

Eastonville Road – Londonderry Dr. to Rex Rd. Segment 2 Improvements Stationing 47+00.00 – 79+31.62

Final Drainage Report

August 2024 HR Green Project No: 201662.08

Prepared For:

D.R. Horton Contact: Riley Hillen, P.E. 9555 S. Kingston Ct. Englewood, CO 80112

Prepared By:

HR Green Development, LLC Contact: Colleen Monahan, P.E., LEED AP cmonahan@hrgreen.com (719) 394-2433

> EDARP Filing No: CDR2321

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any instituty caused by any negligent acts, errors or omissions on my part in prepared the report.

preparing this report.	COLLEEN MONTHE
Colleen Monahan, P.E State of Colorado No.	JONAL ENGLIM

Date

For and on behalf of HR Green Development, LLC

Owner/Developer's Statement:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Authorized Signature

Address: D.R. Horton 9555 S. Kingston Court Englewood, CO

El Paso County Statement

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development code, as amended.

Joshua Palmer, P.E.

County Engineer/ECM Administrator

Conditions:

Date

Date

Table of Contents

le of Contents	2
General Purpose, Location and Description	3
. Purpose	3
. Location	3
. Description of Property	3
. Floodplain Statement	4
Drainage Design Criteria	4
. Drainage Criteria	4
Drainage Basins and Subbasins	4
. Major Basin Description	4
. Existing Subbasin Description	5
Proposed Subbasin Description	6
Drainage Facility Design	9
. General Concept	9
. Water Quality & Detention	9
. Inspection and Maintenance	9
Wetlands Mitigation	10
Four Step Method to Minimize Adverse Impacts of Urbanization	10
Drainage and Bridge Fees	10
Opinion of Probable Cost	10
Hydraulic Grade Line Analysis	11
Summary	11
Drawings	12
References	12
	General Purpose, Location and Description

Appendices

- A. Vicinity Map, FEMA Map, NRCS Soil Survey
- B. Hydrologic Analysis
- C. Hydraulic Analysis
- D. Water Quality and Detention Calculations
- E. Reference Material
- F. Drainage Maps

I. General Purpose, Location and Description

a. Purpose

The purpose of this Final Drainage Report (FDR) for Eastonville Road Segment 2 Improvements is to describe the onsite and offsite drainage patterns, size drainage infrastructure to safely capture and convey developed runoff to water quality and detention facilities, and to safely route detained stormwater to adequate outfalls. This drainage report will detail the improvements of Eastonville Road from Londonderry Dr. to Rex Road for Segment 2. Stations 47+00.00 to 79+32.00 contain the Segment 2 Improvements for the Eastonville Road from Londonderry Drive to Rex Road for the portion of the project north of Grandview Filing No. 1. The project is all one project, however, the plan set has been broken into two segments to align with the Grandview Reserve Filings. A separate FDR describes Segment 1 of the project.

b. Location

Eastonville Road from Londonderry Dr. to Rex Road, referred to as 'the site' herein, is an existing 26' wide treated gravel road in El Paso County, Colorado. Per field inspection the existing pavement is not full depth, and therefore described as 'temporary' for the purpose of this report. The site lies in the existing 60' wide El Paso County Right-of-Way within Sections 21 and 28, Township 12 South, Range 64 West of the 6th Principal Meridian, in El Paso County, State of Colorado.

The site is bound by undeveloped land to the east and west that has historically been used as ranching lands. Falcon Regional Park, which contains ballparks and parking, and Falcon High School also border the site to the west. All lands to the east and west of the site are unplatted. A vicinity map is presented in Appendix A.

c. Description of Property

The site is approximately 0.69 miles (2.17 acres) of existing treated gravel roadway north of Londonderry Dr. and south of Rex Road. Per field inspection the existing pavement is not full depth, and therefore described as 'temporary' for the purpose of this report. The existing treated gravel width for the length of the project is 26' wide. There are 4' wide gravel shoulders and native landscaped swales are located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts. See Appendix A for an existing conditions photo.

The existing roadway has slopes ranging from 0.3% up to about 4%. The general topography of the surrounding area is typical of high desert, short prairie grass with gently rolling hillside with slopes ranging from 2% to 4%. The project site drains generally from the west to the east and is tributary to Black Squirrel Creek.

Per a NRCS soil survey, the site is made up of Type A Columbine gravelly sandy loam, Type A Blakeland loamy sand and Type B Stapleton sandy loam. The NRCS soil survey is presented in Appendix A.

Gieck Ranch Tributary #1 (Channel A) is the only drainageway that traverses the site in the west to east direction through an existing culvert under Eastonville Road. The channel is a mapped wetland and a wetland permit will be required for a part of this Eastonville Road improvement project. Channel A is not within a FEMA floodplain.

Gieck Ranch Tributary #2 is located on the north end of the project site and will not be impacted by this project. There are no known irrigation facilities in the area.

Existing utilities include an underground gas line that runs under Eastonville road through the Grandview reserve property south of the segment 2 improvements, an existing raw water line that follows the west side of Eastonville north of Falcon Regional Park, and an existing aboveground electrical line along the western side of Eastonville Road. An existing drainage map with these facilities is presented in Appendix F.

d. Floodplain Statement

Based on FEMA Firm map 08041C0552G December 7, 2018, the site is not located in any FEMA designated floodplain. See FEMA Firm Map in Appendix A. There is a Zone A floodplain north of the site and a Zone AE south of the site, both of which will not be altered with the associated Eastonville Road improvements.

II. Drainage Design Criteria

a. Drainage Criteria

Hydrologic data and calculations were performed using Drainage Criteria Manual Volume 1 of El Paso County (EPCDCM), with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual (CCSDCM), May 2014 revised January 2021.

Onsite drainage improvements are designed for the 5-year storm (minor event) and 100-year storm (major event) using rainfall values from the NOAA Atlas 14 Point Precipitation Frequency Data Server. Runoff was calculated per CCSDCM Section 6.3.0 - Rational Method. Private, full spectrum pond design was completed using the latest version of Mile High Flood District's (MHFD) UD-Detention per CCSDCM Section 13.3.2.1 – Private, full spectrum Detention. The detention pond allowable release rate will be limited to less than historic rates.

Rainfall Depths per NOAA Atlas 14						
Return Period (yr) 5 100						
1-hr Rainfall Depth (in)	1.21	2.49				

Inlet sizing was performed per the methods described in EPCDCM Section III Chapter 7 – Street Drainage and Storm Water Inlets. Storm sewer sizing was performed per the methods described in EPCDCM Section III Chapter 8 – Storm Drains and Appurtenances.

III. Drainage Basins and Subbasins

a. Major Basin Description

The site is located within the Gieck Ranch Drainage Basin. The site's drainage characteristics were previously studied in the following reports:

- 1. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 2. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.
- 3. "Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch" by Tech Contractors, August 2022.

Gieck Ranch Drainage Basin is a 22.05 square mile watershed located in El Paso County, Colorado. Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains to the Arkansas River. The majority of the basin is undeveloped and is rolling range land typical of Colorado's semi-arid climates. It should be noted that the Gieck Ranch DBPS has not been approved at the time of this report.

The Meridian Ranch MDDP and The Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch indicate that the Eastonville Road culvert crossing at the Gieck Ranch Tributary #1, within the project boundary, does not provide enough capacity for the historic flow rates. This culvert will be upgraded as part of this project.

Within the Gieck Ranch Drainage Basin, ranching has historically been the predominant land use, with rolling topography between 2%-4% slopes. Recently urbanization is occurring within the drainage basin, most notably for this project are Meridian Ranch and Latigo Trails Developments. Both are single family residential neighborhoods located upstream to the west and northwest of the Eastonville Segment 2 Improvements project site.

b. Existing Subbasin Description

Eastonville Road Segment 2 (the site) accepts flows from areas to the west and northwest of the site, including portions of Meridian Ranch and Latigo Trails Development. The flows and design points used in the following descriptions are taken from the approved Meridian Ranch MDDP and The Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch provides the detailed analysis of the pond releases and flows as they outfall from those developments upstream of this Eastonville Road site. For the purpose of this report, full buildout of the Meridian Ranch development was assumed; hence the developed peak flow rates from the "future buildout conditions" for the entirety of Meridian Ranch were used to evaluate the existing conditions below.

Basin EX1 (The Sanctuary Filing 1 FG-38) is 85.16 acres of undeveloped area and treated gravel area to the crown of Eastonville Road roadway. Stormwater from this basin combines with flows from Latigo Trails South Pond (The Sanctuary Filing 1 G-17) is conveyed overland to DP1 for a total area of 321.5 acres (The Sanctuary Filing 1 G18). Flows at DP1 ($Q_5 = 28.3$ cfs $Q_{100} = 365.2$ cfs) are conveyed across Eastonville Road in an existing 24" CMP culvert and discharges to Gieck Ranch Tributary #2 (Channel B). This basin is located upstream of the Eastonville project and is presented here to show where flows go that are upstream of the project site. The Eastonville project will have no impact on this basin.

Basin EX2 (The Sanctuary Filing 1 FG36) is 18.88 acres undeveloped area, parking lot, and treated gravel to the crown of Eastonville Road roadway. Stormwater from this basin is conveyed overland to DP2 (The Sanctuary Filing 1 FG36). Flows at DP2 ($Q_5 = 1.7$ cfs $Q_{100} = 18.8$ cfs) are conveyed southerly across Rex Road in an existing 24" RCP culvert and discharges to Basin EX3.

Basin EX3 is 51.06 acres of undeveloped area and the Falcon Regional Park ball fields and treated gravel to the crown of Eastonville Road roadway. Stormwater from this basin combines with flows from The Sanctuary Filing 1 Design Point G15 via an existing roadside swale where it then combines with DP2 flows. Flows travel to DP3 for a total area of 131.3 acres (The Sanctuary Filing 1 Design Point G16) where they are conveyed across Eastonville Road in an existing 24" CMP culvert ($Q_5 = 6.1$ cfs $Q_{100} = 112.1$ cfs).

Basin EX4 is 62.87 acres of undeveloped area and treated gravel to the crown of Eastonville Road roadway. Stormwater from this basin combines with flows from The Sanctuary Filing 1 Design Point G12 (Meridian Ranch Pond G) to Gieck Ranch Tributary #1 and an existing roadside swale to DP 4 for a total area of 832.7 acres (The Sanctuary Filing 1 Design Point G06) ($Q_5 = 22.4$ cfs $Q_{100} = 491$ cfs). Flows at DP4 are conveyed across Eastonville Road in an existing 18" CMP culvert and discharges to Gieck Ranch Tributary #1 (Channel A).

Basin EX5 is 12.19 acres of undeveloped area and a future church property on the east side of the Eastonville Roadway. Stormwater from this basin sheet flows east directly to the Gieck Ranch Tributary #1 at DP13.1 ($Q_5 = 2.7$ cfs $Q_{100} = 18.0$ cfs).

Basin EX6 is 0.61 acres of undeveloped area on the future church property on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP O3.1 ($Q_5 = 0.1 \text{ cfs } Q_{100} = 0.9 \text{ cfs}$). Ultimately draining east to the Gieck Ranch Tributary #1.

Basin EX7 is 1.90 acres of undeveloped area on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP O3 ($Q_5 = 0.4$ cfs $Q_{100} = 2.5$ cfs). Ultimately draining east to the Gieck Ranch Tributary #1 combined with flows from DP G16 from the Sanctuary Filing 1.

Basin EX8 is 2.86 acres of undeveloped area on the east side of the Eastonville Roadway. Stormwater from this basin flows south via an existing drainage channel south to DP O3 ($Q_5 = 0.6$ cfs $Q_{100} = 4.0$ cfs). Ultimately draining east to the Gieck Ranch Tributary #1 combined with flows from DP G06 from the Sanctuary Filing 1.

c. Proposed Subbasin Description

Description of Proposed Project

The proposed project includes improvements to Eastonville Road from Londonderry Drive to Rex Road. As described above, the current condition of the existing roadway in this area consists of 26' wide treated gravel roadway with 4' wide sand shoulders and weedy swales located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts.

The proposed improvements from Rex Road south to the southern property line of the proposed Grandview Reserve Filing 1 include removal of the 26' wide treated gravel and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). This includes Basins EA1-EA11.

Refer to the Eastonville Road Segment 1 improvements FDR for subbasin information and calculations south of subbasins EA10 & EA11. Unresolved:

Eastonville Road Basins

-Verify <u>all</u> basin flows with hydrology spreadsheet

Basin EA1 is 0.22 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.7$ cfs $Q_{100} = 1.3$ cfs) is conveyed in curb and gutter to DP2. Flows at DP2 are captured in a 5' Type R sump inlet (Public) and piped to Pend C, a private full spectrum sand filter basin. Basin EA1 will be detained by the Pond C Sand Filter.

the ones for this portion also be public? Basin EA2 is 0.25 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.8 \text{ cfs } Q_{100} = 1.5 \text{ cfs}$) is conveyed in curb and gutter to DP3. Flows at DP3 are captured in a 5' Type R sump inlet (Public) and piper to Pond C. Basin EA2 will be detained by the Pond C Sand Filter.

Basin EA3 is 0.20 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.7$ cfs $Q_{100} = 1.4$ cfs) is conveyed in curb and gutter to DP5. Flows at DP5 are captured in a 10' Type R sump inlet (Public) and piped to DP9. Basin EA3 will not be detained per the Meridian Ranch MDDP as this basin has been over-detained within Meridian Ranch.

Basin EA4 is 0.17 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.5$ cfs $Q_{100} = 1.1$ cfs) is conveyed in curb and gutter to DP6. Flows at DP6 are captured in

Will the TSB be removed to? Also please state if WQ treatment will be provided by future development or not.

These 2 basins aren't listed as trib to Pond B on PDF pg 10 below. Revise to remove discrepancy.

Eastonville Road Final Drainage Report Project No.: 201662.08

a 5' Type R sump inlet (Public) and piped to DP9. Basin EA4 will not be detained per the Meridian Ranch MDDP as this basin has been over-detained within Meridian Ranch.

Basin EA5 is 0.16 acres of undeveloped area and includes the Pond C Sand Filter. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 0.4$ cfs) is flows directly into the Pond C Sand Filter.

Basin EA6 is 0.70 acres of undeveloped area that will be future roadway (Rex Road) once the Grandview Filing 1 development is constructed. Stormwater ($Q_5 = 3.1 \text{ cfs } Q_{100} = 5.5 \text{ cfs}$) is conveyed in a swale to DP10: Temporary Sediment Basin #1 (TSB #1). TSB #1 has been sized for the paved area of the roundabout and the future paved area of Rex Road within Basin EA6. The swale will be removed with the construction of Rex Road curb and gutter. Basin EA6 will be detained in TSB #1.

Basin EA7 is 0.65 acres of undeveloped area that will be future roadway (Rex Road) once the Grandview Filing 1 development is constructed. Stormwater ($Q_5 = 2.5$ cfs $Q_{100} = 4.7$ cfs is conveyed in a swale to DP10: Temporary Sediment Basin #1 (TSB #1). TSB #1 has been sized for the paved area of the roundabout and the future paved area of Rex Road within Basin EA7. The swale will be removed with the construction of Rex Road curb and gutter. Basin EA7 will be detained in TSB #1.

Basin EA8 is 2.08 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 5.0 \text{ cfs } Q_{100} = 9.0 \text{ cfs}$) is conveyed in curb and gutter to DP14. Flows at DP14 are captured in a 10' Type R sump inlet (Public) and piped to Pond B. Basin EA8 will be detained Pond B Full Spectrum Detention Basin. 3.14 per drainage map

Basin EA9 is 2.99 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 4.6$ cfs $Q_{100} = 9.5$ cfs) is conveyed in curb and gutter to DP15. Flows at DP15 are captured in a 10' Type R sump inlet (Public) and piped to Pond B. Basin EA9 will be detained Pond B Full Spectrum Detention Basin.

Basin EA10 is 0.12 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.6$ cfs $Q_{100} = 1.1$ cfs) is conveyed in curb and gutter to DP16.1 Flows from DP16.1 drain south and captured in a 10' Type R sump inlet (Public) and piped to Pond B. This inlet design is in the Eastonville Road Segment 1 FDR. Basin EA10 will be detained Pond B Full Spectrum Detention Basin which is detailed in the Eastonville Road Segment 1 FDR.

Basin EA11 is 0.19 acres of proposed roadway (Modified Urban Minor Arterial Roadway Cross-Section). Stormwater ($Q_5 = 0.5$ cfs $Q_{100} = 1.0$ cfs) is conveyed in curb and gutter to DP17.1. Flows from DP17.1 drain south and captured in a 10' Type R sump inlet (Public) and piped to Pond B. This inlet design is in the Eastonville Road Segment 1 FDR. Basin EA10 will be detained Pond B Full Spectrum Detention Basin which is detailed in the Eastonville Road Segment 1 FDR.

Basin EA12 is 0.34 acres of andscaping east of the Eastonville Roadway. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 1.0$ cfs) is conveyed south to DP Q4. Flows at DP Q4 combine with DP G06 per the Sanctuary Filing 1 Report. This design point then drains east offisite in the Geick Ranch Tributary #1.

Basin EA13 is 0.45 acres of Eastonville Roadway at the Dawlish Dr roundabout. Stormwater ($Q_5 = 1.4$ cfs $Q_{100} = 2.8$ cfs) is conveyed east to DP O4.1. Flows to DP O4.1 will be detained and treated as a part of the Grandview Reserve development. This design point then drains southeast offisite in the Geick Ranch Tributary #1.

Basin EA14 is 1.48 acres of landscaping and concrete/gravel trail on the east side of Eastonville Rd. Stormwater ($Q_5 = 1.2$ cfs $Q_{100} = 3.8$ cfs) is conveyed southeast to DP O4.2. Flows to DP O4.2 will be detained

Offsite Basins

There is not WQ treatment provided for EA12 - EA17 with this project. A WQ treatment summary table would be <u>very</u> helpful for this project since there is so much going on with phasing, runoff reduction, EDBs, and SFBs, and exclusions. Could you please complete a table that shows all WQ treatment so we can better quantify this like exclusions and untreated areas with future detention? I have provided a go-by table for your use. It's also helpful to have an accompanying WQ summary map, see my comment below for details.

Eastonville Road Final Drainage Report roject No.: 201662.08

and treated as a part of the Grandview Reserve development. This design point then drains southeast offisite in the Geick Ranch Tributary #1.

Basin EA15 is 0.76 acres of landscaping and concrete/gravel trail on the east side of Eastonville Rd. Stormwater ($Q_5 = 0.7$ cfs $Q_{100} = 2.1$ cfs) is conveyed southeast to DP O3. Flows to DP O3 combine with flows from the Sanctuary Filing 1 FDR design point G16. Flows to DP O3 will be detained and treated as a part of the Grandview Reserve development. This design point then drains southeast offisite in the Geick Ranch Tributary #1.

Basin EA16 is 1.18 acres of landscaping on the east side of Eastonville Rd and south of the church property. Stormwater ($Q_5 = 0.3$ cfs $Q_{100} = 2.5$ cfs) is conveyed southeast to DP 13.1. Flows to DP 13.1 will be detained and treated as a part of the Grandview Reserve development. This design point then drains southeast offisite in the Geick Ranch Tributary #2.

Basin EA17 is 0.30 acres of landscaping on the east side of Eastonville Rd and south of the church property. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 0.7$ cfs) is conveyed southeast to DP 10.1. This design point drains southeast offisite in the Geick Ranch Tributary #2.

Unresolved:

Basins not included in hydrology and

Basin OS1 (EX1) is 85.16 acres of undeveloped area. Stormwater from this basin combines with flows from Latigo Trails South Pond (The Sanctuary Filing 1 G-17) is conveyed overland to DP1 (The Sanctuary Filing 1 G18). Flows at DP1 ($Q_5 = 28.3$ cfs Q₁₀₀ = 365.2 cfs) are conveyed across Eastonville Road in an existing 24" CMP culvert and discharges to Gieck Ranch Tributary #2 (Channel B). This basin is located upstream of the Eastonville project and is presented here to show where flows go that are upstream of the project site. The Eastonville project will have no impact on this basin.

Basin OS2 is 15.03 acres of undeveloped land and parking area north of Rex Road and contains a portion of Rex Road ($Q_5 = 4.2$ cfs $Q_{100} = 21.6$ cfs). Stormwater is conveyed to DP7 and is captured in a proposed 24" RCP culvert and piped south across Rex Road. No development associated with Eastonville Road will occur in Basin OS2.

Basin OS3 is 1.00 acre of undeveloped land ($Q_5 = 0.2$ cfs $Q_{100} = 1.2$ cfs) along the western edge of Eastonville Road. Stormwater is conveyed to DP8 and is captured in a proposed 18" RCP culvert and piped south across Rex Road. No development associated with Eastonville Road will occur in Basin OS3.

Basin OS4 is 9.60 acres of undeveloped land ($Q_5 = 4.8$ cfs $Q_{100} = 21.6$ cfs) along the western edge of Eastonville Road. Stormwater is conveyed to DP11 in a roadside swale where it combines with Meridian Ranch DP G15 flows ($Q_5 = 8$ cfs $Q_{100} = 54.0$ cfs) before being captured in a proposed 24" RCP culvert and piped to DP11.1. The combined flows as it reaches DP11 is $Q_5 = 7.5$ cfs $Q_{100} = 44$ cfs.

Basin OS5 is 40,26 acres of undeveloped land and Falcon Regional Park along the western edge of Eastonville Road. Stormwater is conveyed to DP3 where per the Sanctuary Filing 1 FDR the total flow is 112.2.1 cfs to a proposed 48" RCP culvert and piped to Channel B.

Basin OS6 is 60.83 acres of undeveloped land along the western edge of Eastonville Road. Basin OS6 flows are adapted directly from the approved The Sanctuary Filing 1 FDR. Stormwater is conveyed to DP16 in a roadside swale where it combines with Meridian Ranch DP G12 flows before being conveyed across

We need to know how much of the proposed area of disturbance (not just the impervious surfaces) is treated vs untreated and if there are any exclusions that apply to the untreated areas. So please create a basic overview map (or modify an existing drainage map) with color shading/hatching that shows areas tributary to each PBMP (pond, runoff reduction, etc.) and those disturbed areas that are not treated by a PBMP, with the applicable exclusion labeled (ex: 20% up to 1ac of development can be excluded per ECM App I.7.1.C.1 and exclusions listed in ECM App I.7.1.B.#). An accompanying summary table on this map would also be very helpful (example provided):

Add a statement that notates that the Interim Condition was designed a built with Segment 1.

HRGreen

Eastonville Road in dual 10' x 3.5' RCBC to Channel A. The combined flows at DP16 (EX4) are Q₅ = 22.4 cfs $Q_{100} = 491$ cfs.

Basin OS7 is future outflow of 11.29 acres of a future stormwater detention pond outflow developed land that will be detained to meet existing conditions ($Q_5 = 3.9$ cfs $Q_{100} = 24.6$ cfs) in the southeast corner of Eastonville Road and Rex Road. From there, stormwater is piped to Channel B.

Drainage Facility Design IV.

a. General Concept

The proposed improvements from Rex Road south to the southern property line of the proposed Grandview Reserve Filing 1 include removal of the 26' wide treated gravel and replacing the road with a Modified Urban Minor Arterial/Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). Inlets will be placed at low points and roundabout entrances. Stormwater from this roadway will be piped to *i* ther a full spectrum detention pond, sand filter or temporary sediment basin. All ponds and water quality features will discharge at less than historic rates.

b. Water Quality & Detention

Pond C (Sand Filter)

Water quality and stormwater detention for Basins EA1, 2, & 5 is provided in Sand Filter Basin C. SFB C is a public, full spectrum sand filter basin within the Grandview Reserve property to be developed in the future. In Pond C, a total of 0.63 from the proposed project acres at 54% composite imperviousness will be detained. The minimum required acreage of treatment is 0.63 acres. The WQCV is 0.009 ac-ft, the EURV is 0.037 acft, and the 100-year detention volume is 0.062 ac-ft. The WQCV, EURV and 100-year storms are released in 12, 41 and 44 hours, respectively. A 10' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 12' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard south. SFB C outfalls towards the future Channel B improvements at historic runoff rates. Runoff from Pond C will follow historic drainage patterns and not Per my comment on PDF pg 8

exceed historic flow rates.

add: "Ultimate Condition"

Extended Detention Basin B (Full Spectrum EDB)

Water quality and detention for Basins EA6 – EA8 per the segment 1 FDR and EA9-10 per the segment 2 FDR is provided in Extended Detention Basin B, a public county owned, full spectrum extended detention basin within Filing No. 1 of Grandview Reserve within a proposed drainage easement. A total of 9.02 acres of disturbed area from the proposed project at 67% composite imperviousness will be treated and detained by Dbl check this value. I EDB B for the ultimately developed Eastonville Road Improvements. Ultimate conditions include fully built get closer to sections of Eastonville Road from Londonderry Road to Rex Road and is anticipated for Spring 2025. 9.37ac Ultimate condition pond sizing calculations have also been provided in the Appendix of this report. The ultimate conditions WQCV is 0.197 ac-ft, the EURV is 0.756 ac-ft, and the 100-year detention volume is 1.119 ac-ft. The WQCV, EURV and 100-year storms are released in 40, 70 and 73 hours, respectively. A forebay is located at the outfall into the pond and a 40" trickle channel conveys flow towards the outlet structure. A 15' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 15.5' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard towards Gieck Ranch Tributary #1. EDB B outfalls towards DP8 at historic runoff rates. Runoff from DP8 will follow historic drainage patterns and not exceed historic flow rates.

Include a table like this for the Ultimate condition of EDB B. And be sure to make it clear which Basin IDs are from which segment because it appears EDB B will treat runoff from both Segment 1's EA8 and Segment 2's EA8, which are two seperate areas/basins. See top of next page for an example of this clearly shown.

			•.		-		
EDB B Water Quality Treatment Summary Table							
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to SFB A (ac)	Disturbed Area Treated via Runoff Reduction (ac)	je	9	
EA6	1.09	1.09	1.09	0			
EA7	1.92	1.92	1.92	0			
EA8	0.94	0.94	0.94	0			
Total	3.95	3.95	3.95	0			

above, basins EA8 and EA11 are

supposedly also trib to this pond.

Segment	Basin	Area (ac)	Total
	EA6	1.09	
Segment 1	EA7	1.92	3.95
	EA8	0.94	
	EA8	2.08	
Segment 2	EA9	2.99	5.42
Segment 2	EA10	0.16	5.42
	EA11	0.19	
			9.37

Please confirm whether the district wants to maintain aesthetics of any of the ponds. An agreement can be drafted allowing for that.

Eastonville Road Final Drainage Report Project No.: 201662.08

c. Inspection and Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated that all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

All public detention ponds are to be owned and maintained by El Paso County, once established, unless an agreement is reached stating otherwise. Maintenance access for all full spectrum detention facilities will be provided from public Right-of-Way. Maintenance access for the drainageways will be provided through the proposed tracts.

V. Wetlands Mitigation

There is an existing wetland in Gieck Ranch Tributary #1 (Channel A). The wetland is contained entirely within the channel and is classified as jurisdictional. A Nationwide Wetland Permit will be applied for due to the disturbed area at the Dawlish Roundabout. Wetlands maintenance will be the responsibility of the DISTRICT.

VI. Four Step Method to Minimize Adverse Impacts of Urbanization

Step 1 – Reducing Runoff Volumes: Low impact development (LID) practices are utilized to reduce runoff at the source. In general, stormwater discharges are routed across pervious areas prior to capture in storm sewer. This practice promotes infiltration and reduces peak runoff rates. The Impervious Reduction Factor (IRF) method was used and is presented in Appendix D.

Step 2 – Treat and slowly release the WQCV: This step utilizes full spectrum water quality and detention to capture the WQCV and slowly release runoff from the site. Onsite full spectrum detention pond provides water quality treatment for the site. The WQCV is released over a period of at least 12 hours for SFBs and 40 hours for EDBs while the EURV is released over a period of 40-44 hours for SFBs and 68 - 72 hours for EDBs as recommended by the MHFD.

Step 3 – Stabilize stream channels: This step establishes practices to stabilize drainageways and provide scour protection at stormwater outfalls. Erosion protection is provided at all concentrated stormwater discharge points in the form of riprap pads.

Step 4 – Consider the need for source controls: No industrial or commercial uses are proposed within this development and therefore no source controls are proposed.

VII. Drainage and Bridge Fees

Gieck Ranch drainage basin has not been established as a fee basin within El Paso County. Therefore, no drainage basin fees are due at time of platting.

VIII. Opinion of Probable Cost

An engineer's opinion of probable cost has been provided below for public and private drainage infrastructure improvements. This includes cost estimates for the public full spectrum sand filter basin C. All required stormwater infrastructure will be installed per El Paso County Requirements.

	-	+	2	2	
H	HF	RG	àre	eer	1

Eastonville Road Final Drainage Report Project No.: 201662.08

Public Infrastructure Cost Estimate				
Line Item	Quantity	Unit F	rice	Cost
18" Reinforced Concrete Pipe	290	\$76	LF	\$22,040
24" Reinforced Concrete Pipe	904	\$114	LF	\$103,056
48" Reinforced Concrete Pipe	1678	\$187	LF	\$313,786
18" CDOT FES	1	\$500	EA	\$500
24" CDOT FES	3	\$684	EA	\$2,052
48" CDOT FES	2	\$912	EA	\$1,824
6' DIA Storm Manhole	12	\$7,734	EA	\$92,808
CDOT Type D Inlet	1	\$6,931	EA	\$6,931
10' CDOT Type R Inlet	6	\$6,703	EA	\$40,218
Rip Rap, d50 size from 6"-24"	2	\$97	Tons	\$194
3' x 10' Concrete Box Culvert w/ Wingwalls	110	\$400	Tons	\$44,000
10% Contingency				\$62,741
TOTAL:				\$690,150

Public SFB C Cost Estimate						
Line Item	Quantity	Unit F	Price	Cost		
Rip Rap, d50 size from 6"-24" (Inflow)	1.5	\$97	Tons	\$146		
Sand Filter Media	44	\$100	/CY	\$4,400		
4" Perforated PVC Underdrain	10	\$10	/LF	\$100		
12" ABC Maintenance Access	19	\$40	/CY	\$760		
Outlet Structure w/ Orifice Plate	1	\$5,000	EA	\$5,000		
Rip Rap, d50 size from 6"-24" (Spillway)	19.5	\$97	Tons	\$1,892		
18" RCP Outlet Pipe	180	\$60	/LF	\$10,800		
18" RCP FES	1	\$350	EA	\$350		
10% Contingency				\$2,345		
TOTAL:				\$25,792		

IX. Hydraulic Grade Line Analysis

These values have to match what is shown in Section 1 of the FAE for each PBMP/PCM

Hydraulic grade line analysis and final pipe sizes have been sized and calculations are provided in Appendix C. All proposed storm sewer will be designed in accordance with El Paso County Drainage Criteria Manuals.

X. Summary

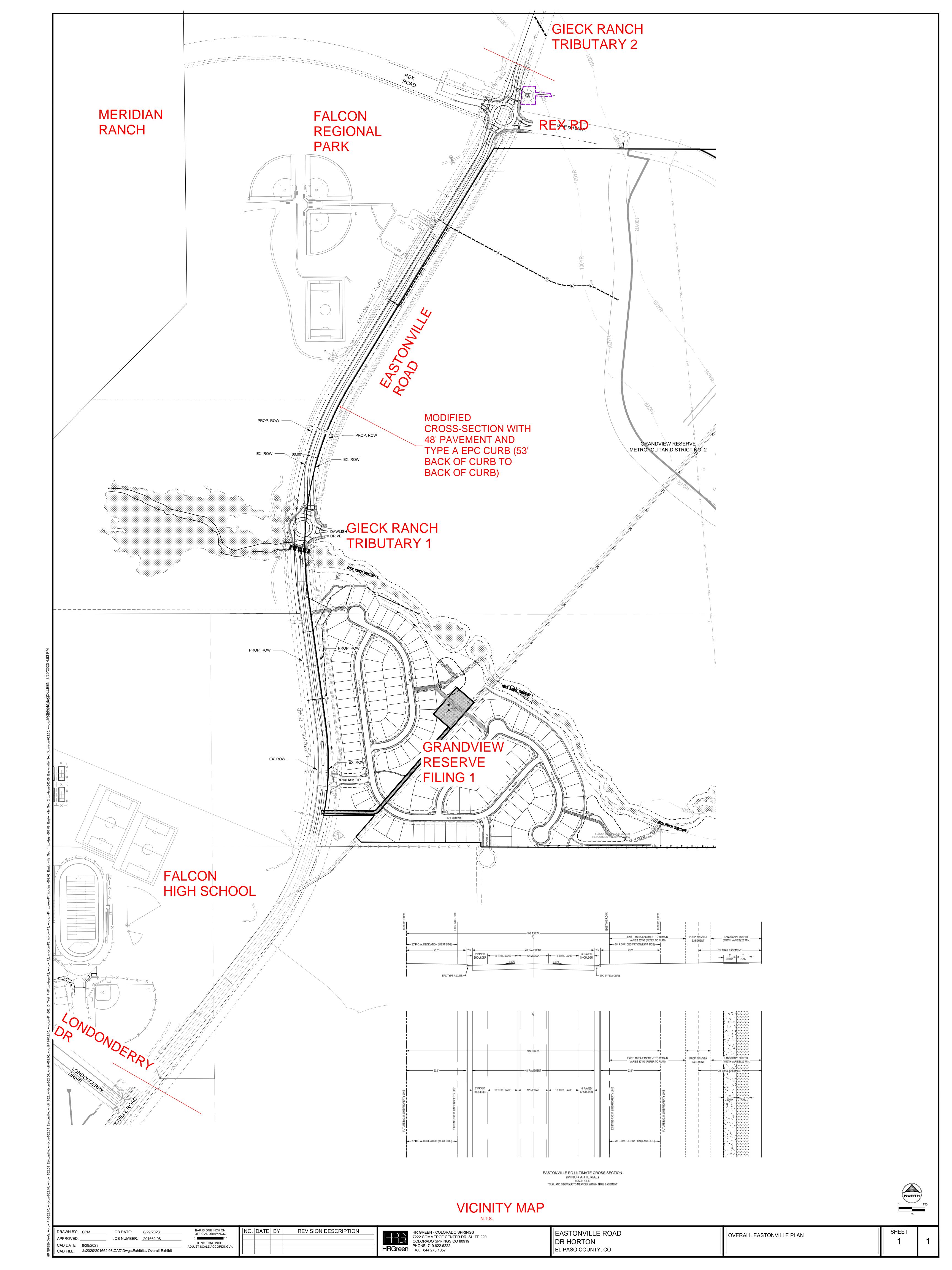
Eastonville Road lies within the Gieck Ranch Drainage Basin. Water quality and detention for the site is provided in full spectrum water quality and detention ponds, sand filters and temporary sediment basins. There is one major drainageway that traverses the site: Gieck Ranch Tributary 1. The water quality and

detention features ponds will be maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT). All drainage facilities were sized per the El Paso County Drainage Criteria Manuals.

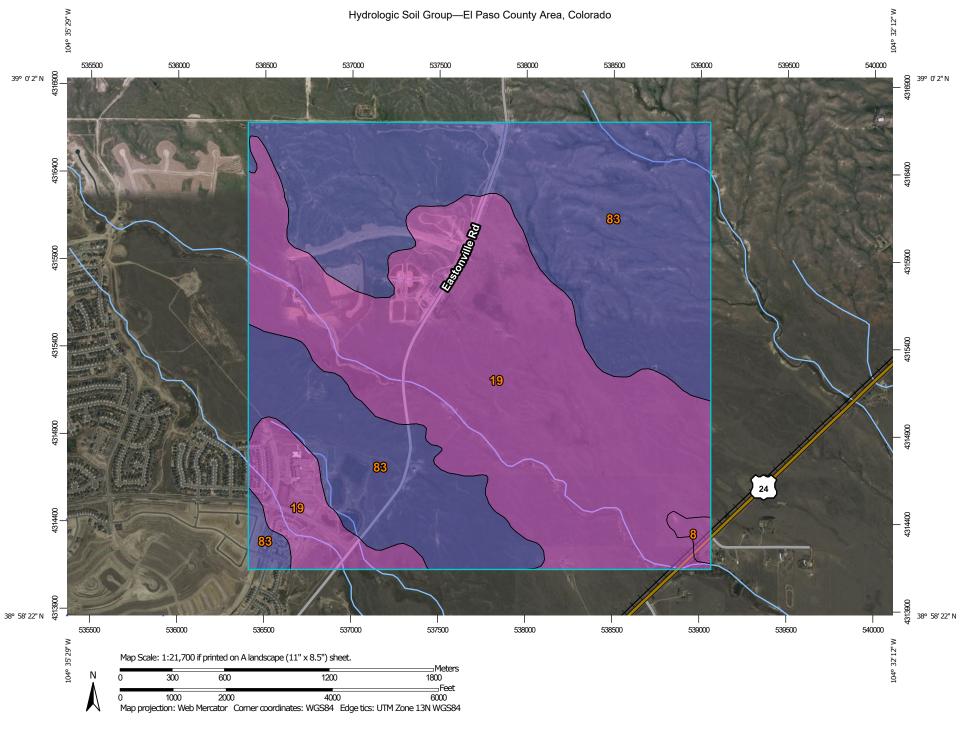
The development of this project will not adversely affect downstream properties.

XI. Drawings

Please refer to the appendices for vicinity and drainage basin maps.

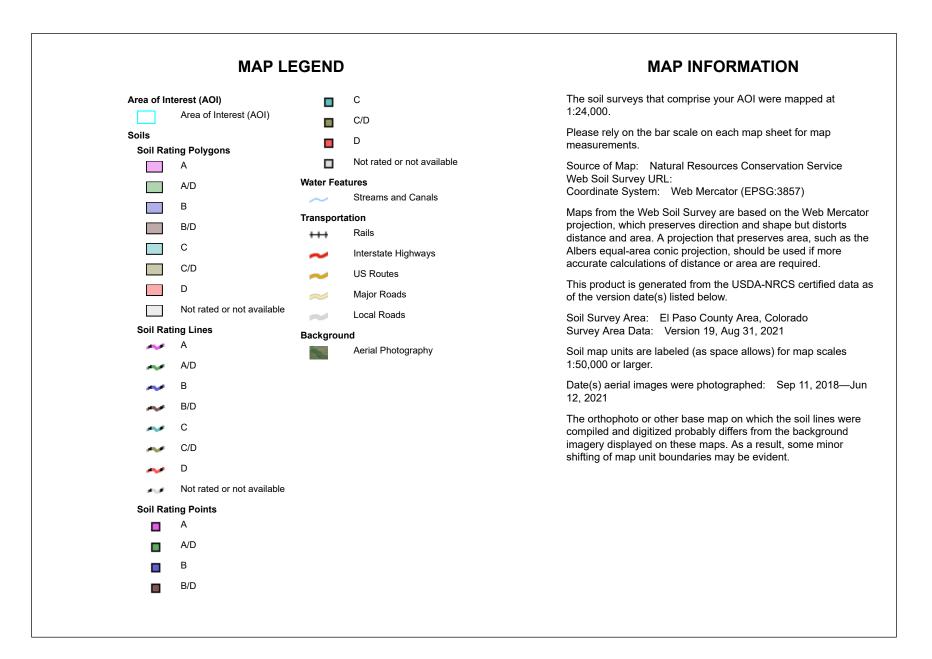

XII. References

- 1. City of Colorado Springs Drainage Criteria Manual, May 2014, Revised January 2021.
- 2. Drainage Criteria Manual of El Paso, Colorado, October 2018.
- 3. Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018.
- 4. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 5. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.
- 6. "The Sanctuary Filing 1 at Meridian Ranch" prepared by Tech Contactors, August 2022.


Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX A – VICINITY MAP, PHOTOS, SOIL MAP, FEMA MAP

Photo - at Londonderry and Eastonville looking north



Natural Resources Conservation Service

USDA

Web Soil Survey National Cooperative Soil Survey

8

19

83

Totals for Area of Interest

	irguix		oup		
	Map unit symbol	Map unit name	Rating	Acres in AOI	
3		Blakeland loamy sand, 1 to 9 percent slopes	A	10.4	

А

в

Hydrologic Soil Group

Columbine gravelly

sandy loam, 0 to 3 percent slopes

Stapleton sandy loam, 3

to 8 percent slopes

Description	
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when t soils are not protected by vegetation, are thoroughly wet, and receive	:he

precipitation from long-duration storms. The soils in the United States are assigned to four groups (A, B, C, and D) and

three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Percent of AOI

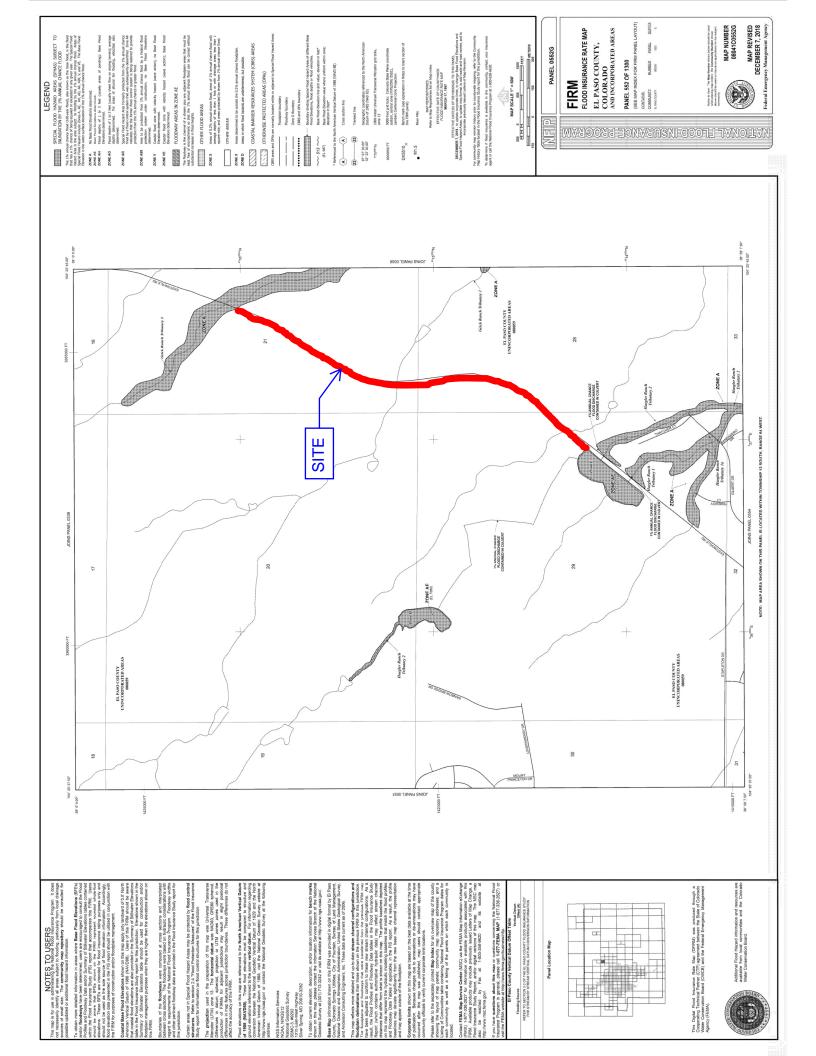
839.5

835.7

1,685.6

0.6%

49.8%


49.6%

100.0%

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Elbert, Colorado, USA* Latitude: 38.9796°, Longitude: -104.5696° Elevation: 6996 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

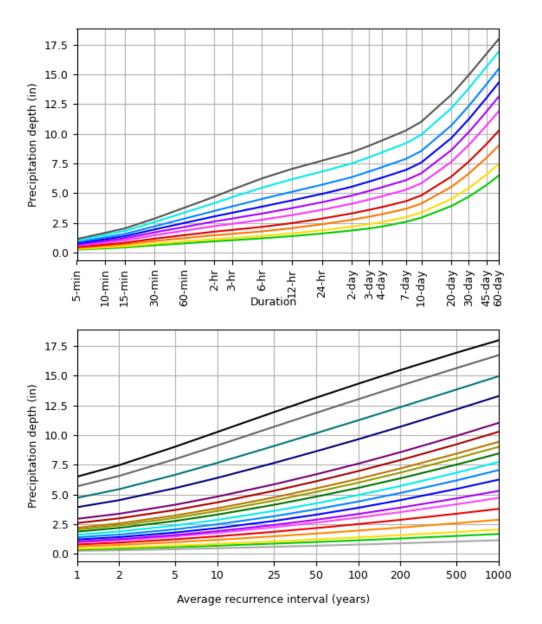
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

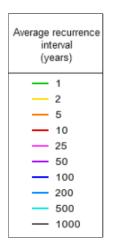
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PF tabular

PDS-	-based po	int precip	itation fre	quency e	stimates v	vith 90% o	confiden	ce interva	als (in ind	ches) ¹
Duration		Average recurrence interval (years)								
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.239 (0.189-0.303)	0.291 (0.231-0.370)	0.381 (0.301-0.486)	0.461 (0.361-0.589)	0.576 (0.440-0.768)	0.671 (0.499-0.904)	0.770 (0.554-1.06)	0.875 (0.604-1.24)	1.02 (0.678-1.48)	1.14 (0.733-1.67)
10-min	0.350 (0.277-0.444)	0.426 (0.338-0.542)	0.558 (0.441-0.711)	0.674 (0.529-0.863)	0.844 (0.644-1.12)	0.982 (0.731-1.32)	1.13 (0.811-1.56)	1.28 (0.884-1.81)	1.49 (0.992-2.17)	1.66 (1.07-2.44)
15-min	0.426 (0.338-0.541)	0.520 (0.412-0.660)	0.681 (0.537-0.867)	0.823 (0.645-1.05)	1.03 (0.785-1.37)	1.20 (0.891-1.62)	1.37 (0.988-1.90)	1.56 (1.08-2.21)	1.82 (1.21-2.65)	2.03 (1.31-2.98)
30-min	0.608 (0.482-0.771)	0.740 (0.586-0.940)	0.968 (0.764-1.23)	1.17 (0.916-1.49)	1.46 (1.11-1.94)	1.70 (1.26-2.28)	1.94 (1.40-2.68)	2.20 (1.52-3.12)	2.57 (1.71-3.73)	2.86 (1.84-4.19)
60-min	0.775 (0.615-0.984)	0.933 (0.739-1.18)	1.21 (0.956-1.54)	1.46 (1.15-1.87)	1.84 (1.41-2.47)	2.16 (1.61-2.92)	2.49 (1.80-3.45)	2.85 (1.97-4.05)	3.37 (2.24-4.90)	3.78 (2.44-5.54)
2-hr	0.943 (0.754-1.19)	1.12 (0.898-1.42)	1.46 (1.16-1.84)	1.76 (1.39-2.23)	2.22 (1.72-2.97)	2.62 (1.97-3.52)	3.04 (2.21-4.19)	3.50 (2.45-4.95)	4.16 (2.80-6.03)	4.70 (3.06-6.85)
3-hr	1.03 (0.829-1.29)	1.22 (0.978-1.53)	1.57 (1.25-1.97)	1.90 (1.51-2.40)	2.41 (1.88-3.22)	2.86 (2.17-3.84)	3.34 (2.45-4.60)	3.88 (2.73-5.48)	4.66 (3.15-6.74)	5.29 (3.46-7.69)
6-hr	1.20 (0.968-1.48)	1.40 (1.13-1.74)	1.78 (1.44-2.22)	2.16 (1.73-2.70)	2.76 (2.18-3.66)	3.28 (2.52-4.39)	3.86 (2.86-5.29)	4.51 (3.20-6.34)	5.46 (3.73-7.86)	6.24 (4.12-9.01)
12-hr	1.38 (1.13-1.70)	1.61 (1.31-1.98)	2.05 (1.66-2.53)	2.48 (2.00-3.07)	3.15 (2.51-4.15)	3.74 (2.89-4.96)	4.39 (3.28-5.96)	5.12 (3.66-7.13)	6.17 (4.25-8.82)	7.04 (4.69-10.1)
24-hr	1.60 (1.31-1.95)	1.87 (1.54-2.28)	2.38 (1.94-2.91)	2.85 (2.32-3.51)	3.60 (2.88-4.67)	4.24 (3.29-5.56)	4.94 (3.71-6.63)	5.71 (4.12-7.87)	6.82 (4.73-9.66)	7.73 (5.20-11.0)
2-day	1.85 (1.54-2.24)	2.18 (1.80-2.63)	2.76 (2.28-3.34)	3.29 (2.70-4.01)	4.11 (3.30-5.27)	4.80 (3.76-6.22)	5.54 (4.19-7.36)	6.35 (4.62-8.68)	7.50 (5.25-10.5)	8.44 (5.73-11.9)
3-day	2.03 (1.69-2.44)	2.39 (1.98-2.87)	3.02 (2.50-3.64)	3.60 (2.97-4.36)	4.47 (3.60-5.69)	5.20 (4.08-6.70)	5.98 (4.55-7.90)	6.83 (4.99-9.28)	8.03 (5.65-11.2)	9.00 (6.15-12.7)
4-day	2.18 (1.82-2.61)	2.56 (2.13-3.06)	3.22 (2.68-3.87)	3.82 (3.16-4.62)	4.73 (3.83-6.00)	5.49 (4.33-7.04)	6.30 (4.81-8.30)	7.18 (5.26-9.72)	8.43 (5.94-11.7)	9.43 (6.46-13.3)
7-day	2.58 (2.17-3.07)	2.98 (2.50-3.54)	3.68 (3.08-4.39)	4.32 (3.60-5.18)	5.29 (4.30-6.65)	6.09 (4.84-7.76)	6.96 (5.34-9.09)	7.89 (5.82-10.6)	9.21 (6.55-12.8)	10.3 (7.10-14.4)
10-day	2.93 (2.48-3.47)	3.36 (2.84-3.98)	4.13 (3.47-4.90)	4.81 (4.02-5.74)	5.83 (4.76-7.28)	6.68 (5.32-8.45)	7.58 (5.85-9.86)	8.55 (6.34-11.4)	9.92 (7.08-13.7)	11.0 (7.65-15.4)
20-day	3.91 (3.33-4.58)	4.51 (3.84-5.29)	5.52 (4.68-6.50)	6.39 (5.39-7.55)	7.63 (6.25-9.37)	8.62 (6.90-10.8)	9.64 (7.47-12.4)	10.7 (7.98-14.1)	12.2 (8.74-16.6)	13.3 (9.31-18.4)
30-day	4.70 (4.02-5.47)	5.44 (4.65-6.34)	6.65 (5.66-7.78)	7.66 (6.49-9.00)	9.06 (7.44-11.0)	10.1 (8.15-12.5)	11.2 (8.74-14.3)	12.3 (9.24-16.2)	13.8 (9.98-18.7)	15.0 (10.5-20.6)
45-day	5.67 (4.88-6.57)	6.55 (5.63-7.60)	7.97 (6.82-9.27)	9.12 (7.77-10.7)	10.7 (8.79-12.9)	11.9 (9.56-14.5)	13.0 (10.2-16.4)	14.2 (10.6-18.4)	15.6 (11.3-21.0)	16.7 (11.9-23.0)
60-day	6.48 (5.60-7.48)	7.46 (6.43-8.62)	9.01 (7.74-10.4)	10.3 (8.77-11.9)	11.9 (9.82-14.3)	13.1 (10.6-16.0)	14.3 (11.2-18.0)	15.5 (11.7-20.0)	16.9 (12.3-22.6)	18.0 (12.8-24.6)


Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

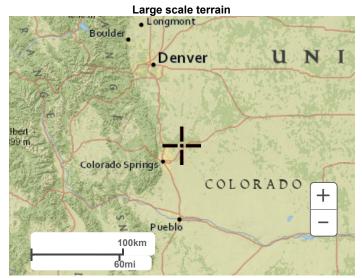

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

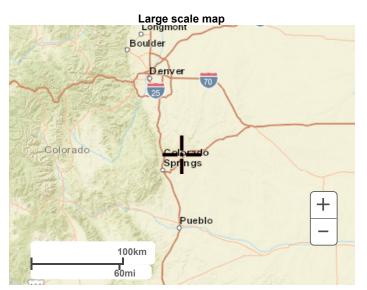
Back to Top

PF graphical

Duration							
5-min	- 2-day						
10-min	- 3-day						
15-min	- 4-day						
- 30-min	- 7-day						
- 60-min	— 10-day						
2-hr	- 20-day						
— 3-hr	— 30-day						
— 6-hr	— 45-day						
- 12-hr	- 60-day						
— 24-hr							

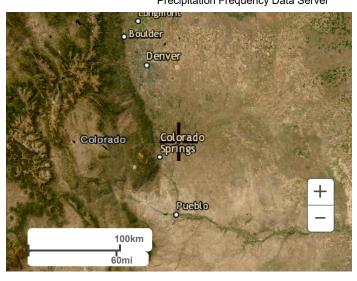

NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Wed Nov 22 20:22:49 2023


Back to Top

Maps & aerials

Small scale terrain



Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX B – HYDROLOGIC CALCULATIONS

EASTONVILLE ROAD EXISTING CONDITIONS EL PASO COUNTY, CO

SUMMARY RUNOFF TABLE											
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)							
G18*	321.53	-	28.3	365.2							
FG36*	18.88	-	1.7	18.8							
G16*	131.26	-	6.1	112.1							
G06* 💦	832.70	-	22.4	491.0							
EX5	12.19	2	2.7	18.0							
EX6	0,61	2	0.1	0.9							
EX7	1.90	2	0.4	2.5							
EX8	2.86	2	0.6	4.0							

DES	SIGN POINT SUI	MMARY TA	BLE
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ_{100} (cfs)
1	G18*	28.3	365.2
2	FG36*	1.7	18.8
3	G16*	6.1	112.1
4	👖 G06*	22.4	491.0
O3	EX7	6.5	114.6
O3.1	EX7	0.1	0.9
O4 /	EX7	23.0	495.0
13.1	EX7	2.7	18.0

SPC

СМ

8/28/2024

Calc'd by:

Date:

Г

Checked by:

* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

Unresolved:

Basin labels do not match basin labels on drainage map. Please revise to show same labels. Labels listed here are design points. From map, need to list basins FG35, Ex1 thru Ex4 Any basins and design points shown on map should be included in spreadsheets

	EASTONVIL	LE ROAD						<u>Calc'o</u>	d by:		S	PC					
	EXISTING C	ONDITIC	ONS					Chec	ked by:		C	CM					
HRGreen	EL PASO COUNT					Date:	_		8/28	/2024							
COMPOSITE 'C' FACTORS																	
BASIN	UNDEVELOPED WALKS & SINGLE TOTAL					UNI	DEVE	LOPED	WAL	KS & DR	SING	GLE F#	MILY	IMPERVIOUSNESS & C			
		TYPE	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	% I	C ₅	C ₁₀₀	%	C ₅	C ₁₀₀			
EX1 - EX4*																	
EX5	12.19	0.00	0.00	12.19	A/B	2	0.09	0.36	100	0.90	0.96	65	0.73	0.81	2	0.09	0.36
EX6	0.61	0.00	0.00	0.61	A/B	2	0.09	0.36	100	0.90	0.96	65	0.73	0.81	2	0.09	0.36
EX7	1.90	0.00	0.00	1.90	A/B	2	0.09	0.36	100	0.90	0.96	65	0.73	0.81	2	0.09	0.36
EX8	2.86	0.00	0.00	2.86	A/B	2	0.09	0.36	100	0.90	0.96	65	0.73	0.81	2	0.09	0.36
* FLOWS TO DESI AREAS EX1 - EX4	GN POINTS 1-4 WERE	TAKEN FROM	"THE SANCTUA	ARY FILING	1 FDR" SO	C WAS	S NOT (CALCULA	TED FOR	R CONTRI	BUTING						

Labeling needs to be consistent throughout document. To keep it simple, would suggest using basin labels & design points used in Sanctuary Rpt for Basins EX1 thru EX4.

	EAST	ONVILL	.E ROAD					Calc'd b	y:		SPC			
1433	EXIS	TING CO	ONDITIO			Checked	by:	СМ						
UDCroon			r y, co					8/28/2024						
				TIME OF	CONCE	NTRATI	ON	<u> </u>						
BAS	IN DATA		OVER		E (T _i)		TRAV	EL TIME ((\mathbf{T}_t)		TOTAL			
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	C _V LENGTH (ft) SLOPE % V (ft/s) t _t (min)							
EX1-EX4*														
EX5	0.09	12.19	300	2.8	22.8	10	835	3.0	1.7	8.0	30.8			
EX6	0.09	0.61	180	1.3	22.8	10	411	1.6	1.3	5.4	28.2			
EX7	0.09	1.90	116	1.5	17.4	10	1137	1.0	1.0	19.0	36.4			
EX8	0.09	2.86	60	1.4	12.8	10	1302	1.1	1.0	20.7	33.5			
	FLOWS TO THESE DESIGN POINTS WERE TAKEN FROM "THE SANCTUARY FILING 1 FDR" SO TC WAS NOT CALCULATED FOR CONTRIBUTING AREAS EX1 - EX4													
FORMULAS:	$t = \frac{0.1}{2}$	395(1.1– <i>C</i> 5	$)\sqrt{L}$ V	$C = C_v S_w$	0.5	Т	able 6-7. Co	nveyance (Coefficient, (Ç _v				
	$\iota_i =$	$S^{0.33}$					Type of La	nd Surface		C_{ν}				

Type of Land Surface	C _v
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

*For buried riprap, select Cv value based on type of vegetative cover.

EASTONVILLE ROAD Calc'd by: EXISTING CONDITIONS Checked by: DESIGN STORM: 5-YEAR Date:

				DI	RECT	RUNO	F		T	OTAL	RUN	OFF	S	TRE	ET		PIF	РЕ		TR	RAVEL	TIME	
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C5	t _c (min)	C₅*A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (in)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (mir	
	1	G18*	321.53									28.3											
	2	FG36*	18.88									1.7											
	* AREA AND Q TAKEN FROM THE SANCTU ARY FILING 1 FDR 3		131.26									6.1											BASIN EX2, DP2 & D
	4	G06*	832.70									22.4											BASIN EX4 & DPG12 (SAN
	O3 O3.1	EX7	1.90									6.5 0.1											* TOTAL F
	O4	EX6 EX8	0.61 2.86									23.0											* TOTAL F
	13.1	EX5	12.19	0.09	30.8	1.10	2.44					2.7											

Unresolved: See previous comments in regards to basin and design point labeling SPC

CM 8/28/2024

REMARKS

DP 1 CAPTURED IN GIECK RANCH TRIB #2 (CHANNEL B)

DP 2 CAPTURED IN 24" RCP CULVERT, PIPED TO BASIN EX3

& DPG15 (SANCTUARY FDR Q5=3 CFS) CAPTURED IN 24" CMP CULVERT, PIPED ACROSS EASTONVILLE ROAD

ANCTUARY FDR Q5 = 21 CFS) CAPTURED IN 18" CMP CULVERT, PIPED ACROSS EASTONVILLE ROAD TO GIECK RANCH TRIB #1 (CHANNEL A)

* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR FLOW INCLUDES Q TAKEN FROM DP3 FROM THE SANCTUARY FILING 1 FDR

FLOW INCLUDES Q TAKEN FROM DP4 FROM THE SANCTUARY FILING 1 FDR

EASTONVILLE ROAD **EXISTING CONDITIONS**

DESIGN STORM: 100-YEAR

<u>Calc'd by:</u> Checked by: Date:

																				-			
				DI	RECT	RUNOF	F		т	DTAL I	RUNO	FF	S	TRE	ET		PI	PE		TR	AVEL	TIME	
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C100	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	% SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	1	G18*	321.53									365.2											
	2	FG36*	18.88									18.8											
	* AREA AND Q TAKEN FROM THE SANCT UARY FILING 1 FDR 3	G16*	131.26									112.1											BASIN EX2, DP2 &
	4	G06*	832.70									491.0											BASIN EX4 & DPG12 (SA
	O3	EX7	1.90	0.36	36.4	0.68	3.68	2.5				114.6											* TOTAL
	O3.1	EX6	0.61									0.9											
	O4	EX8	2.86									495.0											* TOTAL
	13.1	EX5	12.19	0.36	30.8	4.39	4.10	18.0				18.0											

SCP	
СМ	
8/28/2024	

REMARKS

DP 1 CAPTURED IN GIECK RANCH TRIB #2 (CHANNEL B)

DP 2 CAPTURED IN 24" RCP CULVERT, PIPED TO BASIN EX3

2 & DPG15 (SANCTUARY FDR Q5=3 CFS) CAPTURED IN 24" CMP CULVERT, PIPED ACROSS EASTONVILLE ROAD

(SANCTUARY FDR Q5 = 21 CFS) CAPTURED IN 18" CMP CULVERT, PIPED ACROSS EASTONVILLE ROAD TO GIECK RANCH TRIB #1 (CHANNEL A)

* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR L FLOW INCLUDES Q TAKEN FROM DP3 FROM THE SANCTUARY FILING 1 FDR

L FLOW INCLUDES Q TAKEN FROM DP4 FROM THE SANCTUARY FILING 1 FDR

EASTONVILLE ROAD SEG 2 PROPOSED CONDITIONS

EL PASO COUNTY, CO

<u>Calc'd by:</u>	SPC	
<u>Checked by:</u>	СМ	
<u>Date:</u>	8/28/2024	

EA20.25720.91EA30.20700.71EA40.17650.51EA50.1600.10EA60.25760.81EA70.20500.41EA82.08995.28EA93.14605.010	(of o)
EA20.25720.91EA30.20700.71EA40.17650.51EA50.1600.10EA60.25760.81EA70.20500.41EA82.08995.28EA93.14605.010	(CIS)
EA30.20700.71EA40.17650.51EA50.1600.10EA60.25760.81EA70.20500.41EA82.08995.28EA93.14605.010	.5
EA40.17650.51EA50.1600.10EA60.25760.81EA70.20500.41EA82.08995.28EA93.14605.010	.7
EA50.1600.10EA60.25760.81EA70.20500.41EA82.08995.28EA93.14605.010	.3
EA60.25760.81EA70.20500.41EA82.08995.28EA93.14605.010	.1
EA7 0.20 50 0.4 1 EA8 2.08 99 5.2 8 EA9 3.14 60 5.0 10	.4
EA82.08995.28EA93.14605.010	.4
EA9 3.14 60 5.0 10	.0
	.8
EA10 0.16 75 0.6 1).6
	.1
EA11 0.15 67 0.5 1	.0
EA12 0.34 0 0.1 1	.0
EA13 0.45 73 1.4 2	.8
EA14 1.48 21 1.2 3	.8
EA15 0.76 24 0.7 2	.1
EA16 1.18 0 0.3 2	.5
EA17 0.30 0 0.1 0	.7
	5.2
* <mark>FG36</mark> 18.88 - 1.7 18	8.8
OS3 1.00 2 0.3 2	.2
OS4 9.60 9 4.8 21	.6
*G16 \131.26 - 6.1 11	21
	2.1
OS7 1.29 3 3.9 24	1.0

DESIGN POINT SUMMARY TABLE

DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ_{100} (cfs)
1	G18	28.3	365.2
2	FG36	1.7	18.8
2.1	EA1	0.8	1.5
3	G16	6.1	112.1
3.1	EA2, DP2.1	1.6	3.2
4	G06	22.4	491.0
4.1	EA5, DP3.1	1.7	3.4
5	EA3	0.7	1.3
6	DP5, EA4	1.2	2.4
6.1	DP6, DP8	2.9	22.4
7	OS3	0.3	2.2
8	DP2, DP7	2.0	21.0
9	DP6.1	2.9	22.4
10	EA6, EA7	1.2	2.3
11	OS4, DP9	7.5	44.0
12	OS7	3.9	24.6
13	DP11.1, DP12	10.0	180.6
14	EA8	5.2	8.8
15	EA9	5.0	10.6
15.1	DP14, DP15	10.2	19.3
16.1	EA10	0.6	1.1
17.1	EA11	0.5	1.0
O3	EA15	0.7	2.1
O3.1	-	0.0	0.0
O4	EA12, DP4	22.5	492.0
O4.1	EA13	1.4	2.8
04.2	EA14	1.2	3.8
10.1	EA17	0.1	0.7
11.1	DP3, DP11	13.6	156.1
13.1	EA16, DP13	0.3	183.1

* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

Unresolved: Labeling needs to be consistent throughout

document. To keep it simple, would suggest using basin labels & design points used in Sanctuary Rpt. Highlighted items are listed as design points on map and & Sanctuary Rpt. Should be the same here. Use same basin labels as in Sanctuary Rpt and remove "new" basin labels within tables, maps, report, etc

Pr_Drainage_Calcs3

RBM 8/28/2024 11:35 AM

	EASTONVILLE ROAD SEG 2	<u>Calc'd by:</u>	SPC
ברדו ברדו	PROPOSED CONDITIONS	Checked by:	СМ
IRGreen	EL PASO COUNTY, CO	Date:	11/27/2023

SOIL TYPE: HSG A&B

							С	OMP	OSIT	E 'C'	FAC	CTOR	S						
	LAND USE TYPE																		
		Paved			Historic Flow Analysis Greenbelts, Agriculture			Lawns			Gravel			e and V	Valks		COMPOSITE		
	%I C ₅ C ₁₀₀			%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	TOTAL	IMPERVIOUSNESS & C		
	100	100 0.90 0.96		2 0.09 0.36		0 0.08 0.35		80 0.59 0.70			100 0.90 0.96			TOTAL	FACTOR				
BASIN		ACRES	5		ACRES	5		ACRES	5		ACRES	5		ACRES	5	ACRES	%I	C ₅	C ₁₀₀
EA1	_	0.16						0.06								0.22	73	0.68	0.79
EA2	_	0.18						0.07								0.25	72	0.67	0.79
EA3	_	0.14					ļ	0.06					 			0.20	70	0.65	0.78
EA4	_	0.11						0.06								0.17	65	0.61	0.74
EA5	_	0.00					ļ	0.16					 			0.16	0	0.08	0.35
EA6	_	0.19					ļ	0.06					 			0.25	76	0.71	0.82
EA7	_	0.10						0.10					 			0.20	50	0.49	0.65
EA8	_	2.06					ļ	0.02					 			2.08	99	0.89	0.95
EA9	_	1.88					ļ	1.26					 			3.14	60	0.57	0.72
EA10	_	0.12						0.04					 			0.16	75	0.70	0.81
EA11	_	0.10						0.05								0.15	67	0.63	0.76
EA12								0.34								0.34	0	0.08	0.35
EA13		0.33						0.12								0.45	73	0.68	0.80
EA14								1.16			0.07			0.25		1.48	21	0.24	0.47
EA15								0.57			0.04			0.15		0.76	24	0.27	0.49
EA16								1.18								1.18	0	0.08	0.35
EA17								0.30								0.30	0	0.08	0.35
G18																321.53			
FG36																18.88			
OS3					1.00											1.00	2	0.09	0.36
OS4		0.70			8.90											9.60	9	0.15	0.40
OS5					40.26											40.26	2	0.09	0.36
G16																131.26			
G06																832.70			
OS7					11.16						0.03			0.10		11.29	3	0.10	0.37
SFB C		0.34			0.00			0.29								0.63	54		

Unresolved:

J:\2020\2 See previous comments in regards to basin and design point labeling

	COMPOSITE 'C' FACTORS																		
	LAND USE TYPE																		
	Paved			Historic Flow Analysis Greenbelts, Agriculture			Lawns		Gravel			Drive and Walks				COMPOSITE			
	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀		IMPERVIOUSNESS		SS & C
	100	0.90	0.96	2	0.09	0.36	0	0.08	0.35	80	0.59	0.70	100	0.90	0.96	TOTAL		FACTOR	
BASIN	ACRES			ACRES ACRES		ACRES		ACRES		ACRES	%	C ₅	C ₁₀₀						
EDB B		5.92		0.00 2.99		0.09			0.01			9.02	67						

	EAST	ONVILL	E ROAD	Calc'd b	y:	SPC						
	PROP	OSED (ONDITI	ONS				Checked	l by:	СМ		
HRGreen	EL PAS		Y, CO	Date:		8/28/2024						
				TIME OF	F CONCE	NTRATI	ON	•		-		
BAS	IN DATA		OVERI		E (T _i)		TRAV	EL TIME (TOTAL			
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t _c (min)	
EA1	0.68	0.22	34	2.0	3.6	20	137	1.4	2.4	1.0	5.0	
EA2	0.67	0.25	34	2.0	3.6	20	60	1.4	2.4	0.4	5.0	
EA3	0.65	0.20	34	2.0	3.8	20	126	1.4	2.4	0.9	5.0	
EA4	0.61	0.17	34	2.0	4.2	20	126	3.8	3.9	0.5	5.0	
EA5	0.08	0.16	20	2.0	6.6	20	20	33.0	11.5	0.0	6.7	
EA6	0.71	0.25	26	2.0	2.9	20	630	1.7	2.6	4.0	7.0	
EA7	0.49	0.20	24	2.0	4.4	20	630	1.7	2.6	4.0	8.4	
EA8	0.89	2.08	26	2.0	1.5	20	2500	0.7	1.7	24.9	26.4	
EA9	0.57	3.14	26	2.0	3.9	20	2500	0.7	1.7	24.9	28.8	
EA10	0.70	0.16	26	2.0	3.0	20	157	0.6	1.5	1.7	5.0	
EA11	0.63	0.15	26	2.0	3.5	20	157	0.6	1.5	1.7	5.2	
EA12	0.08	0.34	30	25.0	3.5	10	0	0.0	0.0	0.0	5.0	
EA13	0.68	0.45	76	2.0	5.3	10	115	2.0	1.4	1.4	6.7	
EA14	0.24	1.48	50	10.0	5.2	10	1300	1.1	1.0	20.7	25.8	
EA15	0.27	0.76	50	10.0	5.0	10	1137	1.0	1.0	19.0	24.0	
EA16	0.08	1.18	300	3.0	22.5	10	500	3.0	1.7	4.8	27.3	
EA17	0.08	0.30	89	5.0	10.3	10	0	0.0	0.0	0.0	10.3	
G18												
FG36												
OS3	0.09	1.00	220	2.1	21.4	10	345	2.3	1.5	3.8	25.2	
OS4	0.15	9.60	153	3.1	14.8	10	1124	2.5	1.6	11.8	26.6	
OS5	0.09	40.26	300	2.7	23.0	10	1400	2.7	1.6	14.2	37.2	
G16												
G06												
OS7	0.10	11.29	200	11.6	11.5	10	675	3.4	1.8	6.1	17.6	
FORMULAS:	$t = \frac{0.3}{0.3}$	$395(1.1-C_5)$	\underline{VL} V	$C = C_v S_w$	0.5	Т	able 6-7. Co	nveyance (Coefficient, o	C_{v}		
	$\iota_i = -$	$S^{0.33}$					Type of La	nd Surface		C_{v}		
						Heavy	meadow			2.5		
					Tillago				2.5			

Tillage/field

5

	EAST	ONVILL	.E ROAD	Calc'd b	y:		SPC					
			CONDITI		Checked	by:		СМ				
HRGreen	EL PAS		r y, co	Date:		8/2	8/2024					
TIME OF CONCENTRATION												
BAS	IN DATA		OVERI		E (T _i)	ri) TRAV				T _t)		TOTAL
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	Cv	/	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t _c (min)
						Ri	iprap	(not buried) [*]		6.5		
								Short pasture and lawns			7	
							Nearly bare ground				10	
	Grassed waterway										15	
P								reas and shallo	ales	20		

* For buried riprap, select C_v value based on type of vegetative cover.

EASTONVILLE ROAD SEG 2 PROPOSED CONDITIONS DESIGN STORM: 5-YEAR

<u>Calc'd by:</u>

Checked by:	
Date:	

DESIGN POINT	BASIN ID	(ac)																			(mir	
1	BA	AREA (a	C ₅	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (
	G18	321.53					28.3				28.3											
2											1.7											
2.1	FG36	18.88					1.7	5.0	0.15	5.17	0.8				0.8	0.15	1.0	1.5	56	5.9	0.16	
 3	EA1	0.22	0.68	5.0	0.15	5.17	0.8				6.1											
3.1	G16						6.1	5.0	0.32	5.17	1.6				1.6	0.32	5.1	1.5	34	13.4	0.04	
4	EA2	0.25	0.67	5.0	0.17	5.17	0.9		0.02	0	22.4					0.01	011		0.			
	G06						22.4															
4.1	EA5	0.16	0.08	6.7	0.01	4.74	0.1	6.7	0.33	5.17	1.7											
5	EA3	0.20	0.65	5.0	0.13	5.17	0.7	5.0	0.13	5.17	0.7				0.7	0.13	0.5	1.3	48	3.7	0.21	
6	EA4	0.17				5.17		5.2	0.23	5.11	1.2				1.2	0.23	2.4	1.3	43	8.1	0.09	
6.1	L/14			ary table				13.2	0.32	3.71	2.9				2.9	0.32	1.0	2.0	61	7.2	0.14	
7			S3 accou	unted for	r on prev	vious lir	ne –	13.1	0.09	3.72	0.3				0.3	0.09	0.8	2.0	43	6.4	0.11	
 8	OS3	1.00	0.09	13.1	0.09	3.72	0.3	13.1	0.09	3.72	2.0				2.0	0.09	1.5	1.3	38	6.4	0.10	
 9 Ist	OS3	<mark>1.00</mark>			<mark>0.09</mark>	<mark>3.72</mark>	<mark>0.3</mark>			3.71			0.32	21					615	2.9	3.56	
	this DP ne	eded if i	t's just L	OP 6.1?									0.02	2.1					010	2.0	0.00	
10	EA6	0.25	0.71	7.0	0.18	4.67	0.8	8.4	0.28	4.39	1.2											
	EA7	0.20	0.49	8.4	0.10	4.39	0.4															
11	OS4	9.60	0.15	17.1	1.43	3.32	4.8		1.76	3.32	7.5				7.5	1.76	2.0	2.0	85	10.2	0.14	BASIN OS
12	OS7	11.29					3.9	14.9	1.12	3.53	3.9					1.12		1.5	28	5.9	0.08	
13	037	11.29	0.10	14.9	1.12	3.33	3.9	14.9	<mark>1.12</mark>	3.53	<mark>10.0</mark>	Ł		w see . Plea	ems low ise chec	for this k	_					
14								24.0	1.86	2.81	5.2				5.2	1.86	7.0	1.5	8	15.7	0.01	
 15	EA8	2.08	0.89	24.0	1.86	2.81	5.2		1.79	2.81	5.0				5.0	1.79	1.8	1.5	54	7.9	0.11	
 15.1	EA9	3.14	0.57	24.0	1.79	2.81	5.0	24.1	3.65	2.81	10.2			<u> </u>								СОМВ
																						BASIN EA10 CONVEYED
16.1	EA10	0.16	0.70	5.0	0.11	5.17	0.6		0.11	5.17	0.6											
17.1								5.2	0.09	5.11	0.5											BASIN EA11 CONVEYED
O3	EA11	0.15	0.63	5.2	0.09	5.11	0.5		0.21	3.37	0.7											
 O3.1	EA15	0.76	0.27	16.6	0.21	3.37	0.7			0.01	0.0											
	NA						0.0															
O4	EA12	0.34	0.08	5.0	0.03	5.17	0.1				22.5											
O4.1	EA13	0.45	0.68	6.7	0.30	4.73	1.4	6.7	0.30	4.73	1.4											

J:\2020\201662.08\Design\Calc\Drainage\Segment 2 - FDR\Appendix B - Hydrologic Calcs\Pr_Drainage_Calcs3

REMARKS

BASIN EA1 CAPTURED IN 5' TYPE R INLET @ DP2, PIPE TO DP3.1

BASIN EA2 CAPTURED IN 5' TYPE R INLET@ DP3, PIPE TO DP3.1

COMBINED DP2.1 & DP3.1 @ DP3.1, PIPE TO DP4 (POND A)

BASIN EA3 CAPTURED IN 5' TYPE R INLET @ DP5, PIPE TO DP6.1

BASIN EA4 CAPTURED IN 5' TYPE R INLET @ DP6, PIPE TO DP6.1

DP6 & DP8 FLOW @ DP6.1, PIPE TO DP9

BASIN OS3 CAPTURED IN 15" FES, PIPE TO DP8

DP2 & DP7 FLOW @ DP8, PIPE TO DP9

DP6.1 @ DP9, DISCHARGE TO ROADSIDE SWALE TO DP11

BASIN EA6 & EA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1)

OS4, DP9.1 CAPTURED & MERIDIAN RANCH DPG15 (3 CFS) IN TYPE D INLET AT DP11

BASIN OS7 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13

COMBINED DP3 & DP12, PIPE TO CHANNEL B

BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP14, PIPE TO DP15.1

BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1

IBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR

D VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR

D VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR

1 1	22						E	EAS	ΓΟΝ	VILI	.ER	ROAL) SE	IG 2	2						Calc	<u>c'd by:</u>	SPC
	$\prec -$							PR	OPO	SED	CO	NDI.	τιο	NS							<u>Chec</u>	ked by:	СМ
1 1								DE	SIG	N ST	ORM	: 5- \	(EAF	Z							Da	ate:	8/28/2024
HR	Gree	n																					•
				DI	RECT	RUNO	FF		Т	OTAL	RUNG	OFF	S	TREE	т		PIF	ΡE		TR	AVEL	TIME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₅	t _c (min)	C₅*A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C₅*A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	% SLOPE %	Q _{PIPE} (cfs)	C ₅ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (mir	
	O4.2	EA14	1.48	0.24	17.5	0.36	3.29	1.2	17.5	0.36	3.29	1.2											
	10.1	EA17	0.30						10.3	0.02	4.08	0.1											
	11.1								K	R	\uparrow	13.6											
	13.1	EA16	1.18	0.08	14.4	0.09	3.58	0.3		0.09	3.58	0.3											

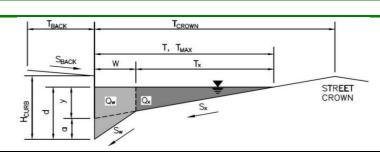
Where is infor for this DP? matio

$1 \rightarrow $		L								IVIL				7 2								'd by:	SPC
	う																					<u>ked by:</u>	
		ੑ ŀ						DE	:91GN	1 210	RM:	100-	r EAF	K							<u>Da</u>	te:	8/28/2024
IRGre	eer	1																					
				DIR	RECT F	RUNOF	F		T	OTAL	RUNO	FF	S	TREE	T		PI	PE		TR	AVEL .	-	REMARKS
STREET DESIGN POINT		BASIN ID	AREA (ac)	C100	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (mir	
1		G18						365.2				365.2	2										
2		FG36						18.8				18.8	3										
2.1		EA1	0.22	0.79	5.0	0.17	8.68		5.0	0.17	8.68	1.5	;			1.5	0.17	1.0	1.5	56	5.9	0.16	BASIN EA1 CAPTURED IN 5' TYPE R INLET @ DP2, PIPE TO DP3.1
3	3		0.22	0.79	5.0	0.17	0.00					112.1				112.1	0.00	5.1	1.5	34	13.4	0.04	
3.1	1	G16						112.1	5.0	0.37	8.66	3.2	2										BASIN EA2 CAPTURED IN 5' TYPE R INLET@ DP3, PIPE TO DP3.1
4		EA2	0.25	0.79	5.0	0.20	8.68	1.7				491.0)			491.0	0.00	0.5	1.3	48	3.7	0.21	
4.1	1	G06						491.0	6.7	0.43	7.95	3.4				3.4	0.43	2.4	1.3	43	8.1	0.09	COMBINED DP2.1 & DP3.1 @ DP3.1, PIPE TO DP4 (POND A)
5	;	EA5	0.16	0.35	6.7	0.06	7.95	0.4	5.0	0.16	8.68	1.3				1.3	0.16	1.0	2.0	61	7.2	0.14	BASIN EA3 CAPTURED IN 5' TYPE R INLET @ DP5, PIPE TO DP6.1
6		EA3	0.20	0.78	5.0	0.16	8.68	1.3				2.4				2.4		0.8		43	6.4	0.11	BASIN EA4 CAPTURED IN 5' TYPE R INLET @ DP6, PIPE TO DP6.1
		EA4	0.17	0.74	5.0	0.13	8.68	1.1															
6.1									16.7		5.64	22.4				22.4		1.5			6.4	0.10	DP6 & DP8 FLOW @ DP6.1, PIPE TO DP9
7	, 	OS3	1.00	0.36	13.1	0.36	6.24	2.2			6.24	2.2				2.2	0.36	1.0	2.0	56			BASIN OS3 CAPTURED IN 15" FES, PIPE TO DP8
8	3	OS3	1.00	0.36	13.1	0.36	6.24	2.2	13.1	0.36	6.24	21.0	21.0	0.36	2.1					615	2.9	3.56	DP2 & DP7 FLOW @ DP8, PIPE TO DP9
9)								16.8	0.64	5.63	22.4											DP6.1 @ DP9, DISCHARGE TO ROADSIDE SWALE TO DP11
10	0	EA6	0.25	0.71	7.0	0.18	7.85	1.4	8.4	0.31	7.37	2.3											BASIN EA6 & EA7 @ DP10 (TEMPORARY SEDIMENT BASIN #1)
		EA7	0.20	0.65			7.37						0.0	0.00	0.5					530	1.4	6.25	
11	1								17.1	4.52	5.58	44.0)			44.0	4.52	1.0	4.0	1500	11.4	2.19	BASIN OS4, DP9.1 CAPTURED & MERIDIAN RANCH DPG15 (3 CFS) IN 30" FES @ DP11, SWALE TO DP3
12	2	OS4	9.60		17.1				14.9	4.14	5.93	24.6	;			24.6	4.14	1.0	1.5	28	5.9	0.08	BASIN OS7 CAPTURED @ DP12 IN TYPE C INLET, PIPE TO DP13
13	3	OS7	11.29	0.37	14.9	4.14	5.93	24.6	14.9	4.14	5.92	180.6	6										COMBINED DP3 & DP12, PIPE TO CHANNEL B
14	4								24.0	1.86	4.72	8.8				8.8	1.86	7.0	1.5	8	15.7	0.01	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP14, PIPE TO DP15.1
15	5	EA8	2.08	0.89	24.0	1.86	4.72	8.8	24.0	2.25	4.72	10.6	6			10.6	2.25	1.8	1.5	54	7.9	0.11	BASIN EA8 CAPTURED IN 10' TYPE R SUMP @ DP15, PIPE TO DP15.1
15.1	.1	EA9	3.14	0.72	24.0	2.25	4.72	10.6	24.1	4.10	4.71	19.3	3										COMBINED DP14 & DP15, PIPE TO DP18 OF THE EASTONVILLE ROAD SEGMENT 1 FDR
16.1									5.0	0.13	8.68	1.1	$\left \right $										BASIN EA10 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
17.1	.1	EA10		0.81				1.1	5.2	0.11	8.58	1.0)										BASIN EA11 CONVEYED VIA CURB & GUTTER TO 10' TYPE R INLET. INLET DESIGN IS PROVIDED IN THE EASTONVILLE ROAD SEGMENT 1 FDR
O3	3	EA11		0.76		0.11			16.6	0.37	5.66	2.1	$\left - \right $										TOTAL FLOW OFFSITE AT DP O3
O3.1		EA15	0.76	0.49	10.6	0.37	00.0	2.1				0.0											
O4		NA										492.0											TOTAL FLOW OFFSITE AT DP4
O4.1	.1	EA12			5.0				6.7	0.36	7.95	2.8	3										TOTAL FLOW OFFSITE AT DP4.1
O4.2	.2	EA13	0.45	0.80		0.36			17.5	0.69	5.52	3.8	3										TOTAL FLOW OFFSITE AT DP4.2
10.1		EA14	1.48	0.47	17.5	0.69	5.52	3.8	10.3	0.11	6.85	0.7	, 		$\left \right $								TOTAL FLOW OFFSITE AT DP10.1

