

Eastonville Road – Londonderry Dr. to Rex Rd. Segment 2 Improvements Stationing 47+00.00 – 79+31.62

Final Drainage Report

January 2025

HR Green Project No: 201662.08

Prepared For:

D.R. Horton

Contact: Riley Hillen, P.E.

9555 S. Kingston Ct.

Englewood, CO 80112

Prepared By:

HR Green Development, LLC

Contact: Colleen Monahan, P.E., LEED AP

cmonahan@hrgreen.com

(719) 394-2433

EDARP Filing No:

CDR2321

Conditions:

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Colleen Monahan, P.E., LEED AP 1/22/2025 Date
State of Colorado No. 56067

For and on behalf of HR Green Development, LLC

Owner/Developer's Statement:

Ву:		
Authorized Signature		Date
Address: D.R. Horton		
	9555 S. Kingston Court	
	Englewood, CO	
El Paso County Statement Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development code, as amended.		
Joshua Palmer	, P.E.	Date
County Engine	er/ECM Administrator	

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Table of Contents

ole	of Contents	2
C	General Purpose, Location and Description	3
à.	Purpose	3
).	Location	3
) .	Description of Property	3
d.	Floodplain Statement	4
	Orainage Design Criteria	4
à.	Drainage Criteria	4
	Drainage Basins and Subbasins	4
à.	Major Basin Description	4
).	Existing Subbasin Description	5
) .	Proposed Subbasin Description	6
	Drainage Facility Design	12
à.	General Concept	12
).	Water Quality & Detention	12
).	Inspection and Maintenance	12
٧	Wetlands Mitigation	15
	Four Step Method to Minimize Adverse Impacts of Urbanization	15
	Drainage and Bridge Fees	15
	Opinion of Probable Cost	15
	Hydraulic Grade Line Analysis	16
5	Summary	17
	Drawings	17
	References	17
	() () () () () () () ()	Description of Property Description of Property Drainage Design Criteria Drainage Design Criteria Drainage Basins and Subbasins Major Basin Description Existing Subbasin Description Proposed Subbasin Description Drainage Facility Design General Concept Water Quality & Detention Inspection and Maintenance Wetlands Mitigation Four Step Method to Minimize Adverse Impacts of Urbanization Drainage and Bridge Fees Opinion of Probable Cost Hydraulic Grade Line Analysis Summary Drawings

Appendices

- A. Vicinity Map, FEMA Map, NRCS Soil Survey
- B. Hydrologic Analysis
- C. Hydraulic Analysis
- D. Water Quality and Detention Calculations
- E. Reference Material
- F. Drainage Maps

General Purpose, Location and Description

a. Purpose

The purpose of this Final Drainage Report (FDR) for Eastonville Road Segment 2 Improvements is to describe the onsite and offsite drainage patterns, size drainage infrastructure to safely capture and convey developed runoff to water quality and detention facilities, and to safely route detained stormwater to adequate outfalls. This drainage report will detail the improvements of Eastonville Road from Londonderry Dr. to Rex Road for Segment 2. Stations 47+00.00 to 79+32.00 contain the Segment 2 Improvements for the Eastonville Road from Londonderry Drive to Rex Road for the portion of the project north of Grandview Filing No. 1. The development is considered a single project; however, the plan set has been broken into two segments to align with the Grandview Reserve Filings. A separate FDR describes Segment 1 of the project.

b. Location

Eastonville Road from Londonderry Dr. to Rex Road, referred to as 'the site' herein, is an existing 26' wide treated gravel road in El Paso County, Colorado. Per field inspection the existing pavement is not full depth, and therefore described as 'temporary' for the purpose of this report. The site lies in the existing 60' wide El Paso County Right-of-Way within Sections 21 and 28, Township 12 South, Range 64 West of the 6th Principal Meridian, in El Paso County, State of Colorado.

The site is bound by undeveloped land to the east and west that has historically been used as ranching lands. Falcon Regional Park, which contains ballparks and parking, and Falcon High School also border the site to the west. All lands to the east and west of the site are unplatted. A vicinity map is presented in Appendix A.

c. Description of Property

The site is approximately 0.69 miles (2.17 acres) of existing treated gravel roadway north of Londonderry Dr. and south of Rex Road. Per field inspection the existing pavement is not full depth, and therefore described as 'temporary' for the purpose of this report. The existing treated gravel width for the length of the project is 26' wide. There are 4' wide gravel shoulders and native landscaped swales are located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts. See Appendix A for an existing conditions photo.

The existing roadway has slopes ranging from 0.3% up to about 4%. The general topography of the surrounding area is typical of high desert, short prairie grass with gently rolling hillside with slopes ranging from 2% to 4%. The project site drains generally from the west to the east and is tributary to Black Squirrel Creek.

Per a NRCS soil survey, the site is made up of Type A Columbine gravelly sandy loam, Type A Blakeland loamy sand and Type B Stapleton sandy loam. The NRCS soil survey is presented in Appendix A.

Gieck Ranch Tributary #1 (Channel A) is the only drainageway that traverses the site in the west to east direction through an existing culvert under Eastonville Road. The channel is a mapped wetland and a wetland permit will be required and has been obtained for a part of this Eastonville Road improvement project. NWP # SPA-2024-207 and is included in the project CDR-2321. Channel A is not within a FEMA floodplain.

Gieck Ranch Tributary #2 is located on the north end of the project site and contains a mapped floodplain. A CLOMR permit has been obtained (Case No. #24-08-0102R) and is included in the project CDR-2321. There are no known irrigation facilities in the area.

Existing utilities include an underground gas line that runs under Eastonville road through the Grandview reserve property south of the segment 2 improvements, an existing raw water line that follows the west side of Eastonville north of Falcon Regional Park, and an existing aboveground electrical line along the western side of Eastonville Road. An existing drainage map with these facilities is presented in Appendix F.

d. Floodplain Statement

Based on FEMA Firm map 08041C0552G December 7, 2018, the site is not located in any FEMA designated floodplain. See FEMA Firm Map in Appendix A. There is a Zone A floodplain north of the site and a Zone AE south of the site. There is an approved CLOMR for the Zone A floodplain north of the site that will be needed for a portion of Segment 2 of this project. A CLOMR permit has been obtained (Case No. #24-08-0102R) and is included in the project CDR-2321.

II. Drainage Design Criteria

a. Drainage Criteria

Hydrologic data and calculations were performed using Drainage Criteria Manual Volume 1 of El Paso County (EPCDCM), with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual (CCSDCM), May 2014 revised January 2021.

Onsite drainage improvements are designed for the 5-year storm (minor event) and 100-year storm (major event) using rainfall values from the NOAA Atlas 14 Point Precipitation Frequency Data Server. Runoff was calculated per CCSDCM Section 6.3.0 - Rational Method. Private, full spectrum pond design was completed using the latest version of Mile High Flood District's (MHFD) UD-Detention per CCSDCM Section 13.3.2.1 – Private, full spectrum Detention. The detention pond allowable release rate will be limited to less than historic rates.

Rainfall Depths per NOAA Atlas 14			
Return Period (yr) 5 100			
1-hr Rainfall Depth (in)	1.21	2.49	

Inlet sizing was performed per the methods described in EPCDCM Section III Chapter 7 – Street Drainage and Storm Water Inlets. Storm sewer sizing was performed per the methods described in EPCDCM Section III Chapter 8 – Storm Drains and Appurtenances.

III. Drainage Basins and Subbasins

a. Major Basin Description

The site is located within the Gieck Ranch Drainage Basin. The site's drainage characteristics were previously studied in the following reports:

- 1. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.

3. "Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch" by Tech Contractors, August 2022.

Gieck Ranch Drainage Basin is a 22.05 square mile watershed located in El Paso County, Colorado. Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains to the Arkansas River. The majority of the basin is undeveloped and is rolling range land typical of Colorado's semi-arid climates. It should be noted that the Gieck Ranch DBPS has not been approved at the time of this report.

The Meridian Ranch MDDP and The Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch indicate that the Eastonville Road culvert crossing at the Gieck Ranch Tributary #1, within the project boundary, does not provide enough capacity for the historic flow rates. This culvert will be upgraded as part of this project.

Within the Gieck Ranch Drainage Basin, ranching has historically been the predominant land use, with rolling topography between 2%-4% slopes. Recently urbanization is occurring within the drainage basin, most notably for this project are Meridian Ranch and Latigo Trails Developments. Both are single family residential neighborhoods located upstream to the west and northwest of the Eastonville Segment 2 Improvements project site.

b. Existing Subbasin Description

Eastonville Road Segment 2 (the site) accepts flows from areas to the west and northwest of the site, including portions of Meridian Ranch and Latigo Trails Development. The flows and design points used in the following descriptions are taken from the approved Meridian Ranch MDDP and The Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch provides the detailed analysis of the pond releases and flows as they outfall from those developments upstream of this Eastonville Road site. For the purpose of this report, full buildout of the Meridian Ranch development was assumed; hence the developed peak flow rates from the "future buildout conditions" for the entirety of Meridian Ranch were used to evaluate the existing conditions below.

Basin FG29 is 62.91 acres of undeveloped area and treated gravel to the crown of Eastonville Road roadway. The area and flows from this basin are per the FDR for the Sanctuary Filing 1 at Meridian Ranch. Stormwater from this basin combines drains southeast to design point G06 which is also per the FDR for the Sanctuary Filing 1 at Meridian Ranch ($Q_5 = 22$ cfs $Q_{100} = 491$ cfs). Flows at DP G06 are conveyed across Eastonville to design point G06.1 via an existing 18" CMP culvert and discharges to Gieck Ranch Tributary #1 (Channel A).

Basin FG35 is 19 acres undeveloped area and asphalt roadway to the crown of Rex Road. This basin area and flow are per the FDR for Rex Road through Falcon Regional Park. Stormwater from this basin is conveyed overland to DP G15. Flows at DP G15 ($Q_5 = 3.0$ cfs $Q_{100} = 55$ cfs) are conveyed southerly across Rex Road in an existing 24" RCP culvert and drains to DP G16.

Basin FG36 is 19 acres undeveloped area, parking lot, and treated gravel to the crown of Eastonville Road and Rex Road. This basin area and flow are per the FDR for Rex Road through Falcon Regional Park. Stormwater from this basin is conveyed overland to DP G15a. Flows at DP G15a ($Q_5 = 1.8$ cfs $Q_{100} = 19$ cfs) are conveyed southerly across Rex Road in an existing 24" RCP culvert and drains to DP G16.

Basin FG37 is 48 acres of undeveloped area and the Falcon Regional Park ball fields and treated gravel to the crown of Eastonville Road. This basin and flows are per the FDR for Rex Road through Falcon Regional Park. Stormwater from this basin drains to design point G16 via an existing roadside swale. Flows to DP G16

 $(Q_5 = 6.5 \text{ cfs } Q_{100} = 114 \text{ cfs})$ are conveyed across Eastonville Road in an existing 24" CMP culvert and discharge to Gieck Ranch Tributary #1 (Channel A).

Basin FG 38 is 85 acres of undeveloped area and treated gravel area to the crown of Eastonville Road. This basin area and flows are per the FDR for Falcon Regional Park. Stormwater from this basin combines with flows from Latigo Trails South Pond and is conveyed overland to DP G09 per the Falcon Regional Park FDR. Per the Falcon Regional Park FDR, flows at DP G09 ($Q_5 = 52$ cfs $Q_{100} = 277$ cfs) area conveyed east over Eastonville Road and are conveyed "overtopping at various locations". This basin is located upstream of the Eastonville project and is presented here to show where flows go that are upstream of the project site. The Eastonville project will have no impact into this basin and no further analysis done until further extension of the Eatonville Roadway.

Basin EX1 is 12.19 acres of undeveloped area and a future church property on the east side of the Eastonville Roadway. Stormwater from this basin sheet flows east directly to the Gieck Ranch Tributary #1 at DP13.1 ($Q_5 = 3.7$ cfs $Q_{100} = 25.0$ cfs).

Basin EX2 is 0.61 acres of undeveloped area on the future church property on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP G16.2 ($Q_5 = 0.2$ cfs $Q_{100} = 1.4$ cfs). Ultimately draining east to the Gieck Ranch Tributary #1.

Basin EX3 is 1.90 acres of undeveloped area on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP O3 ($Q_5 = 0.6$ cfs $Q_{100} = 3.8$ cfs). Ultimately draining east to the Gieck Ranch Tributary #1 combined with flows from DP G16 from the Sanctuary Filing 1.

Basin EX4 is 2.86 acres of undeveloped area on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP O3 ($Q_5 = 0.8$ cfs $Q_{100} = 5.7$ cfs). Ultimately draining east to the Gieck Ranch Tributary #1 combined with flows from DP G06 from the Sanctuary Filing 1.

c. Proposed Subbasin Description

Description of Proposed Project

The proposed project includes improvements to Eastonville Road from Londonderry Drive to Rex Road. As described above, the current condition of the existing roadway in this area consists of 26' wide treated gravel roadway with 4' wide sand shoulders and weedy swales located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts.

The proposed improvements from Rex Road south to the southern property line of the proposed Grandview Reserve Filing 1 include removal of the 26' wide treated gravel and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). This includes Basins EA1-EA11.

Refer to the Eastonville Road Segment 1 improvements FDR for subbasin information and calculations south of subbasins EA10 & EA11.

Eastonville Road Basins

Basin EA1 is 0.22 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.5$ cfs) is conveyed in curb and gutter to DP2.1. Flows at DP2.1 are captured in a 5' Type R sump inlet (Public) and piped to SFB C, a public full spectrum sand filter basin. Basin EA1 will be detained by SFB C. WQ treatment and runoff reduction is provided for disturbed area within this basin

within SFB C. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB C.

Basin EA2 is 0.25 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.9$ cfs $Q_{100} = 1.7$ cfs) is conveyed in curb and gutter to DP3.1. Flows at DP3 are captured in a 5' Type R sump inlet (Public) and piped to Pond C. Basin EA2 will be detained by SFB C. WQ treatment and runoff reduction is provided for disturbed area within this basin within SFB C. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB C.

Basin EA3 is 0.76 acres of undeveloped area and proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section) from Rex Road and the roundabout at its intersection with Eastonville Road. Stormwater ($Q_5 = 2.4 \text{ cfs } Q_{100} = 4.9 \text{ cfs}$) is conveyed in curb and gutter to DP5. This basin is drawn using information from the FDR for Rex Road through Falcon regional park. Flows at DP5 are captured in a 5' Type R sump inlet (Public) and piped to DP6. Basin EA3 will not be detained per the Meridian Ranch MDDP as this basin has been overdetained within Meridian Ranch. The disturbed area in this basin is part of 16,505 sf of disturbed area at the west leg of the Eastonville/Rex Road roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1.

Basin EA4 is 3.11 acres of undeveloped area and proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section) from Rex Road and the roundabout at its intersection with Eastonville Road Stormwater ($Q_5 = 3.8 \text{ cfs } Q_{100} = 11.7 \text{ cfs}$) is conveyed in curb and gutter to DP6. Flows at DP6 are captured in a 10' Type R sump inlet (Public) and piped to DP6.1. Basin EA4 will not be detained per the Meridian Ranch MDDP as this basin has been over-detained within Meridian Ranch. The disturbed area in this basin is part of 16,505 sf of disturbed area at the west leg of the Eastonville/Rex Road roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1.

Basin EA5 is 0.16 acres of undeveloped area and includes the Pond C Sand Filter. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 0.4$ cfs) flows directly into the SFB C Sand Filter. Basin EA5 will be detained by SFB C. WQ treatment and runoff reduction is provided for disturbed area within this basin within SFB C. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB C.

Basin EA6 is 0.25 acres of undeveloped area and the east leg of the Eastonville/Rex Road roundabout. Stormwater ($Q_5 = 0.8$ cfs $Q_{100} = 1.6$ cfs) is conveyed east via curb and gutter to design point 10. Temporary Sediment Basin #1 (TSB #1) will be used as an interim BMP for the area. TSB #1 has been sized for the paved area of the roundabout. The disturbed area in this basin is part of 19,279 sf of disturbed area at the east leg of the Eastonville/Rex Road roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1. This area will ultimately be treated by the Grandview Reserve development after the extension of Rex Road.

Basin EA7 is 0.20 acres of undeveloped area and the east leg of the Eastonville/Rex Road roundabout. Stormwater ($Q_5 = 0.4$ cfs $Q_{100} = 1.0$ cfs is conveyed east via curb and gutter to design point 10. Temporary Sediment Basin #1 (TSB #1) will be used as an interim BMP for the area. TSB #1 has been sized for the paved area of the roundabout. The disturbed area in this basin is part of 19,279 sf of disturbed area at the east leg of the Eastonville/Rex Road roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1. This area will ultimately be treated by the Grandview Reserve development after the extension of Rex Road.

Basin EA8 is 2.08 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 5.2$ cfs $Q_{100} = 9.4$ cfs) is conveyed in curb and gutter to DP14. Flows at DP14 are captured in a 10' Type R sump inlet (Public) and piped to EDB B. Basin EA8 will be detained by EDB B. WQ treatment and runoff reduction is provided for disturbed area within this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB B.

Basin EA9 is 3.14 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 5.0$ cfs $Q_{100} = 10.6$ cfs) is conveyed in curb and gutter to DP15. Flows at DP15 are captured in a 10' Type R sump inlet (Public) and piped to EDB B. Basin EA9 will be detained by EDB B. WQ treatment and runoff reduction is provided for the disturbed area within this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB B.

Basin EA10 is 0.16 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.6$ cfs $Q_{100} = 1.1$ cfs) is conveyed in curb and gutter to DP16.1 Flows from DP16.1 drain south and captured in a 10' Type R sump inlet (Public) at DP 16 and piped to Pond B. WQ treatment and runoff reduction is provided for the disturbed area within this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB B.

Basin EA11 is 0.15 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.5$ cfs $Q_{100} = 1.0$ cfs) is conveyed in curb and gutter to DP17.1. Flows from DP17.1 drain south and captured in a 10' Type R sump inlet (Public) at DP 17 and piped to Pond B. WQ treatment and runoff reduction is provided for the disturbed area within this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB B.

Basin EA12 is 0.36 acres of landscaping east of the Eastonville Roadway. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 1.1$ cfs) is conveyed east to DP G06.1. Flows at DP G06.1 combine with flow from DP G06 per the Sanctuary Filing 1 Report. This design point then drains east offsite in the Geick Ranch Tributary #1. There is approximately 12,172 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA13 is 0.45 acres of Eastonville Roadway at the Dawlish Dr roundabout. Stormwater ($Q_5 = 1.4$ cfs $Q_{100} = 2.8$ cfs) is conveyed east to DP G06.2. Flows to DP G06.2 ultimately drain southeast to the Geick Ranch Tributary #1. Flows in this basin with ultimately be treated and detained by the Grandview Reserve development. Prior to the Grandview Reserve development, WQ treatment is provided via a 30' wide grass buffer adjacent to the roundabout. There is approximately 15,849 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 19% and treat 125 cf of the WQCV. The remaining untreated WQCV will be treated at the development of Filing 1 of the Grandview Reserve property east of the roundabout. The remaining basin area consists of existing landscaping, and 3,532 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be

treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B.

Basin EA14 is 1.48 acres of landscaping and concrete/gravel trail on the east side of Eastonville Rd. Stormwater ($Q_5 = 1.2$ cfs $Q_{100} = 3.8$ cfs) is conveyed southeast to DP G06.3. This design point ultimately drains southeast offsite in the Geick Ranch Tributary #1. WQ treatment is provided for the proposed concrete/gravel trail via a 10' wide grass buffer adjacent to the trail. There is approximately 14,183 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 100% and treat all 535 cf of the required WQCV. The remaining basin area consists of existing landscaping, and 34,835 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA15 is 0.76 acres of landscaping and concrete/gravel trail on the east side of Eastonville Rd. Stormwater ($Q_5 = 0.7$ cfs $Q_{100} = 2.1$ cfs) is conveyed southeast to DP G16.1. This design point then drains southeast offsite in the Geick Ranch Tributary #1. WQ treatment is provided for the proposed concrete/gravel trail via a 10' wide grass buffer adjacent to the trail. There is approximately 8,613 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 100% and treat all 359 cf of the required WQCV. The remaining basin area consists of existing landscaping, and 10,902 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA16 is 1.18 acres of landscaping on the east side of Eastonville Rd and south of the church property. Stormwater ($Q_5 = 0.3$ cfs $Q_{100} = 2.5$ cfs) is conveyed southeast to DP 13.1. Flows from subbasin EA16 will ultimately be treated and detained by the Grandview Reserve development. Flows to DP 13.1 will outfall and drain southeast offsite in the Geick Ranch Tributary #2. There is approximately 13,040 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA17 is 0.30 acres of landscaping on the east side of Eastonville Rd and south of the church property. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 0.7$ cfs) is conveyed southeast to DP 10.1. This design point drains southeast offsite in the Geick Ranch Tributary #2. There is approximately 11,843 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from

this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA18 is a future development of 11.29 acres. This development will be required to provide its own WQ treatment and detention but will outfall into the public double CDOT type C inlet at DP 12. These flows have been accounted for in the Eastonville storm sewer calculations. Flows to DP 12 will ultimately outfall into the Geick Ranch Tributary #2 ($Q_5 = 3.9$ cfs $Q_{100} = 24.6$ cfs). WQ treatment is provided for the proposed concrete/gravel trail via a 10' wide grass buffer adjacent to the trail. There is approximately 6,468 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 100% and treat all 270 cf of the required WQCV. The remaining basin area consists of existing landscaping, and 20,215 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B. This basin is a part of future development and will ultimately be detained and treated by the future development.

Offsite Basins

Basin FG29 is 62.91 acres of undeveloped area west of the Eastonville Road roadway. The area and flows from this basin are per the FDR for the Sanctuary Filing 1 at Meridian Ranch. Stormwater from this basin drains southeast to design point G06 which is also per the FDR for the Sanctuary Filing 1 at Meridian Ranch ($Q_5 = 22 \text{ cfs } Q_{100} = 491 \text{ cfs}$). Flows at DP G06 are conveyed across Eastonville to design point G06.1 via a proposed dual 3' X 10' public box culvert and discharges to Gieck Ranch Tributary #1 (Channel A). The disturbed impervious area in this basin is part of 1,308 sf of disturbed area at southwest corner of the proposed roundabout. All of which will be excluded from WQ treatment per ECM APP I.7.C.1. There is also approximately 25,936 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. This subbasin will continue to follow existing drainage patterns.

Basin FG29a is 21.40 acres of undeveloped area west of the Eastonville Road roadway. The area and flows from this basin are a portion of basin FG29 used to analyze the 18" RCP culvert at DP G06a ($Q_5 = 6.4$ cfs $Q_{100} = 42.9$ cfs). There is a localized low point at DP G06a that requires a culvert to drain stormwater to DP G06. In the minor storm, all runoff will be conveyed through the proposed culvert to DP G06. In the major storm, runoff will pond up to an elevation of approximately 6999.32. The majority of runoff will drain around the west edge of the proposed roundabout to DP G06. Riprap has been provided at the 18" RCP culvert outfall/box culvert inlet location for erosion protection. Refer to the description for basin FG29 for WQ and disturbed area descriptions.

Basin FG35 is 19 acres undeveloped area and asphalt roadway to the crown of Rex Road. This basin area and flow are per the FDR for Rex Road through Falcon Regional Park. Stormwater from this basin is conveyed overland to DP G15. Flows at DP G15 ($Q_5 = 3.0$ cfs $Q_{100} = 55$ cfs) are conveyed southerly across Rex Road in an existing 24" RCP culvert and drains to DP G16. No development will occur in this basin.

Basin FG36a is 14.14 acres undeveloped area, parking lot northwest of the Eastonville/Rex Road roundabout. This basin area is a portion of existing basin FG36. Flows from this basin drain southeast to DP G15a. Flows at DP G15a1 ($Q_5 = 4.6$ cfs $Q_{100} = 27.7$ cfs) are conveyed southeast across Rex Road in a proposed public 30" RCP culvert and drains to DP8. There is approximately 1,351 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This subbasin will continue to follow existing drainage patterns.

Basin FG36b is 0.81 acres undeveloped area, parking lot northwest of the Eastonville/Rex Road roundabout. This basin area is a portion of existing basin FG36. Flows from this basin drain southeast to DP7. Flows at DP 7 ($Q_5 = 0.4$ cfs $Q_{100} = 2.0$ cfs) are conveyed south across Rex Road in a proposed public 18" RCP culvert and drains to DP8. There is approximately 5,474 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This subbasin will continue to follow existing drainage patterns.

Basin FG37a is 22.39 acres of undeveloped area and the Falcon Regional Park ball fields on the west side of Eastonville Road. This basin is a portion of the existing basin FG37. Flows from this basin drain southeast to a proposed public sump triple CDOT type C inlet at DP G16a. Flows to DP G16a are per the FDR for Rex Road through Falcon Regional Park ($Q_5 = 12.0 \text{ cfs } Q_{100} = 59.0 \text{ cfs}$). Flows are then conveyed across Eastonville Road in a proposed public 36" RCP pipe to DP 11.1. Flows ultimately discharge to Gieck Ranch Tributary #2 (Channel B). There is approximately 13,414 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This subbasin will continue to follow existing drainage patterns.

Basin FG37b is 24.86 acres of undeveloped area and the Falcon Regional Park ball fields on the west side of Eastonville Road. This basin is a portion of the existing basin FG37. Flows from this basin drain southeast to a proposed public 36" FES inlet at DP G16b ($Q_5 = 11.0 \text{ cfs } Q_{100} = 54.9 \text{ cfs}$). Flows are then conveyed across Eastonville Road in a proposed public 36" RCP pipe to DP 11.1. Flows ultimately discharge to Gieck Ranch Tributary #2 (Channel B). The disturbed impervious area in this basin is part of 6,353 sf of disturbed area on the west side of Eastonville Road. All of which will be excluded from WQ treatment per ECM APP I.7.C.1. There is also approximately 23,591 SF of disturbed landscape area within this basin, all of which will be restabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This subbasin will continue to follow existing drainage patterns.

Basin FG 38 is 85 acres of undeveloped area and treated gravel area to the crown of Eastonville Road. This basin area and flows are per the FDR for Falcon Regional Park. Stormwater from this basin combines with

flows from Latigo Trails South Pond and is conveyed overland to DP G09 per the Falcon Regional Park FDR. Per the Falcon Regional Park FDR, flows at DP G09 ($Q_5 = 52$ cfs $Q_{100} = 277$ cfs) area conveyed east over Eastonville Road and are conveyed "overtopping at various locations". This basin is located upstream of the Eastonville project and is presented here to show where flows go that are upstream of the project site. The Eastonville project will have no impact on this basin and no further analysis done until further extension of the Eatonville Roadway.

IV. Drainage Facility Design

a. General Concept

The proposed improvements from Rex Road south to the southern property line of the proposed Grandview Reserve Filing 1 include removal of the 26' wide treated gravel and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). Inlets will be placed at low points and roundabout entrances. Stormwater from this roadway will be piped to either a full spectrum detention pond, sand filter or temporary sediment basin. All ponds and water quality features will discharge at less than historic rates.

b. Water Quality & Detention

Pond C (Sand Filter)

Water quality and stormwater detention for Basins EA1, 2, & 5 is provided in Sand Filter Basin C. SFB C is a public, full spectrum sand filter basin within the Grandview Reserve property to be developed in the future. In Pond C, a total of 0.63 from the proposed project acres at 54% composite imperviousness will be detained. The minimum required acreage of treatment is 0.63 acres. The WQCV is 0.009 ac-ft, the EURV is 0.037 ac-ft, and the 100-year detention volume is 0.062 ac-ft. The WQCV, EURV and 100-year storms are released in 12, 41 and 44 hours, respectively. A 15' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 5' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard south. SFB C outfalls towards the future Channel B improvements at historic runoff rates. Runoff from Pond C will follow historic drainage patterns and not exceed historic flow rates.

SFB C Water Quality Treatment Summary Table					
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to SFB C (ac)		
EA1	0.22	0.22	0.22		
EA2	0.25	0.25	0.25		
EA5	0.16	0.16	0.16		
Total	0.63	0.63	0.63		

Extended Detention Basin B (Full Spectrum EDB) - Ultimate Condition

The interim condition of EDB B was design and built with the Segment 1 FDR. Water quality and detention for Basins EA6 – EA8 per the segment 1 FDR and EA8-11 per the segment 2 FDR is provided in Extended Detention Basin B ultimate condition; a public county owned, full spectrum extended detention basin within

Filing No. 1 of Grandview Reserve within a proposed drainage easement. A total of 9.48 acres of disturbed area from the proposed project at 66% composite imperviousness will be treated and detained by EDB B for the ultimately developed Eastonville Road Improvements. Ultimate conditions include fully built sections of Eastonville Road from Londonderry Road to Rex Road and is anticipated for Spring 2025. Ultimate condition pond sizing calculations have also been provided in the Appendix of this report. The ultimate conditions WQCV is 0.058 ac-ft, the EURV is 0.780 ac-ft, and the 100-year detention volume is 1.158 ac-ft. The WQCV, EURV and 100-year storms are released in 41, 69 and 67 hours, respectively. A forebay is located at the outfall into the pond and a 40" trickle channel conveys flow towards the outlet structure. A 15' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 15.5' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard towards Gieck Ranch Tributary #1. Refer to the Segment 1 FDR for outfall description.

EDB B Water	EDB B Water Quality Treatment Summary Table – Ultimate Condition					
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to SFB A (ac)			
EA6*	1.09	1.09	1.09			
EA7*	1.92	1.92	1.92			
EA8 *	0.94	0.94	0.94			
EA8	2.08	2.08	2.08			
EA9	3.14	3.14	3.14			
EA10	0.16	0.16	0.16			
EA11	0.15	0.15	0.15			
Total	9.48	9.48	9.48			

^{*} Per Segment 1 FDR.

Runoff R	eduction WQ Tre	eatment Summary Ta	ble			
Basin ID	Total Area (ac)	Disturbed Area (ac)	Disturbed Area Treatment BMP	Disturbed Area Treated via runoff reduction (ac)	WQCV Reduction %	Notes:
EA1	0.22	0.22	SFB C	0.22	17%	Treatment and detention by SFB C (public County sand filter basin) on Grandview Reserve property.
EA2	0.25	0.25	SFB C	0.25	17%	Treatment and detention by SFB C (public County sand filter basin) on Grandview Reserve property.
EA3	0.76	0.19	Exclusion I.7.1.C.1.	-	-	
EA4	3.11	0.19	Exclusion I.7.1.C.1.	-	-	
EA5	0.16	0.16	SFB C	0.16	11%	Treatment and detention by SFB C (public County sand filter basin) on Grandview Reserve property.
EA6	0.25	0.25	Exclusion I.7.1.C.1.	-	-	Future treatment and detention by Grandview Reserve development.
EA7	0.20	0.20	Exclusion I.7.1.C.1.	-	-	Future treatment and detention by Grandview Reserve development.
EA8	2.08	2.08	EDB B	2.08	11%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve property
EA9	3.14	3.14	EDB B	3.14	11%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve property
EA10	0.16	0.16	EDB B	0.16	11%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve property
EA11	0.15	0.15	EDB B	0.15	11%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve property
EA12	0.36	0.28	SPA	0.28	100%	
EA13	0.45	0.47	RPA (30' GB)	0.47	19%	Future treatment and detention by Grandview Reserve development.
EA14	1.48	1.38	RPA (10' GB)	1.38	100%	Future treatment and detention by Grandview Reserve development.
EA15	0.76	0.60	RPA (10' GB)	0.60	100%	Future treatment and detention by Grandview Reserve development.
EA16	1.18	0.30	SPA	0.30	100%	Future treatment and detention by Grandview Reserve development.
EA17	0.30	0.27	SPA	0.27	100%	,
EA18	11.29	0.73	RPA (10' GB)	0.73	100%	Future treatment and detention by future development.
FG29	62.91	0.62	SPA / Exclusion I.7.1.C.1.	0.60	100%	
FG35	18.69	-	-	-	-	
FG36a	14.14	0.03	SPA	0.03	100%	
FG36b	0.81	0.13	SPA	0.13	100%	
FG37a FG37b	22.39 24.86	0.31	SPA SPA / Exclusion	0.31 0.54	100%	
			I.7.1.C.1.			
FG38	85.00	-	-	-	-	

Eastonville Road Final Drainage Report Project No.: 201662.08

c. Inspection and Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated that all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

All public detention ponds are to be owned and maintained by El Paso County, once established, unless an agreement is reached stating otherwise. An agreement for the district to maintain aesthetics of the proposed ponds will be drafted and submitted to the County. Maintenance access for all full spectrum detention facilities will be provided from public Right-of-Way. Maintenance access for the drainageways will be provided through the proposed tracts.

V. Wetlands Mitigation

There is an existing wetland in Gieck Ranch Tributary #1 (Channel A). The wetland is contained entirely within the channel and is classified as jurisdictional. A Nationwide Wetland Permit will be applied for due to the disturbed area at the Dawlish Roundabout. Wetlands maintenance will be the responsibility of the DISTRICT.

VI. Four Step Method to Minimize Adverse Impacts of Urbanization

Step 1 – Reducing Runoff Volumes: Low impact development (LID) practices are utilized to reduce runoff at the source. In general, stormwater discharges are routed across pervious areas prior to capture in storm sewer. This practice promotes infiltration and reduces peak runoff rates. The Impervious Reduction Factor (IRF) method was used and is presented in Appendix D.

Step 2 – Treat and slowly release the WQCV: This step utilizes full spectrum water quality and detention to capture the WQCV and slowly release runoff from the site. Onsite full spectrum detention pond provides water quality treatment for the site. The WQCV is released over a period of at least 12 hours for SFBs and 40 hours for EDBs while the EURV is released over a period of 40-44 hours for SFBs and 68 - 72 hours for EDBs as recommended by the MHFD.

Step 3 – Stabilize stream channels: This step establishes practices to stabilize drainageways and provide scour protection at stormwater outfalls. Erosion protection is provided at all concentrated stormwater discharge points in the form of riprap pads.

Step 4 – Consider the need for source controls: No industrial or commercial uses are proposed within this development and therefore no source controls are proposed.

VII. Drainage and Bridge Fees

Gieck Ranch drainage basin has not been established as a fee basin within El Paso County. Therefore, no drainage basin fees are due at time of platting.

VIII. Opinion of Probable Cost

An engineer's opinion of probable cost has been provided below for public and private drainage infrastructure improvements. This includes cost estimates for the public full spectrum sand filter basin C. All required stormwater infrastructure will be installed per El Paso County Requirements.

Public Infrastructure Cost Estimate					
Line Item	Quantity	Unit Pr	ice	Cost	
18" Reinforced Concrete Pipe	490	\$82	LF	\$40,180	
24" Reinforced Concrete Pipe	505	\$98	LF	\$49,490	
30" Reinforced Concrete Pipe	100	\$123	LF	\$12,300	
36" Reinforced Concrete Pipe	789	\$151	LF	\$119,139	
48" Reinforced Concrete Pipe	1060	\$245	LF	\$259,700	
18" CDOT FES	3	\$492	EA	\$1,476	
30" CDOT FES	1	\$738	EA	\$738	
36" CDOT FES	2	\$906	EA	\$1,812	
48" CDOT FES	1	\$1,470	EA	\$1,470	
4' DIA Storm Manhole	3	\$15,130	EA	\$45,390	
5' DIA Storm Manhole	1	\$15,130	EA	\$15,130	
6' DIA Storm Manhole	5	\$15,130	EA	\$75,650	
7' DIA Storm Manhole	1	\$15,130	EA	\$15,130	
8' DIA Storm Manhole	2	\$15,130	EA	\$30,260	
CDOT Type C Inlet	5	\$6,037	EA	\$30,185	
5' CDOT Type R Inlet	3	\$7,212	EA	\$21,636	
10' CDOT Type R Inlet	3	\$9,925	EA	\$29,775	
Rip Rap, d50 size from 6"-24"	666	\$104	Tons	\$69,264	
3' x 10' Concrete Box Culvert	234	\$750	LF	\$175,500	
Box Culvert Wing Walls	2	\$45,000	EA	\$90,000	
10% Contingency				\$108,423	
TOTAL:				\$1,192,648	

Public SFB C Cost Estimate						
Line Item	Quantity	Unit Price	Cost			
Rip Rap, d50 size from 6"-24" (Inflow)	1.5	\$97 Tons	\$146			
Sand Filter Media	44	\$100 /CY	\$4,400			
4" Perforated PVC Underdrain	10	\$10 /LF	\$100			
12" ABC Maintenance Access	19	\$40 /CY	\$760			
Outlet Structure w/ Orifice Plate	1	\$5,000 EA	\$5,000			
Rip Rap, d50 size from 6"-24" (Spillway)	40	\$104 Tons	\$4,160			
4' DIA Storm Manhole	1	\$15,130 EA	\$15,130			
18" RCP Outlet Pipe	180	\$60 /LF	\$10,800			
18" RCP FES	1	\$350 EA	\$350			
10% Contingency			\$4,085			
TOTAL:			\$44,930			

IX. Hydraulic Grade Line Analysis

Hydraulic grade line analysis and final pipe sizes have been sized and calculations are provided in Appendix C. All proposed storm sewer will be designed in accordance with El Paso County Drainage Criteria Manuals.

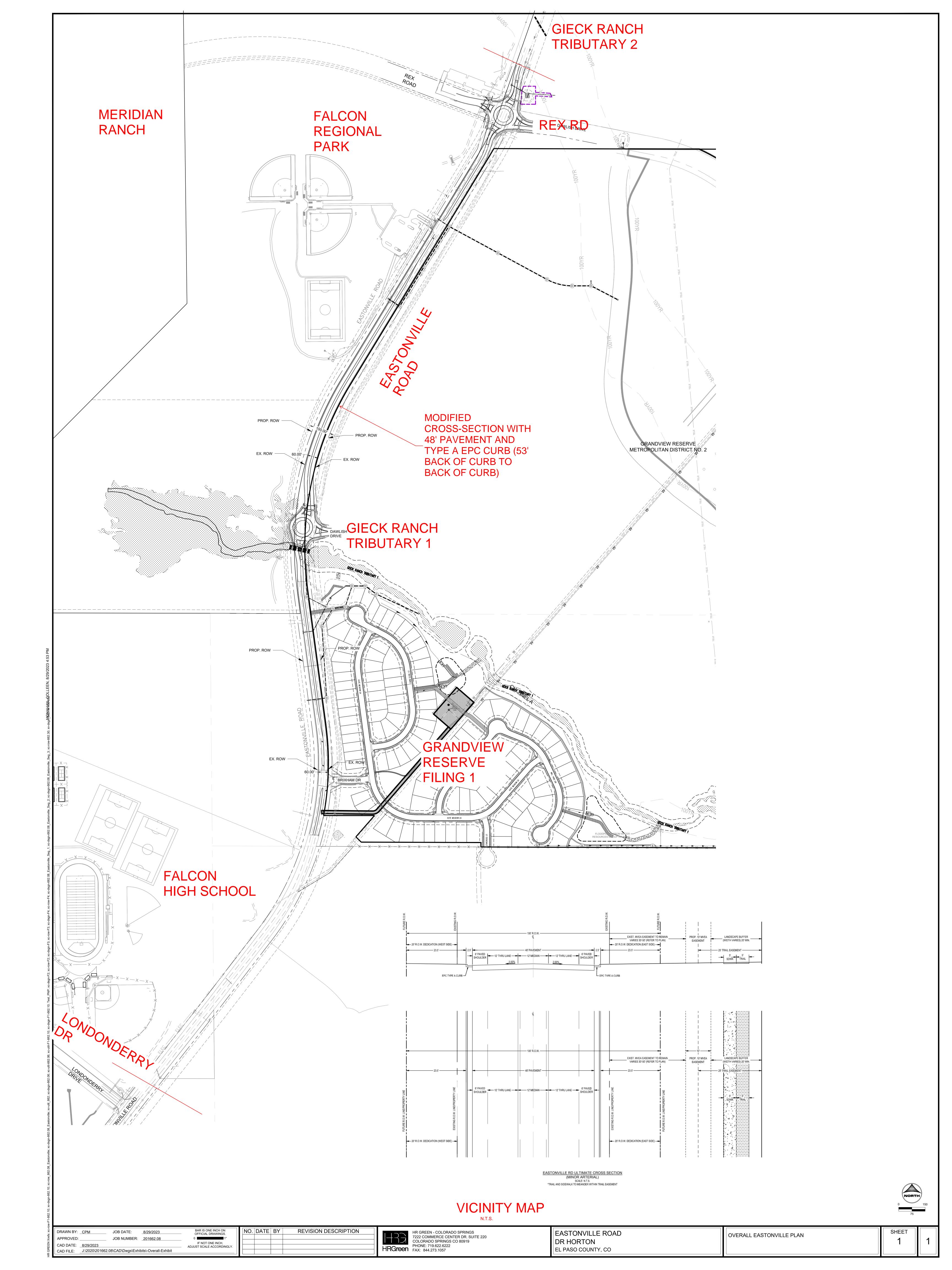
X. Summary

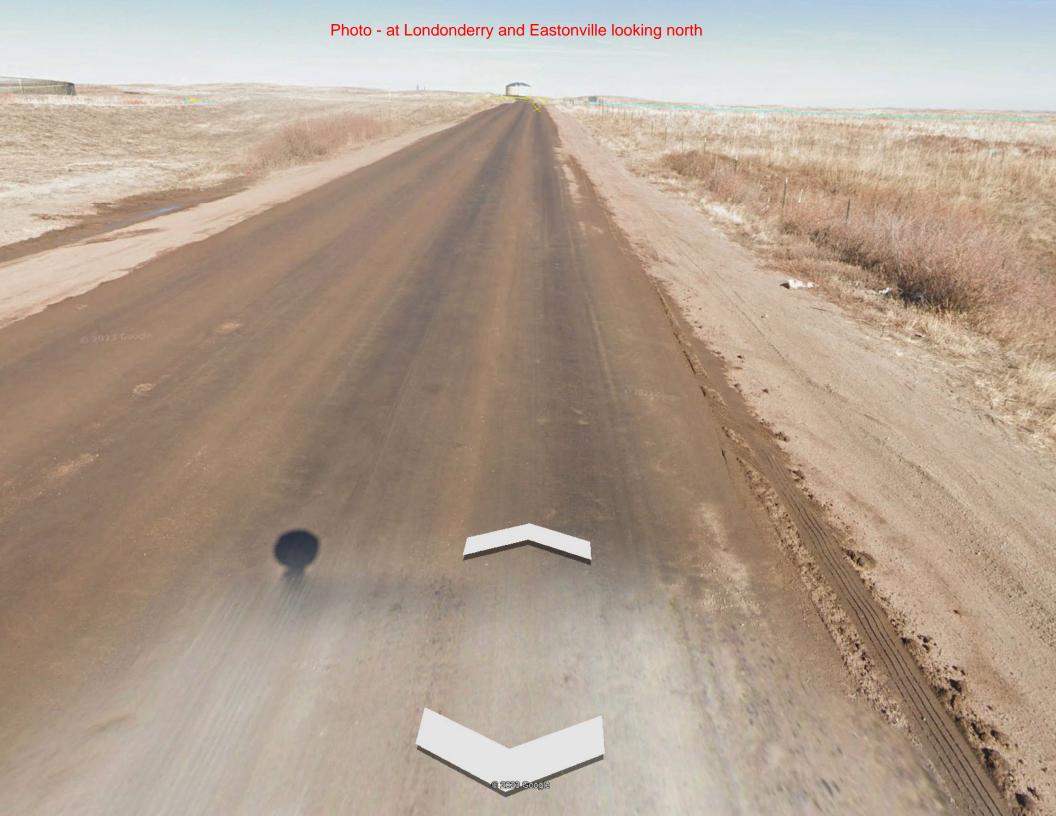
Eastonville Road lies within the Gieck Ranch Drainage Basin. Water quality and detention for the site is provided in full spectrum water quality and detention ponds, sand filters and temporary sediment basins. There is one major drainageway that traverses the site: Gieck Ranch Tributary 1. The water quality and detention features ponds will be maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT). All drainage facilities were sized per the El Paso County Drainage Criteria Manuals.

