38	15.24	4.6	Concrete Pip	7,024.31	7,023.50
137: P-93	P-93	I#6 (DP2.1)	7,022.36	I#7 (DP3.1)	7,021.80	55.9	0.010	18.0	0.80	3.51	10.51	7.6	Concrete Pip	7,023.00	7,023.00
138: Pipe - (34	Pipe - (34)	I#7 (DP3.1)	7,021.80	FES OUTFALL 1	7,021.01	33.5	0.023	18.0	1.60	5.81	16.07	10.0	Concrete Pip	7,023.00	7,023.00
140: P-44 (1)	P-44 (1)	MH#20	7,001.18	MH#21	6,998.52	266.5	0.010	48.0	6.10	5.68	143.63	4.2	Concrete Pip	7,001.90	6,999.57
141: P-64	P-64	MH#21	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	6.10	5.74	145.88	4.2	Concrete Pip	6,999.24	6,995.82
142: P-44	P-44	MH#19	7,003.94	MH#20	7,001.28	266.5	0.010	48.0	6.10	5.68	143.63	4.2	Concrete Pip	7,004.66	7,001.84
143: P-26	P-26	DP 3	7,005.01	MH#19	7,004.04	81.5	0.012	48.0	6.10	6.03	156.73	3.9	Concrete Pip	7,005.73	7,004.99
144: P-64 (1)	P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	6.10	7.23	203.15	3.0	Concrete Pip	6,995.87	6,989.55
145: P-87	P-87	MH#10 (DP 15.1)	6,994.25	MH#9	6,989.76	320.7	0.014	24.0	10.20	7.94	26.78	38.1	Concrete Pip	6,995.39	6,990.92
146: P-87 (1)	P-87 (1)	MH#9	6,989.76	MH#8	6,986.87	197.4	0.015	24.0	10.20	8.07	27.33	37.3	Concrete Pip	6,990.90	6,989.29
147: P-84	P-84	I#4 (DP14)	6,995.69	MH#10 (DP 1	6,994.25	8.1	0.179	18.0	5.20	16.82	44.40	11.7	Concrete Pip	6,996.57	6,995.64
148: P-84 (1)	P-84 (1)	MH#10 (DP 15.1)	6,994.75	I#5 (DP 15)	6,995.50	53.9	-0.014	18.0	5.00	6.64	12.40	40.3	Concrete Pip	6,996.36	6,995.64
149: P-66	P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	6.10	4.60	106.64	5.7	Concrete Pip	6,989.54	6,989.51
150: P-68	P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	6.10	4.33	97.84	6.2	Concrete Pip	6,989.51	6,989.51
151: P-77	P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	24.0	3.60	7.70	38.62	9.3	Concrete Pip	6,990.98	6,989.93
152: P-74	P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	26.00	6.66	99.34	26.2	Concrete Pip	6,989.01	6,988.30

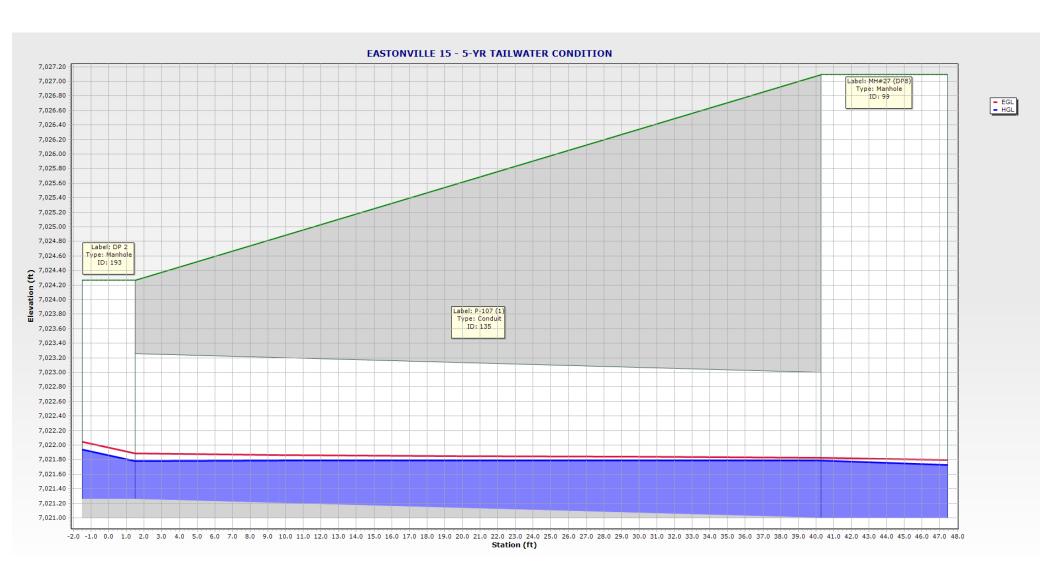

NOTE: EASTONVILLE 12 - INLET, EASTONVILLE 10, & EASTONVILLE 11 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

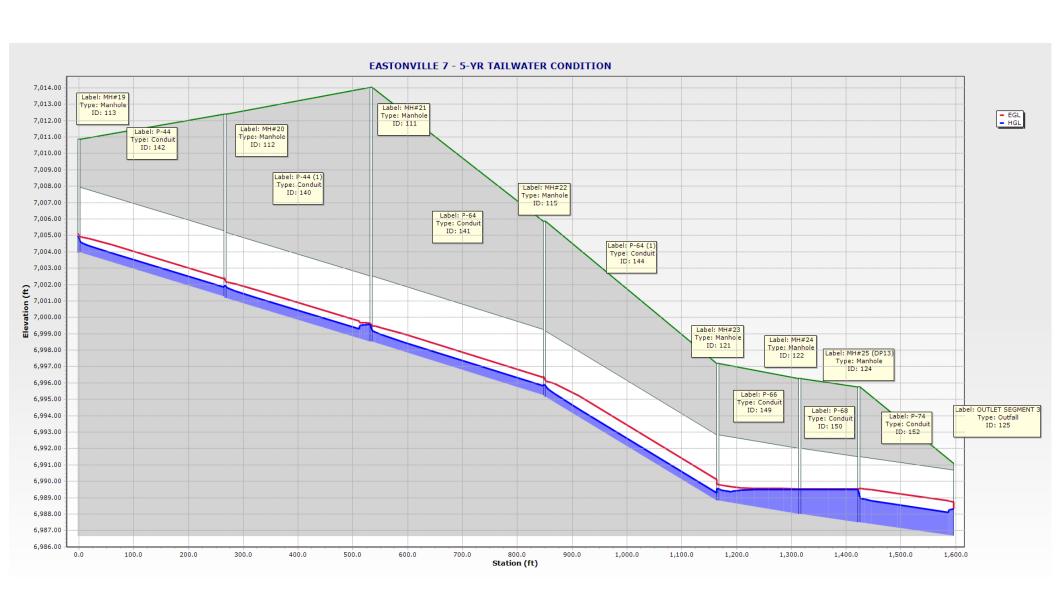
5 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