See comments on 5-year

J:\2U2U\2U1662.U8\Design\Calc\Drainage\Segment 2 - FDR\Appendix B - Hydrologic Calcs\Pr_Drainage_Calcs3

	Rree	à							STON PROP ESIGN	OSED	CON	IDITIC	DNS								Ch	alc'd eckee Date	d by:	SPC CM 8/28/2024
				DIF	RECT	RUNO	FF		Т	OTAL I	RUNO	FF	S	FREE	Т		PI	PE		Т	RAVE	EL TII	ME	REMARKS
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C 100	t _e (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	% BAODE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)		5	TRAVEL TIME (min	
	11.1											156.1												TOTAL FLOW TO DP 11.1
	13.1	EA16	1.18	0.35	14.4	0.41	6.01	2.5	14.4	0.41	6.01	183.1												TOTAL FLOW OFFSITE AT DP 13.1


Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX C – HYDRAULIC CALCULATIONS

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road Inlet ID: DP2.1

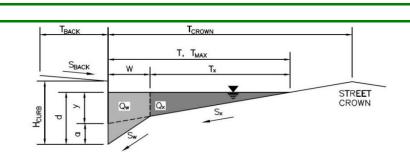
Gutter Geometry:

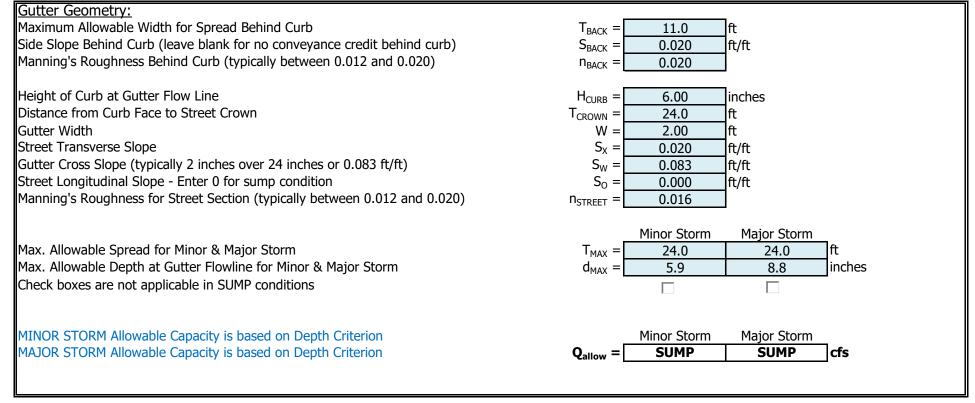
Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)

Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Check boxes are not applicable in SUMP conditions

MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

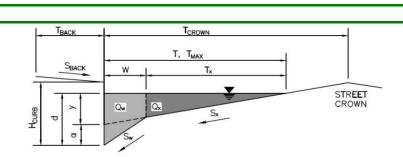

T _{BACK} =	12.0	ft	
$S_{BACK} =$	0.020	ft/ft	
n _{BACK} =	0.020		
H _{CURB} =	6.00	inches	
$T_{CROWN} =$	24.0	ft	
W =	2.00	ft	
S _X =	0.020	ft/ft	
S _W =	0.083	ft/ft	
$S_0 =$	0.000	ft/ft	
n _{STREET} =	0.016		
	Minor Storm	Major Storm	_
T _{MAX} =	24.0	24.0	ft
d _{MAX} =	5.9	8.8	inches
-	Minor Storm	Major Storm	_
Q _{allow} =	SUMP	SUMP	cfs


INLET IN A SUMP C	or sag loo	CATION		
MHFD-Inlet, Version				
۲ → Lo (C) → ۲				
H-Curb H-Vert Wo				
W WP				
Lo (G)				
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.3	Override Depths
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$L_{0}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)	-	MINOR	MAJOR	_
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	0.75	0.93	4
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	1.00	1.00	4
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.1	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	0.8	1.5	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road Inlet ID: DP3.1

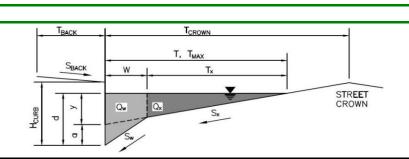


INLET IN A SUMP O	DR SAGLOC	CATION_		
MHFD-Inlet, Version				
۲ → Lo (C) → ۲				
H-Curb				
H-Vert Wo				
W WP				
Lo (G)				
CDOT Type R Curb Opening				
esign Information (Input)	- Г	MINOR	MAJOR	-
pe of Inlet cal Depression (additional to continuous gutter depression 'a' from above)	Type =	2.00 Type R 3.00	Curb Opening 3.00	inches
umber of Unit Inlets (Grate or Curb Opening)	a _{local} = No =	<u> </u>	1	
(atter Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.3	Override Depths
rate Information		MINOR	MAJOR	_
ength of a Unit Grate	L _o (G) =	N/A	N/A	feet
/idth of a Unit Grate	$W_{o} =$	N/A	N/A	feet
ea Opening Ratio for a Grate (typical values 0.15-0.90) ogging Factor for a Single Grate (typical value 0.50 - 0.70)	$A_{ratio} =$ $C_f(G) =$	N/A N/A	N/A N/A	-
rate Weir Coefficient (typical value 2.15 - 3.60)	$C_{f}(G) = C_{w}(G) = C_{w}(G)$	N/A N/A	N/A N/A	
rate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	-
urb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
eight of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
eight of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
ngle of Throat (see USDCM Figure ST-5) de Width for Depression Pan (typically the gutter width of 2 feet)	Theta = W _p =	63.40 2.00	63.40 2.00	degrees feet
logging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
urb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
urb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
w Head Performance Reduction (Calculated)		MINOR	MAJOR	
epth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
epth for Curb Opening Weir Equation	$d_{Curb} =$	0.32	0.44	ft
ombination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.75	0.93	
urb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	_
rated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
otal Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.1	8.1	cfs
nlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	0.9	1.7	cfs
			to be ek	

Inlet still appears to be ok, but flow at DP 3.1 per spreadsheet is 1.6 & 3.2 cfs

APACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) ALLOWABLE CAPACITY

Project: Eastonville Road Inlet ID: DP5

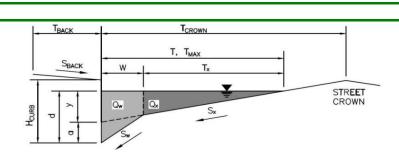

Gutter Geometry:	
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} = 11.0$ ft
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = 0.020$ ft/ft
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} = 0.020
Height of Curb at Gutter Flow Line	$H_{CURB} = 6.00$ inches
Distance from Curb Face to Street Crown	$T_{CROWN} = 24.0$ ft
Gutter Width	W = 2.00 ft
Street Transverse Slope	$S_{\rm X} = 0.020$ ft/ft
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_{W} = 0.083$ ft/ft
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = 0.000$ ft/ft
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text{STREET}} = 0.016$
	Minor Storm Major Storm
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = 24.0$ 24.0 ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} = 5.9 8.8 inches
Check boxes are not applicable in SUMP conditions	
MINOR STORM Allowable Capacity is based on Depth Criterion	Minor Storm Major Storm
MAJOR STORM Allowable Capacity is based on Depth Criterion	Q _{allow} = SUMP SUMP cfs

INLET IN A SUMP C	or sag loc	ATION		
MHFD-Inlet, Version				
, ∠Lo (C)				
H-Curb W W				
÷ Lo (G)				
CDOT Type R Curb Opening				
Design Information (Input)		MINOR	MAJOR Curb Opening	
Type of Inlet Local Depression (additional to continuous gutter depression 'a' from above)	Type = a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.3	Override Depths
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_{o} =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information	_	MINOR	MAJOR	_
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.32	0.44	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	0.75	0.93	1
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	1.00	1.00	1
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.1	8.1	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text{PEAK REQUIRED}} =$	0.7	1.3	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road Inlet ID: DP6

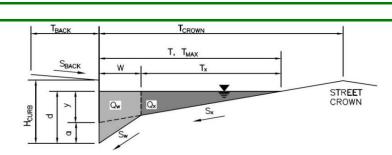

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb $T_{BACK} =$ 11.0 ft Side Slope Behind Curb (leave blank for no conveyance credit behind curb) ft/ft 0.020 $S_{BACK} =$ Manning's Roughness Behind Curb (typically between 0.012 and 0.020) $n_{BACK} =$ 0.020 Height of Curb at Gutter Flow Line $H_{CURB} =$ 6.00 inches Distance from Curb Face to Street Crown $T_{CROWN} =$ 24.0 ft Gutter Width W = 2.00 ft Street Transverse Slope $S_X =$ 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W =$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) $n_{\text{STREET}} =$ 0.016 Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm $T_{MAX} =$ 24.0 24.0 ft Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{MAX} =$ 3.5 3.5 inches Check boxes are not applicable in SUMP conditions \square MINOR STORM Allowable Capacity is based on Depth Criterion Major Storm Minor Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP cfs $Q_{\text{allow}} =$

INLET IN A SUMP (MHFD-Inlet, Version		CATION		
۳۱۳۲۵-۱۱۱۱۹۲, Version ۲۰۰۰ Lo (C)	11 5.01 (April 2021)			
H-Curb H-Vert				
Wo				
W WP				
Lo (G)				
CDOT Type R Curb Opening		MINOR	MAJOR	
/pe of Inlet	Type =	CDOT Type R		
cal Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Imber of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
ater Depth at Flowline (outside of local depression)	Ponding Depth =	3.5	3.5	Override Depths
rate Information		MINOR	MAJOR	—
ngth of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
idth of a Unit Grate	$W_{o} =$	N/A	N/A	feet
ea Opening Ratio for a Grate (typical values 0.15-0.90) ogging Factor for a Single Grate (typical value 0.50 - 0.70)	$A_{ratio} = C_f(G) =$	N/A N/A	N/A N/A	-
ate Weir Coefficient (typical value 2.15 - 3.60)	$C_{f}(G) = C_{w}(G) = C_{w}(G)$	N/A	N/A	-
ate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) =$	N/A	N/A	-
urb Opening Information		MINOR	MAJOR	
ength of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
eight of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
eight of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
ngle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
de Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
ogging Factor for a Single Curb Opening (typical value 0.10) Irb Opening Weir Coefficient (typical value 2.3-3.7)	C _f (C) = C _w (C) =	0.10 3.60	0.10 3.60	_
urb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{w}(C) = C_{o}(C) = C_{o}(C)$	0.67	0.67	_
		0107	0107	
w Head Performance Reduction (Calculated)		MINOR	MAJOR	
epth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
epth for Curb Opening Weir Equation	d _{Curb} =	0.13	0.13	ft
ombination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	0.45	0.45	_
arb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.99	0.99	_
ated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
tal Inlet Interception Capacity (assumes clogged condition)	Q _a =	1.2	1.2	cfs
let Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text{PEAK REQUIRED}} =$	0.5	1.1	cfs
			at DP 6 per adsheet is 1.2 &	2 A cfc

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road Inlet ID: DP14


Gutter Geometry: Maximum Allowable Width for Spread Behind Curb $T_{BACK} =$ 8.0 ft Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft $S_{BACK} =$ Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} = 0.020 Height of Curb at Gutter Flow Line $H_{CURB} =$ 6.00 inches Distance from Curb Face to Street Crown $T_{CROWN} =$ 26.0 ft Gutter Width W = 2.00 ft Street Transverse Slope $S_X =$ 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W =$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) $n_{\text{STREET}} =$ 0.016 Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm $T_{MAX} =$ 26.0 26.0 ft Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{MAX} =$ 5.9 8.8 inches Check boxes are not applicable in SUMP conditions \square MINOR STORM Allowable Capacity is based on Depth Criterion Major Storm Minor Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP cfs $Q_{\text{allow}} =$

INLET IN A SUMP C	or sag loc	ATION		
MHFD-Inlet, Version				
, ∠Lo (C)⊀				
H-Curb H-Vert Wo				
W /				
Lo (G)				
CDOT Type R Curb Opening				
Design Information (Input)	-	MINOR	MAJOR	_
Type of Inlet	Type =		Curb Opening	,
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	Override Depths
Water Depth at Flowline (outside of local depression) Grate Information	Ponding Depth =	5.9 MINOR	7.8 MAJOR	
Length of a Unit Grate	L _o (G) =	N/A	MAJOR N/A	feet
Width of a Unit Grate	$W_{o} =$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) =$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$\widetilde{C}_{o}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	_
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAIOD	
Depth for Grate Midwidth	а. –Г	N/A	MAJOR N/A	Tft
Depth for Curb Opening Weir Equation	$d_{Grate} = $ $d_{Curb} = $	0.32	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$C_{Curb} = $ $RF_{Combination} = $	0.55	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.93	1.00	-1
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	1
	Gruce	,	, <u>, , , , , , , , , , , , , , , , , , </u>	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.9	18.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{PEAK REQUIRED} =$	5.2	8.8	cfs

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

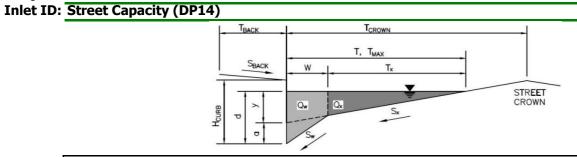
Project: Eastonville Road Inlet ID: DP15

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb $T_{BACK} =$ 8.0 ft Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft $S_{BACK} =$ Manning's Roughness Behind Curb (typically between 0.012 and 0.020) n_{BACK} = 0.020 Height of Curb at Gutter Flow Line $H_{CURB} =$ 6.00 inches Distance from Curb Face to Street Crown $T_{CROWN} =$ 26.0 ft Gutter Width W = 2.00 ft Street Transverse Slope $S_X =$ 0.020 ft/ft Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W =$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition S_0 0.000 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) $n_{\text{STREET}} =$ 0.016 Major Storm Minor Storm Max. Allowable Spread for Minor & Major Storm $T_{MAX} =$ 26.0 26.0 ft Max. Allowable Depth at Gutter Flowline for Minor & Major Storm $d_{MAX} =$ 5.9 8.8 inches Check boxes are not applicable in SUMP conditions \square MINOR STORM Allowable Capacity is based on Depth Criterion Major Storm Minor Storm MAJOR STORM Allowable Capacity is based on Depth Criterion SUMP SUMP cfs $Q_{\text{allow}} =$

INLET IN A SUMP C		ΛΤΙΟΝ		
MHFD-Inlet, Version		ATION		
۲ــــــــــــــــــــــــــــــــــــ	(
H-Vert Wo				
W / L				
Lo (G)				
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.9	7.8	Override Depths
<u>Grate Information</u>		MINOR	MAJOR	
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90) Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$A_{ratio} = C_f(G) =$	N/A N/A	N/A N/A	-
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{f}(G) = C_{w}(G) $	N/A N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{w}(G) = C_{o}(G) = C_{o}(G)$	N/A	N/A	-
Curb Opening Information	-0 (-)	MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_w(C) =$	3.60 0.67	3.60	
Curb Opening Office Coefficient (typical value 0.80 - 0.70)	$C_{o}(C) =$	0.07	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.32	0.48	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	0.55	0.73	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	9.9	18.6	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	$Q_{\text{PEAK REQUIRED}} =$	5.0	10.6	cfs

 $T_{BACK} =$

 $S_{BACK} =$


2.0

0.020

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road

Gutter Geometry: Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020) Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown

Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)

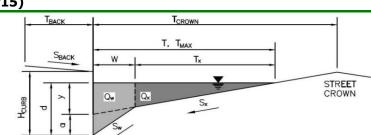
Max. Allowable Spread for Minor & Major Storm

Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

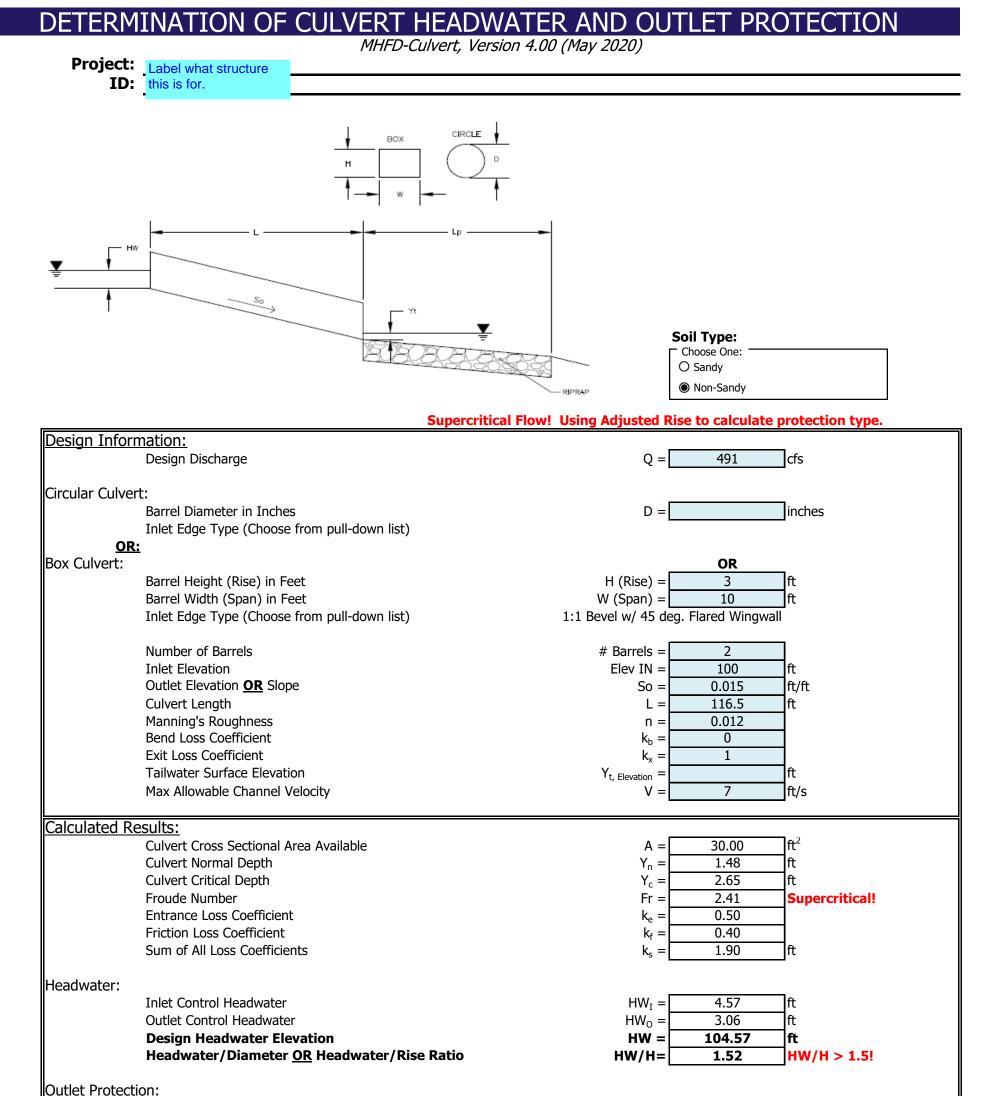
n _{BACK} =	0.015		
-			
H _{CURB} =	6.00	inches	
T _{CROWN} =	26.0	ft	
W =	2.00	ft	
S _X =	0.020	ft/ft	
S _W =	0.083	ft/ft	
S ₀ =	0.005	ft/ft	
n _{street} =	0.012		
	Minor Storm	Major Storm	_
T _{MAX} =	26.0	26.0	ft
d _{MAX} =	5.9	8.8	inches
_			_

ft

ft/ft


 MINOR STORM Allowable Capacity is based on Depth Criterion
 Minor Storm
 Major Storm

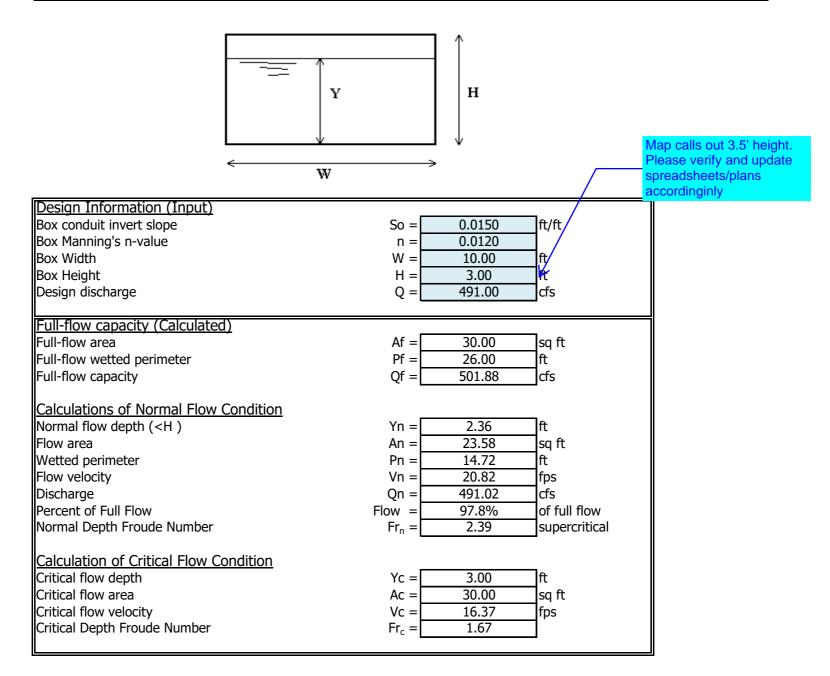
 MAJOR STORM Allowable Capacity is based on Spread Criterion
 Qallow = 12.3
 30.5
 cfs


 Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
 Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

APACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) ALLOWABLE CAPACITY

Project: Eastonville Road Inlet ID: Street Capacity (DP15)

Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	T _{BACK} = S _{BACK} =	0.020 0.015	ft/ft	
Manning's Roughness benind curb (typically between 0.012 and 0.020)	n _{BACK} =	0.015	J	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	$T_{CROWN} =$	26.0	ft	
Gutter Width	W =	2.00	ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =		ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 =$	0.005	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.012	1	
		Minor Storm	Major Storm	7.
Max. Allowable Spread for Minor & Major Storm	T _{MAX} =	26.0	26.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	5.9	8.8	inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)				
MINOR STORM Allowable Capacity is based on Depth Criterion		Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is based on Spread Criterion	Q _{allow} =	12.3	30.9	cfs


Dutlet Pro	otection:				
	Flow/(Span * Rise^1.5)	Q/WH^1.5 =	4.72	ft ^{0.5} /s	
	Tailwater Surface Height	Y _t =	1.20	ft	
	Tailwater/Rise	Yt/H =	0.40		
	Expansion Factor	$1/(2*tan(\Theta)) =$	1.85		
	Flow Area at Max Channel Velocity	$A_t =$	70.14	ft ²	
	Width of Equivalent Conduit for Multiple Barrels	W _{eq} =	20.00	ft	
	Length of Riprap Protection	L _p =	30	ft	
	Width of Riprap Protection at Downstream End	Ť =	37	ft	
	Adjusted Rise for Supercritical Flow	Ha =	2.24	ft	
	Minimum Theoretical Riprap Size	d ₅₀ min=	5	in	
	Nominal Riprap Size	d ₅₀ nominal=	6	in	
	MHFD Riprap Type	Type =	VL		

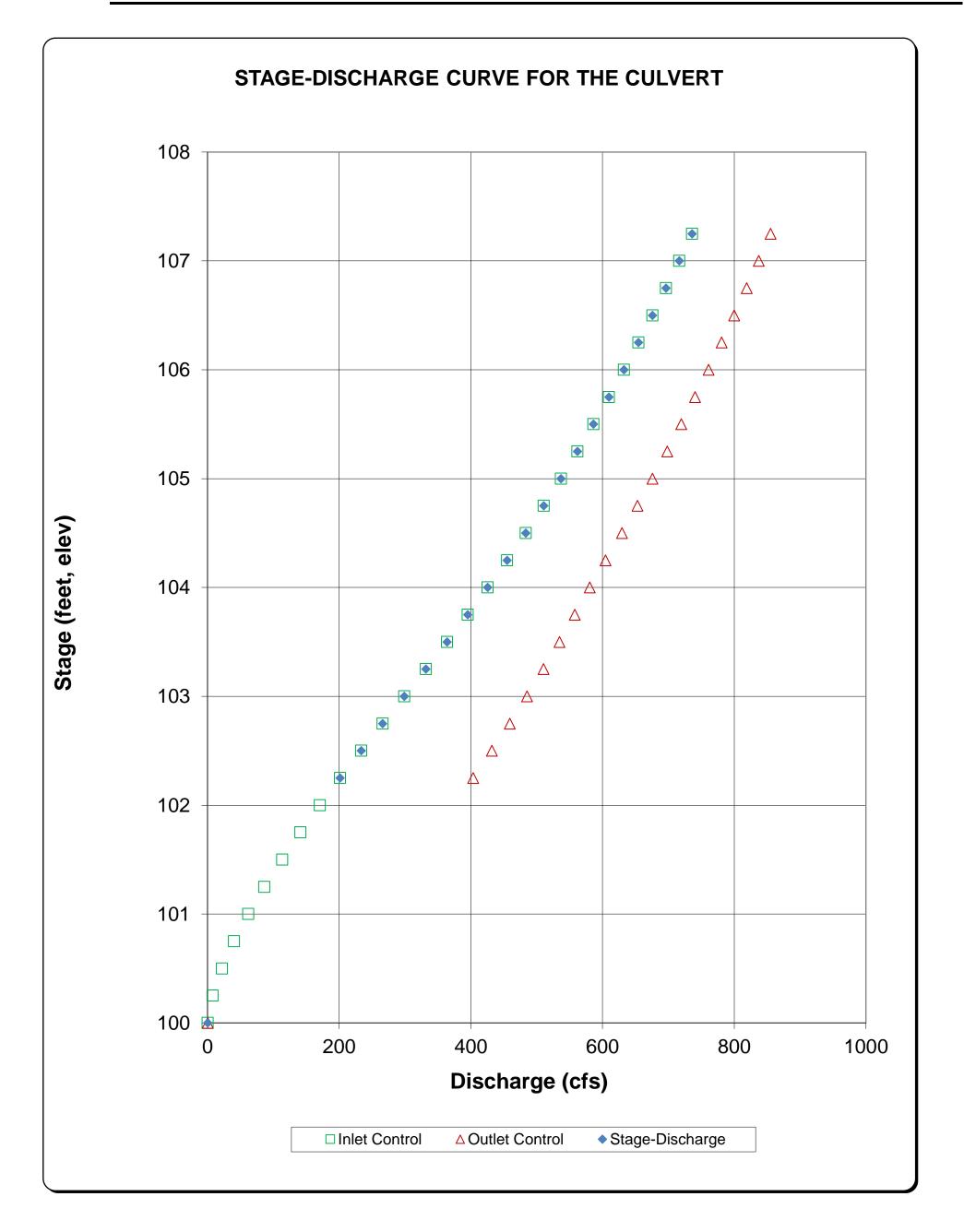
BOX CONDUIT FLOW (Normal & Critical Depth Computation)

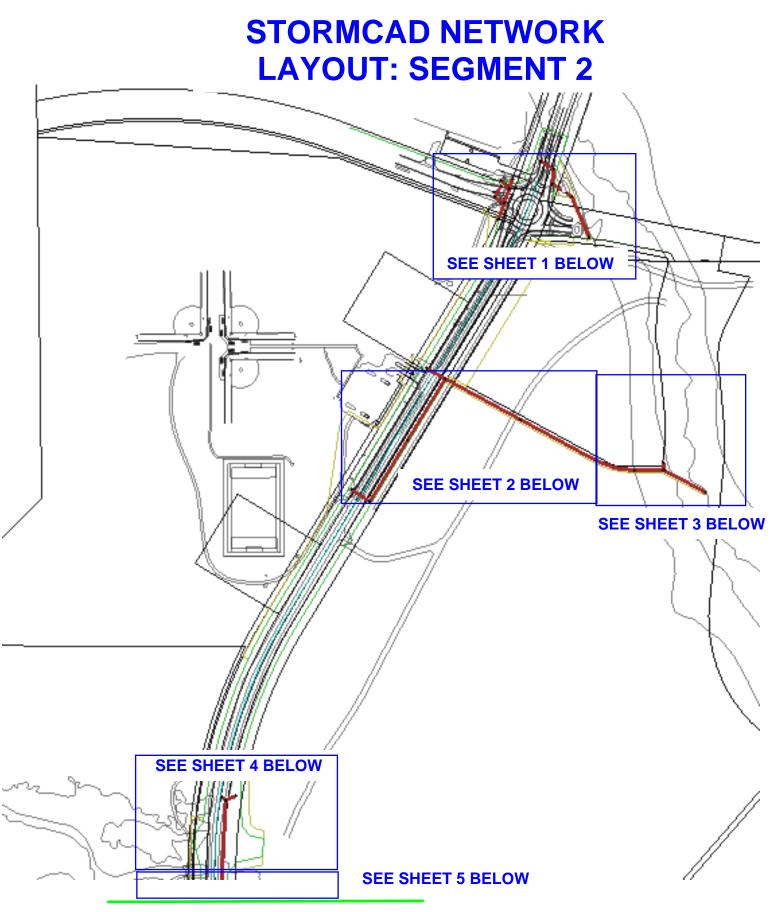
MHFD-Culvert, Version 4.00 (May 2020)

Project: Eastonville Road Segment 2

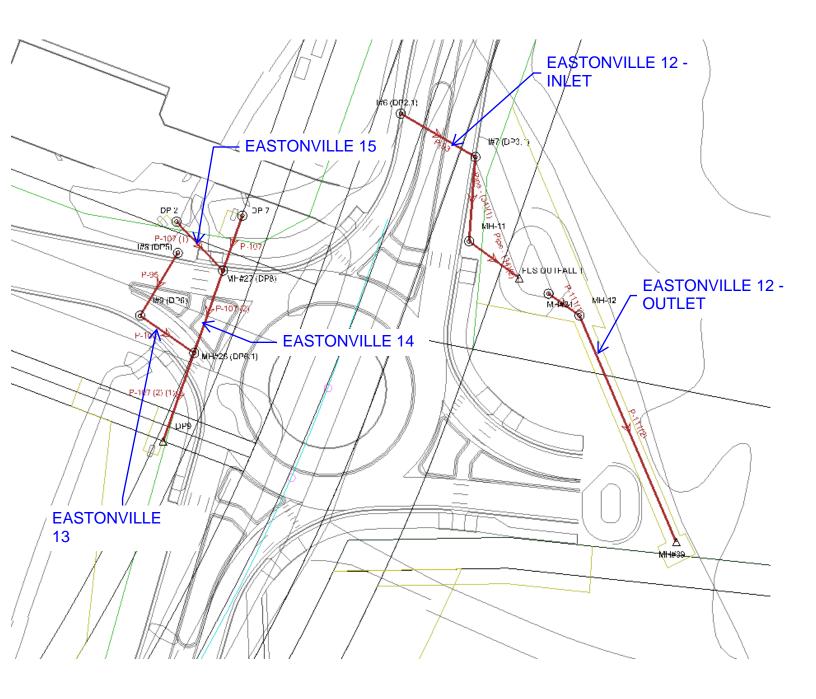
Box ID: Geick Ranch Tributary 1 Box Culvert

CULVERT SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) MHFD-Culvert, Version 4.00 (May 2020)

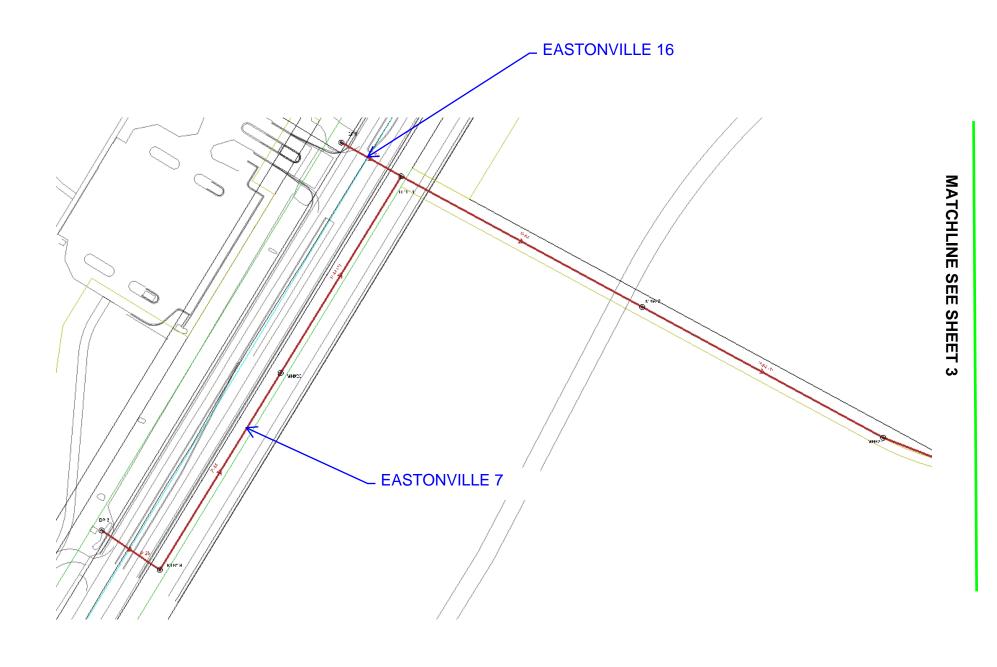

Project:	EASTONVILLE R			11 4.00 (May 2020)	/		
•	DD0	s to be a manhole.					
		ite ID/name of where					
	this is locate	d.		102000000000000000000000000000000000000			
		Grate	culvert x-section	a cuhert x-section			
				[p ()]	P		
		Concrete Vault					
			k	·····»;			
		<u> </u>	Ľ				
		н	Bex				
		n entranc los	* »	esit Tuit	water /		
		<u> </u>			\neg		
		LS ŷ	Slepe Se	<u> </u>			
Design Informatio	on (Input):	Sec	tion 1	Section 2			
Circular Culvert:	Barrel Diameter in Inc	hes		D =		inches	
	Inlet Edge Type (Choo	ose from pull-down list)				
<u>OR:</u>	-					•	
Box Culvert:	Barrel Height (Rise) in			H (Rise) =		ft	
	Barrel Width (Span) in			W (Span) =		ft	
	Inlet Edge Type (Choo	ose from pull-down list)	1:1 Bevel w/ 45	5 deg. Flared Wingwall		
	Number of Barrels			# Barrels =	2	1	
	Inlet Elevation at Culv	ert Invert		# Darreis = Elev IN =		ft	
	Outlet Elevation OR S			So =	0.015	ft/ft	
	Culvert Length			L =	116.5	ft	
	Manning's Roughness			n =	0.012		
	Bend Loss Coefficient			$K_b =$	0		
	Exit Loss Coefficient			K _x =	1		
Design Informatio						7	
	Entrance Loss Coefficie			K _e =	0.50	-	
	Friction Loss Coefficien Sum of All Loss Coeffic			K _f =	0.40	-	
	Minimum Energy Cond			K _s = KE _{low} =		-	
	Orifice Inlet Condition			$C_d =$			
	Office Inice Condition	coemcient		C _d –	0.05	1	
Calculations of Cu	lvert Capacity (outp	out):	Backwater calculation	ns required to obtain	n Outlet Control Flo	wrate when HWo <	0.75 * Culvert Rise
				·			
	Headwater	Tailwater	Inlet	Inlet	Outlet	Controlling	Flow
	Surface	Surface	Control	Control	Control	Culvert	Control
	Elevation	Elevation	Equation	Flowrate	Flowrate	Flowrate	Used
	(ft)	(ft)	Used	(cfs)	(cfs)	(cfs)	
	100.00		No Flow (WS < inlet)	0.00	0.00	0.00	N/A
	100.25		Min. Energy. Eqn.	7.74	#N/A	#N/A	#N/A
	100.50		Min. Energy. Eqn.	21.82	#N/A	#N/A	#N/A
	100.75 101.00		Min. Energy. Eqn. Min. Energy. Eqn.	40.04 61.66	#N/A #N/A	#N/A #N/A	#N/A #N/A
	101.00		Min. Energy. Eqn.	86.22	#N/A #N/A	#N/A #N/A	#N/A #N/A
	101.25		Min. Energy. Eqn.	113.26	#N/A	#N/A #N/A	#N/A #N/A
	101.75		Regression Eqn.	141.06	#N/A	#N/A	#N/A
	102.00		Regression Eqn.	170.46	#N/A	#N/A	#N/A
	102.25		Regression Eqn.	201.26	403.16	201.26	INLET
	102.50		Regression Eqn.	233.22	431.72	233.22	INLET
	102 75		Regression Fan	265 78	458 99	265 78	TNI FT


			_		
102.75	Regression Eqn.	265.78	458.99	265.78	INLET
103.00	Regression Eqn.	298.68	485.11	298.68	INLET
103.25	Regression Eqn.	331.42	510.21	331.42	INLET
103.50	Regression Eqn.	363.62	534.39	363.62	INLET
103.75	Regression Eqn.	395.04	557.76	395.04	INLET
104.00	Regression Eqn.	425.50	580.38	425.50	INLET
104.25	Regression Eqn.	454.90	604.46	454.90	INLET
104.50	Regression Eqn.	483.22	629.17	483.22	INLET
104.75	Regression Eqn.	510.44	652.94	510.44	INLET
105.00	Regression Eqn.	536.62	675.87	536.62	INLET
105.25	Regression Eqn.	561.84	698.05	561.84	INLET
105.50	Regression Eqn.	586.16	719.54	586.16	INLET
105.75	Regression Eqn.	609.62	740.41	609.62	INLET
106.00	Regression Eqn.	632.28	760.72	632.28	INLET
106.25	Regression Eqn.	654.22	780.49	654.22	INLET
106.50	Regression Eqn.	675.50	799.77	675.50	INLET
106.75	Regression Eqn.	696.22	818.60	696.22	INLET
107.00	Regression Eqn.	716.24	837.01	716.24	INLET
107.25	Regression Eqn.	735.82	855.02	735.82	INLET
			Processing Time	00 20 Seconds	

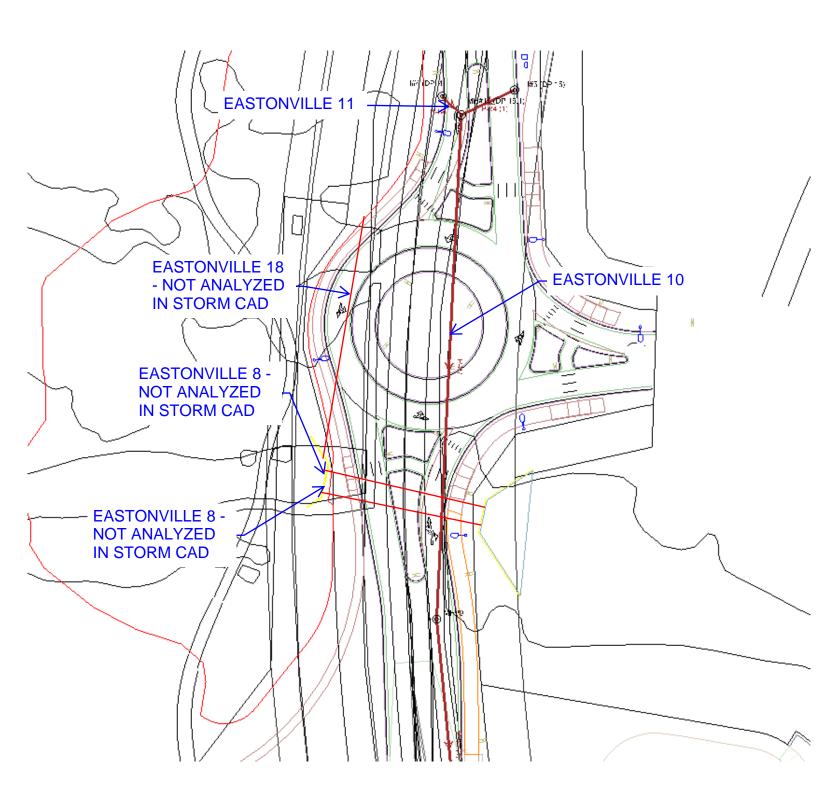
Processing Time: 00.20 Seconds

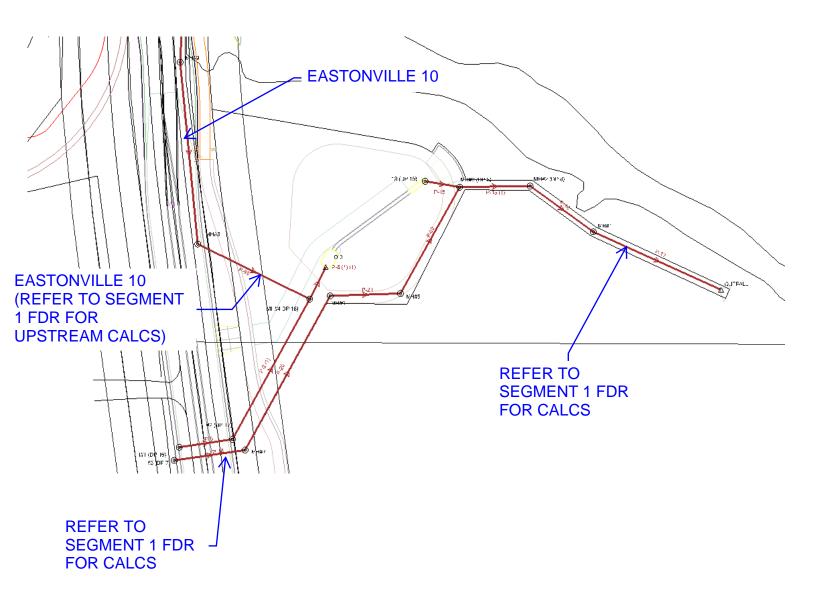

CULVERT SIZING (INLET vs. OUTLET CONTROL WITH TAILWATER EFFECTS) MHFD-Culvert, Version 4.00 (May 2020)