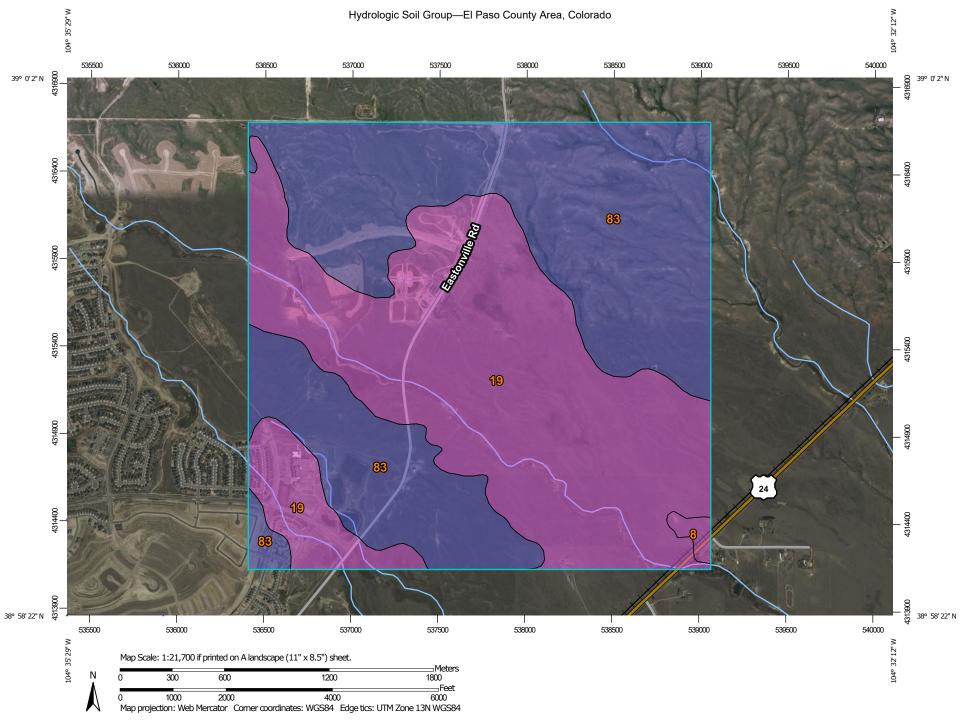
The development of this project will not adversely affect downstream properties.

XI. Drawings

Please refer to the appendices for vicinity and drainage basin maps.


XII. References


- 1. City of Colorado Springs Drainage Criteria Manual, May 2014, Revised January 2021.
- 2. Drainage Criteria Manual of El Paso, Colorado, October 2018.
- 3. Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018.
- 4. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 5. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.
- 6. "The Sanctuary Filing 1 at Meridian Ranch" prepared by Tech Contactors, August 2022.



APPENDIX A - VICINITY MAP, PHOTOS, SOIL MAP, FEMA MAP

MAP LEGEND MAP INFORMATION The soil surveys that comprise your AOI were mapped at Area of Interest (AOI) С 1:24.000. Area of Interest (AOI) C/D Please rely on the bar scale on each map sheet for map Soils D measurements. Soil Rating Polygons Not rated or not available Α Source of Map: Natural Resources Conservation Service Web Soil Survey URL: **Water Features** A/D Coordinate System: Web Mercator (EPSG:3857) Streams and Canals В Maps from the Web Soil Survey are based on the Web Mercator Transportation projection, which preserves direction and shape but distorts B/D Rails distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more Interstate Highways accurate calculations of distance or area are required. C/D **US Routes** This product is generated from the USDA-NRCS certified data as D Major Roads of the version date(s) listed below. Not rated or not available -Local Roads Soil Survey Area: El Paso County Area, Colorado Soil Rating Lines Survey Area Data: Version 19, Aug 31, 2021 Background Aerial Photography Soil map units are labeled (as space allows) for map scales 1:50,000 or larger. A/D Date(s) aerial images were photographed: Sep 11, 2018—Jun 12, 2021 B/D The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor C/D shifting of map unit boundaries may be evident. D Not rated or not available **Soil Rating Points** A/D B/D

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	А	10.4	0.6%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	839.5	49.8%
83	Stapleton sandy loam, 3 to 8 percent slopes	В	835.7	49.6%
Totals for Area of Interest		1,685.6	100.0%	

Description

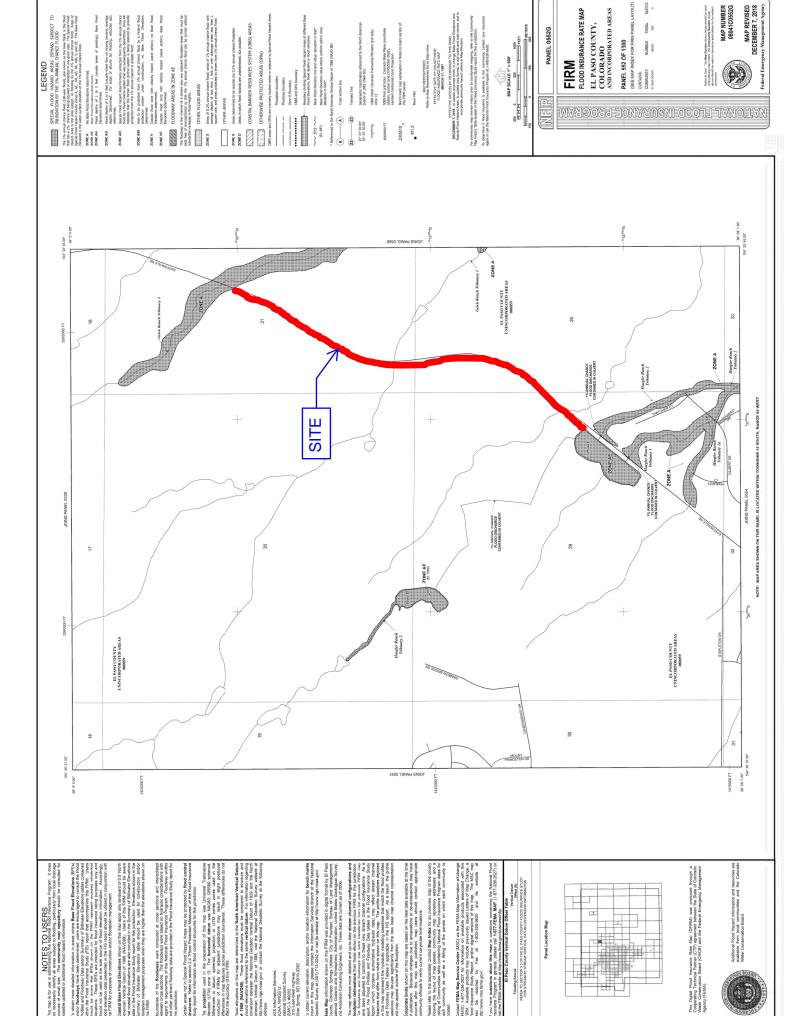
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified

Tie-break Rule: Higher

NOAA Atlas 14, Volume 8, Version 2 Location name: Elbert, Colorado, USA* Latitude: 38.9796°, Longitude: -104.5696° Elevation: 6996 ft**

evation: 6996 ft**
source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

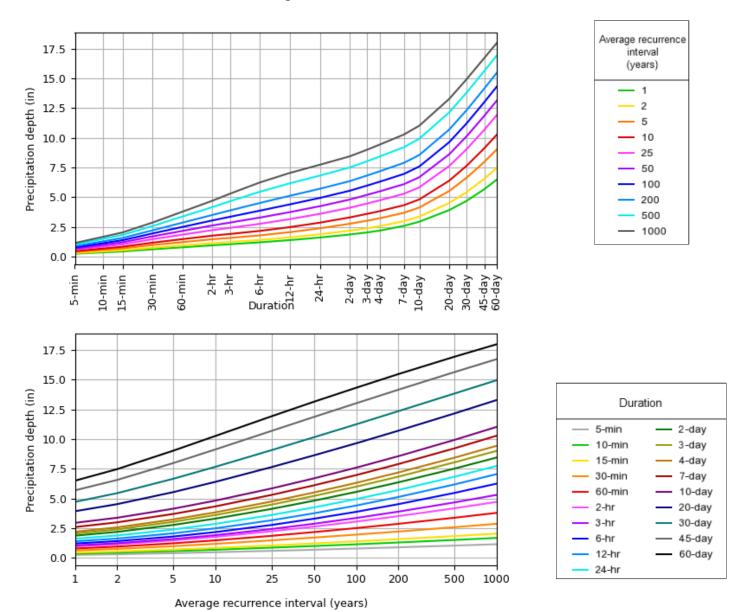
NOAA, National Weather Service, Silver Spring, Maryland

PF tabular | PF graphical | Maps & aerials

PF tabular

D				Average	recurrence	interval (ye	ars)			
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.239 (0.189-0.303)	0.291 (0.231-0.370)	0.381 (0.301-0.486)	0.461 (0.361-0.589)	0.576 (0.440-0.768)	0.671 (0.499-0.904)	0.770 (0.554-1.06)	0.875 (0.604-1.24)	1.02 (0.678-1.48)	1.14 (0.733-1.67
10-min	0.350 (0.277-0.444)	0.426 (0.338-0.542)	0.558 (0.441-0.711)	0.674 (0.529-0.863)	0.844 (0.644-1.12)	0.982 (0.731-1.32)	1.13 (0.811-1.56)	1.28 (0.884-1.81)	1.49 (0.992-2.17)	1.66 (1.07-2.44)
15-min	0.426 (0.338-0.541)	0.520 (0.412-0.660)	0.681 (0.537-0.867)	0.823 (0.645-1.05)	1.03 (0.785-1.37)	1.20 (0.891-1.62)	1.37 (0.988-1.90)	1.56 (1.08-2.21)	1.82 (1.21-2.65)	2.03 (1.31-2.98
30-min	0.608 (0.482-0.771)	0.740 (0.586-0.940)	0.968 (0.764-1.23)	1.17 (0.916-1.49)	1.46 (1.11-1.94)	1.70 (1.26-2.28)	1.94 (1.40-2.68)	2.20 (1.52-3.12)	2.57 (1.71-3.73)	2.86 (1.84-4.19
60-min	0.775 (0.615-0.984)	0.933 (0.739-1.18)	1.21 (0.956-1.54)	1.46 (1.15-1.87)	1.84 (1.41-2.47)	2.16 (1.61-2.92)	2.49 (1.80-3.45)	2.85 (1.97-4.05)	3.37 (2.24-4.90)	3.78 (2.44-5.54
2-hr	0.943 (0.754-1.19)	1.12 (0.898-1.42)	1.46 (1.16-1.84)	1.76 (1.39-2.23)	2.22 (1.72-2.97)	2.62 (1.97-3.52)	3.04 (2.21-4.19)	3.50 (2.45-4.95)	4.16 (2.80-6.03)	4.70 (3.06-6.85)
3-hr	1.03 (0.829-1.29)	1.22 (0.978-1.53)	1.57 (1.25-1.97)	1.90 (1.51-2.40)	2.41 (1.88-3.22)	2.86 (2.17-3.84)	3.34 (2.45-4.60)	3.88 (2.73-5.48)	4.66 (3.15-6.74)	5.29 (3.46-7.69)
6-hr	1.20 (0.968-1.48)	1.40 (1.13-1.74)	1.78 (1.44-2.22)	2.16 (1.73-2.70)	2.76 (2.18-3.66)	3.28 (2.52-4.39)	3.86 (2.86-5.29)	4.51 (3.20-6.34)	5.46 (3.73-7.86)	6.24 (4.12-9.01)
12-hr	1.38 (1.13-1.70)	1.61 (1.31-1.98)	2.05 (1.66-2.53)	2.48 (2.00-3.07)	3.15 (2.51-4.15)	3.74 (2.89-4.96)	4.39 (3.28-5.96)	5.12 (3.66-7.13)	6.17 (4.25-8.82)	7.04 (4.69-10.1)
24-hr	1.60 (1.31-1.95)	1.87 (1.54-2.28)	2.38 (1.94-2.91)	2.85 (2.32-3.51)	3.60 (2.88-4.67)	4.24 (3.29-5.56)	4.94 (3.71-6.63)	5.71 (4.12-7.87)	6.82 (4.73-9.66)	7.73 (5.20-11.0)
2-day	1.85 (1.54-2.24)	2.18 (1.80-2.63)	2.76 (2.28-3.34)	3.29 (2.70-4.01)	4.11 (3.30-5.27)	4.80 (3.76-6.22)	5.54 (4.19-7.36)	6.35 (4.62-8.68)	7.50 (5.25-10.5)	8.44 (5.73-11.9)
3-day	2.03 (1.69-2.44)	2.39 (1.98-2.87)	3.02 (2.50-3.64)	3.60 (2.97-4.36)	4.47 (3.60-5.69)	5.20 (4.08-6.70)	5.98 (4.55-7.90)	6.83 (4.99-9.28)	8.03 (5.65-11.2)	9.00 (6.15-12.7)
4-day	2.18 (1.82-2.61)	2.56 (2.13-3.06)	3.22 (2.68-3.87)	3.82 (3.16-4.62)	4.73 (3.83-6.00)	5.49 (4.33-7.04)	6.30 (4.81-8.30)	7.18 (5.26-9.72)	8.43 (5.94-11.7)	9.43 (6.46-13.3)
7-day	2.58 (2.17-3.07)	2.98 (2.50-3.54)	3.68 (3.08-4.39)	4.32 (3.60-5.18)	5.29 (4.30-6.65)	6.09 (4.84-7.76)	6.96 (5.34-9.09)	7.89 (5.82-10.6)	9.21 (6.55-12.8)	10.3 (7.10-14.4)
10-day	2.93 (2.48-3.47)	3.36 (2.84-3.98)	4.13 (3.47-4.90)	4.81 (4.02-5.74)	5.83 (4.76-7.28)	6.68 (5.32-8.45)	7.58 (5.85-9.86)	8.55 (6.34-11.4)	9.92 (7.08-13.7)	11.0 (7.65-15.4)
20-day	3.91 (3.33-4.58)	4.51 (3.84-5.29)	5.52 (4.68-6.50)	6.39 (5.39-7.55)	7.63 (6.25-9.37)	8.62 (6.90-10.8)	9.64 (7.47-12.4)	10.7 (7.98-14.1)	12.2 (8.74-16.6)	13.3 (9.31-18.4
30-day	4.70 (4.02-5.47)	5.44 (4.65-6.34)	6.65 (5.66-7.78)	7.66 (6.49-9.00)	9.06 (7.44-11.0)	10.1 (8.15-12.5)	11.2 (8.74-14.3)	12.3 (9.24-16.2)	13.8 (9.98-18.7)	15.0 (10.5-20.6)
45-day	5.67 (4.88-6.57)	6.55 (5.63-7.60)	7.97 (6.82-9.27)	9.12 (7.77-10.7)	10.7 (8.79-12.9)	11.9 (9.56-14.5)	13.0 (10.2-16.4)	14.2 (10.6-18.4)	15.6 (11.3-21.0)	16.7 (11.9-23.0)
60-day	6.48 (5.60-7.48)	7.46 (6.43-8.62)	9.01 (7.74-10.4)	10.3 (8.77-11.9)	11.9 (9.82-14.3)	13.1 (10.6-16.0)	14.3 (11.2-18.0)	15.5 (11.7-20.0)	16.9 (12.3-22.6)	18.0 (12.8-24.6)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

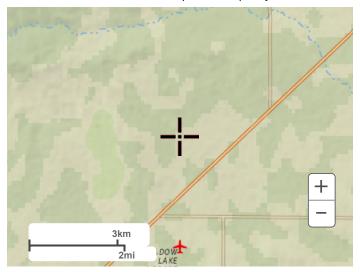

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

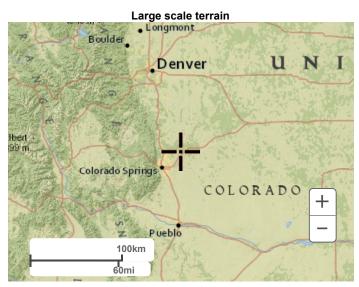
Please refer to NOAA Atlas 14 document for more information.

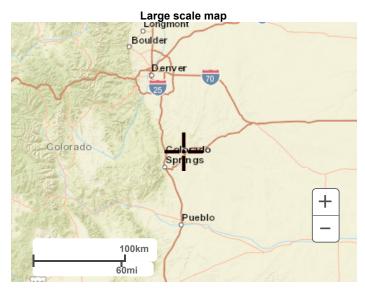
Back to Top

PF graphical

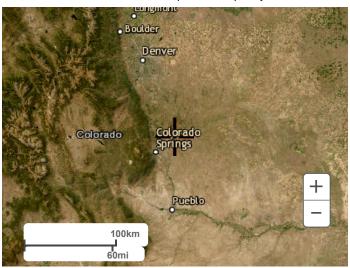
PDS-based depth-duration-frequency (DDF) curves Latitude: 38.9796°, Longitude: -104.5696°


NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Wed Nov 22 20:22:49 2023


Back to Top

Maps & aerials


Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration

National Weather Service

National Water Center

1325 East West Highway

Silver Spring, MD 20910

Questions?: HDSC.Questions@noaa.gov

Disclaimer

APPENDIX B - HYDROLOGIC CALCULATIONS

	EASTONVILLE ROAD - SEGMENT 2	Calc'd by:	SPC	Γ
ברדו	EXISTING CONDITIONS	Checked by:	СМ	ĺ
HRGreen	EL PASO COUNTY, CO	Date:	10/14/2024	ĺ

SUMMARY RUNOFF TABLE						
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)		
EX1	12.19	2	3.7	25.0		
EX2	0.61	2	0.2	1.4		
EX3	1.90	2	0.6	3.8		
EX4	2.86	2	0.8	5.7		
*FG29	62.91	-	2.9	60.0		
**FG35	18.69	-	2.4	25.0		
**FG36	18.88	-	1.8	19.0		
**FG37	48.26	-	2.7	45.0		
***FG38	85.00	-	-	-		

DES	SIGN POINT SUI	MMARY TA	BLE								
DESIGN POINT	CONTRIBUTING BASINS	ΣQ ₅ (cfs)	ΣQ ₁₀₀ (cfs)								
13.1	EX1	3.7	25.0								
*G06	FG29, DP G12	22.0	491.0								
G06.1	EX4, DO G06	22.8	496.7								
***G09	FG38	52.0	277.0								
*G12	-	21.0	450.0								
**G15	FG35	3.0	55.0								
**G15a	FG36	1.8	19.0								
**G16	FG37, DP G15/G15a	6.5	114.0								
G16.1	EX3 7.1 117.8										
G16.2 EX2 0.2 1.4											

^{*} Basin/design point name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

** Basin/design point name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

*** Basin/design point name, area, and flows taken from the "FDR for Falcon Regional Park".

EASTONVILLE ROAD - SEGMENT EXISTING CONDITIONS

Calc'd by:	SPC
Checked by:	СМ
Date:	10/14/2024

SOIL TYPE: | HSG A&B |

0012 111 21																				
							C	OMP	OSIT	E 'C'	FAC	CTOR	S							
	LAND USE TYPE																			
		Paved			ic Flow A	_	Land	Use Un	defined	Land	Use Un	defined	Land	Use Un	defined		COMPOSITE			
	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	% I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀		IMPER	VIOUSNE	SS & C	
	100	0.90	0.96	2	0.09	0.36	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	TOTAL		FACTOR		
BASIN		ACRES			ACRES			ACRES	;		ACRES	;		ACRES	;	ACRES	%I	C ₅	C ₁₀₀	
EX1					12.19											12.19	2	0.09	0.36	
EX2					0.61											0.61	2	0.09	0.36	
EX3					1.90											1.90	2	0.09	0.36	
EX4					2.86											2.86	2	0.09	0.36	
*FG29																62.91	-	-	-	
**FG35																18.69	-	-	-	
**FG36																18.88	-	-	-	
**FG37																48.26	-	-	-	
***FG38																85.00	-	-	-	
																0.00				
																0.00				

^{*} Basin name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

^{**} Basin name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

^{***} Basin name, area, and flows taken from the "FDR for Falcon Regional Park".

EASTONVILLE ROAD - SEGMENT 2	Calc'd by:	SPC
EXISTING CONDITIONS	Checked by:	СМ
EL PASO COUNTY, CO	Date:	10/14/2024

TIME OF CONCENTRATION

BAS	IN DATA		OVER	LAND TIM	E (T;)		TRAVI	EL TIME (T _t)		TOTAL	tc=(L/180)+10	Design tc
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)	tc max	tc design (min)
EX1	0.09	12.19	300	2.8	22.8	10	835	3.0	1.7	8.0	30.8	16.3	16.3
EX2	0.09	0.61	180	1.3	22.8	10	411	1.6	1.3	5.4	28.2	13.3	13.3
EX3	0.09	1.90	116	1.5	17.4	10	1137	1.0	1.0	19.0	36.4	17.0	17.0
EX4	0.09	2.86	60	1.4	12.8	10	1302	1.1	1.0	20.7	33.5	17.6	17.6
*FG29													
**FG35													
**FG36													
**FG37													
***FG38													

^{*}Basin name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

FORMULAS:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad V = C_v S_w^{0.5}$$

Table 6-7. Conveyance Coefficient, C_{ν}

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C_v value based on type of vegetative cover.

^{**} Basin name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

^{***} Basin name, area, and flows taken from the "FDR for Falcon Regional Park".

EASTONVILLE ROAD - SEGMENT 2	Calc'd by:	SPC
EXISTING CONDITIONS	Checked by:	СМ
DESIGN STORM: 5-YEAR	Date:	10/14/2024

	O O O .								_														
				DIF	RECT I	RUNO	FF		T	OTAL	RUNC	OFF	ST	REET	Т		PII	PE		TR	RAVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₅	<i>t_c (</i> min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (mi	
	13.1											3.7											
	0400	EX1	12.19	0.09	16.3	1.10	3.40	3.7															
	G16.2	EX2	0.61	0.09	13.3	0.05	3.70	0.2				0.2											
	G16.1	EAZ	0.61	0.09	13.3	0.05	3.70	0.2				7.1											
	0.0	EX3	1.90	0.09	17.0	0.17	3.34	0.6				• • • • • • • • • • • • • • • • • • • •											
	G06.1											22.8											
		EX4	2.86	0.09	17.6	0.26	3.28	0.8															
	G06	*FG29	62.91					2.9				22.0											
	G15											3.0											
		**FG35	18.69					2.4															
	G15a	**FG36	40.00					4.0				1.8											
	G16	FG36	18.88					1.8				6.5											
	010	**FG37	48.26					2.7				0.5											
	G09	. 001	.3.20									52.0											
		***FG38	85.00					-															
	G12											21.0											
																				1		ĺ	

EASTONVILLE ROAD - SEGMENT 2	Calc'd by:	SPC
EXISTING CONDITIONS	Checked by:	СМ
DESIGN STORM: 100-YEAR	Date:	10/14/2024

1 117	Gree	11																					
	DIRECT RUNOFF TOTAL RUNOFF STREET PIPE TRAVEL TIME REMARKS										REMARKS												
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min	
	13.1	EX1	12.19	0.36	16.3	4.39	5.70	25.0				25.0											
	G16.2	LAI	12.13	0.30	10.3	4.38	3.70	23.0				1.4											
		EX2	0.61	0.36	13.3	0.22	6.22	1.4															
	G16.1	EX3	1.90	0.00	47.0	0.00	5.00	2.0				117.8											
	G06.1	EX3	1.90	0.36	17.0	0.68	5.60	3.8				496.7											
	000.1	EX4	2.86	0.36	17.6	1.03	5.51	5.7				400.1											
	G06	*FG29	62.91					60.0				491.0											
	G15	**FG35	18.69					25.0				55.0											
	G15a	**FG36	18.88					19.0				19.0											
	G16	**FG37	48.26					45.0				114.0											
	G09	***FG38						_				277.0											
	G12		2,7100									450.0											
1																							

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
EL PASO COUNTY, CO	Date:	10/28/2024

Ç	SUMMARY RUNOFF TABLE												
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)									
EA1	0.22	73	8.0	1.5									
EA2	0.25	72	0.9	1.7									
EA3	0.76	65	2.4	4.9									
EA4	3.11	24	3.8	11.7									
EA5	0.16	0	0.1	0.4									
EA6	0.25	76	8.0	1.6									
EA7	0.20	50	0.4	1.0									
EA8	2.08	99	5.2	9.4									
EA9	3.14	60	5.0	10.6									
EA10	0.16	75	0.6	1.1									
EA11	0.15	67	0.5	1.0									
EA12	0.36	0	0.1	1.1									
EA13	0.45	73	1.4	2.8									
EA14	1.48	21	1.2	3.8									
EA15	0.76	24	0.7	2.1									
EA16	1.18	0	0.3	2.5									
EA17	0.30	0	0.1	0.7									
EA18	11.29	3	3.9	24.6									
*FG29	62.91	-	2.9	60.0									
FG29a	21.40	2	6.4	42.9									
**FG35	18.69	-	2.4	25.0									
FG36a	14.14	4	4.6	27.7									
FG36b	0.81	8	0.4	2.0									
FG37a	22.39	0	5.4	39.5									
FG37b	24.86	6	11.0	54.9									
***FG38	85.00	-	-	-									

DES	DESIGN POINT SUMMARY TABLE										
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ_{100} (cfs)								
*G06	FG29, DP G06a, G15	22.0	491.0								
*G12	-	21.0	450.0								
**G15	FG35	3.0	55.0								
***G09	FG38	52.0	277.0								
2.1	EA1	0.8	1.5								
3.1	EA2, DP2.1	1.6	3.2								
4.1	EA5, DP3.1	1.7	3.4								
5	EA3	2.4	4.9								
6	EA4, DP5	5.9	16.0								
G15a1	FG36a	4.6	27.7								
7	FG36b	0.4	2.0								
8	DPG15a1,7	4.9	29.2								
6.1	DP6,8	9.0	40.2								
G15a	DP6.1	9.0	40.2								
**G16a	FG37a, DPG15,G15a	12.0	59.0								
10	EA5, EA6, SFB C OUTFLOW	1.3	3.3								
10.1	EA7	0.1	0.7								
11.1	DPG16a,G16b	23.0	113.9								
12	EA18	3.9	24.6								
13	DP11.1, 12	27.0	138.5								
13.1	DP13	27.3	141.0								
14	EA8	5.2	9.4								
15	EA9	5.0	10.6								
15.1	DP14,15	10.2	19.9								
16.1	EA10	0.6	1.1								
17.1	EA11	0.5	1.0								
G16.1	EA15	0.7	2.1								
G16.2	-	0.0	0.0								
G06a	FG29a	6.4	42.9								
G06.1	EA12, DPG06	22.1	492.1								
G06.2	EA13	1.4	2.8								
G06.3	EA14	1.2	3.8								
G16b	FG37b	11.0	54.9								

^{*} Basin/design point name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

** Basin/design point name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

*** Basin/design point name, area, and flows taken from the "FDR for Falcon Regional Park".

EASTONVILLE ROAD SEG 2 PROPOSED CONDITIONS

Calc'd by: SPC

Checked by: СМ

10/28/2024 Date:

SOIL TYPE: HSG A&B

COMPOSITE 'C' FACTORS

		LAND USE TYPE																	
		Paved			ic Flow Ar pelts, Agr	-		Lawns			Gravel		Driv	e and V	lalks			OMPOSIT	
	% I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀		IMPERVIOUSNESS & C		
	100	0.90	0.96	2	0.09	0.36	0	0.08	0.35	80	0.59	0.70	100	0.90	0.96	TOTAL		FACTOR	
BASIN		ACRES			ACRES			ACRES			ACRES			ACRES		ACRES	%I	C ₅	C ₁₀₀
EA1		0.16						0.06								0.22	73	0.68	0.79
EA2		0.18						0.07								0.25	72	0.67	0.79
EA3		0.49						0.27								0.76	65	0.61	0.74
EA4		0.69			2.27			0.15								3.11	24	0.27	0.49
EA5		0.00						0.16								0.16	0	0.08	0.35
EA6		0.19						0.06								0.25	76	0.71	0.82
EA7		0.10						0.10								0.20	50	0.49	0.65
EA8		2.06						0.02								2.08	99	0.89	0.95
EA9		1.88						1.26								3.14	60	0.57	0.72
EA10		0.12						0.04								0.16	75	0.70	0.81
EA11		0.10						0.05								0.15	67	0.63	0.76
EA12								0.36								0.36	0	0.08	0.35
EA13		0.33						0.12								0.45	73	0.68	0.80
EA14								1.16			0.07			0.25		1.48	21	0.24	0.47
EA15								0.57			0.04			0.15		0.76	24	0.27	0.49
EA16								1.18								1.18	0	0.08	0.35
EA17								0.30								0.30	0	0.08	0.35
*FG29																62.91	-	-	-
FG29a					21.40											21.40	2	0.09	0.36
**FG35																18.69	-	-	-
FG36a					13.81						0.33					14.14	4	0.10	0.37
FG36b					0.74						0.07					0.81	8	0.13	0.39
FG37a								22.39								22.39	0	0.08	0.35
FG37b		1.53						23.33								24.86	6	0.13	0.39
***FG38																85.00	-	-	-
EA18					11.16						0.03			0.10		11.29	3	0.10	0.37

10/28/2024

							С	ОМР	OSIT	E 'C'	FAC	TOR	S						
	LAND USE TYPE																		
		Paved			ic Flow Ar pelts, Agr	•		Lawns Gravel Drive and Walks						COMPOSITE IMPERVIOUSNESS & C					
	%I	C ₅	C ₁₀₀	% I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	% I	C ₅	C ₁₀₀				
	100	0.90	0.96	2	0.09	0.36	0	0.08	0.35	80	0.59	0.70	100	0.90	0.96	TOTAL		FACTOR	
BASIN		ACRES			ACRES	}		ACRES			ACRES	3		ACRES		ACRES	%I	C ₅	C ₁₀₀
SFB C		0.34			0.00			0.29								0.63	54		
EDB B		6.14			0.00			3.23			0.09			0.01		9.48	66		

^{*} Basin name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

^{**} Basin name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

^{***} Basin name, area, and flows taken from the "FDR for Falcon Regional Park".

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
EL PASO COUNTY, CO	Date:	10/28/2024

TIME OF CONCENTRATION

					- -						
BAS	IN DATA		OVER	LAND TIM	$E(T_i)$		TRAV	EL TIME (T_t		TOTAL
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C_{V}	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)
EA1	0.68	0.22	34	2.0	3.6	20	137	1.4	2.4	1.0	5.0
EA2	0.67	0.25	34	2.0	3.6	20	60	1.4	2.4	0.4	5.0
EA3	0.61	0.76	34	2.0	4.2	20	126	1.4	2.4	0.9	5.0
EA4	0.27	3.11	34	2.0	7.1	20	126	3.8	3.9	0.5	7.6
EA5	0.08	0.16	20	2.0	6.6	20	20	33.0	11.5	0.0	6.7
EA6	0.71	0.25	26	2.0	2.9	20	630	1.7	2.6	4.0	7.0
EA7	0.49	0.20	24	2.0	4.4	20	630	1.7	2.6	4.0	8.4
EA8	0.89	2.08	26	2.0	1.5	20	2500	0.7	1.7	24.9	26.4
EA9	0.57	3.14	26	2.0	3.9	20	2500	0.7	1.7	24.9	28.8
EA10	0.70	0.16	26	2.0	3.0	20	157	0.6	1.5	1.7	5.0
EA11	0.63	0.15	26	2.0	3.5	20	157	0.6	1.5	1.7	5.2
EA12	0.08	0.36	30	25.0	3.5	10	0	0.0	0.0	0.0	5.0
EA13	0.68	0.45	76	2.0	5.3	10	115	2.0	1.4	1.4	6.7
EA14	0.24	1.48	50	10.0	5.2	10	1300	1.1	1.0	20.7	25.8
EA15	0.27	0.76	50	10.0	5.0	10	1137	1.0	1.0	19.0	24.0
EA16	0.08	1.18	300	3.0	22.5	10	500	3.0	1.7	4.8	27.3
EA17	0.08	0.30	89	5.0	10.3	10	0	0.0	0.0	0.0	10.3
*FG29											
FG29a	0.09	21.40	100	2.0	14.7	10	1190	2.5	1.6	12.5	27.2
**FG35											
FG36a	0.10	14.14	100	2.5	13.5	10	1512	3.0	1.7	14.5	28.0
FG36b	0.13	0.81	100	1.5	15.5	10	250	1.5	1.2	3.4	18.9
FG37a	0.08	22.39	100	2.5	13.8	10	1920	2.5	1.6	20.2	34.0
FG37b	0.13	24.86	100	3.5	11.7	10	1036	3.5	1.9	9.2	20.9
***FG38											
EA18	0.10	11.29	200	11.6	11.5	10	675	3.4	1.8	6.1	17.6

^{*} Basin name, area, and flows taken from the "FDR for The Sanctuary Filing 1 at Meridian Ranch".

FORMULAS:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad V = C_v S_w^{0.5}$$

Table 6-7. Co	onveyance Coefficient,	C_v
---------------	------------------------	-------

Type of Land Surface	C_{ν}

^{**} Basin name, area, and flows taken from the "FDR for Rex Road through Falcon Regional Park".

^{***} Basin name, area, and flows taken from the "FDR for Falcon Regional Park".

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
EL PASO COUNTY, CO	Date:	10/28/2024

TIME OF CONCENTRATION

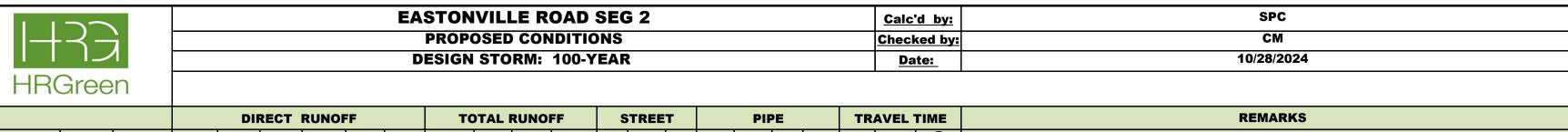
BAS	IN DATA		OVERLAND TIME (T_i) TRAVEL TIME (T_t)					T _t)		TOTAL		
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)		C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)
						Т	TToorne			I .	2.5	

C_{V}	LENGTH (ft)	SLOPE %	V (ft/s	t _t (mi		
Heavy	meadow			2.5		
Tillage	field			5		
Riprap	(not buried)*			6.5		
Short p	asture and law	ns		7		
Nearly	bare ground			10		
Grassec	l waterway			15		
Paved a	reas and shall	ow paved sw	ales	20		
* xx 1 .	1					

For buried riprap, select C_v value based on type of vegetative cover.