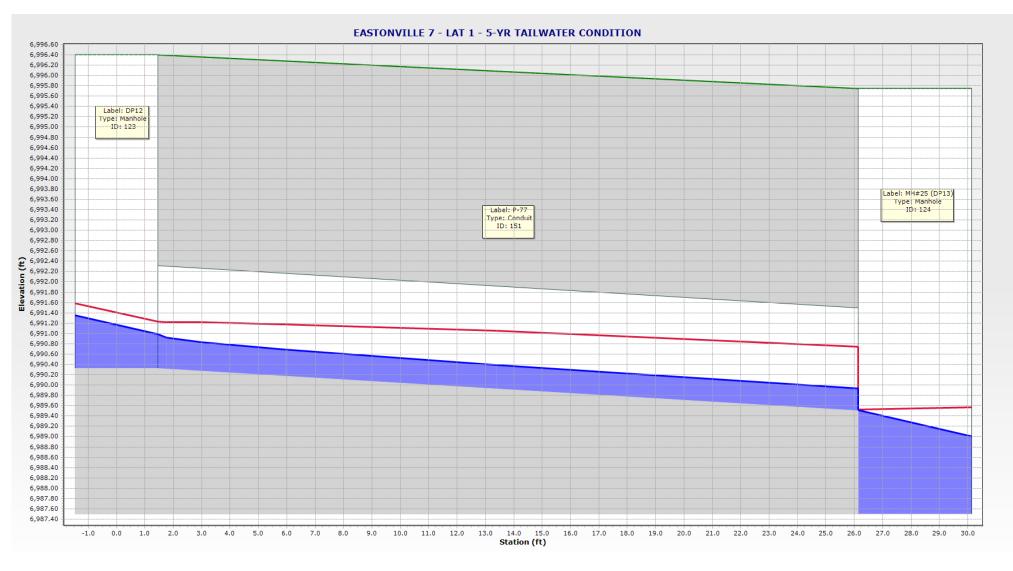

35: MH#7		(Ground) (ft)	Elevation (Rim) (ft)	Flow (Total Out) (cfs)	Depth (Out) (ft)	Grade Line (Out) (ft)	Grade Line (In) (ft)	Notes	Headloss (ft)
	MH#7	6,993.52	6,993.52	7.90	0.85	6,986.22	6,986.42	STORM MH	0.19
36: I#1 (DP 16	I#1 (DP 16)	6,993.41	6,993.41	3.00	0.66	6,990.40	6,990.77	CDOT Type-	0.38
37: MH#4 DP	MH#4 DP 18)	6,993.40	6,993.40	15.60	2.91	6,988.57	6,988.96	STORM MH	0.39
38: I#2 (DP 17	I#2 (DP 17)	6,993.39	6,993.39	6.30	0.90	6,989.68	6,990.02	CDOT Type-	0.35
39: MH#6	MH#6	6,993.02	6,993.02	7.90	0.85	6,985.35	6,985.54	STORM MH	0.19
40: MH#5	MH#5	6,991.91	6,991.91	7.90	0.85	6,984.97	6,985.17	STORM MH	0.19
41: MH#3 (DP	MH#3 (DP 8)	6,991.13	6,991.13	8.30	0.56	6,981.67	6,981.95	STORM MH	0.28
42: I#3 (DP 7)	I#3 (DP 7)	6,990.73	6,990.73	7.90	0.93	6,986.58	6,987.03	CDOT Type-	0.45
43: 18 (DP 19)	18 (DP 19)	6,988.71	6,988.71	0.30	1.96	6,983.47	6,983.57	CDOT Type-	0.10
44: MH#2 (DP I	MH#2 (DP 8)	6,985.74	6,985.74	8.30	0.87	6,981.30	6,981.50	STORM MH	0.20
45: I#4 (DP 13	I#4 (DP 13)	6,985.02	6,985.02	2.10	1.13	6,982.43	6,982.51	CDOT Type-	0.08
46: I#5 (DP 14	I#5 (DP 14)	6,985.02	6,985.02	3.90	1.23	6,982.28	6,982.42	CDOT Type-	0.15
47: MH#1	MH#1	6,984.95	6,984.95	8.30	0.87	6,980.92	6,980.95	STORM MH	0.03
49: 44 (69) (D	44 (69) (DP 15)	6,982.64	6,982.64	0.30	0.20	6,978.63	6,978.63	CDOT Type-	0.01
55: 44 (80)	44 (80)	6,975.21	6,975.21	4.20	2.48	6,973.23	6,973.23	Cylindrical St	0.00
56: 44 (81)	44 (81)	6,975.03	6,975.03	0.50	0.26	6,970.30	6,970.31	Cylindrical S	0.01
57: I#7 (DP 9)	I#7 (DP 9)	6,974.64	6,974.64	2.20	1.37	6,973.32	6,973.36	CDOT Type-	0.04
58: I#8 (DP 10	I#8 (DP 10)	6,974.64	6,974.64	4.20	2.09	6,973.27	6,973.30	CDOT Type-	0.03
59: I#6 (DP 1)	I#6 (DP 1)	6,973.20	6,973.20	0.50	0.26	6,971.11	6,971.25	CDOT Type-	0.14
60: 44 (78) (D	44 (78) (DP 11)	6,973.16	6,973.16	0.40	0.23	6,968.66	6,968.74	CDOT Type-	0.08
	MH#26 (DP6.1)	7,027,15	7,027,15	2,90	0.59	7,021,09	7,021,47	STORM MH	0.38
	MH#27 (DP8)	7,027.09	7,027,09	2,00	0,49	7,021,49	7,021,65	STORM MH	0.16
100: I#9 (DP6) I		7,027,04	7,027.04	1,20	0.41	7,023,41	7,023,50	CDOT Type-	0.09
101: I#8 (DP5) I	` '	7,026.63	7,026.63	0.70	0.31	7,024.31	7,024.47	CDOT Type-	0.16
102: I#7 (DP3. I	` '	7,026.51	7,026.51	1.60	1,70	7,023.00	7,023.00	CDOT Type-	0.00
	I#6 (DP2.1)	7,026.40	7,026.40	0.80	0.64	7,023.00	7,023.03	CDOT Type-	0.03
	MH#34	7,023.51	7,023.51	1,70	0.49	7,019.50	7,019.59	CDOT Type-	0.08
	MH#21	7,014.03	7,014.03	6.10	0.72	6,999.24	6,999.57	STORM MH	0.33
	MH#20	7,012.41	7,012.41	6.10	0.72	7,001.90	7,001.91	STORM MH	0.01
	MH#19	7,010.85	7,010.85	6.10	0.72	7,004.66	7,004.99	STORM MH	0.33
	MH#22	7,005.85	7,005.85	6.10	0.72	6,995.87	6,995.88	STORM MH	0.01
	MH#9	7,001.03	7,003.03	10.20	1.14	6,990.90	6,990.92	STORM MH	0.02
	I#4 (DP14)	7,001.03	7,001.03	5.20	0.88	6,996.57	6,997.11	CDOT Type-	0.55
	MH#10 (DP 1	7,000.17	7,000.17	10.20	1,14	6,995.39	6,995.64	STORM MH	0.24
119: I#5 (DP 1	-	6,999.67	6,999.67	5.00	0.46	6,996.36	6,996.89	CDOT Type-	0.53
	1#3 (DF 13) MH#8	6,996.13	6,996.13	10.20	2,52	6,989.18	6,989.29	STORM MH	0.10
	MH#23	6,997.20	6,997.20	6.10	0.72	6,989.54	6,989.55	STORM MH	0.10
	MH#24	6,996.25	6,996.25	6.10	1.51	6,989.51	6,989.51	STORM MH	0.00
	DP12	-		3.60	0.67	-	6,991,35		0.36
		6,996.40	6,996.40			6,990.98	-,	CDOT Type-	
	MH#25 (DP13)	6,995.75	6,995.75	26.00	1.51	6,989.01	6,989.51	STORM MH	0.50
	INLET (DP 3)	6,980.96	6,980.96	3.70	0.63	6,978.80	6,979.13	CDOT FES	0.34
	DP 7	7,024.45	7,024.45	0.30	0.21	7,023.22	7,023.33	CDOT FES	0.11
	DP 2	7,024.26	7,024.26	1.70	0.45	7,021.71	7,021.95	CDOT FES	0.24
	DP 3	7,009.43	7,009.43	6.10	0.72	7,005.73	7,006.10	CDOT FES	0.37
	CULVERT 1 (7,000.01	7,000.01 7,000.01	11.20 11.20	0.34	6,997.35 6,997.35	6,997.61	Dummy Null:	0.25

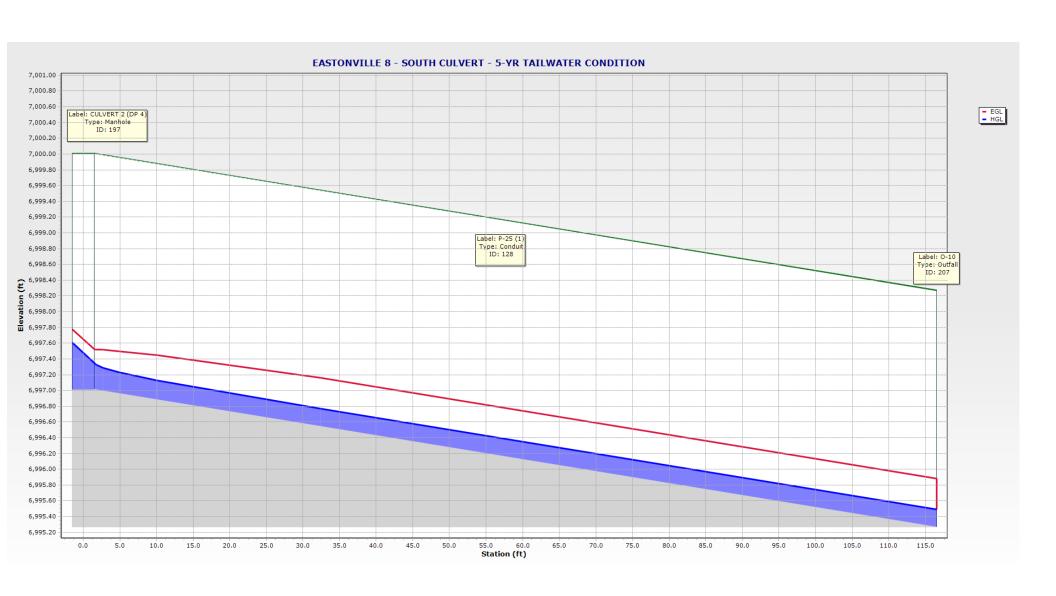

	Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	Notes
48: OUTFALL	OUTFALL	6,983.32	6,979.44		6,980.17	8.30	CDOT FES
53: 44 (70)	44 (70)	6,979.33	6,977.55		6,977.71	0.30	CDOT FES
54: 44 (65)	44 (65)	6,976.31	6,973.52		6,973.93	3.70	CDOT FES
61: 44 (77)	44 (77)	6,971.10	6,969.39		6,969.61	0.50	CDOT FES
64: 44 (79)	44 (79)	6,969.82	6,967.50		6,967.68	0.40	CDOT FES
107: DP9	DP9	7,022.74	7,019.00		7,019.39	2.90	CDOT FES
108: FES OUTF	FES OUTFALL 1	7,023.00	7,021.01	7,023.00	7,023.00	1.60	CDOT FES
110: MH#39	MH#39	7,018.18	7,017.01		7,017.39	1.70	CDOT FES
125: OUTLET S	OUTLET SEG	6,991.09	6,986.67	6,988.30	6,988.30	26.00	CDOT FES
162: 0-3	O-3	6,987.98	6,984.83	6,988.37	6,988.37	15.60	Dummy Null:
164: 0-5	O-5	6,982.10	6,981.08	6,982.25	6,982.25	3.90	Dummy Null:
165: 0-6	0-6	6,972.87	6,970.61	6,973.23	6,973.23	4.20	Dummy Null:
203: 0-7	0-7	6,998.27	6,995.27		6,995.49	11.20	Dummy Null:
207: 0-10	O-10	6,998.27	6,995.27		6,995.49	11.20	Dummy Null:

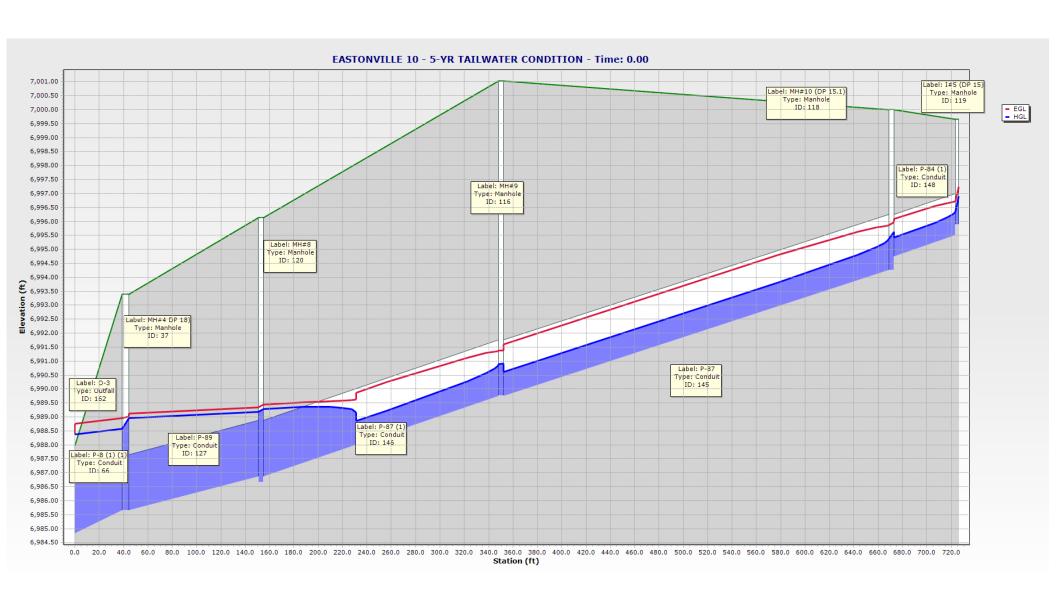

NOTE: EASTONVILLE 12 - INLET, EASTONVILLE 10, & EASTONVILLE 11 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.




NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS





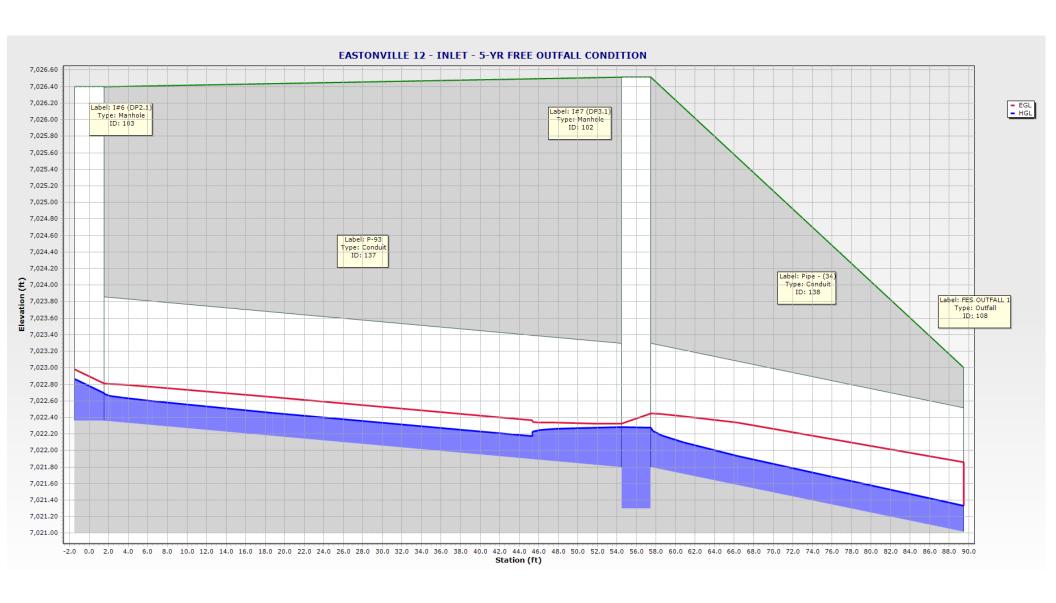


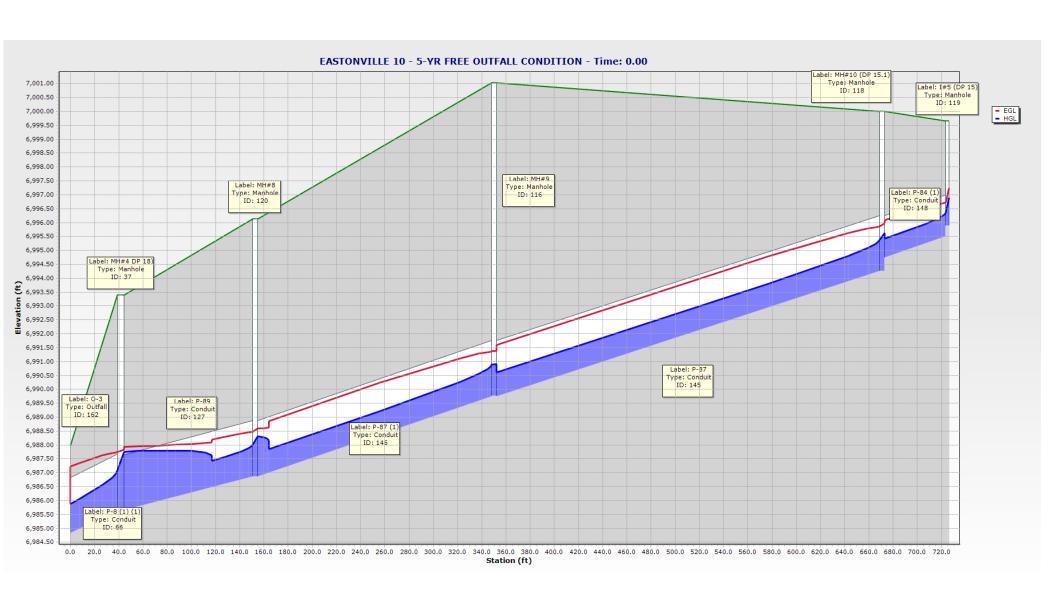
NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS

NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS

5 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE

	Label	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Notes	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
66: P-8 (1) (1)	P-8 (1) (1)	MH#4 DP 18)	6,985.66	O-3	6,984.83	41.6	0.020	24.0	15.60	10.12	31.99	48.8	Concrete Pip	6,987.09	6,985.89
67: P-124	P-124	I#5 (DP 14)	6,981.25	O-5	6,981.08	34.3	0.005	18.0	3.90	4.25	7.43	52.5	Concrete Pip	6,982.13	6,982.10
68: P-121 (2)	P-121 (2)	44 (80)	6,970.65	0-6	6,970.61	9.0	0.005	24.0	4.20	4.28	15.95	26.3	Concrete Pip	6,971.37	6,971.31
69: P-18	P-18	I#3 (DP 7)	6,985.73	MH#7	6,985.38	71.3	0.005	42.0	7.90	4.88	71.14	11.1	Concrete Pip	6,986.58	6,986.42
70: P-20	P-20	MH#7	6,985.38	MH#6	6,984.50	175.6	0.005	42.0	7.90	4.88	71.14	11.1	Concrete Pip	6,986.22	6,985.54
71: P-5	P-5	I#2 (DP 17)	6,989.29	I#1 (DP 16)	6,989.74	52.0	-0.009	18.0	3.00	4.87	9.77	30.7	Concrete Pip	6,990.40	6,990.02
72: P-8 (1)	P-8 (1)	I#2 (DP 17)	6,988.79	MH#4 DP 18)	6,985.66	156.4	0.020	24.0	6.30	7.92	31.99	19.7	Concrete Pip	6,989.68	6,987.76
73: P-21	P-21	MH#6	6,984.50	MH#5	6,984.13	74.6	0.005	42.0	7.90	4.88	71.14	11.1	Concrete Pip	6,985.35	6,985.17
74: P-22	P-22	MH#5	6,984.13	MH#3 (DP 8)	6,980.80	127.1	0.026	42.0	7.90	8.74	162.72	4.9	Concrete Pip	6,984.97	6,981.95
75: P-15	P-15	18 (DP 19)	6,983.26	MH#3 (DP 8)	6,982.80	30.8	0.015	18.0	0.30	3.02	12.90	2.3	Concrete Pip	6,983.47	6,982.96
76: P-15 (1)	P-15 (1)	MH#3 (DP 8)	6,980.80	MH#2 (DP 8)	6,980.43	75.1	0.005	42.0	8.30	4.92	70.62	11.8	Concrete Pip	6,981.67	6,981.50
77: P-16	P-16	MH#2 (DP 8)	6,980.43	MH#1	6,980.05	78.1	0.005	42.0	8.30	4.90	70.19	11.8	Concrete Pip	6,981.30	6,980.95
78: P-123	P-123	I#4 (DP 13)	6,981.51	I#5 (DP 14)	6,981.25	52.0	0.005	18.0	2.10	3.61	7.43	28.3	Concrete Pip	6,982.35	6,982.34
79: P-17	P-17	MH#1	6,980.05	OUTFALL	6,979.36	139.8	0.005	42.0	8.30	4.92	70.67	11.7	Concrete Pip	6,980.92	6,980.17
80: P-125	P-125	44 (69) (DP 15)	6,978.42	44 (70)	6,977.55	54.5	0.016	18.0	0.30	3.09	13.30	2.3	Concrete Pip	6,978.63	6,977.71
83: P-122	P-122	INLET (DP 3)	6,978.16	44 (65)	6,973.52	183.8	0.025	30.0	3.70	7.19	65.19	5.7	Concrete Pip	6,978.80	6,973.93
84: P-121	P-121	I#8 (DP 10)	6,971.18	44 (80)	6,970.65	105.1	0.005	24.0	4.20	4.30	16.06	26.1	Concrete Pip	6,971.90	6,971.38
85: P-130	P-130	I#6 (DP 1)	6,970.85	44 (81)	6,970.04	81.5	0.010	18.0	0.50	3.05	10.47	4.8	Concrete Pip	6,971.11	6,970.31
86: P-130 (1)	P-130 (1)	44 (81)	6,970.04	44 (77)	6,969.39	65.0	0.010	18.0	0.50	3.05	10.50	4.8	Concrete Pip	6,970.30	6,969.61
87: P-121 (1)	P-121 (1)	I#8 (DP 10)	6,971.68	I#7 (DP 9)	6,971.95	52.0	-0.005	18.0	2.20	3.71	7.57	29.1	Concrete Pip	6,972.51	6,972.23
88: P-131	P-131	44 (78) (DP 11)	6,968.42	44 (79)	6,967.50	62.5	0.015	18.0	0.40	3.27	12.77	3.1	Concrete Pip	6,968.66	6,967.68
126: P-111	P-111	MH#34	7,019.01	MH#39	7,017.01	146.6	0.014	18.0	1.70	4.88	12.28	13.8	Concrete Pip	7,019.50	7,017.39
127: P-89	P-89	MH#8	6,986.87	MH#4 DP 18)	6,985.66	111.1	0.011	24.0	10.20	7.25	23.64	43.2	Concrete Pip	6,988.02	6,987.76
128: P-25 (1)	P-25 (1)	CULVERT 2 (DP 4)	6,997.01	O-10	6,995.27	116.5	0.015		11.20	5.01	461.86	2.4	Concrete Bo	6,997.35	6,995.49
129: P-25	P-25	CULVERT 1 (DP 4)	6,997.01	0-7	6,995.27	116.6	0.015		11.20	5.01	461.72	2.4	Concrete Bo	6,997.35	6,995.49
131: P-107 (2)	P-107 (2) (1)	MH#26 (DP6.1)	7,020.50	DP9	7,019.00	60.7	0.025	24.0	2.90	6.82	35.57	8.2	Concrete Pip	7,021.09	7,019.39
132: P-103	P-103	I#9 (DP6)	7,023.00	MH#26 (DP6.1)	7,022.00	42.7	0.023	18.0	1.20	5.34	16.08	7.5	Concrete Pip	7,023.41	7,022.28
133: P-107 (2)	P-107 (2)	MH#27 (DP8)	7,021.00	MH#26 (DP6.1)	7,020.50	56.6	0.009	24.0	2.00	4.25	21.26	9.4	Concrete Pip	7,021.49	7,021.47
134: P-107	P-107	DP 7	7,023.01	MH#27 (DP8)	7,021.75	37.8	0.033	15.0	0.30	4.09	11.81	2.5	Concrete Pip	7,023.22	7,021.89
135: P-107 (1)	P-107 (1)	MH#27 (DP8)	7,021.00	DP 2	7,021.26	43.9	-0.006	24.0	1.70	3.52	17.41	9.8	Concrete Pip	7,021.71	7,021.65
136: P-95	P-95	I#8 (DP5)	7,024.00	I#9 (DP6)	7,023.00	47.5	0.021	18.0	0.70	4.38	15.24	4.6	Concrete Pip	7,024.31	7,023.50
137: P-93	P-93	I#6 (DP2.1)	7,022.36	I#7 (DP3.1)	7,021.80	55.9	0.010	18.0	0.80	3.51	10.51	7.6	Concrete Pip	7,022.69	7,022.28
138: Pipe - (34	Pipe - (34)	I#7 (DP3.1)	7,021.80	FES OUTFALL 1	7,021.01	33.5	0.023	18.0	1.60	5.81	16.07	10.0	Concrete Pip	7,022.27	7,021.33
140: P-44 (1)	P-44 (1)	MH#20	7,001.18	MH#21	6,998.52	266.5	0.010	48.0	6.10	5.68	143.63	4.2	Concrete Pip	7,001.90	6,999.57
141: P-64	P-64	MH#21	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	6.10	5.74	145.88	4.2	Concrete Pip	6,999.24	6,995.82
142: P-44	P-44	MH#19	7,003.94	MH#20	7,001.28	266.5	0.010	48.0	6.10	5.68	143.63	4.2	Concrete Pip	7,004.66	7,001.84
143: P-26	P-26	DP 3	7,005.01	MH#19	7,004.04	81.5	0.012	48.0	6.10	6.03	156.73	3.9	Concrete Pip	7,005.73	7,004.99
144: P-64 (1)	P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	6.10	7.23	203.15	3.0	Concrete Pip	6,995.87	6,989.55
145: P-87	P-87	MH#10 (DP 15.1)	6,994.25	MH#9	6,989.76	320.7	0.014	24.0	10.20	7.94	26.78	38.1	Concrete Pip	6,995.39	6,990.92
146: P-87 (1)	P-87 (1)	MH#9	6,989.76	MH#8	6,986.87	197.4	0.015	24.0	10.20	8.07	27.33	37.3	Concrete Pip	6,990.90	6,988.32
147: P-84	P-84	I#4 (DP14)	6,995.69	MH#10 (DP 1	6,994.25	8.1	0.179	18.0	5.20	16.82	44.40	11.7	Concrete Pip	6,996.57	6,995.64
148: P-84 (1)	P-84 (1)	MH#10 (DP 15.1)	6,994.75	I#5 (DP 15)	6,995.50	53.9	-0.014	18.0	5.00	6.64	12.40	40.3	Concrete Pip	6,996.36	6,995.64
149: P-66	P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	6.10	4.60	106.64	5.7	Concrete Pip	6,989.54	6,989.51
150: P-68	P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	6.10	4.33	97.84	6.2	Concrete Pip	6,989.51	6,989.51
151: P-77	P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	24.0	3.60	7.70	38.62	9.3	Concrete Pip	6,990.98	6,989.93
152: P-74	P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	26.00	6.66	99.34	26.2	Concrete Pip	6,989.01	6,988.30


