

Eastonville Road – Londonderry Drive to Rex Road Segment 1 Improvements Stationing 14+19.69 – 47+66.51

Final Drainage Report

January 2025 HR Green Project No: 201662.08

Prepared For:

D.R. Horton Contact: Riley Hillen, P.E. 9555 S. Kingston Ct. Englewood, CO 80112

Prepared By:

HR Green Development, LLC Contact: Colleen Monahan, P.E., LEED AP cmonahan@hrgreen.com (719) 394-2433

EDARP File No.: CDR2321

Engineer's Statement:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability of accept by any negligent acts, errors or omissions on my part in preparing this report.

Date

Colleen Monahan, P.E., LEED A

State of Colorado No. 56067

For and on behalf of HR Green Development, LLC

ONAL

Owner/Developer's Statement:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Authorized Signature

Address: D.R. Horton 9555 S. Kingston Court Englewood, CO

El Paso County Statement

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development code, as amended.

Joshua Palmer, P.E.

County Engineer/ECM Administrator

Conditions:

Date

Date

Table of Contents

Tabl	e of Contents	2
I.	General Purpose, Location and Description	3
a.	Purpose	3
b.	Location	3
C.	Description of Property	3
d.	Floodplain Statement	4
II.	Drainage Design Criteria	4
a.	Drainage Criteria	4
III.	Drainage Basins and Subbasins	4
a.	Major Basin Description	4
b.	Existing Subbasin Description	5
C.	Proposed Subbasin Description	7
IV.	Drainage Facility Design	11
a.	General Concept	11
b.	Water Quality & Detention	12
C.	Inspection and Maintenance	14
V.	Wetlands Mitigation	15
VI.	Four Step Method to Minimize Adverse Impacts of Urbanization	15
VII.	Drainage and Bridge Fees	15
VIII.	Opinion of Probable Cost	15
IX.	Hydraulic Grade Line Analysis	17
Х.	Summary	17
XI.	Drawings	18
XII.	References	18

Appendices

- A. Vicinity Map, FEMA Map, NRCS Soil Survey
- B. Hydrologic Analysis
- C. Hydraulic Analysis
- D. Water Quality and Detention Calculations
- E. Reference Material
- F. Drainage Maps

I. General Purpose, Location and Description

a. Purpose

The purpose of this Final Drainage Report (FDR) for the Eastonville Road from Londonderry Drive to Rex Road Segment 1 Improvements is to describe the onsite and offsite drainage patterns, size drainage infrastructure to safely capture and convey developed runoff to water quality and detention facilities, and to safely route detained stormwater to adequate outfalls. This drainage report will detail the improvements of Eastonville Road from Londonderry Drive to Grandview Filing No. 1 (Stations 14+19.69 to 47+66.51). Stations 47+00.00 to 79+31.62 contain the Segment 2 Improvements for the Eastonville Road from Londonderry Drive to Rex Road for the portion of the project north of Grandview Filing No. 1. The development is considered a single project; however, the plan set has been broken into two segments to align with the Grandview Reserve Filings. A separate FDR describes Segment 2 of the project.

b. Location

Eastonville Road from Londonderry Drive to Grandview Filing No. 1, referred to as 'the site' herein, is an existing 26' wide treated gravel road in El Paso County, Colorado. The site lies in existing 60' wide El Paso County Right-of-Way within Sections 21 and 28, Township 12 South, Range 64 West of the 6th Principal Meridian, in El Paso County, State of Colorado.

The site is bound by undeveloped land to the east and west that has historically been used as ranching lands. Falcon Regional Park, which contains ballparks and parking, and Falcon High School also border the site to the west. All lands to the east and west of the site are unplatted. A vicinity map is presented in Appendix A.

c. Description of Property

The site is approximately 0.61 miles (2.06 acres) of existing treated gravel roadway north of Londonderry Drive and south of Grandview Reserve Filing No. 1. Per field inspection the existing Eastonville Road section is treated gravel and therefore described as 'temporary' for the purpose of this report. The existing treated gravel width for the length of the project is 26' wide. There are 4' wide gravel shoulders and native landscaped swales are located on both sides of the roadway. Offsite stormwater is bypassed under the road through a series of existing culverts. See Appendix A for an existing conditions photo.

The existing roadway has slopes ranging from 0.3% up to approximately 4%. The general topography of the surrounding area is typical of high desert, short prairie grass with gently rolling hillside with slopes ranging from 2% to 4%. The project site drains generally from the west to the east and is tributary to Black Squirrel Creek.

Per a NRCS soil survey, the site is made up of Type A Columbine gravelly sandy loam, Type A Blakeland loamy sand and Type B Stapleton sandy loam. The NRCS soil survey is presented in Appendix A.

Gieck Ranch Tributary #1 (Channel A) is the only drainageway that traverses the site in the west to east direction through an existing culvert under Eastonville Road that is just north of Segment 1. The channel is a mapped wetland and a wetland permit will be required for Segment 2 of this Eastonville Road improvement project. Channel A is not within a mapped FEMA floodplain.

Existing utilities include an underground gas line that runs along the east and west sides of Eastonville and underneath the length of the roadway, an existing raw water line that follows the west side of Eastonville north of Falcon Regional Park, an existing underground electric line along the west and portions of the east side of

Eastonville Road, and an existing aboveground electrical line along the east side of Eastonville Road. An existing drainage map with these facilities is presented in Appendix F.

d. Floodplain Statement

Based on FEMA Firm map 08041C0552G December 7, 2018, the site is not located in any FEMA designated floodplain. See FEMA Firm Map in Appendix A. There is a Zone A floodplain north of the site and a Zone AE south of the site, both of which will not be altered with the associated Eastonville Road Segment 1 improvements.

II. Drainage Design Criteria

a. Drainage Criteria

Hydrologic data and calculations were performed using Drainage Criteria Manual Volume 1 of El Paso County (EPCDCM), with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs Drainage Criteria Manual (CCSDCM), May 2014 revised January 2021.

Onsite drainage improvements are designed for the 5-year storm (minor event) and 100-year storm (major event) using rainfall values from the NOAA Atlas 14 Point Precipitation Frequency Data Server. Runoff was calculated per CCSDCM Section 6.3.0 - Rational Method. Public, full spectrum pond design was completed using the latest version of Mile High Flood District's (MHFD) UD-Detention per CCSDCM Section 13.3.2.1 – Public, full spectrum Detention. The detention pond allowable release rate will be limited to less than historic rates.

Rainfall Depths per NOAA Atlas 14				
Return Period (yr) 5 100				
1-hr Rainfall Depth (in)	1.21	2.49		

Inlet sizing was performed per the methods described in EPCDCM Section III Chapter 7 – Street Drainage and Storm Water Inlets. Storm sewer sizing was performed per the methods described in EPCDCM Section III Chapter 8 – Storm Drains and Appurtenances.

III. Drainage Basins and Subbasins

a. Major Basin Description

The site is located within the Gieck Ranch Drainage Basin. The site's drainage characteristics were previously studied in the following reports:

- 1. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 2. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.
- 3. "Final Drainage Report for The Sanctuary Filing 1 at Meridian Ranch" by Tech Contractors, August 2022.

Gieck Ranch Drainage Basin is a 22.05 square mile watershed located in El Paso County, Colorado. Gieck Ranch Drainage Basin is tributary to Black Squirrel Creek which drains to the Arkansas River. The majority of the basin is undeveloped and is rolling range land typical of Colorado's semi-arid climates.

Within the Gieck Ranch Drainage Basin, ranching has historically been the predominant land use, with rolling topography between 2%-4% slopes. Recent urbanization is occurring within the drainage basin, most notably for this project are Meridian Ranch and Latigo Trails Developments. Both are single family residential neighborhoods located upstream to the west and northwest of the Eastonville Segment 1 Improvements project site.

b. Existing Subbasin Description

Basin E1 is 0.45 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 0.7$ cfs $Q_{100} = 1.7$ cfs) is conveyed by an existing roadside swale on the northwest edge of Eastonville Road to DP1. Flows at DP1 then drain across Eastonville Road through an existing public 36" CMP culvert to DP2.

Basin E2.1 is 1.82 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 1.2$ cfs $Q_{100} = 4.8$ cfs) is conveyed by an existing swale on the southeast edge of Eastonville Road to DP2. Flows at DP2 then drain southeast offsite in historic drainage patterns.

Basin E2.2 is 0.40 acres of treated gravel from the Eastonville Road roadway and existing native landscaped area. Stormwater from this basin ($Q_5 = 0.1$ cfs $Q_{100} = 1.0$ cfs) is conveyed by an existing swale on the southeast edge of Eastonville Road to DP2.2. Flows at DP2.2 then drain southwest offsite in historic drainage patterns.

Basin E3 is 0.72 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 1.0$ cfs $Q_{100} = 2.5$ cfs) is conveyed by an existing roadside swale on the northwest edge of Eastonville Road to DP3. Flows at DP3 then drain across Eastonville Road through an existing public 24" CMP culvert do DP4.

Basin E4 is 3.17 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 1.9$ cfs $Q_{100} = 7.8$ cfs) is conveyed by an existing swale on the southeast edge of Eastonville Road to DP4. Flows at DP4 then drain southeast offsite in historic drainage patterns.

Basin E5 is 0.23 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 0.5$ cfs $Q_{100} = 1.1$ cfs) is conveyed by an existing roadside swale on the northwest edge of Eastonville Road to DP5. Flows at DP5 then drain across Eastonville Road through an existing public 18" CMP culvert to DP6.

Basin E6 is 0.79 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 0.7$ cfs $Q_{100} = 2.6$ cfs) is conveyed by an existing swale on the southeast edge of Eastonville Road to DP6. Flows at DP6 then drain southeast offsite in historic drainage patterns ultimately to the Gieck Ranch Tributary #1.

Basin E7 is 0.23 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 0.5$ cfs $Q_{100} = 1.2$ cfs) is conveyed by an existing roadside swale on the northwest edge of Eastonville Road to DP7.1. Flows at DP7.1 then drain across Eastonville Road through an existing public 18" CMP culvert to DP8.1.

Basin E8 is 0.70 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 0.6$ cfs $Q_{100} = 2.1$ cfs) is conveyed by an existing swale on

the southeast edge of Eastonville Road to DP8.1. Flows at DP8.1 then drain southeast offsite in historic drainage patterns ultimately to the Gieck Ranch Tributary #1.

Basin E9 is 0.73 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 1.2$ cfs $Q_{100} = 2.8$ cfs) is conveyed by an existing roadside swale on the northwest edge of Eastonville Road to DP7.2. Flows at DP7.2 then drain across Eastonville Road through an existing public 18" CMP culvert to DP8.2.

Basin E10.1 is 2.61 acres of treated gravel to the crown of Eastonville Road roadway and existing swale native landscaped area. Stormwater from this basin ($Q_5 = 1.9 \text{ cfs } Q_{100} = 7.0 \text{ cfs}$) is conveyed by an existing swale on the southeast edge of Eastonville Road to DP8.2. Flows at DP8.2 then drain southeast offsite in historic drainage patterns ultimately to the Gieck Ranch Tributary #1.

Basin E10.2 is 1.89 acres of existing native landscaped area. Stormwater from this basin ($Q_5 = 0.7$ cfs $Q_{100} = 4.4$ cfs) is conveyed via sheet flow southeast of Eastonville Road to DP8.3. Flows at DP8.3 then drain southeast offsite in historic drainage patterns ultimately to the Gieck Ranch Tributary #1.

Basin OS1 is 1.58 acres of offsite undeveloped area. Stormwater from this basin ($Q_5 = 0.5$ cfs $Q_{100} = 3.6$ cfs) drains via sheet flow into an existing roadside swale on the northwest side of Eastonville Road. Stormwater then drains to DP1. Flows at DP1 then drain across Eastonville Road through an existing public 36" CMP culvert to DP2. Flows at DP2 then drain southeast offsite in historic drainage patterns.

Basin OS2 is 12.21 acres of offsite undeveloped area. Stormwater from this basin ($Q_5 = 3.6$ cfs $Q_{100} = 24.3$ cfs) drains via sheet flow into an existing roadside swale on the northwest side of Eastonville Road. Stormwater then drains to DP3. Flows at DP3 then drain across Eastonville Road through an existing public 24" CMP culvert to DP4. Flows at DP4 then drain southeast offsite in historic drainage patterns.

Basin OS3.1 is 1.51 acres of offsite undeveloped area. Stormwater from this basin ($Q_5 = 0.5$ cfs $Q_{100} = 3.6$ cfs) drains via sheet flow into an existing roadside swale on the northwest side of Eastonville Road. Stormwater then drains to DP5. Flows at DP5 then drain across Eastonville Road through an existing public 18" CMP culvert to DP6. Flows at DP6 then drain southeast offsite in historic drainage patterns ultimately to the Gieck Ranch Tributary #1.

Basin OS3.2 is 2.86 acres of offsite undeveloped area. Stormwater from this basin ($Q_5 = 1.0 \text{ cfs } Q_{100} = 6.6 \text{ cfs}$) drains via sheet flow into an existing roadside swale on the northwest side of Eastonville Road. Stormwater then drains to DP7.1. Flows at DP7.1 then drain across Eastonville Road through an existing public 18" CMP culvert to DP8.1. Flows at DP8.1 then drain southeast offsite in historic drainage patterns ultimately to the Gieck Ranch Tributary #1.

Basin OS3.3 is 21.12 acres of offsite undeveloped area. Stormwater from this basin ($Q_5 = 6.4$ cfs $Q_{100} = 42.7$ cfs) drains via sheet flow into an existing roadside swale on the northwest side of Eastonville Road. Stormwater then drains to DP7.2. Flows at DP7.2 then drain across Eastonville Road through an existing public 18" CMP culvert to DP8.2. Flows at DP8.2 then drain southeast offsite in historic drainage patterns ultimately to the Gieck Ranch Tributary #1.

c. Proposed Subbasin Description

Description of Proposed Project

The proposed project includes improvements to Eastonville Road from Londonderry Drive to the north part of Grandview Filing No. 1. As described above, the current condition of the existing roadway in this area consists of 26' wide treated gravel roadway with 4' wide gravel shoulders and native landscaped swales located on both sides of the roadway. Offsite stormwater is bypassed under the proposed roadway via proposed public RCP culverts.

The proposed improvements to Eastonville Road from Londonderry Drive to the north part of Grandview Filing No. 1 include removal of the 26' wide treated gravel and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb).

Eastonville Road Basins

Basin EA1 is 0.62 acres of proposed pavement to the crown of Eastonville Road and proposed landscaped area. Stormwater ($Q_5 = 2.6 \text{ cfs } Q_{100} = 4.7 \text{ cfs}$) is conveyed by curb & gutter on the northwest side of Eastonville Road. Runoff is then captured in an on grade public 15' CDOT Type R Inlet at DP9. Flows from DP9 are conveyed through a proposed public storm sewer system which outfalls into sand filter basin D (SFB D). SFB D is located southeast of the proposed Eastonville Road Segment 1 improvements outside of the proposed right-of-way within a proposed drainage easement. WQ treatment and runoff reduction is provided for this basin within SFB D. Calculations for runoff reduction have been provided in Appendix B. SFB D has been coordinated with the "PPRTA Pond E" which will replace SFB D in the future and provide WQ treatment for the tributary basins. Refer to the drainage facility design section of this report for additional information on SFB D.

Basin EA2 is 1.21 acres of proposed pavement to the crown of Eastonville Road and proposed landscaped area. Stormwater ($Q_5 = 2.5 \text{ cfs } Q_{100} = 5.6 \text{ cfs}$) is conveyed by curb & gutter on the southeast side of Eastonville Road. Runoff is then captured in an on grade public 15' CDOT Type R Inlet at DP10. Flows from DP10 are conveyed through a proposed public storm sewer system which outfalls into SFB D. WQ treatment and runoff reduction is provided for this basin within SFB D. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB D.

Basin EA3 is 0.44 acres of proposed pavement to the crown of Eastonville Road and proposed landscaped area. Stormwater ($Q_5 = 1.8 \text{ cfs } Q_{100} = 3.0 \text{ cfs}$) is conveyed by curb & gutter on the northwest side of Eastonville Road. Runoff is then captured in an on grade public 10' CDOT Type R Inlet at DP13. Flows at DP13 are conveyed across Eastonville Road through a public storm sewer system to sand filter basin A (SFB A). SFB A is located southeast of the proposed Eastonville Road Segment 1 improvements outside of the proposed right-of-way within a proposed drainage easement. WQ treatment and runoff reduction is provided for this basin within SFB A. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB A.

Basin EA4 is 0.77 acres of proposed pavement to the crown of Eastonville Road and proposed landscaped area. Stormwater ($Q_5 = 1.7$ cfs $Q_{100} = 2.9$ cfs) is conveyed by curb & gutter on the southeast side of Eastonville Road. Runoff is then captured in an on grade public 10' CDOT Type R Inlet at DP14. Flows at DP14 are conveyed through a public storm sewer system to SFB A. WQ treatment and runoff reduction is

provided for this basin within SFB A. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB A.

Basin EA5.1 is 0.37 acres of landscaped area, gravel access road, and contains the public full spectrum sand filter basin A (SFB A). Stormwater ($Q_5 = 0.3$ cfs $Q_{100} = 0.4$ cfs) from this basin sheet flows directly into SFB A. WQ treatment and runoff reduction is provided for this basin within SFB A. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB A.

Basin EA5.2 is 0.52 acres of existing undisturbed/disturbed landscape area and the overflow path from SFB A. Stormwater ($Q_5 = 0.2$ cfs $Q_{100} = 1.6$ cfs) from this basin is conveyed via an existing drainage swale west to design point 4. The existing drainage swale drains southeast offsite is historic drainage patterns and ultimately combines with flows from design point 4.1. There is approximately 10,105 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be a separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Waterbury property and will ultimately be detained and treated by the Waterbury development.