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
DESIGN STORM: 5-YEAR	Date:	10/28/2024

				DIF	RECT	RUNOF	FF		T	OTAL I	RUNC	OFF	S	TREE	Т		PII	PE		T	RAV	EL 1	ГІМЕ	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	Çs	t _c (min)	С ₅ *А (ас)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (ft)	TH (VEI (FDS)	(112)	TRAVEL TIME (min	
	G06	*FG29	62.91					2.9	9			22.0												
	G12	_										21.0												
	G15	**5005	40.00					-				3.0										1		
	G09	**FG35						2.4	+			52.0								+		+		
	2.1	***FG38						-	5.0	0.15	5.17	0.8				0.8	0.15	1.0	1.	.5 56	6 5.	9	0.16	BASIN EA1 CAPTURED IN 5' TYPE R INLET @ DP2.1, PIPE TO DP3.1
	3.1	EA1	0.22	0.68	5.0	0.15	5.17	3.0		0.32	5.12	1.6				1.6	0.32	5.1	1.	.5 34	4 13	5.4	0.04	BASIN EA2 CAPTURED IN 5' TYPE R INLET@ DP3.1, PIPE TO DP4.1 (SFB C)
	4.1	EA2	0.25	0.67	5.0	0.17	5.17	0.9	6.7	0.33	5.12	1.7								+	-	\dashv		SFB C BASIN
		EA5	0.16	0.08	6.7	0.01	4.74	0.1								0.4	0.40	2.0	1	<i>5</i> 40	0 0	1	0.00	BASIN EA3 CAPTURED IN TYPE R INLET @ DP5, PIPE TO DP6
	5	EA3	0.76	0.61	5.0	0.46	5.15	2.4	1	0.46						2.4		2.0					0.09	
	6	EA4	3.11	0.27	7.6	0.84	4.54	3.8		1.30	4.54	5.9				5.9	1.30	2.0	2.	.0 43	3 10	.2	0.07	BASIN EA4 CAPTURED IN TYPE R INLET @ DP6, PIPE TO DP6.1
	G15a1	FG36a	14.14	0.10	19.0	1.44	3.17	4.6		1.44	3.17	4.6				4.6	1.44	0.6	2.	.0 43	3 5.	6	0.13	BASIN FG36a CAPUTURED BY 24" FES, PIPE TO DP8
	7	FG36b			11.9		3.86		11.9	0.11	3.86	0.4				0.4	0.11	3.3	1.	.5 37	7 10	.8	0.06	BASIN FG36b CAPTURED IN 18" FES, PIPE TO DP8
	8	1 0300	0.01	0.15	11.5	0.11	3.00	0		1.54	3.16	4.9				4.9	1.54	0.9	2.	.0 56	6 6.	8	0.14	DPG15a1 AND 7 COMBINED, PIPE TO DP6.1
	6.1								19.2	2.84	3.15	9.0				9.0	2.84	2.5	2.	.0 60	0 11	.4	0.09	DP8 & DP 6 COMBINED, PIPE TO DP G15a
	G15a								19.2	2.84	3.15	9.0	9.0	2.84	2.1					61	5 2.	9	3.56	DP6.1 DISCHARGE TO ROADSIDE SWALE TO DPG15a
	G16a	FG37a	22.20	0.00	24.2	1.70	2.00	F /	1			12.0												DP G16a PER THE FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK
	10								8.4	0.28	4.39	1.3								\dagger				BASIN EA6 & EA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1) INCLUDES SFB C OUTFLOW
		EA6	0.25																			\dashv		
	12	EA7	0.20	0.49	8.4	0.10	4.39	0.4		1.12	3.53	3.9				3.9	1.12	1.0	1.	.5 28	8 5.	9	0.08	BASIN EA18 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13
	13	EA18	11.29	0.10	14.9	1.12	3.53	3.9	9			27.0								+		+		COMBINED DP11.1 & DP12, PIPE TO CHANNEL B (DP13.1)
	14								24.0	1.86	2.81	5.2				5.2	1.86	7.0	1.	.5 8	3 15	5.7	0.01	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP14, PIPE TO DP15.1
	15	EA8	2.08	0.89	24.0	1.86	2.81	5.2	2	1.79						5.0		1.8					0.11	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1
	15.1	EA9	3.14	0.57	24.0	1.79	2.81	5.0				10.2										+		COMBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR
																				+	+	\dashv		BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD
	16.1	EA10	0.16	0.70	5.0	0.11	5.17	0.6		0.11	5.17	0.6												SEGMENT 1 FDR
	17.1								5.2	0.09	5.11	0.5												BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
	G16.1	EA11	0.15	0.63	5.2	0.09	5.11	0.5		0.21	3.37	0.7			\dashv					+	+	\dashv		OFFSITE FLOW AT DP G16.1
	G16.2	EA15	0.76	0.27	16.6	0.21	3.37	0.7				0.0								+	+	\dashv		OFFSITE FLOW AT DP G16.2
<u> </u>	G06a	NA						0.0		1.93	2 22									+	-	\perp		BASIN FG29a FLOW CAPTURED BY 24" FES AT DP G06a
	Guud	FG29a	21.40	0.09	17.2	1.93	3.32	6.4		1.93	J.JZ	0.4												DAGIINT G294 FLOW CAFTURED DT 24 FEG AT DF G004


EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
DESIGN STORM: 5-YEAR	Date:	10/28/2024

				DII	RECT	RUNO	FF		TC	OTAL I	RUNO	FF	ST	REE	т		PIP	E		TR	AVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	Cs	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	% 34018	Q _{PIPE} (cfs)	С ₅ *А (ас)	% 3401 S	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (min	
	G06.1								5.0	0.03	5.17	22.1											OFFSITE FLOW AT DPG06.1
		EA12	0.36	0.08	5.0	0.03	5.17	0.1															
	G06.2								6.7	0.30	4.73	1.4											OFFSITE FLOW AT DPG06.2
		EA13	0.45	0.68	6.7	0.30	4.73	1.4															
	G06.3								17.5	0.36	3.29	1.2											OFFSITE FLOW AT DP G06.3
		EA14	1.48	0.24	17.5	0.36	3.29	1.2															
	G16b									3.24	3.40	11.0				11.0	3.24	1.0	4.0	610	11.4	0.89	BASIN FG37b FLOW CAPTURED BY 36" FES AT DP G16b
		FG37b	24.86	0.13	16.3	3.24	3.40	11.0															
	10.1									0.02	4.08	0.1											OFFSITE FLOW AT DP10.1
	111	EA17	0.30	0.08	10.3	0.02	4.08	0.1															
	11.1											23.0											DP G16a & G16b COMBINED AT DP11.1
	13.1	EA16	1.18	0.08	14.4	0.09	3.58	0.3	14.4	0.09	3.58	27.3											TOTAL FLOW OFFSITE AT DP 13.1

EASTONVILLE ROAD SEG 2	Calc'd by:	SPC
PROPOSED CONDITIONS	Checked by:	СМ
DESIGN STORM: 100-YEAR	Date:	10/28/2024

1 11 10	JI EE	1 1																					
				DIR	ECT F	RUNOF	FF		TO	OTAL F	RUNOF	F	S	TREE	T		PII	PE		TR	AVEL		REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	<i>t_c (</i> min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	(sjs) o	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	% SCOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	G12	*FG29		_				60.0				450.0											
		-		_				-															
	G15	**FG35		_				25.0				55.0											
	G09	***FG38						-				277.0											
	2.1	EA1	0.22	0.79	5.0	0.17	8.68	1.5		0.17							0.17			56	5.9	0.16	BASIN EA1 CAPTURED IN 5' TYPE R INLET @ DP2.1, PIPE TO DP3.1
	3.1	EA2	0.25	0.79	5.0	0.20	8.68	1.7		0.37	8.60	3.2				3.2	0.37	5.1	1.5	34	13.4	0.04	BASIN EA2 CAPTURED IN 5' TYPE R INLET@ DP3.1, PIPE TO DP4.1 (SFB C)
	4.1	EA5		0.35			7.95		6.7	0.43	7.95	3.4											SFB C BASIN
	5	EA3		0.74					5.0	0.57	8.66	4.9				4.9	0.57	2.0	1.5	48	8.4	0.09	BASIN EA3 CAPTURED IN TYPE R INLET @ DP5, PIPE TO DP6
	6	EA4	3.11				7.63			2.10	7.63	16.0				16.0	2.10	2.0	2.0	43	10.2	0.07	BASIN EA4 CAPTURED IN TYPE R INLET @ DP6, PIPE TO DP6.1
	G15a1									5.20	5.32	27.7				27.7	5.20	0.6	2.0	43	5.6	0.13	BASIN FG36a CAPUTURED BY 24" FES, PIPE TO DP8
	7	FG36a	14.14							0.31	6.48	2.0				2.0	0.31	3.3	1.5	37	10.8	0.06	BASIN FG36b CAPTURED IN 18" FES, PIPE TO DP8
	8	FG36b	0.81	0.39	11.9	0.31	6.48	2.0		5.51	5.30	29.2				29.2	5.51	0.9	2.0	56	6.8	0.14	DPG15a1 AND 7 COMBINED, PIPE TO DP6.1
	6.1			\dashv					19.2	7.61	5.29	40.2				40.2	7.61	2.5	2.0	60	11.4	0.09	DP8 & DP 6 COMBINED, PIPE TO DP G15a
	G15a			\dashv					19.2	7.61	5.29	40.2	40.2	7.61	2.1					615	2.9	3.56	DP6.1 DISCHARGE TO ROADSIDE SWALE TO DPG15a
	G16a			\dashv								59.0											DP G16a PER THE FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK
	10	FG37a	22.39	0.35	21.2		5.04		8.4	0.34	7.37	3.3											BASIN EA6 & EA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1) INCLUDES SFB C OUTFLOW
		EA6	0.25	0.82	7.0	0.21	7.85	1.6															
	12	EA7	0.20	0.65	8.4	0.13	7.37	1.0	14.9	4.14	5.93	24.6				24.6	4.14	1.0	1.5	28	5.9	0.08	BASIN EA18 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13
	13	EA18	11.29	0.37	14.9	4.14	5.93	24.6				138.5											COMBINED DP11.1 & DP12, PIPE TO CHANNEL B (DP13.1)
	14			_					24.0	1.98	4 72					9.4	1.98	7.0	1.5	8	15.7	0.01	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP14, PIPE TO DP15.1
	15	EA8	2.08	0.95	24.0	1.98	4.72	9.4		2.25							2.25			54	7.9	0.01	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1
		EA9	3.14	0.72	24.0	2.25	4.72	10.6								10.0	2.23	1.0	1.0	54	7.9	0.11	
	15.1								24.1	4.23	4./1	19.9											COMBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR
	16.1	EA40	0.40	0.04	5 0	0.40		4.4	5.0	0.13	8.68	1.1											BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
	17.1	EA10		0.81			8.68		5.2	0.11	8.58	1.0											BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
	G16.1	EA11		0.76			8.58			0.37	5.66	2.1											OFFSITE FLOW AT DP G16.1
	G16.2	EA15	0.76	0.49	16.6	0.37	5.66	2.1				0.0											OFFSITE FLOW AT DP G16.2
	G06a	NA		\dashv			\vdash		17.2	7.70	5.57	42.9											BASIN FG29a FLOW CAPTURED BY 24" FES AT DP G06a
	G06.1	FG29a	21.40	0.36	17.2	7.70	5.57	42.9	5.0	0.13	8.68	492.1											OFFSITE FLOW AT DPG06.1
		EA12	0.36	0.35	5.0	0.13	8.68	1.1			2.00												

				DI	RECT	RUNO	FF		TC	TAL F	RUNOF	F	S	TREE	Т		PIF	PE		TR	AVEL '		REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	<i>t_c (</i> min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	G06.2								6.7	0.36	7.95	2.8											OFFSITE FLOW AT DPG06.2
		EA13	0.45	0.80	6.7	0.3	7.95	2.8															
	G06.3								17.5	0.69	5.52	3.8											OFFSITE FLOW AT DP G06.3
		EA14	1.48	0.47	17.5	0.69	5.52	3.8															
	G16b								16.3	9.63	5.70	54.9				54.9	9.63	1.0	4.0	610	11.4	0.89	BASIN FG37b FLOW CAPTURED BY 36" FES AT DP G16b
		FG37b	24.86	0.39	16.3	9.63	5.70	54.9															
	10.1								10.3	0.11	6.85	0.7											OFFSITE FLOW AT DP10.1
		EA17	0.30	0.35	10.3	0.1	6.85	0.7	•														
	11.1											113.9				113.9	0.00	1.5	4.0	890	14.0	1.06	DP G16a & G16b COMBINED AT DP11.1
	13.1								14.4	0.41	6.01	141.0											TOTAL FLOW OFFSITE AT DP 13.1
		EA16	1.18	0.35	14.4	0.4	6.01	2.5															

Design Procedure Form: Runoff Reduction

UD-BMP (Version 3.07, March 2018)

Sheet 1 of 1

Company: HR GREEN Date: October 15, 2024 Project: Eastonville Segment 2 - RR COLORADO SPRINGS, CO Location:

SPC

Designer:

SITE INFORMATION (User Input in Blue Cells)

WQCV Rainfall Depth 0.60

Depth of Average Runoff Producing Storm, d₆ = 0.43 inches (for Watersheds Outside of the Denver Region, Figure 3-1 in USDCM Vol. 3)

Area Type	UIA:RPA	SPA	UIA:RPA	UIA:RPA	UIA:RPA	UIA:RPA	SPA	SPA	SPA	SPA	UIA:RPA	SPA
Area ID	SFB C	SFB C SPA	EDB B - RR (PART 1)	EDB B - RR (PART 2)	EDB B - RR (PART 3)	EDB B - RR (PART 4)	EDB B SPA	FG36b	EA17	FG37a	EA18 UIA	EA18 SPA
Downstream Design Point ID	4.1	4.1	19	19	19	19	19	7	10.1	G16a	12	12
Downstream BMP Type	SF	SF	EDB	EDB	EDB	EDB	EDB	None	None	None	None	None
DCIA (ft ²)			-		-			-	1	1		
UIA (ft²)	14,819		68,074	68,074	68,074	68,074				-	6,468	
RPA (ft ²)	574		1,392	1,392	1,392	1,392		-	1	1	4,931	
SPA (ft²)		12,050					128,550	5,474	11,843	13,414		20,215
HSG A (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
HSG B (%)	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
HSG C/D (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Average Slope of RPA (ft/ft)	0.005		0.005	0.005	0.005	0.005		-			0.100	
UIA:RPA Interface Width (ft)	20.00		70.00	70.00	70.00	70.00					485.00	

CALCULATED RUNOFF RESULTS

Area ID	SFB C	SFB C SPA	B - RR (PAF	EDB B SPA	FG36b	EA17	FG37a	EA18 UIA	EA18 SPA			
UIA:RPA Area (ft2)	15,393		69,466	69,466	69,466	69,466					11,399	
L/W Ratio	16.00		14.18	14.18	14.18	14.18					0.06	
UIA / Area	0.9627		0.9800	0.9800	0.9800	0.9800					0.5674	
Runoff (in)	0.42	0.00	0.44	0.44	0.44	0.44	0.00	0.00	0.00	0.00	0.00	0.00
Runoff (ft ³)	533	0	2521	2521	2521	2521	0	0	0	0	0	0
Runoff Reduction (ft3)	85	603	316	316	316	316	6428	274	592	671	270	1011

CALCULATED WQCV RESULTS

Area ID	SFB C	SFB C SPA	B - RR (PAF	B - RR (PAI	B - RR (PAF	B - RR (PAF	EDB B SPA	FG36b	EA17	FG37a	EA18 UIA	EA18 SPA
WQCV (ft ³)	494	0	2836	2836	2836	2836	0	0	0	0	270	0
WQCV Reduction (ft3)	85	0	316	316	316	316	0	0	0	0	270	0
WQCV Reduction (%)	17%	0%	11%	11%	11%	11%	0%	0%	0%	0%	100%	0%
Untreated WQCV (ft3)	409	0	2521	2521	2521	2521	0	0	0	0	0	0

CALCULATED DESIGN POINT RESULTS (sums results from all columns with the same Downstream Design Point ID)

CALCOLATED DEGICITY	OHT KESS	LIO (Sullis I	esuits iroin e	an columns v	with the same	e Downstrea	ili besigii i c	אוונ ושן				
Downstream Design Point ID	4.1	4.1	19	19	19	19	19	7	10.1	G16a	12	12
DCIA (ft ²)	0	0	0	0	0	0	0	0	0	0	0	0
UIA (ft²)	14,819	14,819	272,296	272,296	272,296	272,296	272,296	0	0	0	6,468	6,468
RPA (ft ²)	574	574	5,568	5,568	5,568	5,568	5,568	0	0	0	4,931	4,931
SPA (ft²)	12,050	12,050	128,550	128,550	128,550	128,550	128,550	5,474	11,843	13,414	20,215	20,215
Total Area (ft ²)	27,443	27,443	406,414	406,414	406,414	406,414	406,414	5,474	11,843	13,414	31,614	31,614
Total Impervious Area (ft ²)	14,819	14,819	272,296	272,296	272,296	272,296	272,296	0	0	0	6,468	6,468
WQCV (ft ³)	494	494	11,346	11,346	11,346	11,346	11,346	0	0	0	270	270
WQCV Reduction (ft ³)	85	85	1,262	1,262	1,262	1,262	1,262	0	0	0	270	270
WQCV Reduction (%)	17%	17%	11%	11%	11%	11%	11%	0%	0%	0%	100%	100%
Untreated WQCV (ft ³)	409	409	10,083	10,083	10,083	10,083	10,083	0	0	0	0	0

${\bf CALCULATED~SITE~RES} \underline{{\bf ULTS~(sums~results~from~all~columns~in~worksheet)}}$

Total Area (tf²) 2,180,915

Total Impervious Area (tf²) 1,404,054

WQCV (tf³) 12,109 1,616

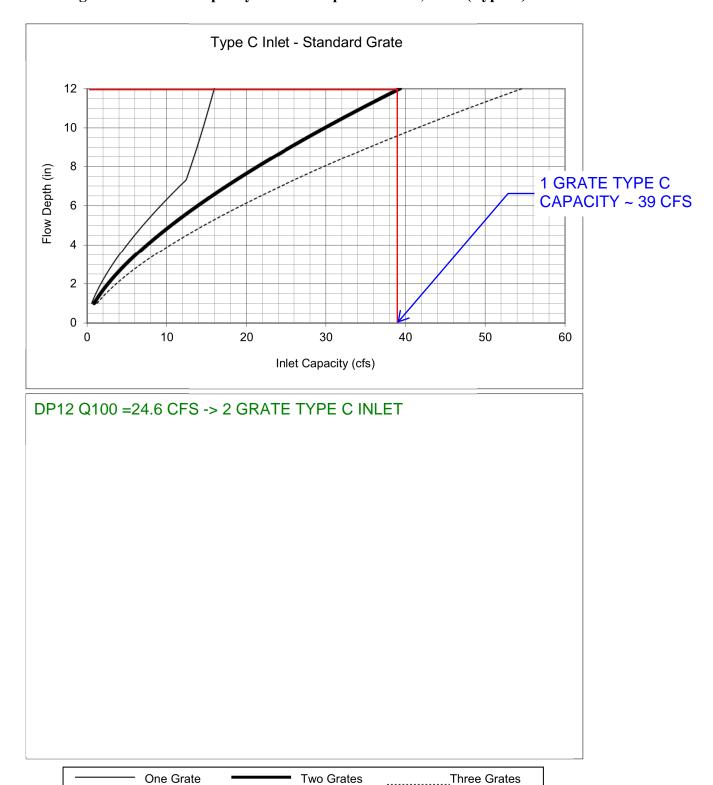
WQCV Reduction (ft³) WQCV Reduction (%) 13% Untreated WQCV (ft³) 10,493

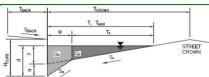
Design Procedure Form: Runoff Reduction JD-BMP (Version 3.07, March 2018) Sheet 1 of 1 SPC Designer: Company: HR GREEN Date: October 15, 2024 Eastonville Segment 2 - RR Project: COLORADO SPRINGS, CO Location: SITE INFORMATION (User Input in Blue Cells) WQCV Rainfall Depth 0.60 Depth of Average Runoff Producing Storm, $d_6 =$ 0.43 inches (for Watersheds Outside of the Denver Region, Figure 3-1 in USDCM Vol. 3) Area Type SPA SPA UIA:RPA SPA SPA SPA UIA:RPA SPA UIA:RPA SPA Area ID EA16 FG37b EA15 UIA EA15 SPA FG36a FG29 EA12 EA13 UIA EA13 SPA EA14 UIA EA14 SPA 13.1 G16b G16.1 G16.1 G15a1 G06 G06.1 G06.3 Downstream Design Point ID G06.2 G06.2 G06.3 Downstream BMP Type None DCIA (ft² 8,613 15,849 14,183 UIA (ft² RPA (ft² 6,625 1,265 10,910 10,902 1,351 25,936 12,172 SPA (ft2) 13.040 23.591 3.532 34.835 HSG A (%) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% HSG B (%) 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% HSG C/D (%) 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% Average Slope of RPA (ft/ft) 0.100 0.330 0.100 UIA:RPA Interface Width (ft) 662.50 40.00 1091.00 **CALCULATED RUNOFF RESULTS** Area ID EA16 FG37b EA15 UIA EA15 SPA FG36a FG29 EA12 EA13 UIA EA13 SPA EA14 UIA EA14 SPA UIA:RPA Area (ft2) 15,238 17.114 25.093 L/W Ratio 10.70 UIA / Area 0.5652 0.9261 0.5652 Runoff (in) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.38 0.00 0.00 0.00 Runoff (ft3) 535 Runoff Reduction (ft3) 652 1180 359 545 68 1297 609 125 177 591 1742 **CALCULATED WQCV RESULTS** Area ID FG37b EA15 UIA EA15 SPA FG36a FG29 EA12 EA13 UIA EA13 SPA EA14 UIA EA14 SPA EA16 WQCV (ft3) 0 0 359 0 0 0 0 660 0 591 0 WQCV Reduction (ft3) 0 359 0 0 125 591 0 0 0 0 0 WQCV Reduction (%) 0% 0% 0% 19% 0% 0% 100% 0% 0% 100% 0% Untreated WQCV (ft3) 0 535 0 0 0 0 0 0 CALCULATED DESIGN POINT RESULTS (sums results from all columns with the same Downstream Design Point ID) Downstream Design Point ID G16.1 G15a1 G06 G06.1 G06.2 13.1 G16b G06.3 DCIA (ft² 0 0 0 0 0 0 0 0 UIA (ft2 0 0 8,613 0 0 0 15,849 14,183 RPA (ft²) 0 0 6 625 0 0 0 1 265 10 910 SPA (ft2) 13 040 23 591 10 902 1.351 25 936 12 172 3 532 34 835 Total Area (ft2 13,040 23,591 26.140 1,351 25.936 12.172 20,646 59.928 Total Impervious Area (ft² 8,613 15,849 14,183 WQCV (ft3 0 0 359 0 0 0 660 591 WQCV Reduction (ft³ 0 0 359 0 0 0 125 591 WQCV Reduction (%) 0% 0% 100% 0% 0% 0% 19% 100% Untreated WQCV (ft3) 535 CALCULATED SITE RESULTS (sums results from all columns in worksheet) Total Area (ft²) 182,804 Total Impervious Area (ft2) 38,645 WQCV (ft3) 1,610 WQCV Reduction (ft3) 1,075 WQCV Reduction (%) 67%

Untreated WQCV (ft3)

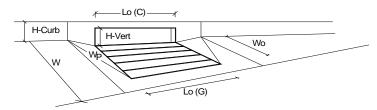
APPENDIX C - HYDRAULIC CALCULATIONS

Chapter 8 Inlets




Figure 8-10. Inlet Capacity Chart Sump Conditions, Area (Type C) Inlet

Notes


^{1.} The standard inlet parameters must apply to use these charts.

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

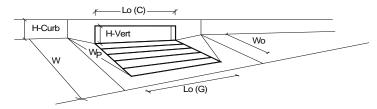
Project: Eastonville Road
Inlet ID: DP2.1

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} = Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 ft/ft SBACK n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} = 6.00 inches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.083 ft/ft S₀ 0.000 ft/ft n_{STREET} = 0.016 Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 24.0 inches Check boxes are not applicable in SUMP conditions Minor Storm Major Storm SUMP SUMP cfs MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

Design Information (Input) Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above) Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression) Grate Information Length of a Unit Grate Width of a Unit Grate	Type = $a_{local} = No = Ponding Depth = $ $L_{o}(G) = $	MINOR CDOT Type R 3.00 1 5.9 MINOR	MAJOR Curb Opening 3.00 1 7.3	inches
Local Depression (additional to continuous gutter depression 'a' from above) Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression) Grate Information Length of a Unit Grate	a _{local} = No = Ponding Depth =	3.00 1 5.9	3.00	
Number of Unit Inlets (Grate or Curb Opening) Water Depth at Flowline (outside of local depression) Grate Information Length of a Unit Grate	No = Ponding Depth =	1 5.9	1	
Water Depth at Flowline (outside of local depression) <u>Grate Information</u> Length of a Unit Grate	Ponding Depth =	5.9	1 7.3	
<u>Grate Information</u> Length of a Unit Grate	·		7.3	
Length of a Unit Grate	I - (G) =	MINIOD		Override Depths
- J	L. (G) =	MINOR	MAJOR	-
Width of a Unit Crate		N/A	N/A	feet
Width of a offic drate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_w(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$d_{Grate} =$	N/A	N/A	Trt
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.44	T _{ft}
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.75	0.93	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.1	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	0.8	1.5	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

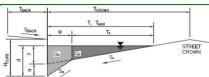
Project: Eastonville Road
Inlet ID: DP3.1

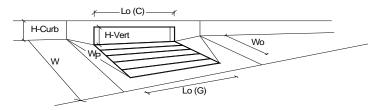

TMCK TCROWN

T, TMX

SBACK W Ts

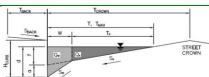
STREET
CROWN

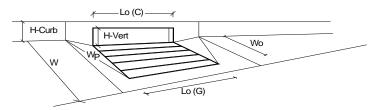

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} = Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 ft/ft SBACK n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} = 6.00 inches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.083 ft/ft S₀ 0.000 ft/ft n_{STREET} = 0.016 Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 24.0 inches Check boxes are not applicable in SUMP conditions Minor Storm Major Storm SUMP SUMP cfs MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


CDOT Type R Curb Opening ▼				
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.3	Override Depths
Grate Information		MINOR	MAJOR	_
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_0 =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information	• • • •	MINOR	MAJOR	=
Length of a Unit Curb Opening	$L_0(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_n = $	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Tft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.32	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.75	0.93	- "
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Gracea fried retroiniance reduction ractor for Long frieds	N Grate -	IN/A	IN/A	J
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	5.1	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	0.9	1.7	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

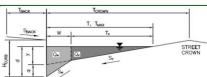
Project: Eastonville Road
Inlet ID: DP5

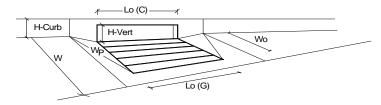

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} = Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 ft/ft SBACK n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} = 6.00 inches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.083 ft/ft S₀ 0.000 ft/ft n_{STREET} = 0.016 Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 24.0 inches Check boxes are not applicable in SUMP conditions Minor Storm Major Storm SUMP SUMP cfs MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


CDOT Type R Curb Opening ■ □ Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
lumber of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.3	Override Depths
Grate Information		MINOR	MAJOR	
ength of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Vidth of a Unit Grate	W ₀ =	N/A	N/A	feet
rea Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C₀ (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
leight of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
ingle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
iide Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Tft .
Pepth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.75	0.93	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a = [5.1	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	2.4	4.9	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

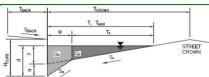
Project: Eastonville Road
Inlet ID: DP6

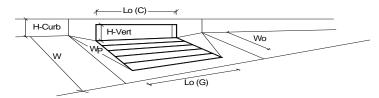

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} = Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 ft/ft SBACK n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} = 6.00 inches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.083 ft/ft S₀ 0.000 ft/ft n_{STREET} = 0.016 Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 24.0 inches Check boxes are not applicable in SUMP conditions Minor Storm Major Storm SUMP SUMP cfs MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


Design Information (Input)		MINOR	MAJOR	
<u>Design Information (Input)</u> Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	linches
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.3	Override Depths
Grate Information	Foliding Depth =	MINOR	MAJOR	
Length of a Unit Grate	$L_0(G) =$	N/A	N/A	feet
Width of a Unit Grate	W ₀ =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	-
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_0(G) =$	N/A	N/A	
Curb Opening Information	30 (3)	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63,40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C, (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0''(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Tft .
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.56	0.69	= 1
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes cloqged condition)	Q _a =	10.0	16.9	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.8	11.7	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

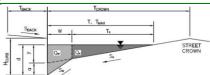
Project: Eastonville Road
Inlet ID: DP14

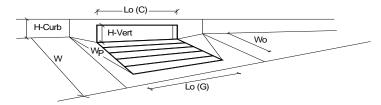

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} = 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 ft/ft SBACK n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} = 6.00 inches T_{CROWN} = 26.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.083 ft/ft S₀ 0.000 ft/ft n_{STREET} = 0.016 Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 26.0 26.0 inches Check boxes are not applicable in SUMP conditions Minor Storm Major Storm SUMP SUMP cfs MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


CDOT Type R Curb Opening				
Design Information (Input)	_	MINOR	MAJOR	=
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.8	Override Depths
Grate Information	_	MINOR	MAJOR	 -
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	=
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Πft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.48	dft.
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.73	∃'`
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOD	MAJOD	_
Total Tulet Interception Conscity (accumes classed condition)	ο -Γ	MINOR 9.9	MAJOR 18.6	cfs
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a = $	5.2	9.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.2	7.7	us

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

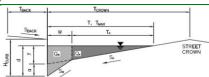
Project: Eastonville Road
Inlet ID: DP15

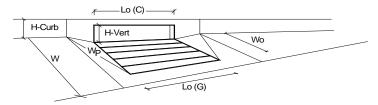

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} = 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 ft/ft SBACK n_{BACK} 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} = 6.00 inches T_{CROWN} = 26.0 Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.083 ft/ft S₀ 0.000 ft/ft n_{STREET} = 0.016 Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 26.0 26.0 inches Check boxes are not applicable in SUMP conditions Minor Storm Major Storm SUMP SUMP cfs MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


CDOT Type R Curb Opening ▼				
Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.8	Override Depths
Grate Information	_	MINOR	MAJOR	-
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	=
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_o(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Πft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.48	∃nt
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.73	∃'`
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
Stated 2.1.60. Strong Medical of Factor for Long Thicks	Grate =	14//1	N/A	_
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	$Q_a =$	9.9	18.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	5.0	10.6	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road
Inlet ID: DP16 - Ultimate Flow

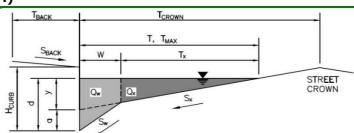

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} = 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 ft/ft SBACK 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} = 6.00 inches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.083 ft/ft S₀ 0.000 ft/ft n_{STREET} = 0.012 Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 inches Check boxes are not applicable in SUMP conditions Minor Storm Major Storm SUMP SUMP cfs MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion


CDOT Type R Curb Opening ▼				
Design Information (Input)		MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	5.9	Override Depths
Grate Information	-	MINOR	MAJOR	_
Length of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_o(G) =$	N/A	N/A	
Curb Opening Information	-	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_o(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_D =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	Πft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft.
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.56	0.56	∃'`
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	0.93	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Canacity (accumes closed condition)	O _a =	10.0	10.0	cfs
Total Inlet Interception Capacity (assumes clogged condition)		3.7	6.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	J./	0.3	us

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road
Inlet ID: DP17 - Ultimate Flow

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb T_{BACK} = 8.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 ft/ft SBACK 0.020 Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown H_{CURB} = 6.00 inches T_{CROWN} = Gutter Width 2.00 Street Transverse Slope S_X = 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.083 ft/ft S₀ 0.000 ft/ft n_{STREET} = 0.012 Major Storm Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 24.0 inches Check boxes are not applicable in SUMP conditions Minor Storm Major Storm SUMP SUMP cfs MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

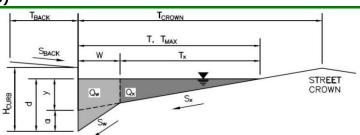


CDOT Type R Curb Opening ▼				
Design Information (Input)	_	MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	
ocal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Vater Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	5.9	Override Depths
Grate Information	_	MINOR	MAJOR	-
ength of a Unit Grate	$L_o(G) =$	N/A	N/A	feet
Vidth of a Unit Grate	W _o =	N/A	N/A	feet
rea Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_f(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C₀ (G) =	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	=
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
leight of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
leight of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Ingle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
iide Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_0(C) =$	0.67	0.67	1
ow Head Performance Reduction (Calculated)		MINOR	MAJOR	
pepth for Grate Midwidth	d _{Grate} =	N/A	N/A	∏ft
epth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.33	ft
ombination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.56	0.56	1''
urb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	0.93	
Frated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	_
		MINOR	MAJOR	
otal Inlet Interception Capacity (assumes cloqged condition)	Q _a = [10.0	10.0	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	3.7	6.4	cfs

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road

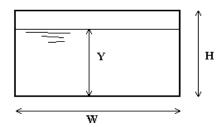
Inlet ID: Street Capacity (DP14)


Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb $T_{BACK} =$ 2.0 Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft $S_{BACK} =$ 0.020 Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 $n_{BACK} =$ Height of Curb at Gutter Flow Line $H_{CURB} =$ 6.00 inches Distance from Curb Face to Street Crown $T_{CROWN} =$ 26.0 Gutter Width W = 2.00 ft Street Transverse Slope $S_X =$ 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W =$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.005 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.012 $n_{STREET} =$ Minor Storm Major Storm $T_{MAX} =$ Max. Allowable Spread for Minor & Major Storm 26.0 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.9 inches 8.8 Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion 12.3 30.5 cfs $Q_{allow} =$ Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

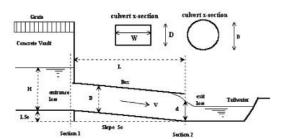
Project: Eastonville Road


Inlet ID: Street Capacity (DP15)

Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb 8.0 $T_{BACK} =$ Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft 0.020 $S_{BACK} =$ Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.015 $n_{BACK} =$ Height of Curb at Gutter Flow Line $H_{CURB} =$ 6.00 inches Distance from Curb Face to Street Crown $T_{CROWN} =$ 26.0 Gutter Width W =2.00 ft Street Transverse Slope $S_X =$ 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W =$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.005 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.012 $n_{STREET} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm $T_{MAX} =$ 26.0 26.0 Max. Allowable Depth at Gutter Flowline for Minor & Major Storm 5.9 8.8 inches Allow Flow Depth at Street Crown (check box for yes, leave blank for no) MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Spread Criterion 12.3 30.9 cfs Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

BOX CONDUIT FLOW (Normal & Critical Depth Computation) MHFD-Culvert, Version 4.00 (May 2020) Project: Eastonville Road Segment 2 Box ID: Geick Ranch Tributary 1 Box Culvert (DP G06)


Design Information (Input)			
Box conduit invert slope	So =	0.0150	ft/ft
Box Manning's n-value	n =	0.0120	
Box Width	W =	10.00	ft
Box Height	H =	3.00	ft
Design discharge	Q =	491.00	cfs
Full-flow capacity (Calculated)			
Full-flow area	Af =	30.00	sq ft
Full-flow wetted perimeter	Pf =	26.00	ft
Full-flow capacity	Qf =	501.88	cfs
Calculations of Normal Flow Condition			
Normal flow depth (<h)<="" td=""><td>Yn =</td><td>2.36</td><td>ft</td></h>	Yn =	2.36	ft
Flow area	An =	23.58	sq ft
Wetted perimeter	Pn =	14.72	ft
Flow velocity	Vn =	20.82	fps
Discharge	Qn =	491.02	cfs
Percent of Full Flow	Flow =	97.8%	of full flow
Normal Depth Froude Number	Fr _n =	2.39	supercritical
Calculation of Critical Flow Condition			
Critical flow depth	Yc =	3.00	ft
Critical flow area	Ac =	30.00	sq ft
Critical flow velocity	Vc =	16.37	fps
Critical Depth Froude Number	Fr _c =	1.67	

CULVERT SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

MHFD-Culvert, Version 4.00 (May 2020)

Project: EASTONVILLE ROAD

ID: Geick Ranch Tributary 1 Box Culvert (DP G06)

Design Information (Input):

Circular Culvert: Barrel Diameter in Inches

Inlet Edge Type (Choose from pull-down list)

OR:

Box Culvert: Barrel Height (Rise) in Feet

Barrel Width (Span) in Feet

Inlet Edge Type (Choose from pull-down list)

H (Rise) = 3.00 f W (Span) = 10.00 f1:1 Bevel w/ 45 deg. Flared Wingwall

D =

Number of Barrels

Inlet Elevation at Culvert Invert Outlet Elevation **OR** Slope

Culvert Length Manning's Roughness Bend Loss Coefficient Exit Loss Coefficient inches

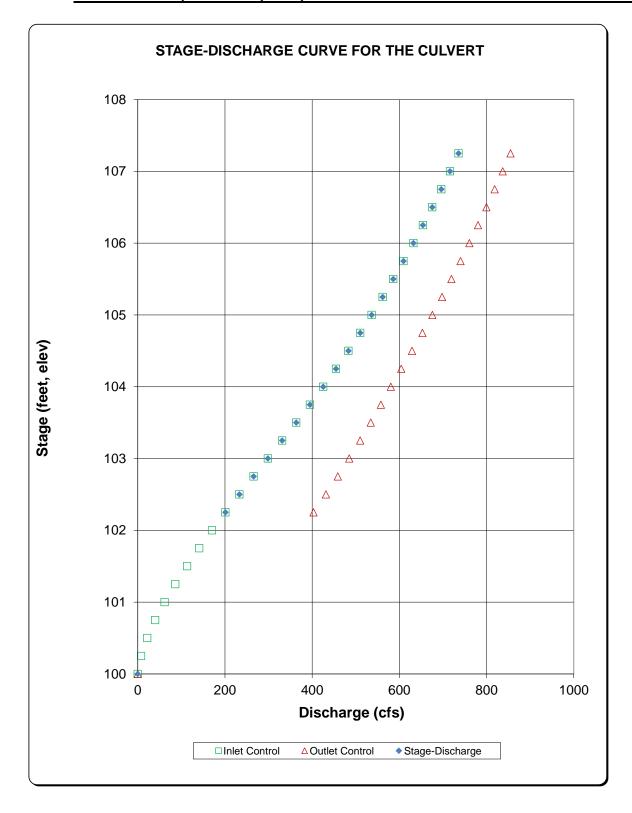
<u>Design Information (calculated):</u>

Entrance Loss Coefficient
Friction Loss Coefficient
Sum of All Loss Coefficients
Minimum Energy Condition Coefficient
Orifice Inlet Condition Coefficient

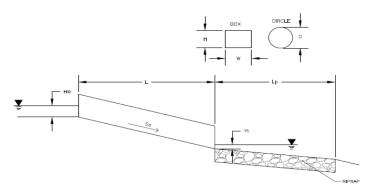
$K_e =$	0.50
$K_f =$	0.40
$K_s =$	1.90
$KE_{low} =$	0.0044
$C_d =$	0.65

Calculations of Culvert Capacity (output): Backwater calculations required to obtain Outlet Control Flowrate when HWo < 0.75 * Culvert Ris

Headwater	Tailwater	Inlet	Inlet	Outlet	Controlling	Flow
Surface	Surface	Control	Control	Control	Culvert	Control
Elevation	Elevation	Equation	Flowrate	Flowrate	Flowrate	Used
(ft)	(ft)	Used	(cfs)	(cfs)	(cfs)	
100.00		No Flow (WS < inlet)	0.00	0.00	0.00	N/A
100.25		Min. Energy. Eqn.	7.74	#N/A	#N/A	#N/A
100.50		Min. Energy. Eqn.	21.82	#N/A	#N/A	#N/A
100.75		Min. Energy. Eqn.	40.04	#N/A	#N/A	#N/A
101.00		Min. Energy. Eqn.	61.66	#N/A	#N/A	#N/A
101.25		Min. Energy. Eqn.	86.22	#N/A	#N/A	#N/A
101.50		Min. Energy. Eqn.	113.26	#N/A	#N/A	#N/A
101.75		Regression Eqn.	141.06	#N/A	#N/A	#N/A
102.00		Regression Eqn.	170.46	#N/A	#N/A	#N/A
102.25		Regression Eqn.	201.26	403.16	201.26	INLET
102.50		Regression Eqn.	233.22	431.72	233.22	INLET
102.75		Regression Eqn.	265.78	458.99	265.78	INLET
103.00		Regression Eqn.	298.68	485.11	298.68	INLET
103.25		Regression Eqn.	331.42	510.21	331.42	INLET
103.50		Regression Eqn.	363.62	534.39	363.62	INLET
103.75		Regression Eqn.	395.04	557.76	395.04	INLET
104.00		Regression Eqn.	425.50	580.38	425.50	INLET
104.25		Regression Eqn.	454.90	604.46	454.90	INLET
104.50		Regression Eqn.	483.22	629.17	483.22	INLET
104.75		Regression Eqn.	510.44	652.94	510.44	INLET
105.00		Regression Eqn.	536.62	675.87	536.62	INLET
105.25		Regression Eqn.	561.84	698.05	561.84	INLET
105.50		Regression Eqn.	586.16	719.54	586.16	INLET
105.75		Regression Eqn.	609.62	740.41	609.62	INLET
106.00		Regression Eqn.	632.28	760.72	632.28	INLET
106.25		Regression Eqn.	654.22	780.49	654.22	INLET
106.50		Regression Eqn.	675.50	799.77	675.50	INLET
106.75		Regression Eqn.	696.22	818.60	696.22	INLET
107.00		Regression Eqn.	716.24	837.01	716.24	INLET
107.25		Regression Eqn.	735.82	855.02	735.82	INLET


Processing Time: **00.12 Seconds**

CULVERT SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS)

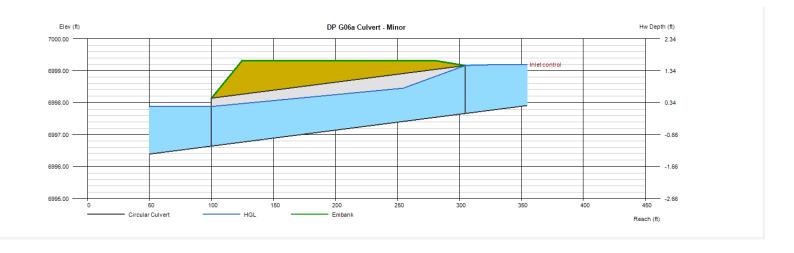

MHFD-Culvert, Version 4.00 (May 2020)

Project: EASTONVILLE ROAD

ID: Geick Ranch Tributary 1 Box Culvert (DP G06)

DETERMINATION OF CULVERT HEADWATER AND OUTLET PROTECTION MHFD-Culvert, Version 4.00 (May 2020) Project: Eastonville Road Segment 2 Geick Ranch Tributary 1 Box Culvert (DP G06)

Design Information: Design Disch Circular Culvert: Barrel Diame	narge	٥		
Circular Culvert:	narge	0		
		Q =	491	cfs
Barrel Diame				
	eter in Inches	D =		inches
Inlet Edge T	ype (Choose from pull-down list)			_
OR:				
Box Culvert:			OR	
Barrel Heigh	t (Rise) in Feet	H (Rise) =	3	∏ft
	(Span) in Feet	W (Span) =	10	nt.
	ype (Choose from pull-down list)	1:1 Bevel w/ 45 deg.		
				_
Number of E		# Barrels =	2	
Inlet Elevation		Elev IN =	100	ft
Outlet Eleva	tion <u>OR</u> Slope	So =	0.015	ft/ft
Culvert Leng	th	L =	116.5	ft
Manning's R	oughness	n =	0.012	
Bend Loss C	oefficient	k _b =	0	
Exit Loss Co	efficient	k _x =	1	
Tailwater Su	rface Elevation	Y _{t, Elevation} =		ft
Max Allowab	le Channel Velocity	V =	7	ft/s
	<u> </u>			-
Calculated Results:		. —		7 .2
	s Sectional Area Available	A =	30.00	☐ft²
Culvert Norn	•	Y _n =	1.48	ft
Culvert Critic	cal Depth	Y _c =	2.65	ft
Froude Num	ber	Fr =	2.41	Supercritical!
Entrance Los	ss Coefficient	k _e =	0.50	7
Friction Loss	Coefficient	k _f =	0.40	
Sum of All L	oss Coefficients	k _s =	1.90	ft
Headwater:				
Inlet Control	Headwater	$HW_{T} =$	4.57	∏ft
	ol Headwater	HW _O =	3.06	
	ndwater Elevation	HW =	104.57	⊣' i t
	/Diameter OR Headwater/Rise Ratio	HW/H=	1.52	HW/H > 1.5!
	,	,		
Outlet Protection:	* D: A4 5)			7005/
Flow/(Span		Q/WH^1.5 =	4.72	ft ^{0.5} /s
Tailwater Su		Y _t =	1.20	ft
Tailwater/Ris	se se	Yt/H =	0.40	
Expansion Fa		$1/(2*tan(\Theta)) =$	1.85	
Flow Area at	: Max Channel Velocity	$A_t =$	70.14	ft²
Width of Equ	uivalent Conduit for Multiple Barrels	W _{eq} =	20.00	Tr.
	Riprap Protection	L _p =	30	ft
•	iprap Protection at Downstream End	Ť =	37	ft
المناهدينة المناهدة	o for Cuporcritical Flour	ш. Г	2 24	¬₊
	e for Supercritical Flow	Ha =	2.24	ft
	eoretical Riprap Size	d ₅₀ min=	5	in :-
Nominal Rip	•	d ₅₀ nominal=	6	in
MHFD Ripr	ар туре	Type =	VL	_

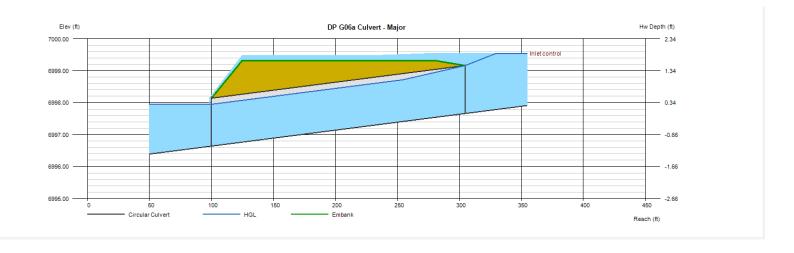

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

DP G06a Culvert - Minor

Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6996.64 = 204.64 = 0.50 = 6997.66 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 6.40 = 6.40 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 6.40
No. Barrels	= 1	Qpipe (cfs)	= 6.40
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 4.10
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.25
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6997.88
		HGL Up (ft)	= 6998.64
Embankment		Hw Elev (ft)	= 6999.19
Top Elevation (ft)	= 6999.32	Hw/D (ft)	= 1.02
Top Width (ft) Crest Width (ft)	= 155.00 = 110.00	Flow Regime	= Inlet Control
• · · · · · · · · · · · · · · · · · · ·			


Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

DP G06a Culvert - Major

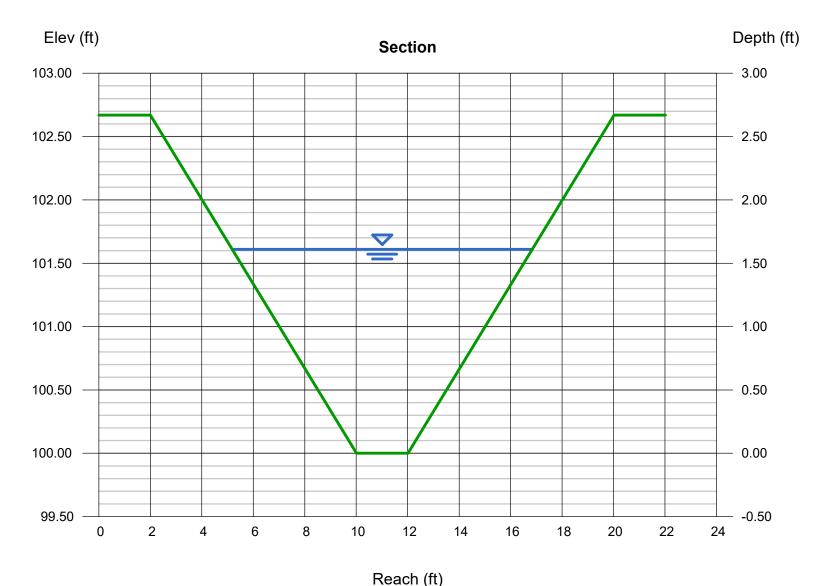
Invert Elev Dn (ft) Pipe Length (ft) Slope (%) Invert Elev Up (ft) Rise (in)	= 6996.64 = 204.64 = 0.50 = 6997.66 = 18.0	Calculations Qmin (cfs) Qmax (cfs) Tailwater Elev (ft)	= 42.90 = 42.90 = (dc+D)/2
Shape	= Circular	Highlighted	
Span (in)	= 18.0	Qtotal (cfs)	= 42.90
No. Barrels	= 1	Qpipe (cfs)	= 8.30
n-Value	= 0.012	Qovertop (cfs)	= 34.60
Culvert Type	Circular Concrete	Veloc Dn (ft/s)	= 5.08
Culvert Entrance	Square edge w/headwall (C)	Veloc Up (ft/s)	= 5.09
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6997.95
		HGL Up (ft)	= 6998.97
Embankment		Hw Elev (ft)	= 6999.54
Top Elevation (ft)	= 6999.32	Hw/D (ft)	= 1.25
Top Width (ft)	= 155.00	Flow Regime	= Inlet Control
Crest Width (ft)	= 110.00		

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

DPG06A Swale

Trapezoidal


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.67 Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 42.90

Highlighted

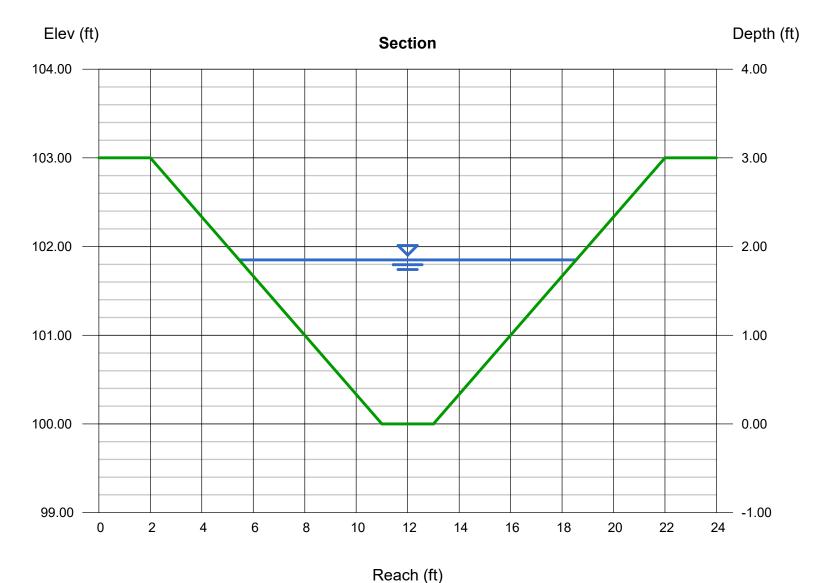
Depth (ft) = 1.61 Q (cfs) = 42.90Area (sqft) = 11.00Velocity (ft/s) = 3.90Wetted Perim (ft) = 12.18 Crit Depth, Yc (ft) = 1.37Top Width (ft) = 11.66 EGL (ft) = 1.85

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

DPG16a Swale

Trapezoidal


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 3.00 Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 59.00

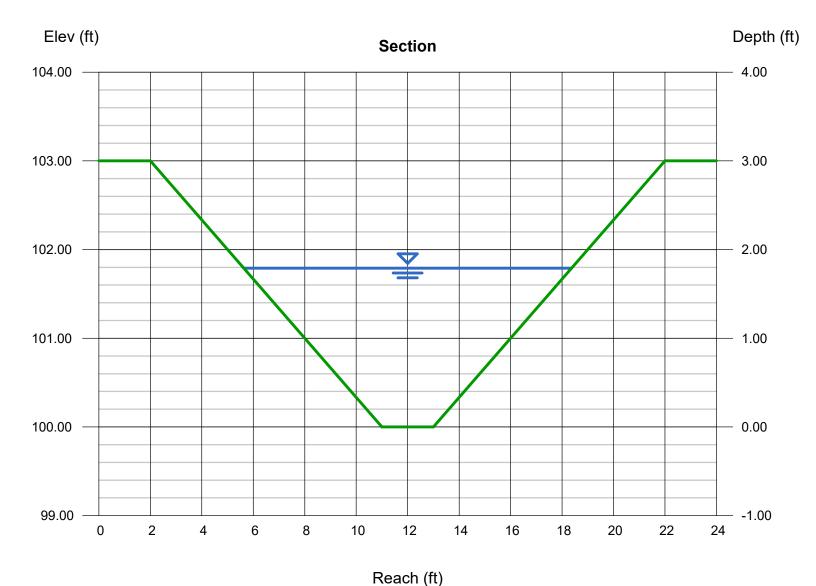
Highlighted

= 1.85Depth (ft) Q (cfs) = 59.00Area (sqft) = 13.97Velocity (ft/s) = 4.22 Wetted Perim (ft) = 13.70Crit Depth, Yc (ft) = 1.60Top Width (ft) = 13.10 EGL (ft) = 2.13

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

DPG16b Swale


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 3.00 Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 54.90

Highlighted

= 1.79Depth (ft) Q (cfs) = 54.90Area (sqft) = 13.19Velocity (ft/s) = 4.16 Wetted Perim (ft) = 13.32Crit Depth, Yc (ft) = 1.54 Top Width (ft) = 12.74EGL (ft) = 2.06

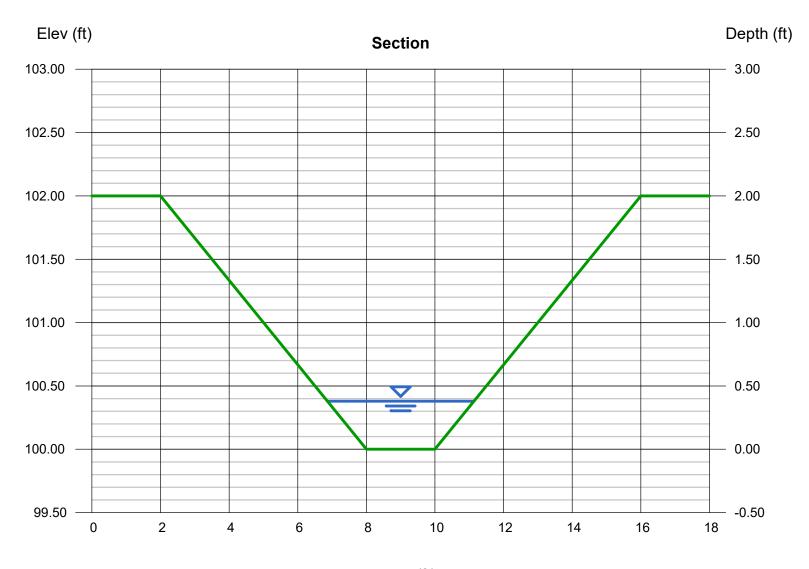
	FROUDE I	NUMBER CAL	CULATIONS	CALCULATED BY:	SPC	DATE:	10/28/2024
	PROJECT: EA	ASTONVILLE R	D SEGMENT 2	CHECKED BY:	CM		
Froude Number Calculations: 100-YR							
DP		Velocity	Gravitational Constant	Hydraulic depth	Xsectional Area	top Width	Froude #
-		ft/s	ft/s^2	ft	ft^2	ft	N/A
G06a		3.90	32.17	0.94	11.00	11.66	0.71
G16a		4.22	32.17	1.07	13.97	13.1	0.72
G16b		4.16	32.17	1.06	13.49	12.74	0.71
	7	1.68	33.17	0.28	1.19	4.28	0.55

	SHEAR STRESS & CHANNEL L	ININGS	CALC	CULATED BY:	SPC	DATE:	10/28/2024				
Р	PROJECT: EASTONVILLE RD SEGMENT 2			ECKED BY:	CM						
Shear Stress Calculations: 100-YR					Channel Lining Determina						
DP				Shear Stress			Calculated Value		P300 Max \		
-	lb/ft^3			lb/ft^2			Shear Stress	•	Shear Stress		Lining Required
G06a	62.43		0.005		-	G06a	0.50				NO LINING RQD
316a	62.43					G16a	0.58				NO LINING RQD
G16b	62.43				4	G16b	0.56				NO LINING RQD
7	63.43	0.38	0.005	0.12		7	0.12	1.68	3	9	NO LINING RQD
					ļ						
					l						
					l						
					Į.						
					I						
					Į.						
					ĺ						
					ļ						
					ĺ						
					ĺ						
						<u></u>					

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Oct 16 2024

DP7 SWALE


Bottom Width (ft) = 2.00 Side Slopes (z:1) = 3.00, 3.00 Total Depth (ft) = 2.00 Invert Elev (ft) = 100.00 Slope (%) = 0.50 N-Value = 0.025

Calculations

Compute by: Known Q Known Q (cfs) = 2.00

Highlighted

= 0.38Depth (ft) Q (cfs) = 2.000Area (sqft) = 1.19Velocity (ft/s) = 1.68 Wetted Perim (ft) = 4.40Crit Depth, Yc (ft) = 0.28Top Width (ft) = 4.28EGL (ft) = 0.42

Reach (ft)

EASTONVILLE RD SEG 2	Calc'd by:	SPC
201662.08	Checked by:	СМ
DP G06 (18" RCP OUTLET)	Date:	10/16/2024

Input Parameters				
Flow (Q)	8.3			
Tailwater depth (Y _t)	0.60			
Conduit Diameter (D _c)	18			
Expansion Factor (per Fig. 9-35)	4.33			
Soil Type	Non-Cohesive Soils			

Calculated Parameters				
Froude Parameter (Q/D ^{2.5})	3.01			
D ₅₀ =	3.74 i	in		
UDFCD Riprap Type =	Type VL			
Design D ₅₀ =	6 i	in		
Minimum Mantle Thickness =	12 i	in		
Minimum Length of Apron (L_p) =	6	ft		
Minimum Width of Apron (T) =	2	ft		

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_{p} = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_{t}}{Y_{t}} - W\right)$$
 Equation 9-11

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 $Y_t = \text{tailwater depth (ft)}$

 A_t = required area of flow at allowable velocity (ft²)

 θ = the expansion angle of the culvert flow

Calculated minimum width of apron was calculated using Equations 9-14 in the USDCM Vol. 2

$$T = 2(L_r \tan \theta) + W$$
 Equation 9-14

Note:

 $^{
m 1}$ Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.

⁴ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6. The minimum width of Apron (T) should not be less than the outlet pipe diameter.

EASTONVILLE RD SEG 2	Calc'd by:	SPC
201662.08	Checked by:	СМ
DP13.1 (48" RCP OUTLET)	Date:	10/16/2024

Input Parameters				
Flow (Q)	141			
Tailwater depth (Y _t)	1.60			
Conduit Diameter (D _c)	48 i			
Expansion Factor (per Fig. 9-35)	3.5			
Soil Type	Non-Cohesive Soils			

Calculated Parameters				
Froude Parameter (Q/D ^{2.5})	4.41			
D ₅₀ =	14.61	in		
UDFCD Riprap Type =	Туре Н			
Design D ₅₀ =	18	in		
Minimum Mantle Thickness =	36	in		
Minimum Length of Apron (L_p) =	48	ft		
Minimum Width of Apron (T) =	80	ft		

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_p = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_t}{Y_t} - W\right)$$

Equation 9-11

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 $Y_t = \text{tailwater depth (ft)}$

 A_t = required area of flow at allowable velocity (ft²)

 θ = the expansion angle of the culvert flow

Calculated minimum width of apron was calculated using Equations 9-14 in the USDCM Vol. 2

$$T = 2(L_{\scriptscriptstyle F} \tan \theta) + W$$

Equation 9-14

Note:

 1 Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.

⁴ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6. The minimum width of Apron (T) should not be less than the outlet pipe diameter.

EASTONVILLE RD SEG 2	Calc'd by:	SPC
201662.08	Checked by:	СМ
DP G15a (36" RCP OUTLET)	Date:	10/16/2024

Input Parameters					
Flow (Q)	40.2				
Tailwater depth (Y _t)	1.20 f				
Conduit Diameter (D _c)	36 i				
Expansion Factor (per Fig. 9-35)	5				
Soil Type	Non-Cohesive Soils				

Calculated Parameters					
Froude Parameter (Q/D ^{2.5})	2.58				
D ₅₀ =	6.41 i	in			
UDFCD Riprap Type =	Type L				
Design D ₅₀ =	9 i	in			
Minimum Mantle Thickness =	18 i	in			
Minimum Length of Apron (L_p) =	19 f	ft			
Minimum Width of Apron (T) =	26 f	ft			

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_{p} = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_{t}}{Y_{t}} - W\right)$$

Equation 9-11

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 Y_t = tailwater depth (ft)

 A_t = required area of flow at allowable velocity (ft²)

 θ = the expansion angle of the culvert flow

Calculated minimum width of apron was calculated using Equations 9-14 in the USDCM Vol. 2

$$T = 2(L_{\scriptscriptstyle P} \tan \theta) + W$$

Equation 9-14

Note:

¹ Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.

⁴ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6. The minimum width of Apron (T) should not be less than the outlet pipe diameter.

EASTONVILLE RD SEG 2	Calc'd by:	SPC
201662.08	Checked by:	СМ
DP10 (SFB C Outlet)	Date:	10/16/2024

Input Parameters				
Flow (Q)	0.8			
Tailwater depth (Y _t)	0.60			
Conduit Diameter (D _c)	18 i			
Expansion Factor (per Fig. 9-35)	6.5			
Soil Type	Non-Cohesive Soils			

Calculated Parameters					
Froude Parameter (Q/D ^{2.5})	0.29				
D ₅₀ =	0.36 i				
UDFCD Riprap Type =	Type VL				
Design D ₅₀ =	6				
Minimum Mantle Thickness =	12 i				
Minimum Length of Apron (L_p) =	5 f				
Minimum Width of Apron (T) =	6 f				

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_p = \left(\frac{1}{2\tan\theta}\right)\left(\frac{A_t}{Y_t} - W\right)$$

Equation 9-11

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 $Y_t = \text{tailwater depth (ft)}$

 A_t = required area of flow at allowable velocity (ft²)

 θ = the expansion angle of the culvert flow

Calculated minimum width of apron was calculated using Equations 9-14 in the USDCM Vol. 2

$$T = 2(L_r \tan \theta) + W$$
 Equation 9-14

Note:

 1 Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.

 $^{^4}$ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6. The minimum width of Apron (T) should not be less than the outlet pipe diameter.

EASTONVILLE RD SEG 2	Calc'd by:	SPC
201662.08	Checked by:	СМ
DP3.1 (SFB C Inlet)	Date:	10/16/2024

Input Parameters				
Flow (Q)	3.2			
Tailwater depth (Y _t)	0.60 f			
Conduit Diameter (D _c)	18 i			
Expansion Factor (per Fig. 9-35)	6.25			
Soil Type	Non-Cohesive Soils			

Calculated Parameters					
Froude Parameter (Q/D ^{2.5})	1.16				
D ₅₀ =	1.44 ir				
UDFCD Riprap Type =	Type VL				
Design D ₅₀ =	6 ir				
Minimum Mantle Thickness =	12 ir				
Minimum Length of Apron (L_p) =	5 ft				
Minimum Width of Apron (T) =	2 ft				

$$d_{50} = \frac{0.023Q}{Y_t^{1.2}D_c^{0.3}}$$

Calculated minimum length of apron was calculated using Equations 9-11 and 9-12 in the USDCM Vol. 2

$$L_{p} = \left(\frac{1}{2 \tan \theta}\right) \left(\frac{A_{t}}{Y_{t}} - W\right)$$
 Equation 9-11

$$A_t = \frac{Q}{V}$$

Equation 9-12

Where:

Where:

 L_p = length of protection (ft)

Q = design discharge (cfs)

W = width of the conduit (ft, use diameter for circular conduits)

V = the allowable non-eroding velocity in the downstream channel (ft/sec)

 Y_t = tailwater depth (ft)

 A_t = required area of flow at allowable velocity (ft²)

 θ = the expansion angle of the culvert flow

Calculated minimum width of apron was calculated using Equations 9-14 in the USDCM Vol. 2

$$T = 2(L_r \tan \theta) + W$$
 Equation 9-14

Note:

 $^{
m 1}$ Calculations follow criteria in the USDCM Vol.2 Chapter 9

² Calculations assume a circular culvert

³ This spreadsheet assumes $y_t/D_t=0.4$ in cases where y_t is unknown or a hydraulic jump is suspected downstream of the outlet.

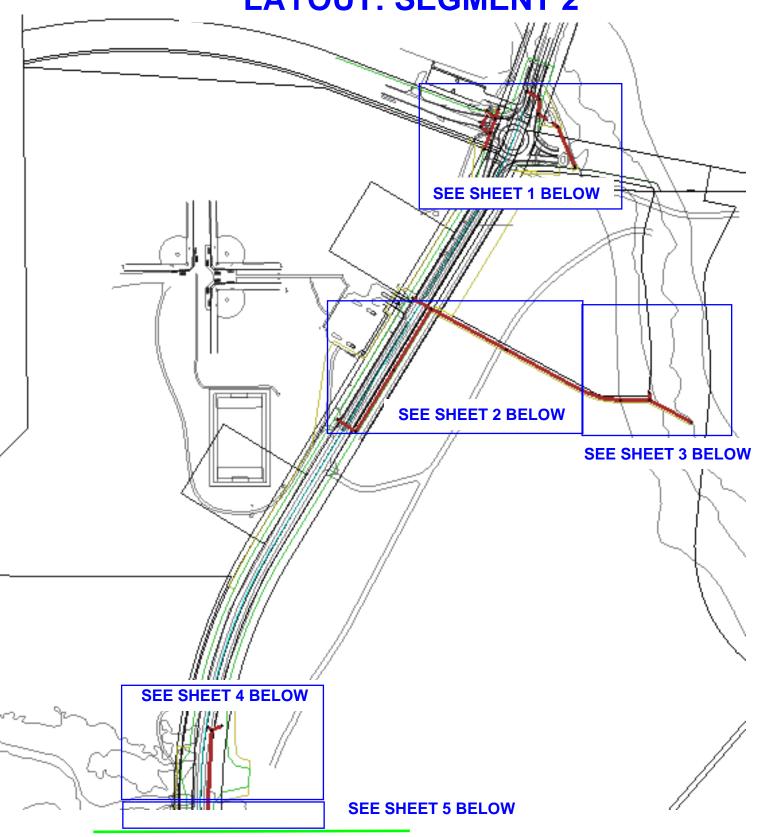
⁴ Per the USDCM Vol.2 in no case should L_p be less than 3D, nor does L_p need to be greater than 10D whenever the Froude parameter is less than 6.0. whenever the Froude parameter is greater than 6, increase the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6. The minimum width of Apron (T) should not be less than the outlet pipe diameter.

	Riprap Sizing - Spillway							
	q (cfs/ft)	S (ft/ft)	C_f	n	D ₅₀ min. (in)			
SFB-C	0.40	0.33	3	0.025	4.25			

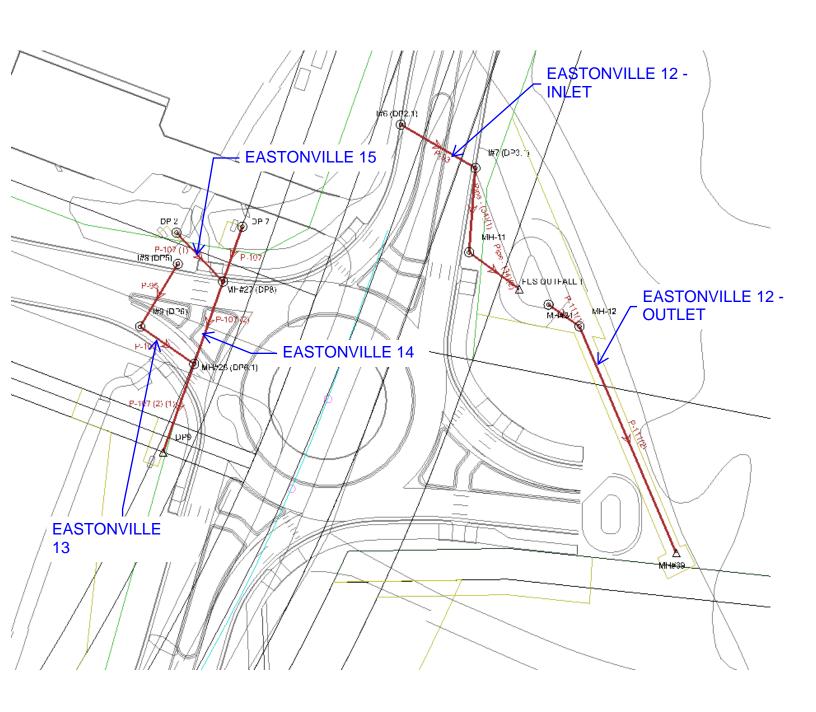
Type VL Riprap (D₅₀ = 6") will be utilized for the spillway protection

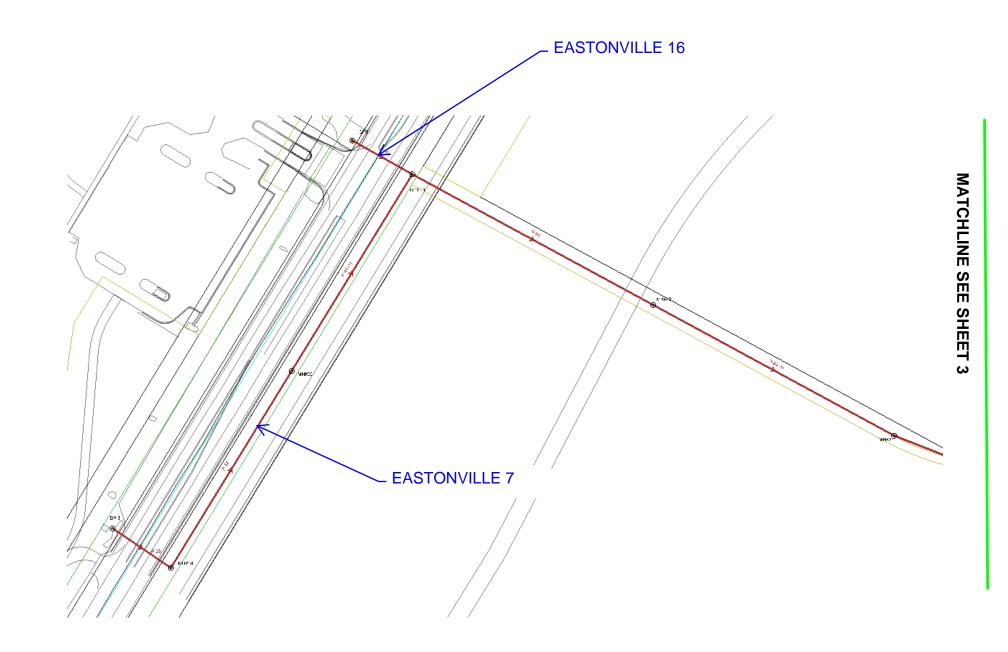
 $D_{50} = 5.23 \text{ S}^{0.43} (1.35 \, C_f \, q)^{0.56}$

Equation 13-9

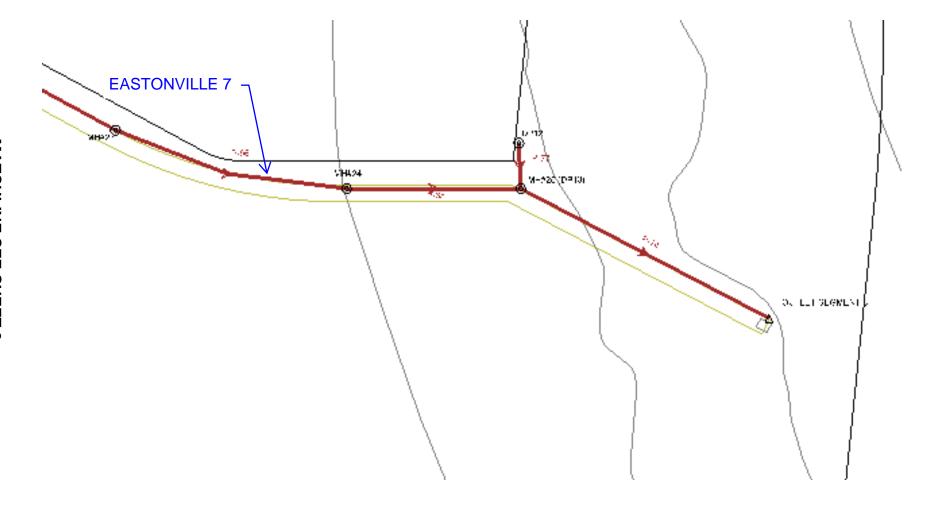

Where:

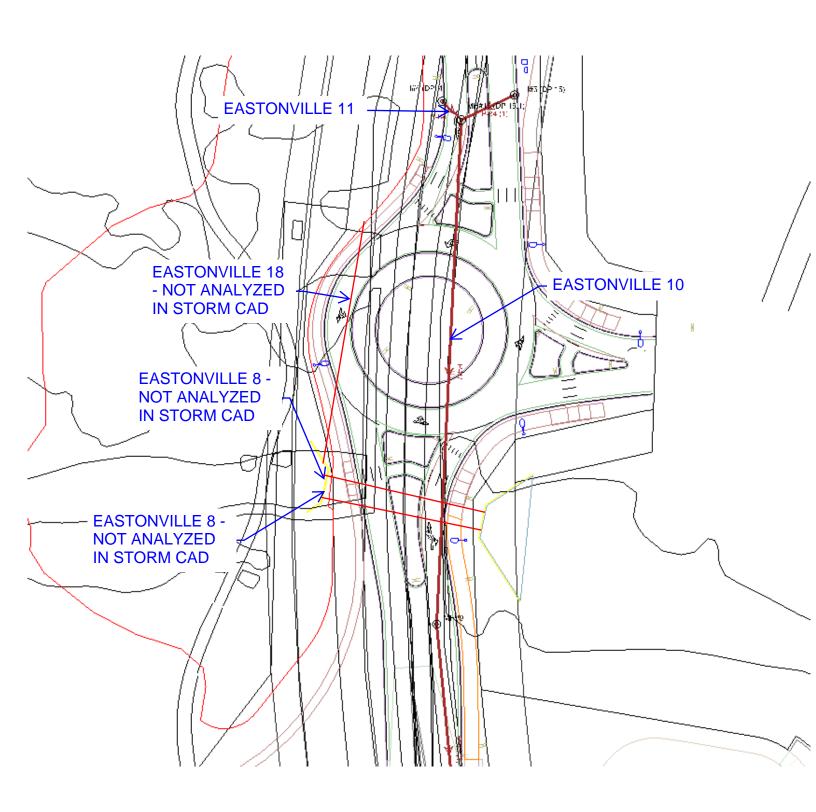
 D_{50} = median rock size (in) S = longitudinal slope (ft/ft) C_f = concentration factor (1.0 to 3.0) q = unit discharge (cfs/ft)

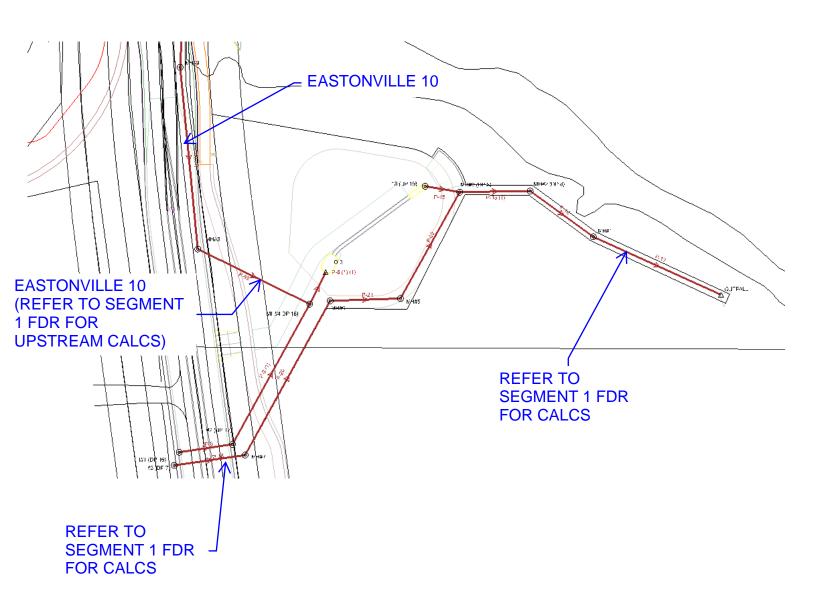

When:


 η (porosity) = 0.0 (i.e., for buried soil riprap)

STORMCAD NETWORK LAYOUT: SEGMENT 2



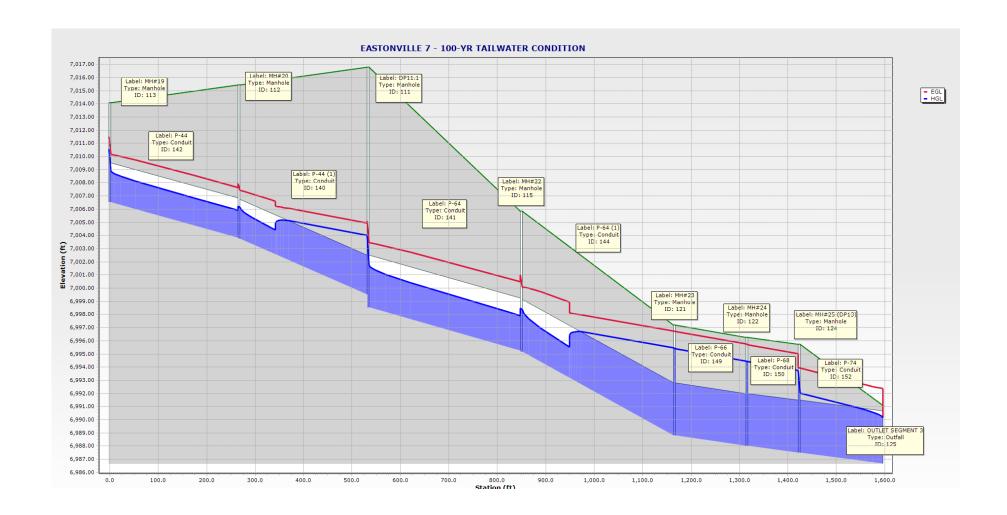

MATCHLINE REFER TO SEGMENT 2 FDR

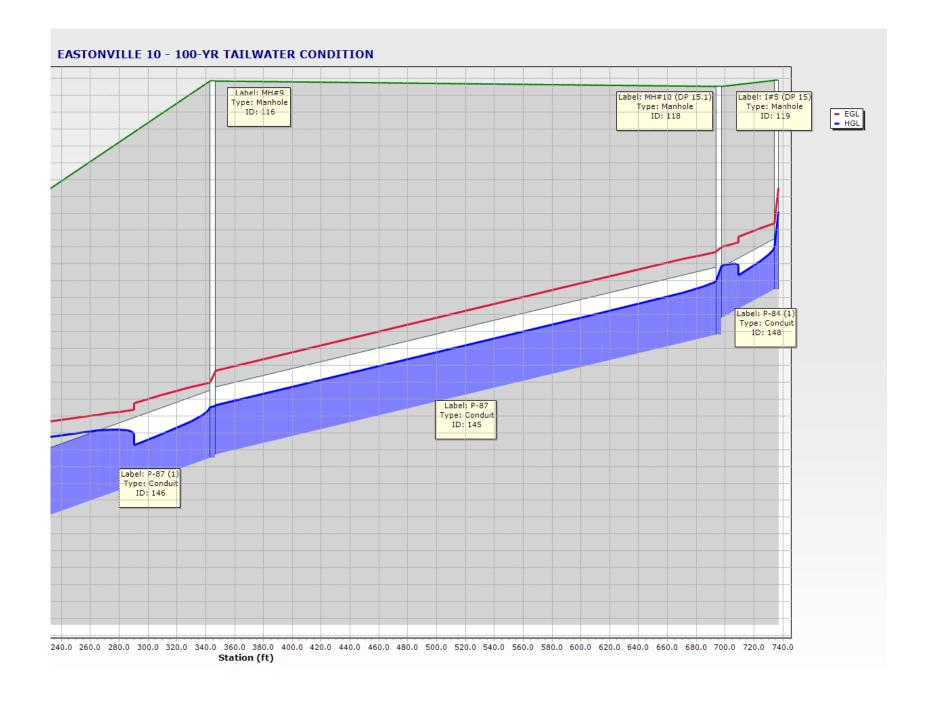


SHEET 2

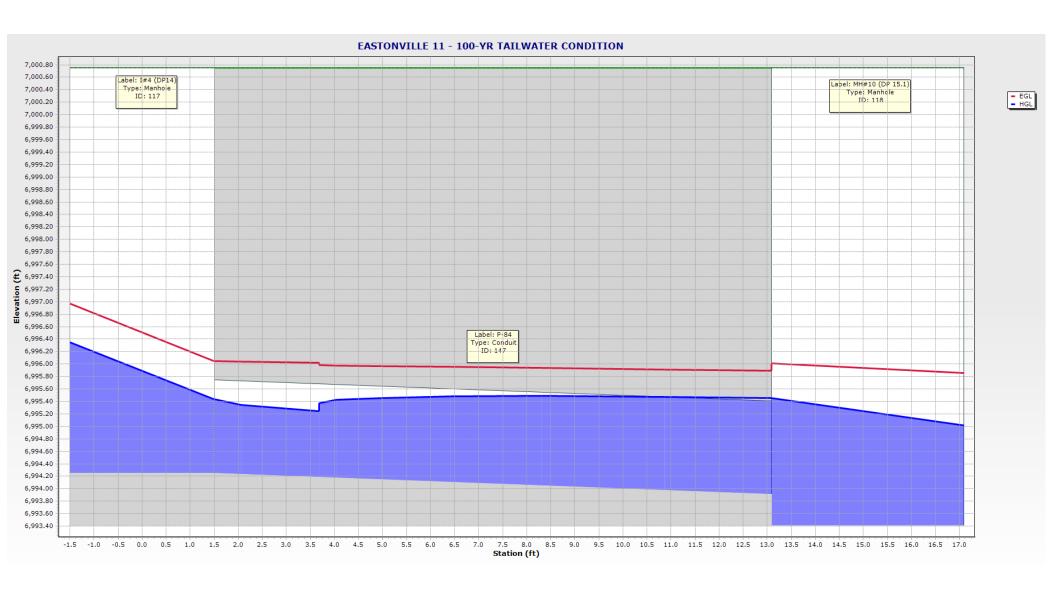
100 YEAR TAILWATER CONDITION: PIPE SUMMARY TABLE

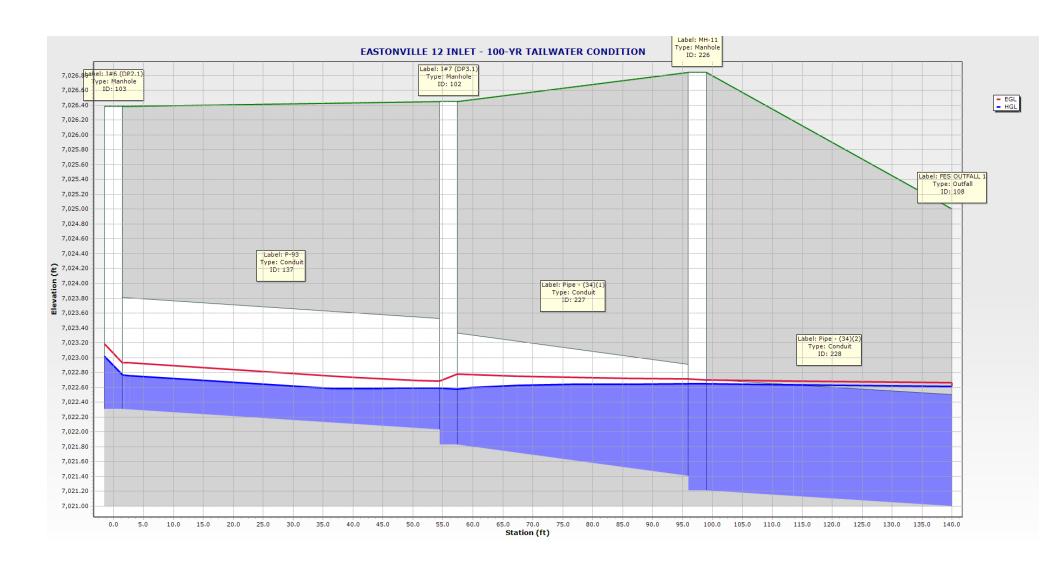
	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.74	DP G15a	7,020.44	60.7	0.005	36.0	0.013	40.20	7.46	46.89	85.7	7,022.88	7,022.50
132: P-103	I#9 (DP6)	7,022.17	MH#26 (DP6.1)	7,021.74	42.7	0.010	24.0	0.013	16.00	5.09	22.71	70.4	7,024.62	7,024.41
133: P-107 (2)	MH#27 (DP8)	7,021.52	MH#26 (DP6.1)	7,021.24	56.6	0.005	30.0	0.013	29.20	5.95	28.85	101.2	7,024.70	7,024.41
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,022.72	37.8	0.008	18.0	0.013	2.00	1.13	9.21	21.7	7,025.20	7,025.19
135: P-107 (1)	MH#27 (DP8)	7,021.72	DP G15a1	7,022.00	43.9	-0.006	30.0	0.013	27.70	5.64	32.77	84.5	7,025.39	7,025.19
136: P-95	I#8 (DP5)	7,023.14	I#9 (DP6)	7,022.67	47.5	0.010	18.0	0.013	4.90	2.77	10.45	46.9	7,024.98	7,024.88
137: P-93	I#6 (DP2.1)	7,022.31	I#7 (DP3.1)	7,022.03	55.9	0.005	18.0	0.013	1.50	3.29	7.43	20.2	7,022.77	7,022.59
140: P-44 (1)	MH#20	7,003.74	DP11.1	6,999.51	266.5	0.016	36.0	0.013	54.90	12.67	84.03	65.3	7,006.15	7,004.01
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	113.90	12.84	145.88	78.1	7,001.75	6,997.92
142: P-44	MH#19	7,006.50	MH#20	7,003.84	266.5	0.010	36.0	0.013	54.90	10.53	66.63	82.4	7,008.91	7,005.91
143: P-26	DP G16b	7,007.68	MH#19	7,006.80	81.5	0.011	36.0	0.013	54.90	7.77	69.32	79.2	7,011.13	7,010.58
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	113.90	16.63	203.15	56.1	6,998.38	6,995.48
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	19.90	8.17	22.76	87.5	6,995.01	6,991.31
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	17.20	9.29	27.70	62.1	6,991.26	6,989.91
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	9.40	9.31	15.77	59.6	6,995.44	6,995.45
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	10.60	9.29	15.18	69.8	6,995.99	6,995.45
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	113.90	9.06	106.64	106.8	6,995.41	6,994.48
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	113.90	9.06	97.84	116.4	6,994.41	6,993.73
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	36.0	0.013	24.60	3.48	113.85	21.6	6,993.77	6,993.73
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	138.50	11.02	99.34	139.4	6,992.04	6,990.17
225: P-42	DP G16a	7,001.22	DP11.1	6,999.51	85.7	0.020	36.0	0.013	59.00	8.35	94.22	62.6	7,004.68	7,004.01
227: Pipe - (34	I#7 (DP3.1)	7,021.83	MH-11	7,021.41	41.5	0.010	18.0	0.013	3.20	5.24	10.56	30.3	7,022.58	7,022.65
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	3.20	4.03	7.38	43.3	7,022.65	7,022.61
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	1.00	2.91	7.35	13.6	7,019.04	7,018.94
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	1.00	3.76	10.56	9.5	7,018.74	7,017.08

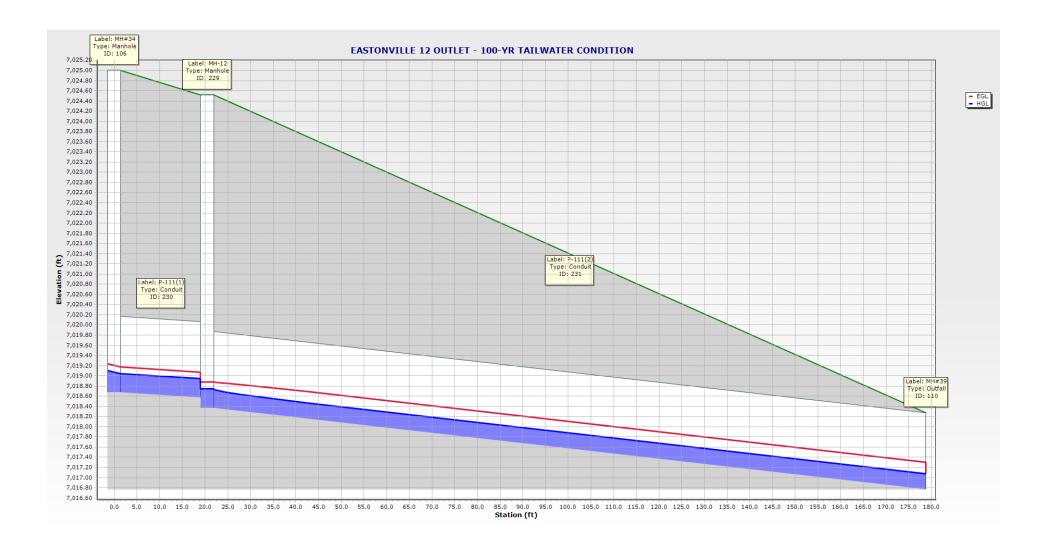

NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.