Project: EASTONVILLE ROAD ID: DP8



MATCHLINE REFER TO SEGMENT 2 FDR

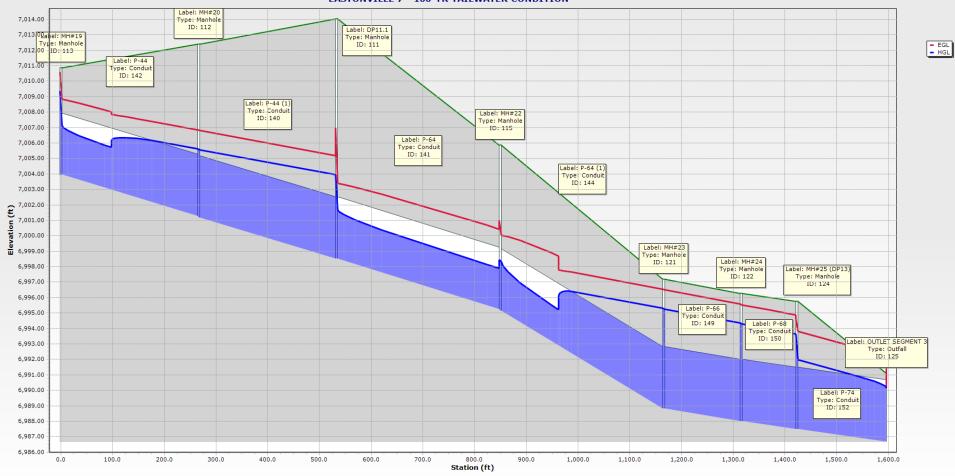



SHEET 2

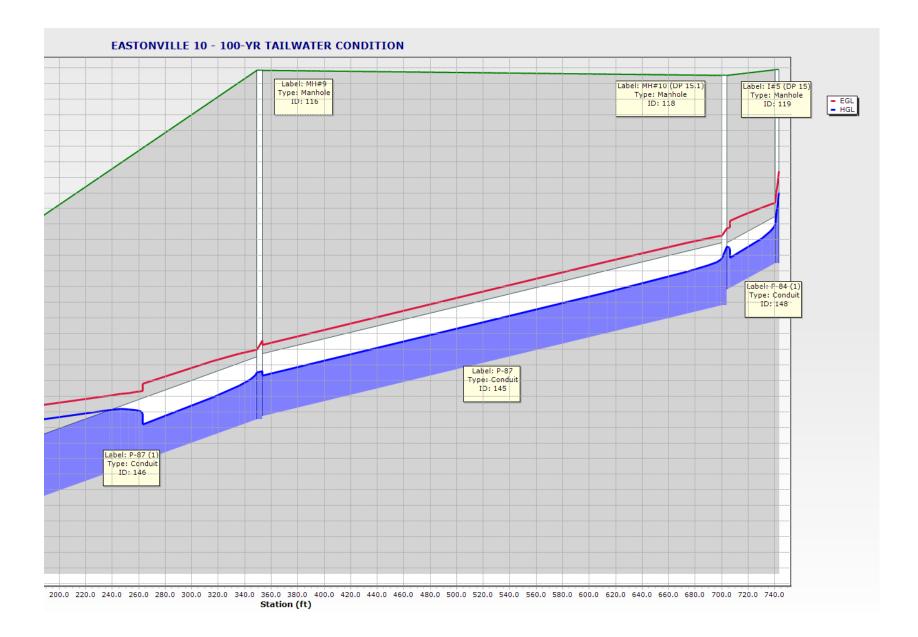
SHEET 5

100 YEAR TAILWATER CONDITION: PIPE SUMMARY TABLE

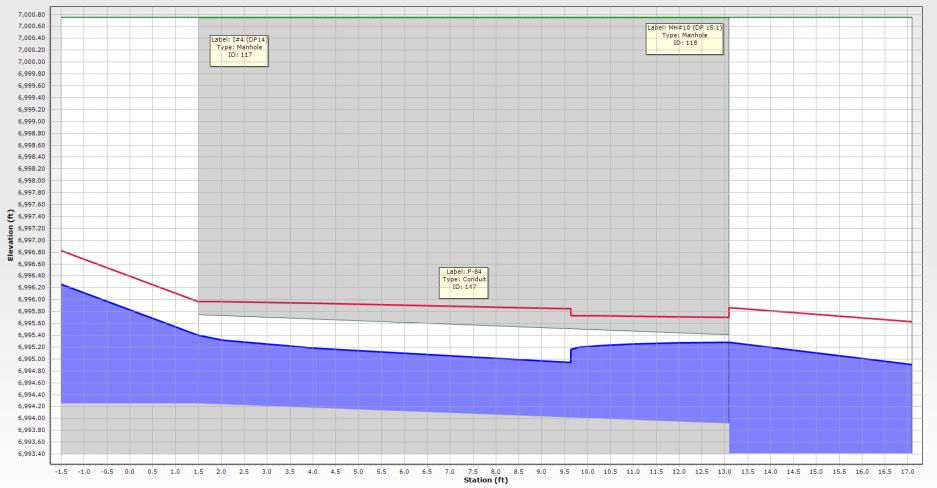
	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2) MH	1H#26 (DP6.1)	7,020.50	DP9	7,019.00	60.7	0.025	24.0	0.013	22.40	11.97	35.57	63.0	7,022.19	7,020.22
132: P-103 I#	#9 (DP6)	7,023.00	MH#26 (DP6.1)	7,022.00	42.7	0.023	18.0	0.013	2.40	6.54	16.08	14.9	7,023.89	7,023.91
133: P-107 (2) MH	1H#27 (DP8)	7,021.00	MH#26 (DP6.1)	7,020.50	56.6	0.009	24.0	0.013	21.00	6.68	21.26	98.8	7,024.40	7,023.91
134: P-107 DP)P 7	7,023.01	MH#27 (DP8)	7,021.75	37.8	0.033	15.0	0.013	2.20	1.79	11.81	18.6	7,025.07	7,025.03
135: P-107 (1) MH	1H#27 (DP8)	7,021.00	DP 2	7,021.26	43.9	-0.006	24.0	0.013	18.80	5.98	17.41	108.0	7,025.33	7,025.03
136: P-95 I#	#8 (DP5)	7,024.00	I#9 (DP6)	7,023.00	47.5	0.021	18.0	0.013	1.30	5.26	15.24	8.5	7,024.43	7,023.94
137: P-93 I#	#6 (DP2.1)	7,022.34	I#7 (DP3.1)	7,021.78	55.9	0.010	18.0	0.013	1.50	4.22	10.51	14.3	7,022.80	7,022.73
140: P-44 (1) MH	1H#20	7,001.18	DP11.1	6,998.52	266.5	0.010	48.0	0.013	112.10	8.92	143.63	78.0	7,005.57	7,003.94
141: P-64 DP	P11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	112.10	12.80	145.88	76.8	7,001.72	6,997.89
142: P-44 MH	1H#19	7,003.94	MH#20	7,001.28	266.5	0.010	48.0	0.013	112.10	12.64	143.63	78.0	7,007.14	7,005.63
143: P-26 DP	P 3	7,005.01	MH#19	7,004.04	81.5	0.012	48.0	0.013	112.10	8.92	156.73	71.5	7,009.86	7,009.36
144: P-64 (1) MH	1H#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	112.10	16.57	203.15	55.2	6,998.35	6,995.32
145: P-87 MH	1H#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	17.20	7.96	22.76	75.6	6,994.91	6,991.16
146: P-87 (1) MH	1H#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	17.20	9.29	27.70	62.1	6,991.26	6,989.59
147: P-84 I#	#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	8.80	9.17	15.77	55.8	6,995.40	6,995.28
148: P-84 (1) I#	#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	10.40	9.25	15.18	68.5	6,995.98	6,995.28
149: P-66 MH	1H#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	112.10	8.92	106.64	105.1	6,995.26	6,994.35
150: P-68 MH	1H#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	112.10	8.92	97.84	114.6	6,994.29	6,993.63
151: P-77 DP	P12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	24.0	0.013	24.60	7.83	38.62	63.7	6,993.96	6,993.63
152: P-74 MH	1H#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	136.60	10.87	99.34	137.5	6,991.98	6,990.15
225: P-42 DP	P11	7,001.22	DP11.1	6,999.51	85.7	0.020	24.0	0.013	44.00	14.01	31.96	137.7	7,007.19	7,003.94
227: Pipe - (34 I#	#7 (DP3.1)	7,021.78	MH-11	7,021.41	41.5	0.009	18.0	0.013	3.20	5.00	9.92	32.3	7,022.72	7,022.73
228: Pipe - (34 MH	1H-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	3.20	1.81	7.38	43.3	7,022.73	7,022.69
230: P-111(1) MH	1H#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	0.80	2.73	7.35	10.9	7,019.00	7,018.90
231: P-111(2) MH	1H-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	0.80	3.52	10.56	7.6	7,018.70	7,017.05


NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.

100 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE


	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)	Notes
98: MH#26 (D	7,027.15	7,027.15	7,022.00	22.40	7,022.19	Standard	7,023.91	STORM MH
99: MH#27 (D	7,027.09	7,027.09	7,021.75	21.00	7,024.40	Standard	7,025.03	STORM MH
100: I#9 (DP6)	7,027.04	7,027.04	7,023.00	2.40	7,023.89	Standard	7,023.94	CDOT Type-R
101: I#8 (DP5)	7,026.63	7,026.63	(N/A)	1.30	7,024.43	Standard	7,024.66	CDOT Type-R
102: I#7 (DP3.	7,026.51	7,026.51	7,021.78	3.20	7,022.72	Standard	7,022.73	CDOT Type-R
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	1.50	7,022.80	Standard	7,023.05	CDOT Type-R
106: MH#34	7,025.00	7,025.00	(N/A)	0.80	7,019.00	Standard	7,019.06	CDOT Type-C
111: DP11.1	7,014.03	7,014.03	6,998.52	112.10	7,001.72	Standard	7,003.94	STORM MH
112: MH#20	7,012.41	7,012.41	7,001.28	112.10	7,005.57	Standard	7,005.63	STORM MH
113: MH#19	7,010.85	7,010.85	7,004.04	112.10	7,007.14	Standard	7,009.36	STORM MH
115: MH#22	7,005.85	7,005.85	6,995.26	112.10	6,998.35	Standard	6,998.44	STORM MH
116: MH#9	7,000.92	7,000.92	6,989.86	17.20	6,991.26	Standard	6,991.29	STORM MH
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	8.80	6,995.40	Standard	6,996.25	CDOT Type-R
118: MH#10 (7,000.75	7,000.75	6,993.91	17.20	6,994.91	Standard	6,995.28	STORM MH
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	10.40	6,995.98	Standard	6,997.01	CDOT Type-R
121: MH#23	6,997.20	6,997.20	6,988.82	112.10	6,995.26	Standard	6,995.32	STORM MH
122: MH#24	6,996.25	6,996.25	6,988.00	112.10	6,994.29	Standard	6,994.35	STORM MH
123: DP12	6,996.40	6,996.40	(N/A)	24.60	6,993.96	Standard	6,995.39	CDOT Type-C
124: MH#25 (6,995.75	6,995.75	6,987.50	136.60	6,991.98	Standard	6,993.63	STORM MH
192: DP 7	7,024.45	7,024.45	(N/A)	2.20	7,024.45	Standard	7,024.52	CDOT FES
193: DP 2	7,024.26	7,024.26	(N/A)	18.80	7,024.26	Standard	7,025.10	CDOT FES
194: DP 3	7,009.43	7,009.43	(N/A)	112.10	7,009.43	Standard	7,011.29	CDOT FES
224: DP11	7,010.95	7,010.95	(N/A)	44.00	7,007.19	Absolute	7,007.19	CDOT TYPE D INLET
226: MH-11	7,026.84	7,026.84	7,021.41	3.20	7,022.73	Absolute	7,022.73	
229: MH-12	7,024.52	7,024.52	7,018.57	0.80	7,018.70	Absolute	7,018.70	

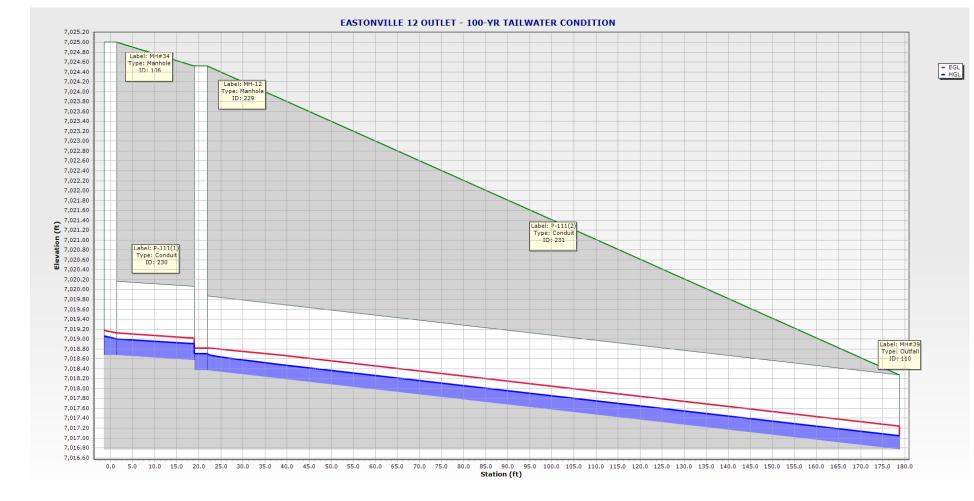
	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	Notes
107: DP9	7,022.74	7,019.00	Free Outfall		7,020.22	22.40	CDOT FES
108: FES OUTF	7,022.50	7,021.00	User Defined Tailwater	7,022.69	7,022.69	3.20	CDOT FES
110: MH#39	7,018.27	7,016.77	Free Outfall		7,017.05	0.80	CDOT FES
125: OUTLET S	6,991.09	6,986.67	Free Outfall		6,990.15	136.60	CDOT FES

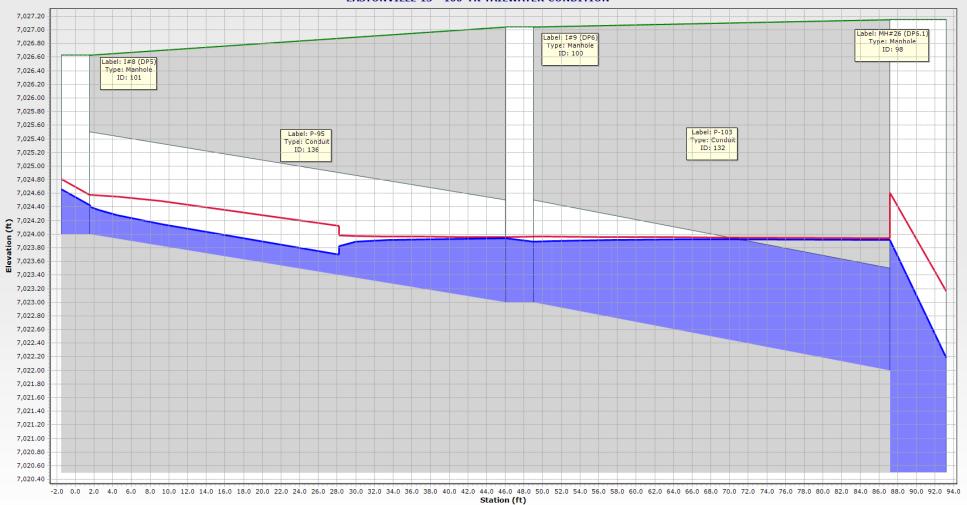

NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.

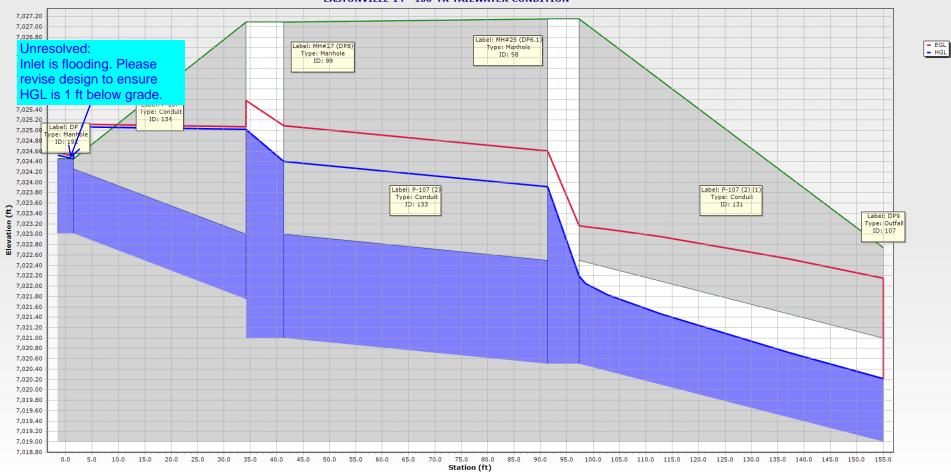
EASTONVILLE 7 - 100-YR TAILWATER CONDITION



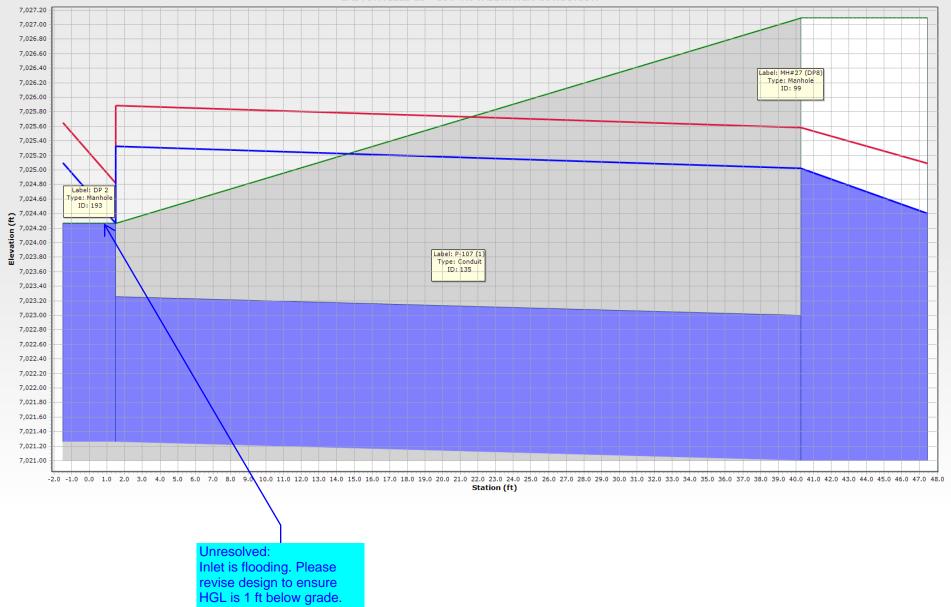
NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS

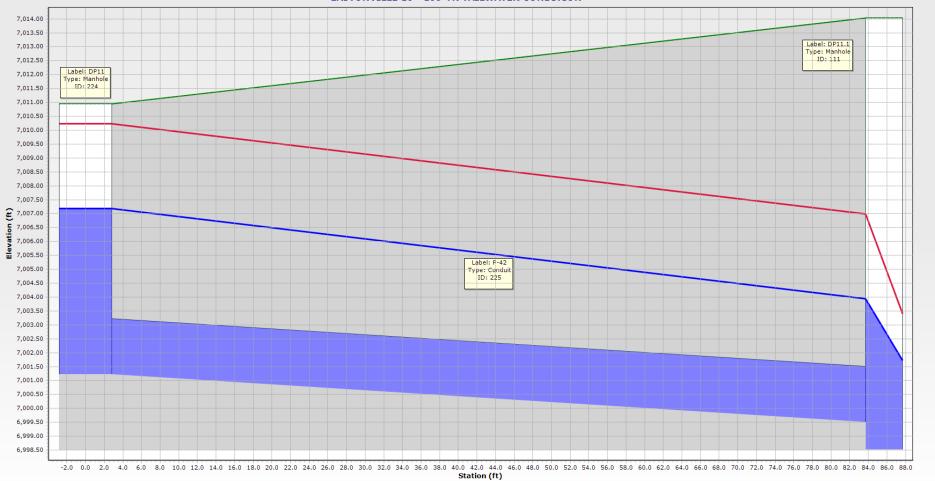

EASTONVILLE 11 - 100-YR TAILWATER CONDITION


- EGL - HGL


EASTONVILLE 12 INLET - 100-YR TAILWATER CONDITION

NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS




EASTONVILLE 13 - 100-YR TAILWATER CONDITION

EASTONVILLE 14 - 100-YR TAILWATER CONDITION

EASTONVILLE 15 - 100-YR TAILWATER CONDITION

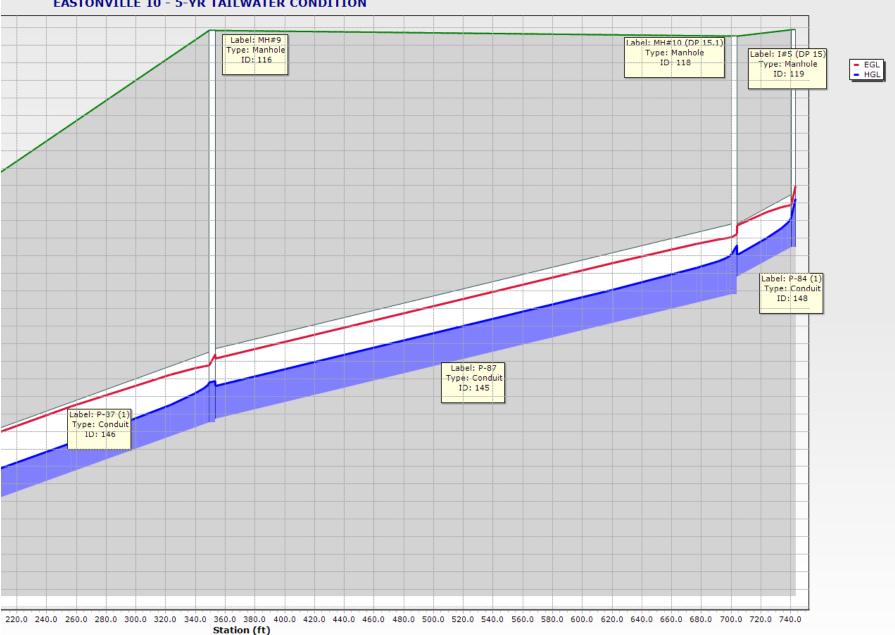
EASTONVILLE 16 - 100-YR TAILWATER CONDITION

= EGL = HGL

	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.50	DP9	7,019.00	60.7	0.025	24.0	0.013	2.90	6.82	35.57	8.2	7,021.09	7,019.39
132: P-103	I#9 (DP6)	7,023.00	MH#26 (DP6.1)	7,022.00	42.7	0.023	18.0	0.013	1.20	5.34	16.08	7.5	7,023.41	7,022.28
133: P-107 (2)	MH#27 (DP8)	7,021.00	MH#26 (DP6.1)	7,020.50	56.6	0.009	24.0	0.013	2.00	4.25	21.26	9.4	7,021.49	7,021.47
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,021.75	37.8	0.033	15.0	0.013	0.30	4.09	11.81	2.5	7,023.22	7,021.89
135: P-107 (1)	MH#27 (DP8)	7,021.00	DP 2	7,021.26	43.9	-0.006	24.0	0.013	1.70	3.52	17.41	9.8	7,021.71	7,021.65
136: P-95	I#8 (DP5)	7,024.00	I#9 (DP6)	7,023.00	47.5	0.021	18.0	0.013	0.70	4.38	15.24	4.6	7,024.31	7,023.50
137: P-93	I#6 (DP2.1)	7,022.34	I#7 (DP3.1)	7,021.78	55.9	0.010	18.0	0.013	0.80	3.51	10.51	7.6	7,022.67	7,022.26
140: P-44 (1)	MH#20	7,001.18	DP11.1	6,998.52	266.5	0.010	48.0	0.013	6.10	5.68	143.63	4.2	7,001.90	6,999.57
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	6.10	5.74	145.88	4.2	6,999.24	6,995.82
142: P-44	MH#19	7,003.94	MH#20	7,001.28	266.5	0.010	48.0	0.013	6.10	5.68	143.63	4.2	7,004.66	7,001.84
143: P-26	DP 3	7,005.01	MH#19	7,004.04	81.5	0.012	48.0	0.013	6.10	6.03	156.73	3.9	7,005.73	7,004.99
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	6.10	7.23	203.15	3.0	6,995.87	6,989.55
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	10.20	7.04	22.76	44.8	6,994.55	6,990.80
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	10.20	8.15	27.70	36.8	6,990.90	6,988.20
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	5.20	8.00	15.77	33.0	6,995.13	6,994.80
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	5.00	7.70	15.18	32.9	6,995.60	6,994.80
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	6.10	4.60	106.64	5.7	6,989.54	6,988.73
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	6.10	4.33	97.84	6.2	6,988.72	6,988.71
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	24.0	0.013	3.90	7.89	38.62	10.1	6,991.01	6,989.95
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	10.00	5.07	99.34	10.1	6,988.42	6,988.30
225: P-42	DP11	7,001.22	DP11.1	6,999.51	85.7	0.020	24.0	0.013	7.50	8.31	31.96	23.5	7,002.19	7,000.17
227: Pipe - (34	I#7 (DP3.1)	7,021.78	MH-11	7,021.41	41.5	0.009	18.0	0.013	1.60	4.12	9.92	16.1	7,022.25	7,022.16
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	1.60	3.34	7.38	21.7	7,022.16	7,022.16
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	0.10	1.46	7.35	1.4	7,018.79	7,018.70
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	0.80	3.52	10.56	7.6	7,018.70	7,017.05

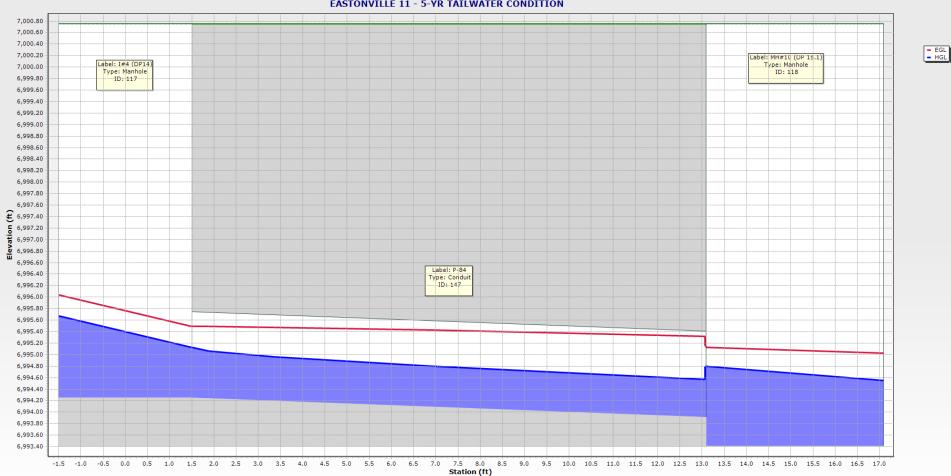

NOTE: EASTONVILLE 12 - INLET, EASTONVILLE 10, & EASTONVILLE 11 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

5 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

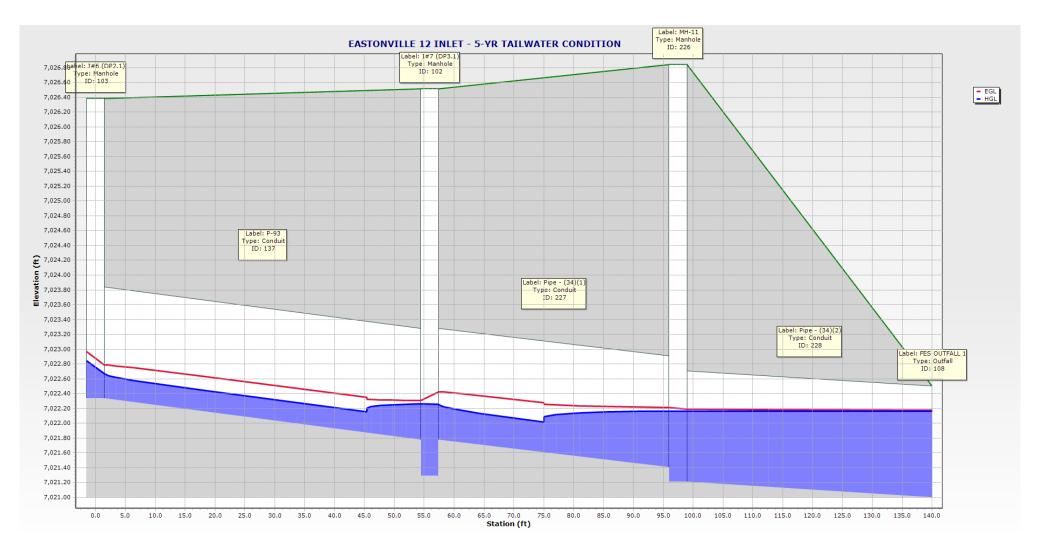

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)	Notes
98: MH#26 (D	7,027.15	7,027.15	7,022.00	2.90	7,021.09	Standard	7,021.47	STORM MH
99: MH#27 (D	7,027.09	7,027.09	7,021.75	2.00	7,021.49	Standard	7,021.65	STORM MH
100: I#9 (DP6)	7,027.04	7,027.04	7,023.00	1.20	7,023.41	Standard	7,023.50	CDOT Type-R
101: I#8 (DP5)	7,026.63	7,026.63	(N/A)	0.70	7,024.31	Standard	7,024.47	CDOT Type-R
102: I#7 (DP3.	7,026.51	7,026.51	7,021.78	1.60	7,022.25	Standard	7,022.26	CDOT Type-R
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	0.80	7,022.67	Standard	7,022.85	CDOT Type-R
106: MH#34	7,025.00	7,025.00	(N/A)	0.10	7,018.79	Standard	7,018.81	CDOT Type-C
111: DP11.1	7,014.03	7,014.03	6,998.52	6.10	6,999.24	Standard	6,999.57	STORM MH
112: MH#20	7,012.41	7,012.41	7,001.28	6.10	7,001.90	Standard	7,001.91	STORM MH
113: MH#19	7,010.85	7,010.85	7,004.04	6.10	7,004.66	Standard	7,004.99	STORM MH
115: MH#22	7,005.85	7,005.85	6,995.26	6.10	6,995.87	Standard	6,995.88	STORM MH
116: MH#9	7,000.92	7,000.92	6,989.86	10.20	6,990.90	Standard	6,990.93	STORM MH
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	5.20	6,995.13	Standard	6,995.67	CDOT Type-R
118: MH#10 (7,000.75	7,000.75	6,993.91	10.20	6,994.55	Standard	6,994.80	STORM MH
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	5.00	6,995.60	Standard	6,996.13	CDOT Type-R
121: MH#23	6,997.20	6,997.20	6,988.82	6.10	6,989.54	Standard	6,989.55	STORM MH
122: MH#24	6,996.25	6,996.25	6,988.00	6.10	6,988.72	Standard	6,988.73	STORM MH
123: DP12	6,996.40	6,996.40	(N/A)	3.90	6,991.01	Standard	6,991.39	CDOT Type-C
124: MH#25 (6,995.75	6,995.75	6,987.50	10.00	6,988.42	Standard	6,988.71	STORM MH
192: DP 7	7,024.45	7,024.45	(N/A)	0.30	7,023.22	Standard	7,023.33	CDOT FES
193: DP 2	7,024.26	7,024.26	(N/A)	1.70	7,021.71	Standard	7,021.95	CDOT FES
194: DP 3	7,009.43	7,009.43	(N/A)	6.10	7,005.73	Standard	7,006.10	CDOT FES
224: DP11	7,010.95	7,010.95	(N/A)	7.50	7,002.19	Absolute	7,002.19	CDOT TYPE D INLET
226: MH-11	7,026.84	7,026.84	7,021.41	1.60	7,022.16	Absolute	7,022.16	
229: MH-12	7,024.52	7,024.52	7,018.57	0.80	7,018.70	Absolute	7,018.70	

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	Notes
107: DP9	7,022.74	7,019.00	Free Outfall		7,019.39	2.90	CDOT FES
108: FES OUTF	7,022.50	7,021.00	User Defined Tailwater	7,022.16	7,022.16	1.60	CDOT FES
110: MH#39	7,018.27	7,016.77	Free Outfall		7,017.05	0.80	CDOT FES
125: OUTLET S	6,991.09	6,986.67	User Defined Tailwater	6,988.30	6,988.30	10.00	CDOT FES

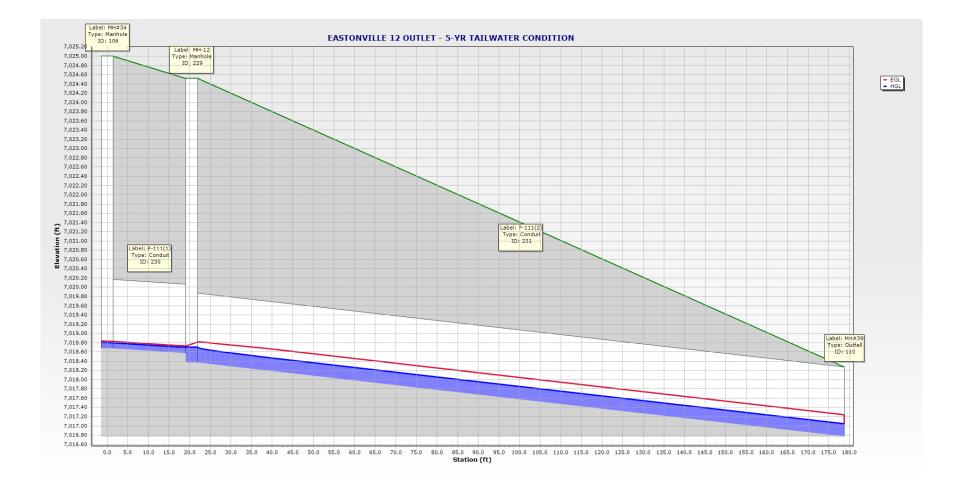
NOTE: EASTONVILLE 12 - INLET & EASTONVILLE 10 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 1 PIPES & STRUCTURES NOT INCLUDED IN TABLE, REFER TO SEGMENT 1 FDR.

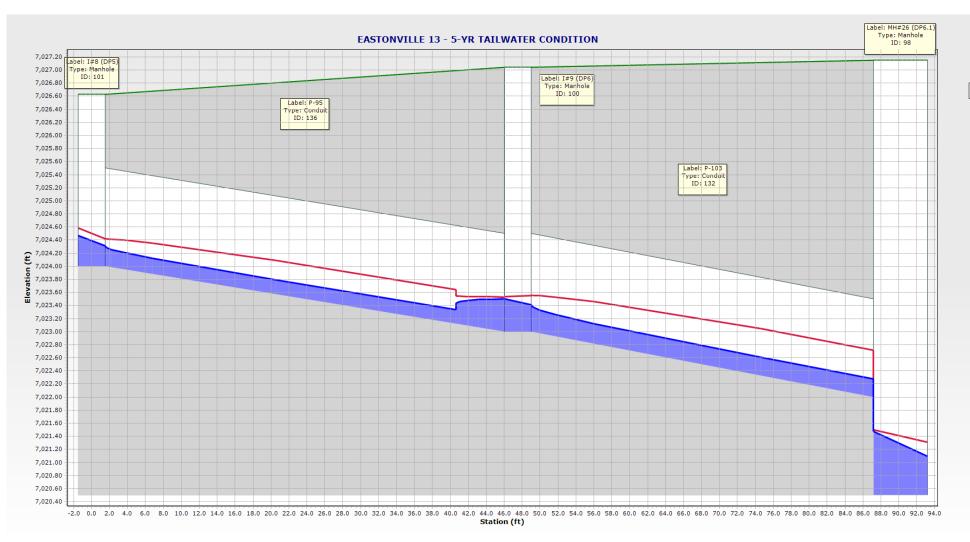


EASTONVILLE 7 - 5-YR TAILWATER CONDITION

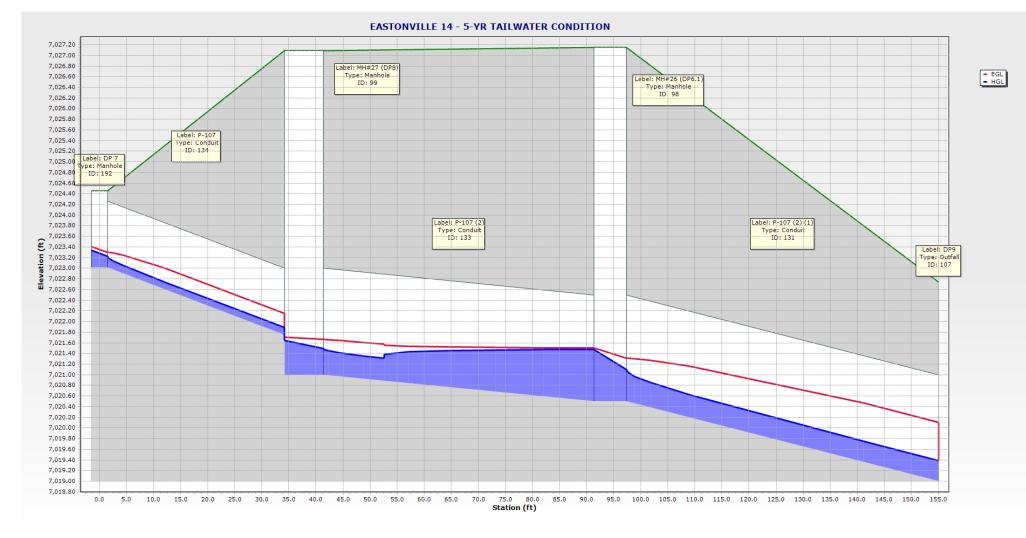


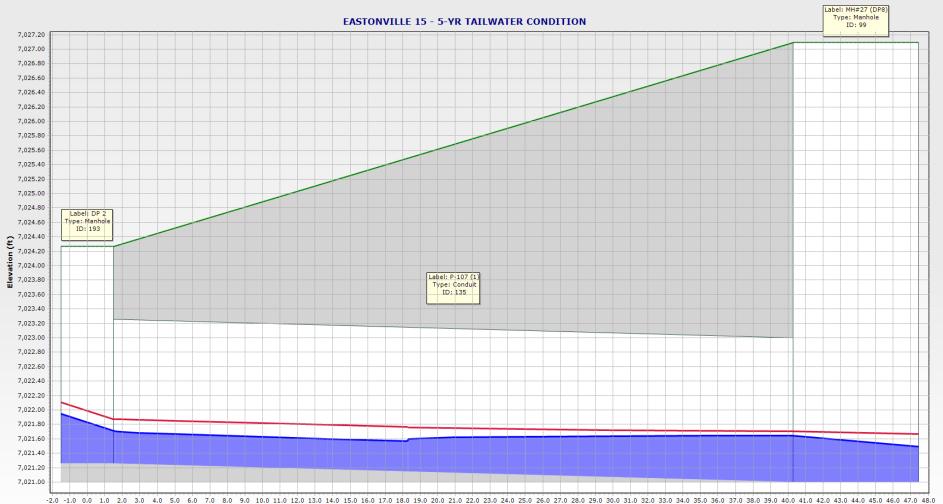
NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE **OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY** REQUIREMENTS

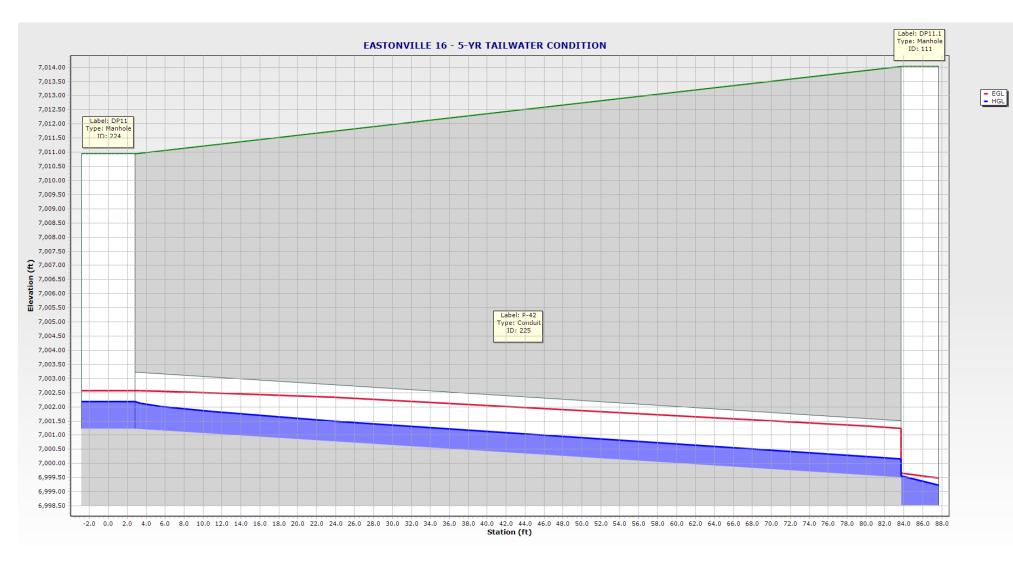

EASTONVILLE 10 - 5-YR TAILWATER CONDITION



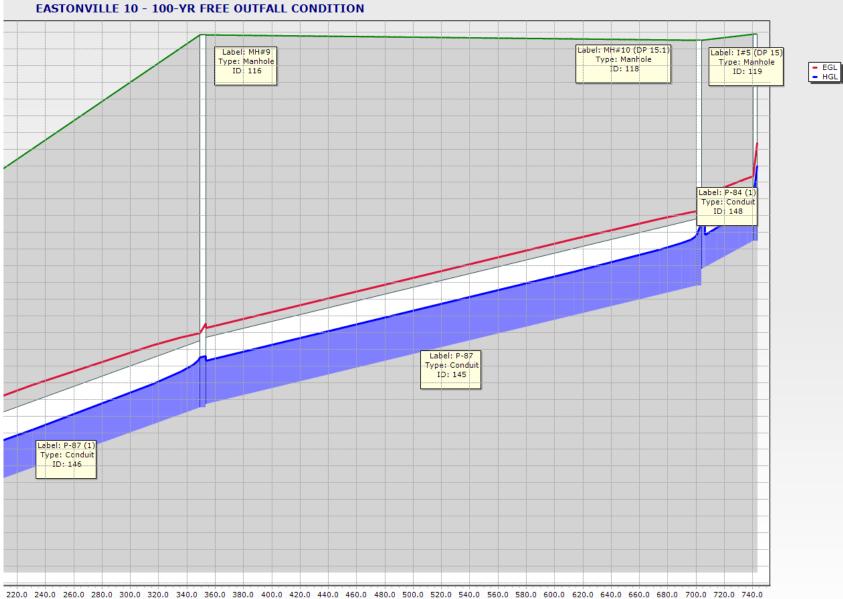
EASTONVILLE 11 - 5-YR TAILWATER CONDITION