NOTE: SEE PROFILES BELOW FOR PIPES STUDIED WITH THIS ANALYSIS

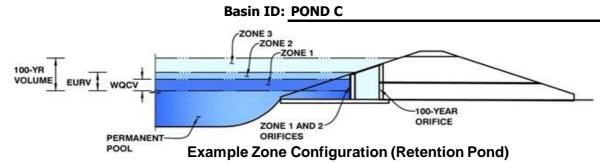

5 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

	Label	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Flow (Total Out) (cfs)	Depth (Out) (ft)	Hydraulic Grade Line (Out) (ft)	Hydraulic Grade Line (In) (ft)	Notes	Headloss (ft)
35: MH#7	MH#7	6,993.52	6,993.52	7.90	0.85	6,986.22	6,986.42	STORM MH	0.19
36: I#1 (DP 16	I#1 (DP 16)	6,993.41	6,993.41	3.00	0.66	6,990.40	6,990.77	CDOT Type-	0.38
37: MH#4 DP	MH#4 DP 18)	6,993.40	6,993.40	15.60	1.42	6,987.09	6,987.76	STORM MH	0.67
38: I#2 (DP 17	I#2 (DP 17)	6,993.39	6,993.39	6.30	0.90	6,989.68	6,990.02	CDOT Type-	0.35
39: MH#6	MH#6	6,993.02	6,993.02	7.90	0.85	6,985.35	6,985.54	STORM MH	0.19
40: MH#5	MH#5	6,991.91	6,991.91	7.90	0.85	6,984.97	6,985.17	STORM MH	0.19
41: MH#3 (DP	MH#3 (DP 8)	6,991.13	6,991.13	8.30	0.56	6,981.67	6,981.95	STORM MH	0.28
42: I#3 (DP 7)	I#3 (DP 7)	6,990.73	6,990.73	7.90	0.93	6,986.58	6,987.03	CDOT Type-	0.45
43: 18 (DP 19)	18 (DP 19)	6,988.71	6,988.71	0.30	1.96	6,983.47	6,983.57	CDOT Type-	0.10
44: MH#2 (DP	MH#2 (DP 8)	6,985.74	6,985.74	8.30	0.87	6,981.30	6,981.50	STORM MH	0.20
45: I#4 (DP 13	I#4 (DP 13)	6,985.02	6,985.02	2.10	1.04	6,982.35	6,982.45	CDOT Type-	0.10
46: I#5 (DP 14	I#5 (DP 14)	6,985.02	6,985.02	3.90	1.09	6,982.13	6,982.34	CDOT Type-	0.21
47: MH#1	MH#1	6,984.95	6,984.95	8.30	0.87	6,980.92	6,980.95	STORM MH	0.03
49: 44 (69) (D	44 (69) (DP 15)	6,982.64	6,982.64	0.30	0.20	6,978.63	6,978.63	CDOT Type-	0.01
55: 44 (80)	44 (80)	6,975.21	6,975.21	4.20	0.62	6,971.37	6,971.38	Cylindrical St	0.01
56: 44 (81)	44 (81)	6,975.03	6,975.03	0.50	0.26	6,970.30	6,970.31	Cylindrical S	0.01
57: I#7 (DP 9)	I#7 (DP 9)	6,974.64	6,974.64	2.20	0.56	6,972.51	6,972.82	CDOT Type-	0.31
58: I#8 (DP 10	I#8 (DP 10)	6,974.64	6,974.64	4.20	0.72	6,971.90	6,972.17	CDOT Type-	0.27
59: I#6 (DP 1)	I#6 (DP 1)	6,973.20	6,973.20	0.50	0.26	6,971.11	6,971.25	CDOT Type-	0.14
60: 44 (78) (D	44 (78) (DP 11)	6,973.16	6,973.16	0.40	0.23	6,968.66	6,968.74	CDOT Type-	0.08
98: MH#26 (D	MH#26 (DP6.1)	7,027.15	7,027.15	2.90	0.59	7,021.09	7,021,47	STORM MH	0.38
99: MH#27 (D	MH#27 (DP8)	7,027.09	7,027.09	2.00	0.49	7,021.49	7,021.65	STORM MH	0.16
100: I#9 (DP6)		7,027.04	7,027.04	1,20	0.41	7,023.41	7,023.50	CDOT Type-	0.09
101: I#8 (DP5)		7,026,63	7,026.63	0.70	0.31	7,024.31	7,024,47	CDOT Type-	0.16
102: I#7 (DP3.		7,026.51	7,026.51	1,60	0.97	7,022.27	7,022,28	CDOT Type-	0.01
103: I#6 (DP2.	· ,	7,026.40	7,026.40	0.80	0.33	7,022.69	7,022.87	CDOT Type-	0.18
106: MH#34	MH#34	7,023.51	7,023.51	1,70	0.49	7,019.50	7,019.59	CDOT Type-	0.08
111: MH#21	MH#21	7,014.03	7,014.03	6,10	0.72	6,999.24	6,999.57	STORM MH	0.33
112: MH#20	MH#20	7,012.41	7,012.41	6,10	0.72	7,001.90	7,001.91	STORM MH	0.01
113: MH#19	MH#19	7,010.85	7,010.85	6,10	0.72	7,004.66	7,004.99	STORM MH	0.33
115: MH#22	MH#22	7,005.85	7,005.85	6.10	0.72	6,995.87	6,995.88	STORM MH	0.01
116: MH#9	MH#9	7,001.03	7,001.03	10.20	1.14	6,990.90	6,990.92	STORM MH	0.02
	I#4 (DP14)	7,000.17	7,000.17	5,20	0.88	6,996.57	6,997.11	CDOT Type-	0.55
118: MH#10 (MH#10 (DP 1	7,000.01	7,000.01	10.20	1.14	6,995.39	6,995.64		0.24
119: I#5 (DP 1		6,999.67	6,999.67	5.00	0.46	6,996.36	6,996.89	CDOT Type-	0.53
120: MH#8	MH#8	6,996.13	6,996.13	10.20	1.15	6,988.02	6,988.32	STORM MH	0.30
121: MH#23	MH#23	6,997.20	6,997.20	6,10	0.72	6,989.54	6,989.55	STORM MH	0.01
122: MH#24	MH#24	6,996.25	6,996.25	6.10	1.51	6,989.51	6,989.51	STORM MH	0.00
123: DP12	DP12	6,996.40	6,996.40	3.60	0.67	6,990.98	6,991.35	CDOT Type-	0.36
124: MH#25 (MH#25 (DP13)	6,995,75	6,995,75	26.00	1.51	6,989.01	6,989.51	STORM MH	0.50
190: INLET (D	INLET (DP 3)	6,980.96	6,980.96	3.70	0.63	6,978.80	6,979.13	CDOT FES	0.34
192: DP 7	DP 7	7,024.45	7,024.45	0.30	0.03	7,023.22	7,023.33	CDOT FES	0.11
193: DP 2	DP 2	7,024.26	7,024.26	1.70	0.45	7,023.22	7,023.33	CDOT FES	0.11
194: DP 3	DP 3	7,024.20	7,009.43	6.10	0.72	7,021.71	7,021.93	CDOT FES	0.27
196: CULVERT		7,009.43	7,009.43	11.20	0.72	6,997.35	6,997.61	Dummy Null:	0.37
	CULVERT 2 (7,000.01	7,000.01	11.20	0.34	6,997.35		Dummy Null	0.25

	Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	Notes
48: OUTFALL	OUTFALL	6,983.32	6,979.44		6,980.17	8.30	CDOT FES
53: 44 (70)	44 (70)	6,979.33	6,977.55		6,977.71	0.30	CDOT FES
54: 44 (65)	44 (65)	6,976.31	6,973.52		6,973.93	3.70	CDOT FES
61: 44 (77)	44 (77)	6,971.10	6,969.39		6,969.61	0.50	CDOT FES
64: 44 (79)	44 (79)	6,969.82	6,967.50		6,967.68	0.40	CDOT FES
107: DP9	DP9	7,022.74	7,019.00		7,019.39	2.90	CDOT FES
108: FES OUTF	FES OUTFALL 1	7,023.00	7,021.01		7,021.33	1.60	CDOT FES
110: MH#39	MH#39	7,018.18	7,017.01		7,017.39	1.70	CDOT FES
125: OUTLET S	OUTLET SEG	6,991.09	6,986.67	6,988.30	6,988.30	26.00	CDOT FES
162: 0-3	0-3	6,988.37	6,984.83		6,985.89	15.60	Dummy Null:
164: 0-5	O-5	6,982.10	6,981.08	6,982.10	6,982.10	3.90	Dummy Null:
165: 0-6	0-6	6,972.87	6,970.61		6,971.31	4.20	Dummy Null:
203: 0-7	0-7	6,998.27	6,995.27		6,995.49	11.20	Dummy Null:
207: 0-10	O-10	6,998.27	6,995.27		6,995.49	11.20	Dummy Null:

NOTE: SEE PROFILES BELOW FOR PIPES STUDIED WITH THIS ANALYSIS

APPENDIX D – WATER QUALITY & DETENTION


	Design Procedure For	m: Sand Filter (SF)	
	UD-BMP (Version 3.0)	7, March 2018)	Sheet 1 of 2
Designer:	SPC		
Company:	HR Green		
Date:	January 30, 2024		
Project:	Eastonville Road - Segment 2 Improvements		
Location:	El Paso County, CO		
1. Basin Sto	rage Volume		
	ve Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of sand filter)	I _a = 54.0 %	
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.540	
	Quality Capture Volume (WQCV) Based on 12-hour Drain Time $V = 0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * i)$	WQCV = 0.17 watershed inches	
D) Contri	buting Watershed Area (including sand filter area)	Area = 27,443 sq ft	
	Quality Capture Volume (WQCV) Design Volume _V = WQCV / 12 * Area	V _{WQCV} = 398 cu ft	
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	$d_6 = $ in	
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} = cu ft	
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	V _{WQCV USER} = cu ft	
2. Basin Geo	ometry		
A) WQCV	Depth	$D_{WQCV} = \frac{1.0}{ft}$	
	filter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	$Z = \underbrace{4.00} \text{ft / ft}$	
C) Minimu	ım Filter Area (Flat Surface Area)	$A_{Min} = $ sq ft	
D) Actual	Filter Area	$A_{Actual} = 200$ sq ft	
E) Volume	e Provided	$V_T = 4288$ cu ft	
3. Filter Mate	erial	Choose One 18" CDOT Class B or C Filter Material Other (Explain):	
4. Underdrai	n System	Choose One	
A) Are und	derdrains provided?	YES NO	
B) Under	drain system orifice diameter for 12 hour drain time		
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y = 2.0 ft	
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = 398 cu ft	
	iii) Orifice Diameter 3/8" Minimum	$D_0 = \frac{7/16}{100}$ in	

	Design Procedure Forn	n: Sand Filter (SF)
Designer:	SPC	Sheet 2 of 2
Company:	HR Green	
Date:	January 30, 2024	
Project:	Eastonville Road - Segment 2 Improvements	
Location:	El Paso County, CO	
A) Is an	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One ○ YES ● NO
	tlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	Engery dissapation at inlet points provided via riprap, and means of conveying flows in excess of the WQCV through the outlet is via the modified type 'C' inlet outlet structure grate, and a restricted outlet pipe.
Notes:		

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Project: Eastonville Road

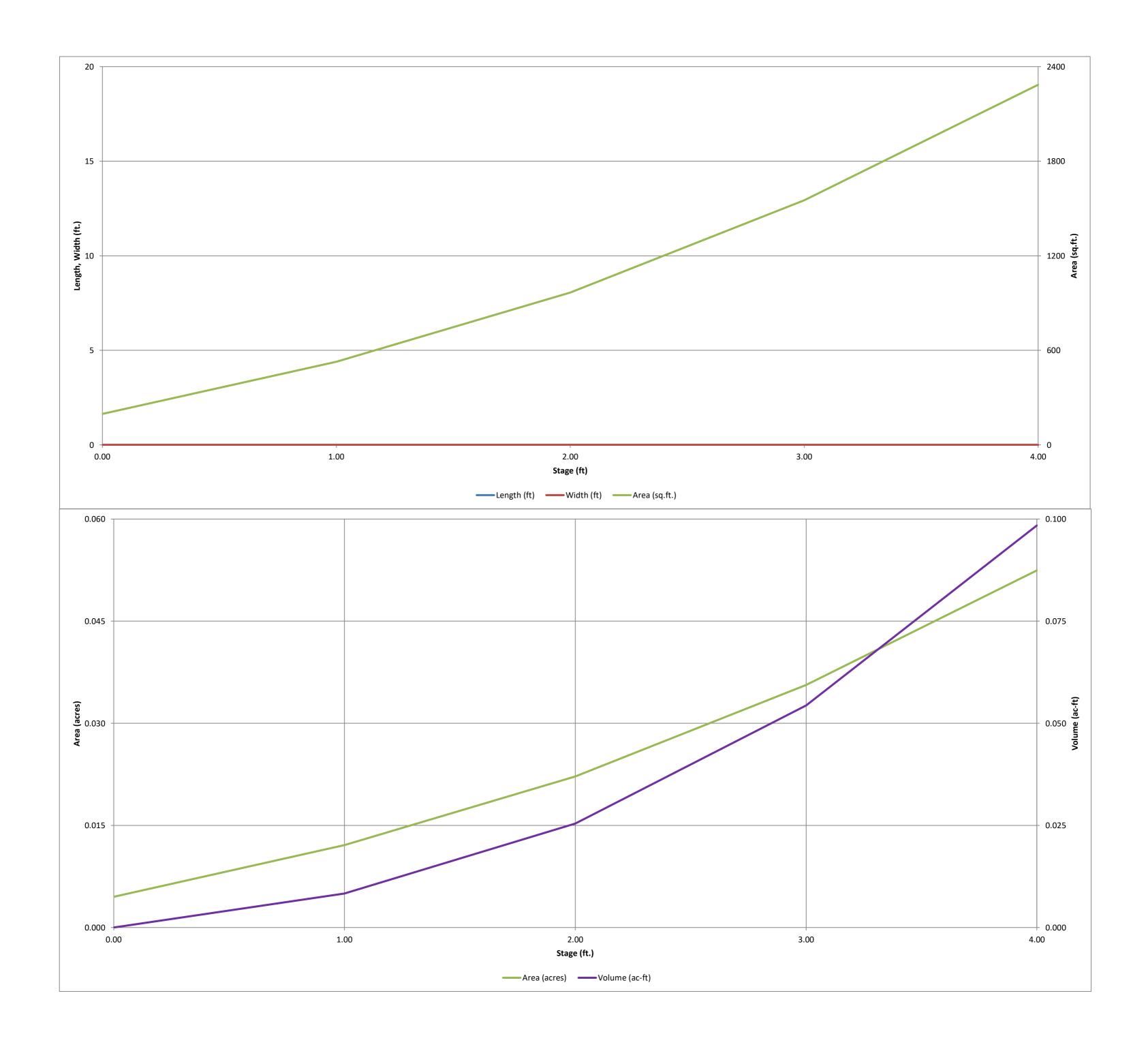
Watershed Information

ersiled Information		
Selected BMP Type =	SF	
Watershed Area =	0.63	acres
Watershed Length =	171	ft
Watershed Length to Centroid =	85	ft
Watershed Slope =	0.018	ft/ft
Watershed Imperviousness =	54.00%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	12.0	hours
Location for 1-hr Rainfall Depths =	User Input	

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure

the embedded Colorado Urban Hydrograph Procedure.									
Water Quality Capture Volume (WQCV) =	0.009	acre-feet							
Excess Urban Runoff Volume (EURV) =	0.037	acre-feet							
2-yr Runoff Volume (P1 = 0.93 in.) =	0.023	acre-feet							
5-yr Runoff Volume (P1 = 1.21 in.) =	0.032	acre-feet							
10-yr Runoff Volume (P1 = 1.46 in.) =	0.043	acre-feet							
25-yr Runoff Volume (P1 = 1.84 in.) =	0.063	acre-feet							
50-yr Runoff Volume (P1 = 2.16 in.) =	0.079	acre-feet							
100-yr Runoff Volume (P1 = 2.49 in.) =	0.097	acre-feet							
500-yr Runoff Volume (P1 = 3.37 in.) =	0.142	acre-feet							
Approximate 2-yr Detention Volume =	0.022	acre-feet							
Approximate 5-yr Detention Volume =	0.031	acre-feet							
Approximate 10-yr Detention Volume =	0.041	acre-feet							
Approximate 25-yr Detention Volume =	0.050	acre-feet							
Approximate 50-yr Detention Volume =	0.054	acre-feet							
Approximate 100-yr Detention Volume =	0.062	acre-feet							

Define Zones and Basin Geometry

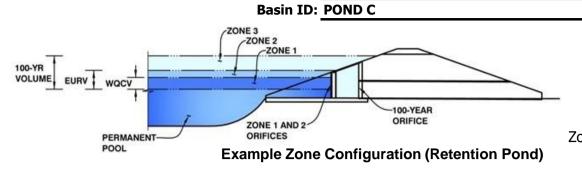

		•
acre-feet	0.009	Zone 1 Volume (WQCV) =
acre-feet	0.027	Zone 2 Volume (EURV - Zone 1) =
acre-feet	0.025	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-feet	0.062	Total Detention Basin Volume =
ft ³	N/A	Initial Surcharge Volume (ISV) =
ft	N/A	Initial Surcharge Depth (ISD) =
ft	user	Total Available Detention Depth $(H_{total}) =$
ft	N/A	Depth of Trickle Channel $(H_{TC}) =$
ft/ft	N/A	Slope of Trickle Channel $(S_{TC}) =$
H:V	user	Slopes of Main Basin Sides $(S_{main}) =$
	user	Basin Length-to-Width Ratio ($R_{L/W}$) =

_		
ft ²	user	Initial Surcharge Area $(A_{ISV}) =$
ft	user	Surcharge Volume Length (L_{ISV}) =
ft	user	Surcharge Volume Width $(W_{ISV}) =$
ft	user	Depth of Basin Floor $(H_{FLOOR}) =$
ft	user	Length of Basin Floor $(L_{FLOOR}) =$
ft	user	Width of Basin Floor (W_{FLOOR}) =
ft ²	user	Area of Basin Floor $(A_{FLOOR}) =$
ft ³	user	Volume of Basin Floor $(V_{FLOOR}) =$
ft	user	Depth of Main Basin $(H_{MAIN}) =$
ft	user	Length of Main Basin $(L_{MAIN}) =$
ft	user	Width of Main Basin (W_{MAIN}) =
ft²	user	Area of Main Basin $(A_{MAIN}) =$
ft ³	user	Volume of Main Basin $(V_{MAIN}) =$
acre-feet	user	Calculated Total Basin Volume $(V_{total}) =$
•		