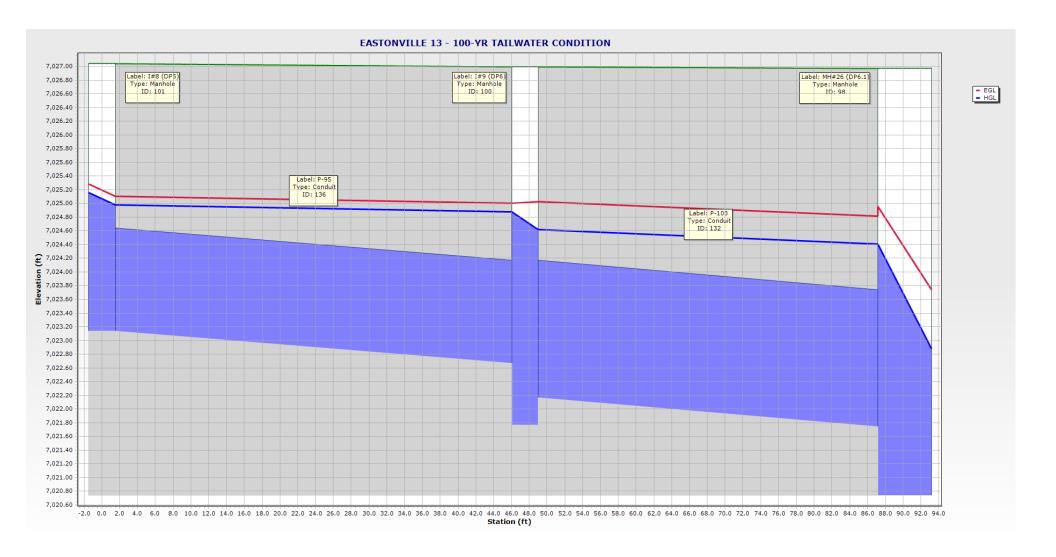

100 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

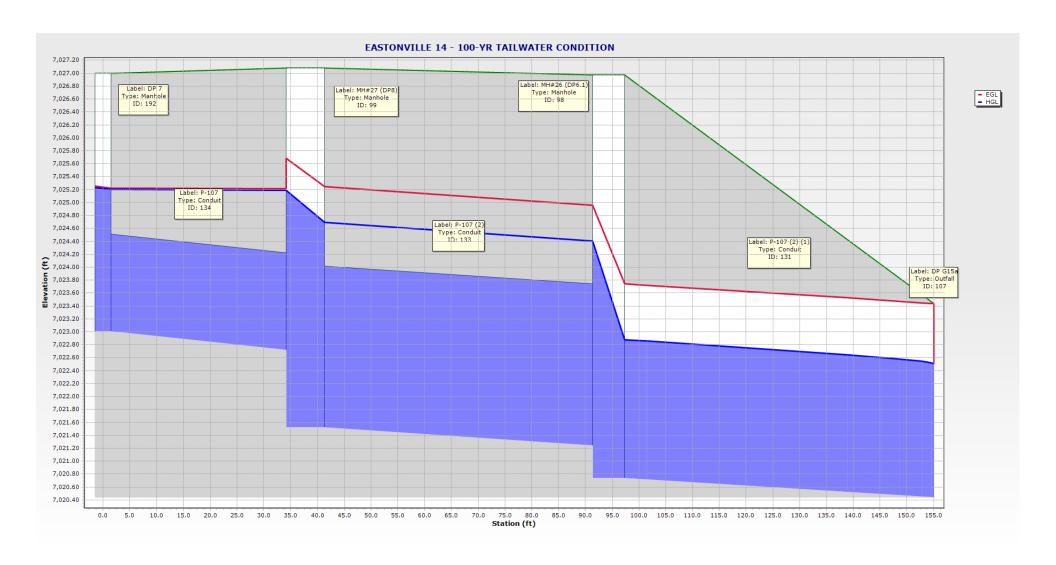
	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
98: MH#26 (D	7,026.97	7,026.97	7,021.74	40.20	7,022.88	Standard	7,024.41
99: MH#27 (D	7,027.08	7,027.08	7,022.72	29.20	7,024.70	Standard	7,025.19
100: I#9 (DP6)	7,026.99	7,026.99	7,022.67	16.00	7,024.62	Standard	7,024.88
101: I#8 (DP5)	7,027.04	7,027.04	(N/A)	4.90	7,024.98	Standard	7,025.16
102: I#7 (DP3.	7,026.45	7,026.45	7,022.03	3.20	7,022.58	Standard	7,022.59
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	1.50	7,022.77	Standard	7,023.02
106: MH#34	7,025.00	7,025.00	(N/A)	1.00	7,019.04	Standard	7,019.11
111: DP11.1	7,016.78	7,016.78	6,999.51	113.90	7,001.75	Standard	7,004.01
112: MH#20	7,015.43	7,015.43	7,003.84	54.90	7,006.15	Standard	7,006.21
113: MH#19	7,014.08	7,014.08	7,006.80	54.90	7,008.91	Standard	7,010.58
115: MH#22	7,005.85	7,005.85	6,995.26	113.90	6,998.38	Standard	6,998.46
116: MH#9	7,000.92	7,000.92	6,989.86	17.20	6,991.26	Standard	6,991.29
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	9.40	6,995.44	Standard	6,996.35
118: MH#10 (7,000.75	7,000.75	6,993.91	19.90	6,995.01	Standard	6,995.45
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	10.60	6,995.99	Standard	6,997.05
121: MH#23	6,997.20	6,997.20	6,988.82	113.90	6,995.41	Standard	6,995.48
122: MH#24	6,996.25	6,996.25	6,988.00	113.90	6,994.41	Standard	6,994.48
123: DP12	6,996.40	6,996.40	(N/A)	24.60	6,993.77	Standard	6,994.05
124: MH#25 (6,995.75	6,995.75	6,987.50	138.50	6,992.04	Standard	6,993.73
192: DP 7	7,027.00	7,027.00	(N/A)	2.00	7,025.20	Standard	7,025.23
193: DP G15a1	7,027.00	7,027.00	(N/A)	27.70	7,025.39	Standard	7,026.13
194: DP G16b	7,013.60	7,013.60	(N/A)	54.90	7,011.13	Standard	7,012.54
224: DP G16a	7,010.95	7,010.95	(N/A)	59.00	7,004.68	Absolute	7,004.68
226: MH-11	7,026.84	7,026.84	7,021.41	3.20	7,022.65	Absolute	7,022.65
229: MH-12	7,024.52	7,024.52	7,018.57	1.00	7,018.74	Absolute	7,018.74

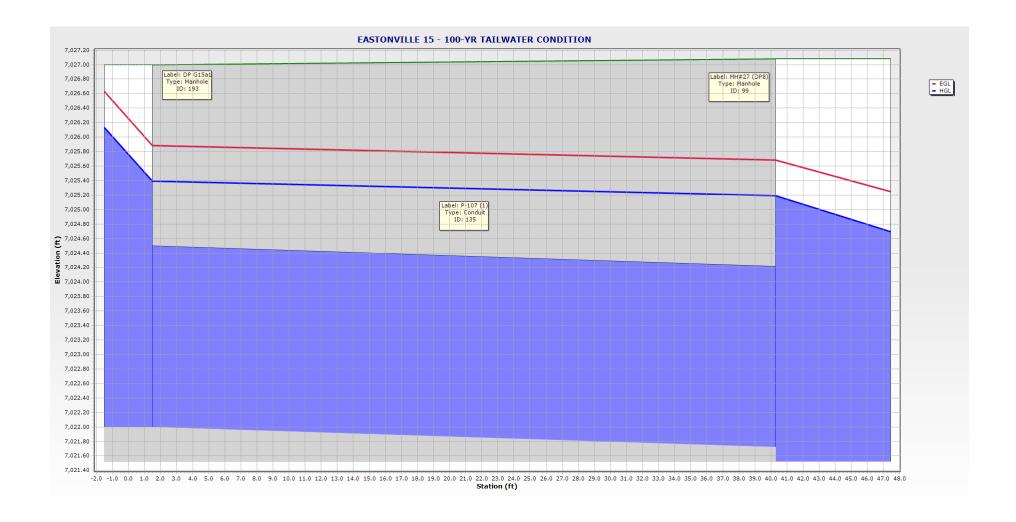

	Elevation Ele (Ground) (I (ft)		Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	
107: DP G15a	7,023.44	7,020.44	Free Outfall		7,022.50	40.20	
108: FES OUTF	7,025.00	7,021.00	User Defined Tailwater	7,022.61	7,022.61	3.20	
110: MH#39	7,018.27	7,016.77	Free Outfall		7,017.08	1.00	
125: OUTLET S	6,991.09	6,986.67	Free Outfall		6,990.17	138.50	

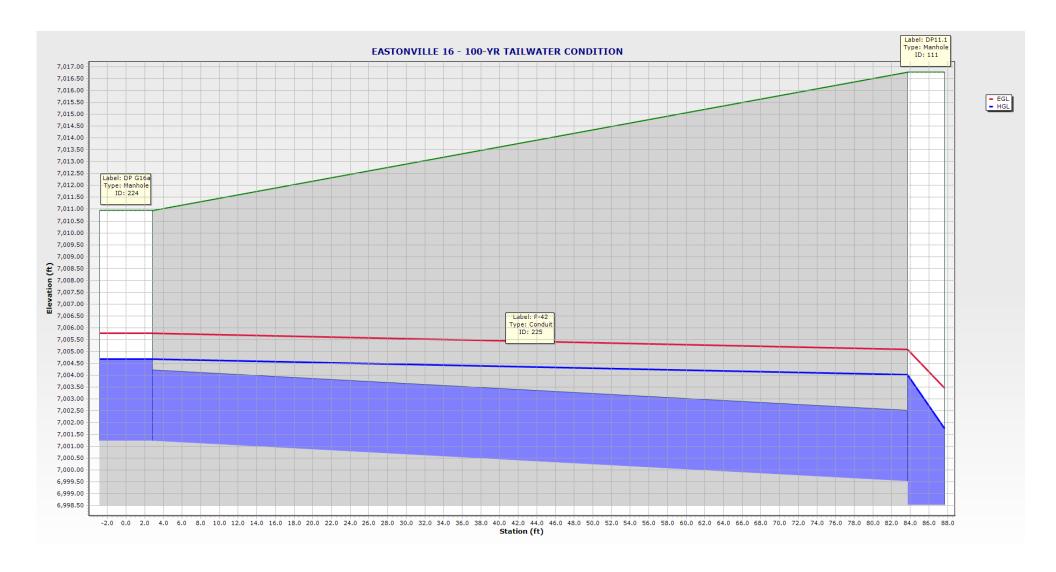

NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.




NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS



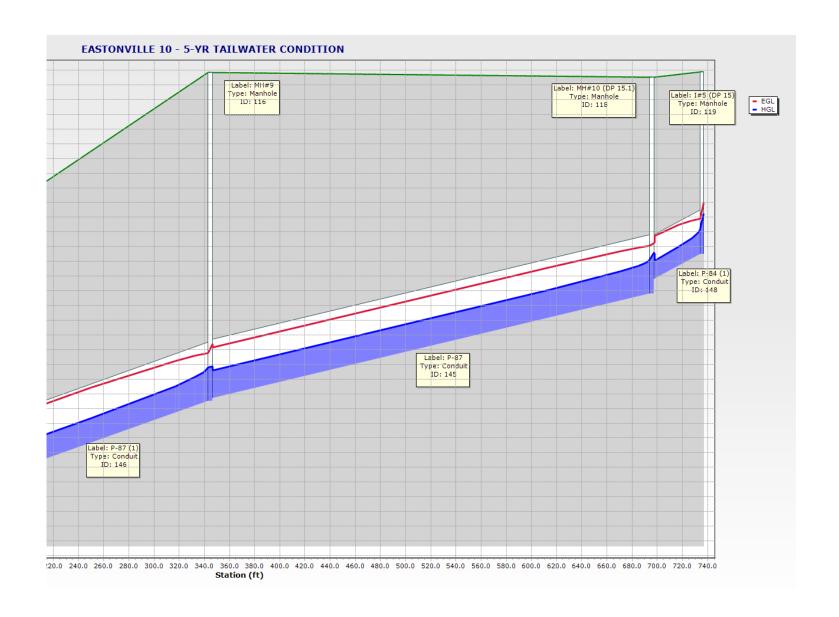



NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS

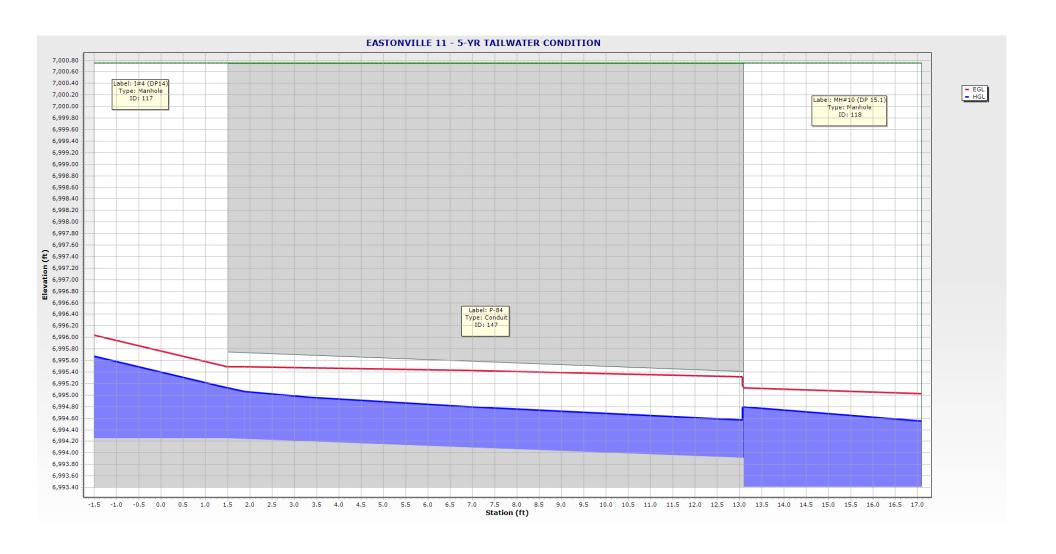
5 YEAR TAILWATER CONDITION: PIPE SUMMARY TABLE

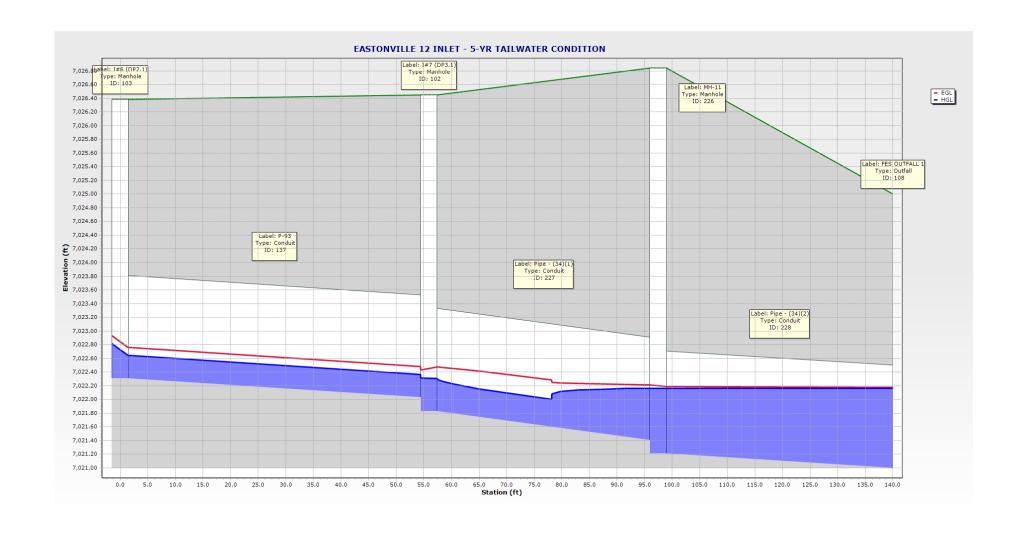
	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.74	DP G15a	7,020.44	60.7	0.005	36.0	0.013	9.00	5.12	46.89	19.2	7,021.69	7,021.33
132: P-103	I#9 (DP6)	7,022.17	MH#26 (DP6.1)	7,021.74	42.7	0.010	24.0	0.013	5.90	6.07	22.71	26.0	7,023.03	7,022.44
133: P-107 (2)	MH#27 (DP8)	7,021.52	MH#26 (DP6.1)	7,021.24	56.6	0.005	30.0	0.013	4.90	4.38	28.85	17.0	7,022.25	7,022.29
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,022.72	37.8	0.008	18.0	0.013	0.40	2.60	9.21	4.3	7,023.24	7,022.93
135: P-107 (1)	MH#27 (DP8)	7,021.72	DP G15a1	7,022.00	43.9	-0.006	30.0	0.013	4.60	4.71	32.77	14.0	7,022.71	7,022.49
136: P-95	I#8 (DP5)	7,023.14	I#9 (DP6)	7,022.67	47.5	0.010	18.0	0.013	2.40	4.80	10.45	23.0	7,023.73	7,023.16
137: P-93	I#6 (DP2.1)	7,022.31	I#7 (DP3.1)	7,022.03	55.9	0.005	18.0	0.013	0.80	2.75	7.43	10.8	7,022.64	7,022.36
140: P-44 (1)	MH#20	7,003.74	DP11.1	6,999.51	266.5	0.016	36.0	0.013	11.00	8.22	84.03	13.1	7,004.79	7,000.63
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	23.00	8.47	145.88	15.8	6,999.94	6,996.33
142: P-44	MH#19	7,006.50	MH#20	7,003.84	266.5	0.010	36.0	0.013	11.00	6.97	66.63	16.5	7,007.55	7,004.66
143: P-26	DP G16b	7,007.68	MH#19	7,006.80	81.5	0.011	36.0	0.013	11.00	7.17	69.32	15.9	7,008.73	7,008.06
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	23.00	10.72	203.15	11.3	6,996.57	6,990.26
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	10.20	7.04	22.76	44.8	6,994.55	6,990.80
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	10.20	8.15	27.70	36.8	6,990.90	6,988.20
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	5.20	8.00	15.77	33.0	6,995.13	6,994.80
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	5.00	7.70	15.18	32.9	6,995.60	6,994.80
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	23.00	6.77	106.64	21.6	6,990.24	6,989.44
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	23.00	6.36	97.84	23.5	6,989.42	6,989.55
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	36.0	0.013	3.90	7.49	113.85	3.4	6,990.94	6,989.90
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	27.00	6.73	99.34	27.2	6,989.04	6,988.30
225: P-42	DP G16a	7,001.22	DP11.1	6,999.51	85.7	0.020	36.0	0.013	12.00	9.14	94.22	12.7	7,002.32	7,000.63
227: Pipe - (34	I#7 (DP3.1)	7,021.83	MH-11	7,021.41	41.5	0.010	18.0	0.013	1.60	4.31	10.56	15.1	7,022.31	7,022.16
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	1.60	3.34	7.38	21.7	7,022.16	7,022.16
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	0.10	1.46	7.35	1.4	7,018.79	7,018.69
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	0.10	1.89	10.56	0.9	7,018.49	7,016.87

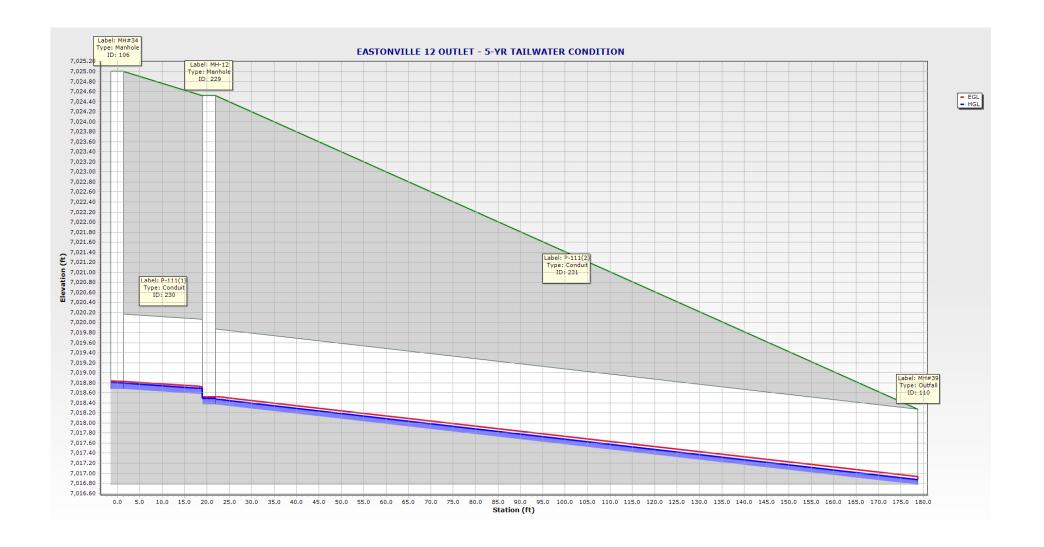
NOTE: EASTONVILLE 12 - INLET, EASTONVILLE 10, & EASTONVILLE 11 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

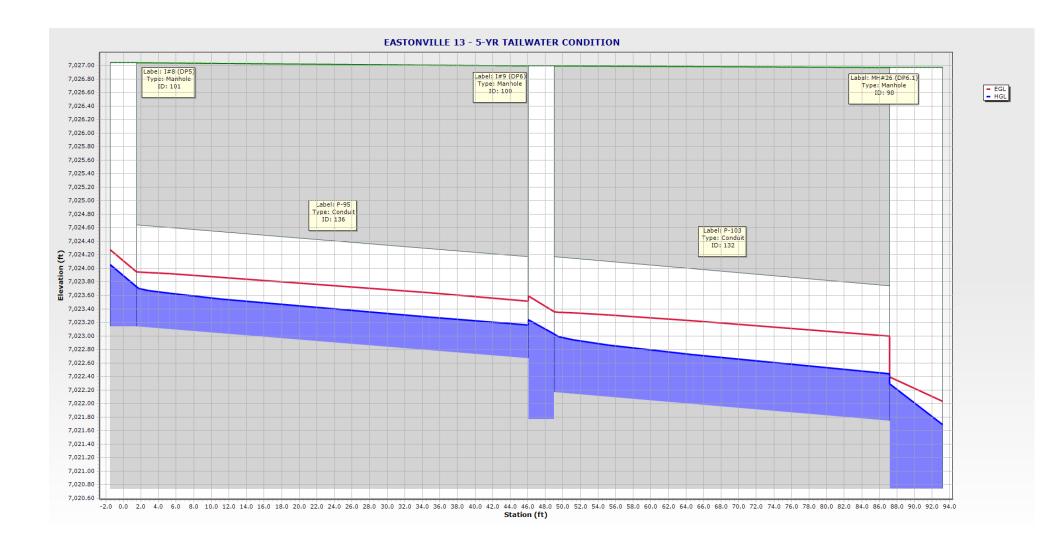

5 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

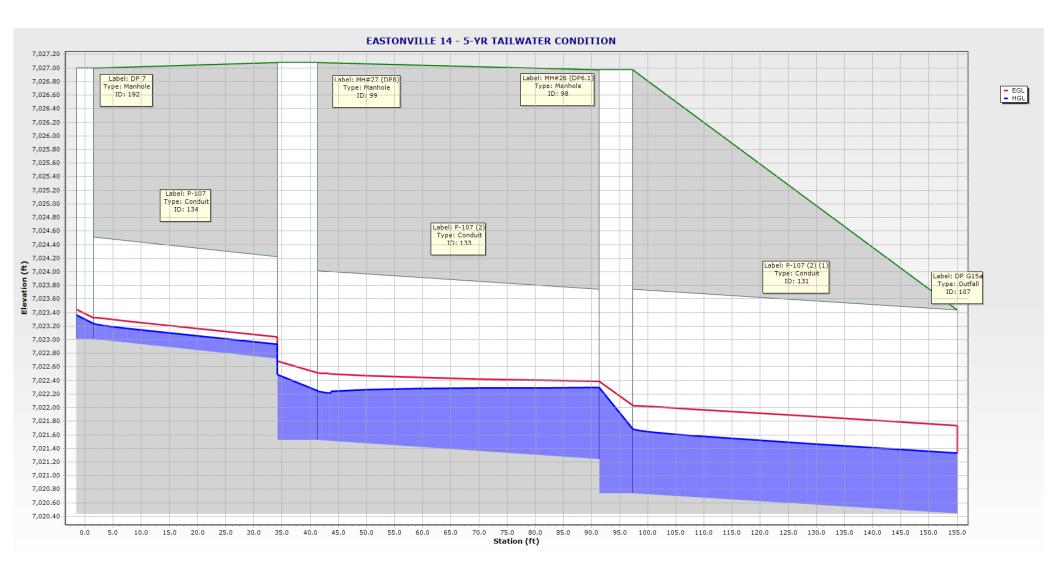
	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
98: MH#26 (D	7,026.97	7,026.97	7,021.74	9.00	7,021.69	Standard	7,022.29
99: MH#27 (D	7,027.08	7,027.08	7,022.72	4.90	7,022.25	Standard	7,022.49
100: I#9 (DP6)	7,026.99	7,026.99	7,022.67	5.90	7,023.03	Standard	7,023.24
101: I#8 (DP5)	7,027.04	7,027.04	(N/A)	2.40	7,023.73	Standard	7,024.05
102: I#7 (DP3.	7,026.45	7,026.45	7,022.03	1.60	7,022.31	Standard	7,022.31
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	0.80	7,022.64	Standard	7,022.82
106: MH#34	7,025.00	7,025.00	(N/A)	0.10	7,018.79	Standard	7,018.81
111: DP11.1	7,016.78	7,016.78	6,999.51	23.00	6,999.94	Standard	7,000.63
112: MH#20	7,015.43	7,015.43	7,003.84	11.00	7,004.79	Standard	7,004.81
113: MH#19	7,014.08	7,014.08	7,006.80	11.00	7,007.55	Standard	7,008.06
115: MH#22	7,005.85	7,005.85	6,995.26	23.00	6,996.57	Standard	6,996.60
116: MH#9	7,000.92	7,000.92	6,989.86	10.20	6,990.90	Standard	6,990.93
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	5.20	6,995.13	Standard	6,995.67
118: MH#10 (7,000.75	7,000.75	6,993.91	10.20	6,994.55	Standard	6,994.80
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	5.00	6,995.60	Standard	6,996.13
121: MH#23	6,997.20	6,997.20	6,988.82	23.00	6,990.24	Standard	6,990.26
122: MH#24	6,996.25	6,996.25	6,988.00	23.00	6,989.42	Standard	6,989.44
123: DP12	6,996.40	6,996.40	(N/A)	3.90	6,990.94	Standard	6,991.26
124: MH#25 (6,995.75	6,995.75	6,987.50	27.00	6,989.04	Standard	6,989.55
192: DP 7	7,027.00	7,027.00	(N/A)	0.40	7,023.24	Standard	7,023.36
193: DP G15a1	7,027.00	7,027.00	(N/A)	4.60	7,022.71	Standard	7,023.09
194: DP G16b	7,013.60	7,013.60	(N/A)	11.00	7,008.73	Standard	7,009.31
224: DP G16a	7,010.95	7,010.95	(N/A)	12.00	7,002.32	Absolute	7,002.32
226: MH-11	7,026.84	7,026.84	7,021.41	1.60	7,022.16	Absolute	7,022.16
229: MH-12	7,024.52	7,024.52	7,018.57	0.10	7,018.49	Absolute	7,018.49

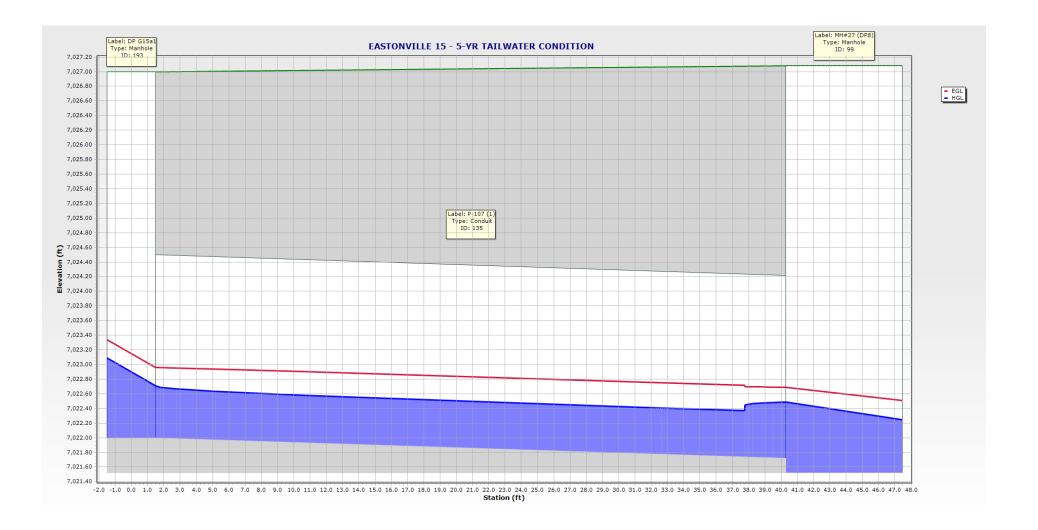

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	
107: DP G15a	7,023.44	7,020.44	Free Outfall		7,021.33	9.00	
108: FES OUTF	7,025.00	7,021.00	User Defined Tailwater	7,022.16	7,022.16	1.60	
110: MH#39	7,018.27	7,016.77	Free Outfall		7,016.87	0.10	
125: OUTLET S	6,991.09	6,986.67	User Defined Tailwater	6,988.30	6,988.30	27.00	

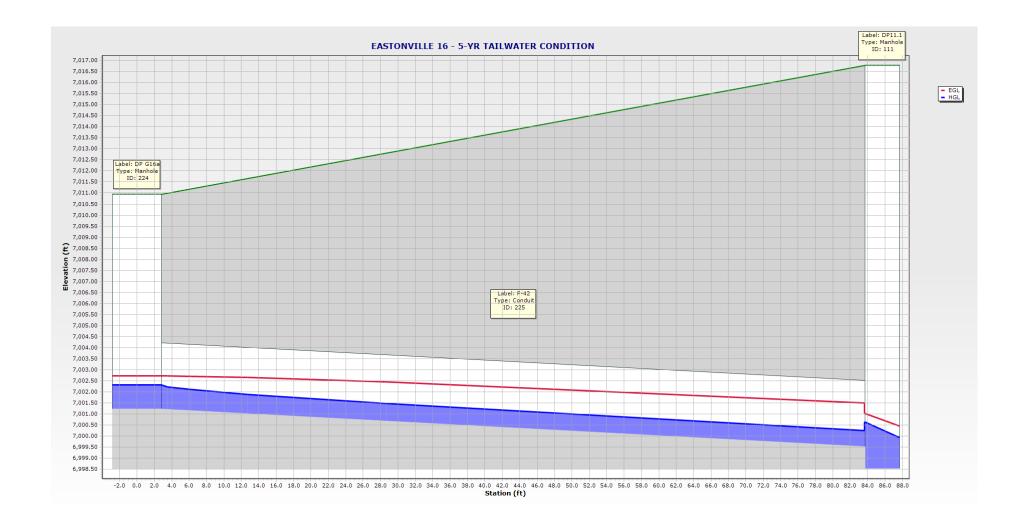

NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.

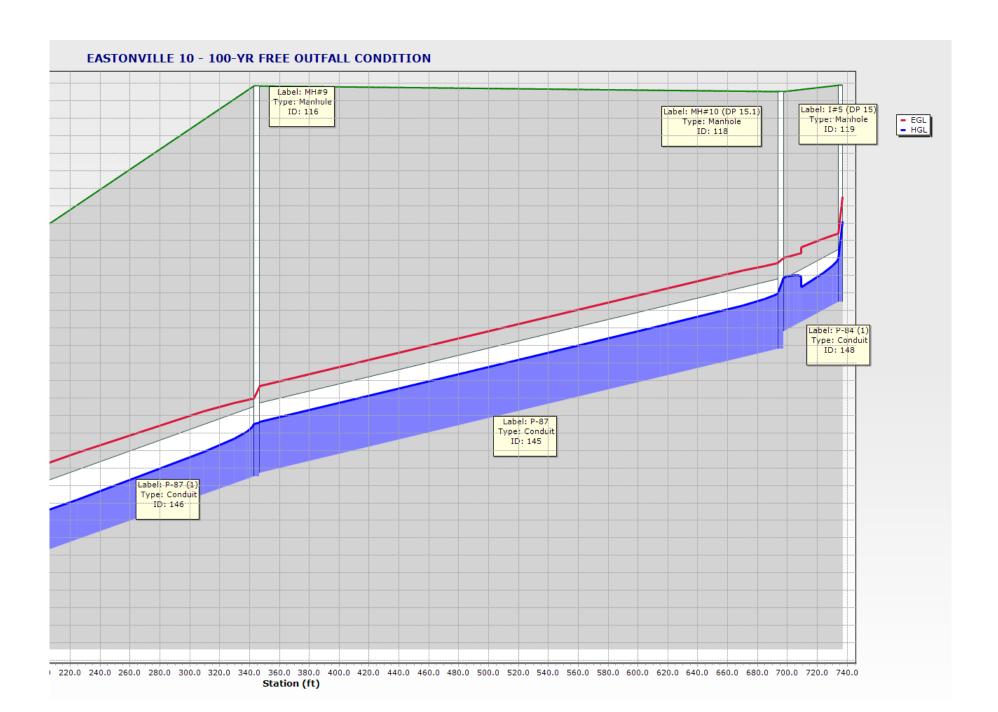


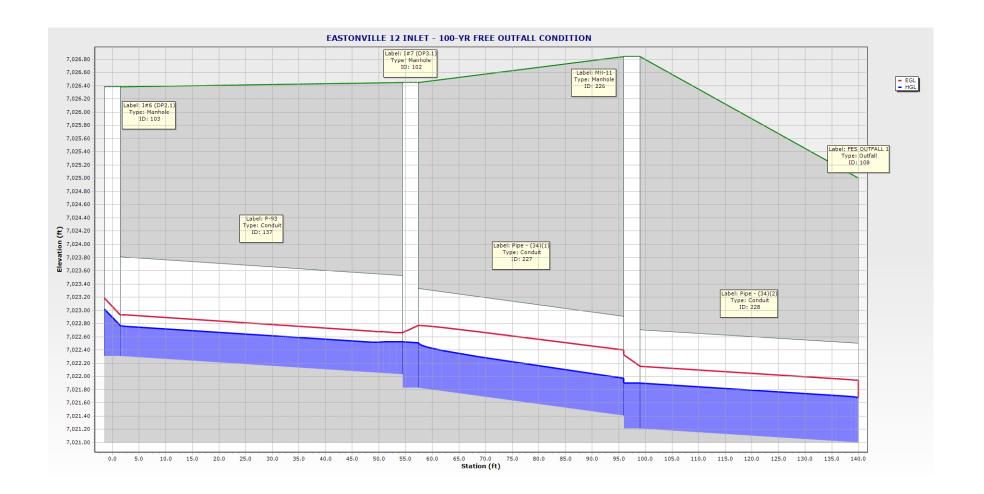

NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS






NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS

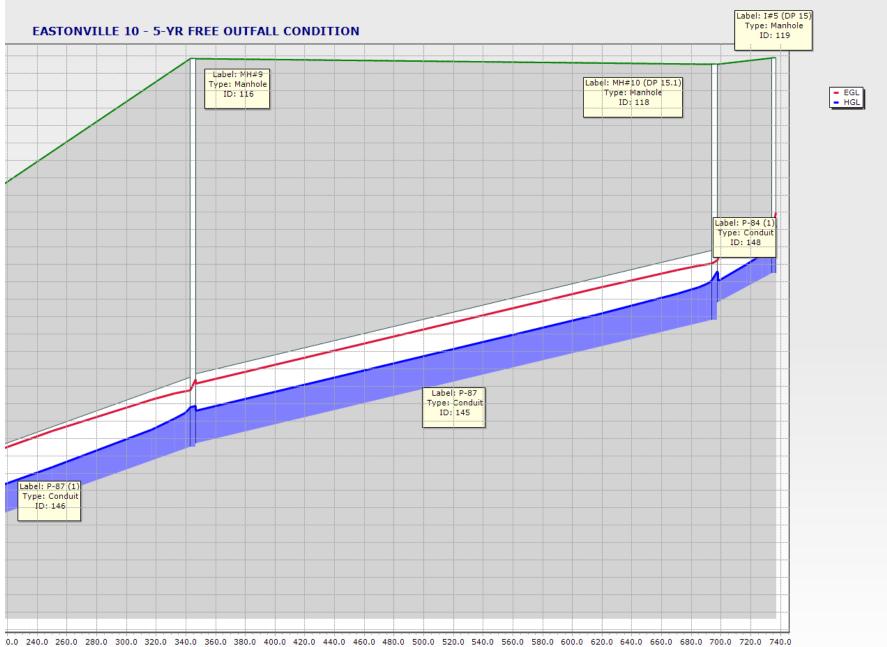

100 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE


	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.74	DP G15a	7,020.44	60.7	0.005	36.0	0.013	40.20	7.46	46.89	85.7	7,022.88	7,022.50
132: P-103	I#9 (DP6)	7,022.17	MH#26 (DP6.1)	7,021.74	42.7	0.010	24.0	0.013	16.00	5.09	22.71	70.4	7,024.62	7,024.41
133: P-107 (2)	MH#27 (DP8)	7,021.52	MH#26 (DP6.1)	7,021.24	56.6	0.005	30.0	0.013	29.20	5.95	28.85	101.2	7,024.70	7,024.41
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,022.72	37.8	0.008	18.0	0.013	2.00	1.13	9.21	21.7	7,025.20	7,025.19
135: P-107 (1)	MH#27 (DP8)	7,021.72	DP G15a1	7,022.00	43.9	-0.006	30.0	0.013	27.70	5.64	32.77	84.5	7,025.39	7,025.19
136: P-95	I#8 (DP5)	7,023.14	I#9 (DP6)	7,022.67	47.5	0.010	18.0	0.013	4.90	2.77	10.45	46.9	7,024.98	7,024.88
137: P-93	I#6 (DP2.1)	7,022.31	I#7 (DP3.1)	7,022.03	55.9	0.005	18.0	0.013	1.50	3.29	7.43	20.2	7,022.77	7,022.52
140: P-44 (1)	MH#20	7,003.74	DP11.1	6,999.51	266.5	0.016	36.0	0.013	54.90	12.67	84.03	65.3	7,006.15	7,004.01
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	113.90	12.84	145.88	78.1	7,001.75	6,997.92
142: P-44	MH#19	7,006.50	MH#20	7,003.84	266.5	0.010	36.0	0.013	54.90	10.53	66.63	82.4	7,008.91	7,005.91
143: P-26	DP G16b	7,007.68	MH#19	7,006.80	81.5	0.011	36.0	0.013	54.90	7.77	69.32	79.2	7,011.13	7,010.58
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	113.90	16.63	203.15	56.1	6,998.38	6,995.48
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	19.90	8.17	22.76	87.5	6,995.01	6,991.31
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	17.20	9.29	27.70	62.1	6,991.26	6,989.07
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	9.40	9.31	15.77	59.6	6,995.44	6,995.45
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	10.60	9.29	15.18	69.8	6,995.99	6,995.45
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	113.90	9.06	106.64	106.8	6,995.41	6,994.48
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	113.90	9.06	97.84	116.4	6,994.41	6,993.73
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	36.0	0.013	24.60	3.48	113.85	21.6	6,993.77	6,993.73
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	138.50	11.02	99.34	139.4	6,992.04	6,990.17
225: P-42	DP G16a	7,001.22	DP11.1	6,999.51	85.7	0.020	36.0	0.013	59.00	8.35	94.22	62.6	7,004.68	7,004.01
227: Pipe - (34	I#7 (DP3.1)	7,021.83	MH-11	7,021.41	41.5	0.010	18.0	0.013	3.20	5.24	10.56	30.3	7,022.51	7,021.98
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	3.20	4.03	7.38	43.3	7,021.90	7,021.68
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	1.00	2.91	7.35	13.6	7,019.04	7,018.94
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	1.00	3.76	10.56	9.5	7,018.74	7,017.08