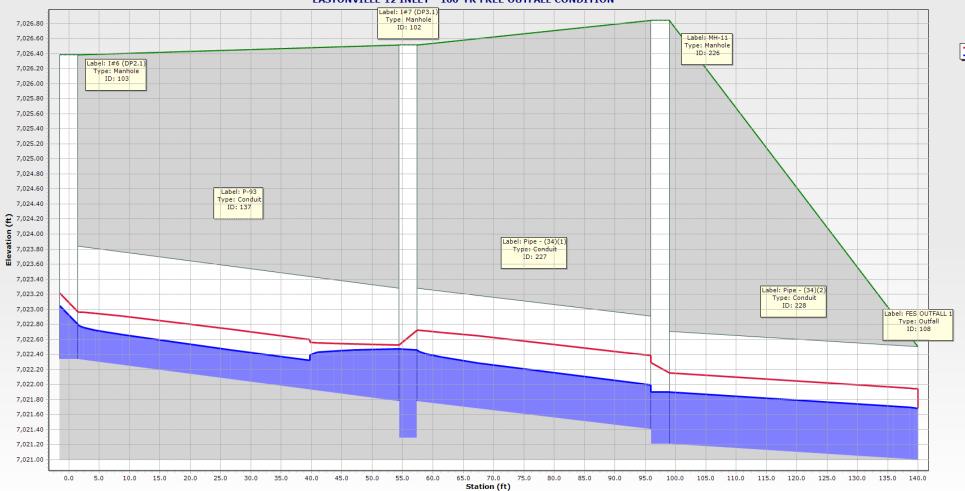

NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS


= EGL = HGL

= EGL = HGL


100 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE

	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.50	DP9	7,019.00	60.7	0.025	24.0	0.013	22.40	11.97	35.57	63.0	7,022.19	7,020.22
132: P-103	I#9 (DP6)	7,023.00	MH#26 (DP6.1)	7,022.00	42.7	0.023	18.0	0.013	2.40	6.54	16.08	14.9	7,023.89	7,023.91
133: P-107 (2)	MH#27 (DP8)	7,021.00	MH#26 (DP6.1)	7,020.50	56.6	0.009	24.0	0.013	21.00	6.68	21.26	98.8	7,024.40	7,023.91
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,021.75	37.8	0.033	15.0	0.013	2.20	1.79	11.81	18.6	7,025.07	7,025.03
135: P-107 (1)	MH#27 (DP8)	7,021.00	DP 2	7,021.26	43.9	-0.006	24.0	0.013	18.80	5.98	17.41	108.0	7,025.33	7,025.03
136: P-95	I#8 (DP5)	7,024.00	I#9 (DP6)	7,023.00	47.5	0.021	18.0	0.013	1.30	5.26	15.24	8.5	7,024.43	7,023.94
137: P-93	I#6 (DP2.1)	7,022.34	I#7 (DP3.1)	7,021.78	55.9	0.010	18.0	0.013	1.50	4.22	10.51	14.3	7,022.80	7,022.47
140: P-44 (1)	MH#20	7,001.18	DP11.1	6,998.52	266.5	0.010	48.0	0.013	112.10	8.92	143.63	78.0	7,005.57	7,003.94
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	112.10	12.80	145.88	76.8	7,001.72	6,997.89
142: P-44	MH#19	7,003.94	MH#20	7,001.28	266.5	0.010	48.0	0.013	112.10	12.64	143.63	78.0	7,007.14	7,005.63
143: P-26	DP 3	7,005.01	MH#19	7,004.04	81.5	0.012	48.0	0.013	112.10	8.92	156.73	71.5	7,009.86	7,009.36
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	112.10	16.57	203.15	55.2	6,998.35	6,995.32
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	17.20	7.96	22.76	75.6	6,994.91	6,991.16
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	17.20	9.29	27.70	62.1	6,991.26	6,988.76
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	8.80	9.17	15.77	55.8	6,995.40	6,995.28
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	10.40	9.25	15.18	68.5	6,995.98	6,995.28
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	112.10	8.92	106.64	105.1	6,995.26	6,994.35
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	112.10	8.92	97.84	114.6	6,994.29	6,993.63
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	24.0	0.013	24.60	7.83	38.62	63.7	6,993.96	6,993.63
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	136.60	10.87	99.34	137.5	6,991.98	6,990.15
225: P-42	DP11	7,001.22	DP11.1	6,999.51	85.7	0.020	24.0	0.013	44.00	14.01	31.96	137.7	7,007.19	7,003.94
227: Pipe - (34	I#7 (DP3.1)	7,021.78	MH-11	7,021.41	41.5	0.009	18.0	0.013	3.20	5.00	9.92	32.3	7,022.46	7,022.00
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	3.20	4.03	7.38	43.3	7,021.90	7,021.68
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	0.80	2.73	7.35	10.9	7,019.00	7,018.90
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	0.80	3.52	10.56	7.6	7,018.70	7,017.05


100 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

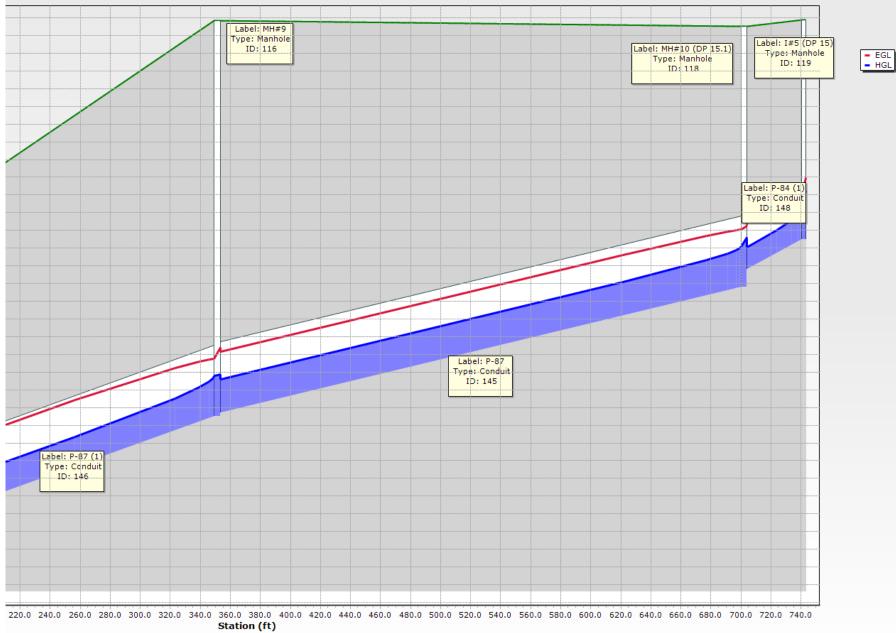
	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)	Notes
98: MH#26 (D	7,027.15	7,027.15	7,022.00	22.40	7,022.19	Standard	7,023.91	STORM MH
99: MH#27 (D	7,027.09	7,027.09	7,021.75	21.00	7,024.40	Standard	7,025.03	STORM MH
100: I#9 (DP6)	7,027.04	7,027.04	7,023.00	2.40	7,023.89	Standard	7,023.94	CDOT Type-R
101: I#8 (DP5)	7,026.63	7,026.63	(N/A)	1.30	7,024.43	Standard	7,024.66	CDOT Type-R
102: I#7 (DP3.	7,026.51	7,026.51	7,021.78	3.20	7,022.46	Standard	7,022.47	CDOT Type-R
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	1.50	7,022.80	Standard	7,023.05	CDOT Type-R
106: MH#34	7,025.00	7,025.00	(N/A)	0.80	7,019.00	Standard	7,019.06	CDOT Type-C
111: DP11.1	7,014.03	7,014.03	6,998.52	112.10	7,001.72	Standard	7,003.94	STORM MH
112: MH#20	7,012.41	7,012.41	7,001.28	112.10	7,005.57	Standard	7,005.63	STORM MH
113: MH#19	7,010.85	7,010.85	7,004.04	112.10	7,007.14	Standard	7,009.36	STORM MH
115: MH#22	7,005.85	7,005.85	6,995.26	112.10	6,998.35	Standard	6,998.44	STORM MH
116: MH#9	7,000.92	7,000.92	6,989.86	17.20	6,991.26	Standard	6,991.29	STORM MH
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	8.80	6,995.40	Standard	6,996.25	CDOT Type-R
118: MH#10 (7,000.75	7,000.75	6,993.91	17.20	6,994.91	Standard	6,995.28	STORM MH
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	10.40	6,995.98	Standard	6,997.01	CDOT Type-R
121: MH#23	6,997.20	6,997.20	6,988.82	112.10	6,995.26	Standard	6,995.32	STORM MH
122: MH#24	6,996.25	6,996.25	6,988.00	112.10	6,994.29	Standard	6,994.35	STORM MH
123: DP12	6,996.40	6,996.40	(N/A)	24.60	6,993.96	Standard	6,995.39	CDOT Type-C
124: MH#25 (6,995.75	6,995.75	6,987.50	136.60	6,991.98	Standard	6,993.63	STORM MH
192: DP 7	7,024.45	7,024.45	(N/A)	2.20	7,024.45	Standard	7,024.52	CDOT FES
193: DP 2	7,024.26	7,024.26	(N/A)	18.80	7,024.26	Standard	7,025.10	CDOT FES
194: DP 3	7,009.43	7,009.43	(N/A)	112.10	7,009.43	Standard	7,011.29	CDOT FES
224: DP11	7,010.95	7,010.95	(N/A)	44.00	7,007.19	Absolute	7,007.19	CDOT TYPE D INLET
226: MH-11	7,026.84	7,026.84	7,021.41	3.20	7,021.90	Absolute	7,021.90	
229: MH-12	7,024.52	7,024.52	7,018.57	0.80	7,018.70	Absolute	7,018.70	

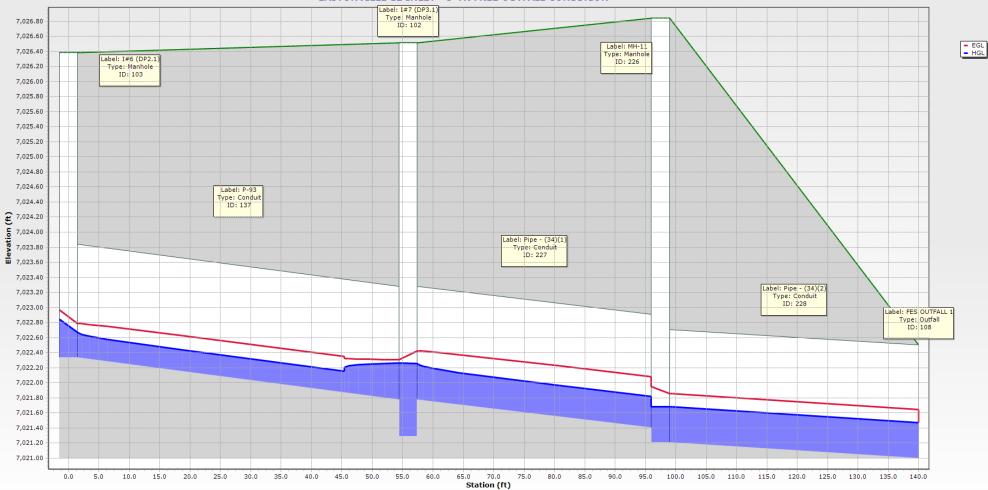
	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	Notes
107: DP9	7,022.74	7,019.00	Free Outfall		7,020.22	22.40	CDOT FES
108: FES OUTF	7,022.50	7,021.00	Free Outfall		7,021.68	3.20	CDOT FES
110: MH#39	7,018.27	7,016.77	Free Outfall		7,017.05	0.80	CDOT FES
125: OUTLET S	6,991.09	6,986.67	Free Outfall		6,990.15	136.60	CDOT FES

EASTONVILLE 12 INLET - 100-YR FREE OUTFALL CONDITION

= EGL = HGL

5 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE

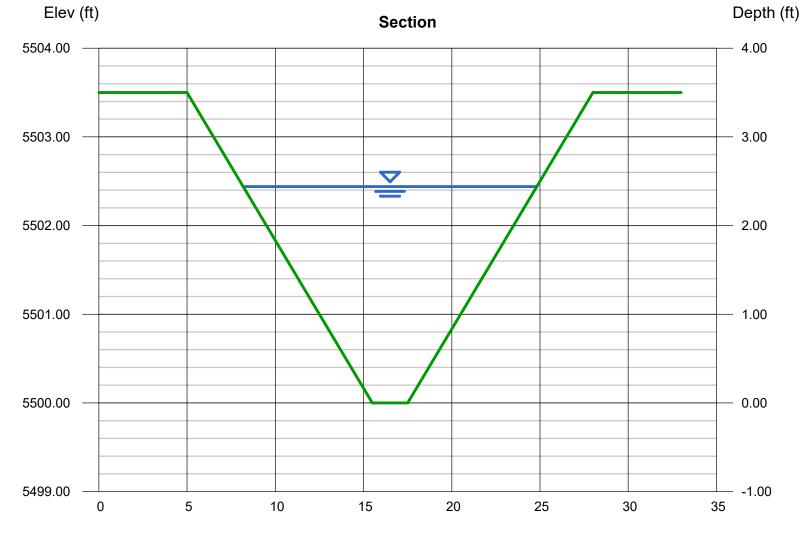

	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
131: P-107 (2)	MH#26 (DP6.1)	7,020.50	DP9	7,019.00	60.7	0.025	24.0	0.013	2.90	6.82	35.57	8.2	7,021.09	7,019.39
132: P-103	I#9 (DP6)	7,023.00	MH#26 (DP6.1)	7,022.00	42.7	0.023	18.0	0.013	1.20	5.34	16.08	7.5	7,023.41	7,022.28
133: P-107 (2)	MH#27 (DP8)	7,021.00	MH#26 (DP6.1)	7,020.50	56.6	0.009	24.0	0.013	2.00	4.25	21.26	9.4	7,021.49	7,021.47
134: P-107	DP 7	7,023.01	MH#27 (DP8)	7,021.75	37.8	0.033	15.0	0.013	0.30	4.09	11.81	2.5	7,023.22	7,021.89
135: P-107 (1)	MH#27 (DP8)	7,021.00	DP 2	7,021.26	43.9	-0.006	24.0	0.013	1.70	3.52	17.41	9.8	7,021.71	7,021.65
136: P-95	I#8 (DP5)	7,024.00	I#9 (DP6)	7,023.00	47.5	0.021	18.0	0.013	0.70	4.38	15.24	4.6	7,024.31	7,023.50
137: P-93	I#6 (DP2.1)	7,022.34	I#7 (DP3.1)	7,021.78	55.9	0.010	18.0	0.013	0.80	3.51	10.51	7.6	7,022.67	7,022.26
140: P-44 (1)	MH#20	7,001.18	DP11.1	6,998.52	266.5	0.010	48.0	0.013	6.10	5.68	143.63	4.2	7,001.90	6,999.57
141: P-64	DP11.1	6,998.52	MH#22	6,995.26	316.5	0.010	48.0	0.013	6.10	5.74	145.88	4.2	6,999.24	6,995.82
142: P-44	MH#19	7,003.94	MH#20	7,001.28	266.5	0.010	48.0	0.013	6.10	5.68	143.63	4.2	7,004.66	7,001.84
143: P-26	DP 3	7,005.01	MH#19	7,004.04	81.5	0.012	48.0	0.013	6.10	6.03	156.73	3.9	7,005.73	7,004.99
144: P-64 (1)	MH#22	6,995.15	MH#23	6,988.82	316.6	0.020	48.0	0.013	6.10	7.23	203.15	3.0	6,995.87	6,989.55
145: P-87	MH#10 (DP 1	6,993.41	MH#9	6,989.86	350.8	0.010	24.0	0.013	10.20	7.04	22.76	44.8	6,994.55	6,990.80
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	10.20	8.15	27.70	36.8	6,990.90	6,988.20
147: P-84	I#4 (DP14)	6,994.25	MH#10 (DP 1	6,993.91	15.1	0.023	18.0	0.013	5.20	8.00	15.77	33.0	6,995.13	6,994.80
148: P-84 (1)	I#5 (DP 15)	6,994.74	MH#10 (DP 1	6,993.91	39.7	0.021	18.0	0.013	5.00	7.70	15.18	32.9	6,995.60	6,994.80
149: P-66	MH#23	6,988.82	MH#24	6,988.00	149.0	0.006	48.0	0.013	6.10	4.60	106.64	5.7	6,989.54	6,988.73
150: P-68	MH#24	6,988.00	MH#25 (DP13)	6,987.50	107.8	0.005	48.0	0.013	6.10	4.33	97.84	6.2	6,988.72	6,988.71
151: P-77	DP12	6,990.32	MH#25 (DP13)	6,989.50	28.1	0.029	24.0	0.013	3.90	7.89	38.62	10.1	6,991.01	6,989.95
152: P-74	MH#25 (DP13)	6,987.50	OUTLET SEG	6,986.67	173.3	0.005	48.0	0.013	10.00	5.07	99.34	10.1	6,988.42	6,988.30
225: P-42	DP11	7,001.22	DP11.1	6,999.51	85.7	0.020	24.0	0.013	7.50	8.31	31.96	23.5	7,002.19	7,000.17
227: Pipe - (34	I#7 (DP3.1)	7,021.78	MH-11	7,021.41	41.5	0.009	18.0	0.013	1.60	4.12	9.92	16.1	7,022.25	7,021.82
228: Pipe - (34	MH-11	7,021.21	FES OUTFALL 1	7,021.00	42.5	0.005	18.0	0.013	1.60	3.34	7.38	21.7	7,021.69	7,021.47
230: P-111(1)	MH#34	7,018.67	MH-12	7,018.57	20.4	0.005	18.0	0.013	0.10	1.46	7.35	1.4	7,018.79	7,018.70
231: P-111(2)	MH-12	7,018.37	MH#39	7,016.77	158.3	0.010	18.0	0.013	0.80	3.52	10.56	7.6	7,018.70	7,017.05


5 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)	Notes
98: MH#26 (D	7,027.15	7,027.15	7,022.00	2.90	7,021.09	Standard	7,021.47	STORM MH
99: MH#27 (D	7,027.09	7,027.09	7,021.75	2.00	7,021.49	Standard	7,021.65	STORM MH
100: I#9 (DP6)	7,027.04	7,027.04	7,023.00	1.20	7,023.41	Standard	7,023.50	CDOT Type-R
101: I#8 (DP5)	7,026.63	7,026.63	(N/A)	0.70	7,024.31	Standard	7,024.47	CDOT Type-R
102: I#7 (DP3.	7,026.51	7,026.51	7,021.78	1.60	7,022.25	Standard	7,022.26	CDOT Type-R
103: I#6 (DP2.	7,026.38	7,026.38	(N/A)	0.80	7,022.67	Standard	7,022.85	CDOT Type-R
106: MH#34	7,025.00	7,025.00	(N/A)	0.10	7,018.79	Standard	7,018.81	CDOT Type-C
111: DP11.1	7,014.03	7,014.03	6,998.52	6.10	6,999.24	Standard	6,999.57	STORM MH
112: MH#20	7,012.41	7,012.41	7,001.28	6.10	7,001.90	Standard	7,001.91	STORM MH
113: MH#19	7,010.85	7,010.85	7,004.04	6.10	7,004.66	Standard	7,004.99	STORM MH
115: MH#22	7,005.85	7,005.85	6,995.26	6.10	6,995.87	Standard	6,995.88	STORM MH
116: MH#9	7,000.92	7,000.92	6,989.86	10.20	6,990.90	Standard	6,990.93	STORM MH
117: I#4 (DP1	7,000.75	7,000.75	(N/A)	5.20	6,995.13	Standard	6,995.67	CDOT Type-R
118: MH#10 (7,000.75	7,000.75	6,993.91	10.20	6,994.55	Standard	6,994.80	STORM MH
119: I#5 (DP 1	7,000.94	7,000.94	(N/A)	5.00	6,995.60	Standard	6,996.13	CDOT Type-R
121: MH#23	6,997.20	6,997.20	6,988.82	6.10	6,989.54	Standard	6,989.55	STORM MH
122: MH#24	6,996.25	6,996.25	6,988.00	6.10	6,988.72	Standard	6,988.73	STORM MH
123: DP12	6,996.40	6,996.40	(N/A)	3.90	6,991.01	Standard	6,991.39	CDOT Type-C
124: MH#25 (6,995.75	6,995.75	6,987.50	10.00	6,988.42	Standard	6,988.71	STORM MH
192: DP 7	7,024.45	7,024.45	(N/A)	0.30	7,023.22	Standard	7,023.33	CDOT FES
193: DP 2	7,024.26	7,024.26	(N/A)	1.70	7,021.71	Standard	7,021.95	CDOT FES
194: DP 3	7,009.43	7,009.43	(N/A)	6.10	7,005.73	Standard	7,006.10	CDOT FES
224: DP11	7,010.95	7,010.95	(N/A)	7.50	7,002.19	Absolute	7,002.19	CDOT TYPE D INLET
226: MH-11	7,026.84	7,026.84	7,021.41	1.60	7,021.69	Absolute	7,021.69	
229: MH-12	7,024.52	7,024.52	7,018.57	0.80	7,018.70	Absolute	7,018.70	

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	Notes
107: DP9	7,022.74	7,019.00	Free Outfall		7,019.39	2.90	CDOT FES
108: FES OUTF	7,022.50	7,021.00	Free Outfall		7,021.47	1.60	CDOT FES
110: MH#39	7,018.27	7,016.77	Free Outfall		7,017.05	0.80	CDOT FES
125: OUTLET S	6,991.09	6,986.67	User Defined Tailwater	6,988.30	6,988.30	10.00	CDOT FES

EASTONVILLE 10 - 5-YR FREE OUTFALL CONDITION

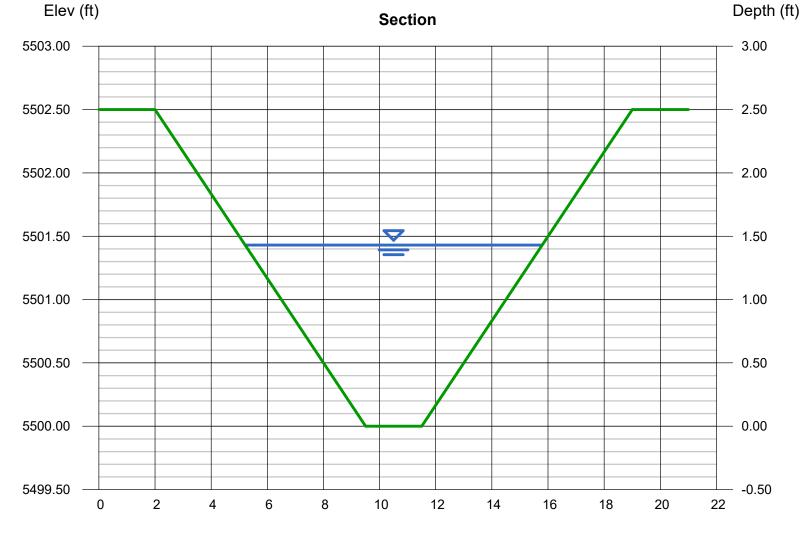

EASTONVILLE 12 INLET - 5-YR FREE OUTFALL CONDITION

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 28 2024

DP3 SWALE

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 2.44
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 112.00
Total Depth (ft)	= 3.50	Area (sqft)	= 22.74
Invert Elev (ft)	= 5500.00	Velocity (ft/s)	= 4.93
Slope (%)	= 0.70	Wetted Perim (ft)	= 17.43
N-Value	= 0.030	Crit Depth, Yc (ft)	= 2.14
		Top Width (ft)	= 16.64
Calculations		EGL (ft)	= 2.82
Compute by:	Known Q		
Known Q (cfs)	= 112.00		
		Pro swa	vide Fr # for this ale

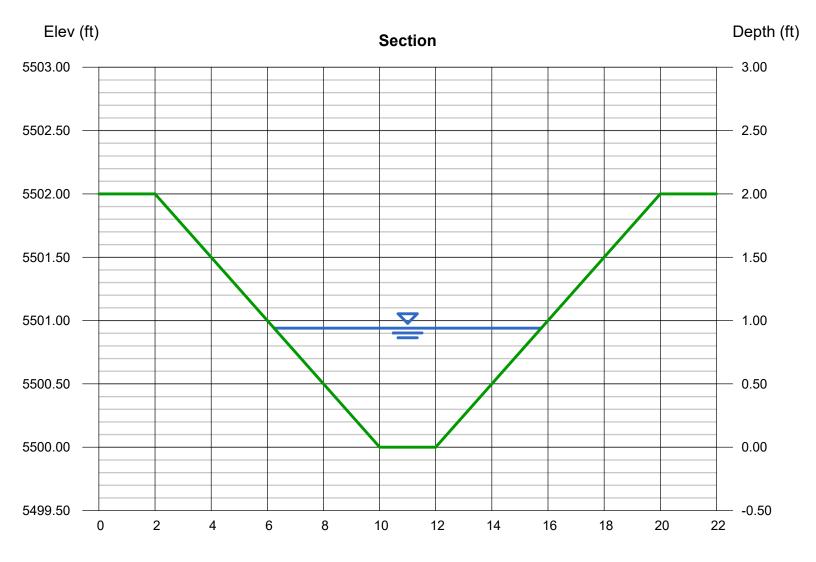


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Wednesday, Aug 28 2024

DP4 SWALE

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.43
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 38.60
Total Depth (ft)	= 2.50	Area (sqft)	= 8.99
Invert Elev (ft)	= 5500.00	Velocity (ft/s)	= 4.29
Slope (%)	= 1.00	Wetted Perim (ft)	= 11.04
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.31
		Top Width (ft)	= 10.58
Calculations		EGL (ft)	= 1.72
Compute by:	Known Q		
Known Q (cfs)	= 38.60		
	How was this flow determined? Per spreadsheet and report, flow at DP 4 is 491 cfs. Suggest creating a basin specific only for contributing to swale.		
Flev (ft)			

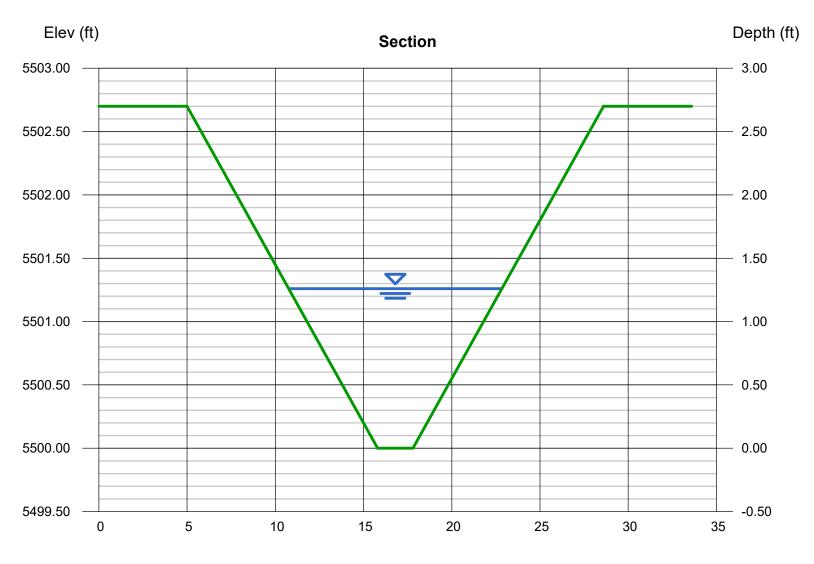


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

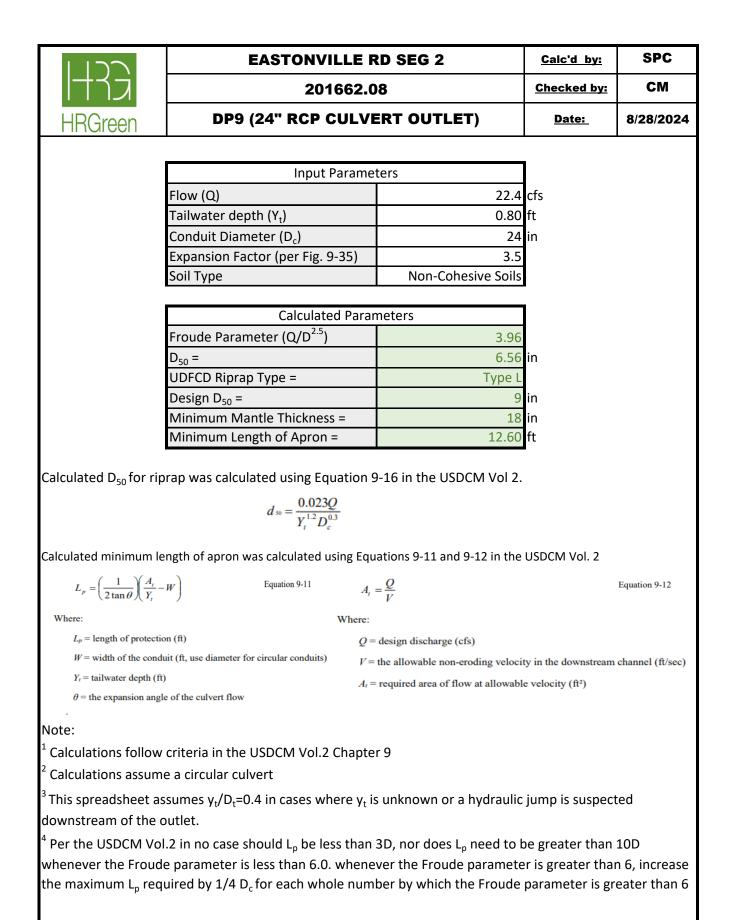
Wednesday, Aug 28 2024

DP9 SWALE

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.94
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 22.40
Total Depth (ft)	= 2.00	Area (sqft)	= 5.41
Invert Elev (ft)	= 5500.00	Velocity (ft/s)	= 4.14
Slope (%)	= 1.60	Wetted Perim (ft)	= 9.75
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.93
		Top Width (ft)	= 9.52
Calculations		EGL (ft)	= 1.21
Compute by:	Known Q		
Known Q (cfs)	= 22.40		



Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Wednesday, Aug 28 2024

DP11 SWALE

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.26
Side Slopes (z:1)	= 4.00, 4.00	Q (cfs)	= 44.00
Total Depth (ft)	= 2.70	Area (sqft)	= 8.87
Invert Elev (ft)	= 5500.00	Velocity (ft/s)	= 4.96
Slope (%)	= 1.60	Wetted Perim (ft)	= 12.39
N-Value	= 0.030	Crit Depth, Yc (ft)	= 1.28
		Top Width (ft)	= 12.08
Calculations		EGL (ft)	= 1.64
Compute by:	Known Q		
Known Q (cfs)	= 44.00		

	EASTONVIL	LE RD SEG 2	<u>Calc'd by:</u>	SPC
コーイン	2016	62.08	Checked by:	СМ
HRGreen	DP4.1 (SF	B C INLET)	<u>Date:</u>	8/28/2024
			Need	outlet protection
	· · ·	irameters	for:	outiet protection
	Flow (Q)			d B outlet
	Tailwater depth (Y _t)		(East	Culvert south of onville 8 culvert)
	Conduit Diameter (D _c)		- Eas	tonville 18 culver
	Expansion Factor (per Fig. 9-3			
	Soil Type	Non-Cohesive Soi	IS	
	Calculated	Parameters	7	
	Froude Parameter (Q/D ^{2.5})	1.2	3	
	D ₅₀ =	1.5	3 in	
	UDFCD Riprap Type =	Type V	'L	
	Design D ₅₀ =		6 in	
	Minimum Mantle Thickness =	= 1	2 in	
	Minimum Length of Apron =	4.5	0 ft	
	$d_{50} = \frac{0.023Q}{Y_t^{1.2} D_c^{0.3}}$			
alculated minimum l	ength of apron was calculated using the second s	ng Equations 9-11 and 9-12 in th	e USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t}\right)$	- W Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
$p \left(2 \tan \theta \right) \left(Y_t \right)$				
$p \left(2 \tan \theta \right) \left(Y_t\right)$ Where:	v	Vhere:		
		Where: Q = design discharge (cfs)		
Where: $L_p = \text{length of protection}$			city in the downstrean	n channel (ft/sec)
Where: $L_p = \text{length of protection}$	ion (ft) duit (ft, use diameter for circular conduits)	Q = design discharge (cfs)		n channel (ft/sec)
Where: $L_p = \text{length of protection}$ W = width of the condition	ion (ft) duit (ft, use diameter for circular conduits) t)	Q = design discharge (cfs) V = the allowable non-eroding velo		n channel (ft/sec)
Where: $L_p = \text{length of protection}$ W = width of the concompt $Y_t = \text{tailwater depth (free transmission)}$	ion (ft) duit (ft, use diameter for circular conduits) t)	Q = design discharge (cfs) V = the allowable non-eroding velo		n channel (ft/sec)
Where: $L_p = \text{length of protections}$ $W = \text{width of the constant of } Y_t = \text{tailwater depth (ff)}$ $\theta = \text{the expansion ang}$ Note:	ion (ft) duit (ft, use diameter for circular conduits) t) de of the culvert flow	Q = design discharge (cfs) V = the allowable non-eroding velo A_t = required area of flow at allowa		n channel (ft/sec)
Where: $L_p = \text{length of protections}$ W = width of the constraints $Y_t = \text{tailwater depth (from the expansion ang states)}$ Note: Calculations follow	ion (ft) duit (ft, use diameter for circular conduits) t)	Q = design discharge (cfs) V = the allowable non-eroding velo A_t = required area of flow at allowa		n channel (ft/sec)
Where: $L_p = \text{length of protections}$ W = width of the constraints $Y_t = tailwater depth (from the expansion and the expansi$	ion (ft) huit (ft, use diameter for circular conduits) t) le of the culvert flow criteria in the USDCM Vol.2 C	Q = design discharge (cfs) V = the allowable non-eroding velo A_t = required area of flow at allowa hapter 9	ble velocity (ft²)	
Where: $L_p = \text{length of protections}$ W = width of the constraints $Y_t = tailwater depth (from the expansion and the expansi$	tion (ft) tuit (ft, use diameter for circular conduits) t) the of the culvert flow the criteria in the USDCM Vol.2 C the a circular culvert ssumes $y_t/D_t=0.4$ in cases whe	Q = design discharge (cfs) V = the allowable non-eroding velo A_t = required area of flow at allowa hapter 9	ble velocity (ft²)	
Where: $L_p = \text{length of protections}$ W = width of the constructions $Y_t = tailwater depth (from the expansion and the expansion and the expansion and the expansion and the expansions and the expansions of the expansion of the exp$	tion (ft) huit (ft, use diameter for circular conduits) t) le of the culvert flow r criteria in the USDCM Vol.2 C he a circular culvert ssumes $y_t/D_t=0.4$ in cases whe outlet.	Q = design discharge (cfs) V = the allowable non-eroding veloc A_t = required area of flow at allowated hapter 9 re y _t is unknown or a hydraul	ble velocity (ft²)	ted
Where: $L_p = \text{length of protections}$ W = width of the constraints $Y_t = \text{tailwater depth (free depth of the expansion ang state)}$ Note: Calculations follows Calculations assume This spreadsheet and lownstream of the Per the USDCM Vo	tion (ft) tuit (ft, use diameter for circular conduits) t) the of the culvert flow the criteria in the USDCM Vol.2 C the a circular culvert ssumes $y_t/D_t=0.4$ in cases whe	Q = design discharge (cfs) V = the allowable non-eroding veloc $A_t =$ required area of flow at allowat hapter 9 re y _t is unknown or a hydraul than 3D, nor does L _p need to	ble velocity (ft²) ic jump is suspec	ted 10D

the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6

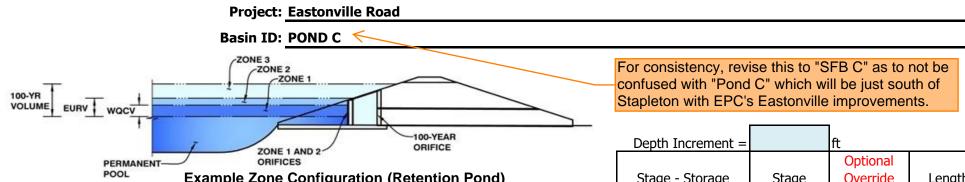
	EASTONVILL	<u>Calc'd by:</u>	SPC	
	20166	Checked by:	СМ	
HRGreen	DP1	Date:	8/28/2024	
_			_	
	Input Para	ameters		
F	low (Q)	183.1	cfs	
Т	ailwater depth (Y _t)	1.60	ft	
C	Conduit Diameter (D _c)	48	in	
E	Expansion Factor (per Fig. 9-35	i) 2		
S	Soil Type	Non-Cohesive Soils		
-	Calculated P	aramators	1	
	Froude Parameter (Q/D ^{2.5})	5.72	• .	
	0 ₅₀ =	18.97	in	
	JDFCD Riprap Type =	Type VH	•	
	Design D ₅₀ = Minimum Mantle Thickness =	24		
		48 37.78		
	Vinimum Length of Apron =	57.70	11	
Calculated D _{ro} for ripra	ap was calculated using Equati	on 9-16 in the USDCM Vol 2.		
	$d_{so} = \frac{0.023Q}{Y_{s}^{1.2}D_{s}^{0.3}}$			
	$I_t D_c$			
Calculated minimum leng	gth of apron was calculated using	Equations 9-11 and 9-12 in the	USDCM Vol. 2	
$L_p = \left(\frac{1}{2\tan\theta}\right) \left(\frac{A_t}{Y_t} - W\right)$	Equation 9-11	$A_t = \frac{Q}{V}$		Equation 9-12
Where:	Wh	lere:		
$L_p = $ length of protection	(ft)	Q = design discharge (cfs)		
W = width of the conduit	(ft, use diameter for circular conduits)	V = the allowable non-eroding veloci	ty in the downstream	channel (ft/sec)
Y_t = tailwater depth (ft)		A_t = required area of flow at allowabl	-	()
θ = the expansion angle of	of the culvert flow		e velocity (it)	
Note:				
	riteria in the USDCM Vol.2 Cha	optor 0		
² Calculations assume				
³ This spreadsheet assi	umes y _t /D _t =0.4 in cases where	y, is unknown or a hydraulic	iumn is suspect	ed
downstream of the ou		yt is anknown of a fiyaraulic	Jamp is suspect	
		han 2D nor door I nood to b	o graatar there	100
	2 in no case should L_p be less the second sec	•		
whenever the Froude	parameter is less than 6.0. wh	enever the Froude paramete	er is greater thai	n o, increase

the maximum L_p required by 1/4 D_c for each whole number by which the Froude parameter is greater than 6

	Riprap Sizing - Spillway				
(cfs/ft)	S (ft/ft)	C_{f}	n	D ₅₀ min. (in)	
.16	0.02	3	0.025	0.76	
$= 5.23 \text{ S}^{0}$.43 (1.35Cf	q) ^{0.56}			
		protectio	n		
Where:					
Where:	50 = 1	median ro	ock size (in)	
D S	= 1	longitudir	nal slope (f	t/ft)	
D S C,	= 1 r = 0	longitudir concentra	hal slope (f	t/ft) (1.0 to 3.0)	
D S C; q	= 1 r = 0	longitudir concentra	nal slope (f	t/ft) (1.0 to 3.0)	
D S C_{j} q When:	= 1	longitudir concentra unit disch	nal slope (f tion factor arge (cfs/f	t/ft) (1.0 to 3.0)	

Provide calculations for Pond B spillway riprap sizing.