Depth Increment =

on Pond)	Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
on i ona,	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
7021			0.00				197	0.005	242	
	7022		1.00				528	0.012	362	0.008
	7023 7024		2.00 3.00				967 1,552	0.022	1,110 2,369	0.025 0.054
	7025		4.00				2,285	0.052	4,288	0.098
									,	
Optional User Overrides										
acre-feet										
acre-feet										
0.93 inches										
1.21 inches inches										
1.84 inches										
2.16 inches										
2.49 inches										
3.37 inches										
						1 1				

Pond_C, Basin 1/30/2024, 3:19 PM



Pond_C, Basin 1/30/2024, 3:19 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.05 (January 2022)

Project: Eastonville Road

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	1.07	0.009	Filtration Media
Zone 2 (EURV)	2.45	0.027	Filtration Media
one 3 (100-year)	3.20	0.025	Weir&Pipe (Restrict)
	Total (all zones)	0.062	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

1.97 Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) 0.47 Underdrain Orifice Diameter = inches

Calculated Parameters for Underdrain 0.0 ft² Underdrain Orifice Area = 0.02 Underdrain Orifice Centroid = feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Centroid of Lowest Orifice = ft (relative to basin bottom at Stage = 0 ft) N/A N/A Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) N/A Orifice Plate: Orifice Vertical Spacing = inches Orifice Plate: Orifice Area per Row = N/A sq. inches

Calculated Parameters for Plate WQ Orifice Area per Row = N/A Elliptical Half-Width = N/A feet Elliptical Slot Centroid = N/A feet Elliptical Slot Area = N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (optional)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	N/A							
Orifice Area (sq. inches)	N/A							

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

User Input: Vertical Orifice (Circular or Rectangular)

	Not Selected	Not Selected	
Invert of Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage $= 0$ ft)
Depth at top of Zone using Vertical Orifice =	N/A	N/A	ft (relative to basin bottom at Stage $= 0$ ft)
Vertical Orifice Diameter =	N/A	N/A	inches

Calculated Parameters for Vertical Orifice Not Selected Not Selected Vertical Orifice Area = N/A N/A Vertical Orifice Centroid = N/A N/A feet

<u>User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)</u>

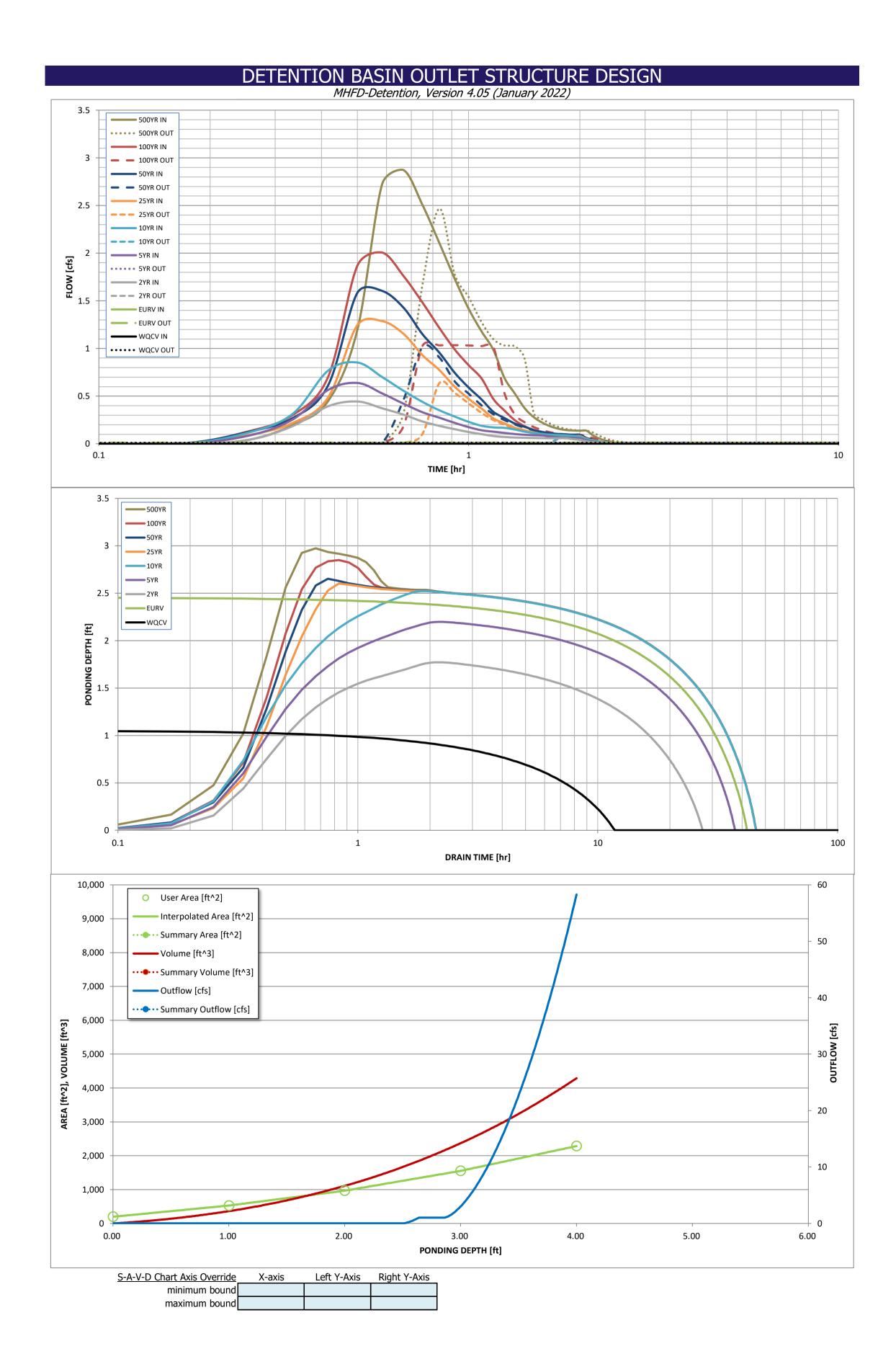
	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	2.50	N/A	ft (relative to basin bottom at Stage = 0 ft) He
Overflow Weir Front Edge Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Ope
Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow
Overflow Grate Type =	Type C Grate	N/A	Overflow
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir Zone 3 Weir Not Selected leight of Grate Upper Edge, $H_t =$ 2.50 N/A feet Overflow Weir Slope Length = 3.00 N/A feet oen Area / 100-yr Orifice Area = 63.46 N/A v Grate Open Area w/o Debris = 6.26 N/A 3.13 N/A ow Grate Open Area w/ Debris =

<u>User Inpu</u>

put: Outlet Pipe w/ Flow Restriction Plate	<u>e (Circular Orifice, F</u>	Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate					
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	2.00	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.10	N/A	ft ²
Outlet Pipe Diameter =	12.00	N/A	inches	Outlet Orifice Centroid =	0.11	N/A	feet
strictor Plate Height Above Pipe Invert =	2.20		inches Half-Central Angle o	of Restrictor Plate on Pipe =	0.88	N/A	

<u>User Input: Emergency Spillway (Rectangular or Trapezoidal)</u>


Spillway Invert Stage=	2.86	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	12.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway Spillway Design Flow Depth= 0.14 feet 4.00 Stage at Top of Freeboard = feet Basin Area at Top of Freeboard = 0.05 acres Basin Volume at Top of Freeboard = 0.10 acre-ft

Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).

Rodica Hydrograph Results	The user can overhae the deradic contribution for the user contribution of the user can overhae the deradic contribution of the user contribution of the user contribution of the user can be contained by the user can be used to the user can be user can be user can be used to the user can be use					/			
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	0.93	1.21	1.46	1.84	2.16	2.49	3.37
CUHP Runoff Volume (acre-ft) =	0.009	0.037	0.023	0.032	0.043	0.063	0.079	0.097	0.142
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.023	0.032	0.043	0.063	0.079	0.097	0.142
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.1	0.2	0.5	0.8	1.0	1.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.12	0.32	0.87	1.20	1.59	2.49
Peak Inflow Q (cfs) =	N/A	N/A	0.4	0.6	0.9	1.3	1.6	2.0	2.9
Peak Outflow Q (cfs) =	0.0	0.0	0.0	0.0	0.1	0.6	1.0	1.0	2.5
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.2	0.4	1.2	1.3	1.0	1.6
The state of the s	, , .	, , .	/						
Structure Controlling Flow =		Filtration Media	Filtration Media	Filtration Media	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
•	Filtration Media			Filtration Media N/A	Overflow Weir 1 0.0	Overflow Weir 1 0.1	Outlet Plate 1 0.2		
Structure Controlling Flow =	Filtration Media N/A	Filtration Media	Filtration Media					Outlet Plate 1	Spillway
Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Filtration Media N/A N/A	Filtration Media N/A	Filtration Media N/A	N/A	0.0	0.1	0.2	Outlet Plate 1 0.2	Spillway 0.2
Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Filtration Media N/A N/A 11	Filtration Media N/A N/A	Filtration Media N/A N/A	N/A N/A	0.0 N/A	0.1 N/A	0.2 N/A	Outlet Plate 1 0.2 N/A	Spillway 0.2 N/A
Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Filtration Media N/A N/A 11 12	Filtration Media N/A N/A 40	Filtration Media N/A N/A 26	N/A N/A 36	0.0 N/A 44	0.1 N/A 43	0.2 N/A 42	Outlet Plate 1 0.2 N/A 42	Spillway 0.2 N/A 40
Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	Filtration Media N/A N/A 11 12 1.06	Filtration Media N/A N/A 40 41	Filtration Media N/A N/A 26 27	N/A N/A 36 37	0.0 N/A 44 45	0.1 N/A 43 45	0.2 N/A 42 45	Outlet Plate 1 0.2 N/A 42 44	Spillway 0.2 N/A 40 44
Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	Filtration Media	Filtration Media N/A N/A 40 41 2.46	Filtration Media N/A N/A 26 27 1.77	N/A N/A 36 37 2.20	0.0 N/A 44 45 2.52	0.1 N/A 43 45 2.60	0.2 N/A 42 45 2.65	Outlet Plate 1 0.2 N/A 42 44 2.85	Spillway 0.2 N/A 40 44 2.97