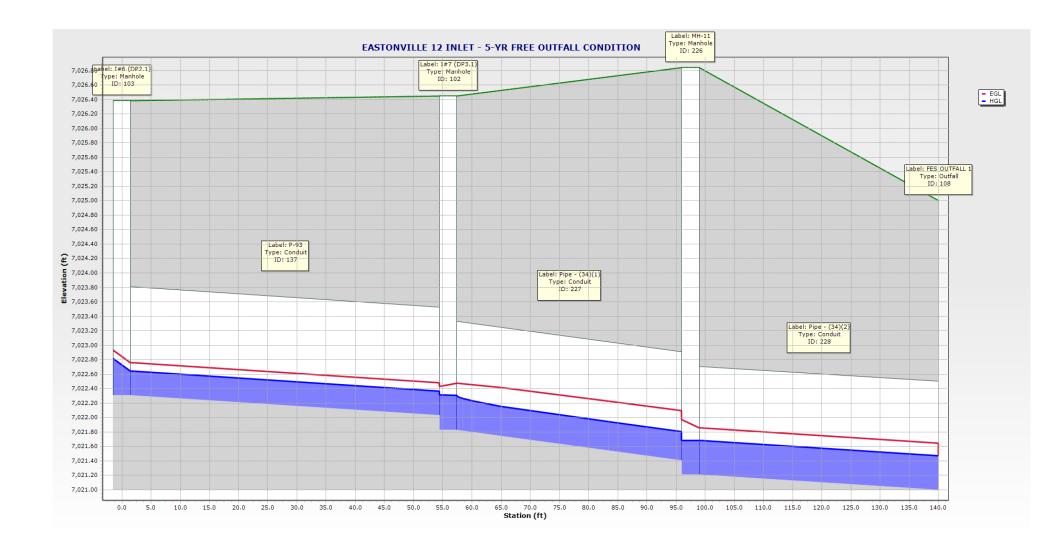
100 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
98: MH#26 (D	7,026.97	7,026.97	7,021.74	40.20	7,022.88	Standard	7,024.41
99: MH#27 (D	7,027.08	7,027.08	7,022.72	29.20	7,024.70	Standard	7,025.19
100: I#9 (DP6)	7,026.99	7,026.99	7,022.67	16.00	7,024.62	Standard	7,024.88
101: I#8 (DP5)	7,027.04	7,027.04	(N/A)	4.90	7,024.98	Standard	7,025.16
102: I#7 (DP3.	7,026.45	7,026.45	7,022.03	3.20	7,022.51	Standard	7,022.52
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	1.50	7,022.77	Standard	7,023.02
106: MH#34	7,025.00	7,025.00	(N/A)	1.00	7,019.04	Standard	7,019.11
111: DP11.1	7,016.78	7,016.78	6,999.51	113.90	7,001.75	Standard	7,004.01
112: MH#20	7,015.43	7,015.43	7,003.84	54.90	7,006.15	Standard	7,006.21
113: MH#19	7,014.08	7,014.08	7,006.80	54.90	7,008.91	Standard	7,010.58
115: MH#22	7,005.85	7,005.85	6,995.26	113.90	6,998.38	Standard	6,998.46
116: MH#9	7,000.92	7,000.92	6,989.86	17.20	6,991.26	Standard	6,991.29
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	9.40	6,995.44	Standard	6,996.35
118: MH#10 (7,000.75	7,000.75	6,993.91	19.90	6,995.01	Standard	6,995.45
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	10.60	6,995.99	Standard	6,997.05
121: MH#23	6,997.20	6,997.20	6,988.82	113.90	6,995.41	Standard	6,995.48
122: MH#24	6,996.25	6,996.25	6,988.00	113.90	6,994.41	Standard	6,994.48
123: DP12	6,996.40	6,996.40	(N/A)	24.60	6,993.77	Standard	6,994.05
124: MH#25 (6,995.75	6,995.75	6,987.50	138.50	6,992.04	Standard	6,993.73
192: DP 7	7,027.00	7,027.00	(N/A)	2.00	7,025.20	Standard	7,025.23
193: DP G15a1	7,027.00	7,027.00	(N/A)	27.70	7,025.39	Standard	7,026.13
194: DP G16b	7,013.60	7,013.60	(N/A)	54.90	7,011.13	Standard	7,012.54
224: DP G16a	7,010.95	7,010.95	(N/A)	59.00	7,004.68	Absolute	7,004.68
226: MH-11	7,026.84	7,026.84	7,021.41	3.20	7,021.90	Absolute	7,021.90
229: MH-12	7,024.52	7,024.52	7,018.57	1.00	7,018.74	Absolute	7,018.74

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
107: DP G15a	7,023.44	7,020.44	Free Outfall		7,022.50	40.20
108: FES OUTF	7,025.00	7,021.00	Free Outfall		7,021.68	3.20
110: MH#39	7,018.27	7,016.77	Free Outfall		7,017.08	1.00
125: OUTLET S	6,991.09	6,986.67	Free Outfall		6,990.17	138.50


5 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE

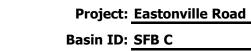
	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.74	DP G15a	7,020.44	60.7	0.005	36.0	0.013	9.00	5.12	46.89	19.2	7,021.69	7,021.33
132: P-103	I#9 (DP6)	7,022.17	MH#26 (DP6.1)	7,021.74	42.7	0.010	24.0	0.013	5.90	6.07	22.71	26.0	7,023.03	7,022.44
133: P-107 (2)	MH#27 (DP8)	7,021.52	MH#26 (DP6.1)	7,021.24	56.6	0.005	30.0	0.013	4.90	4.38	28.85	17.0	7,022.25	7,022.29
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,022.72	37.8	0.008	18.0	0.013	0.40	2.60	9.21	4.3	7,023.24	7,022.93
135: P-107 (1)	MH#27 (DP8)	7,021.72	DP G15a1	7,022.00	43.9	-0.006	30.0	0.013	4.60	4.71	32.77	14.0	7,022.71	7,022.49
136: P-95	I#8 (DP5)	7,023.14	I#9 (DP6)	7,022.67	47.5	0.010	18.0	0.013	2.40	4.80	10.45	23.0	7,023.73	7,023.16
137: P-93	I#6 (DP2.1)	7,022.31	I#7 (DP3.1)	7,022.03	55.9	0.005	18.0	0.013	0.80	2.75	7.43	10.8	7,022.64	7,022.36
140: P-44 (1)	MH#20	7,003.74	DP11.1	6,999.51	266.5	0.016	36.0	0.013	11.00	8.22	84.03	13.1	7,004.79	7,000.63
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	23.00	8.47	145.88	15.8	6,999.94	6,996.33
142: P-44	MH#19	7,006.50	MH#20	7,003.84	266.5	0.010	36.0	0.013	11.00	6.97	66.63	16.5	7,007.55	7,004.66
143: P-26	DP G16b	7,007.68	MH#19	7,006.80	81.5	0.011	36.0	0.013	11.00	7.17	69.32	15.9	7,008.73	7,008.06
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	23.00	10.72	203.15	11.3	6,996.57	6,990.26
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	10.20	7.04	22.76	44.8	6,994.55	6,990.80
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	10.20	8.15	27.70	36.8	6,990.90	6,988.20
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	5.20	8.00	15.77	33.0	6,995.13	6,994.80
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	5.00	7.70	15.18	32.9	6,995.60	6,994.80
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	23.00	6.77	106.64	21.6	6,990.24	6,989.44
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	23.00	6.36	97.84	23.5	6,989.42	6,989.55
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	36.0	0.013	3.90	7.49	113.85	3.4	6,990.94	6,989.90
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	27.00	6.73	99.34	27.2	6,989.04	6,988.30
225: P-42	DP G16a	7,001.22	DP11.1	6,999.51	85.7	0.020	36.0	0.013	12.00	9.14	94.22	12.7	7,002.32	7,000.63
227: Pipe - (34	I#7 (DP3.1)	7,021.83	MH-11	7,021.41	41.5	0.010	18.0	0.013	1.60	4.31	10.56	15.1	7,022.31	7,021.80
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	1.60	3.34	7.38	21.7	7,021.69	7,021.47
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	0.10	1.46	7.35	1.4	7,018.79	7,018.69
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	0.10	1.89	10.56	0.9	7,018.49	7,016.87

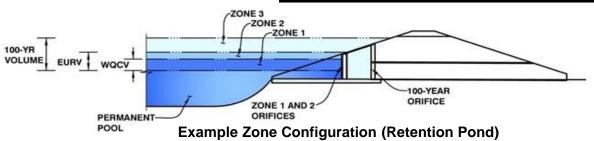

5 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
98: MH#26 (D	7,026.97	7,026.97	7,021.74	9.00	7,021.69	Standard	7,022.29
99: MH#27 (D	7,027.08	7,027.08	7,022.72	4.90	7,022.25	Standard	7,022.49
100: I#9 (DP6)	7,026.99	7,026.99	7,022.67	5.90	7,023.03	Standard	7,023.24
101: I#8 (DP5)	7,027.04	7,027.04	(N/A)	2.40	7,023.73	Standard	7,024.05
102: I#7 (DP3.	7,026.45	7,026.45	7,022.03	1.60	7,022.31	Standard	7,022.31
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	0.80	7,022.64	Standard	7,022.82
106: MH#34	7,025.00	7,025.00	(N/A)	0.10	7,018.79	Standard	7,018.81
111: DP11.1	7,016.78	7,016.78	6,999.51	23.00	6,999.94	Standard	7,000.63
112: MH#20	7,015.43	7,015.43	7,003.84	11.00	7,004.79	Standard	7,004.81
113: MH#19	7,014.08	7,014.08	7,006.80	11.00	7,007.55	Standard	7,008.06
115: MH#22	7,005.85	7,005.85	6,995.26	23.00	6,996.57	Standard	6,996.60
116: MH#9	7,000.92	7,000.92	6,989.86	10.20	6,990.90	Standard	6,990.93
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	5.20	6,995.13	Standard	6,995.67
118: MH#10 (7,000.75	7,000.75	6,993.91	10.20	6,994.55	Standard	6,994.80
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	5.00	6,995.60	Standard	6,996.13
121: MH#23	6,997.20	6,997.20	6,988.82	23.00	6,990.24	Standard	6,990.26
122: MH#24	6,996.25	6,996.25	6,988.00	23.00	6,989.42	Standard	6,989.44
123: DP12	6,996.40	6,996.40	(N/A)	3.90	6,990.94	Standard	6,991.26
124: MH#25 (6,995.75	6,995.75	6,987.50	27.00	6,989.04	Standard	6,989.55
192: DP 7	7,027.00	7,027.00	(N/A)	0.40	7,023.24	Standard	7,023.36
193: DP G15a1	7,027.00	7,027.00	(N/A)	4.60	7,022.71	Standard	7,023.09
194: DP G16b	7,013.60	7,013.60	(N/A)	11.00	7,008.73	Standard	7,009.31
224: DP G16a	7,010.95	7,010.95	(N/A)	12.00	7,002.32	Absolute	7,002.32
226: MH-11	7,026.84	7,026.84	7,021.41	1.60	7,021.69	Absolute	7,021.69
229: MH-12	7,024.52	7,024.52	7,018.57	0.10	7,018.49	Absolute	7,018.49

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
107: DP G15a	7,023.44	7,020.44	Free Outfall		7,021.33	9.00
108: FES OUTF	7,025.00	7,021.00	Free Outfall		7,021.47	1.60
110: MH#39	7,018.27	7,016.77	Free Outfall		7,016.87	0.10
125: OUTLET S	6,991.09	6,986.67	User Defined Tailwater	6,988.30	6,988.30	27.00

0.0 240.0 260.0 280.0 300.0 320.0 340.0 360.0 380.0 400.0 420.0 440.0 460.0 480.0 500.0 520.0 540.0 560.0 580.0 600.0 620.0 640.0 660.0 680.0 700.0 720.0 740.0 Station (ft)


APPENDIX D - WATER QUALITY & DETENTION


	Design Procedure Forn	n. Sand Eiltar (SE)					
	UD-BMP (Version 3.07	. ,					
Designer:	SPC	, March 2016) Sheet 1 of 2					
Company:	HR Green						
Date:	October 16, 2024						
Project:	Eastonville Road - Segment 2 Improvements SFB C	Eastonville Road - Segment 2 Improvements SFB C					
Location:	El Paso County, CO						
1. Basin Stor	rage Volume						
	e Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of sand filter)	I _a = 54.0 %					
•	rry Area's Imperviousness Ratio (i = I _a /100)	i = 0.540					
	Quality Capture Volume (WQCV) Based on 12-hour Drain Time V= $0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * i)$	WQCV = 0.17 watershed inches					
D) Contrib	outing Watershed Area (including sand filter area)	Area = 27,443 sq ft					
	Quality Capture Volume (WQCV) Design Volume , = WQCV / 12 * Area	V _{WQCV} = cu ft					
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = in					
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} =cu ft					
	nput of Water Quality Capture Volume (WQCV) Design Volume a different WQCV Design Volume is desired)	V _{WQCV USER} = 409 cu ft					
2. Basin Geo	metry						
A) WQCV	Depth	$D_{WQCV} = \boxed{0.7} ft$					
	ilter Side Slopes (Horizontal distance per unit vertical, latter preferred). Use "0" if sand filter has vertical walls.	Z = 3.00 ft / ft DIFFICULT TO MAINTAIN, INCREASE WHERE POSSIBLE					
C) Minimu	m Filter Area (Flat Surface Area)	$A_{Min} = $					
D) Actual I	Filter Area	$A_{Actual} = $					
E) Volume	Provided	$V_T = 6263$ cu ft					
3. Filter Mate	erial	Choose One ● 18" CDOT Class B or C Filter Material O Other (Explain):					
4. Underdrair	n System	Choose One YES					
·	derdrains provided?	O NO					
B) Underd	rain system orifice diameter for 12 hour drain time	Refer to MHFD Detention Calcs					
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	Note: to with D Determion Calos					
	ii) Volume to Drain in 12 Hours						
	iii) Orifice Diameter, 3/8" Minimum						

	Design Procedure Forn	n: Sand Filter (SF)					
Designer:	SPC	Sheet 2 of 2					
Company:	HR Green						
Date:	October 16, 2024						
Project:	Eastonville Road - Segment 2 Improvements SFB C						
Location:	El Paso County, CO						
A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One ○ YES NO					
	tlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	Engery dissapation at inlet points provided via riprap, and means of conveying flows in excess of the WQCV through the outlet is via the modified type 'C' inlet outlet structure grate, and a restricted outlet pipe.					
Notes:							

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Watershed Information

CISHCA IIIIOIIIIAGOII				
Selected BMP Type =	SF			
Watershed Area =	0.63	acres		
Watershed Length =	171	ft		
Watershed Length to Centroid =	85	ft		
Watershed Slope =	0.018	ft/ft		
Watershed Imperviousness =	54.00%	percent		
Percentage Hydrologic Soil Group A =	0.0%	percent		
Percentage Hydrologic Soil Group B =	100.0%	percent		
Percentage Hydrologic Soil Groups C/D =	0.0%	percent		
Target WQCV Drain Time =	12.0	hours		
Location for 1-hr Rainfall Depths = User Input				

After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using

the embedded Colorado Urban Hydrograph Procedure. Water Quality Capture Volume (WQCV) = 0.009 acre-feet Excess Urban Runoff Volume (EURV) = 0.037 acre-feet 2-yr Runoff Volume (P1 = 0.93 in.) = 0.023 acre-feet 5-yr Runoff Volume (P1 = 1.21 in.) = 0.032 acre-feet 10-yr Runoff Volume (P1 = 1.46 in.) = 0.043 acre-feet 25-yr Runoff Volume (P1 = 1.84 in.) = 0.063 acre-feet 50-yr Runoff Volume (P1 = 2.16 in.) = 0.079 acre-feet 100-yr Runoff Volume (P1 = 2.49 in.) = 0.097 acre-feet 500-yr Runoff Volume (P1 = 3.37 in.) = 0.142 acre-feet Approximate 2-yr Detention Volume = 0.022 acre-feet Approximate 5-yr Detention Volume = 0.031 acre-feet Approximate 10-yr Detention Volume : 0.041 acre-feet Approximate 25-yr Detention Volume = acre-feet 0.050 Approximate 50-yr Detention Volume = 0.054 acre-feet Approximate 100-yr Detention Volume = 0.062 acre-feet

Define Zones and Basin Geometry

<u> </u>	ie zones ana basin econica y		
	Zone 1 Volume (WQCV) =	0.009	acre-feet
	Zone 2 Volume (EURV - Zone 1) =	0.027	acre-feet
Z	Zone 3 Volume (100-year - Zones 1 & 2) =	0.025	acre-feet
	Total Detention Basin Volume =	0.062	acre-feet
	Initial Surcharge Volume (ISV) =	N/A	ft ³
	Initial Surcharge Depth (ISD) =	N/A	ft
	Total Available Detention Depth $(H_{total}) =$	user	ft
	Depth of Trickle Channel $(H_{TC}) =$	N/A	ft
	Slope of Trickle Channel (S_{TC}) =	N/A	ft/ft
	Slopes of Main Basin Sides $(S_{main}) =$	user	H:V
	Basin Length-to-Width Ratio $(R_{L/W}) =$	user	

-		
Initial Surcharge Area $(A_{ISV}) =$	user	ft²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor $(W_{FLOOR}) =$	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) = $	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) = $	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) = $	user	ft ³
Calculated Total Basin Volume $(V_{total}) = $	user	acre-feet
_	•	•

St

Optional User Overrides

acre-feet

acre-feet

inches

inches

inches

inches

inches

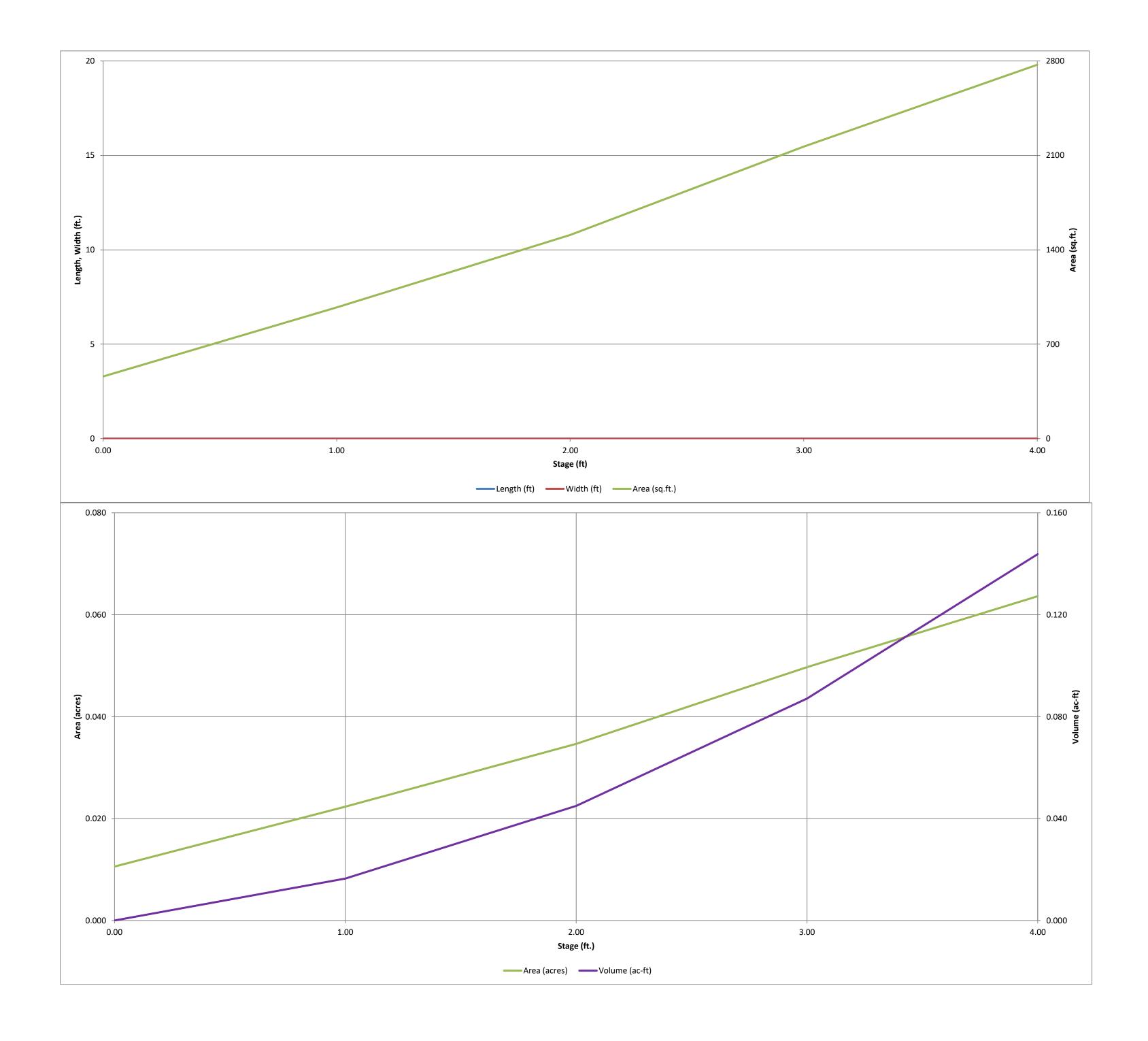
inches

inches

0.009

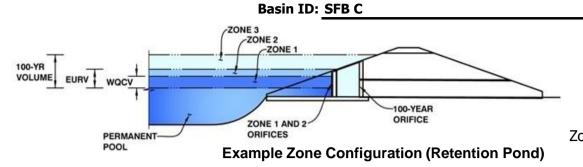
0.93

1.21


1.46

1.84

2.49


3.37

	Depth Increment =		ft							
Г	Deput increment =		Optional				Optional			
	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
7021	Media Surface		0.00				461	0.011		
	7022		1.00				973	0.022	717	0.016
	7023		2.00				1,509	0.035	1,958	0.045
	7024		3.00				2,165	0.050	3,795	0.087
	7025		4.00					0.064		0.144
	7025		4.00				2,772	0.004	6,263	0.144
_										
des										
et										
et										
_										
_										
					-					
-										
-										
-										
-										
								_		
-										
İ										
										10/28/2024.

MHFD-Detention, Version 4.05 (January 2022)

Project: Eastonville Road

	Estimated	Estimated	
	Stage (ft)	Volume (ac-ft)	Outlet Type
Zone 1 (WQCV)	0.66	0.009	Filtration Media
Zone 2 (EURV)	1.75	0.027	Filtration Media
one 3 (100-year)	2.44	0.025	Weir&Pipe (Restrict)
•	Total (all zones)	0.062	

<u>User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)</u>

1.98 Underdrain Orifice Invert Depth = ft (distance below the filtration media surface) Underdrain Orifice Diameter = 0.48 inches

Calculated Parameters for Underdrain ft² 0.0 Underdrain Orifice Area = Underdrain Orifice Centroid = 0.02 feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

Centroid of Lowest Orifice = N/A ft (relative to basin bottom at Stage = 0 ft) N/A ft (relative to basin bottom at Stage = 0 ft) Depth at top of Zone using Orifice Plate = N/A Orifice Plate: Orifice Vertical Spacing = inches Orifice Plate: Orifice Area per Row = N/A sq. inches

Calculated Parameters for Plate WQ Orifice Area per Row = N/A Elliptical Half-Width = N/A feet N/A Elliptical Slot Centroid = feet Elliptical Slot Area = N/A

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

Row 5 (optional) Row 6 (optional) Row 8 (optional) Row 1 (optional) Row 2 (optional) Row 3 (optional) Row 4 (optional) Row 7 (optional) Stage of Orifice Centroid (ft) N/A N/A N/A N/A N/A N/A N/A N/A Orifice Area (sq. inches) N/A N/A N/A N/A N/A N/A N/A N/A

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A

User Input: Vertical Orifice (Circular or Rectangular)

Not Selected Not Selected Invert of Vertical Orifice = N/A N/A ft (relative to basin bottom at Stage = 0 ft) N/A N/A Depth at top of Zone using Vertical Orifice = ft (relative to basin bottom at Stage = 0 ft) Vertical Orifice Diameter = N/A N/A inches

Calculated Parameters for Vertical Orifice Not Selected Not Selected Vertical Orifice Area = N/A N/A N/A Vertical Orifice Centroid = N/A feet

feet

feet

 ft^2

feet

radians

<u>User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe)</u>

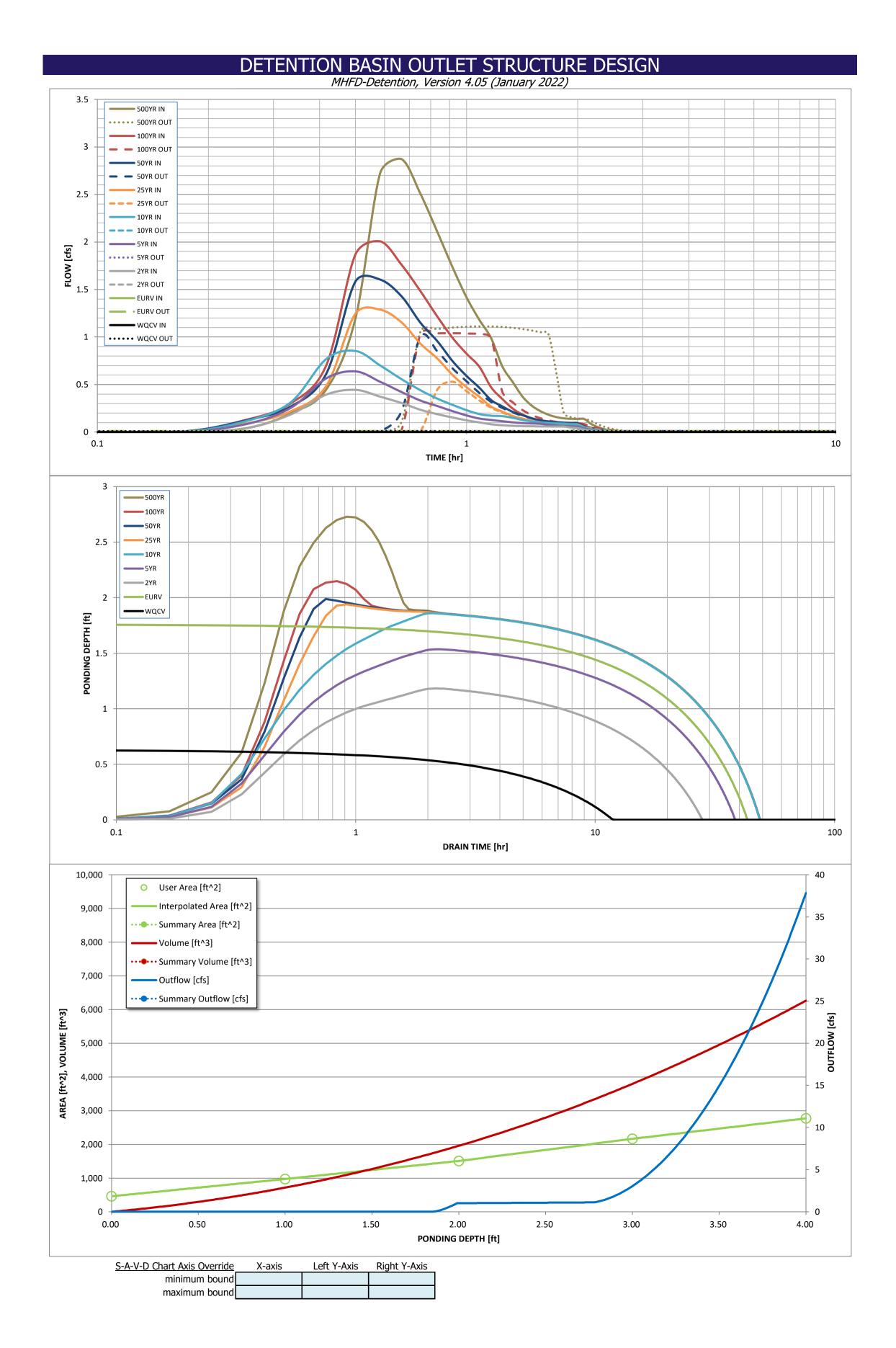
Zone 3 Weir Not Selected Overflow Weir Front Edge Height, Ho = 1.85 N/A Overflow Weir Front Edge Length = 3.00 N/A feet Overflow Weir Grate Slope = 0.00 N/A H:V Horiz. Length of Weir Sides = 3.00 N/A feet N/A Overflow Grate Type = Type C Grate 50% N/A Debris Clogging % =

Calculated Parameters for Overflow Weir Not Selected Zone 3 Weir ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t = 1.85 N/A Overflow Weir Slope Length = 3.00 N/A Grate Open Area / 100-yr Orifice Area = 58.36 N/A Overflow Grate Open Area w/o Debris = 6.26 N/A 3.13 Overflow Grate Open Area w/ Debris = N/A

<u>User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)</u>

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate Zone 3 Restrictor Not Selected Zone 3 Restrictor Not Selected 2.00 N/A 0.11 N/A Depth to Invert of Outlet Pipe = ft (distance below basin bottom at Stage = 0 ft) Outlet Orifice Area = 18.00 Outlet Orifice Centroid = Outlet Pipe Diameter = N/A 0.10 N/A Restrictor Plate Height Above Pipe Invert = 2.00 Half-Central Angle of Restrictor Plate on Pipe = 0.68 N/A inches

User Input: Emergency Spillway (Rectangular or Trapezoidal)


Spillway Invert Stage= 2.77 ft (relative to basin bottom at Stage = 0 ft) 5.00 Spillway Crest Length = feet Spillway End Slopes = 4.00 H:V Freeboard above Max Water Surface = 1.00 feet

Calculated Parameters for Spillway Spillway Design Flow Depth= 0.23 feet Stage at Top of Freeboard = 4.00 feet Basin Area at Top of Freeboard = 0.06 acres 0.14 Basin Volume at Top of Freeboard = acre-ft

Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF).

Design Storm Return Period = WQCV **EURV** 2 Year 5 Year 10 Year 25 Year 50 Year 100 Year 500 Year One-Hour Rainfall Depth (in) = N/A N/A 0.93 1.21 1.46 1.84 2.16 2.49 3.37 0.037 CUHP Runoff Volume (acre-ft) = 0.009 0.023 0.032 0.043 0.063 0.079 0.097 0.142 0.023 0.032 0.043 0.079 0.142 Inflow Hydrograph Volume (acre-ft) = N/A N/A 0.063 0.097 N/A N/A 0.0 0.1 0.2 0.5 CUHP Predevelopment Peak Q (cfs) = 8.0 1.0 1.6 OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.01 0.32 0.87 2.49 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.12 1.20 1.59 N/A N/A 0.6 0.9 2.0 2.9 0.4 1.3 1.6 Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = 0.0 0.0 0.0 0.0 0.0 0.5 1.0 1.0 1.1 N/A N/A N/A 0.1 0.2 0.7 Ratio Peak Outflow to Predevelopment Q = 1.0 1.3 1.0 Filtration Media Filtration Media Filtration Media Filtration Media Overflow Weir 1 Outlet Plate 1 Outlet Plate : Structure Controlling Flow = Overflow Weir 1 Outlet Plate 1 N/A N/A N/A N/A 0.0 0.2 0.2 0.2 Max Velocity through Grate 1 (fps) = 0.1 N/A N/A N/A N/A N/A N/A N/A N/A N/A Max Velocity through Grate 2 (fps) = 12 42 27 37 47 Time to Drain 97% of Inflow Volume (hours) = 46 46 45 43 12 43 28 38 48 47 Time to Drain 99% of Inflow Volume (hours) = 48 48 47 0.64 1.77 1.18 1.54 1.86 1.94 1.99 2.15 2.73 Maximum Ponding Depth (ft) = 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.04 0.05 Area at Maximum Ponding Depth (acres) : Maximum Volume Stored (acre-ft) = 0.009 0.037 0.021 0.030 0.040 0.043 0.044 0.050 0.074

Pond_C.xlsm, Outlet Structure 10/28/2024, 12:36 PM

Pond_C.xlsm, Outlet Structure

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

The beave		SOURCE	CUHP								
Side with Colored Color	Time Interval										
0.015.00											
Delicary	5.00 min										
0.15.000 0.000 0.000 0.001 0.004 0.004 0.008 0.011 0.002 0.012 0.012 0.019 0.020 0.000 0.000 0.000 0.004 0.006 0.077 0.488 0.061 0.070 0.000 0.000 0.000 0.000 0.004 0.004 0.008 1.235 1.158 1.158 1.275 2.275 0.005 0.000 0.000 0.000 0.004 0.004 0.005 0.005 0.000 0.000 0.000 0.001 0.0											
0.250,000											
0.30 00											
0.35500 0.000 0.000 0.00 0.37 0.33 0.70 1.39 1.60 2.01 2.37		0:25:00	0.00	0.00	0.39	0.56	0.77	0.48	0.61	0.70	1.19
0.40			0.00	0.00	0.44	0.64	0.85	1.25	1.58	1.87	2.72
0.95 00 0.00 0.00 0.00 0.00 0.00 0.00 0.											
0.5500 0 0.00 0.00 0.19 0.27 0.36 0.77 0.96 1.22 1.73 0.5500 0.00 0.00 0.15 0.15 0.22 0.39 0.50 0.575 0.92 1.73 1.42 1.0000 0.00 0.00 0.00 0.12 0.18 0.022 0.47 0.59 0.88 1.14 1.42 1.0000 0.00 0.00 0.00 0.10 0.14 0.14 0.											
0.55500 0.00 0.00 0.15 0.22 0.29 0.49 0.75 0.39 0.39 1.142 1.181 1.05500 0.00 0.00 0.102 0.14 0.19 0.37 0.47 0.89 0.39 1.181 1.15100 0.00 0.00 0.00 0.00 0.13 0.17 0.27 0.47 0.48 0.49 0.39 1.151 1.15100 0.00											
1:15:00											
111000		1:00:00	0.00	0.00	0.12	0.18	0.23	0.47	0.59	0.83	1.18
1.1500											
1.2000											
1.25.00											
130000											
1:35:00											
1.455.00		1:35:00									
1:50:00 0.00 0.00 0.00 0.06 0.06 0.09 0.08 0.10 0.09 0.14 1:55:50 0.00 0.00 0.00 0.05 0.05 0.08 0.08 0.		1:40:00	0.00	0.00	0.06	0.08	0.10	0.09	0.11	0.11	0.16
1:55:00											
2-00-00											
2:05:00											
2:10:00											
2:20:00											
2:25:00		2:15:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.04
2:33:00						0.01			0.02		
2:35:00											
2:40:00 0.00											
2:45:00 0.00											
2:50:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
3:00:00		2:50:00									
3:05:00		2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:10:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
3:15:00											
3:20:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
3:25:00 0.00 0.00 0.00 0.00 0.00 0.00 0.00											
3:35:00 0.00		3:25:00									
3:40:00 0.00		3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
3:45:00 0.00					0.00						
3:50:00 0.00 0.00 0.00 0.00 0.00 0.00 0.0											
3:55:00 0.00											
4:00:00 0.00											
4:05:00 0.00											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$			0.00	0.00		0.00	0.00	0.00		0.00	0.00
4:20:00 0.00											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$											
$\begin{array}{cccccccccccccccccccccccccccccccccccc$											
5:15:00 0.00		5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5:20:00 0.00											
5:30:00 0.00											
5:35:00 0.00		5:25:00									
5:40:00 0.00											
5:45:00 0.00											
5:55:00 0.00 0.00 0.00 0.00 0.00 0.00 0.		5:45:00									
0.00 0.00 0.00 0.00		6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Pond_C.xlsm, Outlet Structure

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor
							from the S-A-V table on Sheet 'Basin'.
							Also include the inverts of a
							outlets (e.g. vertical orifice overflow grate, and spillwa
							where applicable).
							1
]
							_
							1
							-
							-
							1
]
							4
							1
							1
							1
							1
							1
							_
							1
							-
							-
							1
							_
							1
							1
							-
							1
							1
							-
							†
]
							4
							1
]
							4
							1
]
							4
							1
							j
							4
							1
			<u>-</u>				The state of the s

Pond_C.xlsm, Outlet Structure 10/28/2024, 12:36 PM

	Design Procedure Form	n: Extended Detention Basin (EDB)
Designary	UD-E SPC	Sheet 1 of 3 Sheet 1 of 3
Designer: Company:	HR Green	
Date:	October 28, 2024	
Project:	Eastonville Road - Segment 1 Improvements EDB B ULTIMATE	CONDITIONS
Location:	EL PASO COUNTY, CO	
1. Basin Storage	e Volume	
A) Effective In	mperviousness of Tributary Area, I _a	I _a = 66.0 %
B) Tributary A	Area's Imperviousness Ratio ($i = I_a / 100$)	i = 0.660
C) Contributi	ing Watershed Area	Area = 9.480 ac
	ersheds Outside of the Denver Region, Depth of Average roducing Storm	$d_6 = $
		Choose One
E) Design Co (Select EL	oncept JRV when also designing for flood control)	○ Water Quality Capture Volume (WQCV)
		Excess Urban Runoff Volume (EURV)
	olume (WQCV) Based on 40-hour Drain Time	V _{DESIGN} = ac-ft
(V _{DESIGN} =	= (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
Water Qu	ersheds Outside of the Denver Region, uality Capture Volume (WQCV) Design Volume $_{\rm THER} = (d_6^*(V_{\rm DESIGN}/0.43))$	V _{DESIGN OTHER} = 0.199 ac-ft
	at of Water Quality Capture Volume (WQCV) Design Volume different WQCV Design Volume is desired)	V _{DESIGN USER} = ac-ft
,	drologic Soil Groups of Tributary Watershed	H8C - 400
	ntage of Watershed consisting of Type A Soils entage of Watershed consisting of Type B Soils	$\begin{array}{c c} HSG_A = & 100 & \% \\ HSG_B = & 0 & \% \end{array}$
iii) Perce	entage of Watershed consisting of Type C/D Soils	$HSG_{C/D} = 0$ %
	rban Runoff Volume (EURV) Design Volume	FUDV 0.700
For HSG	6 A: EURV _A = 1.68 * i ^{1.28} 6 B: EURV _B = 1.36 * i ^{1.08}	$EURV_{DESIGN} = $
For HSG	$6 \text{ C/D: EURV}_{C/D} = 1.20 * i^{1.08}$	
	at of Excess Urban Runoff Volume (EURV) Design Volume different EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t
-	: Length to Width Ratio of the to width ratio of at least 2:1 will improve TSS reduction.)	L:W= 2.0 : 1
3. Basin Side Sl	lopes	
	ximum Side Slopes	$Z = \underbrace{4.00} \text{ ft / ft}$
(Horizonta	al distance per unit vertical, 4:1 or flatter preferred)	
4. Inlet		
	means of providing energy dissipation at concentrated	
inflow loca	ations:	
5. Forebay		
•	Forebay Volume MIN = 3% of the WQCV)	V _{FMIN} = 0.006 ac-ft
B) Actual Fo	orebay Volume	V _F = 0.006 ac-ft
C) Forebay D (I	Depth $D_F = 18$ inch maximum)	$D_{F} = \boxed{15.0}$ in
D) Forebay D	,	
		0 - 20 00 - 645
·	ained 100-year Peak Discharge	$Q_{100} = 26.00$ cfs
	ay Discharge Design Flow 0.02 * Q ₁₀₀)	$Q_F = 0.52$ cfs
E) Forebay D	Discharge Design	Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge	Pipe Size (minimum 8-inches)	Calculated D _P = in
G) Rectangul	lar Notch Width	Calculated W _N = 4.3 in

	Design Procedure Form: I	Extended Detention Basin (EDB)
		Sheet 2 of 3
Designer:	SPC HR Green	
Company: Date:	October 28, 2024	
Project:	Eastonville Road - Segment 1 Improvements EDB B ULTIMATE CONI	DITIONS
Location:	EL PASO COUNTY, CO	
6. Trickle Channel		Choose One Concrete
A) Type of Trick	kle Channel	
A) Type of The	Ne Grainer	○ Soft Bottom
F) Slope of Tric	ckle Channel	S = 0.0050 ft / ft
7. Micropool and C	Dutlet Structure	
A) Depth of Mic	cropool (2.5-feet minimum)	$D_{M} = 2.5$ ft
A) Deptit of Mic	Stopool (2.5-leet millimum)	
B) Surface Area	a of Micropool (10 ft ² minimum)	$A_{M} = 10$ sq ft
C) Outlet Type		
		Choose One Orifice Plate
		Other (Describe):
	mension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Detent	tion)	D _{orifice} = 1.00 inches
E) Total Outlet A	Area	A _{ot} = 5.50 square inches
8. Initial Surcharge	e Volume	
	ial Surcharge Volume	$D_{IS} = 4$ in
(Minimum red	commended depth is 4 inches)	
	ial Surcharge Volume	V _{IS} = 26 cu ft
(Minimum vol	lume of 0.3% of the WQCV)	
C) Initial Surcha	arge Provided Above Micropool	$V_s = 3.3$ cu ft
9. Trash Rack		
A) Water Qualit	ty Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = 193 square inches
B) Type of Scre	en (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
in the USDCM,	indicate "other" and enter the ratio of the total open are to the for the material specified.)	
total screen are	for the material specified.)	
	Other (Y/N): N	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water (Quality Screen Area (based on screen type)	$A_{total} = 321 $ sq. in.
E) Depth of Des	sign Volume (EURV or WQCV)	H= 5.05 feet
	design concept chosen under 1E)	
F) Height of Wa	ater Quality Screen (H _{TR})	H _{TR} = 88.6 inches
G) Width of Wa	ter Quality Screen Opening (W _{opening})	W _{opening} = 12.0 inches VALUE LESS THAN RECOMMENDED MIN. WIDTH.
	inches is recommended)	WIDTH HAS BEEN SET TO 12 INCHES.