Eastonville Road Final Drainage Report Project No.: 201662.08


APPENDIX D – WATER QUALITY & DETENTION

	Design Procedure Form: Sand Filter (SF)					
Deeler	UD-BMP (Version 3.07,	, March 2018) Sheet 1 of 2				
Designer: Company:	SPC HR Green					
Date:	August 28, 2024					
Project:	Eastonville Road - Segment 2 Improvements					
Location:	El Paso County, CO					
1. Basin Sto	orage Volume					
	ve Imperviousness of Tributary Area, ${\rm I_a}_{\rm b}$ if all paved and roofed areas upstream of sand filter)	I _a = 54.0 %				
B) Tribut	ary Area's Imperviousness Ratio (i = $I_a/100$)	i = 0.540				
	r Quality Capture Volume (WQCV) Based on 12-hour Drain Time CV= 0.8 * (0.91* i ³ - 1.19 * i ² + 0.78 * i)	WQCV = 0.17 watershed inches				
D) Contri	ibuting Watershed Area (including sand filter area)	Area = 27,443 sq ft 🗸				
	r Quality Capture Volume (WQCV) Design Volume _{2V} = WQCV / 12 * Area	V _{WQCV} = <u>398</u> cu ft				
	atersheds Outside of the Denver Region, Depth of age Runoff Producing Storm	d ₆ = in				
	/atersheds Outside of the Denver Region, r Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} =cu ft				
	Input of Water Quality Capture Volume (WQCV) Design Volume if a different WQCV Design Volume is desired)	V _{WQCV USER} =cu ft				
2. Basin Ge	ometry					
A) WQC\	/ Depth	$D_{WQCV} = 1.0$ ft				
	Filter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	Z = 4.00 ft / ft X < 3:1 on CDs				
C) Minimu	um Filter Area (Flat Surface Area)	$A_{Min} = 185$ sq ft				
D) Actual	Filter Area	A _{Actual} = 200 sq ft X 463 shown on CDs				
E) Volum	e Provided	$V_T = 4288$ cu ft				
3. Filter Mat	erial	Choose One 18" CDOT Class B or C Filter Material O Other (Explain):				
4. Underdra	in System	Choose One				
A) Are un	derdrains provided?	● YES ✓ ○ NO				
B) Under	drain system orifice diameter for 12 hour drain time					
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y=2.0 ft 🗸				
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = <u>398</u> cu ft				
	iii) Orifice Diameter, 3/8" Minimum	$D_0 = 7/16$ in X < 0.48 on MHFD-Detention calcs below				

	Design Procedure Forr	m: Sand Filter (SF)	
			Sheet 2 of 2
Designer:	SPC		
Company:	HR Green		
Date:	August 28, 2024		
Project:	Eastonville Road - Segment 2 Improvements		
Location:	El Paso County, CO		
A) Is an	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One	
	tlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	Engery dissapation at inlet points provide of conveying flows in excess of the WQC modified type 'C' inlet outlet structure grat	V through the outlet is via the
Notes:			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Example Zone C

Watershed Information

	SF	Selected BMP Type =
acres	0.63	Watershed Area =
ft	171	Watershed Length =
ft	85	Watershed Length to Centroid =
ft/ft	0.018	Watershed Slope =
percen	54.00%	Watershed Imperviousness =
percen	0.0%	Percentage Hydrologic Soil Group A =
percen	100.0%	Percentage Hydrologic Soil Group B =
percen	0.0%	Percentage Hydrologic Soil Groups C/D =
hours	12.0	Target WQCV Drain Time =
	User Input	Location for 1-hr Rainfall Depths =

After providing required inputs above includ depths, click 'Run CUHP' to generate runoff the embedded Colorado Urban Hydrogra

		_
Water Quality Capture Volume (WQCV) =	0.009	acre-feet
Excess Urban Runoff Volume (EURV) =	0.037	acre-feet
2-yr Runoff Volume (P1 = 0.93 in.) =	0.023	acre-feet
5-yr Runoff Volume (P1 = 1.21 in.) =	0.032	acre-feet
10-yr Runoff Volume (P1 = 1.46 in.) =	0.043	acre-feet
25-yr Runoff Volume (P1 = 1.84 in.) =	0.063	acre-feet
50-yr Runoff Volume (P1 = 2.16 in.) =	0.079	acre-feet
100-yr Runoff Volume (P1 = 2.49 in.) =	0.097	acre-feet
500-yr Runoff Volume (P1 = 3.37 in.) =	0.142	acre-feet
Approximate 2-yr Detention Volume =	0.022	acre-feet
Approximate 5-yr Detention Volume =	0.031	acre-feet
Approximate 10-yr Detention Volume =	0.041	acre-feet
Approximate 25-yr Detention Volume =	0.050	acre-feet
Approximate 50-yr Detention Volume =	0.054	acre-feet
Approximate 100-yr Detention Volume =	0.062	acre-feet
		-

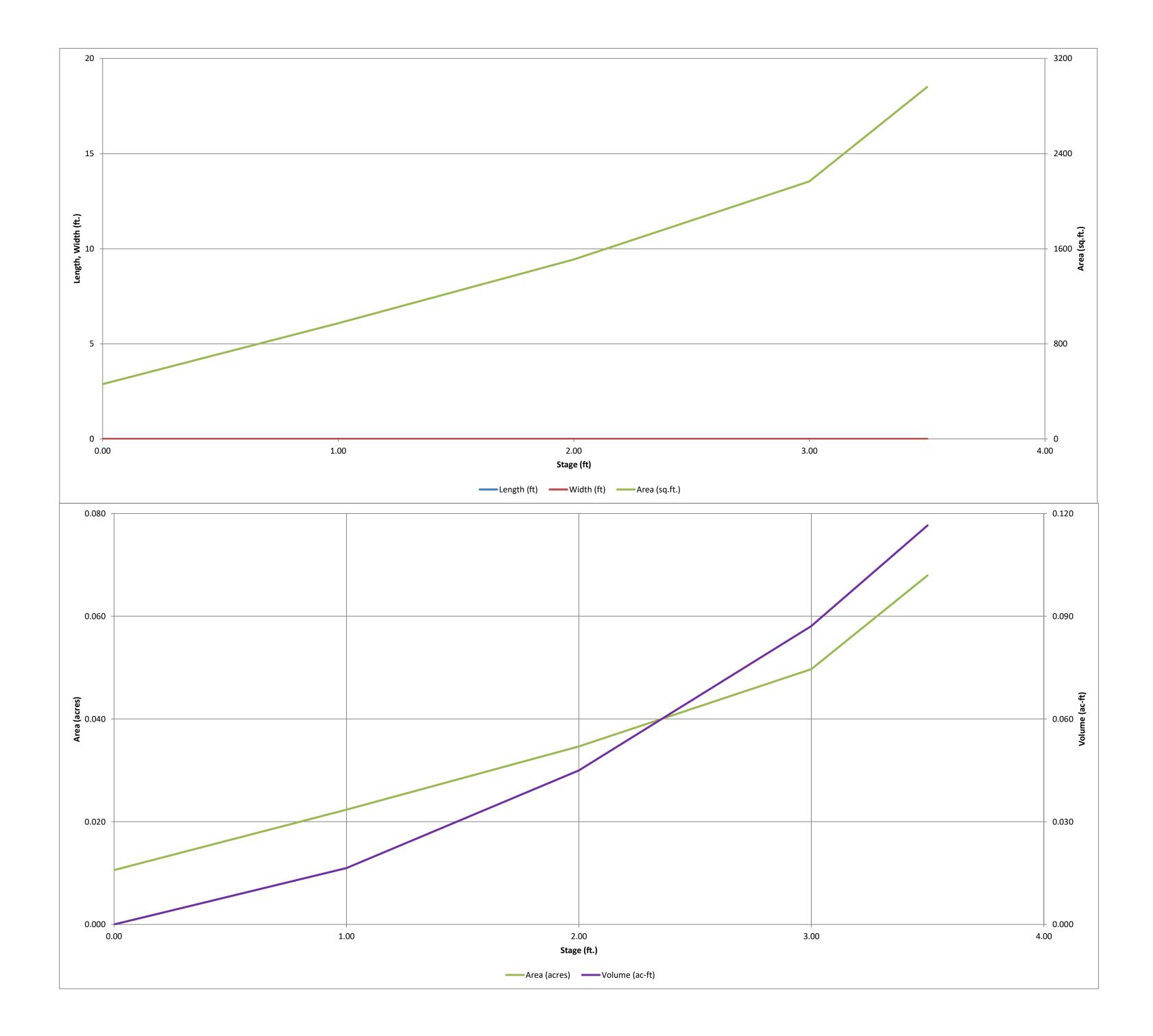
Define Zones and Basin Geometry

acre-feet	0.009	Zone 1 Volume (WQCV) =
acre-feet	0.027	Zone 2 Volume (EURV - Zone 1) =
acre-feet	0.025	Zone 3 Volume (100-year - Zones 1 & 2) =
acre-feet	0.062	Total Detention Basin Volume =
ft ³	N/A	Initial Surcharge Volume (ISV) =
ft	N/A	Initial Surcharge Depth (ISD) =

			Stapleton with EPC's	s Eastonville	e improvemer	nts.						
	100-YEAR ORIFICE	0.00	Depth Increment =		ft							
E 1 AND 2 ICES	n (Retention Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Comgulation	n (Retention i ond)		Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
		7021			0.00				461	0.011		
SF			7022		1.00				973	0.022	717	0.016
	acres		7023		2.00				1,509	0.035	1,958	0.045
	ft ft		7024 7024.5		3.00 3.50				2,165 2,960	0.050	3,795 5,076	0.087 0.117
	ft/ft				0.00				2,500		0,070	01117
54.00%	percent											
	percent											ļ
	percent											
	percent hours											
User Input	Tiours											
cluding 1-hour ra	ainfall											
off hydrographs	using											
ograph Procedur	optional osci	7										ļ
		acre-feet										
		acre-feet inches										
		inches										
		inches										
		inches										
		inches										
		inches										
	acre-feet 3.37 acre-feet	inches										
	acre-feet											
	acre-feet											
	acre-feet											
	acre-feet											
0.062	acre-feet											
0.009	acre-feet											
	acre-feet											
	acre-feet											
	acre-feet											
	ft ³											ļ
· · ·	ft											
	ft ft											
	ft/ft											
	H:V											
user												
	ft ²											·
	ft A											
	ft ft											
	ft											
user	ft											
	ft ²											
	ft ³											ļ
	ft ft											
	ft ft											
	ft ²											<u> </u>
	ft ³											
user	acre-feet											
												
												<u> </u>
												
												<u> </u>

Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel (H_{TC}) =	N/A	ft
Slope of Trickle Channel (S_{TC}) =	N/A	ft/ft
Slopes of Main Basin Sides (S_{main}) =	user	H:V
Basin Length-to-Width Ratio $(R_{L/W}) =$	user	
		_
Initial Surcharge Area (A_{ISV}) =	user	ft ²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft ²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-fe

--

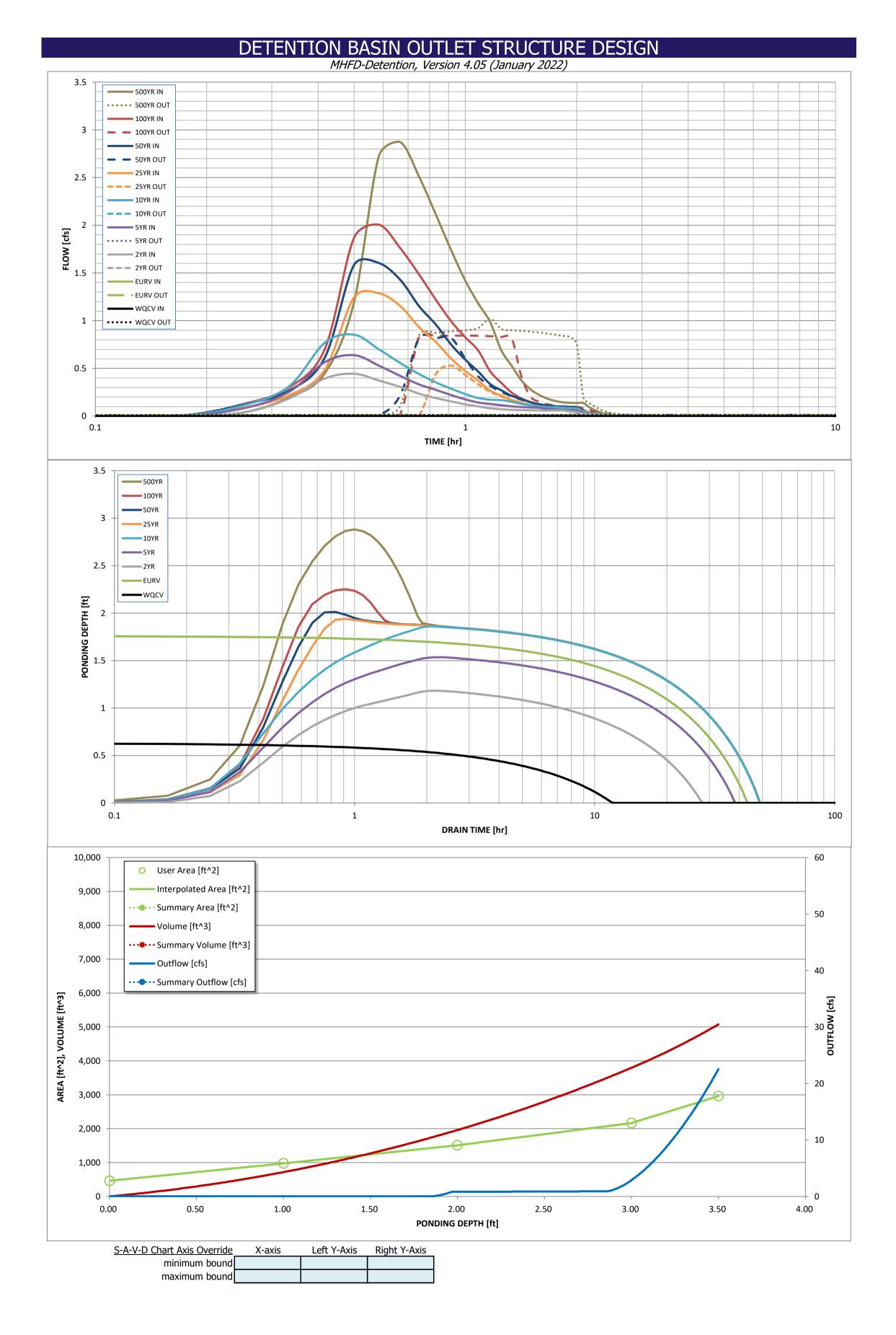

--

--

--

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)


DETENTION BASIN OUTLET STRUCTURE DESIGN

Basin ID:	POND C								
				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	0.64	0.009	Filtration Media			
i land	100-YEAR ORIFICE		Zone 2 (EURV)	1.75	0.027	Filtration Media			
PERMANENT ORIFICES			Zone 3 (100-year)	2.44	0.025	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (Re	etention Pond)		Total (all zones)	0.062				
er Input: Orifice at Underdrain Outlet (typical	<u>y used to drain WC</u>	OCV in a Filtration B	BMP)			•	Calculated Parame	ters for Underdrain	<u>1</u>
✓ Underdrain Orifice Invert Depth =	1.98	ft (distance below	the filtration media	surface)	Underd	rain Orifice Area =	0.0	ft ²	
Underdrain Orifice Diameter =	0.48	inches			Underdrain	Orifice Centroid =	0.02	feet	
er Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically use	d to drain WOCV ar	d/or FLIRV in a sec	dimentation BMP)		Calculated Parame	store for Plata	
Centroid of Lowest Orifice =	•		n bottom at Stage =	-		ce Area per Row =	N/A	ft ²	
Depth at top of Zone using Orifice Plate =	N/A	· ·	bottom at Stage =		-	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				•		4	
		IIICHES			Ellipu	cal Slot Centrolu =	IN/A	feet	
Orifice Plate: Orifice Area per Row =		sq. inches			•	cal Slot Centroid = lliptical Slot Area =	-	ft ²	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches	n <u>est)</u> Row 3 (optional)	Row 4 (optional)	•]
Orifice Plate: Orifice Area per Row =	N/A e Row (numbered	sq. inches from lowest to high		Row 4 (optional) N/A	E	lliptical Slot Area =	N/A	ft ²	
Orifice Plate: Orifice Area per Row =	N/A e Row (numbered Row 1 (optional)	sq. inches from lowest to high Row 2 (optional)	Row 3 (optional)		E Row 5 (optional)	lliptical Slot Area = Row 6 (optional)	N/A Row 7 (optional)	ft ² Row 8 (optional)	
Orifice Plate: Orifice Area per Row = er Input: Stage and Total Area of Each Orifice Stage of Orifice Centroid (ft)	N/A e Row (numbered Row 1 (optional) N/A N/A	sq. inches from lowest to high Row 2 (optional) N/A N/A	Row 3 (optional) N/A N/A	N/A N/A	E Row 5 (optional) N/A N/A	lliptical Slot Area = Row 6 (optional) N/A N/A	N/A Row 7 (optional) N/A N/A	ft ² Row 8 (optional) N/A N/A	
Orifice Plate: Orifice Area per Row =	N/A e Row (numbered Row 1 (optional) N/A N/A Row 9 (optional)	sq. inches from lowest to high Row 2 (optional) N/A N/A Row 10 (optional)	Row 3 (optional) N/A N/A Row 11 (optional)	N/A N/A Row 12 (optional)	E Row 5 (optional) N/A N/A Row 13 (optional)	lliptical Slot Area = Row 6 (optional) N/A N/A Row 14 (optional)	N/A Row 7 (optional) N/A N/A Row 15 (optional)	ft ² Row 8 (optional) N/A N/A Row 16 (optional)	
Orifice Plate: Orifice Area per Row =	N/A E Row (numbered means of the second sec	sq. inches from lowest to high Row 2 (optional) N/A N/A Row 10 (optional) N/A	Row 3 (optional) N/A N/A Row 11 (optional) N/A	N/A N/A Row 12 (optional) N/A	E Row 5 (optional) N/A N/A Row 13 (optional) N/A	lliptical Slot Area = Row 6 (optional) N/A N/A Row 14 (optional) N/A	N/A Row 7 (optional) N/A N/A Row 15 (optional) N/A	ft ² Row 8 (optional) N/A N/A Row 16 (optional) N/A	
Orifice Plate: Orifice Area per Row = er Input: Stage and Total Area of Each Orifice Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	N/A E Row (numbered means of the second sec	sq. inches from lowest to high Row 2 (optional) N/A N/A Row 10 (optional)	Row 3 (optional) N/A N/A Row 11 (optional)	N/A N/A Row 12 (optional)	E Row 5 (optional) N/A N/A Row 13 (optional)	lliptical Slot Area = Row 6 (optional) N/A N/A Row 14 (optional)	N/A Row 7 (optional) N/A N/A Row 15 (optional)	ft ² Row 8 (optional) N/A N/A Row 16 (optional)	
Orifice Plate: Orifice Area per Row = er Input: Stage and Total Area of Each Orifice Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	N/A E Row (numbered r Row 1 (optional) N/A N/A Row 9 (optional) N/A N/A	sq. inches from lowest to high Row 2 (optional) N/A N/A Row 10 (optional) N/A	Row 3 (optional) N/A N/A Row 11 (optional) N/A	N/A N/A Row 12 (optional) N/A	E Row 5 (optional) N/A N/A Row 13 (optional) N/A	lliptical Slot Area = Row 6 (optional) N/A N/A Row 14 (optional) N/A	N/A Row 7 (optional) N/A N/A Row 15 (optional) N/A N/A	ft ² Row 8 (optional) N/A N/A Row 16 (optional) N/A	ifice
Orifice Plate: Orifice Area per Row = er Input: Stage and Total Area of Each Orifice Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	N/A E Row (numbered r Row 1 (optional) N/A N/A Row 9 (optional) N/A N/A	sq. inches from lowest to high Row 2 (optional) N/A N/A Row 10 (optional) N/A	Row 3 (optional) N/A N/A Row 11 (optional) N/A	N/A N/A Row 12 (optional) N/A	E Row 5 (optional) N/A N/A Row 13 (optional) N/A	lliptical Slot Area = Row 6 (optional) N/A N/A Row 14 (optional) N/A	N/A Row 7 (optional) N/A N/A Row 15 (optional) N/A N/A	ft ² Row 8 (optional) N/A N/A Row 16 (optional) N/A N/A	ifice
Orifice Plate: Orifice Area per Row = er Input: Stage and Total Area of Each Orifice Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	N/A e Row (numbered Row 1 (optional) N/A N/A Row 9 (optional) N/A N/A N/A	sq. inches from lowest to high Row 2 (optional) N/A N/A Row 10 (optional) N/A N/A N/A N/A	Row 3 (optional) N/A N/A Row 11 (optional) N/A	N/A N/A Row 12 (optional) N/A N/A	E Row 5 (optional) N/A N/A Row 13 (optional) N/A N/A	lliptical Slot Area = Row 6 (optional) N/A N/A Row 14 (optional) N/A	N/A Row 7 (optional) N/A N/A Row 15 (optional) N/A N/A Calculated Parame	ft ² Row 8 (optional) N/A N/A Row 16 (optional) N/A N/A eters for Vertical Or	ifice ft ²
Orifice Plate: Orifice Area per Row = Ser Input: Stage and Total Area of Each Orifice Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Area (sq. inches)	N/A E Row (numbered 1 Row 1 (optional) N/A N/A Row 9 (optional) N/A N/A N/A N/A N/A N/A N/A	sq. inches <u>from lowest to high</u> Row 2 (optional) N/A N/A Row 10 (optional) N/A N/A N/A N/A	Row 3 (optional) N/A N/A Row 11 (optional) N/A N/A	N/A N/A Row 12 (optional) N/A N/A	Row 5 (optional) N/A N/A Row 13 (optional) N/A N/A = 0 ft) Ver	lliptical Slot Area = Row 6 (optional) N/A N/A Row 14 (optional) N/A N/A	N/A Row 7 (optional) N/A N/A Row 15 (optional) N/A N/A <u>Calculated Parame</u> Not Selected N/A	ft ² Row 8 (optional) N/A N/A Row 16 (optional) N/A N/A eters for Vertical Or Not Selected	

User Input: Overflow Weir (Dropbox with Flat o	Calculated Parame	Calculated Parameters for Overflow Weir				
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected	
X Overflow Weir Front Edge Height, Ho =	1.85	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, $H_t =$	1.85	N/A	feet
🧹 Overflow Weir Front Edge Length =	3.00	N/A	feet Overflow Weir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	72.80	N/A	
✓ Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	6.26	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	3.13	N/A	ft ²
Debris Clogging % =	50%	N/A	%			

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected		-			Zone 3 Restrictor	Not Selected]
Depth to Invert of Outlet Pipe =	2.00	N/A	ft (distance below ba	asin bottom at Stage	e = 0 ft) Ou	utlet Orifice Area =	0.09	N/A	ft ²
🗙 Outlet Pipe Diameter =	12.00 🤨	N/A	inches		Outlet	Orifice Centroid =	0.10	N/A	feet
\mathbf{X} Restrictor Plate Height Above Pipe Invert =	2.00		inches	Half-Cen	tral Angle of Restric	tor Plate on Pipe =	0.84	N/A	radians
					5			,	4
User Input: Emergency Spillway (Rectangular or	⁻ Trapezoidal)		3" per CDs. We war 18" so revise on he				Calculated Parame	ters for Spillway	
Spillway Invert Stage=			bottom at Stage =		🗙 Spillway De	esign Flow Depth=		feet	
✓ Spillway Crest Length =		feet			• •	op of Freeboard =		feet	
Spillway End Slopes =		H:V				op of Freeboard =		acres	
 Freeboard above Max Water Surface = 		feet				op of Freeboard =			
Freeboard above Max water Surface =	1.00	ieet			Dasin volume at i	op of Freeboard =	0.12	acre-ft	
Routed Hydrograph Results	The user can over	ride the default CU	HP hvdrographs an	d runoff volumes	by entering new valu	ues in the Inflow H	vdroaraphs table (C	Columns W through	AF).
Design Storm Return Period =		EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =		N/A	0.93	1.21	1.46	1.84	2.16	2.49	3.37
CUHP Runoff Volume (acre-ft) =		0.037	0.023	0.032	0.043	0.063	0.079	0.097	0.142
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.023	0.032	0.043	0.063	0.079	0.097	0.142
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.0	0.1	0.2	0.5	0.8	1.0	1.6
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.01	0.12	0.32	0.87	1.20	1.59	2.49
Peak Inflow Q (cfs) =	N/A	N/A	0.4	0.6	0.9	1.3	1.6	2.0	2.9
Peak Outflow Q (cfs) =		0.0	0.0	0.0	0.0	0.5	0.8	0.8	1.0
Ratio Peak Outflow to Predevelopment Q =		N/A	N/A	0.1	0.2	1.0	1.1	0.8	0.6
Structure Controlling Flow =	Filtration Media	Filtration Media	Filtration Media	Filtration Media	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.1	0.1	0.1	0.1
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =		42	27	37	47	46	46	45	43
Time to Drain 99% of Inflow Volume (hours) =	12	43	28	38	48	48	48	47	47
Maximum Ponding Depth (ft) =	0.64	1.77	1.18	1.54	1.86	1.94	2.01	2.25	2.88
Area at Maximum Ponding Depth (acres) =		0.03	0.02	0.03	0.03	0.03	0.03	0.04	0.05
Maximum Volume Stored (acre-ft) =	0.009	0.037	0.021	0.030	0.040	0.043	0.045	0.054	0.081

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

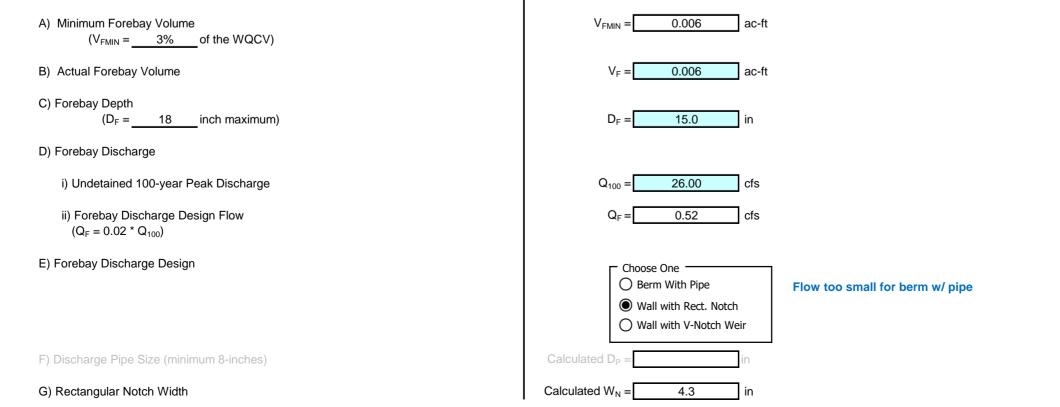
Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

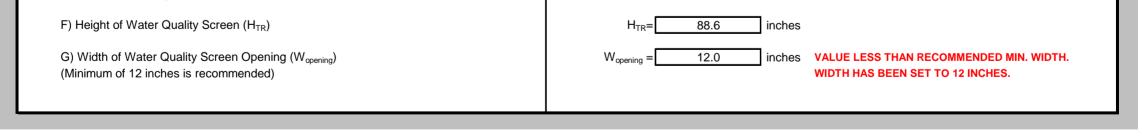
								ed in a separate		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.04
	0:15:00	0.00	0.00	0.04	0.08	0.11	0.09	0.12	0.12	0.19
	0:20:00	0.00	0.00	0.18	0.25	0.31	0.22	0.27	0.30	0.45
	0:25:00	0.00	0.00	0.39	0.56	0.77	0.48	0.61	0.70	1.19
	0:30:00 0:35:00	0.00	0.00	0.44	0.64	0.85	1.25	1.58	1.87	2.72
	0:40:00	0.00	0.00	0.37 0.31	0.53 0.42	0.70 0.56	1.29 1.15	1.60 1.43	2.01 1.76	2.87 2.51
	0:45:00	0.00	0.00	0.23	0.33	0.30	0.93	1.15	1.48	2.11
	0:50:00	0.00	0.00	0.19	0.27	0.35	0.77	0.96	1.22	1.73
	0:55:00	0.00	0.00	0.15	0.22	0.29	0.60	0.75	0.99	1.42
	1:00:00	0.00	0.00	0.12	0.18	0.23	0.47	0.59	0.83	1.18
	1:05:00	0.00	0.00	0.10	0.14	0.19	0.37	0.47	0.69	0.99
	1:10:00	0.00	0.00	0.08	0.13	0.17	0.27	0.34	0.47	0.69
	1:15:00	0.00	0.00	0.07	0.11	0.17	0.22	0.27	0.35	0.53
	1:20:00 1:25:00	0.00	0.00	0.07	0.10	0.15	0.17	0.21	0.25	0.38
	1:30:00	0.00	0.00	0.06	0.10	0.13	0.14	0.18	0.19 0.15	0.28
	1:35:00	0.00	0.00	0.06	0.09	0.11	0.12	0.15	0.15	0.22
	1:40:00	0.00	0.00	0.06	0.08	0.10	0.09	0.12	0.12	0.16
	1:45:00	0.00	0.00	0.06	0.07	0.09	0.09	0.10	0.10	0.14
	1:50:00	0.00	0.00	0.06	0.06	0.09	0.08	0.10	0.09	0.14
	1:55:00	0.00	0.00	0.05	0.06	0.08	0.08	0.10	0.09	0.14
	2:00:00	0.00	0.00	0.04	0.06	0.08	0.08	0.10	0.09	0.14
	2:05:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.06	0.09
	2:10:00 2:15:00	0.00	0.00	0.02	0.02	0.03	0.03	0.04	0.04	0.06
	2:20:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.02	0.04
	2:25:00	0.00	0.00	0.01	0.01	0.01	0.01	0.02	0.01	0.02
	2:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01
	2:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	2:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:00:00 3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00 3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships


The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor) from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway,
							where applicable).
							-
							4
							1
							1
							1
							1
]
]
							-
]
							-
							1
							1
							1
]
							ļ
							4
							4
							1
							1
							4
							4
							1
							4
							1
							1
							4
							4
							1
							1
							4
							4
							1
							•

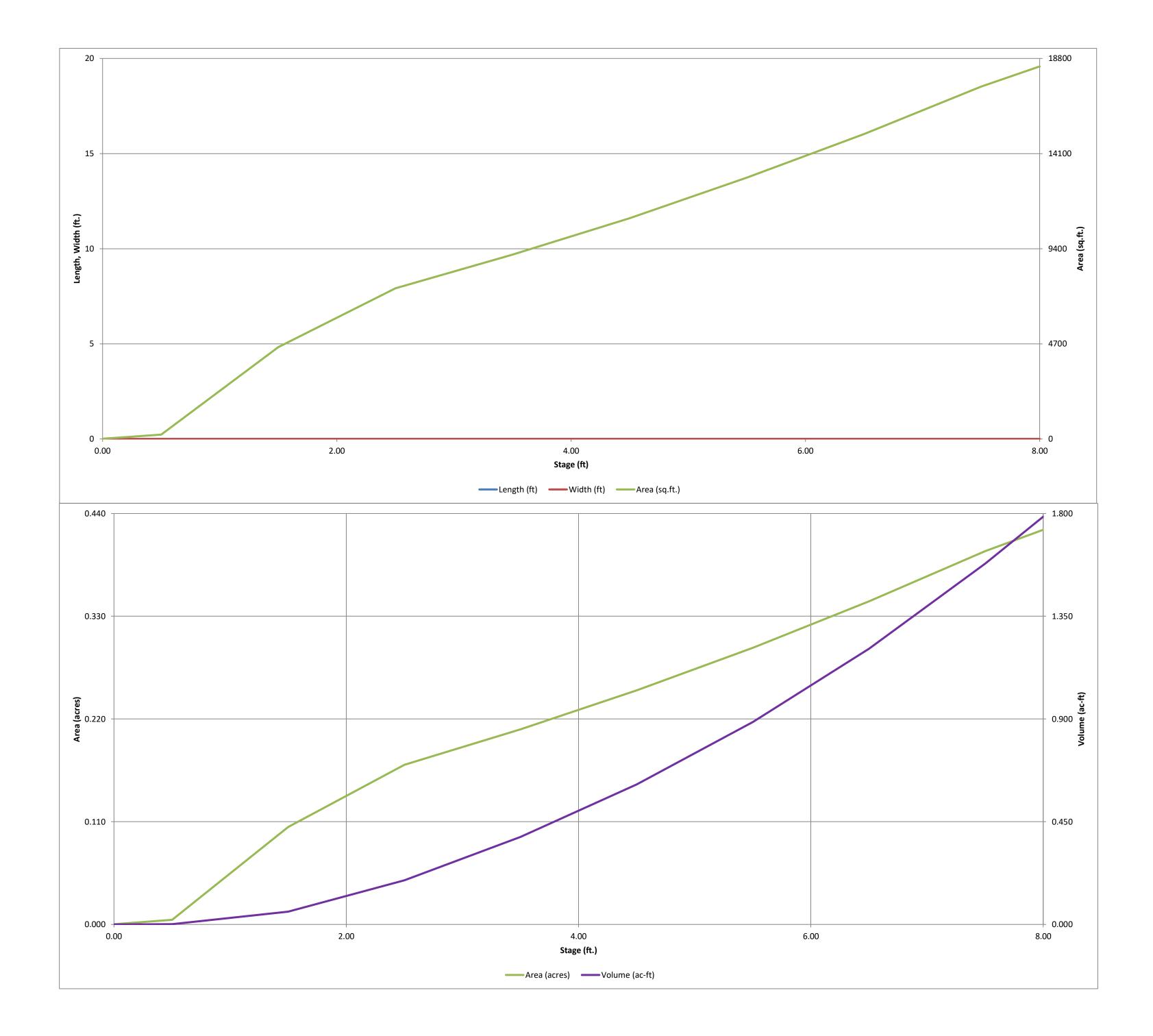

When are the details for this Ultimate Condition going to be designed/submitted? Because I do not see them with the Segment 2 CDs.

Please provide them so that I can review these calcs.

	U	D-BMP (Version 3.07, March 2018)	Sheet 1 of
Designer:	SPC		
Company:	HR Green		
Date:	August 23, 2024		
Project:	Eastonville Road - Segment 1 Improvements EDB B ULTIMAT	E CONDITIONS	
Location:	EL PASO COUNTY, CO		
1. Basin Storage	e Volume		
A) Effective In	nperviousness of Tributary Area, I _a	l _a = 67.0 %	
B) Tributary A	rea's Imperviousness Ratio (i = $I_a / 100$)	i = 0.670	
C) Contributii	ng Watershed Area	Area = 9.020 ac	
	sheds Outside of the Denver Region, Depth of Average oducing Storm	d ₆ = 0.42 in	
		Choose One	
E) Design Co (Select EU	ncept IRV when also designing for flood control)	O Water Quality Capture Volume (WQCV)	
·		Excess Urban Runoff Volume (EURV)	
	olume (WQCV) Based on 40-hour Drain Time • (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft	
Water Qu	rsheds Outside of the Denver Region, ality Capture Volume (WQCV) Design Volume _{HER} = (d ₆ *(V _{DESIGN} /0.43))	V _{DESIGN OTHER} = 0.192 ac-ft	
	t of Water Quality Capture Volume (WQCV) Design Volume different WQCV Design Volume is desired)	V _{DESIGN USER} =ac-ft	
i) Percer ii) Percer	rologic Soil Groups of Tributary Watershed ntage of Watershed consisting of Type A Soils ntage of Watershed consisting of Type B Soils entage of Watershed consisting of Type C/D Soils	$HSG_{A} = \frac{100}{\%}$ $HSG_{B} = \frac{0}{\%}$ $HSG_{C/D} = \frac{0}{\%}$	
For HSG For HSG	ban Runoff Volume (EURV) Design Volume A: EURV _A = 1.68 * $i^{1.28}$ B: EURV _B = 1.36 * $i^{1.08}$ C/D: EURV _{C/D} = 1.20 * $i^{1.08}$	EURV _{DESIGN} = 0.756 ac-f t	
	t of Excess Urban Runoff Volume (EURV) Design Volume different EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t	
	Length to Width Ratio th to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1	
3. Basin Side Sl	opes		
	kimum Side Slopes al distance per unit vertical, 4:1 or flatter preferred)	Z = 4.00 ft / ft	
4. Inlet			
A) Describe r	means of providing energy dissipation at concentrated		
,	ations:		
INNOW IOCE			

	Design Procedure Form: E	xtended Detention Basin (EDB)
Declamon	SPC	Sheet 2 of 3
Designer: Company:	HR Green	
Date:	August 23, 2024	
Project:	Eastonville Road - Segment 1 Improvements EDB B ULTIMATE CONDI	TIONS
Location:	EL PASO COUNTY, CO	
6. Trickle Channel		Choose One
A) Type of Tricl	kle Channel	◯ Soft Bottom
· · · · · · · ·		
F) Slope of Tric	ckle Channel	S = 0.0050 ft / ft
7. Micropool and C	Outlet Structure	
A) Depth of Mic	cropool (2.5-feet minimum)	$D_{\rm M} = 2.5$ ft
B) Surface Are	a of Micropool (10 ft ² minimum)	$A_{\rm M} = 10$ sq ft
C) Outlet Type		
		Choose One Orifice Plate
		Other (Describe):
	mension of Orifice Opening Based on Hydrograph Routing	
(Use UD-Deten	tion)	D _{orifice} = 1.00 inches
E) Total Outlet A	Area	A _{ot} = <u>5.50</u> square inches
8. Initial Surcharge	e Volume	
A) Depth of Init	tial Surcharge Volume	$D_{IS} = 4$ in
	acommended depth is 4 inches)	
B) Minimum Init	ial Surcharge Volume	$V_{IS} = 25$ cu ft
	lume of 0.3% of the WQCV)	
C) Initial Surcha	arge Provided Above Micropool	V _s =3.3cu ft
9. Trash Rack		
A) Water Quali	ity Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = 193 square inches
B) Type of Scre	een (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
in the USDCM,	indicate "other" and enter the ratio of the total open are to the effort the material specified.)	
เปเล่า รษายอาก ลาย		
	Other (Y/N): N	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =
D) Total Water	Quality Screen Area (based on screen type)	A _{total} = 321 sq. in.
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= 5.05 feet

	Design Procedure Form:	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	SPC HR Green August 23, 2024 Eastonville Road - Segment 1 Improvements EDB B ULTIMATE CON EL PASO COUNTY, CO	DITIONS
B) Slope of Ov	ankment mbankment protection for 100-year and greater overtopping: /erflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Ze = 4.00 ft / ft
11. Vegetation		Choose One Irrigated Not Irrigated
12. Access A) Describe S	ediment Removal Procedures	
Notes:		


DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

Project: <u>Easto</u>	onville R	load			Delention, version	ינט (Janu	ui y 2022)							
			litions (INCL	UDES SEGME	NT 2 FLOW) [BASIN	S EA6 - EA1	.0]							
ZONE 3 ZONE 2 ZONE 1						\langle								
	1	F				,								
ZONE 1 AND 2		100-YE ORIFIC	AR		Depth Increment =		ft							
PERMANENT ORIFICES		on (Retenti	on Pond)		Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
Watershed Information	-	•	·		Description	(ft) 	Stage (ft) 0.00	(ft) 	(ft) 	(ft ²)	Area (ft ²) 10	(acre) 0.000	(ft ³)	(ac-ft)
	DB			6983.5	6984		0.50				211	0.005	55	0.001
	9.02	acres			6985		1.50				4,539	0.104	2,430	0.056
	,750 // 500	ft ft			6986 6987		2.50 3.50				7,443 9,104	0.171	8,421 16,695	0.193
-	.009	ft/ft			6988		4.50				10,914	0.251	26,704	0.613
	.00%	percent			6989		5.50				12,910	0.296	38,616	0.886
	0.0%	percent percent			6990 6991		6.50 7.50	\ +-			15,069 17,408	0.346	52,605 68,844	1.208
Percentage Hydrologic Soil Groups C/D = 0.	.0%	percent			6991.5		8.00				18,407	0.423	77,797	1.786
Target WQCV Drain Time = 4 Location for 1-hr Rainfall Depths = User I	40.0 Input	hours						\						
After providing required inputs above including		ainfall						\						
depths, click 'Run CUHP' to generate runoff hyd the embedded Colorado Urban Hydrograph			Optional Use	ar Overrides										
Water Quality Capture Volume (WQCV) = 0.	.197	acre-feet		acre-feet				ath and wha	t is shown ir	n the text				
		acre-feet		acre-feet			EA8 and	his area also EA11, which	h doesn't alig	gn with				
		acre-feet acre-feet	1.19 1.50	inches inches			<mark>is shown</mark>	tated on PD in the Basin	ID label on	this				
10-yr Runoff Volume (P1 = 1.75 in.) = 0.8	.866	acre-feet	1.75	inches			tables.	ease clarify	on all calcs,	iexi, and				
		acre-feet acre-feet	2.00 2.25	inches inches			Here's w	hat I think is	included in	this pond:				
		acre-feet	2.23	inches				Segment	Basin	Area (ac)	Total			
, , , , ,		acre-feet	3.68	inches					EA6	1.09				
		acre-feet acre-feet						Segment 1	EA7 EA8	1.92 0.94	3.95			
Approximate 10-yr Detention Volume = 0.	.775	acre-feet							EA8	2.08				
		acre-feet acre-feet						Segment 2	EA9 EA10	2.99 0.16	5.42			
		acre-feet							EA11	0.19				
Define Zance and Pasin Coometry											9.37			
Define Zones and Basin Geometry Zone 1 Volume (WQCV) = 0.	.197	acre-feet												
· · · · · ·		acre-feet												
, , , , , , , , , , , , , , , , , , ,		acre-feet acre-feet												
	user	ft ³												
	user	ft A												
	user user	ft												
	user	ft/ft												
	user user	H:V												
		1												
		ft ²												
	user user	ft												
	user	ft												
	user user	ft												
Area of Basin Floor $(A_{FLOOR}) = u$	user	ft ²												
	user user	ft ³ ft												
	user	ft												
	user	ft ft ²												
Volume of Main Basin (V_{MAIN}) = u	user user	π- ft ³												
Calculated Total Basin Volume $(V_{total}) =$	Iser	acre-feet												
B ULT, Basin								-		I				 8/23/2024, 10:2

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.05 (January 2022)

When are the details for this Ultimate Condition going to be designed/submitted? Because I do not see them with the Segment 2 CDs.

Please provide them so that I can review these calcs.