Basin EA5.3 is 1.21 acres of existing undisturbed/disturbed landscape area on the east side of Eastonville Road. Stormwater ($Q_5 = 0.4$ cfs $Q_{100} = 2.9$ cfs) from this basin is conveyed via an existing drainage swale east to design point 4.1. Runoff to design point 4.1 drains offsite in historic patterns to the southeast and ultimately combines with flows from design point 4. There is approximately 20,228 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be a separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Waterbury property and will ultimately be detained and treated by the Waterbury development.

Basin EA5.4 is 0.41 acres of existing undisturbed/disturbed landscape area on the east side of Eastonville Road. Stormwater ($Q_5 = 0.1$ cfs $Q_{100} = 1.0$ cfs) from this basin is conveyed via an existing drainage swale east to design point 6. Runoff to design point 6 drains offsite in historic patterns to the southeast. There is approximately 5,422 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be a separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Waterbury property and will ultimately be detained and treated by the Waterbury development.

Basin EA6 is 1.09 acres of proposed pavement to the crown of Eastonville Road and proposed landscaped area. Stormwater ($Q_5 = 3.1$ cfs $Q_{100} = 5.2$ cfs) is conveyed by curb & gutter on the west side of Eastonville Road. Runoff is then captured in a sump public 10' CDOT Type R Inlet at DP16. In the event of clogging at this inlet, overflows will overtop the street crown and drain into the sump public 10' CDOT Type R Inlet at DP 17. If both sump inlets are clogged, overflow will overtop the east curb and sheet flow east offsite. Flows at DP16 are conveyed across Eastonville Road through a public storm sewer system to Extended Detention Basin B (EDB B). EDB B is located northeast of the proposed Eastonville Road Segment 1 improvements

outside of the proposed right-of-way within a proposed drainage easement. WQ treatment and runoff reduction is provided for this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. EDB B has been coordinated with the segment 2 improvements of Eastonville Road to provide treatment for the future tributary basins. Refer to the drainage facility design section of this report for additional information on EDB B.

Basin EA7 is 1.92 acres of proposed pavement to the crown of Eastonville Road and proposed landscaped area. Stormwater ($Q_5 = 3.2$ cfs $Q_{100} = 5.4$ cfs) is conveyed by curb & gutter on the east side of Eastonville Road. Runoff is then captured in a sump public 10' CDOT Type R Inlet at DP17. In the event of clogging at this inlet, overflows will overtop the street crown and drain into the sump public 10' CDOT Type R Inlet at DP 16. If both sump inlets are clogged, overflow will overtop the east curb and sheet flow east offsite. Flows at DP17 are conveyed through a public storm sewer system to EDB B. WQ treatment and runoff reduction is provided for this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on EDB B.

Basin EA8 is 0.94 acres of landscaped area, gravel access road, and contains extended detention basin B. Stormwater ($Q_5 = 0.5$ cfs $Q_{100} = 0.9$ cfs) from this basin sheet flows directly into EDB B. WQ treatment and runoff reduction is provided for this basin within EDB B. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on EDB B.

Basin EA9 is 0.88 acres of existing undisturbed/disturbed landscape area on the east side of Eastonville Road. Stormwater ($Q_5 = 0.4$ cfs $Q_{100} = 0.6$ cfs) from this basin sheet flows directly offsite towards DP20. Runoff to design point 20 drains southwest in historic patterns to design point 2, and ultimately offsite to the east in historic drainage patterns. There is approximately 14,605 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be a separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Waterbury property and will ultimately be detained and treated by the Waterbury development.

Basin EA10.1 is 0.36 acres of landscaped area and concrete/gravel trail. Stormwater ($Q_5 = 0.4$ cfs $Q_{100} = 0.6$ cfs) from this basin sheet flows directly east offsite towards DP8.1. Flows from design point 8.1 drain east offsite in historic patterns, ultimately combining with design point 8.2 & 8.3. WQ treatment is provided for the proposed concrete/gravel trail via a 10' wide grass buffer adjacent to the trail. There is approximately 2,715 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 100% and treat all 113 cf of the required WQCV. The remaining basin area consists of existing landscaping, and 5,540 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA10.2 is 1.06 acres of landscaped area and concrete/gravel trail. Stormwater ($Q_5 = 1.4$ cfs $Q_{100} = 4.4$ cfs) from this basin sheet flows directly offsite towards DP8.2. Flows from design point 8.2 drain east offsite in historic patterns, ultimately combining with design point 8.1 & 8.3. WQ treatment is provided for the proposed

concrete/gravel trail via a 10' wide grass buffer adjacent to the trail. There is approximately 11,050 SF of impervious area within this basin treated by the grass buffer. The grass buffer will provide a runoff reduction of 100% and treat all 460 cf of the required WQCV. The remaining basin area consists of existing landscaping, and 13,713 sf of disturbed landscape area. All disturbed landscape area east of the proposed trail is considered as SPA and will be re-stabilized as landscape area with native seeding & mulching. The required WQCV to be treated from the landscape disturbed area is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added. Calculations for runoff reduction have been provided in Appendix B. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA11 is 1.23 acres of existing undisturbed/disturbed landscape area on the east side of Eastonville Road. Stormwater ($Q_5 = 0.5$ cfs $Q_{100} = 0.9$ cfs) from this basin sheet flows directly offsite towards DP22. Runoff to design point 22 drains offsite in historic patterns to the southeast and ultimately combines with flows from design point 8.3. There is approximately 5,412 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be a separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Grandview Reserve property and will ultimately be detained and treated by the Grandview Reserve development.

Basin EA12 is 0.47 acres of landscaped area and gravel maintenance access road. Stormwater ($Q_5 = 0.6$ cfs $Q_{100} = 1.7$ cfs) from this basin sheet flows directly into SFB D. WQ treatment and runoff reduction is provided for this basin within SFB D. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB D.

Basin EA13 is 0.21 acres of existing undisturbed/disturbed landscape area on the east side of Eastonville Road. Stormwater ($Q_5 = 0.3 \text{ cfs } Q_{100} = 0.7 \text{ cfs}$) from this basin sheet flows directly offsite towards DP12. Runoff to design point 12 drains offsite in historic patterns to the southwest. There is approximately 544 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be a separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin is a part of the Waterbury property and will ultimately be detained and treated by the Waterbury development.

Basin OS1 is 1.63 acres of existing undisturbed/disturbed landscape area on the west side of Eastonville Road from the Falcon High School property. Stormwater from this basin ($Q_5 = 0.5$ cfs $Q_{100} = 3.6$ cfs) drains via sheet flow into a proposed roadside swale on the northwest side of Eastonville Road. Stormwater then drains to DP1. Runoff is then captured in a sump public CDOT Type C Inlet at DP1. Flows from DP1 are conveyed through a proposed public storm sewer system which outfalls into SFB D. WQ treatment and runoff reduction is provided for this basin within SFB D. Calculations for runoff reduction have been provided in Appendix B. Refer to the drainage facility design section of this report for additional information on SFB D.

Basin OS2 is 12.18 acres of existing undisturbed/disturbed landscape area on the west side of Eastonville Road from the Falcon High School property. Stormwater from this basin ($Q_5 = 3.6$ cfs $Q_{100} = 24.2$ cfs) drains via sheet flow into a proposed roadside swale on the northwest side of Eastonville Road. Stormwater then

drains to DP3. Flows at DP3 then drain across Eastonville Road through a proposed public 24" RCP culvert to DP4. Flow at DP4 is conveyed via an existing drainage swale. The existing drainage swale drains southeast offsite is historic drainage patterns. There is approximately 13,994 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be a separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin drains onto the Waterbury property and will ultimately be detained and treated, or bypassed through, the Waterbury development.

Basin OS3 is 25.50 acres of existing undisturbed/disturbed landscape area on the west side of Eastonville Road from the Meridian Ranch property. Stormwater from this basin ($Q_5 = 8.0 \text{ cfs } Q_{100} = 53.6 \text{ cfs}$) drains via sheet flow into a proposed roadside swale on the northwest side of Eastonville Road. Stormwater then drains to a proposed public CDOT type D inlet at DP7. Flows at DP7 then drain across Eastonville Road through a proposed public storm sewer system. This storm sewer system outfalls at DP8.3 into the Gieck Ranch Tributary #1 where drainage will follow historic patterns. There is approximately 37,875 SF of disturbed landscape area within this basin, all of which will be re-stabilized as landscape area with native seeding & mulching. All disturbance within this basin is considered to be a separate pervious area (SPA). The required WQCV to be treated from this disturbance is 0 cf per the runoff reduction calculations provided in Appendix B of this report. The required treatment volume is 0 cf due to no impervious area being added or disturbed within this basin. This basin drains onto the Grandview Reserve property and will ultimately be detained and treated, or bypassed through, the Grandview Reserve development.

IV. Drainage Facility Design

a. General Concept

The proposed improvements to Eastonville Road from Londonderry Drive to the north part of Grandview Filing No. 1 include removal of the 26' wide treated gravel and replacing the road with a Modified Urban Minor Arterial Roadway Cross-Section consisting of 48' pavement and Type A EPC curb (53' back of curb to back of curb). Inlets will be placed at low points. Stormwater from this roadway will be piped to either a full spectrum detention basin or full spectrum sand filters. All detention basins and water quality features will discharge at less than historic rates. Runoff generated from the site will release at historic design points at less than historic flow rates. A flow comparison of existing/proposed stormwater release rates offsite from the project is below:

Table 1 – Flow Comparison							
DESIGN POINT	EX Q₅ (cfs)	PR Q₅ (cfs)	EX Q ₁₀₀ (cfs)	PR Q ₁₀₀ (cfs)			
DP2	2.3	0.7	9.3	5.0			
DP4	6.3	4.1	33.9	28.6			
DP6	1.5	0.4	6.7	2.0			
DP8 (8.1, 8.2, & 8.3)	11.8	11.5	65.4	62.7			
DP2.2/12	0.1	0.3	1.0	0.7			
TOTAL	22.0	17.0	116.0	99.0			

b. Water Quality & Detention

Sand Filter Basin A (Full Spectrum SFB)

Water quality and stormwater detention for Basins EA3-EA5 is provided in Sand Filter Basin A. SFB A is a public county owned, full spectrum sand filter basin within the ACM ALF VIII JV SUB II LLC (Waterbury) property within a proposed drainage easement. In SFB A, a total of 1.58 acres of disturbed area from the proposed project at 53% composite imperviousness will be detained and treated for water quality. The WQCV is 0.015 ac-ft, the EURV is 0.090 ac-ft, and the 100-year detention volume is 0.154 ac-ft. The WQCV, EURV and 100-year storms are released in 12, 41 and 49 hours, respectively. A 15' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 5' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard south toward DP4. SFB A outfalls towards DP4 at historic runoff rates. Runoff from DP4 will follow historic drainage patterns and not exceed historic flow rates.

SFB A Water Quality Treatment Summary Table							
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to SFB A (ac)				
EA3	0.44	0.44	0.44				
EA4	0.77	0.77	0.77				
EA5.1	0.37	0.37	0.37				
Total	1.58	1.58	1.58				

Extended Detention Basin B (Full Spectrum EDB) – Interim Condition

Water quality and detention for Basins EA6 – EA8 is provided in Extended Detention Basin B; a public county owned, full spectrum extended detention basin within Filing No. 1 of Grandview Reserve within a proposed drainage easement. A total of 3.95 acres of disturbed area from the proposed project at 53% composite imperviousness will be treated and detained by EDB B for this phase of the Eastonville Road Improvements. The pond has been sized with consideration for the future segments of Eastonville Road and provides water guality and detention for the ultimate conditions at a future date. The ultimate conditions of EDB B calculations have been provided in the Appendix of this report. Ultimate conditions include fully built sections of Eastonville Road from Londonderry Road to Rex Road and is anticipated for Spring 2025. The ultimate condition of EDB B is further described and analyzed in the segment 2 report. Interim condition pond sizing calculations have also been provided in the Appendix of this report. Interim conditions only include Eastonville road from Londonderry to Grandview Filing No.1. The interim conditions WQCV is 0.035 ac-ft, the EURV is 0.245 ac-ft, and the 100-year detention volume is 0.384 ac-ft. The WQCV, EURV and 100-year storms are released in 41, 69 and 81 hours, respectively. A forebay is located at the outfall into the pond and a 40" trickle channel conveys flow towards the outlet structure. A 15' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 15.5' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard towards Gieck Ranch

Tributary #1. EDB B outfalls towards DP8.3 at historic runoff rates. Runoff from DP8.3 will follow historic drainage patterns and not exceed historic flow rates.

EDB B Water Quality Treatment Summary Table – Interim Condition							
Basin ID	Total Area (ac)	Total Proposed Disturbed Area (ac)	Area Trib to SFB A (ac)				
EA6	1.09	1.09	1.09				
EA7	1.92	1.92	1.92				
EA8	0.94	0.94	0.94				
Total	3.95	3.95	3.95				

Sand Filter Basin D (Full Spectrum SFB)

Water quality and stormwater detention for Basins EA1-EA2, EA12, & OS1 is provided in Sand Filter Basin D (SFB D). SFB D is a public county owned, full spectrum sand filter basin the ACM ALF VIII JV SUB II LLC (previous Waterbury) property within a proposed drainage easement. In SFB D, a total of 3.93 acres of disturbed area from the proposed project at 34% composite imperviousness will be detained and treated for water quality. The WQCV is 0.030 ac-ft, the EURV is 0.139 ac-ft, and the 100-year detention volume is 0.282 ac-ft. The WQCV, EURV and 100-year storms are released in 12, 43 and 47 hours, respectively. A 15' access and maintenance road is provided to the bottom of the pond to facilitate maintenance of the pond facilities. A 4' emergency overflow spillway is provided that conveys the developed, peak 100-yr flow rate with 1.0' of freeboard south toward DP2. SFB D outfalls towards DP2 at historic runoff rates. Runoff from DP2 will follow historic drainage patterns and not exceed historic flow rates.

SFB D is a temporary sand filter basin and has been coordinated with the future PPRTA Pond E, which will be constructed in the same location. The inflow pipes have been coordinated with Stanley Consulting to route drainage in the future condition to the future PPRTA Pond E. The temporary sand filter basin will be replaced with a full spectrum extended detention basin, and all temporary sand filter basin infrastructure will be removed. The inlet forebay to SFB D could remain for use in the PPRTA Pond E.

SFB D Water Quality Treatment Summary Table						
Basin ID Total Area (ac) Total Proposed Area (ac) (ac)						
EA1	0.62	0.62	0.62			
EA2	1.21	1.21	1.21			
EA12	0.47	0.47	0.47			
OS1	1.63	1.63	1.63			
Total	3.93	3.93	3.93			

Runoff Reduction WQ Treatment Summary Table						
Basin ID	Total Area (ac)	Disturbed Area (ac)	Disturbed Area Treatment BMP	Disturbed Area Treated via runoff reduction (ac)	WQCV Reduction %	Notes:
EA1	0.62	0.62	SFB D	0.62	33%	Treatment and detention by SFB D (public County sand filter basin) on Waterbury property.
EA2	1.21	1.21	SFB D	1.21	33%	Treatment and detention by SFB D (public County sand filter basin) on Waterbury property.
EA3	0.44	0.44	SFB A	0.44	46%	Treatment and detention by SFB A (public County sand filter basin) on Waterbury property.
EA4	0.77	0.77	SFB A	0.77	46%	Treatment and detention by SFB A (public County sand filter basin) on Waterbury property.
EA5.1	0.37	0.37	SFB A	0.37	46%	Treatment and detention by SFB A (public County sand filter basin) on Waterbury property.
EA5.2	0.52	0.23	SPA	0.23	100%	Future treatment and detention by Waterbury development.
EA5.3	1.21	0.46	SPA	0.46	100%	Future treatment and detention by Waterbury development.
EA5.4	0.41	0.12	SPA	0.12	100%	Future treatment and detention by Waterbury development.
EA6	1.09	1.09	EDB B	1.09	19%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve property.
EA7	1.92	1.92	EDB B	1.92	19%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve property.
EA8	0.94	0.94	EDB B	0.94	19%	Treatment and detention by EDB B (public County extended detention basin) on Grandview Reserve property.
EA9	0.88	0.34	SPA	0.34	100%	Future treatment and detention by Waterbury development.
EA10.1	0.36	0.26	RPA (10' GB)	0.26	100%	Future treatment and detention by Grandview Reserve development.
EA10.2	1.06	0.76	RPA (10' GB)	0.76	100%	Future treatment and detention by Grandview Reserve development.
EA11	1.23	0.12	SPA	0.12	100%	Future treatment and detention by Grandview Reserve development.
EA12	0.47	0.47	SFB D	0.47	33%	Treatment and detention by SFB D (public County sand filter basin) on Waterbury property.
EA13	0.21	0.01	SPA	0.01	100%	Future treatment and detention by Waterbury development.
OS1	1.63	0.44	SFB D	0.44	33%	Treatment and detention by SFB D (public County sand filter basin) on Waterbury property.
OS2	12.18	3.21	SPA	3.21	100%	
OS3	25.50	0.87	SPA	0.87	100%	

Runoff Reduction WQ Treatment Summary Table

c. Inspection and Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated that all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

All public detention ponds are to be owned and maintained by the Grandview Reserve Metropolitan District NO. 2 (DISTRICT), once established, unless an agreement is reached stating otherwise. Maintenance access for all full spectrum detention facilities will be provided from public Right-of-Way. Maintenance access for the drainageways will be provided through the proposed tracts.