	Design Procedure Form:	Extended Detention Basin (EDB)	
Designer: Company: Date: Project: Location:	SPC HR Green October 28, 2024 Eastonville Road - Segment 1 Improvements EDB B ULTIMATE CONI	DITIONS	Sheet 3 of 3
B) Slope of 0	bankment embankment protection for 100-year and greater overtopping: Overflow Embankment al distance per unit vertical, 4:1 or flatter preferred)	Ze = 4.00 ft / ft Choose One O Irrigated	
12. Access A) Describe Notes:	Sediment Removal Procedures	Not Irrigated	

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Project: Eastonville Road

Basin ID: POND B: Ultimate Conditions (INCLUDES SEGMENT 2 FLOW) [BASINS EA6 - EA11]

Optional User Overrides

acre-feet

acre-feet

inches

inches

inches

inches

inches

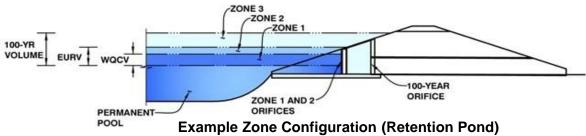
inches

inches

0.058

1.19

1.50


1.75

2.00

2.25

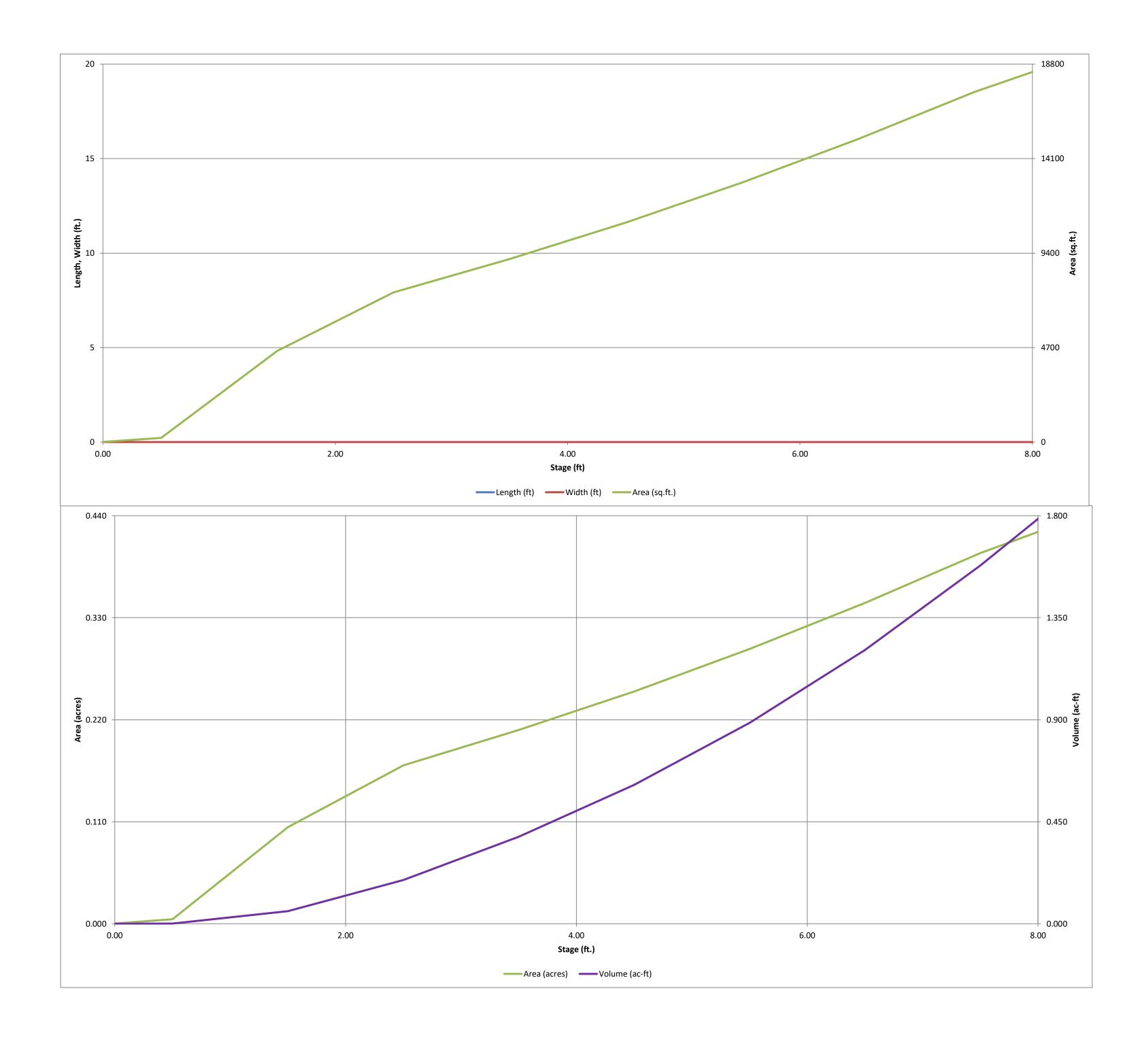
2.52

3.68

Watershed Information

ersned information		
Selected BMP Type =	EDB	
Watershed Area =	9.48	acres
Watershed Length =	1,750	ft
Watershed Length to Centroid =	500	ft
Watershed Slope =	0.009	ft/ft
Watershed Imperviousness =	66.00%	percent
Percentage Hydrologic Soil Group A =	100.0%	percent
Percentage Hydrologic Soil Group B =	0.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

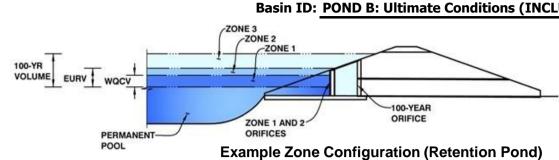
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using


the embedded Colorado Urban Hydrograph Procedure. Water Quality Capture Volume (WQCV) = 0.058 acre-feet Excess Urban Runoff Volume (EURV) = 0.780 acre-feet 2-yr Runoff Volume (P1 = 1.19 in.) = 0.574 acre-feet 5-yr Runoff Volume (P1 = 1.5 in.) = 0.752 acre-feet 10-yr Runoff Volume (P1 = 1.75 in.) = 0.895 acre-feet 25-yr Runoff Volume (P1 = 2 in.) = 1.080 acre-feet 50-yr Runoff Volume (P1 = 2.25 in.) = 1.262 acre-feet 100-yr Runoff Volume (P1 = 2.52 in.) = 1.482 acre-feet 500-yr Runoff Volume (P1 = 3.68 in.) = 2.400 acre-feet Approximate 2-yr Detention Volume = 0.508 acre-feet Approximate 5-yr Detention Volume = 0.663 acre-feet Approximate 10-yr Detention Volume : 0.799 acre-feet Approximate 25-yr Detention Volume = 0.961 acre-feet Approximate 50-yr Detention Volume = 1.058 acre-feet Approximate 100-yr Detention Volume = 1.158 acre-feet

Define Zones and Basin Geometry

crific Zories and Basin Geometry		
Zone 1 Volume (WQCV) =	0.058	acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.722	acre-feet
Zone 3 Volume (100-year - Zones 1 & 2) =	0.378	acre-feet
Total Detention Basin Volume =	1.158	acre-feet
Initial Surcharge Volume (ISV) =	user	ft ³
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft
Slopes of Main Basin Sides $(S_{main}) =$	user	H:V
Basin Length-to-Width Ratio ($R_{L/W}$) =	user	

Initial Surcharge Area (A _{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width $(W_{ISV}) =$	user	ft
Depth of Basin Floor (H_{FLOOR}) =	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor $(V_{FLOOR}) =$	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin $(V_{MAIN}) =$	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet
·		-


ļ	Depth Increment =		ft Optional			Γ	Optional			
	Stage - Storage	Stage	Override	Length (ft)	Width	Area	Override	Area	Volume	Volume
6983.5	Description Top of Micropool	(ft) 	Stage (ft) 0.00	(ft) 	(ft) 	(ft ²)	Area (ft ²)	(acre) 0.000	(ft ³)	(ac-ft)
6983.5	6984		0.50				211	0.005	55	0.001
	6985		1.50				4,539	0.104	2,430	0.056
	6986		2.50				7,443	0.171	8,421	0.193
	6987		3.50				9,104	0.209	16,695	0.383
	6988		4.50				10,914	0.251	26,704	0.613
	6989		5.50				12,910	0.296	38,616	0.886
	6990 6991		6.50 7.50				15,069 17,408	0.346	52,605 68,844	1.208 1.580
	6991.5		8.00				18,407	0.423	77,797	1.786
							·		,	
errides										
e-feet										
e-feet										
hes										
hes										
hes hes										
hes										
hes										
hes										
								_		
								_		
								_		

MHFD-Detention, Version 4.05 (January 2022)

Project: Eastonville Road

asin ID:	POND B: Ultimate Conditions	(INCLUDES SEGMENT 2 FLOW)	BASINS EA6 - EA11

		Estimated	Estimated	
		Stage (ft)	Volume (ac-ft)	Outlet Type
	Zone 1 (WQCV)	1.52	0.058	Orifice Plate
1	Zone 2 (EURV)	5.13	0.722	Circular Orifice
	Zone 3 (100-year)	6.36	0.378	Weir&Pipe (Restrict)
	•	Total (all zones)	1.158	

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)

Underdrain Orifice Invert Depth = N/A ft (distance below the filtration media surface) N/A Underdrain Orifice Diameter = inches

	Calculated Parame	ters for Underdrain
Underdrain Orifice Area =	N/A	ft ²
Jnderdrain Orifice Centroid =	N/A	feet

User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP)

ft (relative to basin bottom at Stage = 0 ft) Centroid of Lowest Orifice = 0.00 1.52 Depth at top of Zone using Orifice Plate = ft (relative to basin bottom at Stage = 0 ft) Orifice Plate: Orifice Vertical Spacing = N/A Orifice Plate: Orifice Area per Row = 0.25 sq. inches (diameter = 9/16 inch)

<u> BMP)</u>	Calculated Parame	ters for Plate
VQ Orifice Area per Row =	1.736E-03	ft ²
Elliptical Half-Width =	•	feet
Elliptical Slot Centroid =	N/A	feet
Elliptical Slot Area =	N/A	ft ²
p.a.oa. o.oc, a oa	, , .	10

<u>User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)</u>

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	0.50	1.00					
Orifice Area (sq. inches)	0.25	0.25	0.25					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)

User Input: Vertical Orifice (Circular or Rectang	<u>ular)</u>				Calculated Parame	ters for Vertical Or	rifice
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	1.60	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =	0.05	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	5.13	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.13	N/A	feet
Vertical Orifice Diameter =	3.00	N/A	linches	·			-

User Input:	Overflow Weir	(Dropbox with	Flat or Slop	ed Grate and	d Outlet Pipe OR Re	ctangular/Trapezoidal	Weir and No Outlet Pipe)	-
			70	ne 3 Weir	Not Selected			

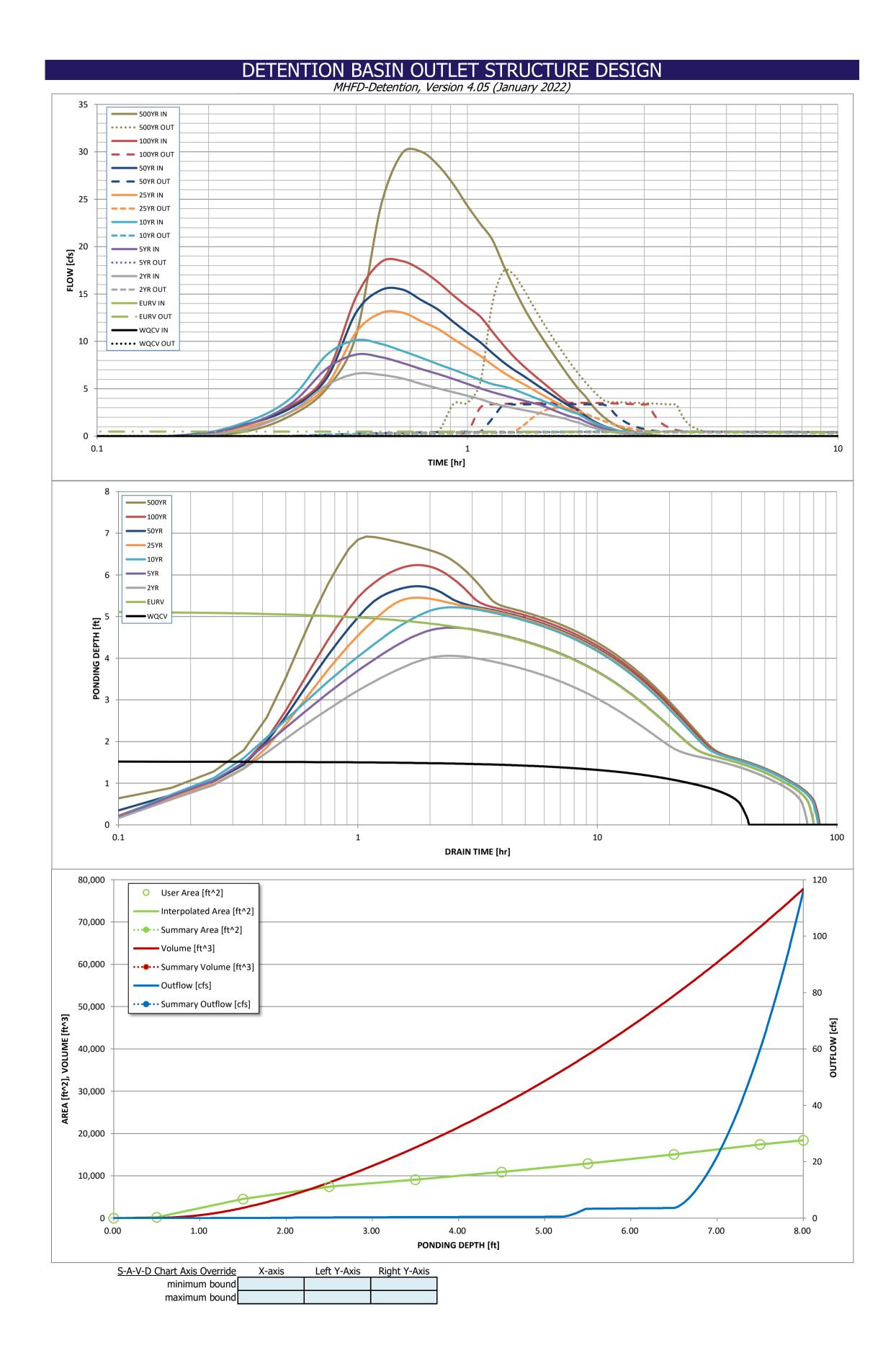
	Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	5.20	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =
Overflow Weir Front Edge Length =	3.00	N/A	feet Overflow Weir Slope Length =
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =
Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow Grate Open Area w/o Debris =
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =
Debris Clogging % =	50%	N/A	%

Calculated Parameters for Overflow Weir							
	Zone 3 Weir	Not Selected					
$H_t =$	5.20	N/A	feet				
gth =	3.00	N/A	feet				
rea =	21.42	N/A					
oris =	6.26	N/A	ft ²				
oris =	3.13	N/A	ft ²				
			_				

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

ser Input: Outlet Pipe w/ Flow Restriction Plate	<u>(Circular Orifice, R</u>	estrictor Plate, or	Rectangular Orifice)	Calculated Parameters for Outlet Pipe w/ Flow Restriction F			<u>ate</u>
	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	İ
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.29	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.20	N/A	feet
Restrictor Plate Height Above Pipe Invert =	4.00		inches Half-Central Angle of F	Restrictor Plate on Pipe =	0.98	N/A	radians

<u>User Input: Emergency Spillway (Rectangular or Trapezoidal)</u>


saci Emergency Spinway (Rectangular or Trapezoladi)						
Spillway Invert Stage=	6.50	ft (relative to basin bottom at Stage = 0 ft)				
Spillway Crest Length =	15.50	feet				
Spillway End Slopes =	4.00	H:V				
Freeboard above Max Water Surface =	1.00	feet				

	Calculated Parameters for Spillwa				
Spillway Design Flow Depth=	0.50	feet			
Stage at Top of Freeboard =	8.00	feet			
Basin Area at Top of Freeboard =	0.42	acres			
Basin Volume at Top of Freeboard =	1.79	acre-ft			

Routed Hydrograph Results The user can override the default CUHP hydrographs and runoff volumes by entering new values in the Inflow Hydrographs table (Columns W through AF). WQCV **EURV** 25 Year 50 Year Design Storm Return Period = 2 Year 5 Year 10 Year 100 Year 500 Year One-Hour Rainfall Depth (in) = N/A N/A 1.19 1.50 1.75 2.00 2.25 2.52 3.68 0.780 0.574 0.752 0.895 1.080 2.400 CUHP Runoff Volume (acre-ft) = 0.058 1.262 1.482 N/A N/A 0.574 0.752 0.895 1.080 1.262 1.482 2.400 Inflow Hydrograph Volume (acre-ft) = N/A N/A 0.0 0.1 0.1 1.0 2.1 3.5 9.4 CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = N/A N/A 0.00 0.01 0.01 0.22 0.37 0.99 Predevelopment Unit Peak Flow, q (cfs/acre) = N/A N/A 0.11 N/A N/A 10.1 13.0 15.5 18.5 30.0 6.6 8.6 Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = 0.0 0.5 0.4 0.5 0.6 3.0 3.4 3.5 17.4 N/A N/A N/A 5.6 4.9 2.9 1.9 Ratio Peak Outflow to Predevelopment Q = 1.6 1.0

Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.4	0.5	0.5	0.5
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	56	56	57	57	54	51	48	35
Time to Drain 99% of Inflow Volume (hours) =	41	69	66	69	71	70	68	67	61
Maximum Ponding Depth (ft) =	1.53	5.14	4.06	4.73	5.22	5.45	5.73	6.24	6.92
Area at Maximum Ponding Depth (acres) =	0.11	0.28	0.23	0.26	0.28	0.29	0.31	0.33	0.37
Maximum Volume Stored (acre-ft) =	0.059	0.783	0.504	0.672	0.805	0.872	0.953	1.116	1.354

Pond_B ULT.xlsm, Outlet Structure 10/28/2024, 11:12 AM

Pond_B ULT.xlsm, Outlet Structure

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

,	The user can o	verride the calcu	ılated inflow hyd	drographs from	this workbook v	vith inflow hydro	ographs develop	ped in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.01	0.48
	0:15:00	0.00	0.00	0.71	1.16	1.44	0.97	1.21	1.18	2.18
	0:20:00	0.00	0.00	2.59	3.41	4.01	2.54	2.97	3.17	5.02
	0:25:00	0.00	0.00	5.38	7.13	8.57	5.34	6.11	6.57	10.59
	0:30:00	0.00	0.00	6.59	8.61	10.13	10.94	13.02	14.66	24.23
	0:35:00	0.00	0.00	6.48	8.35	9.74	12.98	15.41	18.34	29.86
	0:40:00	0.00	0.00	6.09	7.73	9.00	13.04	15.47	18.47	30.02
	0:45:00	0.00	0.00	5.52	7.08	8.28	12.14	14.36	17.54	28.58
	0:50:00	0.00	0.00	5.04	6.56	7.60	11.32	13.35	16.24	26.56
	0:55:00	0.00	0.00	4.64	6.03	7.02	10.25	12.05	14.85	24.30
	1:00:00	0.00	0.00	4.26	5.52	6.45	9.31	10.91	13.66	22.41
	1:05:00	0.00	0.00	3.90	5.05	5.93	8.47	9.90	12.61	20.74
	1:10:00	0.00	0.00	3.49	4.65	5.50	7.54	8.78	11.04	18.07
	1:15:00	0.00	0.00	3.19	4.33	5.25	6.73	7.81	9.62	15.67
	1:20:00	0.00	0.00	2.96	4.03	4.94	6.06	7.01	8.40	13.63
ŀ	1:25:00	0.00	0.00	2.76	3.76	4.54	5.50	6.36	7.41	11.96
	1:30:00	0.00	0.00	2.57	3.51	4.15	4.94	5.70	6.56	10.51
	1:35:00	0.00	0.00	2.39	3.27	3.80	4.42	5.09	5.79	9.22
ŀ	1:40:00	0.00	0.00	2.21	2.92	3.45	3.94	4.52	5.08	8.02
ŀ	1:45:00	0.00	0.00	2.03	2.58	3.12	3.48	3.97	4.40	6.88
	1:50:00	0.00	0.00	1.86	2.28	2.82	3.05	3.47	3.77	5.85
ŀ	1:55:00	0.00	0.00	1.61	2.03	2.55	2.66	3.02	3.22	4.93
ŀ	2:00:00	0.00	0.00	1.42	1.85	2.31	2.35	2.65	2.75	4.18
	2:05:00	0.00	0.00	1.17	1.53	1.92	1.89	2.13	2.18	3.30
	2:15:00	0.00	0.00	0.95	1.24	1.57	1.51	1.70	1.72	2.58
	2:20:00	0.00	0.00	0.77 0.62	1.01 0.82	1.28 1.03	1.21 0.97	1.36 1.08	1.35 1.06	2.02
	2:25:00	0.00	0.00	0.50	0.66	0.83	0.97	0.87	0.83	1.58 1.23
	2:30:00	0.00	0.00	0.40	0.53	0.66	0.61	0.69	0.65	0.95
	2:35:00	0.00	0.00	0.32	0.42	0.52	0.48	0.54	0.50	0.73
	2:40:00	0.00	0.00	0.25	0.32	0.40	0.37	0.42	0.39	0.56
	2:45:00	0.00	0.00	0.20	0.25	0.31	0.29	0.32	0.30	0.44
	2:50:00	0.00	0.00	0.16	0.20	0.25	0.23	0.26	0.24	0.35
	2:55:00	0.00	0.00	0.12	0.15	0.19	0.18	0.20	0.19	0.27
	3:00:00	0.00	0.00	0.09	0.11	0.14	0.13	0.15	0.14	0.20
	3:05:00	0.00	0.00	0.06	0.08	0.10	0.10	0.11	0.10	0.14
	3:10:00	0.00	0.00	0.04	0.05	0.07	0.06	0.07	0.07	0.10
	3:15:00	0.00	0.00	0.02	0.03	0.04	0.04	0.04	0.04	0.06
	3:20:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ŀ	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00 5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
ļ	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Pond_B ULT.xlsm, Outlet Structure

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically.

Stage - Storage Description	Stage [ft]	Area [ft²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor
							from the S-A-V table on Sheet 'Basin'.
							_
							Also include the inverts of a
							outlets (e.g. vertical orifice, overflow grate, and spillwa
							where applicable).
							1
							1
							1
							4
							-
							1
							†
]
							1
							4
							-
							1
							1
							1
]
							_
							4
							+
							-
							1
							_
							_
							+
							-
							†
]
							1
							4
							4
							1
							1
							4
							1
							1
							4
							1
							<u> </u>
							4
							1
							<u> </u>
]
							-
							1
]
							-
							1
		•					<u> </u>

Pond_B ULT.xlsm, Outlet Structure 10/28/2024, 11:12 AM

APPENDIX E - REFERENCE MATERIAL

Final Drainage Report

The Sanctuary Filing 1 at Meridian Ranch

EL PASO COUNTY, COLORADO

August 2022

Prepared For:

GTL DEVELOPMENT, INC. P.O. Box 80036 San Diego, CA 92138

Prepared By: Tech Contractors 11910 Tourmaline Dr., Ste 130 Falcon, CO 80831 719.495.7444

Future Drainage - SCS Calculation Method

Following is a tabulation of the surface drainage characteristics for the future conditions using the SCS calculation method. Please refer to Figure 6 - Meridian Ranch SCS Calculations – Future Basins Map

Table 5: Future Drainage Basins-SCS

FUTURE SCS (Full Spectrum)									
DRAINAGE PEAK PEAK PEAK PEAK									
	AREA	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE			
	(SQ. MI.)	Q100	Q50	Q10	Q5	Q2			
		(CFS)	(CFS)	(CFS)	(CFS)	(CFS)			
OS06	0.1313	80	52	12	3.8	0.5			
G1a	0.1313	80	52	12	3.8	0.5			
G1a-G2	0.1313	79	52	11	3.7	0.5			
OS05	0.0578	39	26	5.6	1.8	0.2			
OS05-G1	0.0578	39	25	5.5	1.7	0.2			
FG01	0.0538	31	22	7.0	3.4	0.9			
FG01-G1	0.0538	31	22	7.0	3.4	0.9			
G1	0.1116	61	41	11	4.9	1.1			
G1-G2	0.1116	61	41	11	4.8	1.1			
FG02	0.0391	32	22	6.4	2.7	0.5			
G2	0.2820	167	112	27	10	1.9			
G2-G3	0.2820	163	108	27	10	1.9			
FG03	0.0203	24	17	5.9	3.0	0.8			
FG04	0.0172	22	16	5.8	3.1	0.9			
G3	0.3195	185	123	31	12	2.4			
FG06	0.0675	56	40	12	5.8	1.3			
FG05	0.0580	45	33	12	6.7	2.4			
OS07ab	0.0170	12 12	7.9	1.8	0.5	0.07			
OS07ab-POND F	0.0170		7.6	1.7	0.5	0.07			
POND F IN	0.4620	293	200	54	23	5.1			
POND F C7	0.4620	178	121	16	8.0	2.1			
POND F-G7 OS07c	0.4620 0.0296	177 19	120 12	16 2.7	8.0 0.9	2.1 0.12			
OS07c-G4	0.0296	19	12	2.6	0.9	0.12			
FG21a	0.0290	5.9	4.0	1.0	0.4	0.12			
G4	0.0093	25	16	3.6	1.2	0.2			
G4-G7	0.0391	24	16	3.5	1.2	0.2			
FG21b	0.0150	21	16	6.5	3.9	1.7			
G7	0.5161	194	131	18	8.9	2.3			
G7-G8	0.5161	194	131	18	8.9	2.3			
FG22	0.1354	121	88	32	17	5.4			
OS08a	0.0251	16	11	2.3	0.7	0.10			
OS08-G8	0.0251	16	10	2.3	0.7	0.10			
FG23a	0.0216	21	15	5.2	2.7	0.8			
OS07d	0.0034	2.5	1.6	0.4	0.11	0.01			
OS07d-G8	0.0034	2.4	1.6	0.3	0.11	0.01			
G8	0.7016	279	178	46	24	7.7			
G8-G10	0.7016	278	177	45	24	7.6			
FG24b	0.0589	76	57	24	15	6.5			
FG24a	0.0348	24	16	4.5	2.0	0.4			
OS08b	0.0165	9.5	6.3	1.4	0.5	0.07			
OS08b-G9a	0.0165	9.4	6.0	1.4	0.5	0.07			
OS09a	0.0093	5.3	3.5	0.8	0.3	0.04			
OS09a-G9a	0.0093	5.2	3.4	0.7	0.3	0.04			
G9a	0.1195	97	71	28	16	6.7			

FUTURE SCS (Full Spectrum)									
	DRAINAGE PEAK PEAK PEAK PEAK								
	AREA	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE			
	(SQ. MI.)	Q100	Q50	Q10	Q5	Q2			
	(SQ. IVII.)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)			
G9a-G9b	0.1195	96	70	27	16	6.6			
FG24c	0.0291	40	30	13	8.4	4.0			
FG24d	0.0262	39	30	14	8.7	4.4			
G9b	0.1748	170	127	53	32	14			
REX RD WQCV	0.1748	158	125	51	31	14			
G9b-G10	0.1748	158	123	50	31	13			
FG23b	0.0236	17	11	2.7	0.9	0.13			
G10	0.9000	390	263	90	46	15			
G10-G11	0.9000	389	254	85	44	15			
FG23c	0.0109	11	7.6	2.2	1.0	0.2			
G11	0.9109	393	258	86	44	15			
FG25	0.1084	111	84	36	22	9.9			
FG28	0.0184	15	10	3.0	1.2	0.2			
POND G IN-WEST	1.0377	503	350	122	63	22			
FG27	0.0679	98	79	42	30	18			
FG26	0.0570	65	50	24	16	8.2			
G13	0.0570	65	50	24	16	8.2			
G13-POND G	0.0570	64	50	24	16	8.1			
POND G IN-EAST	0.1249	160	127	64	44	25			
POND G	1.1626	450	293	52	21	5.3			
G12	1.1626	450	293	52	21	5.3			
G12-G06	1.1626	449	293	52	21	5.3			
FG29	0.0983	60	39	8.9	2.9	0.4			
FG32	0.0402	51	40	20	14	7.5			
FG32-G06	0.0402	50	40	19	13	7.4			
G06	1.3011	491	317	57	22	7.5			

Rational Calculations

The Rational Hydrologic Calculation Method was used to estimate the total runoff from the 5-year and the 100-year design storm and thus establish the storm drainage system design. Using the rational calculation methodology outlined in the Hydrology Section (Ch 6) of the COSDCM coupled with the El Paso County EPCDCM an effective storm drainage design for the Sanctuary Filing 1 has been designed. The storm drainage facilities have been designed such that the minor storm will be captured by the inlets and conveyed by the storm drain pipes such that the street flow does not overtop the curbs. The storm drainage facility has been designed such that the major storm will be captured by the inlets and conveyed by the storm drain pipes such that the street flow does not exceed the right-of-way widths for residential streets and the hydraulic grade line will be less than one foot below the surface.

The site is located within the Gieck Ranch Drainage Basin. The storm drain runoff will be collected by a series of inlets and storm drain pipe then conveyed through the project and discharge directly into the existing Pond G that is properly sized to safely convey the storm water flows away from the project without damaging adjacent property.

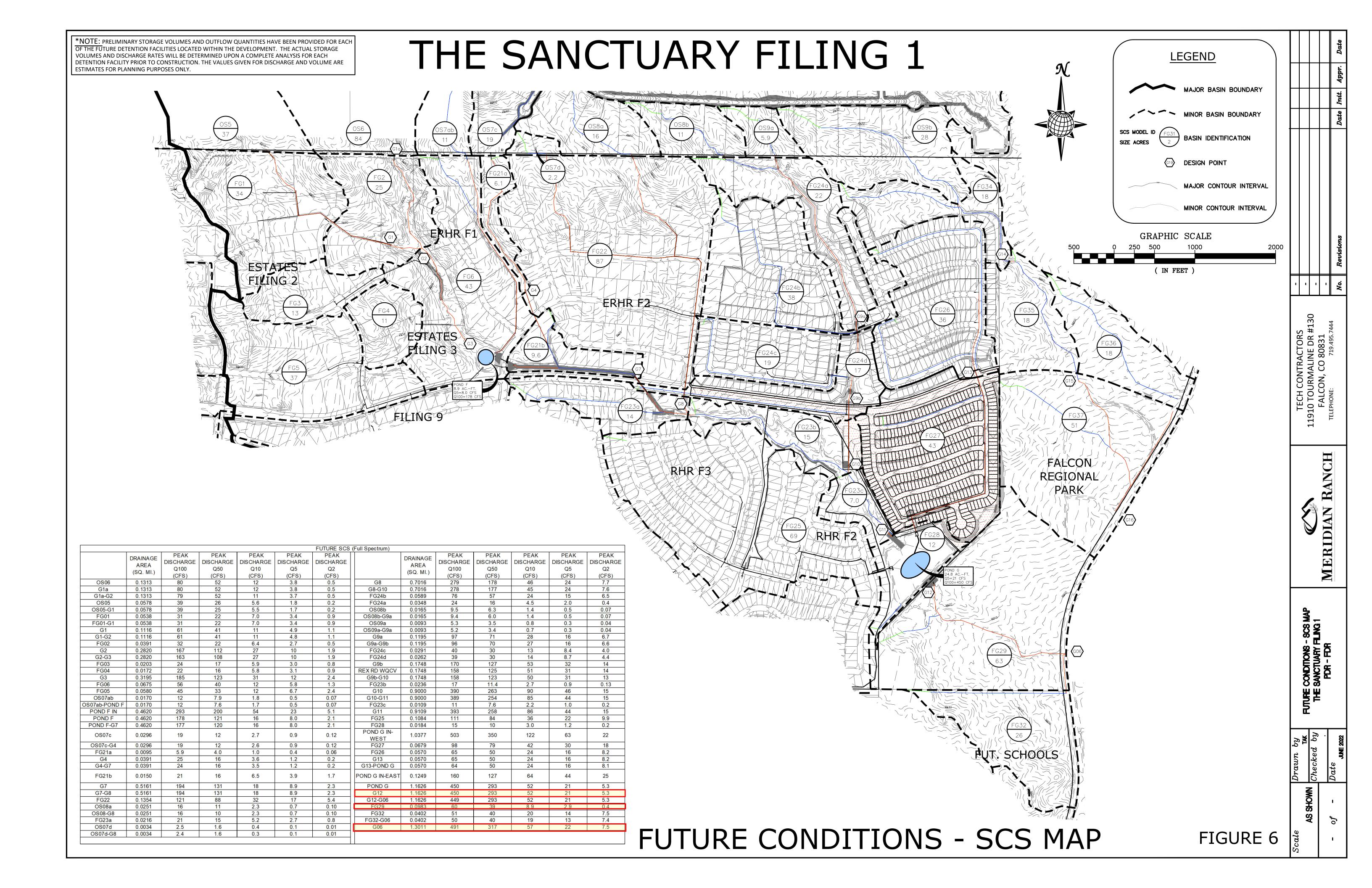
Rational Narrative

The following is a detailed narrative of the storm drainage system located in the Sanctuary Filing 1. These storm drainage systems meet the requirements of as found in the El Paso

the peak flow rates for the key design points impacted by the development of the Sanctuary Filing 1.

Table 7: Key Design Point Comparison – Interim SCS Model

MERIDIAN RANCH DISCHARGE KEY DESIGN POINTS (INTERIM)									
		PEAK	PEAK	PEAK	PEAK	PEAK			
		DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE			
		Q ₁₀₀	Q_{50}	Q ₁₀	Q_5	Q_2			
		(CFS)	(CFS)	(CFS)	(CFS)	(CFS)			
G12 - DISCHARGE POINT	Historic	536	350	84	30	5.2			
AT REGIONAL PARK		466	307	50	19	5.0			
(G05 - HISTORIC)	% of Historic	87%	88%	59%	62%	96%			
G06 - EASTONVILLE	Historic	551	369	88	32	5.5			
ROAD ¹	Interim	491	323	52	20	5.3			
NOAD	% of Historic	89%	87%	59%	62%	96%			


Flow rate at Eastonville Rd. listed for reference only

The outlet (DP G12) for Pond G located west of the Falcon Regional Park, upstream of Eastonville Rd (DP G06). At full buildout the discharge from Pond G will be 450 CFS during the 100-yr storm event into an existing natural drainage course that traverses the regional park. The 100-year historical peak flow rate at the western boundary of the regional park is 536 CFS. The calculated 100-year future developed flow rate will be 84% of the historic flow rate. The developed peak flow rate for the full spectrum of design storms are calculated to be below that of the corresponding historic peak flow rates. See Table 8 for a complete comparative list of the future developed peak flow rates for the key design points impacted by the development of Rolling Hills Ranch.

Table 8: Key Design Point Comparison – Future SCS Model

MERIDIAN RANCH DISCHARGE KEY DESIGN POINTS (FUTURE)									
		PEAK	PEAK	PEAK	PEAK	PEAK			
		DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE			
		Q ₁₀₀	Q ₅₀	Q ₁₀	Q_5	Q_2			
		(CFS)	(CFS)	(CFS)	(CFS)	(CFS)			
G12 - POND G OUTLET	Historic	536	350	84	30	5.2			
REGIONAL PARK	Future	450	293	52	21	5.3			
(G05 - HISTORIC)	% of Historic	84%	84%	62%	68%	102%			
	Historic	551	369	88	32	5.5			
G06 - EASTONVILLE ROAD ¹	Future	491	317	57	22	7.5			
	% of Historic	89%	86%	65%	71%	136%			

¹ Flow rate at Eastonville Rd. listed for reference only

Preliminary & Final Drainage Report

Rex Road

through Falcon Regional Park

EL PASO COUNTY, COLORADO

June 2023

Prepared For:

GTL DEVELOPMENT, INC. P.O. Box 80036 San Diego, CA 92138

Prepared By: Tech Contractors 11910 Tourmaline Dr., Ste 130 Falcon, CO 80831 719.495.7444

Proposed Drainage - SCS Calculation Method

Following is a tabulation of the surface drainage characteristics for the proposed conditions using the SCS calculation method. Please refer to Figure 5 – Rex Road SCS Calculations – Proposed Basins Map

Table 3: Future Drainage Basins-SCS

PROPOSED SCS (Full Spectrum)									
HYDROLOGIC ELEMENT	Drainage Area (SQ. Ml.)	Peak Discharge Q100 (CFS)	Peak Discharge Q50 (CFS)	Peak Discharge Q10 (CFS)	Peak Discharge Q5 (CFS)	Peak Discharge Q2 (CFS)			
OS09b	0.0435	22	14	3.2	1.1	0.2			
OS09b-G14	0.0435	22	14	3.2	1.1	0.2			
FG34	0.0275	20	13	3.3	1.3	0.2			
G14	0.0710	38	25	5.5	2.0	0.3			
G14-G15	0.0710	37	24	5.5	2.0	0.3			
FG35	0.0292	25	18	5.5	2.4	0.5			
G15	0.1002	55	36	8.0	3.0	0.6			
G15-G16	0.1002	54	35	8.0	3.0	0.6			
FG37	0.0754	46	31	7.3	2.7	0.4			
FG36	0.0295	19	13	3.9	1.8	0.4			
G15a	0.0295	19	13	3.9	1.8	0.4			
G15a-G16	0.0295	19	13	3.8	1.7	0.4			
G16	0.2051	114	74	16	6.5	1.2			

Rational Calculations

The Rational Hydrologic Calculation Method was used to estimate the total runoff from the 5-year and the 100-year design storm and thus establish the storm drainage system design for facilities with less than 100 acres if tributary area. Using the rational calculation methodology outlined in the Hydrology Section (Ch 6) of the COSDCM coupled with the El Paso County EPCDCM an effective drainage design for the Rex Road construction has been designed. The storm drainage facilities have been designed such that the minor storm will be conveyed such that the street flow does not overtop the curbs. The culvert undercrossing has been designed such that the major storm will be safely conveyed downstream under Rex Road.

The site is located within the Gieck Ranch Drainage Basin. The storm drain runoff will be collected by natural swales and conveyed southeasterly toward Eastonville Road and away from the project without damaging adjacent property.

Rational Narrative

The following is a detailed narrative of the proposed storm drainage runoff tributary to Rex Road (see Figure 6 for more information). These storm drainage analysis meets the requirements as found in the El Paso County Engineering Criteria Manual I.7.1.C.5. (ECM) for storm water quality and discharge into Waters of the State. Discharge points are located on the south side of Rex Road (DP15 & DP15a).

- Basin OS9b (28 acres, Q_5 = 5.0 CFS, Q_{100} = 34 CFS) contains off-site area north of Meridian Ranch within the future Latigo Trails subdivision entering Meridian Ranch via existing natural swale at Design Point 1. The surface runoff is collected into natural drainage swales and ultimately directed southerly through Meridian Ranch Basin FG34 to DP G14.
- Basin FG34 (18 acres, Q_5 = 4.7 CFS, Q_{100} = 25 CFS) contains open space area within the future Rolling Hills Ranch North subdivision entering the Falcon Regional Park via a natural swale at Design Point G14. The surface runoff is collected into natural drainage swales and ultimately directed southerly to the Falcon Regional Park. The flow (Q_5 = 7.5 CFS, Q_{100} = 46 CFS) is conveyed downstream via a natural swale to a proposed culvert at Rex Road (DP G15.1).
- Basin FG35a (14 acres, Q_5 = 4.5 CFS, Q_{100} = 23 CFS) contains area within the Falcon Regional Park north of Rex Road. The surface runoff will sheet flow toward natural swales and is directed toward a proposed 36" RCP culvert under Rex Road located at DP G15.1. The total flow at the culvert (Q_5 = 8.0 CFS, Q_{100} = 47 CFS) is conveyed downstream via a 36" RCP where the culvert flow is combined with runoff from Basin FG35b at Inlet I01.
- Basin FG35b (4.9 acres, Q_5 = 6.3 CFS, Q_{100} = 17 CFS) contains area north of Rex Rd and portions of Rex Road east of Meridian Ranch and west of the above mentioned 36" RCP culvert crossing. The surface runoff will sheet flow off the surrounding areas onto Rex Road and the flow will be directed to a proposed flow-by inlet (Inlet I01) and combined with the flow in the 36" RCP culvert. Most of the flow is captured (Q_5 = 5.2 CFS, Q_{100} = 12 CFS) with the remaining flow (Q_5 = 1.2 CFS, Q_{100} = 5.3 CFS) continuing downstream to Design Point G15a. The combined flow in the 30" RCP (Q_5 = 4.9 CFS, Q_{100} = 23 CFS) from Basin FG36a will continue downstream along a natural channel through Basin FG37.
- Basin FG36a (18 acres, $Q_5 = 5.3$ CFS, $Q_{100} = 26$ CFS) contains Regional Park area north of Rex Road within the Falcon Regional Park west of Eastonville Road. The surface runoff flows to a natural swale toward a proposed 30" RCP culvert near the intersection of Rex Rd with Eastonville Rd. The culvert flow is conveyed downstream to DP15a.
- Basin FG36c (2.8 acres, Q_5 = 3.3 CFS, Q_{100} = 8.0 CFS) contains area north of Rex Road within the Falcon Regional Park west of Eastonville Road. The surface runoff sheet flows onto Rex Rd. The surface runoff is combined with the by-pass flow from Inlet I01 and is carried eastward toward the intersection of Rex Rd with Eastonville Rd. Near the intersection the flow (Q_5 = 4.2 CFS, Q_{100} = 12 CFS) is directed southerly via a down drain to DP15a where it is combined with the culvert flow from FG36a. The total flow (Q_5 = 8.0 CFS, Q_{100} = 32 CFS) is directed to DP16a.
- Basin FG37 (48 acres, Q_5 = 10 CFS, Q_{100} = 62 CFS) contains area within the Falcon Regional Park south of Rex Rd. The surface flow from the area combines with the

runoff from the Rex Rd culvert crossings and is directed to the Eastonville Rd culvert crossing located at DP G16 (Q_5 = 15 CFS, Q_{100} = 78 CFS).