Pond_C, Outlet Structure 1/30/2024, 3:19 PM

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

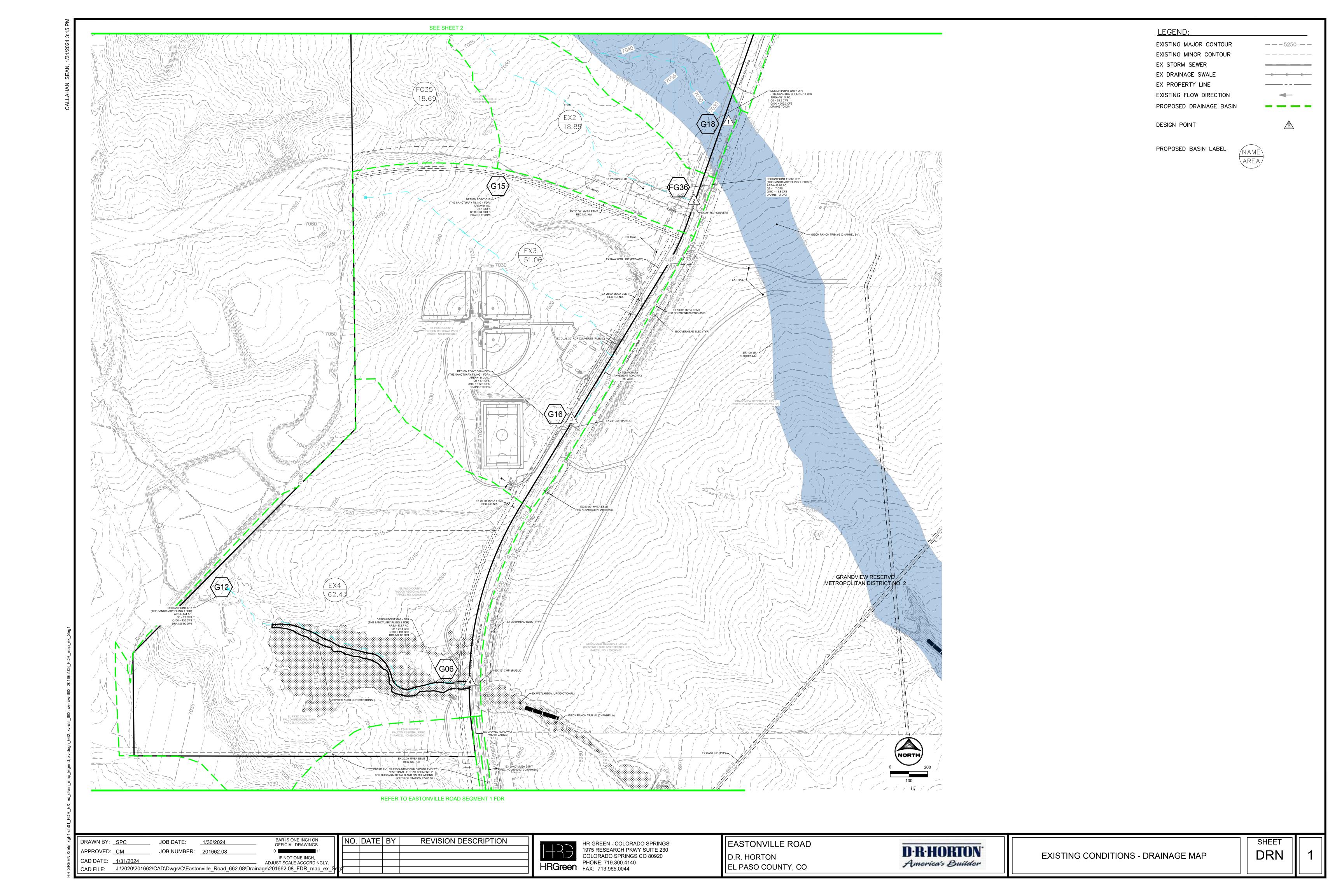
	The user can o	verride the calcu	ilated inflow hyd	drographs from	this workbook v	with inflow hydro	ographs develop	ped in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	0:15:00	0.00	0.00	0.04	0.08	0.11	0.09	0.12	0.12	0.19
	0:20:00	0.00	0.00	0.18	0.25	0.31	0.22	0.27	0.30	0.45
	0:25:00	0.00	0.00	0.39	0.56	0.77	0.48	0.61	0.70	1.19
	0:30:00	0.00	0.00	0.44	0.64	0.85	1.25	1.58	1.87	2.72
	0:35:00	0.00	0.00	0.37	0.53	0.70	1.29	1.60	2.01	2.87
	0:40:00	0.00	0.00	0.31	0.42	0.56	1.15	1.43	1.76	2.51
	0:45:00	0.00	0.00	0.23	0.33	0.44	0.93	1.15	1.48	2.11
	0:50:00	0.00	0.00	0.19	0.27	0.35	0.77	0.96	1.22	1.73
	0:55:00	0.00	0.00	0.15	0.22	0.29	0.60	0.75	0.99	1.42
	1:00:00	0.00	0.00	0.12	0.18	0.23	0.47	0.59	0.83	1.18
	1:05:00 1:10:00	0.00	0.00	0.10 0.08	0.14 0.13	0.19 0.17	0.37 0.27	0.47 0.34	0.69 0.47	0.99 0.69
	1:15:00	0.00	0.00	0.08	0.13	0.17	0.27	0.34	0.47	0.69
	1:20:00	0.00	0.00	0.07	0.11	0.17	0.22	0.27	0.25	0.38
	1:25:00	0.00	0.00	0.06	0.10	0.13	0.14	0.21	0.23	0.28
	1:30:00	0.00	0.00	0.06	0.10	0.13	0.14	0.15	0.15	0.28
	1:35:00	0.00	0.00	0.06	0.09	0.11	0.12	0.13	0.13	0.18
	1:40:00	0.00	0.00	0.06	0.08	0.10	0.09	0.11	0.11	0.16
	1:45:00	0.00	0.00	0.06	0.07	0.09	0.09	0.10	0.10	0.14
	1:50:00	0.00	0.00	0.06	0.06	0.09	0.08	0.10	0.09	0.14
	1:55:00	0.00	0.00	0.05	0.06	0.08	0.08	0.10	0.09	0.14
	2:00:00	0.00	0.00	0.04	0.06	0.08	0.08	0.10	0.09	0.14
	2:05:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.06	0.09
	2:10:00	0.00	0.00	0.02	0.02	0.03	0.03	0.04	0.04	0.06
	2:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.04
	2:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	2:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00 2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00 4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00 4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
'										