V. Wetlands Mitigation

There are no wetlands in Segment 1 of the project and therefore no wetland permit is required for Segment 1.

VI. Four Step Method to Minimize Adverse Impacts of Urbanization

Step 1 – Reducing Runoff Volumes: Low impact development (LID) practices are utilized to reduce runoff at the source. Storm sewer outfalls have been designed at the upstream end of detention basins. This practice promotes infiltration in the detention basins and reduces peak runoff rates prior to runoff reaching outlet structures. Runoff reduction calculations have also been provided in Appendix B of this report.

Step 2 – Treat and slowly release the WQCV: This step utilizes full spectrum water quality and detention to capture the WQCV and slowly release runoff from the site. Onsite full spectrum sand filter basins & an extended detention basin provide water quality treatment for the site. The WQCV is released over a period of at least 12 hours for SFBs and 40 hours for EDBs while the EURV is released over a period of 40-44 hours for SFBs and 68 - 72 hours for EDBs.

Step 3 – Stabilize stream channels: This step establishes practices to stabilize drainageways and provide scour protection at stormwater outfalls. Erosion protection is provided at all concentrated stormwater discharge points in the form of riprap pads. No impact will be made to the Gieck Ranch Tributary #1 by this project that requires additional stream stabilization.

Step 4 – Consider the need for source controls: No industrial or commercial uses are proposed within this development and therefore no source controls are proposed.

VII. Drainage and Bridge Fees

Gieck Ranch drainage basin has not been established as a fee basin within El Paso County. Therefore, no drainage basin fees are due at time of platting.

VIII. Opinion of Probable Cost

An engineer's opinion of probable cost has been provided below for public drainage infrastructure improvements. This includes cost estimates for the public full spectrum sand filter basin A, public full spectrum sand filter basin D and the public full spectrum extended detention basin B. All required stormwater infrastructure will be installed per El Paso County Requirements. The unit cost includes both materials and labor.

1433	
HRGreer	۱

Eastonville Road Segment 1 Final Drainage Report Project No.: 201662.08

Public Infrastructure Cost Estimate			
Line Item	Quantity	Unit Price	Cost
18" Reinforced Concrete Pipe	226.5	\$82 LF	\$18,573
24" Reinforced Concrete Pipe	609	\$98 LF	\$59,682
36" Reinforced Concrete Pipe	42	\$151 LF	\$6,342
42" Reinforced Concrete Pipe	736	\$201 LF	\$147,936
24" CDOT FES	2	\$588 EA	\$1,176
42" CDOT FES	1	\$1,206 EA	\$1,206
Storm Manhole	8	\$15,130 EA	\$121,040
10' CDOT Type R Inlet	4	\$9,925 EA	\$39,700
15' CDOT Type R Inlet	2	\$12,907 EA	\$25,814
CDOT Type C Inlet	4	\$6,037 EA	\$24,148
Rip Rap, d50 size from 6"-24"	5	\$104 Tons	\$520
10% Contingency			\$44,614
TOTAL:			\$490,751

Public SFB A Cost Estimate					
Line Item	Quantity	Unit Pı	rice	Cost	
Rip Rap, d50 size from 6"-24" (Inflow)	2	\$104	Tons	\$208	
Sand Filter Media	78	\$100	/CY	\$7,800	
4" Slotted PVC Underdrain	100	\$10	/LF	\$1,000	
12" ABC Maintenance Access	25	\$40	/CY	\$1,000	
Outlet Structure w/ Orifice Plate	1	\$5,000	EA	\$5,000	
Rip Rap, d50 size from 6"-24" (Spillway)	60.5	\$104	Tons	\$6,292	
18" RCP Outlet Pipe	42.5	\$82	/LF	\$3,485	
18" RCP FES	1	\$492	EA	\$492	
10% Contingency				\$2,528	
TOTAL:				\$27,805	

Public EDB B Cost Estimate					
Line Item	Quantity	Unit P	Unit Price		
Concrete Forebay	1	\$5,000	EA	\$5,000	
Rip Rap, d50 size from 6"-24" (Inflow)	2.75	\$104	Tons	\$286	
Concrete Trickle Channel	36	\$100	/SY	\$3,600	
12" ABC Maintenance Access	147	\$40	/CY	\$5,880	
Outlet Structure w/ Micropool, Trash Rack, Railng, Orifice Plate	1	\$8,000	EA	\$8,000	
Rip Rap, d50 size from 6"-24" (Spillway)	87	\$104	Tons	\$9,048	
18" RCP Outlet Pipe	31	\$82	/LF	\$2,542	
10% Contingency				\$3,436	
TOTAL:				\$37,792	

Public SFB D Cost Estimate					
Line Item	Quantity	Unit P	Unit Price		
Rip Rap, d50 size from 6"-24" (Inflow)	2	\$104	Tons	\$208	
Sand Filter Media	78	\$100	/CY	\$7,800	
4" Slotted PVC Underdrain	86	\$10	/LF	\$860	
12" ABC Maintenance Access	107	\$40	/CY	\$4,280	
Outlet Structure w/ Orifice Plate	1	\$5,000	EA	\$5,000	
Rip Rap, d50 size from 6"-24" (Spillway)	25	\$104	Tons	\$2,600	
18" RCP Outlet Pipe	615	\$82	/LF	\$50,430	
Storm Manhole	1	\$15,130	EA	\$15,130	
18" RCP FES	1	\$492	EA	\$492	
10% Contingency				\$8,680	
TOTAL:				\$95,480	

IX. Hydraulic Grade Line Analysis

Hydraulic grade line analysis and final pipe sizes were analyzed, and calculations are provided in Appendix C. All proposed storm sewer has been designed in accordance with El Paso County Drainage Criteria Manuals.

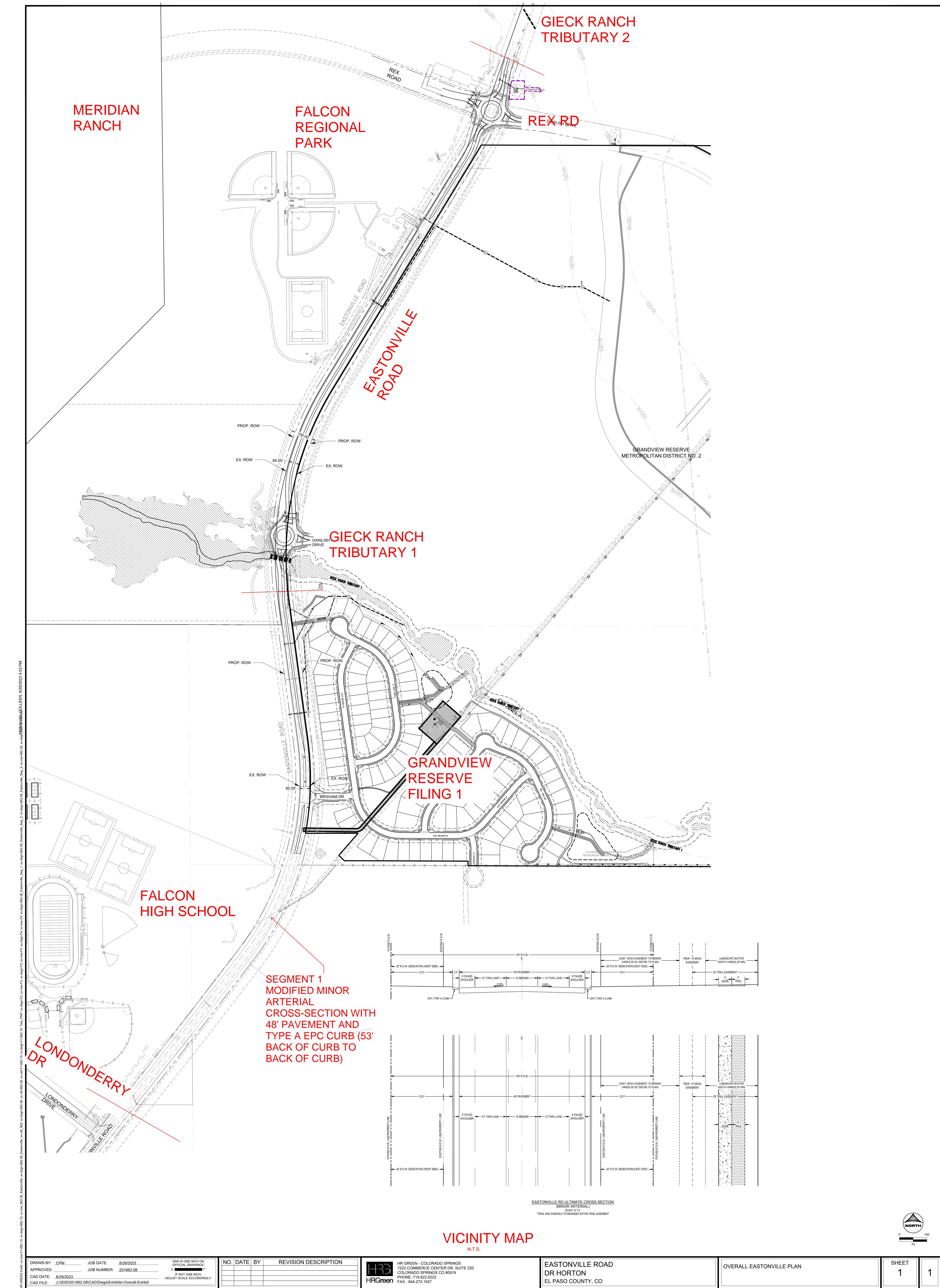
X. Summary

Eastonville Road lies within the Gieck Ranch Drainage Basin. Water quality and detention for the proposed improvements is provided in full spectrum extended detention basins and two full spectrum sand filter basins, both within proposed drainage easements. There is one major drainageway that traverses north of the Segment 1 site: Gieck Ranch Tributary 1. This major drainage way will not be impacted by the proposed improvements. The water quality and detention ponds will be owned and maintained by El Paso County. All drainage facilities were sized per the El Paso County Drainage Criteria Manuals.

The development of this project will not adversely affect downstream properties.

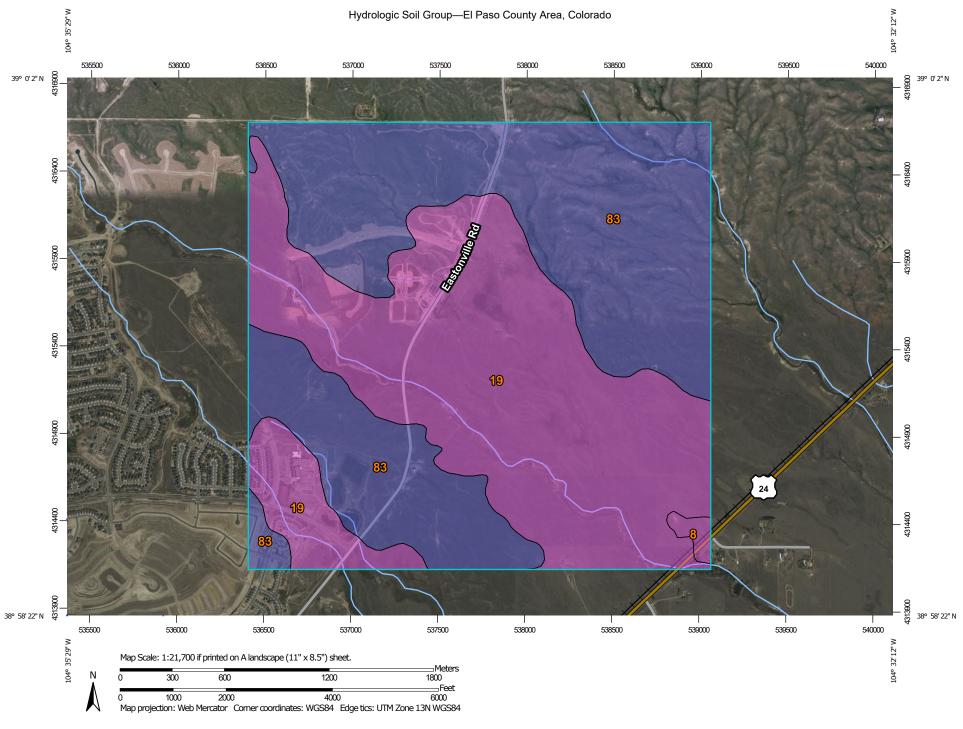
Eastonville Road Segment 1 Final Drainage Report Project No.: 201662.08

XI. Drawings


Please refer to the appendices for vicinity and drainage basin maps.

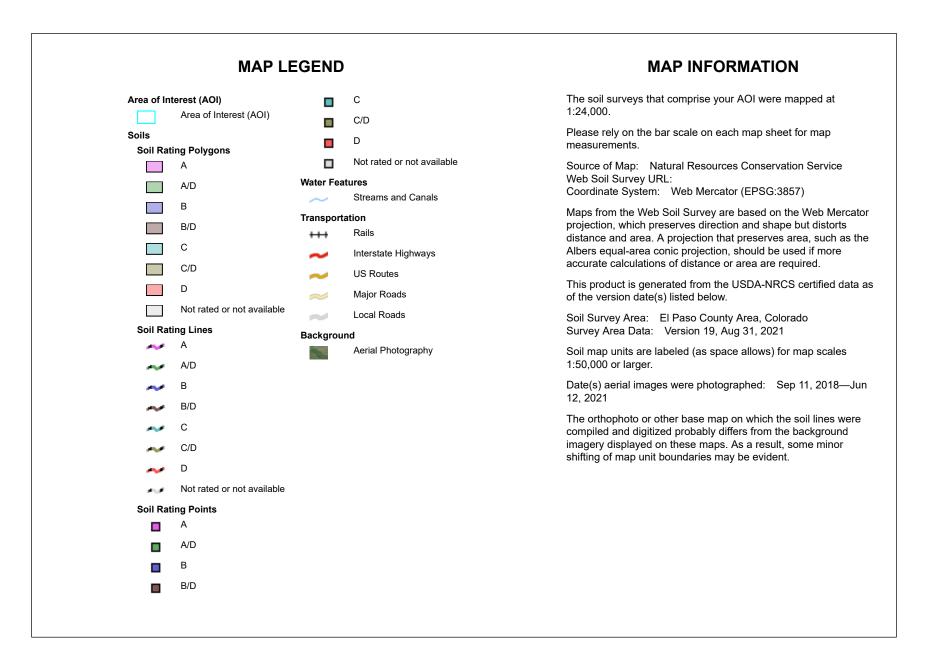
XII. References

- 1. City of Colorado Springs Drainage Criteria Manual, May 2014, Revised January 2021.
- 2. Drainage Criteria Manual of El Paso, Colorado, October 2018.
- 3. Urban Storm Drainage Criteria Manual, Urban Drainage Flood Control District, January 2018.
- 4. "Gieck Ranch Drainage Basin Planning Study" prepared by Drexel, Barrel & Co, February 2010.
- 5. "Master Development Drainage Plan Meridian Ranch" prepared by Tech Contractors, July 2021.
- 6. "The Sanctuary Filing 1 at Meridian Ranch" prepared by Tech Contactors, August 2022.



APPENDIX A - VICINITY MAP, PHOTOS, SOIL MAP, FEMA MAP

Photo - at Londonderry and Eastonville looking north



Natural Resources Conservation Service

USDA

Web Soil Survey National Cooperative Soil Survey

8

19

83

Totals for Area of Interest

	Map unit symbol	Map unit name	Rating	Acres in AOI	
3		Blakeland loamy sand, 1 to 9 percent slopes	A	10.4	
					_

А

в

Hydrologic Soil Group

Columbine gravelly

sandy loam, 0 to 3 percent slopes

Stapleton sandy loam, 3

to 8 percent slopes

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Percent of AOI

839.5

835.7

1,685.6

0.6%

49.8%

49.6%

100.0%

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTES TO USERS

his map is for use in a ince Program. It doe the name is for use in administering the realitival record that ot necessarily identify all areas subject to flooding, particu-purces of small size. The community map repository possible updated or additional flood hazard information. drainage

To obtain more activation in more where **Base flood Instructions** (BFE) in the bind flooding bind where the distribution is an encorrect order the holding bind bind in the level attention in the limit and the bind bind holding within the Food instrume Study (FIS) proof that accomparise this FIRM. Users although a sense that BFEs attention in the FISM represent rounded whetle level within the Food instrume Study (FIS) proof that accomparise this FIRM. Users attend as a first sense that all the sense that and the sense that and the sense that BFEs at the web source of food deviation information. Accordingly, flood eleveland characteristic of construction and the FISM reports bind be utilized in comparison with the FIRM to purpose of construction and other flooding in management.

Costal Base Flood Elevations shown on this map apply only landward of 0.0' Nort American Verbal Datam of 1980 (IAND28); holes of this of Base of Status of S ioodplain r his FIRM.

Boundaries of the **floodways** were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway withis and other pertinent floodway data are provided in the Flood Insurance Study report for this jurisdiction.

Certain areas not in Special Flood Hazard Areas may be protected by **flood control** structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Mercario (UTM) zone 13. The horizontal datum was NAD35. GR569 spin-to-postchon of PTMMs for adjaced injunctions may result in sight postional differences in map features across prindicion boundaries. These differences do not affect the accuracy of this FRM.