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.05 (January 2022)

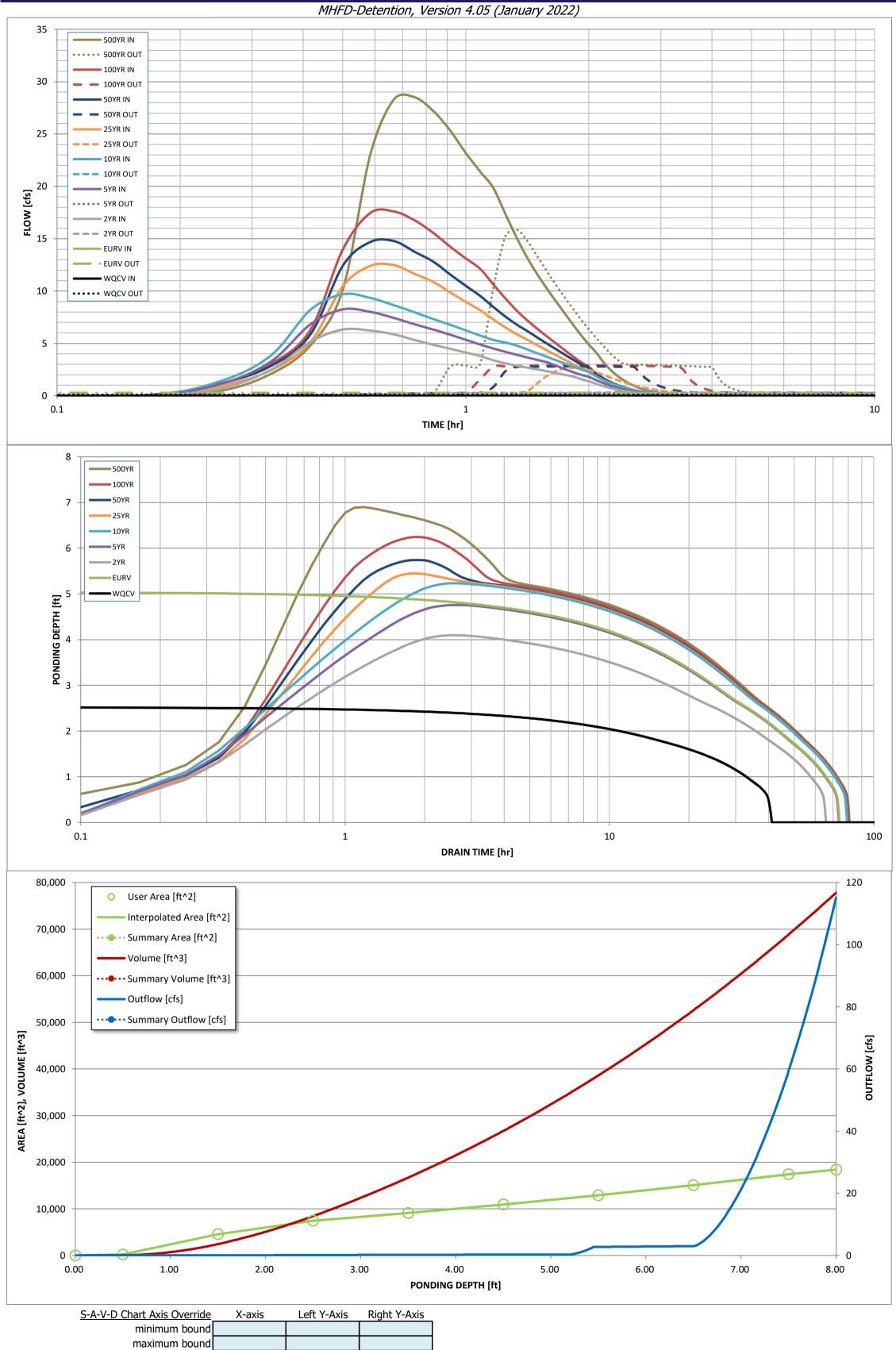
		MHI	FD-Detention, Ver	rsion 4.05 (Januar	y 2022)				
-	Eastonville Road	Conditions (INCL)			EA10]				
	POND B: Ultimate	Conditions (INCLU	JDES SEGMENT 2 F	LOW) [BASINS EAG					
ZONE 2 ZONE 1				Estimated	Estimated	Outlat Turns			
				Stage (ft)	Volume (ac-ft)	Outlet Type	l		
			Zone 1 (WQCV)		0.197	Orifice Plate			
ZONE 1 AND 2	-100-YEAR ORIFICE		Zone 2 (EURV)	5.05	0.559	Circular Orifice			
PERMANENT ORIFICES			Zone 3 (100-year)	6.25	0.363	Weir&Pipe (Restrict)			
Example Zone	Configuration (Re	etention Pond)		Total (all zones)	1.119				
er Input: Orifice at Underdrain Outlet (typical	<u>y used to drain WC</u>	<u>QCV in a Filtration E</u>	<u>3MP)</u>			-	Calculated Parame	ters for Underdrair	1
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	a surface)	Underd	Irain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
er Input: Orifice Plate with one or more orific	•	1	-				Calculated Parame	-	
Centroid of Lowest Orifice =		• •	n bottom at Stage =		-	ce Area per Row =		ft ²	
Depth at top of Zone using Orifice Plate =		· ·	n bottom at Stage =	= 0 ft)		ptical Half-Width =	-	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipt	ical Slot Centroid =		feet	
Orifice Plate: Orifice Area per Row =	0.79	sq. inches (diamet	er = 1 inch)		E	lliptical Slot Area =	N/A	ft ²	
ser Input: Stage and Total Area of Each Orific	e Row (numbered Row 1 (required)	from lowest to high Row 2 (optional)	n <u>est)</u> Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	0.87	1.73						
Orifice Area (sq. inches)	0.79	0.79	0.79						J
			1						-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	-
Stage of Orifice Centroid (ft)									4
Orifice Area (sq. inches)									1
er Input: Vertical Orifice (Circular or Rectang			1					ters for Vertical Or	<u>ifice</u> 1
	Zone 2 Circular	Not Selected					Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	2.55	N/A		n bottom at Stage =	-	tical Orifice Area =		N/A	ft ²
Depth at top of Zone using Vertical Orifice =	5.18	N/A	· ·	n bottom at Stage =	= U ft) Vertica	Orifice Centroid =	0.07	N/A	feet
Vertical Orifice Diameter =	1.75	N/A	inches						
an Inpute Overflow Wein (Dreader with Flate	r Clanad Custa and		otopoulor/Troposes		itlat Dina)		Coloulated Deverse	tone for Overflow	Noir
er Input: Overflow Weir (Dropbox with Flat o	i Siopeu Grate and	I OULIEL PIPE OK RE	<u>ccangular/Trapezol</u>	ual weir and No Ol	<u>illet Pipe)</u>		Calculated Parame	Let's for Overflow V	<u>veir</u>

User input. Overnow weir (Dropbox with Flat o	<u>calculated Parameters for Overnow we</u>					
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	5.20	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, $H_t =$	5.20	N/A	feet
Overflow Weir Front Edge Length =	3.00	N/A	feet Overflow Weir Slope Length =	3.00	N/A	feet
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	25.92	N/A	
Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	6.26	N/A	ft ²
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	3.13	N/A	ft ²
Debris Clogging % =	50%	N/A	%			_

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.24	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.17	N/A	feet
Restrictor Plate Height Above Pipe Invert =	3.50		inches Half-Central Angle of	of Restrictor Plate on Pipe =	0.91	N/A	radians


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	15.50	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway

Spillway Design Flow Depth=		feet
Stage at Top of Freeboard =	8.00	feet
Basin Area at Top of Freeboard =	0.42	acres
Basin Volume at Top of Freeboard =	1.79	acre-ft

Routed Hydrograph Results	The user can over	ride the default CU	HP hydrographs an	d runoff volumes b	y entering new valu	les in the Inflow Hy	/drographs table (C	Columns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.197	0.756	0.556	0.728	0.866	1.043	1.217	1.427	2.302
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.556	0.728	0.866	1.043	1.217	1.427	2.302
CUHP Predevelopment Peak Q (cfs) =		N/A	0.0	0.1	0.1	1.0	2.0	3.3	8.8
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.01	0.01	0.11	0.22	0.36	0.97
Peak Inflow Q (cfs) =	N/A	N/A	6.3	8.3	9.7	12.5	14.8	17.6	28.5
Peak Outflow Q (cfs) =	0.1	0.3	0.2	0.3	0.4	2.7	2.8	2.9	15.9
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	3.6	3.9	2.7	1.4	0.9	1.8
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.4	0.4	0.4	0.4
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	37	64	58	64	68	67	66	65	59
Time to Drain 99% of Inflow Volume (hours) =	40	70	62	69	74	74	73	73	71
Maximum Ponding Depth (ft) =	2.53	5.05	4.09	4.76	5.23	5.45	5.74	6.25	6.90
Area at Maximum Ponding Depth (acres) =	0.17	0.28	0.23	0.26	0.28	0.29	0.31	0.33	0.37
Maximum Volume Stored (acre-ft) =	0.198	0.758	0.514	0.677	0.808	0.869	0.959	1.119	1.350

DETENTION BASIN OUTLET STRUCTURE DESIGN

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calcu	ulated inflow hy	drographs from	this workbook v	vith inflow hydro	ographs develop	ped in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.46
	0:15:00	0.00	0.00	0.68	1.11	1.37	0.92	1.16	1.13	2.08
	0:20:00	0.00	0.00	2.48	3.26	3.84	2.43	2.84	3.03	4.80
	0:25:00	0.00	0.00	5.15	6.82	8.20	5.12	5.86	6.29	10.12
	0:30:00	0.00	0.00	6.32	8.25	9.69	10.45	12.41	13.96	22.97
	0:35:00	0.00	0.00	6.23	8.02	9.35	12.39	14.68	17.45	28.30
	0:40:00	0.00	0.00	5.87	7.44	8.65	12.48	14.78	17.61	28.51
	0:45:00	0.00	0.00	5.33	6.82	7.97	11.64	13.74	16.75	27.19
	0:50:00	0.00	0.00	4.87	6.32	7.32	10.87	12.80	15.54	25.32
	0:55:00	0.00	0.00	4.49	5.83	6.77	9.86	11.57	14.23	23.19
	1:00:00	0.00	0.00	4.13	5.35	6.25	8.98	10.50	13.12	21.43
	1:05:00	0.00	0.00	3.79	4.90	5.76	8.18	9.55	12.14	19.87
	1:10:00	0.00	0.00	3.40	4.52	5.34	7.30	8.50	10.66	17.36
	1:15:00	0.00	0.00	3.10	4.20	5.08	6.53	7.56	9.30	15.07
	1:20:00	0.00	0.00	2.88	3.91	4.79	5.87	6.79	8.12	13.12
	1:25:00	0.00	0.00	2.68	3.65	4.40	5.34	6.16	7.17	11.53
	1:30:00	0.00	0.00	2.51	3.42	4.04	4.80	5.54	6.36	10.17
	1:35:00	0.00	0.00	2.33	3.18	3.70	4.31	4.96	5.64	8.95
	1:40:00	0.00	0.00	2.16	2.86	3.38	3.85	4.42	4.97	7.82
	1:45:00	0.00	0.00	1.99	2.54	3.07	3.42	3.91	4.32	6.75
	1:50:00	0.00	0.00	1.83	2.24	2.78	3.01	3.43	3.73	5.77
	1:55:00 2:00:00	0.00	0.00	1.58	2.00	2.51	2.64	2.99	3.20	4.89
	2:05:00	0.00	0.00	1.39	1.81	2.26	2.33	2.63	2.74	4.14
	2:10:00	0.00	0.00	1.14 0.93	1.49 1.22	1.87 1.53	1.86 1.49	2.10 1.67	2.16 1.70	3.25 2.55
	2:15:00	0.00	0.00	0.93	0.99	1.35	1.49	1.34	1.70	2.55
	2:20:00	0.00	0.00	0.70	0.99	1.02	0.95	1.07	1.05	1.56
	2:25:00	0.00	0.00	0.50	0.65	0.82	0.76	0.86	0.83	1.22
	2:30:00	0.00	0.00	0.40	0.52	0.66	0.61	0.68	0.65	0.94
	2:35:00	0.00	0.00	0.32	0.41	0.52	0.48	0.54	0.50	0.72
	2:40:00	0.00	0.00	0.25	0.32	0.40	0.37	0.42	0.39	0.56
	2:45:00	0.00	0.00	0.20	0.25	0.32	0.29	0.32	0.30	0.44
	2:50:00	0.00	0.00	0.16	0.20	0.25	0.23	0.26	0.24	0.35
	2:55:00	0.00	0.00	0.12	0.15	0.19	0.18	0.20	0.19	0.27
	3:00:00	0.00	0.00	0.09	0.11	0.14	0.14	0.15	0.14	0.21
	3:05:00	0.00	0.00	0.06	0.08	0.10	0.10	0.11	0.10	0.15
	3:10:00	0.00	0.00	0.04	0.05	0.07	0.07	0.07	0.07	0.10
	3:15:00	0.00	0.00	0.02	0.03	0.04	0.04	0.05	0.04	0.06
	3:20:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:25:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00 3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00 4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00 5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00 5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
									0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX E – REFERENCE MATERIAL

Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch

EL PASO COUNTY, COLORADO

August 2022

Prepared For:

GTL DEVELOPMENT, INC. P.O. Box 80036 San Diego, CA 92138

Prepared By: Tech Contractors 11910 Tourmaline Dr., Ste 130 Falcon, CO 80831 719.495.7444

PCD Project No. SF22-020

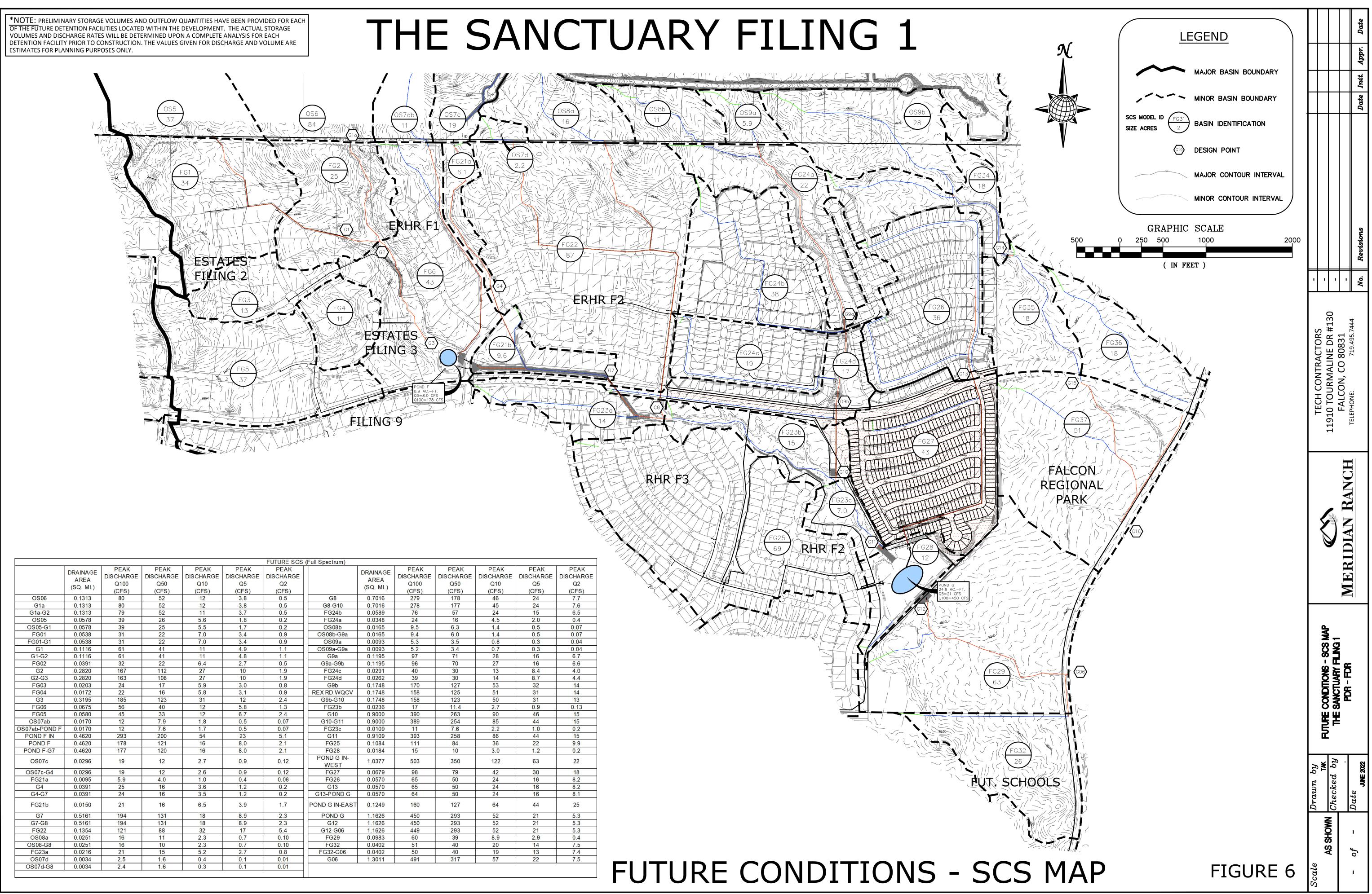
Future Drainage - SCS Calculation Method

Following is a tabulation of the surface drainage characteristics for the future conditions using the SCS calculation method. Please refer to Figure 6 - Meridian Ranch SCS Calculations – Future Basins Map

Table 5: Future Drainage Basins-SCS

	FUTURE SCS (Full Spectrum)							
	DRAINAGE	PEAK	PEAK	PEAK	PEAK	PEAK		
	AREA	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE		
	(SQ. MI.)	Q100	Q50	Q10	Q5	Q2		
	, ,	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)		
OS06	0.1313	80	52	12	3.8	0.5		
G1a	0.1313	80	52	12	3.8	0.5		
G1a-G2	0.1313	79	52	11	3.7	0.5		
OS05	0.0578	39	26	5.6	1.8	0.2		
OS05-G1	0.0578	39	25	5.5	1.7	0.2		
FG01	0.0538	31	22	7.0	3.4	0.9		
FG01-G1	0.0538	31	22	7.0	3.4	0.9		
G1	0.1116	61	41	11	4.9	1.1		
G1-G2	0.1116	61	41	11	4.8	1.1		
FG02	0.0391	32	22	6.4	2.7	0.5		
G2	0.2820	167	112	27	10	1.9		
G2-G3	0.2820	163	108	27	10	1.9		
FG03	0.0203	24	17	5.9	3.0	0.8		
FG04	0.0172	22	16	5.8	3.1	0.9		
G3	0.3195	185	123	31	12	2.4		
FG06	0.0675	56	40	12	5.8	1.3		
FG05	0.0580	45	33	12	6.7	2.4		
OS07ab	0.0170	12 12	7.9	1.8	0.5	0.07		
OS07ab-POND F	0.0170		7.6	1.7	0.5	0.07		
POND F IN	0.4620	293	200	54	23	5.1		
POND F	0.4620	178	121	16	8.0	2.1		
POND F-G7	0.4620	<u>177</u> 19	120 12	16 2.7	8.0 0.9	2.1 0.12		
OS07c	0.0296	19	12			-		
OS07c-G4 FG21a	0.0296 0.0095	5.9	4.0	<u>2.6</u> 1.0	0.9	0.12 0.06		
G2Ta	0.0095	25	16	3.6	1.2	0.00		
G4-G7	0.0391	23	16	3.5	1.2	0.2		
FG21b	0.0391	24	16	6.5	3.9	1.7		
G7	0.5161	194	131	18	8.9	2.3		
G7-G8	0.5161	194	131	18	8.9	2.3		
FG22	0.1354	121	88	32	17	5.4		
OS08a	0.0251	16	11	2.3	0.7	0.10		
OS08-G8	0.0251	16	10	2.3	0.7	0.10		
FG23a	0.0216	21	15	5.2	2.7	0.8		
OS07d	0.0034	2.5	1.6	0.4	0.11	0.01		
OS07d-G8	0.0034	2.4	1.6	0.3	0.11	0.01		
G8	0.7016	279	178	46	24	7.7		
G8-G10	0.7016	278	177	45	24	7.6		
FG24b	0.0589	76	57	24	15	6.5		
FG24a	0.0348	24	16	4.5	2.0	0.4		
OS08b	0.0165	9.5	6.3	1.4	0.5	0.07		
OS08b-G9a	0.0165	9.4	6.0	1.4	0.5	0.07		
OS09a	0.0093	5.3	3.5	0.8	0.3	0.04		
OS09a-G9a	0.0093	5.2	3.4	0.7	0.3	0.04		
G9a	0.1195	97	71	28	16	6.7		

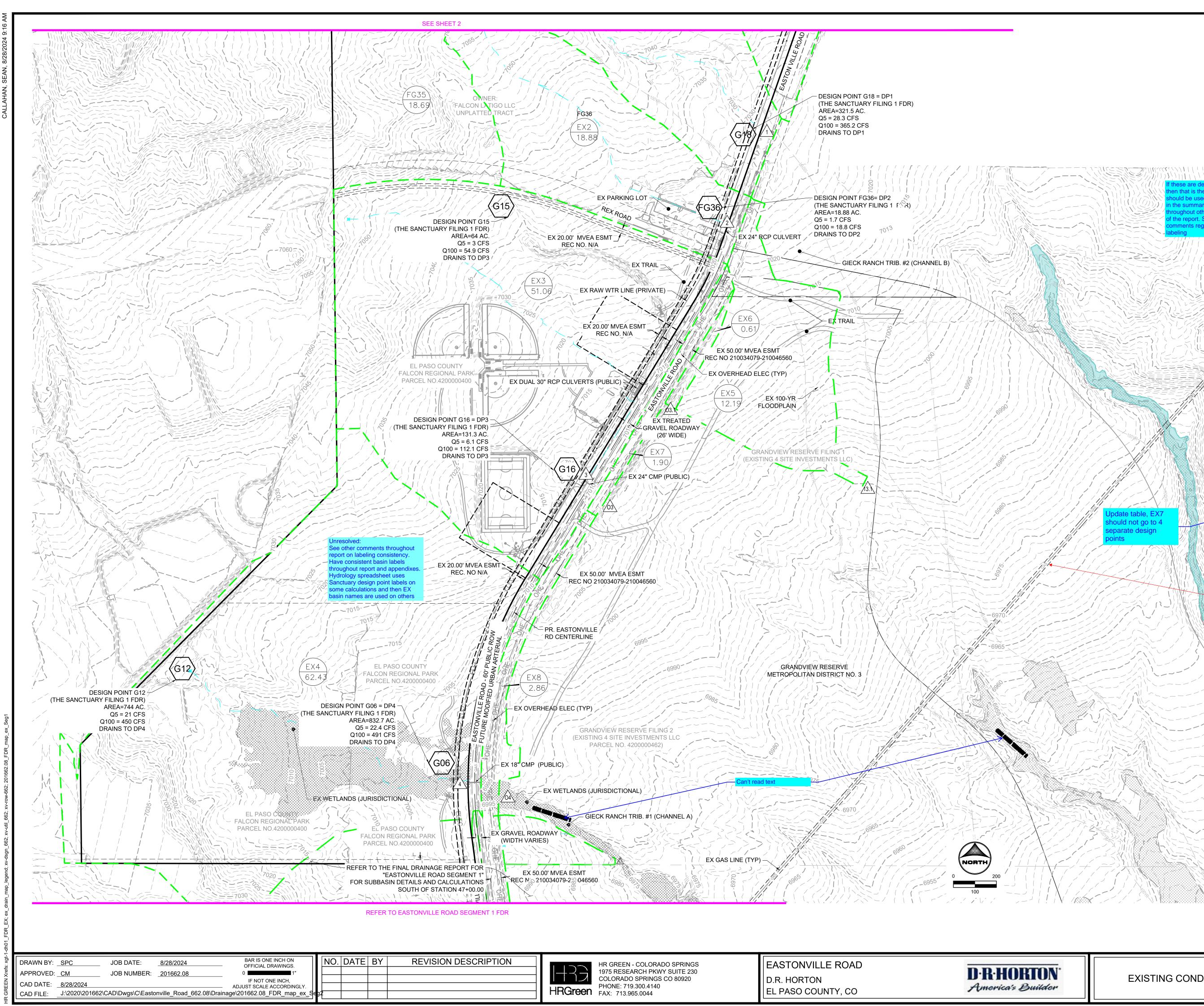
		FUTUR	E SCS (Full Spe	ctrum)		
	DRAINAGE	PEAK	PEAK	PEAK	PEAK	PEAK
	AREA	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE	DISCHARGE
		Q100	Q50	Q10	Q5	Q2
	(SQ. MI.)	(CFS)	(CFS)	(CFS)	(CFS)	(CFS)
G9a-G9b	0.1195	96	70	27	16	6.6
FG24c	0.0291	40	30	13	8.4	4.0
FG24d	0.0262	39	30	14	8.7	4.4
G9b	0.1748	170	127	53	32	14
REX RD WQCV	0.1748	158	125	51	31	14
G9b-G10	0.1748	158	123	50	31	13
FG23b	0.0236	17	11	2.7	0.9	0.13
G10	0.9000	390	263	90	46	15
G10-G11	0.9000	389	254	85	44	15
FG23c	0.0109	11	7.6	2.2	1.0	0.2
G11	0.9109	393	258	86	44	15
FG25	0.1084	111	84	36	22	9.9
FG28	0.0184	15	10	3.0	1.2	0.2
POND G IN-WEST	1.0377	503	350	122	63	22
FG27	0.0679	98	79	42	30	18
FG26	0.0570	65	50	24	16	8.2
G13	0.0570	65	50	24	16	8.2
G13-POND G	0.0570	64	50	24	16	8.1
POND G IN-EAST	0.1249	160	127	64	44	25
POND G	1.1626	450	293	52	21	5.3
G12	1.1626	450	293	52	21	5.3
G12-G06	1.1626	449	293	52	21	5.3
FG29	0.0983	60	39	8.9	2.9	0.4
FG32	0.0402	51	40	20	14	7.5
FG32-G06	0.0402	50	40	19	13	7.4
G06	1.3011	491	317	57	22	7.5


Rational Calculations

The Rational Hydrologic Calculation Method was used to estimate the total runoff from the 5-year and the 100-year design storm and thus establish the storm drainage system design. Using the rational calculation methodology outlined in the Hydrology Section (Ch 6) of the COSDCM coupled with the El Paso County EPCDCM an effective storm drainage design for the Sanctuary Filing 1 has been designed. The storm drainage facilities have been designed such that the minor storm will be captured by the inlets and conveyed by the storm drain pipes such that the street flow does not overtop the curbs. The storm drainage facility has been designed such that the major storm will be captured by the inlets and conveyed by the storm drain pipes such that the street flow does not exceed the right-of-way widths for residential streets and the hydraulic grade line will be less than one foot below the surface.

The site is located within the Gieck Ranch Drainage Basin. The storm drain runoff will be collected by a series of inlets and storm drain pipe then conveyed through the project and discharge directly into the existing Pond G that is properly sized to safely convey the storm water flows away from the project without damaging adjacent property.

Rational Narrative


The following is a detailed narrative of the storm drainage system located in the Sanctuary Filing 1. These storm drainage systems meet the requirements of as found in the El Paso

Eastonville Road Final Drainage Report Project No.: 201662.08

APPENDIX F – DRAINAGE MAPS

LEGEND:	
EXISTING MAJOR CONTOUR	— — — 5250 — —
EXISTING MINOR CONTOUR	
EX STORM SEWER	
EX DRAINAGE SWALE	
EX PROPERTY LINE	
EXISTING FLOW DIRECTION	-
PROPOSED DRAINAGE BASIN	

DESIGN	POINT

FILING 1 FDR

PROPOSED BASIN LABEL

AREA,

/name`

〈GXX〉

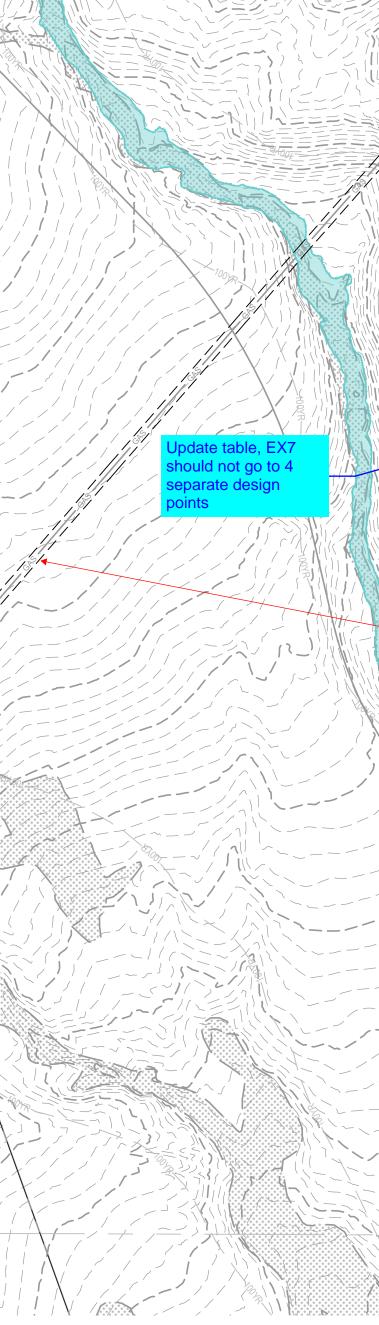
13

DESIGN POINT PER THE SANCTUARY

BASIN	AREA (ac)	% IMPERVIOUS	Q_5 (cfs)	Q ₁₀₀ (cfs)
G18*	321.53	-	28.3	365.2
FG36*	18.88	-	1.7	18.8
G16*	131.26	-	6.1	112.1
G06*	832.70	-	22.4	491.0
EX5	12.19	2	2.7	18.0
EX6	0.61	2	0.1	0.9
EX7	1.90	2	0.4	2.5
EX8	2.86	2	0.6	4.0

* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR y basins and design points shown on the rainage map should be in the summary table

nd spreadsheets.


DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ_{100} (cfs)
1	G18*	28.3	365.2
2	FG36*	1.7	18.8
3	G16*	6.1	112.1
A	G06*	22.4	491.0
O3	EX7	6.5	114.6
O3.1	EX7)	0.1	0.9
04	EX7	23.0	495.0
13.1	EX7 🖌	2.7	18.0
uu	uu		

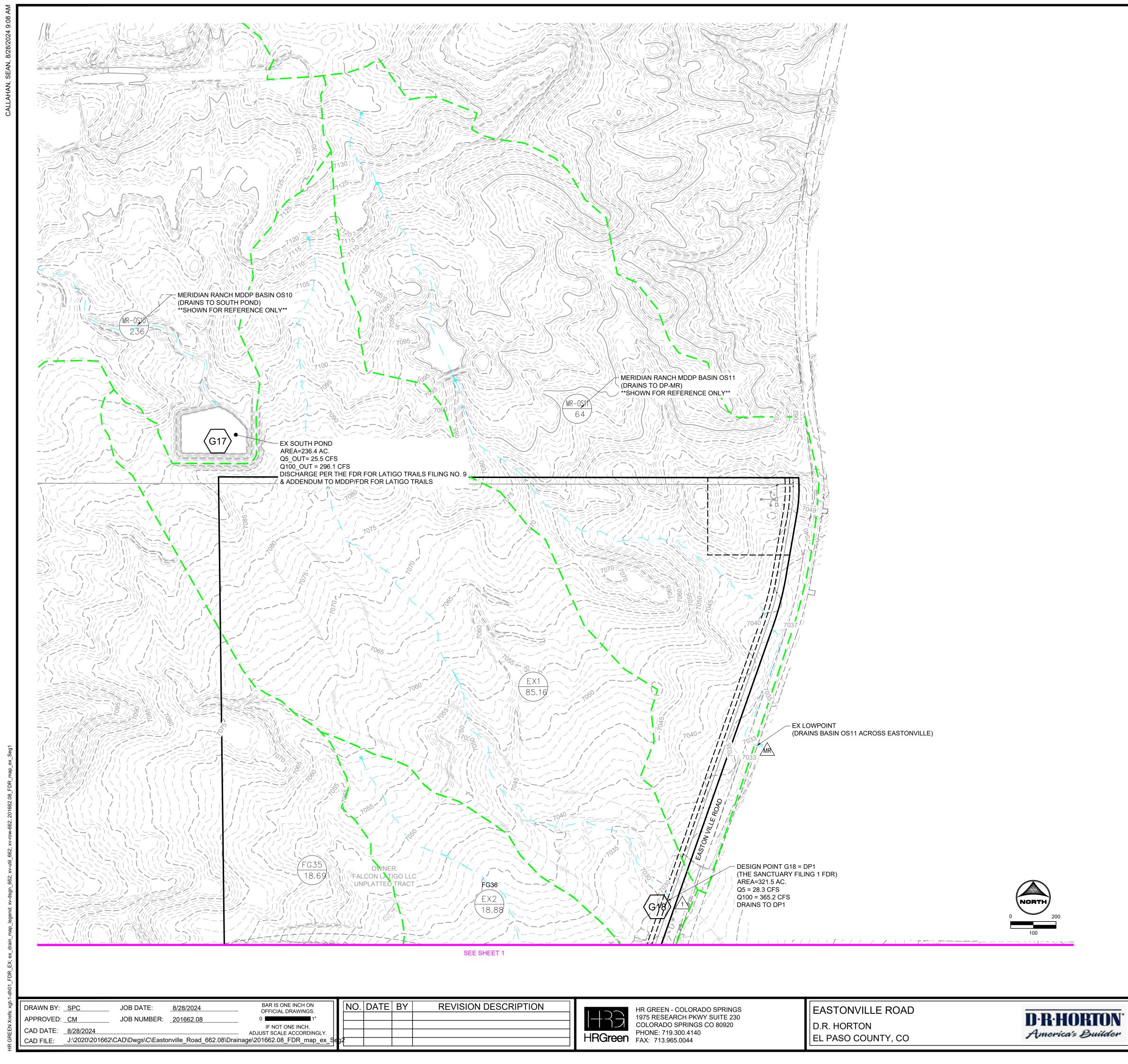
* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

esolved

abel all existing easements (all maps)

-Could not find Design Points G15, G18, FG36, or G16 in the Sanctuary FDR for comparison. Recommended highlighting them in the reference section.

n that is the labe


ild be used und

ie summarv table

ghout other port

the report. See other

nments regarding

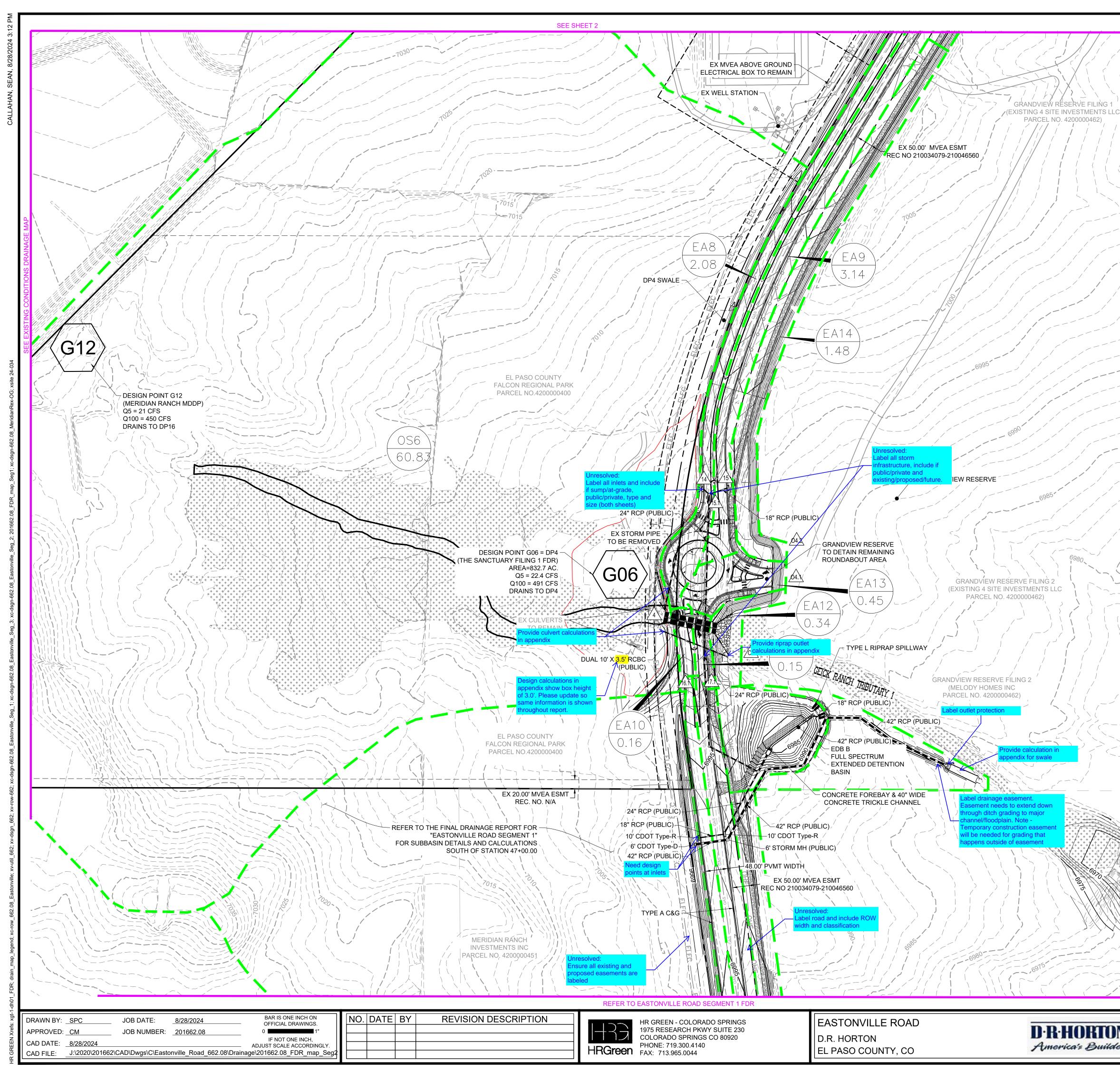
	_
SCRIPTION	

LEGEND:	
EXISTING MAJOR CONTOUR	<u> </u>
EXISTING MINOR CONTOUR	
EX STORM SEWER	
EX DRAINAGE SWALE	
EX PROPERTY LINE	
EXISTING FLOW DIRECTION	-
PROPOSED DRAINAGE BASIN	
DESIGN POINT	13
PROPOSED BASIN LABEL	
DESIGN POINT PER THE SAN	

(GXX)

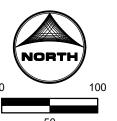
SUMMARY RUNOFF TABLE

FILING 1 FDR


	-			
BASIN	AREA (ac)	% IMPERVIOUS	Q_5 (cfs)	Q ₁₀₀ (cfs)
G18*	321.53	-	28.3	365.2
FG36*	18.88	-	1.7	18.8
G16*	131.26	-	6.1	112.1
G06*	832.70	-	22.4	491.0
EX5	12.19	2	2.7	18.0
EX6	0.61	2	0.1	0.9
EX7	1.90	2	0.4	2.5
EX8	2.86	2	0.6	4.0

* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

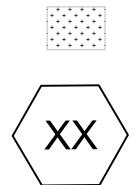
DESIGN POINT SUMMARY TABLE			
DESIGN	CONTRIBUTING	ΣQ_5 (cfs)	Σ Q 100 (cfs)
POINT	BASINS		
1	G18*	28.3	365.2
2	FG36*	1.7	18.8
3	G16*	6.1	112.1
4	G06*	22.4	491.0
O3	EX7	6.5	114.6
O3.1	EX7	0.1	0.9
O4	EX7	23.0	495.0
13.1	EX7	2.7	18.0


* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR

y basins and design points shown on the ainage map should be in the summary table d spreadsheets.

Unresolved:
See comments throughout report and from
previous review concerning consistent naming
of basins and design points.