DETENTION POND

There are no existing or proposed detention ponds associated with this project. Water quality is achieved through the benefit of runoff reduction through portions of the adjacent swales and the construction of a bioretention pond near the southeast corner of the intersection of Rex Rd with Eastonville Rd.

DRAINAGE FEES

The proposed project falls in the Gieck Ranch Drainage Basin and there are no drainage or bridge fees associated with the Gieck Ranch Drainage Basin and this is not a final plat.

The following is the imperviousness calculation:

	<u>Acres</u>	<u>Assumed Imperviousness</u>	<u>Impervious Acres</u>
Onan Snaaa	0.0	3%	0.0
Open Space	0.0		
Right-of-way	4.2	90%	4.6
Residential Lots	0.0	65%	0.0
Total	4.2		3.8=90% imperv.

GIECK RANCH FEES:

Drainage Fees: There are no drainage fees for this basin.

Bridge Fees: There are no bridge fees for this basin.

CONCLUSION

The rational and SCS based hydrologic calculation methods were used to estimate the historic and developed runoff values to determine the impact of this extension of Rex Road on surrounding property. The resulting calculations were used to estimate the hydraulic impact on the existing natural drainage swales and proposed facilities.. Based on the aforementioned design parameters the extension of Rex Road will not adversely affect downstream properties as the resultant developed flow rates for the various design storms fall below the historic flow rates of the same storms.

Below is a comparison of various flow rates at key design points:

MERIDIAN RANCH DISCHARGE KEY DESIGN POINTS									
Proposed Condition SCS Calculation	Peak Discharge Q100 (CFS)	Peak Discharge Q50 (CFS)	Peak Discharge Q10 (CFS)	Peak Discharge Q5 (CFS)	Peak Discharge Q2 (CFS)				
G14 - DISCHARGE POINT	Historic	38	25	5.8	2.2	0.4			
TO REGIONAL PARK	Proposed	38	25	5.5	2.0	0.3			
(G07 - HISTORIC)	% of Historic	100%	100%	95%	89%	85%			
040 5407011/11/5 001	Historic	116	77	18	6.8	1.2			
G16 - EASTONVILLE RD ¹ DOWNSTREAM OF REX RD	Proposed	114	74	16	6.5	1.2			
DOWNSHIE (WOLLD)	% of Historic	98%	97%	89%	95%	99%			

¹ Flow rate at Eastonville Rd. listed for reference only

EROSION CONTROL DESIGN

General Concept

Historically, erosion on this property has been held to a minimum by a variety of natural features and agricultural practices including:

- Substantial prairie grass growth
- Construction of drainage arresting berms
- Construction of multiple stock ponds along drainage courses

During construction, best management practices (BMP) for erosion control will be employed based on El Paso County Criteria. BMP's will be utilized as deemed necessary by the contractor and/or engineer and are not limited to the measures shown on the construction drawing set. The contractor shall minimize the amount of area disturbed during all construction activities.

In general the following shall be applied in developing the sequence of major activities:

- Install down-slope and side-slope perimeter BMP's before the land disturbing activity occurs.
- Do not disturb an area until it is necessary for the construction activity to proceed
- Cover or stabilize as soon as possible.
- Time the construction activities to reduce the impacts from seasonal climatic changes or weather events.
- The construction of filtration BMP's should wait until the end of the construction project when upstream drainage areas have been stabilized.
- Do not remove the temporary perimeter controls until after all upstream areas are stabilized.

Four Step Process

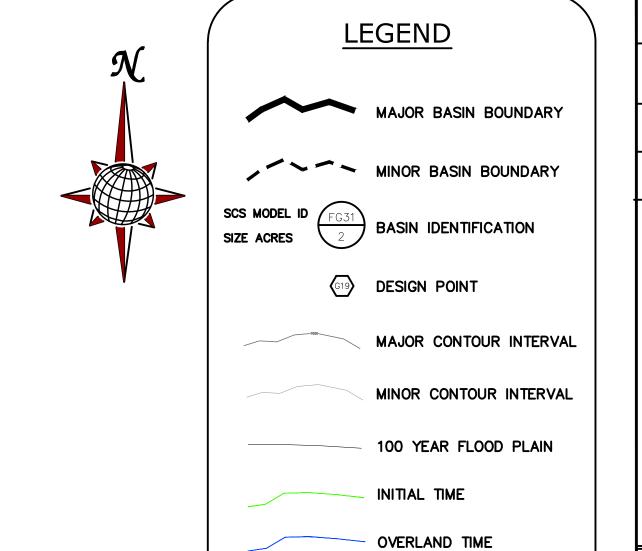
The following four step process is recommended for selecting structural BMP's in developing urban areas:

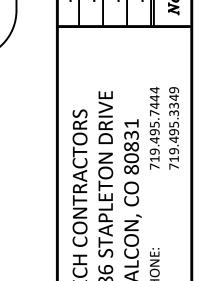
REX ROAD - PDR/FDR

FALCON

REGIONAL

FALCON REGIONAL PARK

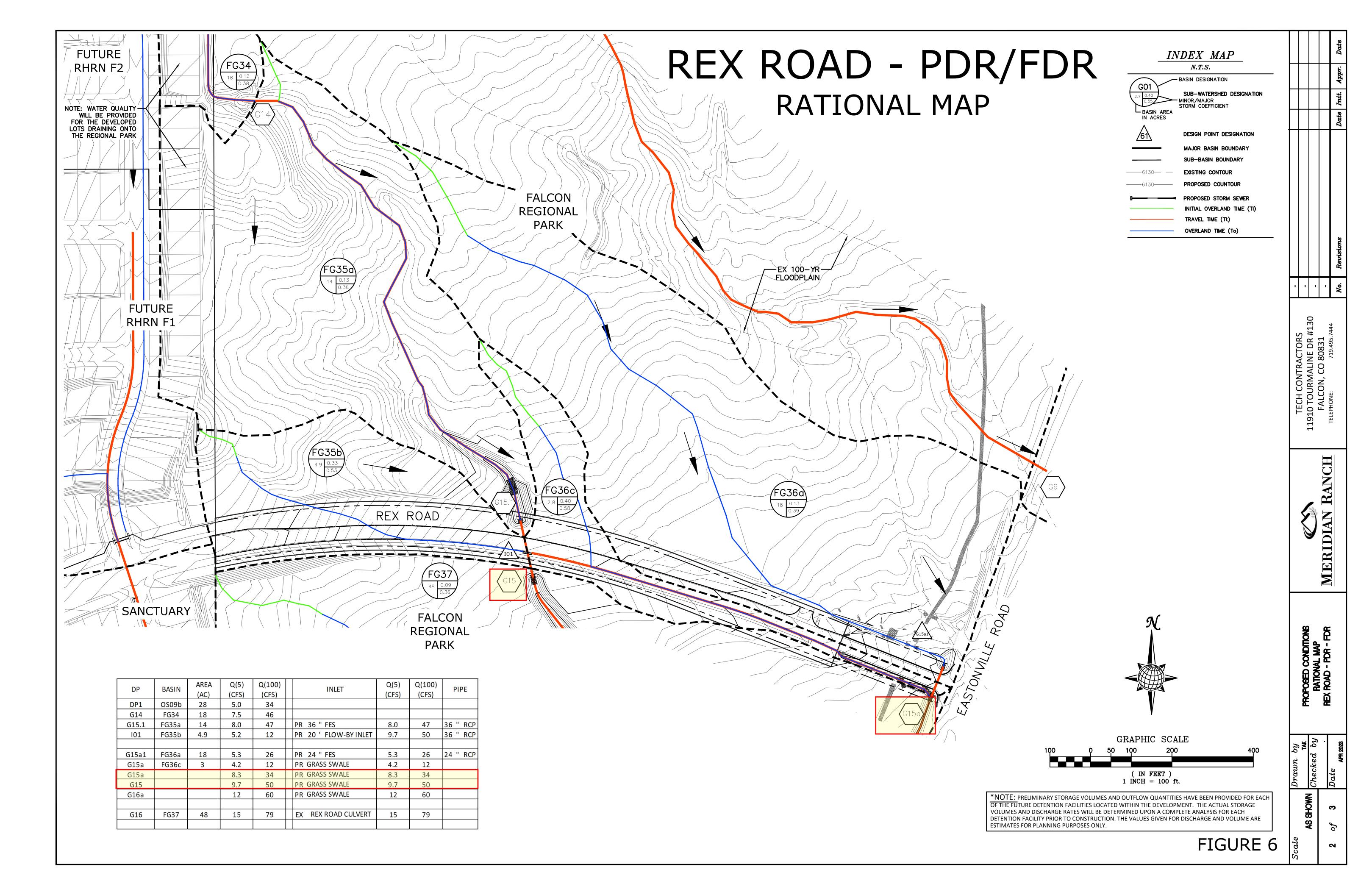

FUTURE


RHRN F2

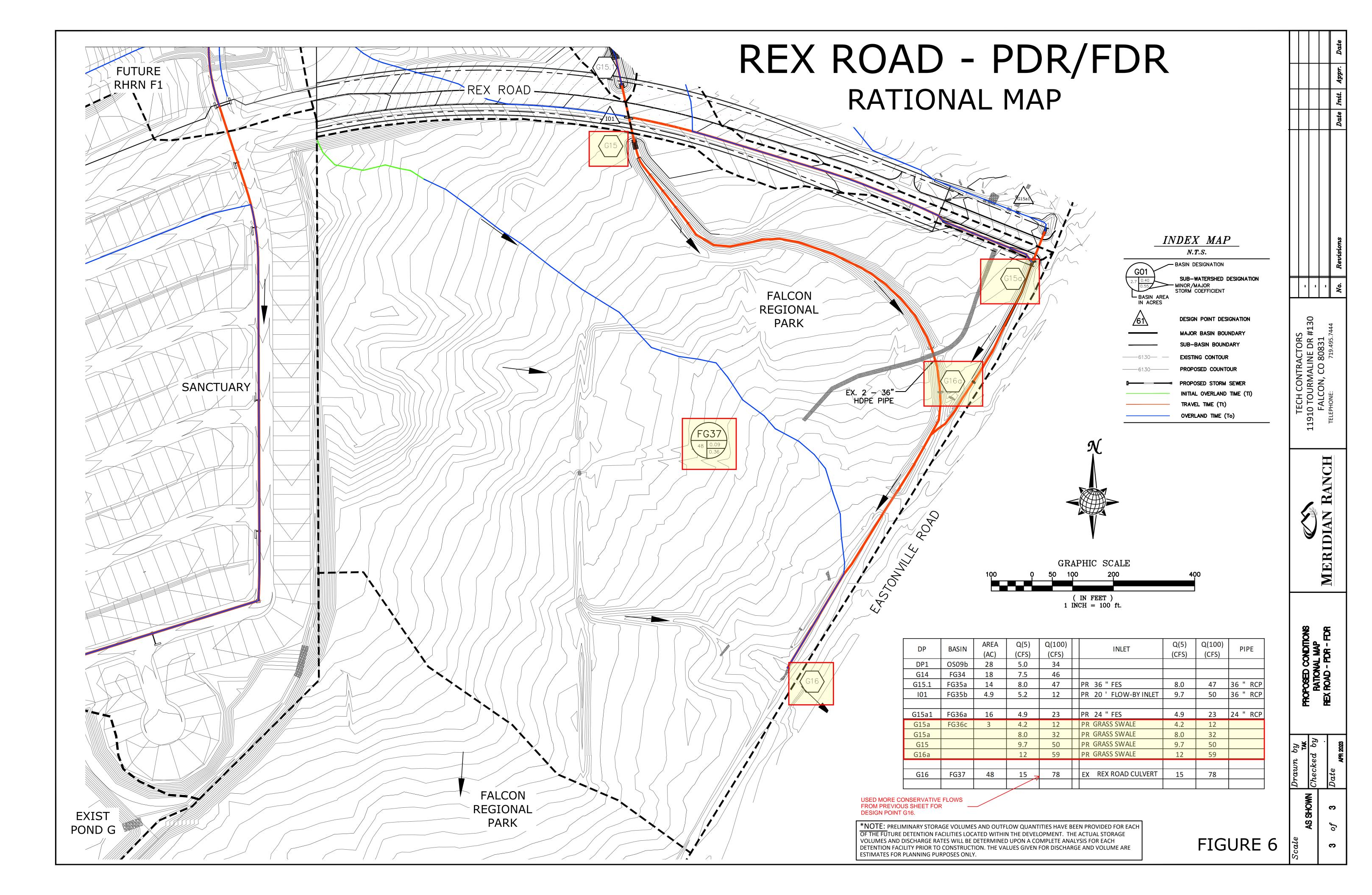
FUTURE/

RHRN F1

SANCTUARY



GRAPHIC SCALE 1 inch = 300 ft.


		PROPOSE	ED SCS (Full S _l	pectrum)		
	DRAINAGE	PEAK	PEAK	PEAK	PEAK	PEAK
HYDROLOGIC	AREA	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE
ELEMENT		Q100	Q50	Q10	Q5	Q2
	(SQ. Ml.)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)
OS09b	0.0435	22	14	3.2	1.1	0.2
OS09b-G14	0.0435	22	14	3.2	1.1	0.2
FG34	0.0275	20	13	3.3	1.3	0.2
G14	0.0710	38	25	5.5	2.0	0.3
G14-G15	0.0710	37	24	5.5	2.0	0.3
FG35	0.0292	25	18	5.5	2.4	0.5
G15	0.1002	55	36	8.0	3.0	0.6
G15-G16	0.1002	54	35	8.0	3.0	0.6
FG37	0.0754	46	31	7.3	2.7	0.4
FG36	0.0295	19	13	3.9	1.8	0.4
G15a	0.0295	19	13	3.9	1.8	0.4
G15a-G16	0.0295	19	13	3.8	1.7	0.4
G16	0.2051	114	74	16	6.5	1.2
	•					

PROPOSED CONDITIONS - SCS MAP

FIGURE 5

|Proj\Rex Road Falcon Regional Park\DWG\PLAN SETS\DRAINAGE MAPS\FIG 6 REX ROAD PDR-FDR RATIONAL MAP.dwg, 6/29/2023

on Regional Park/DWG/PLAN SETS/DRAINAGE MAPS/FIG 6 REX ROAD PDR-FDR RATIONAL MAP.dwg

FINAL DRAINAGE REPORT

for


FALCON REGIONAL PARK

Prepared for:

El Paso County Community Services Department 2002 Creek Crossing Colorado Springs, CO 80905

October 21, 2015

Prepared by:

19 E. Willamette Ave. Colorado Springs, CO 80903 (719)-477-9429 (719)-471-0766 fax www.jpsengr.com

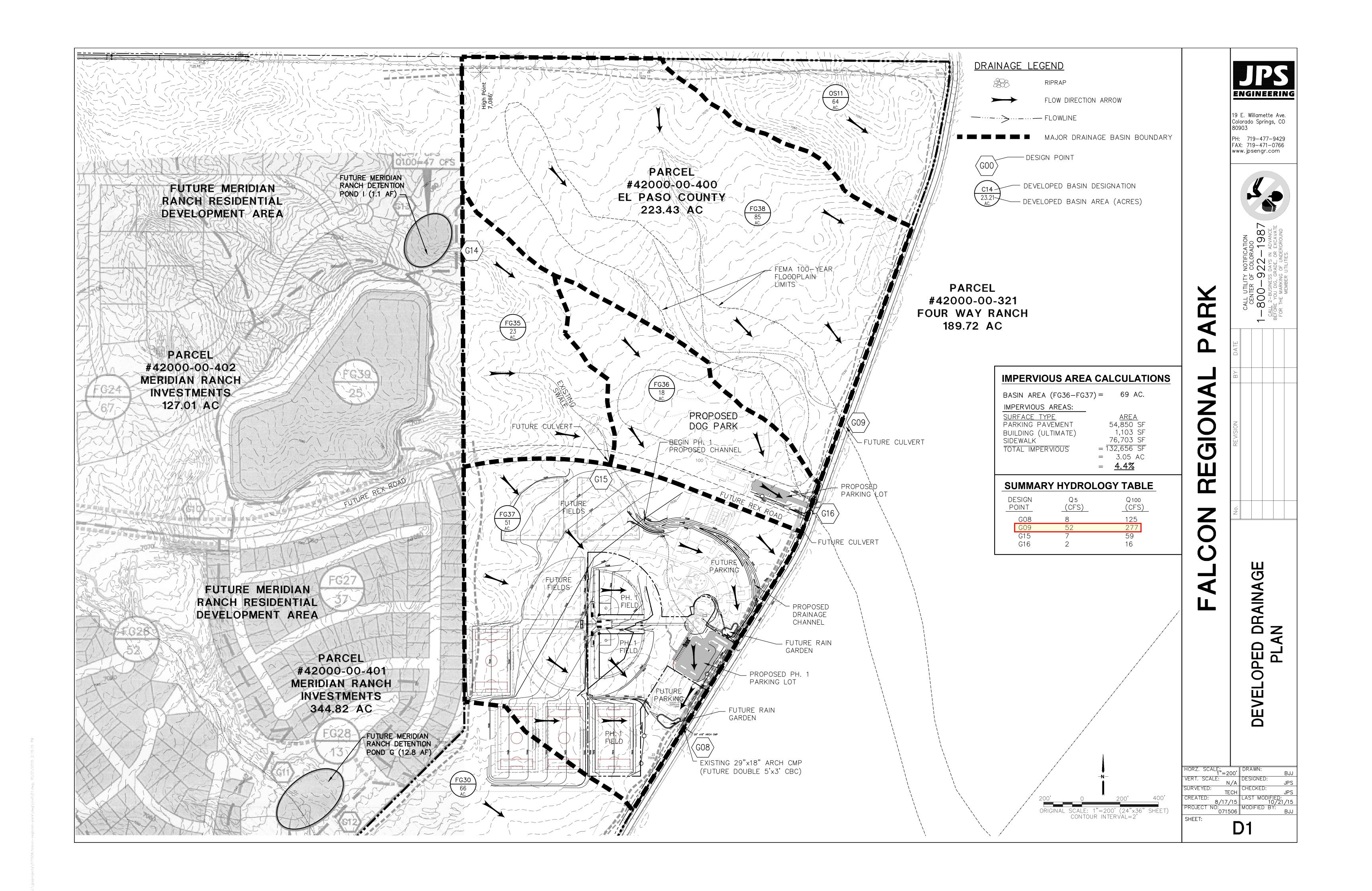
JPS Project No. 071506

Drexel, Barrell & Co., "Gieck Ranch Drainage Basin Planning Study," February 1, 2008.

El Paso County Engineering Criteria Manual, January, 2006, as amended.

Tech Contractors, "Revision to Master Development Drainage Plan, Meridian Ranch," July, 2015.

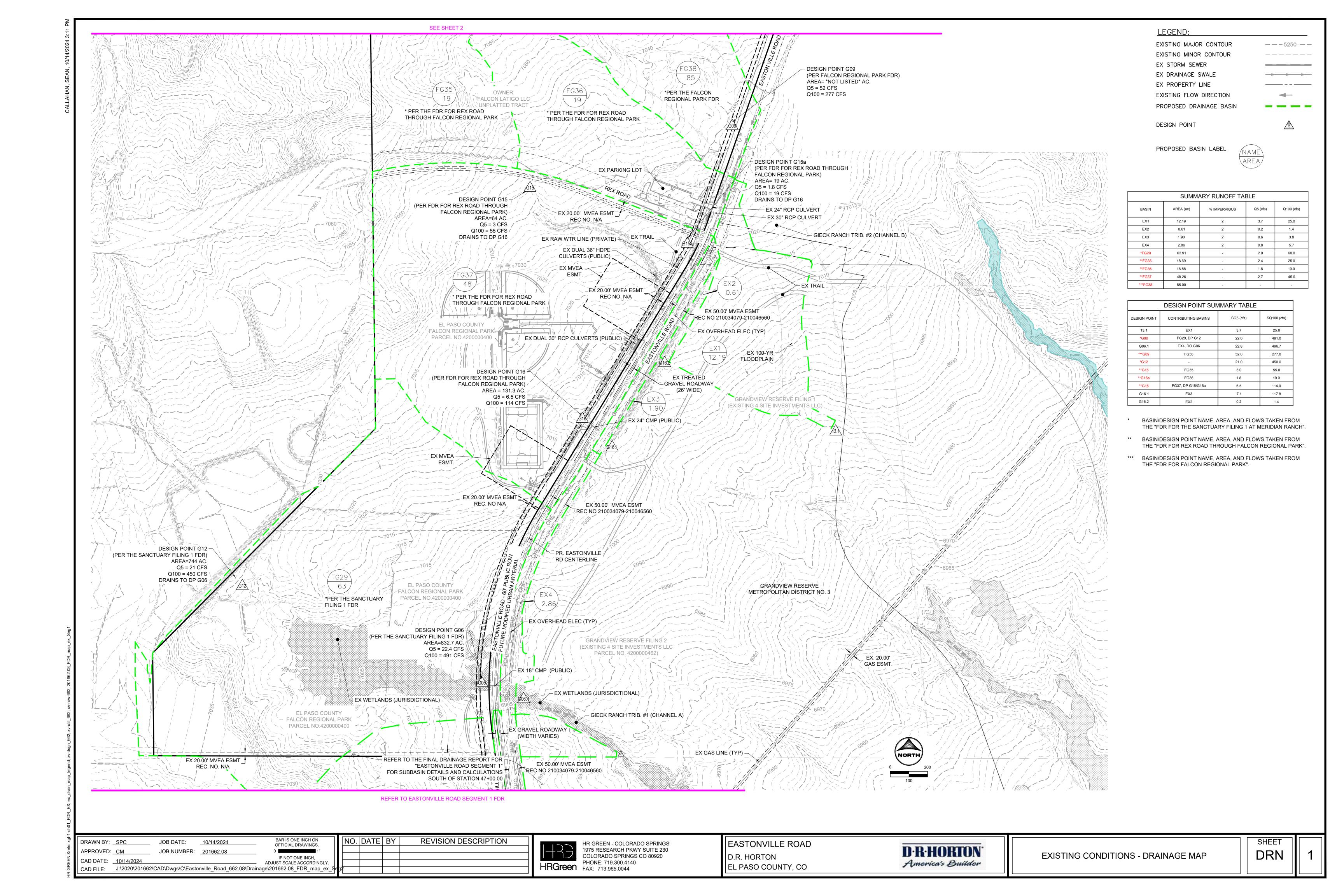
II. EXISTING / PROPOSED DRAINAGE CONDITIONS

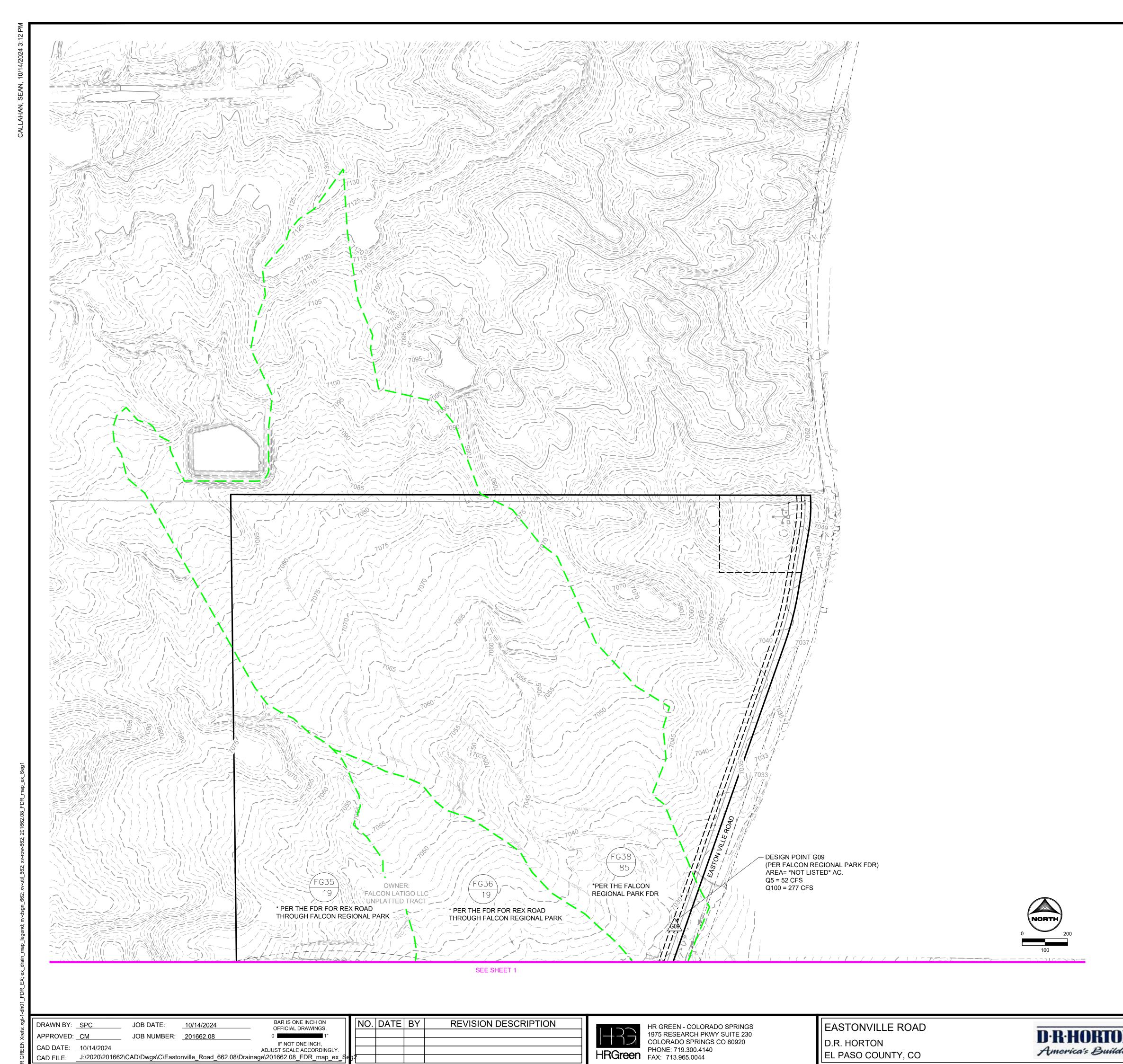

According to the Natural Resources Conservation Service (NRCS) Web Soil Survey for the park site, on-site soils are comprised of Columbine gravelly sandy loam and Stapleton sandy loam. These soils are classified as hydrologic soils group A and B. The existing site topography slopes downward to the southeast with average grades of approximately 2-3 percent.

Drainage planning for the Falcon Regional Park site has been addressed in the "Master Development Drainage Plan (MDDP), Meridian Ranch" by Tech Contractors, dated July, 2015. The enclosed Developed Drainage Plan (Sheet D1, Appendix B) shows the drainage basins impacting the park site consistent with the basin designations identified in the MDDP. As shown on Sheet D1, the park property lies within Basins OS11, FG30, FG35, FG36, FG37, and FG38.

The proposed dog park lies within Basin FG36. Surface drainage in Basin FG36 sheet flows southeasterly to Design Point #G16, with historic peak flows calculated as $Q_5 = 2.3$ cfs and $Q_{100} = 17.9$ cfs (Rational Method). Based on the relatively small impervious area associated with the proposed parking area on the south side of the dog park, the developed peak flow at DP #G16 is calculated as $Q_5 = 3.3$ cfs and $Q_{100} = 19.4$ cfs (Rational Method), showing a minimal increase.

On the north side of the new parking lot for the dog park, an existing drainage swale within Basin FG38 flows southeasterly along a delineated FEMA floodplain, draining to DP #G09. According to the MDDP, peak flows at DP #G09 are calculated as $Q_5 = 52$ cfs and $Q_{100} = 277$ cfs. According to County maintenance staff, flows from this design point currently combine and flow along the west side of Eastonville Road overtopping at various locations near the curve to the south. We recommend that plans for the upcoming PPRTA Eastonville Road improvement project provide for a culvert at this drainage crossing.


The primary active use area of the park lies within Basin FG37. Off-site drainage from the Meridian Ranch area northwest of the site enters the west boundary of the park property at Design Point #G14 and flows southeasterly through an existing drainage swale, ultimately reaching an existing 29"x18" Arch CMP culvert crossing Eastonville Road on the south side of the proposed parking lot.



APPENDIX F - DRAINAGE MAPS

JOB NUMBER: <u>201662.08</u>

APPROVED: <u>CM</u>

LEGEND:

EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR EX STORM SEWER

EX DRAINAGE SWALE EX PROPERTY LINE EXISTING FLOW DIRECTION

DESIGN POINT

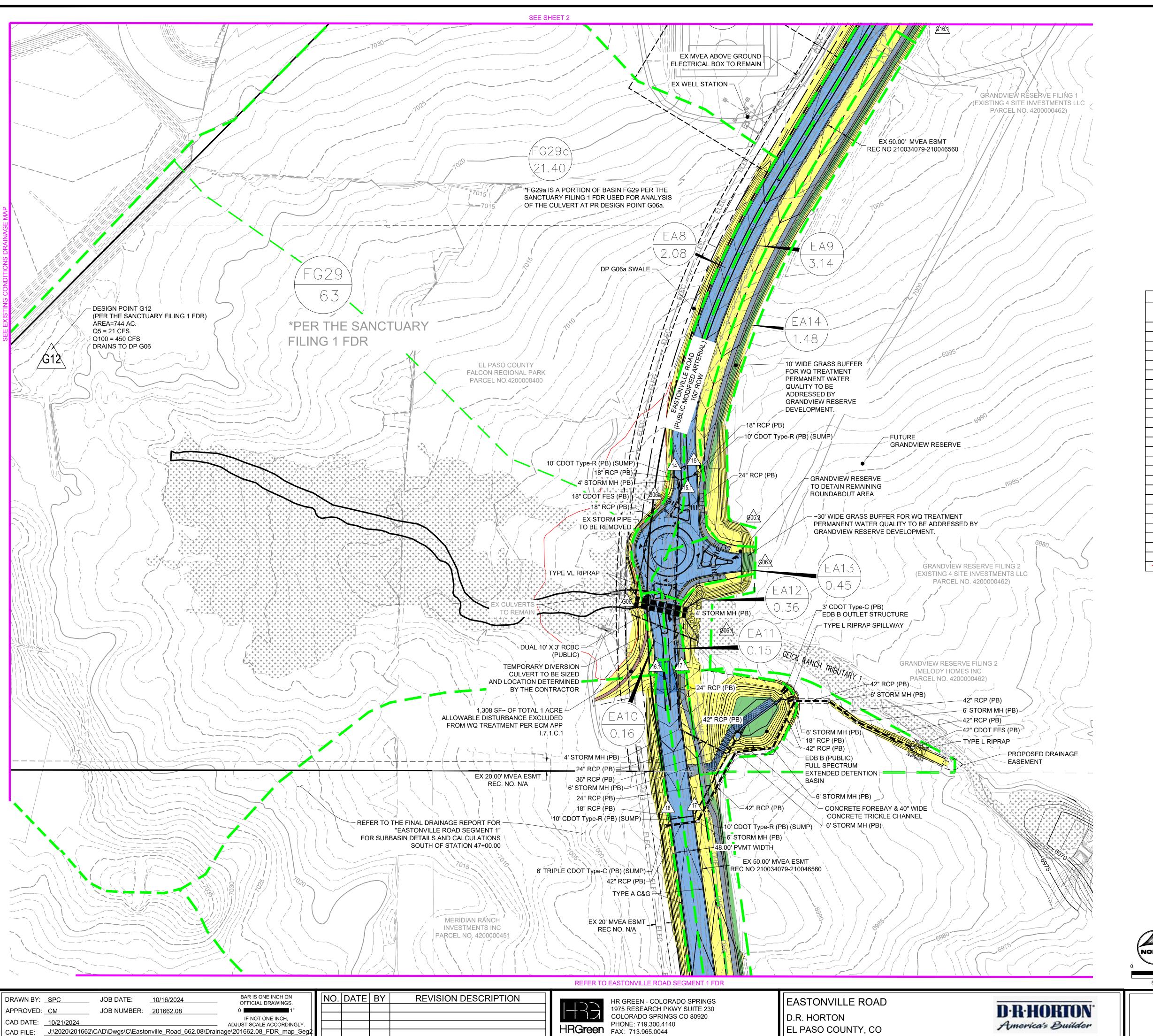
PROPOSED BASIN LABEL

PROPOSED DRAINAGE BASIN

SUMMARY RUNOFF TABLE								
BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs)				
EX1	12.19	2	3.7	25.0				
EX2	0.61	2	0.2	1.4				
EX3	1.90	2	0.6	3.8				
EX4	2.86	2	0.8	5.7				
*FG29	62.91	-	2.9	60.0				
**FG35	18.69	-	2.4	25.0				
**FG36	18.88	-	1.8	19.0				
**FG37	48.26	-	2.7	45.0				
***FG38	85.00	-	-	-				

DESIGN POINT SUMMARY TABLE								
DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)					
13.1	EX1	3.7	25.0					
*G06	FG29, DP G12	22.0	491.0					
G06.1	EX4, DO G06	22.8	496.7					
***G09	FG38	52.0	277.0					
*G12	-	21.0	450.0					
**G15	FG35	3.0	55.0					
**G15a	FG36	1.8	19.0					
**G16	FG37, DP G15/G15a	6.5	114.0					
G16.1	EX3	7.1	117.8					
G16.2	EX2	0.2	1.4					

- * BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR THE SANCTUARY FILING 1 AT MERIDIAN RANCH".
- ** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK".
- *** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR FALCON REGIONAL PARK".


D·R·HORTON'
America's Builder

D.R. HORTON

EL PASO COUNTY, CO

EXISTING CONDITIONS - DRAINAGE MAP

DRN

CAD FILE: J:\2020\201662\CAD\Dwgs\C\Eastonville_Road_662.08\Drainage\201662.08_FDR_map_Seg2

LEGEND: PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR PROPOSED STORM SEWER PROPOSED DRAINAGE SWALE PROPERTY LINE PROPOSED FLOW DIRECTION EXISTING FLOW DIRECTION PROPOSED DRAINAGE BASIN DESIGN POINT

PROPOSED BASIN LABEL

PRELIMINARY 100-YR FLOODPLAIN

WETLANDS

/name`

SUMMARY RUNOFF TABLE						DESIGN POINT SUMMARY TABLE					
BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs)		DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)		
EA1	0.22	73	0.8	1.5		*G06	FG29, DP G06a, G15	22.0	491.0		
EA2	0.25	72	0.9	1.7	1 [*G12	-	21.0	450.0		
EA3	0.76	65	2.4	4.9	1 [**G15	FG35	3.0	55.0		
EA4	3.11	24	3.8	11.7	1 [***G09	FG38	52.0	277.0		
EA5	0.16	0	0.1	0.4	1 [2.1	EA1	0.8	1.5		
EA6	0.25	76	0.8	1.6		3.1	EA2, DP2.1	1.6	3.2		
EA7	0.20	50	0.4	1.0		4.1	EA5, DP3.1	1.7	3.4		
EA8	2.08	99	5.2	9.4		5	EA3	2.4	4.9		
EA9	3.14	60	5.0	10.6	1 [6	EA4, DP5	5.9	16.0		
EA10	0.16	75	0.6	1.1	1 [G15a1	FG36a	4.6	27.7		
EA11	0.15	67	0.5	1.0		7	FG36b	0.4	2.0		
EA12	0.36	0	0.1	1.1		8	DPG15a1,7	4.9	29.2		
EA13	0.45	73	1.4	2.8		6.1	DP6,8	9.0	40.2		
EA14	1.48	21	1.2	3.8	1 [G15a	DP6.1	9.0	40.2		
EA15	0.76	24	0.7	2.1		**G16a	FG37a, DPG15,G15a	12.0	59.0		
EA16	1.18	0	0.3	2.5		10	EA5, EA6, SFB C OUTFLOW	1.3	3.3		
EA17	0.30	0	0.1	0.7] [10.1	EA7	0.1	0.7		
EA18	11.29	3	3.9	24.6] [11.1	DPG16a,G16b	23.0	113.9		
*FG29	62.91	-	2.9	60.0		12	EA18	3.9	24.6		
FG29a	21.40	2	6.4	42.9		13	DP11.1, 12	27.0	138.5		
**FG35	18.69	-	2.4	25.0		13.1	DP13	27.3	141.0		
FG36a	14.14	4	4.6	27.7	[14	EA8	5.2	9.4		
FG36b	0.81	8	0.4	2.0	[15	EA9	5.0	10.6		
FG37a	22.39	0	5.4	39.5		15.1	DP14,15	10.2	19.9		
FG37b	24.86	6	11.0	54.9		16.1	EA10	0.6	1.1		
***FG38	85.00	-	-	-] [17.1	EA11	0.5	1.0		
						G16.1	EA15	0.7	2.1		
						G16.2	-	0.0	0.0		
						G06a	FG29a	6.4	42.9		
						G06.1	EA12, DPG06	22.1	492.1		

BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR THE SANCTUARY FILING 1 AT MERIDIAN RANCH".

G06.2

G06.3

G16b

** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR REX ROAD THROUGH FALCON REGIONAL PARK".

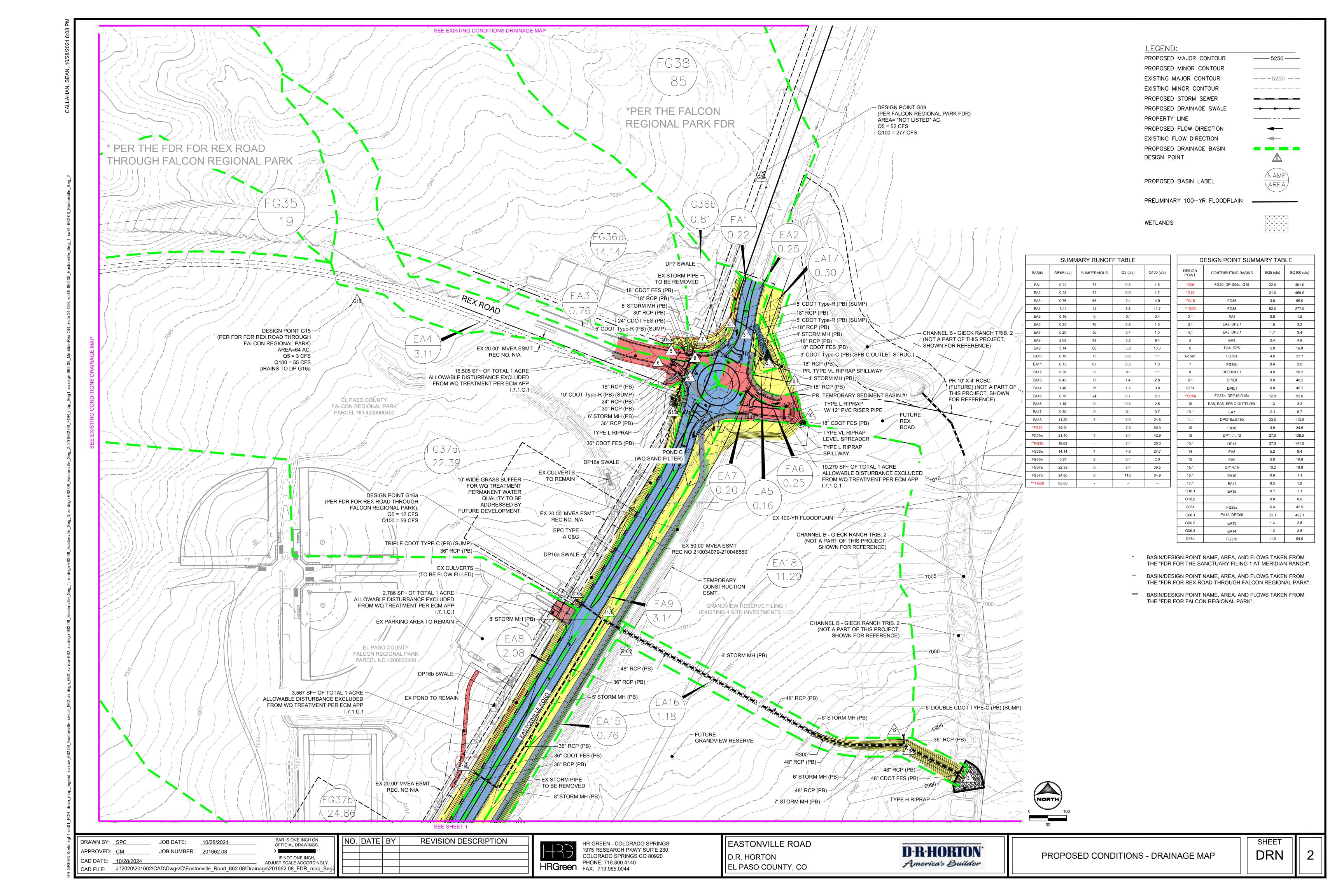
EA13

EA14

FG37b

1.2

3.8


11.0 54.9

*** BASIN/DESIGN POINT NAME, AREA, AND FLOWS TAKEN FROM THE "FDR FOR FALCON REGIONAL PARK".

EL PASO COUNTY, CO

PROPOSED CONDITIONS - DRAINAGE MAP

SHEET DRN