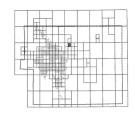
Rood elevations on this map are referenced to the North American Vertical Datus of 1988 (RAVOR). These flood elevations must be compared to structure are conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertexal Datum of 1982, was the National Geodetic Survey eable at http://www.ngs.coa.agov/ or contact the National Geodetic Survey at the following address:

NGS Information Services NOAA, N/NGS12 National Geodetic Survey National Geodetic SSMC-3, #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for **bench mark** shown on this map, please contact the Information Services Branch of the Nations Seodetic Survey at (301) 713-3242 or visit its website at http://www.ngs.ncaa.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso Courty, Colorado Springs Utilities, City of Fountain, Bureau of Land Management. National Oceasie and Armosphere Administration, United States Geological Survey, and Anderson Consulting Engineers, Inc. These data are current as of 2006.

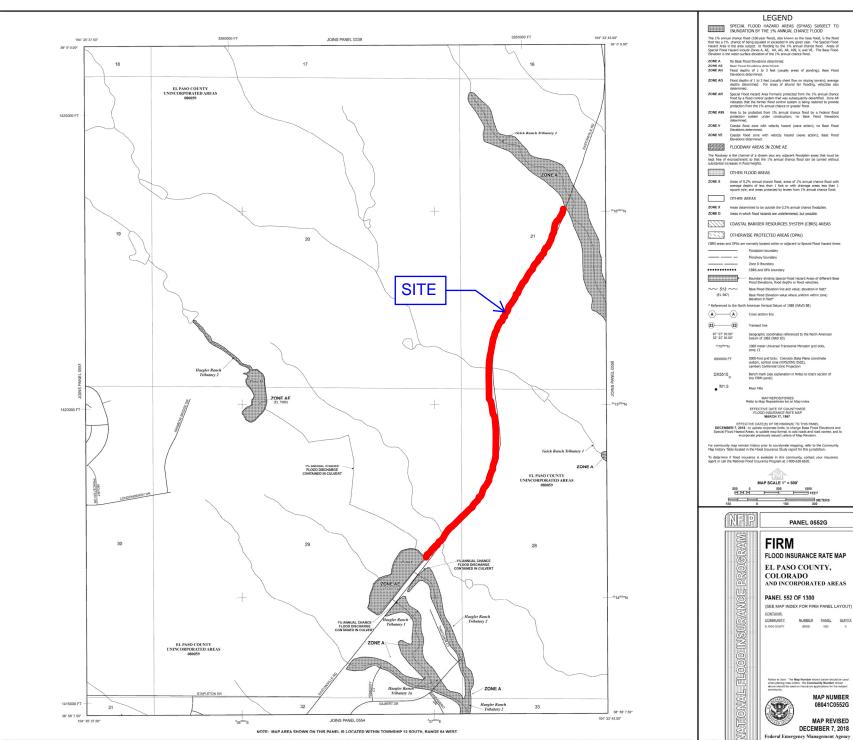
This map reflects more detailed and up-to date stream channel 68 of 2000. This map reflects more detailed and up-to date stream channel configurations and floodplain detineations than those shown on the provide IRRM for this instruction. There been adjusted to confront to these mest stream channel configurations. As a result, the Flood Profiles and Poodway Data tables in the Flood insurance Budy Report (which contains authoritative instrum) channels extrame channels are stream channels and the stream channels and the stream channels on this may represent the hydraulic modeling baselines that match the flood profiles and Phoosing Data Babel and photoling baselines that match the flood profiles and Phoosing Databel repositions. The ref 15 report. As a result, the profile baselines may device day floot the trave base map channel representation and they operar outled of the Boodyan.


orporate limits shown on this map are based on the best data available at the tim of publication. Because changes due to annexations or de-annexations may hav occurred after this map was published, map users should contact appropriat community officials to verify current corporate limit locations.

Please refer to the separately printed Map Index for an overview map of the county showing the layout of map panels; community map repository addresses; and a using of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panels on which each community is

Contact FEMA Map Service Center (MSC) via the FEMA Map Information eXchange (FIMX) 1377-335-2527 for information on switching products associated with The Fibro Insurance Study Report, and/or digital versions of the map. The MSC may also be reached by Fax at 1-800-358-9620 and its website at http://www.msc.fema.gov/.

you have questions about this map or questions concerning the National Floc surance Program in general, please call **1-877-FEMA MAP** (1-877-336-2627) eithe FEMA watching the function of the transport of the second secon



ood Insurance Rate Map (DFIRM) was produced through chnical Partner (CTP) agreement between the State of Colorad ation Board (CWCB) and the Federal Emergency Management This Digital Flood Cooperating Techn Water Conservatio Agency (FEMA).

available from local comm Water Conservation Board.

tional Flood Hazard information and resources able from local communities and the Colora

MAP NUMBER

08041C0552G

MAP REVISED

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Elbert, Colorado, USA* Latitude: 38.9796°, Longitude: -104.5696° Elevation: 6996 ft** * source: ESRI Maps ** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

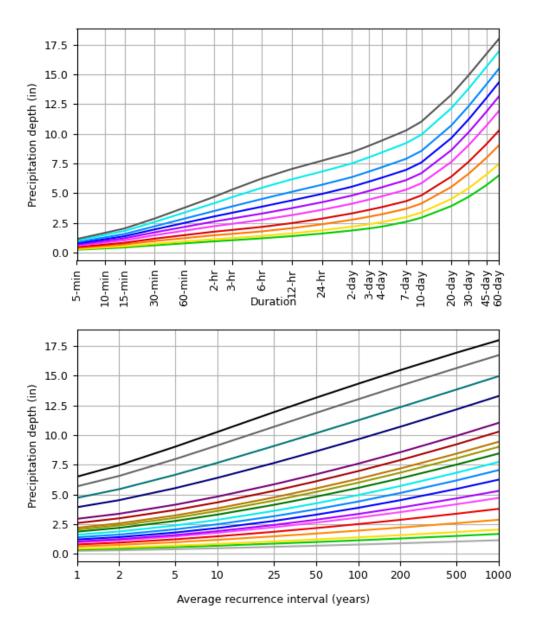
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

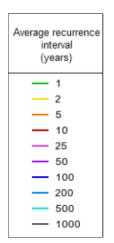
NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_& aerials

PF tabular


PDS-based point precipitation frequency estimates with 90% confidence intervals (in inches) ¹											
Duration				Average	recurrence	interval (ye	ars)				
Duration	1	2	5	10	25	50	100	200	500	1000	
5-min	0.239 (0.189-0.303)	0.291 (0.231-0.370)	0.381 (0.301-0.486)	0.461 (0.361-0.589)	0.576 (0.440-0.768)	0.671 (0.499-0.904)	0.770 (0.554-1.06)	0.875 (0.604-1.24)	1.02 (0.678-1.48)	1.14 (0.733-1.67)	
10-min	0.350 (0.277-0.444)	0.426 (0.338-0.542)	0.558 (0.441-0.711)	0.674 (0.529-0.863)	0.844 (0.644-1.12)	0.982 (0.731-1.32)	1.13 (0.811-1.56)	1.28 (0.884-1.81)	1.49 (0.992-2.17)	1.66 (1.07-2.44)	
15-min	0.426 (0.338-0.541)	0.520 (0.412-0.660)	0.681 (0.537-0.867)	0.823 (0.645-1.05)	1.03 (0.785-1.37)	1.20 (0.891-1.62)	1.37 (0.988-1.90)	1.56 (1.08-2.21)	1.82 (1.21-2.65)	2.03 (1.31-2.98)	
30-min	0.608 (0.482-0.771)	0.740 (0.586-0.940)	0.968 (0.764-1.23)	1.17 (0.916-1.49)	1.46 (1.11-1.94)	1.70 (1.26-2.28)	1.94 (1.40-2.68)	2.20 (1.52-3.12)	2.57 (1.71-3.73)	2.86 (1.84-4.19)	
60-min	0.775 (0.615-0.984)	0.933 (0.739-1.18)	1.21 (0.956-1.54)	1.46 (1.15-1.87)	1.84 (1.41-2.47)	2.16 (1.61-2.92)	2.49 (1.80-3.45)	2.85 (1.97-4.05)	3.37 (2.24-4.90)	3.78 (2.44-5.54)	
2-hr	0.943 (0.754-1.19)	1.12 (0.898-1.42)	1.46 (1.16-1.84)	1.76 (1.39-2.23)	2.22 (1.72-2.97)	2.62 (1.97-3.52)	3.04 (2.21-4.19)	3.50 (2.45-4.95)	4.16 (2.80-6.03)	4.70 (3.06-6.85)	
3-hr	1.03 (0.829-1.29)	1.22 (0.978-1.53)	1.57 (1.25-1.97)	1.90 (1.51-2.40)	2.41 (1.88-3.22)	2.86 (2.17-3.84)	3.34 (2.45-4.60)	3.88 (2.73-5.48)	4.66 (3.15-6.74)	5.29 (3.46-7.69)	
6-hr	1.20 (0.968-1.48)	1.40 (1.13-1.74)	1.78 (1.44-2.22)	2.16 (1.73-2.70)	2.76 (2.18-3.66)	3.28 (2.52-4.39)	3.86 (2.86-5.29)	4.51 (3.20-6.34)	5.46 (3.73-7.86)	6.24 (4.12-9.01)	
12-hr	1.38 (1.13-1.70)	1.61 (1.31-1.98)	2.05 (1.66-2.53)	2.48 (2.00-3.07)	3.15 (2.51-4.15)	3.74 (2.89-4.96)	4.39 (3.28-5.96)	5.12 (3.66-7.13)	6.17 (4.25-8.82)	7.04 (4.69-10.1)	
24-hr	1.60 (1.31-1.95)	1.87 (1.54-2.28)	2.38 (1.94-2.91)	2.85 (2.32-3.51)	3.60 (2.88-4.67)	4.24 (3.29-5.56)	4.94 (3.71-6.63)	5.71 (4.12-7.87)	6.82 (4.73-9.66)	7.73 (5.20-11.0)	
2-day	1.85 (1.54-2.24)	2.18 (1.80-2.63)	2.76 (2.28-3.34)	3.29 (2.70-4.01)	4.11 (3.30-5.27)	4.80 (3.76-6.22)	5.54 (4.19-7.36)	6.35 (4.62-8.68)	7.50 (5.25-10.5)	8.44 (5.73-11.9)	
3-day	2.03 (1.69-2.44)	2.39 (1.98-2.87)	3.02 (2.50-3.64)	3.60 (2.97-4.36)	4.47 (3.60-5.69)	5.20 (4.08-6.70)	5.98 (4.55-7.90)	6.83 (4.99-9.28)	8.03 (5.65-11.2)	9.00 (6.15-12.7)	
4-day	2.18 (1.82-2.61)	2.56 (2.13-3.06)	3.22 (2.68-3.87)	3.82 (3.16-4.62)	4.73 (3.83-6.00)	5.49 (4.33-7.04)	6.30 (4.81-8.30)	7.18 (5.26-9.72)	8.43 (5.94-11.7)	9.43 (6.46-13.3)	
7-day	2.58 (2.17-3.07)	2.98 (2.50-3.54)	3.68 (3.08-4.39)	4.32 (3.60-5.18)	5.29 (4.30-6.65)	6.09 (4.84-7.76)	6.96 (5.34-9.09)	7.89 (5.82-10.6)	9.21 (6.55-12.8)	10.3 (7.10-14.4)	
10-day	2.93 (2.48-3.47)	3.36 (2.84-3.98)	4.13 (3.47-4.90)	4.81 (4.02-5.74)	5.83 (4.76-7.28)	6.68 (5.32-8.45)	7.58 (5.85-9.86)	8.55 (6.34-11.4)	9.92 (7.08-13.7)	11.0 (7.65-15.4)	
20-day	3.91 (3.33-4.58)	4.51 (3.84-5.29)	5.52 (4.68-6.50)	6.39 (5.39-7.55)	7.63 (6.25-9.37)	8.62 (6.90-10.8)	9.64 (7.47-12.4)	10.7 (7.98-14.1)	12.2 (8.74-16.6)	13.3 (9.31-18.4)	
30-day	4.70 (4.02-5.47)	5.44 (4.65-6.34)	6.65 (5.66-7.78)	7.66 (6.49-9.00)	9.06 (7.44-11.0)	10.1 (8.15-12.5)	11.2 (8.74-14.3)	12.3 (9.24-16.2)	13.8 (9.98-18.7)	15.0 (10.5-20.6)	
45-day	5.67 (4.88-6.57)	6.55 (5.63-7.60)	7.97 (6.82-9.27)	9.12 (7.77-10.7)	10.7 (8.79-12.9)	11.9 (9.56-14.5)	13.0 (10.2-16.4)	14.2 (10.6-18.4)	15.6 (11.3-21.0)	16.7 (11.9-23.0)	
60-day	6.48 (5.60-7.48)	7.46 (6.43-8.62)	9.01 (7.74-10.4)	10.3 (8.77-11.9)	11.9 (9.82-14.3)	13.1 (10.6-16.0)	14.3 (11.2-18.0)	15.5 (11.7-20.0)	16.9 (12.3-22.6)	18.0 (12.8-24.6)	

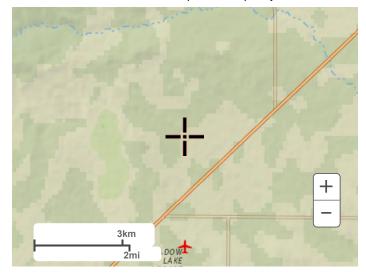

Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

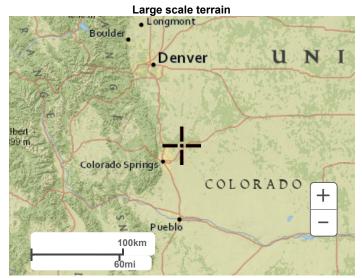

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

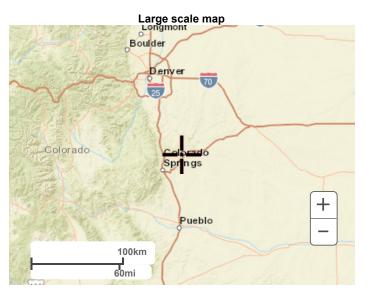
Back to Top

PF graphical

Duration											
5-min	- 2-day										
10-min	- 3-day										
- 15-min	- 4-day										
- 30-min	- 7-day										
- 60-min	— 10-day										
2-hr	- 20-day										
— 3-hr	— 30-day										
— 6-hr	— 45-day										
- 12-hr	- 60-day										
— 24-hr											

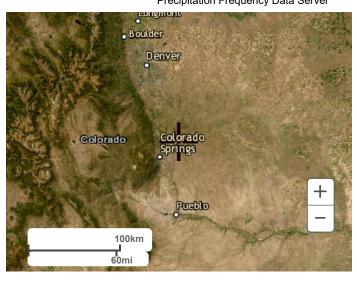

NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Wed Nov 22 20:22:49 2023


Back to Top

Maps & aerials

Small scale terrain



Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

Disclaimer

Eastonville Road Segment 1 Final Drainage Report Project No.: 201662.08

APPENDIX B – HYDROLOGIC CALCULATIONS

-	+	23
HF	26-	reer

EASTONVILLE ROAD EXISTING CONDITIONS EL PASO COUNTY, CO

Calc'd by:	SPC
<u>Checked by:</u>	СМ
Date:	10/2/2024

SUMMARY RUNOFF TABLE											
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)							
E1	0.45	48	0.7	1.7							
E2.1	1.82	13	1.2	4.8							
E2.2	0.40	2	0.1	1.0							
E3	0.72	39	1.0	2.5							
E4	3.17	12	1.9	7.8							
E5	0.23	45	0.5	1.1							
E6	0.79	14	0.7	2.6							
E7	0.23	45	0.5	1.2							
E8	0.70	16	0.6	2.1							
E9	0.73	45	1.2	2.8							
E10.1	2.61	15	1.9	7.0							
E10.2	1.89	2	0.7	4.4							
OS1	1.58	2	0.5	3.6							
OS2	12.21	2	3.6	24.3							
OS3.1	1.51	2	0.5	3.6							
OS3.2	2.86	2	1.0	6.6							
OS3.3	21.12	2	6.4	42.7							

DESIGN POINT SUMMARY TABLE										
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ_{100} (cfs)							
1	E1,OS1	1.2	4.9							
2	E2,DP1	2.3	9.3							
2.2	E2.2	0.1	1.0							
3	E3,OS2	4.6	26.6							
4	DP3,E4	6.3	33.9							
5	E5,OS3.1	0.9	4.5							
6	DP5,E6	1.5	6.7							
7.1	E7,OS3.2	1.4	7.5							
8.1	DP7.1,E8	1.9	9.4							
7.2	OS3.3,E9	7.5	45.3							
8.2	DP7.2,E10.1	9.2	51.6							
8.3	E10.2	0.7	4.4							

Ex_Drainage_Calcs.xlsx

RBM 10/2/2024 11:21 AM

T

EASTONVILLE ROAD EXISTING CONDITIONS

<u>Calc'd by:</u>	SPC
Checked by:	
<u>Date:</u>	11/27/2023

SOIL TYPE:	HSG	A&B																	
							C	ОМР	OSIT	E 'C'	FAC	TOR	S						
	LAND USE TYPE																		
		Paved	Historic Flow Analysis.									COMPOSITE							
	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀ %I	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀			VIOUSNE	
	100	0.90	0.96	2	0.09	0.36	0	0.00	0.00	0	0.00	0.00	0	0.00	0.00	TOTAL		FACTOR	
BASIN		ACRES			ACRES	;		ACRES	i		ACRES	;		ACRES	i i	ACRES	%	C ₅	C ₁₀₀
E1		0.21			0.24											0.45	48	0.47	0.64
E2.1		0.20			1.62											1.82	13	0.18	0.43
E2.2					0.40											0.40	2	0.09	0.36
E3		0.27			0.45											0.72	39	0.39	0.59
E4		0.31			2.86											3.17	12	0.17	0.42
E5		0.10			0.13											0.23	45	0.44	0.62
E6		0.10			0.69											0.79	14	0.19	0.44
E7		0.10			0.13											0.23	45	0.44	0.62
E8		0.10			0.60											0.70	16	0.21	0.45
E9		0.32			0.41											0.73	45	0.45	0.62
E10.1		0.35			2.26											2.61	15	0.20	0.44
E10.2					1.89											1.89	2	0.09	0.36
OS1	1				1.58		1									1.58	2	0.09	0.36
OS2					12.21											12.21	2	0.09	0.36
OS3.1					1.51											1.51	2	0.09	0.36
OS3.2					2.86											2.86	2	0.09	0.36
OS3.3					21.12											21.12	2	0.09	0.36