037	11.29	5	5.9	24.0
* AREA AND Q TAKEN FROM THE SANCTUARY				
	F	ILING 1 FDR		

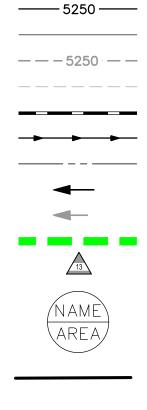

BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs)
EA1	0.22	73	0.8	1.5
EA2	0.25	72	0.9	1.7
EA3	0.20	70	0.7	1.3
EA4	0.17	65	0.5	1.1
EA5	0.16	0	0.1	0.4
EA6	0.25	76	0.8	1.4
EA7	0.20	50	0.4	1.0
EA8	2.08	99	5.2	8.8
EA9	3.14	60	5.0	10.6
EA10	0.16	75	0.6	1.1
EA11	0.15	67	0.5	1.0
EA12	0.34	0	0.1	1.0
EA13	0.45	73	1.4	2.8
EA14	1.48	21	1.2	3.8
EA15	0.76	24	0.7	2.1
EA16	1.18	0	0.3	2.5
EA17	0.30	0	0.1	0.7
*G18	321.53	-	28.3	365.2
*FG36	18.88	-	1.7	18.8
OS3	1.00	2	0.3	2.2
OS4	9.60	9	4.8	21.6
*G16	131.26	-	6.1	112.1
*G06	832.70	-	22.4	491.0
OS7	11.29	3	3.9	24.6
* AREA AND Q TAKEN FROM THE SANCTUARY FILING 1 FDR				

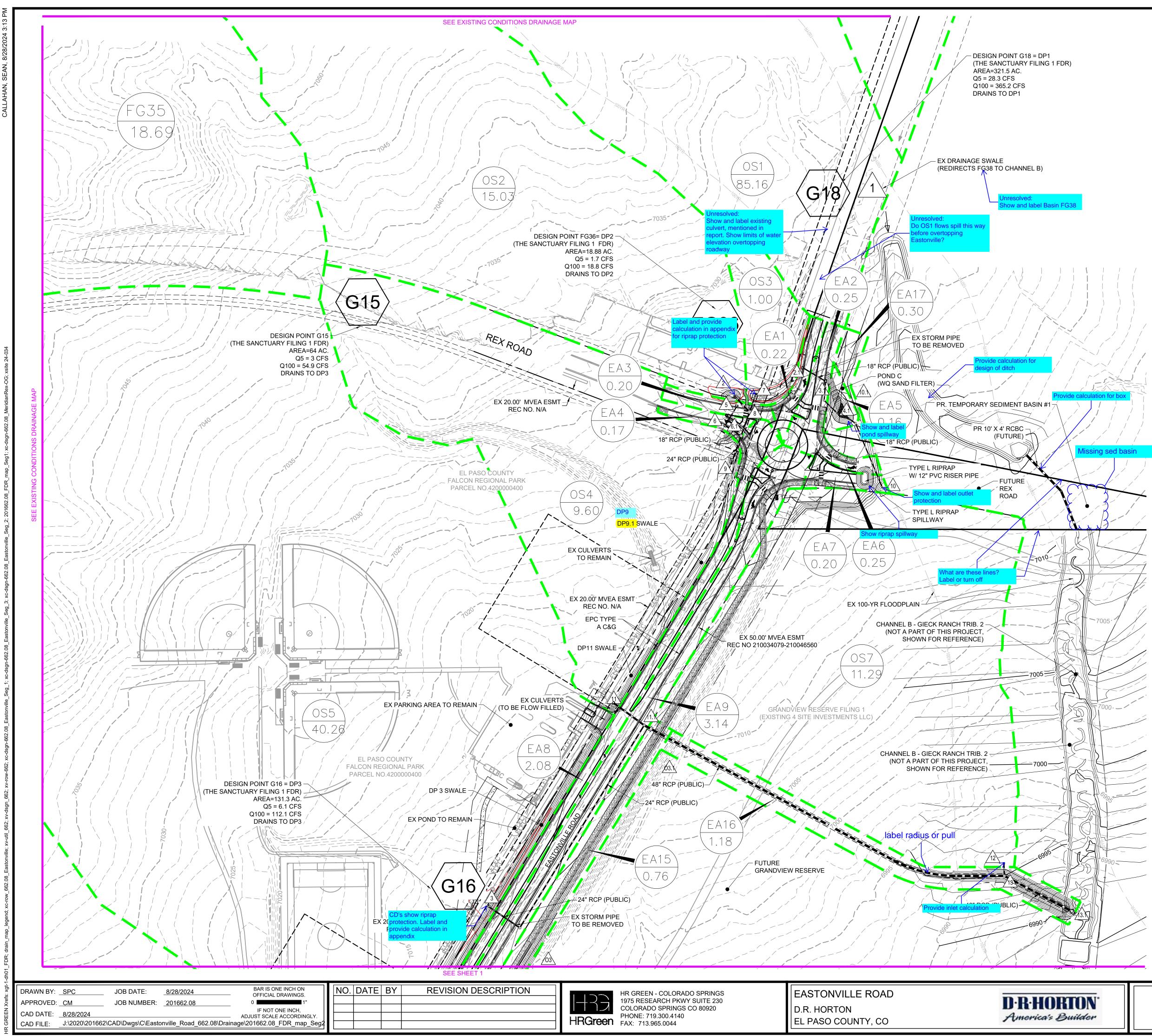
SUMMARY RUNOFF TABLE

DES	SIGN POINT SU	MMARY IA	BLE
DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)
1	G18	28.3	365.2
2	FG36	1.7	18.8
2.1	EA1	0.8	1.5
3	G16	6.1	112.1
3.1	EA2, DP2.1	1.6	3.2
4	G06	22.4	491.0
4.1	EA5, DP3.1	1.7	3.4
5	EA3	0.7	1.3
6	DP5, EA4	1.2	2.4
6.1	DP6, DP8	2.9	22.4
7	OS3	0.3	2.2
8	DP2, DP7	2.0	21.0
9	DP6.1	2.9	22.4
10	EA6, EA7	1.2	2.3
11	OS4, DP9	7.5	44.0
12	OS7	3.9	24.6
13	DP11.1, DP12	10.0	180.6
14	EA8	5.2	8.8
15	EA9	5.0	10.6
15.1	DP14, DP15	10.2	19.3
16.1	EA10	0.6	1.1
17.1	EA11	0.5	1.0
O3	EA15	0.7	2.1
O3.1	-	0.0	0.0
O4	EA12, DP4	22.5	492.0
O4.1	EA13	1.4	2.8
O4.2	EA14	1.2	3.8
10.1	EA17	0.1	0.7
11.1	DP3, DP11	13.6	156.1
13.1	EA16, DP13	0.3	183.1

DESIGN POINT SUMMARY TABLE

DESIGN POINT PER MERIDIAN RANCH


WETLANDS


LEGEND:

PRELIMINARY 100-YR FLOODPLAIN

PROPOSED BASIN LABEL

PROPOSED MAJOR CONTOUR PROPOSED MINOR CONTOUR EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR PROPOSED STORM SEWER PROPOSED DRAINAGE SWALE PROPERTY LINE PROPOSED FLOW DIRECTION EXISTING FLOW DIRECTION PROPOSED DRAINAGE BASIN DESIGN POINT

SHEET DRN


2

PROPOSED DRAINAGE BASIN DESIGN POINT PROPOSED BASIN LABEL PRELIMINARY 100-YR FLOODPLAIN WETLANDS

PROPERTY LINE

LEGEND:

PROPOSED MAJOR CONTOUR

+++++

DESIGN POINT PER MERIDIAN RANCH

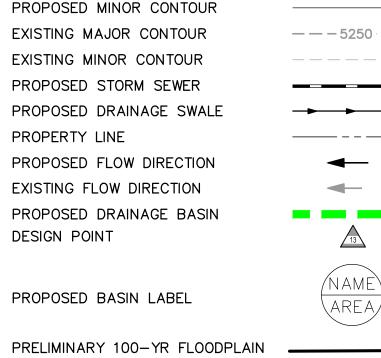
SUMMARY RUNOFF TABLE Q5 Q100 AREA % BASIN (ac) IMPERVIOUS (cfs) (cfs) EA1 0.22 73 0.8 1.5 EA2 0.25 72 0.9 1.7 0.7 EA3 0.20 70 1.3 EA4 0.17 65 0.5 1.1 EA5 0.16 0.1 0.4 0 EA6 0.25 76 0.8 1.4 EA7 0.20 50 0.4 1.0 EA8 99 5.2 8.8 2.08 5.0 10.6 EA9 3.14 60 EA10 75 0.6 1.1 0.16 EA11 0.15 67 0.5 1.0 EA12 0.34 0.1 1.0 0 EA13 0.45 73 1.4 2.8 EA14 1.48 1.2 3.8 21 EA15 0.76 0.7 2.1 24 EA16 1.18 0 0.3 2.5 EA17 0.30 0.7 0 0.1 *G18 321.53 28.3 365.2 *FG36 18.8 18.88 1.7 OS3 1.00 0.3 2.2 2 OS4 4.8 21.6 9.60 9 *G16 112.1 131.26 6.1 *G06 832.70 22.4 491.0 -

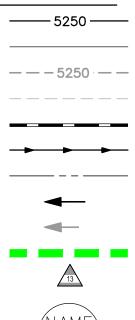
3

* AREA AND Q TAKEN FROM THE SANCTUARY

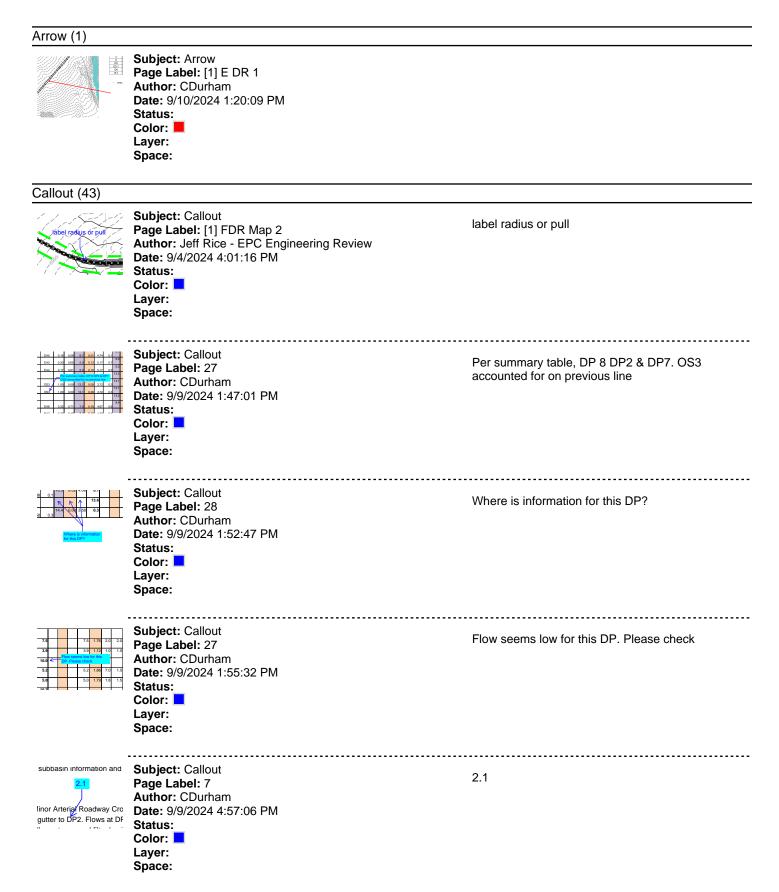
FILING 1 FDR

3.9 24.6

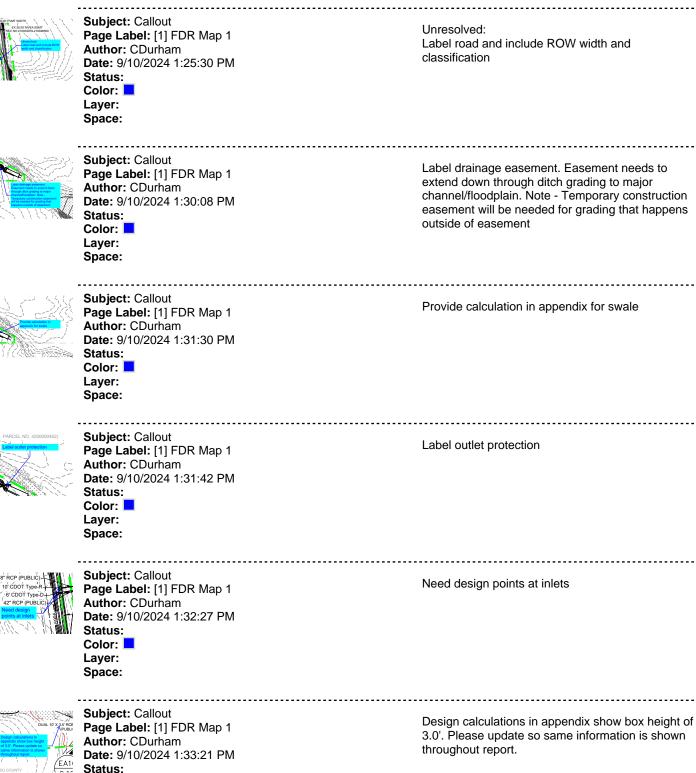

OS7

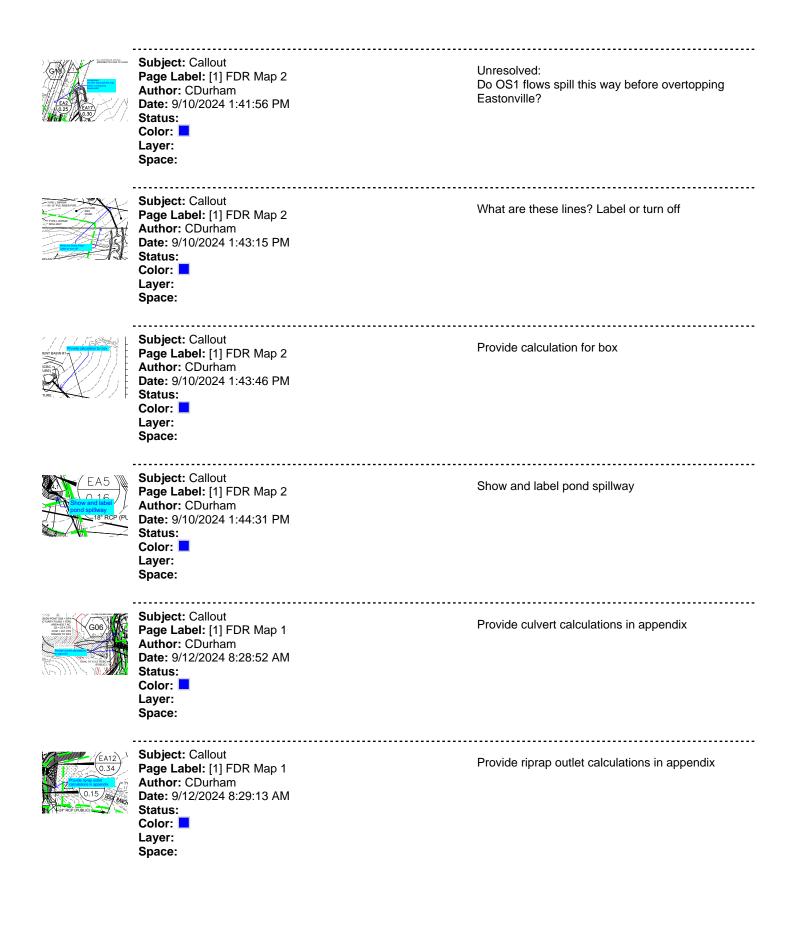

NORTH

11.29


DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)
1	G18	28.3	365.2
2	FG36	1.7	18.8
2.1	EA1	0.8	1.5
3	G16	6.1	112.1
3.1	EA2, DP2.1	1.6	3.2
4	G06	22.4	491.0
4.1	EA5, DP3.1	1.7	3.4
5	EA3	0.7	1.3
6	DP5, EA4	1.2	2.4
6.1	DP6, DP8	2.9	22.4
7	OS3	0.3	2.2
8	DP2, DP7	2.0	21.0
9	DP6.1	2.9	22.4
10	EA6, EA7	1.2	2.3
11	OS4, DP9	7.5	44.0
12	OS7	3.9	24.6
13	DP11.1, DP12	10.0	180.6
14	EA8	5.2	8.8
15	EA9	5.0	10.6
15.1	DP14, DP15	10.2	19.3
16.1	EA10	0.6	1.1
17.1	EA11	0.5	1.0
O3	EA15	0.7	2.1
O3.1	-	0.0	0.0
O4	EA12, DP4	22.5	492.0
O4.1	EA13	1.4	2.8
O4.2	EA14	1.2	3.8
10.1	EA17	0.1	0.7
11.1	DP3, DP11	13.6	156.1
13.1	EA16, DP13	0.3	183.1

DESIGN POINT SUMMARY TABLE


V3_Drainage Report Final - Segment 2.pdf Markup Summary


	Subject: Callout Page Label: 18 Author: CDurham Date: 9/10/2024 9:15:59 AM Status: Color: Layer: Space:	Labeling needs to be consistent throughout document. To keep it simple, would suggest using basin labels & design points used in Sanctuary Rpt for Basins EX1 thru EX4.
	Subject: Callout Page Label: 22 Author: CDurham Date: 9/10/2024 9:22:28 AM Status: Color: Layer: Space:	Unresolved: Labeling needs to be consistent throughout document. To keep it simple, would suggest using basin labels & design points used in Sanctuary Rpt. Highlighted items are listed as design points on map and & Sanctuary Rpt. Should be the same here. Use same basin labels as in Sanctuary Rpt and remove "new" basin labels within tables, maps, report, etc
	Subject: Callout Page Label: 35 Author: CDurham Date: 9/10/2024 9:28:49 AM Status: Color: Layer: Space:	Inlet still appears to be ok, but flow at DP 3.1 per spreadsheet is 1.6 & 3.2 cfs
Δ - 1000 -	Subject: Callout Page Label: 39 Author: CDurham Date: 9/10/2024 10:28:38 AM Status: Color: Layer: Space:	Flow at DP 6 per spreadsheet is 1.2 & 2.4 cfs
And the second s	Subject: Callout Page Label: 47 Author: CDurham Date: 9/10/2024 10:36:28 AM Status: Color: Layer: Space:	Map calls out 3.5' height. Please verify and update spreadsheets/plans accordinginly
Market Urrendvald Holl as I focder Denses HOL as I flabour grade. HOL as I flabour grade. H	Subject: Callout Page Label: 64 Author: CDurham Date: 9/10/2024 10:55:26 AM Status: Color: Layer: Space:	Unresolved: Inlet is flooding. Please revise design to ensure HGL is 1 ft below grade.

Subject: Callout Unresolved: Page Label: 65 Inlet is flooding. Please revise design to ensure Author: CDurham HGL is 1 ft below grade. Date: 9/10/2024 10:55:51 AM Status: Color: Layer: Space: Subject: Callout Can't read text Page Label: [1] E DR 1 Author: CDurham Date: 9/10/2024 1:13:59 PM Status: Color: Layer: Space: Subject: Callout If these are design points, then that is the label Page Label: [1] E DR 1 which should be used under DP in the summary Author: CDurham table and throughout other portions of the report. Date: 9/10/2024 1:15:08 PM See other comments regarding labeling Status: SUM Color: Laver: Space: Subject: Callout Unresolved: Page Label: [1] FDR Map 1 Label all inlets and include if sump/at-grade, Author: CDurham public/private, type and size (both sheets) Date: 9/10/2024 1:36:01 PM Status: Color: Layer: Space: Subject: Callout Unresolved: Page Label: [1] FDR Map 1 Label all storm infrastructure, include if Author: CDurham public/private and existing/proposed/future. Date: 9/10/2024 1:24:08 PM Status: Color: Layer: Space: Subject: Callout Unresolved: Page Label: [1] FDR Map 1 Ensure all existing and proposed easements are Author: CDurham labeled Date: 9/10/2024 1:24:49 PM Status: Color: Layer: Space:

Color: Layer: Space:

Ex Lion repr to a construction of the construc	Subject: Callout Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:36:46 PM Status: Color: Layer: Space:	Provide calculation for design of ditch
TYPE L RIRRA SPEL KIRRA SPEL KIRRA SPEL KIRRA SPEL KIRRA SPEL KIRRA SPEL KIRRA	Subject: Callout Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:37:36 PM Status: Color: Layer: Space:	Show riprap spillway
THE LIPPUP	Subject: Callout Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:37:49 PM Status: Color: Layer: Space:	Show and label outlet protection
	Subject: Callout Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:42:24 PM Status: Color: Layer: Space:	Provide inlet calculation
ANGE SWILE ECTS FOR TO GHANNEL B) Unterstand Hore and Start Start FCCS	Subject: Callout Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:40:25 PM Status: Color: Layer: Space:	Unresolved: Show and label Basin FG38
E5.10 G18	Subject: Callout Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:41:23 PM Status: Color: Layer: Space:	Unresolved: Show and label existing culvert, mentioned in report. Show limits of water elevation overtopping roadway

	G16	Subject: Callout Page Label: [1] FDR Map 2 Author: CDurham Date: 9/12/2024 9:03:25 AM Status: Color: Layer: Space:	CD's show riprap protection. Label and provide calculation in appendix
		Subject: Callout Page Label: [1] FDR Map 2 Author: CDurham Date: 9/12/2024 9:42:11 AM Status: Color: Layer: Space:	Label and provide calculation in appendix for riprap protection
Checl	kmark (17)		
ې ft	~	Subject: Checkmark Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:36:47 PM Status: Color: Layer: Space:	
		Subject: Checkmark Page Label: 96	
S)	~	Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:43:26 PM Status: Color: Layer: Space:	
]ft	~	Subject: Checkmark Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:44:02 PM Status: Color: Layer: Space:	
%	✓	Subject: Checkmark Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:44:41 PM Status: Color: Layer: Space:	

	Subject: Checkmark Page Label: 100 Author: Glenn Reese - EPC Stormwater
	Date: 9/11/2024 4:45:14 PM Status: Color:
	Layer: Space:
_	Subject: Checkmark Page Label: 100 Author: Glenn Reese - EPC Stormwater
	Date: 9/11/2024 4:45:17 PM Status: Color:
	Layer: Space:
	Subject: Checkmark Page Label: 100
🧹 Ονε	Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:45:18 PM
Hori	Status: Color:
	Layer: Space:
Input: Orific	Subject: Checkmark Page Label: 100
🗸 Unc	Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:45:56 PM
	Status: Color:
	Layer: Space:
	opace.
Underc	Subject: Checkmark Page Label: 100
🗸 Unc	Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:45:58 PM
	Status: Color:
	Layer: Space:
	Subject: Checkmark
🗸 🗸	Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:47:04 PM
	Status: Color:
	Layer: Space:
	- F

🗸 Fre	Subject: Checkmark Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:48:19 PM Status: Color: Layer: Space:
	Subject: Checkmark Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:48:22 PM Status: Color: Layer: Space:
Sp ²	Subject: Checkmark Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:48:25 PM Status: Color: Layer: Space:
🗸 Rati	Subject: Checkmark Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:50:10 PM Status: Color: Layer: Space:
) Peak Outflo ✓ Stı Max Velocit	Subject: Checkmark Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:50:13 PM Status: Color: Layer: Space:
	Subject: Checkmark Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:50:18 PM Status: Color: Layer: Space:

Subject: Checkmark Tim Page Label: 100 Tin Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:50:19 PM Status: Color: Layer: Space: Cloud+ (2) Subject: Cloud+ Update table, EX7 should not go to 4 separate Page Label: [1] E DR 1 design points Author: CDurham Date: 9/10/2024 1:19:47 PM Status: Color: Layer: Space: Subject: Cloud+ Missing sed basin Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:37:00 PM Status: Color: Layer: Space: File Attachment (1) Subject: File Attachment Final Page Label: 9 rojeci Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:52:50 PM Status: Color: Layer: Space: Highlight (16) Subject: Highlight OS3 1.00 0.09 13.1 0.09 3.72 0.3 Page Label: 27 9 Author: CDurham Date: 9/9/2024 1:44:49 PM Status: Color: Layer: Space: Subject: Highlight 10.0 Page Label: 27 10.0 Author: CDurham Date: 9/9/2024 1:55:15 PM Status: Color: 📒 Layer: Space:

1.12 3.	Subject: Highlight Page Label: 27 Author: CDurham Date: 9/9/2024 1:56:36 PM Status: Color: Layer: Space:	1.12
basins EA10 & EA11. nuille Road Basins EA1 is 0.22 acres of proposed roadway, water (Q ₂ = 20 <i>r</i> ds Chwi = 1.3 rb) is cor per R sump intel (Public) and piped to F ained by the Pond C Sand Filter. EA2 is 0.25 acres of proposed roadway under (Q ₂ = 0.8 de Q ₁₀₀ = 1.5 del la cor	Subject: Highlight Page Label: 7 Author: CDurham Date: 9/9/2024 4:49:19 PM Status: Color: Layer: Space:	Q5 = 0.7 cfs Q100 = 1.3 cfs
water (Qs = 0.7 dis Qtise = 1.3 dis) is con- ripe R sump intel (Public) and piped to P- ained by the Pond C Stand Filter. EA2 is 0.25 acres of proposed roadway water (Qs = 0.8 dis Quare = 1.5 dis) is con- ripe R sump intel (Public) and piped to P- EA3 is 0.20 acres of proposed roadway water (Qs = 0.7 dis Quare = 1.4 dis) is con- Vora R sumo intel (Public) and sined to 1	Subject: Highlight Page Label: 7 Author: CDurham Date: 9/9/2024 4:56:15 PM Status: Color: Layer: Space:	Q5 = 0.8 cfs Q100 = 1.5 cfs)
oposed road o = <mark>1.4 cfs</mark>) is lic) and pipec	Subject: Highlight Page Label: 7 Author: CDurham Date: 9/9/2024 4:56:26 PM Status: Color: Layer: Space:	1.4 cfs
	Subject: Highlight Page Label: 9 Author: CDurham Date: 9/9/2024 5:16:10 PM Status: Color: Layer: Space:	Basin OS1
	Subject: Highlight Page Label: 9 Author: CDurham Date: 9/9/2024 5:16:13 PM Status: Color: Layer: Space:	Basin OS2

piped to DP11.	Subject: Highlight	Basin OS5
	Page Label: 9 Author: CDurham	
Eastonville Roa	Date: 9/9/2024 5:16:16 PM	
112.2.1 cfs to a	Status: Color:	
	Layer:	
	Space:	
112.2.1 cfs to a	Subject: Highlight	Basin OS6
Basin OS6 is 6(Page Label: 9 Author: CDurham	
are adapted dire	Date: 9/9/2024 5:16:19 PM	
roadside swale	Status: Color:	
	Layer:	
	Space:	
EA17	Subject: Highlight	G18
*G18	Page Label: 22 Author: CDurham	
	Date: 9/10/2024 9:20:30 AM	
*FG36	Status: Color:	
	Layer:	
	Space:	
*G18	Subject: Highlight Page Label: 22	FG36
*FG36	Author: CDurham	
OS3	Date: 9/10/2024 9:20:32 AM	
	Status: Color: -	
	Layer:	
	Space:	
OS4	Subject: Highlight Page Label: 22	*G16
*G16	Author: CDurham	
*G06	Date: 9/10/2024 9:20:34 AM	
••••	Status: Color:	
	Layer:	
	Space:	
*G16	Subject: Highlight Page Label: 22	*G06
*G06	Author: CDurham	
OS7	Date: 9/10/2024 9:20:35 AM	
	Status: Color:	
	Layer:	
	Space:	

Subject: Highlight Page Label: [1] FDR Map 1 Author: CDurham Date: 9/10/2024 1:32:39 PM Status: Color: Layer: Space:

DP9.1

.....

DP9.1 SW

Subject: Highlight Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:35:22 PM Status: Color: Layer: Space:

.....

Image (3)

Subject: Image Page Label: 108 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:14:53 PM Status: Color: Layer: Space:

Subject: Image Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:24:14 PM Status: Color: Layer: Space:

Subject: Image Page Label: 11 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:24:31 PM Status: Color: Layer: Space:

MHFD Calcs (1)

Subject: MHFD Calcs Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:46:47 PM Status: Color: Layer: Space: 3.5'

SW - Highlight (4)

	Subject: SW - Highlight Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:36:11 PM Status: Color: Layer: Space:	Flows at DP14 are captured in a 10' Type R sump inlet (Public) and piped to Pond B. Basin EA8 will be detained Pond B Full Spectrum Detention Basin.
odified Urban Minor Arterial Roa d in curb and gutter to DP17.1. Jic) and <u>piped to Pond B.</u> This i be detained Pond B Full Spectr a Fastonville Roardway. Stormw	Subject: SW - Highlight Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:40:22 PM Status: Color: Layer: Space:	nd piped to Pond B.
ed in curb and gutter to DF ublic) and piped to Pond B. Il be detained Pond B Full R. ne Eastonville Roadway. S	Subject: SW - Highlight Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:40:28 PM Status: Color: Layer: Space:	detained Pond B
pric drainage patterns and not R and EA9-10 per the segment 20 full spectrum extended detention ge easement. A total of 002 acres of ease will be treated and detained by mate conditions include fully built	Subject: SW - Highlight Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:41:37 PM Status: Color: Layer: Space:	EA9-10 per the segment 2

SW - Textbox (5)

Subject: SW - Textbox Page Label: 9 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:54:04 PM Status: Color: ■ Layer: Space:

There is not WQ treatment provided for EA12 - EA17 with this project.

A WQ treatment summary table would be very helpful for this project since there is so much going on with phasing, runoff reduction, EDBs, and SFBs, and exclusions. Could you please complete a table that shows all WQ treatment so we can better quantify this like exclusions and untreated areas with future detention? I have provided a go-by table for your use. It's also helpful to have an accompanying WQ summary map, see my comment below for details.

Horizontal de la construction	Subject: SW - Textbox Page Label: 9 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:54:28 PM Status: Color: ■ Layer: Space:	We need to know how much of the proposed area of disturbance (not just the impervious surfaces) is treated vs untreated and if there are any exclusions that apply to the untreated areas. So please create a basic overview map (or modify an existing drainage map) with color shading/hatching that shows areas tributary to each PBMP (pond, runoff reduction, etc.) and those disturbed areas that are not treated by a PBMP, with the applicable exclusion labeled (ex: 20% up to 1ac of development can be excluded per ECM App I.7.1.C.1 and exclusions listed in ECM App I.7.1.B.#). An accompanying summary table on this map would also be very helpful (example provided):
Internet metalitie neg terrepresentation between the second secon	Subject: SW - Textbox Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:24:02 PM Status: Color: ■ Layer: Space:	Include a table like this for the Ultimate condition of EDB B. And be sure to make it clear which Basin IDs are from which segment because it appears EDB B will treat runoff from both Segment 1's EA8 and Segment 2's EA8, which are two seperate areas/basins. See top of next page for an example of this clearly shown.
	Subject: SW - Textbox Page Label: 110 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:52:52 PM Status: Color: ■ Layer: Space:	When are the details for this Ultimate Condition going to be designed/submitted? Because I do not see them with the Segment 2 CDs. Please provide them so that I can review these calcs.
	Subject: SW - Textbox Page Label: 104 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:50:44 PM Status: Color: Layer: Space:	When are the details for this Ultimate Condition going to be designed/submitted? Because I do not see them with the Segment 2 CDs. Please provide them so that I can review these calcs.
SW - Textbox w	ith Arrow (16)	
	Subject: SW - Textbox with Arrow Page Label: 8 Author: Glenn Reese - EPC Stormwater	These 2 basins aren't listed as trib to Pond B on PDF pg 10 below. Revise to remove discrepancy.

Subject: SW - Textbox with Arrow Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:41:26 PM Status: Color: ■ Layer: Space:

.....

d 100-year stoms are released in revised to the bottom of the pand shikeny is provided ratic conveys the to towards the Mutta Channell B down and the store of the store of the store of the store of the pand and EAA-10 per the segment 2 Hapstrame startbed distribution and the store of the segment 2 hapstrame startbed distribution at will be traded and distribution at a will be traded and distribution by the conditions include killy butit Subject: SW - Textbox with Arrow Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:52:25 PM Status: Color: ■ Layer: Space:

Per my comment on PDF pg 8 above, basins EA8 and EA11 are supposedly also trib to this pond.

.....

Subject: SW - Textbox with Arrow Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 2:48:24 PM Status: Color: Layer: Space:

Will the TSB be removed to? Also please state if WQ treatment will be provided by future development or not.

Subject: SW - Textbox with Arrow Page Label: 98 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:01:46 PM Status: Color: Layer: Space:

_____ Subject: SW - Textbox with Arrow Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:06:16 PM Status: Color: Layer: Space:

Stapleton with EPC's Eastonville improvements.

For consistency, revise this to "SFB C" as to not be

confused with "Pond C" which will be just south of

0.16 per drainage map. Please compare all acerage in report text to drainage maps. I only checked EA9 and EA10 and both did not match, so

I assume that there are many other

paved area of Rex Road world basin EAV. The swa s and gutter. Basin EA7 will be detained in TSB #1.
3 is 2.08 acres of proposed roadway (Modified Urbar ar ($Q_5 = 5.0 \text{ cfs} \ Q_{100} = 9.0 \text{ cfs}$) is conveyed in curb ar (pe R sump inlet (Public) and piped to Pond B. Basin
Basin. 3.14 per drainage map
\exists is 2.99 acres of proposed roadway (Modified Urbar ar (Q _d = 4.6 cfs Q ₁₀₀ = 9.5 cfs) is conveyed in curb ar rpe R sump inlet (Public) and piped to Pond B. Basin Basin.
10 is 0.12 acres of proposed roadway (Modified Urba

Subject: SW - Textbox with Arrow Page Label: 8 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:05:02 PM Status: Color: Layer: Space:

Subject: SW - Textbox with Arrow

Date: 9/11/2024 4:51:32 PM

Author: Glenn Reese - EPC Stormwater

Page Label: 108

Status:

Layer: Space:

Layer: Space:

Color:

.....

3.14 per drainage map

discrepancies...

By my math and what is shown in the text above, this area also includes Segment 2's EA8 and EA11, which doesn't align with what is stated on PDF pg 10 above or what is shown in the Basin ID label on this sheet. Please clarify on all calcs, text, and tables.

.....

Here's what I think is included in this pond:

e Form: Sand Filter (St Subject: SW - Textbox with Arrow Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 3:54:23 PM Status: Color:

add: "SFB C"

/1 qR	Subject: SW - Textbox with Arrow Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:41:24 PM Status: Color: ■ Layer: Space:	463 shown on CDs
it in the second	Subject: SW - Textbox with Arrow Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:42:54 PM Status: Color: ■ Layer: Space:	3:1 on CDs
a (2.4) on MortD Determiner and a below	Subject: SW - Textbox with Arrow Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:44:29 PM Status: Color: ■ Layer: Space:	0.48 on MHFD-Detention calcs below
Important Important Important Important Important Important Important Important Important Important Important Important Important Important Important Important Important Important Important Important Important </td <td>Subject: SW - Textbox with Arrow Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:47:28 PM Status: Color: ■ Layer: Space:</td> <td>18" per CDs. We want a min of 18" so revise on here.</td>	Subject: SW - Textbox with Arrow Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:47:28 PM Status: Color: ■ Layer: Space:	18" per CDs. We want a min of 18" so revise on here.
Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1 Image: 1	Subject: SW - Textbox with Arrow Page Label: 12 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:56:53 PM Status: Color: ■ Layer: Space:	These values have to match what is shown in Section 1 of the FAE for each PBMP/PCM
A damper drastner is 25 dam. The MSCV's 2500 w c Mer mutual (1) and 1 damper of the matrix of the matrix of the matrix methods (1) and 2 damper of the matrix methods and the matrix of	Subject: SW - Textbox with Arrow Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:58:00 PM Status: Color: ■ Layer: Space:	add: "Ultimate Condition"

id detention of 9.02 acres of d detailed by Db check de fully built g 2025. 9.37ac 9.37ac volume is 1.119	Subject: SW - Textbox with Arrow Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:58:42 PM Status: Color: Layer: Space:	Dbl check this value. I get closer to 9.37ac
	Subject: SW - Textbox with Arrow Page Label: 10 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:59:19 PM Status: Color: Layer: Space:	Add a statement that notates that the Interim Condition was designed a built with Segment 1.
Text Box (25)		
6.1 7 063 1.00 0.00 131 0.00 6 063 1.00 0.00 131 0.00 9 1.00 0.00 131 0.00 9 1.00 0.00 131 0.00 9 1.00 0.00 131 0.00 9 1.00 0.00 131 0.00 10 6.60 0.00 131 0.00 10 6.60 0.00 0.00 0.00 0.00 11 0.00 0.00 0.00 0.00 0.00 0.00	Subject: Text Box Page Label: 27 Author: CDurham Date: 9/9/2024 1:47:51 PM Status: Color: Layer: Space:	Is this DP needed if it's just DP 6.1?
Any tauna and dauge points drawn an integrational tai included in generalments	Subject: Text Box Page Label: 17 Author: CDurham Date: 9/10/2024 9:16:36 AM Status: Color: Layer: Space:	Any basins and design points shown on map should be included in spreadsheets
OL Dir. Dir. Dir. 13.3 E.S. 12.0 0.00 Uncerted Biol and dir.go priori biology 100	Subject: Text Box Page Label: 20 Author: CDurham Date: 9/10/2024 9:17:38 AM Status: Color: Layer: Space:	Unresolved: See previous comments in regards to basin and design point labeling
SIG SIG SIG 10 10 10 <td>Subject: Text Box Page Label: 23 Author: CDurham Date: 9/10/2024 9:22:47 AM Status: Color: Layer: Space:</td> <td>Unresolved: See previous comments in regards to basin and design point labeling</td>	Subject: Text Box Page Label: 23 Author: CDurham Date: 9/10/2024 9:22:47 AM Status: Color: Layer: Space:	Unresolved: See previous comments in regards to basin and design point labeling

Or NA OF EA12 O.34 EA12 <th>Subject: Text Box Page Label: 27 Author: CDurham Date: 9/10/2024 9:24:33 AM Status: Color: Layer: Space:</th> <th>Unresolved: Missing Basins OS1, OS2, FG35 & OS6</th>	Subject: Text Box Page Label: 27 Author: CDurham Date: 9/10/2024 9:24:33 AM Status: Color: Layer: Space:	Unresolved: Missing Basins OS1, OS2, FG35 & OS6
04.2 EA14 1.4 10.1 EA17 0.3 See comments on 5-year 2 countermed on overgread Otem	Subject: Text Box Page Label: 29 Author: CDurham Date: 9/10/2024 9:25:14 AM Status: Color: Layer: Space:	See comments on 5-year
MINATION OF Cl 1: Label what structure D: this is for.	Subject: Text Box Page Label: 46 Author: CDurham Date: 9/10/2024 10:33:07 AM Status: Color: Layer: Space:	Label what structure this is for.
RT SIZING (INLET VS.) (MM) STONULLE ROAD OPA appears to be a marchol. Pris is located. Construction Construc	Subject: Text Box Page Label: 48 Author: CDurham Date: 9/10/2024 10:38:44 AM Status: Color: Layer: Space:	DP8 appears to be a manhole. Please update ID/name of where this is located.
Provide Fr # for this swale	Subject: Text Box Page Label: 86 Author: CDurham Date: 9/10/2024 10:46:39 AM Status: Color: Layer: Space:	Provide Fr # for this swale
Source D 38.60 We want that flow determined? Per spreadbleet and report, flow and the second	Subject: Text Box Page Label: 87 Author: CDurham Date: 9/10/2024 10:53:49 AM Status: Color: Layer: Space:	How was this flow determined? Per spreadsheet and report, flow at DP 4 is 491 cfs. Suggest creating a basin specific only for contributing to swale.

Vier: (growiny) - 0.6 (i.e., for hoto) constraints the Port & polyacy representation with the second sec	Subject: Text Box Page Label: 94 Author: CDurham Date: 9/10/2024 11:31:32 AM Status: Color: Layer: Space: Subject: Text Box Page Label: 90 Author: CDurham Date: 9/11/2024 3:57:57 PM Status: Color: Layer:	Provide calculations for Pond B spillway riprap sizing. Need outlet protection calcs for: - Pond B outlet - 18" Culvert south of Dawlish (Eastonville 8 culvert) - Eastonville 18 culvert -
Unresolved: motion in labeling constances, Mare consistent basin labels Hydridog ynesddeel uas Banchang dreigip geliad label an Banchang dreigip geliad label Banchang dreigip geliad labe	Space: Subject: Text Box Page Label: [1] E DR 1 Author: CDurham Date: 9/10/2024 1:09:19 PM Status: Color: Layer: Space:	Unresolved: See other comments throughout report on labeling consistency. Have consistent basin labels throughout report and appendixes. Hydrology spreadsheet uses Sanctuary design point labels on some calculations and then EX basin names are used on others
Di Di <thdi< th=""> Di Di Di<!--</th--><th>Subject: Text Box Page Label: [1] E DR 1 Author: CDurham Date: 9/10/2024 1:12:49 PM Status: Color: Layer: Space:</th><th>Unresolved: - Label all existing easements (all maps) -Could not find Design Points G15, G18, FG36, or G16 in the Sanctuary FDR for comparison. Recommended highlighting them in the reference section.</th></thdi<>	Subject: Text Box Page Label: [1] E DR 1 Author: CDurham Date: 9/10/2024 1:12:49 PM Status: Color: Layer: Space:	Unresolved: - Label all existing easements (all maps) -Could not find Design Points G15, G18, FG36, or G16 in the Sanctuary FDR for comparison. Recommended highlighting them in the reference section.
ENG 0.01 2 0.1 EX0 1.00 2 0.6 • AREARD CLARK INCLUS THE SACCHARTY BESIGN POINT SUMMARY TO DESIGN POINT SUMMARY TO DESIGN POINT SUMMARY TO DENOTION CONTRIBUTION SIGNAL	Subject: Text Box Page Label: [1] E DR 1 Author: CDurham Date: 9/10/2024 1:20:41 PM Status: Color: Layer: Space:	Any basins and design points shown on the drainage map should be in the summary table and spreadsheets.
Visit 12 1 2.4 41.0 087 1.12 3 3.8 3.44 * AREA AND 0.1 Kindlin YOUTH & SACE Usary	Subject: Text Box Page Label: [1] FDR Map 1 Author: CDurham Date: 9/10/2024 1:34:44 PM Status: Color: Layer: Space:	Unresolved: See comments throughout report and from previous review concerning consistent naming of basins and design points.

State State Ly All 11.1 Detg. print 13.6 0.91.1 11.1 Detg. print 0.96.1 0.96.1 10.1 Detg. print 0.96.1 0.96.1 10.1 Detg. print 0.96.1 0.96.1 Avg Detg. print 0.96.1 0.96.1 0.96.1	Subject: Text Box Page Label: [1] FDR Map 1 Author: CDurham Date: 9/10/2024 1:34:42 PM Status: Color: Layer: Space:	Any basins and design points shown on the drainage map should be in the summary table and spreadsheets.
DP9	Subject: Text Box Page Label: [1] FDR Map 2 Author: CDurham Date: 9/10/2024 1:35:29 PM Status: Color: Layer: Space:	DP9
sq ft 🗙	Subject: Text Box Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:41:12 PM Status: Color: Layer: Space:	X
ft / ft 🗙	Subject: Text Box Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:42:46 PM Status: Color: Layer: Space:	X
] in X	Subject: Text Box Page Label: 96 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:44:13 PM Status: Color: Layer: Space:	X
X Ove	Subject: Text Box Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:46:44 PM Status: Color: Layer: Space:	X

Depth to Inv X Out late Height /	Subject: Text Box Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:47:31 PM Status: Color: Layer: Space:	x	
X Rest	Subject: Text Box Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:47:52 PM Status: Color: Layer: Space:	X	
X Spil Sta	Subject: Text Box Page Label: 100 Author: Glenn Reese - EPC Stormwater Date: 9/11/2024 4:49:51 PM Status: Color: Layer: Space:	Х	