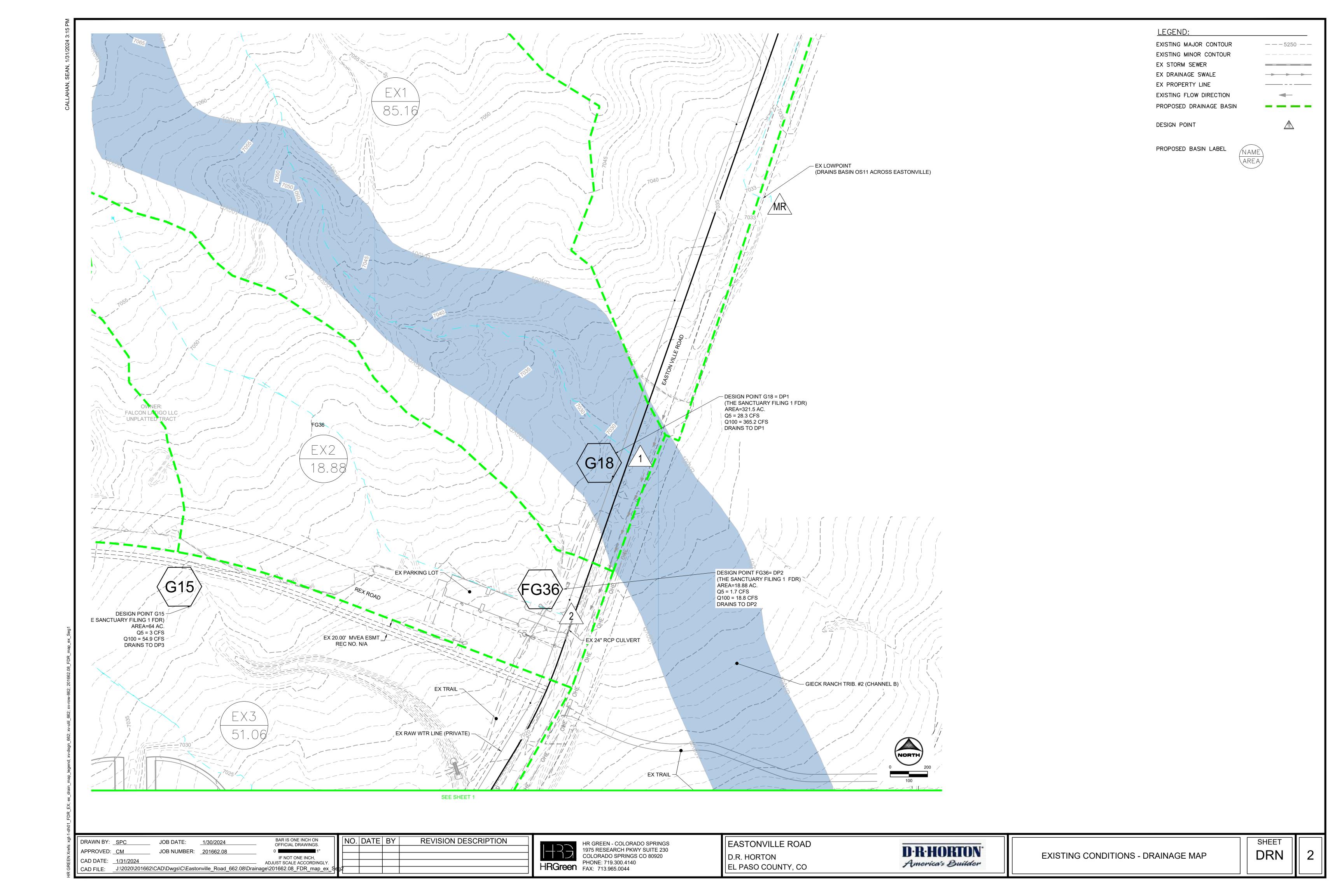
Pond_C, Outlet Structure

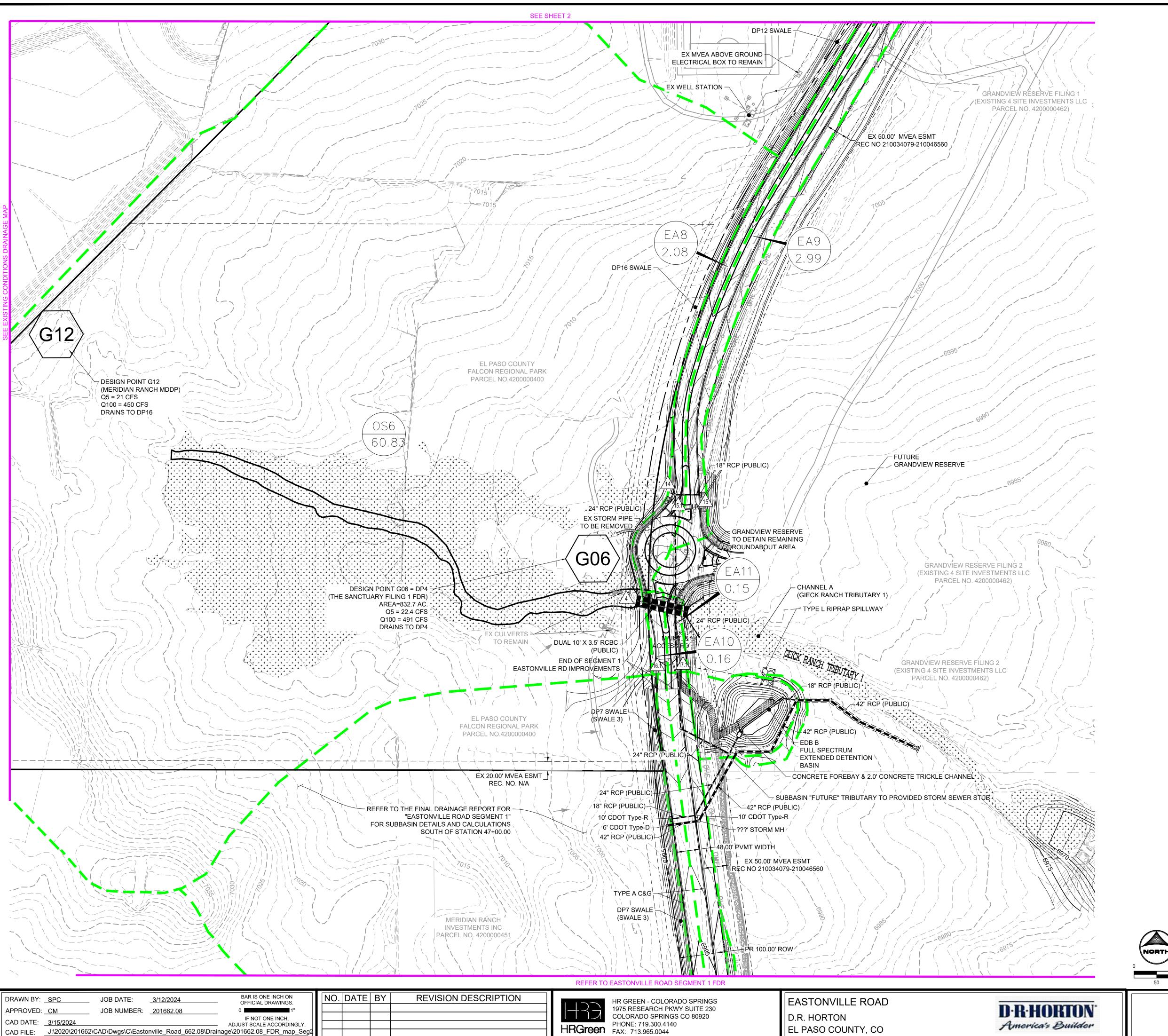
DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.


Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floo from the S-A-V table on
							Sheet 'Basin'.
							_
							Also include the inverts of a
							outlets (e.g. vertical orifice, overflow grate, and spillwa
							where applicable).
							-
							1
]
							_
							-
							_
							_
							-
							_
							-
							_
							-
							1
							1
							4
							-
							1
]
							4
							+
]
							4
							-
							-
							1
]
							4
							+
			1		1	1	-


Pond_C, Outlet Structure 1/30/2024, 3:19 PM



APPENDIX E - DRAINAGE MAPS

LEGEND: PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR PROPOSED STORM SEWER PROPOSED DRAINAGE SWALE PROPERTY LINE PROPOSED FLOW DIRECTION EXISTING FLOW DIRECTION PROPOSED DRAINAGE BASIN

PROPOSED BASIN LABEL

DESIGN POINT

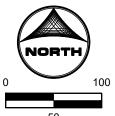
PRELIMINARY 100-YR FLOODPLAIN

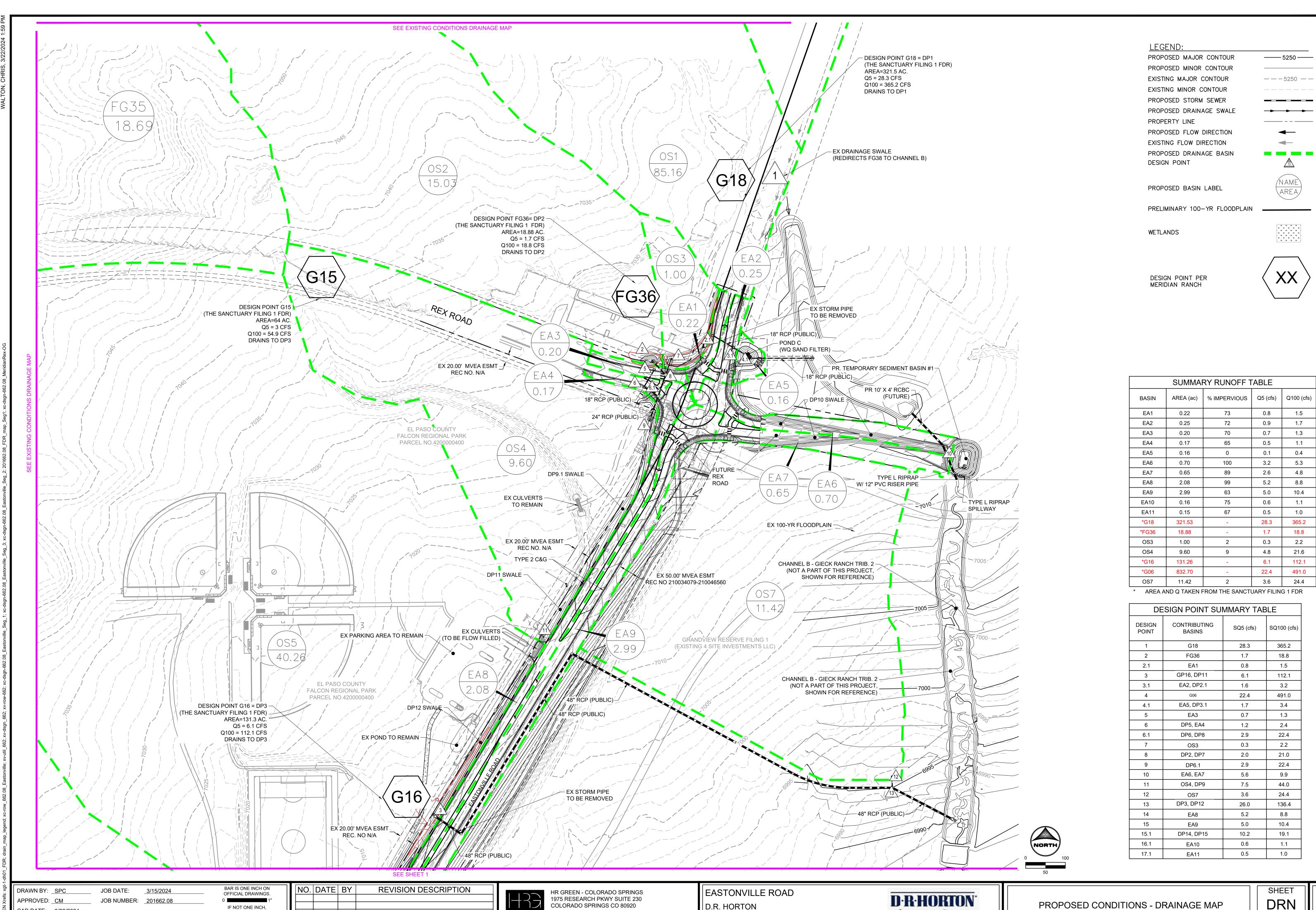
WETLANDS

/NAME

------ 5250 -----

---5250


DESIGN POINT PER MERIDIAN RANCH



SUMMARY RUNOFF TABLE							
BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs)			
EA1	0.22	73	0.8	1.5			
EA2	0.25	72	0.9	1.7			
EA3	0.20	70	0.7	1.3			
EA4	0.17	65	0.5	1.1			
EA5	0.16	0	0.1	0.4			
EA6	0.70	100	3.2	5.3			
EA7	0.65	89	2.6	4.8			
EA8	2.08	99	5.2	8.8			
EA9	2.99	63	5.0	10.4			
EA10	0.16	75	0.6	1.1			
EA11	0.15	67	0.5	1.0			
*G18	321.53	-	28.3	365.2			
*FG36	18.88	-	1.7	18.8			
OS3	1.00	2	0.3	2.2			
OS4	9.60	9	4.8	21.6			
*G16	131.26	-	6.1	112.1			
*G06	832.70	-	22.4	491.0			
OS7	11.42	2	3.6	24.4			

AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

DE	SIGN POINT SUI	MMARY TAI	BLE
DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)
1	G18	28.3	365.2
2	FG36	1.7	18.8
2.1	EA1	0.8	1.5
3	G16	6.1	112.1
3.1	EA2, DP2.1	1.6	3.2
4	G06	22.4	491.0
4.1	EA5, DP3.1	1.7	3.4
5	EA3	0.7	1.3
6	DP5, EA4	1.2	2.4
6.1	DP6, DP8	2.9	22.4
7	OS3	0.3	2.2
8	DP2, DP7	2.0	21.0
9	DP6.1	2.9	22.4
10	EA6, EA7	5.6	9.9
11	OS4, DP9	7.5	44.0
12	OS7	3.6	24.4
13	DP2, DP12	26.0	136.4
14	EA8	5.2	8.8
15	EA9	5.0	10.4
15.1	DP14, DP15	10.2	19.1
16.1	EA10	0.6	1.1
17.1	EA11	0.5	1.0

D.R. HORTON

EL PASO COUNTY, CO

HRGreen PHONE: 719.300.4140 FAX: 713.965.0044

JOB NUMBER: <u>201662.08</u>

CAD FILE: J:\2020\201662\CAD\Dwgs\C\Eastonville_Road_662.08\Drainage\201662.08_FDR_map_Seg2

IF NOT ONE INCH, ADJUST SCALE ACCORDINGLY.

APPROVED: <u>CM</u>

CAD DATE: <u>3/22/2024</u>

D·R·HORTON

America's Builder