	EAST	ONVILL	E ROAD)				Calc'd b	y:	5	SPC
オイゴ		ING CO	ONDITIO	NS				Checked	by:		
HRGreen	EL PAS		гү, со					Date:		10/2	2/2024
				TIME OF	F CONCE	NTRATI	ON				
BAS	SIN DATA		OVER		E (T _i)		TRAV	EL TIME (T_t		TOTAL
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t _c (min)
E1	0.47	0.45	117	11.6	5.5	10	1162	3.4	1.8	10.5	16.0
E2.1	0.18	1.82	87	2.4	11.8	10	518	1.7	1.3	6.6	18.4
E2.2	0.09	0.40	92	2.0	14.1	10	89	3.4	1.8	0.8	14.9
E3	0.39	0.72	40	2.0	6.5	10	794	2.5	1.6	8.4	14.9
E4	0.17	3.17	113	5.5	10.3	10	830	2.5	1.6	8.7	19.0
E5	0.44	0.23	30	13.8	2.8	10	310	1.4	1.2	4.4	7.1
E6	0.19	0.79	30	13.8	3.8	10	310	1.4	1.2	4.4	8.2
E7	0.44	0.23	35	25.0	2.4	10	161	0.6	0.8	3.5	5.9
E8	0.21	0.70	25	1.0	8.2	10	161	0.6	0.8	3.5	11.7
E9	0.45	0.73	30	2.0	5.2	10	711	0.5	0.7	16.8	22.0
E10.1	0.20	2.61	30	2.0	7.2	10	711	0.5	0.7	16.8	23.9
E10.2	0.09	1.89	300	2.7	23.2	10	15	4.8	2.2	0.1	23.3
OS1	0.09	1.58	300	2.8	22.8	10	213	4.5	2.1	1.7	24.4
OS2	0.09	12.21	300	4.1	20.0	10	1042	3.4	1.8	9.4	29.5
OS3.1	0.09	1.51	136	3.9	13.7	10	150	8.9	3.0	0.8	14.6
OS3.2	0.09	2.86	174	8.6	11.9	10	267	4.4	2.1	2.1	14.0
OS3.3	0.09	21.12	300	6.0	17.7	10	930	3.4	1.8	8.4	26.1

0.5

FORMULAS:

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}} \qquad V = C_v S_w^{0.33}$$

Table 6-7. Conveyance Coefficient, C_v

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

* For buried riprap, select C_v value based on type of vegetative cover.

EASTONVILLE ROAD EXISTING CONDITIONS DESIGN STORM: 5-YEAR

Calc'd by: Checked by: Date:

			DIRECT RUNOFF						Т	TOTAL RUNOFF STREE					ET	PIPE				TR	RAVEL	. TIME	
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C5	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₅ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₅ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C₅*A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (FT)	VEL. (FPS)	TRAVEL TIME (mir	
		E1	0.45	0.47	16.0	0.21	3.42	0.7															
	1	OS1	1.58						16.0	0.35	3.42	1.2				1.2	0.35	0.6	3.0	73	7.5	0.16	BASIN E1 AI
	2	E2.1	1.82	0.18	13.4	0.33	3.69	1.2	16.2	0.68	3.41	2.3											
	2.2	E2.2	0.40	0.09	11.0	0.04	3.99	0.1	11.0	0.04	3.99	0.1											
		E3	0.72	0.39	14.6	0.28	3.56	1.0															
	3	OS2	12.21						17.5	1.38	3.29	4.6				4.6	1.38	1.1	2.0	47	7.6	0.10	BASIN E3 AI
	4	E4	3.17	0.17	15.2	0.54	3.50	1.9	17.6	1.92	3.28	6.3											
		E5	0.23	0.44	7.1	0.10	4.64	0.5															
	5	OS3.1	1.51	0.09	11.6	0.14	3.91	0.5	11.6	0.24	3.91	0.9				0.9	0.24	1.3	1.5	56	6.8	0.14	BASIN E5 AI
	6	E6	0.79	0.19	8.2	0.15	4.43	0.7	11.7	0.39	3.89	1.5											
		E7	0.23	0.44	5.9	0.10	4.92	0.5															
	7.1	OS3.2	2.86	0.09	12.5	0.26	3.80	1.0	12.5	0.36	3.80	1.4				1.4	0.36	0.2	1.5	53	2.3	0.38	BASIN E7 AND
	8.1	E8	0.70	0.21	11.0	0.14	3.98	0.6	12.8	0.50	3.75	1.9											
		E9	0.73	0.45	14.1	0.32	3.61	1.2															
	7.2	OS3.3	21.12	0.09	16.8	1.90	3.35	6.4	16.8	2.23	3.35	7.5				7.5	2.23	0.8	1.5	43	5.3	0.13	BASIN E9 AND
	8.2	E10.1	2.61	0.20	14.1	0.52	3.61	1.9	17.0	2.74	3.34	9.2											
	8.3	E10.2	1.89	0.09	11.8	0.17	3.89	0.7	11.8	0.17	3.89	0.7											

SPC

10/2/2024

REMARKS

BASIN E1 CAPTURED @ DP1

AND OS1 COMBINE @ DP1 CAPTURED IN 36" CMP CULVERT, PIPED TO BASIN E2

FLOW @ DP2 CONVEYED OFFSITE

FLOW @ DP2.2 CONVEYED OFFSITE

BASIN E3 CAPTURED @ DP3

AND OS2 COMBINE @ DP3 CAPTURED IN 24" CMP CULVERT, PIPED TO BASIN E4

FLOW @ DP4 CONVEYED OFFSITE

BASIN E5 CAPTURED @ DP5

AND OS3 COMBINE @ DP5 CAPTURED IN 18" CMP CULVERT, PIPED TO BASIN E6

FLOW @ DP6 CONVEYED OFFSITE

BASIN E7 CAPTURED @ DP7

ND OS4.1 COMBINE @ DP7.1 CAPTURED IN 18" CMP CULVERT, PIPED TO BASIN E8

FLOW @ DP8.1 CONVEYED OFFSITE

BASIN E9 CAPTURED @ DP7.2

D OS 4.2 COMBINE @ DP7.2 CAPTURED IN 18" CMP CULVERT, PIPED TO BASIN E10

FLOW @ DP8.2 CONVEYED OFFSITE

FLOW @ DP8.3 CONVEYED OFFSITE

EASTONVILLE ROAD EXISTING CONDITIONS DESIGN STORM: 100-YEAR

Calc'd by: Checked by:

Date:

					DII	RECT	RUNOF	F		тс	DTAL F	RUNOI	FF	S	TREE	ET		PIF	PE		TR	AVEL		
	STREET	DESIGN POINT	BASIN ID	AREA (ac)	C100	f _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	% BAODE	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
			E1	0.45	0.64	16.0	0.29	5.74	1.7															
		1	OS1	1.58							0.86	5.74	4.9				4.9	0.86	0.6	3.0	73	7.5	0.16	BASIN E1 A
		2	E2.1	1.82	0.43	13.4	0.78	6.20	4.8	16.2	1.63	5.72	9.3											
		2.2	E2.2	0.40							0.14													
		2.2									0.14	0.09	1.0											
┢			E3	0.72							4.00	5 50	20.0				26.6	4.82	1.1	2.0	47	7.6	0.10	
		3	OS2	12.21				5.53																BASIN E3 A
\vdash		4	E4	3.17				5.87			6.14	5.51	33.9											
			E5	0.23	0.62	7.1	0.14	7.79	1.1							-	4.5	0.69	1.3	1.5	56	6.8	0.14	
\vdash		5	OS3.1	1.51	0.36	11.6	0.54	6.56	3.6	11.6	0.69	6.56	4.5											BASIN E5 A
		6	E6	0.79	0.44	8.2	0.34	7.44	2.6	11.7	1.03	6.53	6.7											
			E7	0.23	0.62	5.9	0.14	8.26	1.2								7.5	1.17	0.2	1.5	53	2.3	0.38	
		7.1	OS3.2	2.86	0.36	12.5	1.03	6.38	6.6	12.5	1.17	6.38	7.5				7.5	1.17	0.2	1.5	- 55	2.0	0.00	BASIN E7 AN
		8.1	E8	0.70	0.45	11.0	0.31	6.68	2.1	12.8	1.48	6.30	9.4											
			E9	0.73	0.62	14.1	0.45	6.06	2.8															
		7.2	OS3.3	21.12	0.36	16.8	7.60	5.62	42.7	16.8	8.06	5.62	45.3				45.3	8.06	0.8	1.5	43	5.3	0.13	BASIN E9 AND
		8.2	E10.1	2.61	0.44	14.1	1.15	6.06	7.0	17.0	9.21	5.60	51.6											
		8.3	E10.2	1.89	0.36	11.8	0.68	6.53	4.4	11.8	0.68	6.53	4.4											

SPC

10/2/2024

REMARKS

BASIN E1 CAPTURED @ DP1

AND OS1 COMBINE @ DP1 CAPTURED IN 36" CMP CULVERT, PIPED TO BASIN E2

FLOW @ DP2 CONVEYED OFFSITE

FLOW @ DP2.2 CONVEYED OFFSITE

BASIN E3 CAPTURED @ DP3

AND OS2 COMBINE @ DP3 CAPTURED IN 24" CMP CULVERT, PIPED TO BASIN E4

FLOW @ DP4 CONVEYED OFFSITE

BASIN E5 CAPTURED @ DP5

AND OS3 COMBINE @ DP5 CAPTURED IN 18" CMP CULVERT, PIPED TO BASIN E6

FLOW @ DP6 CONVEYED OFFSITE

BASIN E7 CAPTURED @ DP7

AND OS4.1 COMBINE @ DP7.1 CAPTURED IN 18" CMP CULVERT, PIPED TO BASIN E8

FLOW @ DP8.1 CONVEYED OFFSITE

BASIN E9 CAPTURED @ DP7.2

ND OS 4.2 COMBINE @ DP7.2 CAPTURED IN 18" CMP CULVERT, PIPED TO BASIN E10

FLOW @ DP8.2 CONVEYED OFFSITE

FLOW @ DP8.3 CONVEYED OFFSITE

EASTONVILLE ROADCalc'd by:PROPOSED CONDITIONSChecked by:EL PASO COUNTY, CODate:

	SUMMAR	Y RUNOFF	TABLE	
BASIN	AREA (ac)	% IMPERVIOUS	Q ₅ (cfs)	Q ₁₀₀ (cfs)
EA1	0.62	97	2.6	4.7
EA2	1.21	50	2.5	5.6
EA3	0.44	91	1.8	3.0
EA4	0.77	52	1.7	2.9
EA5.1	0.37	9	0.3	0.4
EA5.2	0.52	0	0.2	1.6
EA5.3	1.21	0	0.4	2.9
EA5.4	0.41	0	0.1	1.0
EA6	1.09	91	3.1	5.2
EA7	1.92	52	3.2	5.4
EA8	0.94	50	0.5	0.9
EA9	0.88	35	0.4	0.6
EA10.1	0.36	23	0.4	0.6
EA10.2	1.06	23	1.4	4.4
EA11	1.23	0	0.5	0.9
EA12	0.47	25	0.6	1.7
EA13	0.21	26	0.3	0.7
EA8 & EA9 *Per Segment 2 FDR	5.22	75	10.3	17.2
OS1	1.63	2	0.5	3.6
OS2	12.18	2	3.6	24.2
OS3	25.50	2	8.0	53.6

D	ESIGN POINT SI	UMMARY T	ABLE
DESIGN POINT	CONTRIBUTING BASINS	ΣQ_5 (cfs)	ΣQ ₁₀₀ (cfs)
1	OS1	0.5	3.6
2	DP20, SFB D Release	0.7	5.0
3	OS2	3.6	24.2
4	EA 5.2, OS2, DP4.1, SFB A RELEASE	4.1	28.6
4.1	EA5.3	0.6	3.5
6	EA5.4	0.4	2.0
7	OS3	8.0	53.6
8.3	DP 22, OS3, EDB B RELEASE	9.7	58.1
8.2	EA10.2	1.4	4.0
9	DP1, EA1	3.3	9.3
10	DP9, EA2	5.4	13.9
11	DP10, EA12	5.8	15.2
12	EA13	0.3	0.7
13	EA3	1.8	3.0
14	DP13, EA4	3.3	5.6
15	DP14, EA5	3.5	5.9
16	EA6	3.1	5.2
17	DP16, EA7	6.2	10.3
18	DP17	6.2	10.3
19	DP18,EA8	6.6	11.1
18U	DP17, EA8 & EA9 *PER SEGMENT 2 FDR	15.5	26.1
19U	DP18U, EA8	15.9	26.6
20	EA9	0.4	0.6
8.1	EA10	0.4	0.6
22	EA11	0.5	0.9

SPC

СМ

10/28/2024

OF EASTONVILLE ROAD SEGMENT 2 CONSTRUCTION

662.08 - Pr_Drainage_Calcs.xlsx

	EASTONVILLE ROAD	<u>Calc'd by:</u>	SPC
	EASTONVILLE ROAD PROPOSED CONDITIONS	Checked by:	СМ
HRGreen	EL PASO COUNTY, CO	Date:	11/27/2023

SOIL TYPE: HSG A&B

COMPOSITE 'C' FACTORS																			
BASIN							LAN) USE	TYPE										
		Paved			ic Flow Ar pelts, Agr	-		Lawns	;		Grave	I	Driv	e and V	Valks		-	OMPOSI	_
	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀			VIOUSNE	
	100	0.90	0.96	2	0.09	0.36	0	0.08	0.35	80	0.59	0.70	100	0.90	0.96	TOTAL		FACTOR	
		ACRES	i		ACRES	5		ACRES	;		ACRES	\$		ACRES	5	ACRES	%	C ₅	C ₁₀₀
EA1		0.60						0.02								0.62	97	0.87	0.94
EA2		0.60						0.61								1.21	50	0.49	0.65
EA3		0.40						0.04								0.44	91	0.82	0.90
EA4		0.40						0.37								0.77	52	0.50	0.67
EA5.1	0.10							0.33			0.04					0.37	9	0.13	0.39
EA5.2								0.52								0.52	0	0.08	0.35
EA5.3							1.21									1.21	0	0.08	0.35
EA5.4								0.41								0.41	0	0.08	0.35
EA6		0.99						0.10								1.09	91	0.83	0.91
EA7		0.99						0.93								1.92	52	0.50	0.67
EA8								0.83			0.09			0.01		0.94	9	0.14	0.39
EA9								0.88								0.88	0	0.08	0.35
EA10.1								0.30			0.01			0.05		0.36	16	0.21	0.44
EA10.2								0.81			0.06			0.20		1.06	23	0.26	0.48
EA11								1.23								1.23	0	0.08	0.35
EA12	0.06							0.34			0.07					0.47	25	0.26	0.48
EA13	0.06						0.15								0.21	26	0.30	0.51	
OS1					1.63											1.63	2	0.09	0.36
OS2					12.18											12.18	2	0.09	0.36
OS3					25.50											25.50	2	0.09	0.36

							С	OMP	OSITI	E 'C'	FAC	TOR	S						
BASIN							LAND) USE	TYPE										
		Paved			c Flow An elts, Agri	-		Lawns	5		Gravel		Driv	e and V	Valks			OMPOSIT	_
	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀	%	C ₅	C ₁₀₀	%I	C ₅	C ₁₀₀			VIOUSNE	
	100	0.90	0.96	2	0.09	0.36	0	0.08	0.35	80	0.59	0.70	100	0.90	0.96	TOTAL		FACTOR	
	ACRES				ACRES			ACRES	;		ACRES	;		ACRES	;	ACRES	%	C ₅	C ₁₀₀
EA8 & EA9 *Per Segment 2 FDR	3.94			94				1.28								5.22	75	0.70	0.81
EA10 *Per Segment 2 FDR		0.12	0.12					0.04								0.16	75	0.70	0.81
EA11 *Per Segment 2 FDR	0.10							0.05								0.15	67	0.63	0.76
SFB A	0.80				0.00			0.74			0.04			0.00		1.58	53		
EDB B	1.98			0.00			1.86			0.09			0.01		3.95	52			
EDB B (ULT)	6.14				0.00			3.23			0.09			0.01		9.48	66		
SFB D	1.26 1.63					0.97 0.07 0.00								3.93	34				

	EAST	ONVILL	E ROAD)				Calc'd b	y:		SPC		
			CONDITI	ONS				Checked	by:		СМ		
HRGreen	EL PAS		гү, со					Date:		10/2	8/2024		
						NTRATI				-	•		
BAS	IN DATA		OVER		E (T _i)		TRAV	EL TIME (T_t		TOTAL	tc=(L/180)+10	Design tc
DESIGNATION	C ₅	AREA (ac)	LENGTH (ft)	SLOPE %	t _i (min)	C _V	LENGTH (ft)	SLOPE %	V (ft/s)	t _t (min)	t_c (min)	tc max	tc design (min)
EA1	0.87	0.62	26	2.0	1.7	20	734	1.6	2.5	4.9	6.6	14.2	6.6
EA2	0.49	1.21	26	2.0	4.6	20	734	1.6	2.5	4.9	9.5	14.2	9.5
EA3	0.82	0.44	26	2.0	2.0	20	326	0.5	1.4	3.8	5.9	12.0	5.9
EA4	0.50	0.77	26	2.0	4.4	20	326	0.5	1.4	3.8	8.3	12.0	8.3
EA5.1	0.13	0.37	25	25.0	3.0	10	100	0.5	0.7	2.4	5.4	10.7	5.4
EA5.2	0.08	0.52	35	33.0	3.4	10	110	5.5	2.3	0.8	5.0	10.8	5.0
EA5.3	0.08	1.21	68	10.0	7.1	10	286	2.3	1.5	3.1	10.3	12.0	10.3
EA5.4	0.08	0.41	78	4.6	9.9	10	145	1.4	1.2	2.0	12.0	11.2	11.2
EA6	0.83	1.09	26	2.0	2.0	20	1304	0.6	1.5	14.0	16.1	17.4	16.1
EA7	0.50	1.92	26	2.0	4.4	20	1304	0.6	1.5	14.0	18.5	17.4	17.4
EA8	0.14	0.94	100	9.0	8.4	10	102	0.5	0.7	2.4	10.8	11.1	10.8
EA9	0.08	0.88	50	24.4	4.6	10	0	0	0.0	0.0	5.0	10.3	5.0
EA10.1	0.21	0.36	35	24.4	3.3	10	0	0	0.0	0.0	5.0	10.2	5.0
EA10.2	0.26	1.06	50	15.0	4.4	10	0	0	0.0	0.0	5.0	10.3	5.0
EA11	0.08	1.23	23	18.0	3.4	10	0	0	0.0	0.0	5.0	10.1	5.0
EA12	0.26	0.47	117	12.0	7.3	10	0	0	0.0	0.0	7.3	10.7	7.3
EA13	0.30	0.21	82	2.0	10.6	10	0	0	0.0	0.0	10.6	10.5	10.5
EA8 & EA9 *Per Segment 2 FDR	0.70	5.22	26	2.0	3.0	20	2500	0.7	1.7	24.9	27.9	24.0	24.0
OS1	0.09	1.63	100	2.7	13.3	10	633	1.5	1.2	8.6	22.0	14.1	14.1
OS2	0.09	12.18	100	4.3	11.4	10	1243	3.2	1.8	11.6	23.0	17.5	17.5
OS3	0.09	25.50	100	6.5	9.9	10	879	3.2	8.2	18.1	15.4	15.4	
FORMULAS:	$t_i = \frac{0.2}{2}$	$\frac{395(1.1-C_5)}{S^{0.33}}$	$)\sqrt{L}$ V	$V = C_v S_w$	0.5	г	able 6-7. Co Type of La						

Type of Land Surface	C_{ν}
Heavy meadow	2.5
Tillage/field	5
Riprap (not buried)*	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

For buried riprap, select C_v value based on type of vegetative cover.

EASTONVILLE ROAD PROPOSED CONDITIONS DESIGN STORM: 5-YEAR

<u>Calc'd by:</u>

Checked by:

Date:

	TIME	AVEL	TR		E	PIP		T	TREE	S	OFF	RUN	DTAL	т		F	RUNOF	RECT	DII				
	TRAVEL TIME (min	VEL. (FPS)	LENGTH (FT)	PIPE SIZE (ft)	% SLOPE %	C ₅ *A (ac)	Q _{PIPE} (cfs)	% SLOPE %	C ₅ *A (ac)	Q _{street} (cfs)	Q (cfs)	/ (in./ hr.)	C ₅ *A (ac)	t _c (min)	Q (cfs)	/ (in./ hr.)	C ₅ *A (ac)	t _e (min)	C5	AREA (ac)	BASIN ID	DESIGN POINT	STREET
BASI	0.04	4.2	10	1.5	0.5	0.15	0.5				0.	3.62	0.15	14.1		3.62	0.15	14.1	0.09	1.63	OS1	1	
SFB											0.	3.62	0.07	0.1	0.0	0.02	0.10	14.1	0.00	1.00	001	2	
BASI	0.23	13.5	186	2.5	2.6	1.10	3.6				3.	3.29	1.10	17.5		0.00	1.10	47.5	0.00	40.40	000	3	
FLOW @ DP4 CO											4.	3.29	1.23	17.7						12.18	OS2	4	
F											0.	3.29	0.10	10.3	0.2	5.17	0.04	5.0	0.08	0.52	EA5.2	4.1	
											0.	3.29	0.03	11.2	0.4	4.09	0.10	10.3	0.08	1.21	EA5.3	6	
BASIN	1.01	7.3	445	3.0	0.6	2.30	8.0				8.	3.48	2.30	15.4	0.1	3.95	0.03	11.2	0.08	0.41	EA5.4	7	
FLOW @ DP8 CONVE												3.48			8.0	3.48	2.30	15.4	0.09	25.50	OS3	8.3	
												3.48		5.0								8.2	
	0.01	1.0	50		0.5										1.4	5.17	0.27	5.0	0.26	1.06	EA10.2	_	
	0.21	4.2					3.3					4.75		_	2.6	4.75	0.54	6.6	0.87	0.62	EA1	9	
	0.51	4.2	128	1.5	0.5	1.28	5.4				5.	4.21	1.28	9.5	2.5	4.21	0.59	9.5	0.49	1.21	EA2	10	
	0.15	7.2	63	1.5	1.5	1.40	5.8				5.	4.13	1.40	10.0	0.6	4.61	0.12	7.3	0.26	0.47	EA12	11	
											0.	4.13	0.06	10.5						0.21	EA13	12	
	0.14	6.8	56	1.5	1.3	0.36	1.8				1.	4.92	0.36	5.9						0.44	EA3	13	
	0.14	6.8	56	1.5	1.3	0.75	3.3				3.	4.42	0.75	8.3								14	
	0.14	4.2	36	1.5	0.5	0.80	3.5				3.	4.39	0.80	8.4						0.77	EA4	15	
	0.21	4.2	52	1.5	0.5	0.90	3.1				3.	3.42	0.90	16.1	0.3	5.06	0.05	5.4	0.13	0.37	EA5.1	16	
-	0.64	5.1	196	2.0	0.5	1.87	6.2				6.	3.30	1.87	17.4	3.1	3.42	0.90	16.1	0.83	1.09	EA6	17	
	0.14	5.1	42	2.0	0.5	1.87	6.2				6.	3.30	1.87	17.4	3.2	3.30	0.97	17.4	0.50	1.92	EA7	18	
BAS	0.64		196				6.6					3.29		17.5								19	
	0.14	5.1					15.5					2.81			0.5	4.01	0.13	10.8	0.14	0.94	EA8	18U	
SEGME	0.14	5.1	42	2.0	0.5	5.52	15.5				15.	2.01	5.52		10.3	2.81	3.65	24.0	0.70	5 ·) ·)	EA8 & EA9 *Per Segment 2 FDR	180	
BASIN EA8 SHEEET FLOW											15.	2.81	5.65	24.2								19U	
										<u> </u>	0.	5.17	0.07	5.0	0.5	4.01	0.13	10.8	0.14	0.94	EA8	20	
												5.17			0.4	5.17	0.07	5.0	0.08	0.88	EA9	8.1	
												5.17			0.4	5.17	0.07	5.0	0.21	0.36	EA10.1	22	
											0.	5.17	0.10	5.0	0.5	5.17	0.10	5.0	0.08	1.23	EA11		

SPC

СМ

10/28/2024

REMARKS

SIN OS1 @ DP1 CAPTURED IN 18" RCP CULVERT, DRAINS TO BASIN DP9

FB D RELEASE @ 0.4 CFS AND DP 20 FLOW @ DP2 CONVEYED OFFSITE

SIN OS2 @ DP3 CAPTURED IN 30" RCP CULVERT, DRAINS TO BASIN DP4

ONVEYED OFFSITE (INCLUDES DETENTION SFB A 5-YR RELEASE RATE @ 0.03 CFS)

FLOW @ DP4.1 DRAINS SOUTH TO ULTIMATELY COMBINE WITH DP4

FLOW @ DP6 DRAINS OFFSITE

SIN OS3 FLOW @ DP7 CAPTURTED IN CDOT TYPE D INLET, PIPED TO DP8

VEYED OFFSITE (INCLUDES EDB POND B 5-YR RELEASE RATE @ 0.4 CFS, DP7, & DP22)

FLOW @ DP8.2 DRAINS NE TO ULTIMATELY COMBINE WITH DP8

BASIN EA1 CAPTURED @ DP9 BY ON GRADE TYPE R INLET

BASIN EA2 CAPTURED @ DP10 BY ON GRADE TYPE R INLET

BASIN EA12 SHEEET FLOWS DIRECTLY TO SFB D

FLOW @ DP12 CONVEYED OFFSITE

BASIN EA3 CAPTURED @ DP13 BY ON GRADE TYPE R INLET

BASIN EA4 CAPTURED @ DP14 BY ON GRADE TYPE R INLET

BASIN EA5 SHEEET FLOWS DIRECTLY TO SFB A

BASIN EA6 CAPTURED @ DP16 BY SUMP TYPE R INLET

BASIN EA7 CAPTURED @ DP17 BY SUMP TYPE R INLET

STORM MH @ D18, NO SEGMENT 2 FLOW

SIN EA8 SHEEET FLOWS DIRECTLY TO EDB B (NO SEGMENT 2 FLOWS)

MENT 2 FLOW COMBINES @ DP18 WITH SEGMENT 1 FLOWS @ STORM MH

DWS DIRECTLY TO EDB B INCLUDING FUTURE TRIBUTARY FLOW FROM SUBBASIN EA8 & EA9 PER THE EASTONVILLE ROAD SEGMENT 2 FDR

BASIN EA9 SHEET FLOWS OFFSITE

BASIN EA10 SHEET FLOWS OFFFSITE

BASIN EA11 SHEET FLOWS OFFSITE

EASTONVILLE ROAD Calc'd by: **PROPOSED CONDITIONS** Checked by:

DESIGN STORM: 100-YEAR

Date:

			DIRECT RUNOFF						тс	TAL I	RUNO	FF	S	TRE	ET		PIF	PE		TR	AVEL	TIME	
STREET	DESIGN POINT	BASIN ID	AREA (ac)	C ₁₀₀	t _c (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	t _e (min)	C ₁₀₀ *A (ac)	/ (in./ hr.)	Q (cfs)	Q _{street} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	Q _{PIPE} (cfs)	C ₁₀₀ *A (ac)	SLOPE %	PIPE SIZE (ft)	LENGTH (ft)	VEL. (ft/s)	TRAVEL TIME (min)	
	1	OS1	1.63	0.36		0.59	6.07	3.6	14.1	0.59	6.07	3.6				3.6			1.5	115	4.2	0.46	BA
	2	001	1.00	0.00	14.1	0.00	0.07	0.0	0.1	0.07	6.07	5.0										1	SF
	3	000	40.40		47.5	4.00	0	04.0	17.5	4.38	5.53	24.2				24.2	4.38	2.6	2.5	186	13.5	0.23	BA
	4	OS2	12.18						17.7	4.99	5.53	28.6										+	FLOW @ DP4 C
	4.1	EA5.2	0.52	0.35	5.0	0.18	8.68	1.6	10.3	0.42	5.53	3.5										+	
	6	EA5.3	1.21	0.35	10.3	0.42	6.86	2.9	11.2	0.14	5.53	2.0										+	-
	7	EA5.4	0.41	0.35	11.2	0.14	6.64	1.0	15.4	9.18	5.84	53.6				53.6	9.18	0.6	3.0	445	7.3	1.01	BAS
		OS3	25.50	0.36	15.4	9.18	5.84	53.6		0.110							0.10	0.0	0.0				
	8.3								16.5	9.79	5.84	58.1											FLOW @ DP8 CONV
	8.2								5.0	0.51	5.84	4.0										+	
	9	EA10.2	1.06			0.51	8.68	4.4	6.6	1.17	7.98	9.3				9.3	1.17	0.5	1.5	52	4.2	0.21	
	10	EA1	0.62	0.94	6.6	0.58	7.98	4.7	9.5	1.96	7.07	13.9				13.9	1.96	0.5	1.5	128	4.2	0.51	
	11	EA2	1.21	0.65	9.5	0.79	7.07	5.6	10.0	2.18	6.94	15.2				15.2	2.18	1.5	1.5	63	7.2	0.15	
	12	EA12	0.47	0.48	7.3	0.23	7.73	1.7			6.94												
	13	EA13	0.21	0.51	10.5	0.11	6.82	0.7				3.0				3.0	0.36	1.3	1.5	56	6.8	0.14	
		EA3	0.44	0.82	5.9	0.36	8.27	3.0															
	14	EA4	0.77	0.50	8.3	0.39	7.42	2.9								5.6					6.8	0.14	
	15	EA5.1	0.37	0.13	5.4	0.05	8.49	0.4				5.9				5.9	0.80	0.5	1.5		4.2	0.14	
	16	EA6	1.09	0.83	16.1	0.90	5.74	5.2	16.1	0.90	5.74	5.2				5.2	0.90	0.5	1.5	52	4.2	0.21	
	17	EA7	1.92	0.50	17.4	0.97	5.54	5.4	17.4	1.87	5.54	10.3				10.3	1.87	0.5	2.0	196	5.1	0.64	
	18								17.4	1.87	5.54	10.3				10.3	1.87	0.5	2.0	42	5.1	0.14	
	19	EA8	0.94	0.14	10.8	0.13	6.73	0.9	17.5	2.00	5.52	11.1				11.1	2.00	0.5	2.0	196	5.1	0.64	BA
	18U		0.94	0.14	10.6	0.13	0.73	0.9	24.0	5.52	4.72	26.1				26.1	5.52	0.5	2.0	42	5.1	0.14	
		EA8 & EA9 *Per Segment 2 FDR	5.22	0.70	24.0	3.65	4.72	17.2															SEG
	19U	E A O	0.04	0.44	10.0	0.40	0.70	0.0	24.2	5.65	4.71	26.6											BASIN EA8 SHEEET FLC
	20	EA8	0.94						5.0	0.07	8.68	0.6										+	<u> </u>
	8.1	EA9	0.88				8.68		5.0	0.07	8.68	0.6										+	
	22	EA10.1	0.36	0.21	5.0	0.07	8.68	0.6	5.0	0.10	8.68	0.9										+	
		EA11	1.23	0.08	5.0	0.10	8.68	0.9															

SPC	
СМ	

10/28/2024

REMARKS

BASIN OS1 @ DP1 CAPTURED IN 18" RCP CULVERT, DRAINS TO BASIN DP2

SFB D RELEASE @ 4.6 CFS AND DP 20 FLOW @ DP2 CONVEYED OFFSITE

BASIN OS2 @ DP3 CAPTURED IN 30" RCP CULVERT, DRAINS TO BASIN DP4

CONVEYED OFFSITE (INCLUDES DETENTION SFB A 100-YR RELEASE RATE @ 1.0 CFS)

FLOW @ DP4.1 DRAINS SOUTH TO ULTIMATELY COMBINE WITH DP4

FLOW @ DP6 DRAINS OFFSITE

ASIN OS3 FLOW @ DP7 CAPTURTED IN CDOT TYPE D INLET, PIPED TO DP8

IVEYED OFFSITE (INCLUDES EDB POND B 100-YR RELEASE RATE @ 1.0 CFS, DP7, & DP22)

FLOW @ DP8.2 DRAINS NE TO ULTIMATELY COMBINE WITH DP8

BASIN EA1 CAPTURED @ DP9 BY ON GRADE TYPE R INLET

BASIN EA2 CAPTURED @ DP10 BY ON GRADE TYPE R INLET

BASIN EA12 SHEEET FLOWS DIRECTLY TO SFB D

FLOW @ DP12 CONVEYED OFFSITE

BASIN EA3 CAPTURED @ DP13 BY ON GRADE TYPE R INLET

BASIN EA4 CAPTURED @ DP14 BY ON GRADE TYPE R INLET

BASIN EA5 SHEEET FLOWS DIRECTLY TO SFB A

BASIN EA6 CAPTURED @ DP16 BY SUMP TYPE R INLET

BASIN EA7 CAPTURED @ DP17 BY SUMP TYPE R INLET

STORM MH @ D18, NO SEGMENT 2 FLOW

BASIN EA8 SHEEET FLOWS DIRECTLY TO EDB B (NO SEGMENT 2 FLOWS)

GMENT 2 FLOW COMBINES @ DP18 WITH SEGMENT 1 FLOWS @ STORM MH

LOWS DIRECTLY TO EDB B INCLUDING FUTURE TRIBUTARY FLOW FROM SUBBASIN EA8 & EA9 PER THE EASTONVILLE ROAD SEGMENT 2 FDR

BASIN EA9 SHEET FLOWS OFFSITE

BASIN EA10 SHEET FLOWS OFFFSITE

BASIN EA11 SHEET FLOWS OFFSITE

			Desig	n Procedu	re Form: F	Runoff Red	duction					
				UD-BMP (Ve	ersion 3.07, Ma	rch 2018)						Sheet 1 of 1
Designer:	SPC											
Company:	HR GREEN										-	
Date:	October 1, 202	24									-	
Project:		egment 1 - RR									-	
Location:	COLORADO S	-									-	
Loodion											-	
SITE INFORMATION (Us		l <mark>ue Cells)</mark> Rainfall Depth	0.60	inches								
Depth of Average Ru			0.43	4	atersheds O	utside of the	Denver Regior	n, Figure 3-1 i	in USDCM Vo	ol. 3)		
Area Type	UIA:RPA	SPA	SPA	SPA	SPA	SPA	UIA:RPA	SPA	SPA	SPA	UIA:RPA	UIA:RPA
Area ID	SFB D - RR	SFB D - SPA	EA9	OS2	EA5.2	EA5.3	SFB A - RR	SFB A - SPA	EA5.4	OS3	EDB B - RR (PART 1)	EDB B - RR (PART 2)
Downstream Design Point ID	0 11	11	20	3	4	4.1	15	15	6	7	19	19
Downstream BMP Type		SF	None	None	None	None	SF	SF	None	None	EDB	EDB
DCIA (ft ²)												
UIA (ft ²)							36,477				45,596	45,596
RPA (ft ²)	·						4,601				2,783	2,783
SPA (ft ²)	·	108,305	14,605	13,994	10,105	20,228		27,747	5,422	37,875		
HSG A (%)	,	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
HSG B (%)		100%	100%	100%	100%	100%	100%	100%	100%	100%	100%	100%
HSG C/D (%)		0%	0%	0%	0%	0%	0%	0%	0%	0%	0%	0%
Average Slope of RPA (ft/ft)							0.005				0.005	0.005
UIA:RPA Interface Width (ft)							48.00				70.00	70.00
CALCULATED RUNOFF Area ID	RESULTS	SFB D - SPA	EA9	OS2	EA5.2	EA5.3	SFB A - RR	SFB A - SPA	EA5.4	OS3	B - RR (PAF	B - RR (PAI
UIA:RPA Area (ft ²)) 62,886						41,078				48,379	48,379
L / W Ratio	16.00						16.00				9.87	9.87
UIA / Area	0.9256						0.8880				0.9425	0.9425
Runoff (in)) 0.34	0.00	0.00	0.00	0.00	0.00	0.28	0.00	0.00	0.00	0.38	0.38
Runoff (ft ³)) 1778	0	0	0	0	0	966	0	0	0	1535	1535
Runoff Reduction (ft ³)) 647	5415	730	700	505	1011	554	1387	271	1894	365	365
CALCULATED WQCV R												
	SFB D - RR	SFB D - SPA	EA9	OS2	EA5.2	EA5.3	SFB A - RR	SFB A - SPA	EA5.4	OS3	B - RR (PAF	B - RR (PA
WQCV (ft ³)	·	0	0	0	0	0	1216	0	0	0	1900	1900
WQCV Reduction (ft ³)	,	0	0	0	0	0	554	0	0	0	365	365
WQCV Reduction (%)		0%	0%	0%	0%	0%	46%	0%	0%	0%	19%	19%
Untreated WQCV (ft ³)) 1293	0	0	0	0	0	662	0	0	0	1535	1535
CALCULATED DESIGN		LTS (sums re	sults from a	II columns w	vith the same	Downstrea	m Design Poi	nt ID)				
Downstream Design Point ID	0 11	11	20	3	4	4.1	15	15	6	7	19	19
DOLL (42)) 0	0	0	0	0	0	0	0	0	0	0	0
DCIA (ft ²)	58,205	58,205	0	0	0	0	36,477	36,477	0	0	91,192	91,192
UIA (ft ²)) 50,205	,					1	4 0 0 4			1	
	,	4,681	0	0	0	0	4,601	4,601	0	0	5,566	5,566
UIA (ft ²)) 4,681		0 14,605	0 13,994	0 10,105	0 20,228	4,601 27,747	4,601 27,747	0 5,422	0 37,875	5,566 0	5,566 0
UIA (ft ²) RPA (ft ²)) 4,681) 108,305	4,681						-				
UIA (ft ²) RPA (ft ²) SPA (ft ²)) 4,681) 108,305) 171,191	4,681 108,305	14,605	13,994	10,105	20,228	27,747	27,747	5,422	37,875	0	0

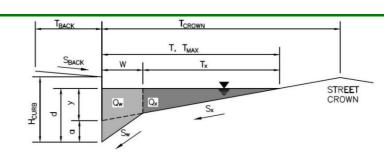
WQCV (ft ³)	1,940	1,940	0	0	0	0	1,216	1,216	0	0	3,800	3,800
WQCV Reduction (ft ³)	647	647	0	0	0	0	554	554	0	0	730	730
WQCV Reduction (%)	33%	33%	0%	0%	0%	0%	46%	46%	0%	0%	19%	19%
Untreated WQCV (ft ³)	1,293	1,293	0	0	0	0	662	662	0	0	3,070	3,070

CALCULATED SITE RESULTS (sums results from all columns in worksheet)

Total Area (ft ²)	775,777	
Total Impervious Area (ft ²)	371,748	
WQCV (ft ³)	6,956	
WQCV Reduction (ft ³)	1,930	
WQCV Reduction (%)	28%	
Untreated WQCV (ft ³)	5,026	

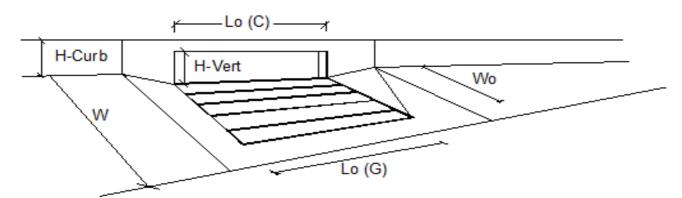
			Desig	n Procedu	re Form: F	Runoff Rec	luction				
				UD-BMP (Ve	ersion 3.07, Ma	rch 2018)					Sheet 1 of 1
	SPC HR GREEN										_
	October 7, 20	24									_
		egment 1 - RR									_
-		SPRINGS, CO									_
Location.	002010120										_
SITE INFORMATION (Us	er Input in B	lue Cells)									
		ainfall Depth	0.60	inches							
Depth of Average Run	noff Producing	g Storm, d ₆ =	0.43	inches (for V	Vatersheds O	utside of the	Denver Regio	n, Figure 3-	I in USDCM	Vol. 3)	
Area Type	SPA	SPA	SPA	UIA:RPA	SPA	UIA:RPA	SPA				
Area ID	EDB B -	EA11	EA13	EA10.1	EA10.1	EA10.2	EA10.2				
	SPA				SPA		SPA				
Downstream Design Point ID	19	22	12	8.1 None	8.1	8.2	8.2				
Downstream BMP Type	EDB	None	None	None	None	None	None 				+ $+$ $ +$
DCIA (ft ²) UIA (ft ²)				2,715		11,050					
RPA (ft ²)	-			2,930		8,500			1		
SPA (ft ²)	75,304	5,412	544		5,540		13,713				
HSG A (%)	0%	0%	0%	0%	0%	0%	0%		1	1	
HSG B (%)	100%	100%	100%	100%	100%	100%	100%				
HSG C/D (%)	0%	0%	0%	0%	0%	0%	0%				
Average Slope of RPA (ft/ft)				0.020		0.100					
UIA:RPA Interface Width (ft)				293.00		850.00					
CALCULATED RUNOFF											
	EDB B - SPA	EA11	EA13	EA10.1	EA10.1 SPA	EA10.2	EA10.2 SPA				
UIA:RPA Area (ft ²)			LA13	5,645	LATU.1 SFA	19,550	LA 10.2 SFA				
L / W Ratio				0.07		0.06					
UIA / Area				0.4810		0.5652					
Runoff (in)	0.00	0.00	0.00	0.00	0.00	0.00	0.00				
Runoff (ft ³)	0	0	0	0	0	0	0				
Runoff Reduction (ft ³)	3765	271	27	113	277	460	686				
				•							
CALCULATED WQCV RE			0								· · · · · · · · · · · · ·
	EDB B - SPA	EA11	EA13	EA10.1	EA10.1 SPA	EA10.2	EA10.2 SPA				
WQCV (ft ³)	0	0	0	113	0	460	0			_	
WQCV Reduction (ft ³)	0	0	0	113	0	460	0			_	
WQCV Reduction (%)	0%	0%	0%	100%	0%	100%	0%				
Untreated WQCV (ft ³)	0	0	0	0	0	0	0		1		
CALCULATED DESIGN F	DOINT DESU	I TS (sume -	oculte from	all columns :	with the com-	Downstree	m Design Bo	int ID)			
Downstream Design Point ID	19	22	12	8.1	8.1	8.2	8.2	int ioj			
DCIA (ft ²)	0	0	0	0.1	0.1	0.2	0.2				
UIA (ft ²)	0	0	0	2,715	2,715	11,050	11,050				
RPA (ft ²)	0	0	0	2,930	2,930	8,500	8,500				
SPA (ft ²)	75,304	5,412	544	5,540	5,540	13,713	13,713		1	1	
Total Area (ft ²)	75,304	5,412	544	11,185	11,185	33,263	33,263		1		
Total Impervious Area (ft ²)	0	0	0	2,715	2,715	11,050	11,050				
WQCV (ft ³)	0	0	0	113	113	460	460				
WQCV Reduction (ft ³)	0	0	0	113	113	460	460				
WQCV Reduction (%)	0%	0%	0%	100%	100%	100%	100%				
Untreated WQCV (ft ³)	0	0	0	0	0	0	0				
CALCULATED SITE RES		s results fron	n all column	s in workshe	et)						
Total Area (ft ²)	170,156										
Total Impervious Area (ft ²)	27,530										
WQCV (ft ³)	574										
WQCV Reduction (ft ³)	574										
WQCV Reduction (%)	100%	1									

Untreated WQCV (ft³) 0


Eastonville Road Segment 1 Final Drainage Report Project No.: 201662.08

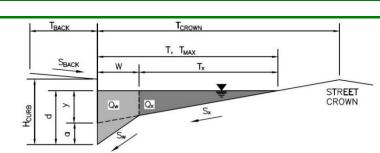
APPENDIX C – HYDRAULIC CALCULATIONS

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

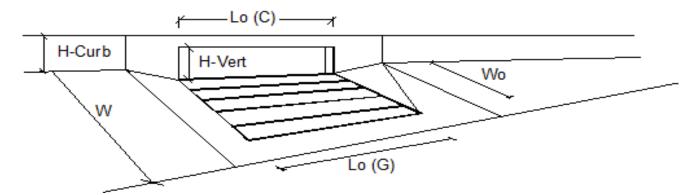

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) Project: Eastonville Road - Segment 1 Improvements

Inlet ID: Inlet DP9

Gutter Geometry:	
Maximum Allowable Width for Spread Behind Curb	T _{BACK} = 2.5 ft
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = 0.020$ ft/ft
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$n_{BACK} = 0.020$
Height of Curb at Gutter Flow Line	H _{CURB} = 6.00 inches
Distance from Curb Face to Street Crown	$T_{CROWN} = 26.0$ ft
Gutter Width	W = 2.00 ft
Street Transverse Slope	$S_{X} = 0.020$ ft/ft
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_W = 0.083$ ft/ft
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = 0.005$ ft/ft
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text{STREET}} = 0.012$
	Minor Storm Major Storm
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = 20.0$ 26.0 ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} = 6.0$ 6.5 inches
Allow Flow Depth at Street Crown (check box for yes, leave blank for no)	
MINOR STORM Allowable Capacity is based on Depth Criterion	Minor Storm Major Storm
MAJOR STORM Allowable Capacity is based on Depth Criterion	$Q_{allow} = $ 13.0 17.0 cfs
Minor storm max. allowable capacity GOOD - greater than the design peak	
lajor storm max. allowable capacity GOOD - greater than the design peak	· · · · · · · · · · · · · · · · · · ·


INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_o =$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_o =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.6	4.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o	C% =	100	100	%

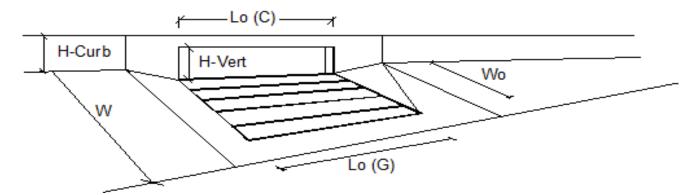

ALLOWABLE CAPACITY APACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road - Segment 1 Improvements Inlet ID: Inlet DP10

1AJOR STORM Allowable Capacity is based on Depth Criterion 1inor storm max. allowable capacity GOOD - greater than the design peak 1	Q _{allow} = [low of 2.50 cfs o	13.0 on sheet 'Inlet	17.0 Management'	cfs
11NOR STORM Allowable Capacity is based on Depth Criterion	о Г	Minor Storm	Major Storm	
llow Flow Depth at Street Crown (check box for yes, leave blank for no)				
1ax. Allowable Depth at Gutter Flowline for Minor & Major Storm	d _{MAX} =	6.0	6.5	inches
1ax. Allowable Spread for Minor & Major Storm	T _{MAX} =	20.0	26.0	ft
	-	Minor Storm	Major Storm	_
Ianning's Roughness for Street Section (typically between 0.012 and 0.020)	n _{street} =	0.012	J	
Street Longitudinal Slope - Enter 0 for sump condition	S _O =		ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =		ft/ft	
Street Transverse Slope	S _X =	0.020	ft/ft	
Sutter Width	W =	2.00	ft	
Distance from Curb Face to Street Crown	T _{CROWN} =		ft	
leight of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Ianning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.020	J	
ide Slope Behind Curb (leave blank for no conveyance credit behind curb)	S _{BACK} =		ft/ft	
Iaximum Allowable Width for Spread Behind Curb	T _{BACK} =	23.5	ft	

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023)

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	3	3	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_{o} =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
<u>Street Hydraulics: OK - Q < Allowable Street Capacity'</u>	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.5	5.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o	C% =	100	100	%


ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor & Major Storm)

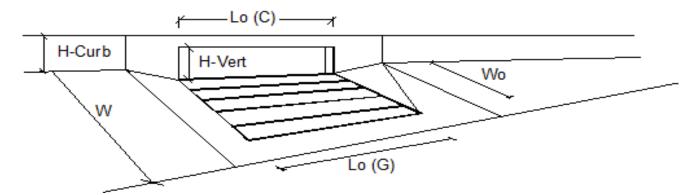
(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road - Segment 1 Improvements

Inlet ID: Inlet DP13 TBACK TCROWN T, T_{MAX} SBACK W Tx STREET Qw Gutter Geometry: Maximum Allowable Width for Spread Behind Curb $T_{BACK} =$ 2.5 ft Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft $S_{BACK} =$ Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 $n_{BACK} =$ Height of Curb at Gutter Flow Line $H_{CURB} =$ 6.00 inches Distance from Curb Face to Street Crown 26.0 T_{CROWN} = ft Gutter Width W = 2.00 ft Street Transverse Slope 0.020 ft/ft $S_X =$ Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W =$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition $S_0 =$ 0.018 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.012 $n_{\text{STREET}} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm $T_{MAX} =$ 20.0 26.0 ft Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} = 6.0 6.5 inches Allow Flow Depth at Street Crown (check box for yes, leave blank for no) \Box \square MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 24.6 29.2 cfs $Q_{allow} =$ Minor storm max. allowable capacity GOOD - greater than the design peak flow of 1.80 cfs on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design peak flow of 3.00 cfs on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023)

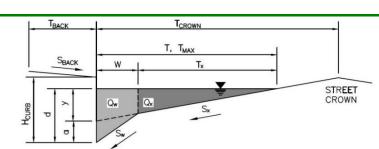
Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_{o} =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
<u>Street Hydraulics: OK - Q < Allowable Street Capacity'</u>	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.8	3.0	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o	C% =	100	100	%

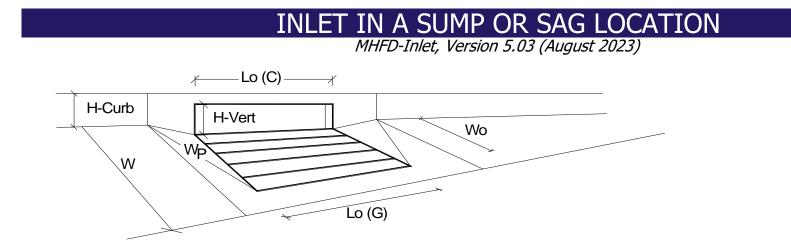

(Minor & Major Storm) ALLOWABLE CAPACIT FOR ONE-HALF OF STREET

(Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)

Project: Eastonville Road - Segment 1 Improvements

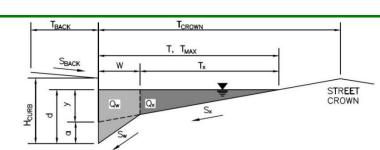
Inlet ID: Inlet DP14 TBACK TCROWN T, T_{MAX} SBACK W Tx STREET Qw Gutter Geometry: Maximum Allowable Width for Spread Behind Curb $T_{BACK} =$ 23.5 ft Side Slope Behind Curb (leave blank for no conveyance credit behind curb) 0.020 ft/ft $S_{BACK} =$ Manning's Roughness Behind Curb (typically between 0.012 and 0.020) 0.020 $n_{BACK} =$ Height of Curb at Gutter Flow Line $H_{CURB} =$ 6.00 inches Distance from Curb Face to Street Crown 26.0 T_{CROWN} = ft Gutter Width W = 2.00 ft Street Transverse Slope 0.020 ft/ft $S_X =$ Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) $S_W =$ 0.083 ft/ft Street Longitudinal Slope - Enter 0 for sump condition $S_0 =$ 0.018 ft/ft Manning's Roughness for Street Section (typically between 0.012 and 0.020) 0.012 $n_{\text{STREET}} =$ Minor Storm Major Storm Max. Allowable Spread for Minor & Major Storm $T_{MAX} =$ 20.0 26.0 ft Max. Allowable Depth at Gutter Flowline for Minor & Major Storm d_{MAX} = 6.0 6.5 inches Allow Flow Depth at Street Crown (check box for yes, leave blank for no) \Box \square MINOR STORM Allowable Capacity is based on Depth Criterion Minor Storm Major Storm MAJOR STORM Allowable Capacity is based on Depth Criterion 24.6 29.2 cfs $Q_{allow} =$ Minor storm max. allowable capacity GOOD - greater than the design peak flow of 1.70 cfs on sheet 'Inlet Management' Major storm max. allowable capacity GOOD - greater than the design peak flow of 2.90 cfs on sheet 'Inlet Management'

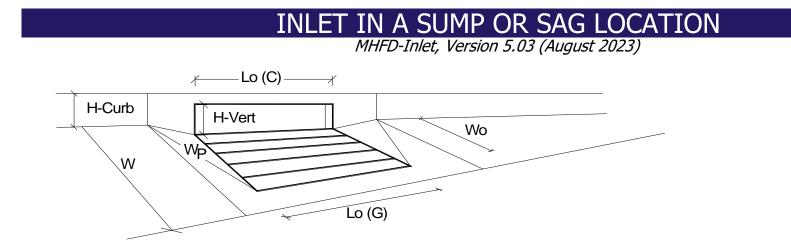

INLET ON A CONTINUOUS GRADE MHFD-Inlet, Version 5.03 (August 2023)


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	2	2	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_{o} =$	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_{o} =$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f (G) =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
<u>Street Hydraulics: OK - Q < Allowable Street Capacity'</u>	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =[1.7	2.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q_a/Q_o	C% =	100	100	%

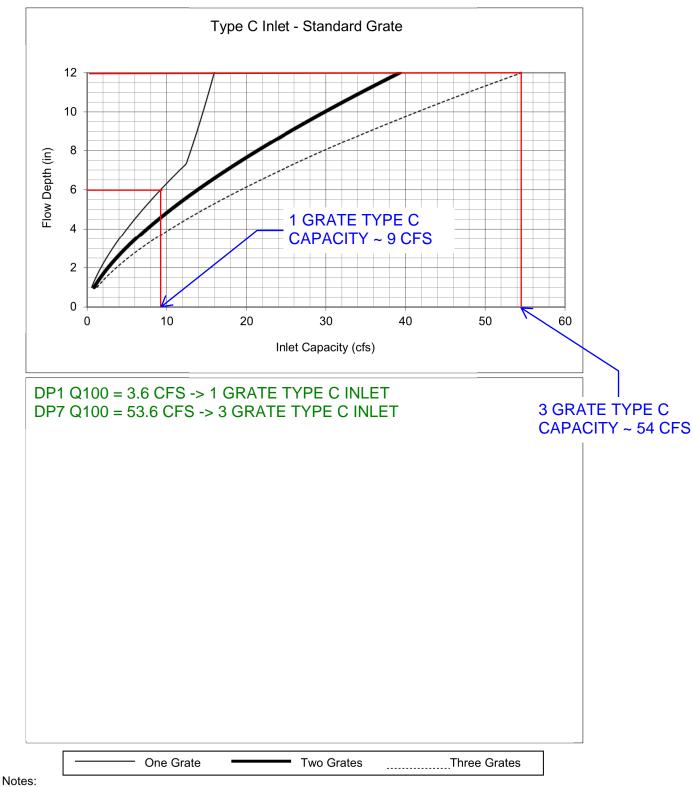
APACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) mprovements ALLOWABLE CAPACITY

Project: Eastonville Road - Segment 1 Improvements Inlet ID: Inlet DP16

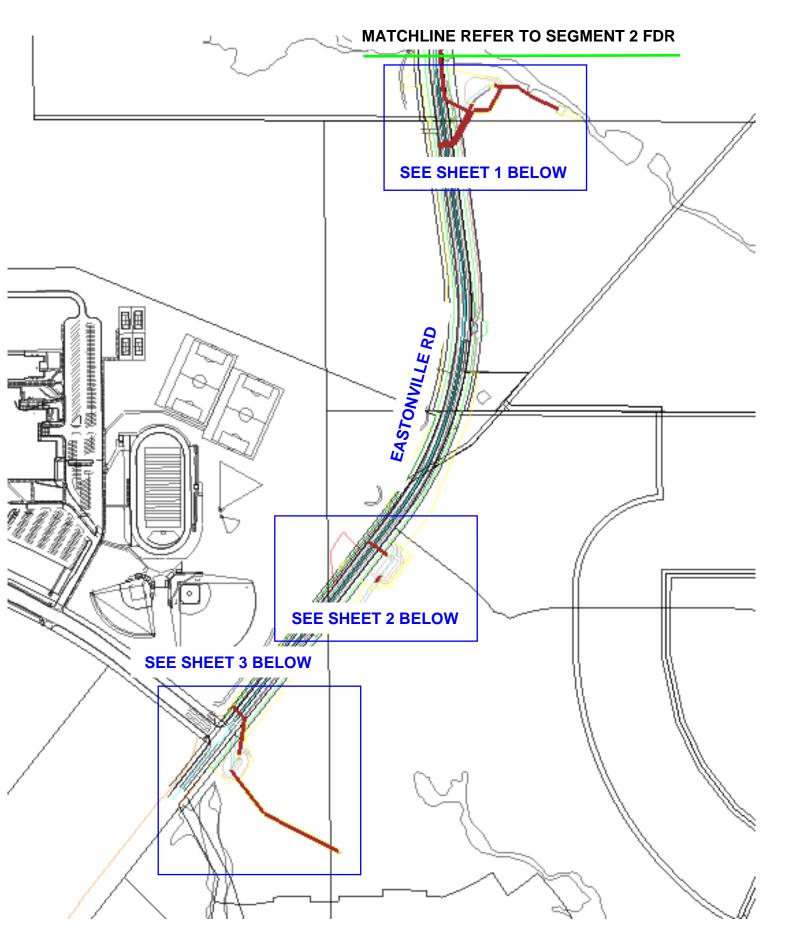

<u>Gutter Geometry:</u> Maximum Allowable Width for Spread Behind Curb	$T_{BACK} = 2.5$ ft
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} = 0.020$ ft/ft
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} = 0.020
Height of Curb at Gutter Flow Line	H _{CURB} = 6.00 inches
Distance from Curb Face to Street Crown	$T_{CROWN} = 26.0$ ft
Gutter Width	W = 2.00 ft
Street Transverse Slope	$S_{x} = 0.020$ ft/ft
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	$S_{W} = 0.083$ ft/ft
Street Longitudinal Slope - Enter 0 for sump condition	$S_0 = 0.000$ ft/ft
Manning's Roughness for Street Section (typically between 0.012 and 0.020)	$n_{\text{STREET}} = 0.012$
	Minor Storm Major Storm
Max. Allowable Spread for Minor & Major Storm	$T_{MAX} = 20.0$ 26.0 ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	$d_{MAX} = 6.0$ 6.5 inches
Check boxes are not applicable in SUMP conditions	
	Minor Storm Major Storm
MINOR STORM Allowable Capacity is not applicable to Sump Condition	

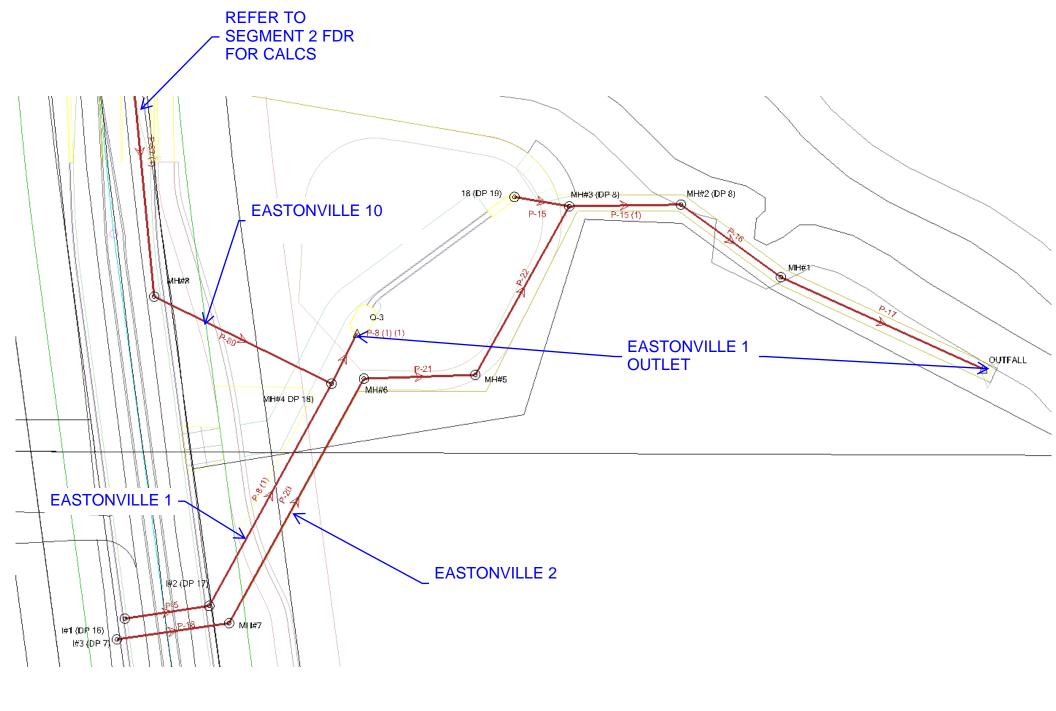

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.5	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_{o} =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	а –	N/A	MAJOR N/A	Πft
Depth for Curb Opening Weir Equation	d _{Grate} =	0.33	0.38	-n ft
Grated Inlet Performance Reduction Factor for Long Inlets	d _{Curb} = RF _{Grate} =	0.33 N/A	0.38 N/A	
Curb Opening Performance Reduction Factor for Long Inlets		0.93	0.96	-
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.93 N/A	0.96 N/A	-
Combination Thet Performance Reduction Factor for Long Thets	$RF_{Combination} =$	IN/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	10.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	3.1	5.2	cfs

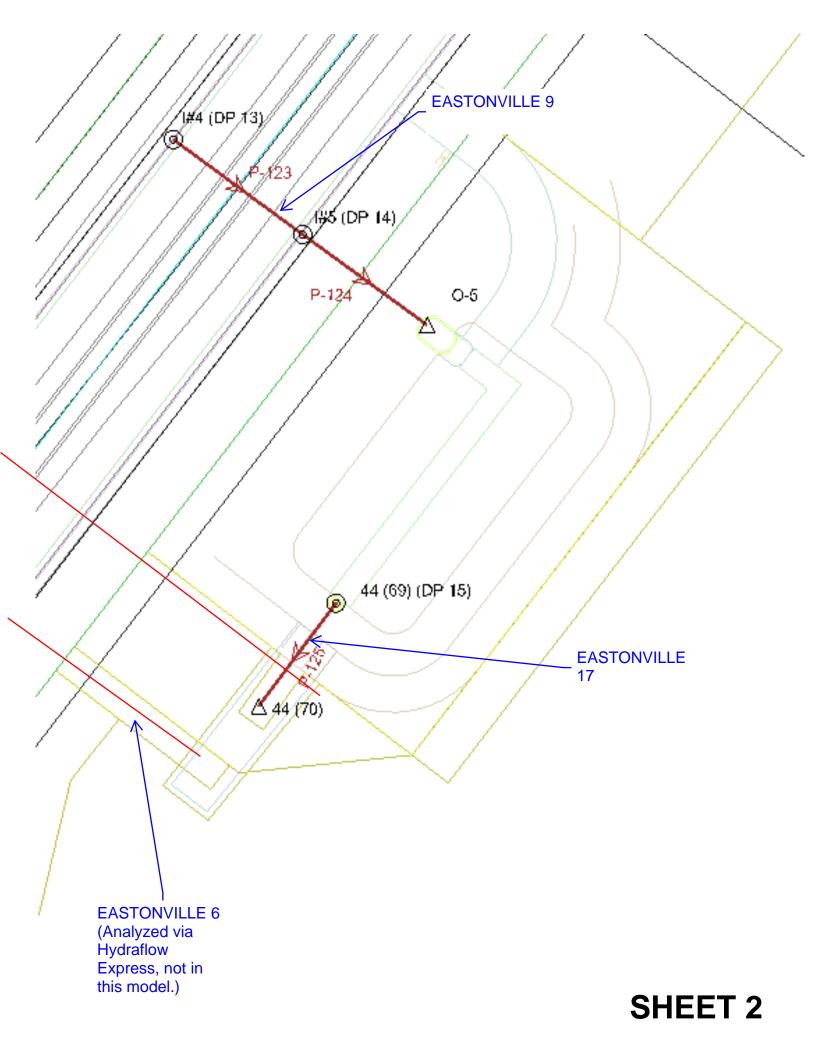
APACITY FOR ONE-HALF OF STREET (Minor & Major Storm) (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread) mprovements ALLOWABLE CAPACITY

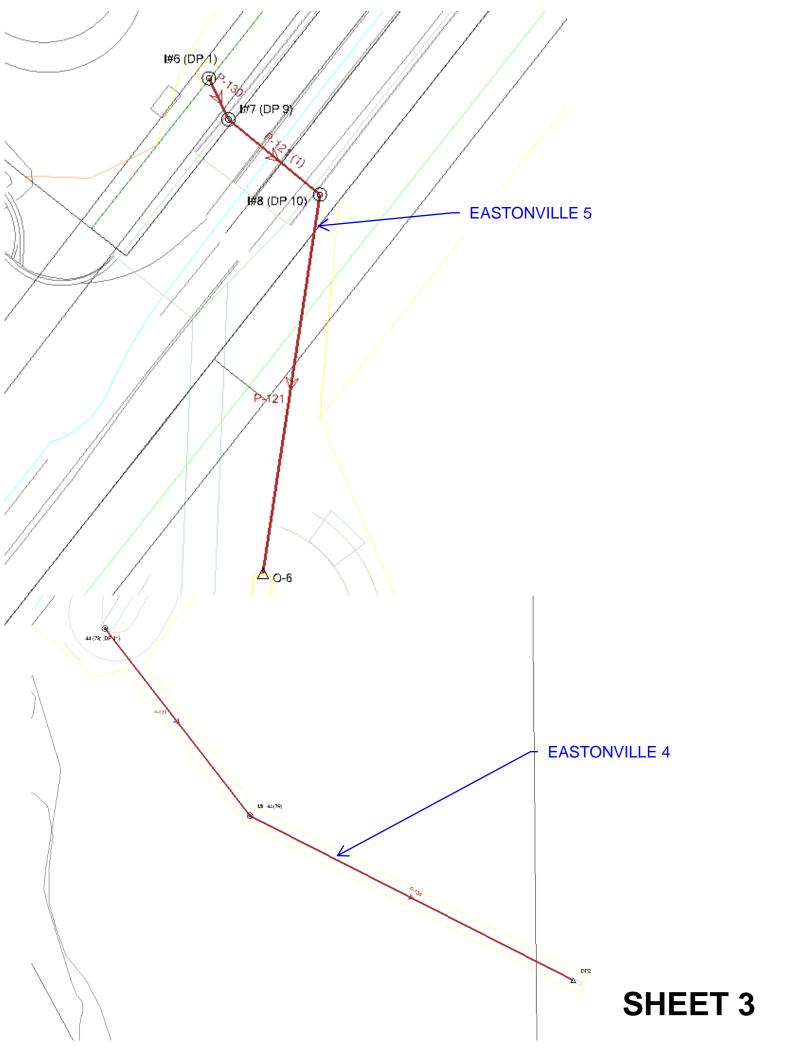

Project: Eastonville Road - Segment 1 Improvements Inlet ID: Inlet DP17

<u>Gutter Geometry:</u> Maximum Allowable Width for Spread Behind Curb Side Slope Behind Curb (leave blank for no conveyance credit behind curb) Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	$T_{BACK} = 23.5$ ft $S_{BACK} = 0.020$ ft/ft $n_{BACK} = 0.020$
Height of Curb at Gutter Flow Line Distance from Curb Face to Street Crown Gutter Width Street Transverse Slope Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft) Street Longitudinal Slope - Enter 0 for sump condition Manning's Roughness for Street Section (typically between 0.012 and 0.020)	
Max. Allowable Spread for Minor & Major Storm Max. Allowable Depth at Gutter Flowline for Minor & Major Storm Check boxes are not applicable in SUMP conditions	$T_{MAX} = \underbrace{\begin{array}{c} Minor Storm \\ 20.0 \\ d_{MAX} \end{array}}_{MAX} = \underbrace{\begin{array}{c} 20.0 \\ 6.0 \\ 6.5 \\ \end{array}}_{Inches}$
MINOR STORM Allowable Capacity is not applicable to Sump Condition MAJOR STORM Allowable Capacity is not applicable to Sump Condition	Minor Storm Major Storm Q _{allow} = SUMP SUMP cfs


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	6.5	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet
Width of a Unit Grate	$W_o =$	N/A	N/A	feet
Open Area Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$L_{o}(C) =$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$H_{throat} =$	6.00	6.00	inches
Angle of Throat	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$d_{Curb} =$	0.33	0.38	ft
Grated Inlet Performance Reduction Factor for Long Inlets	$RF_{Grate} =$	N/A	N/A	
Curb Opening Performance Reduction Factor for Long Inlets	$RF_{Curb} =$	0.93	0.96	-
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	N/A	N/A	-
Combination Theer enormance Reduction ractor for Long Thees		11/7		_
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	8.3	10.2	cfs
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$Q_{PEAK REQUIRED} =$	3.2	5.4	cfs

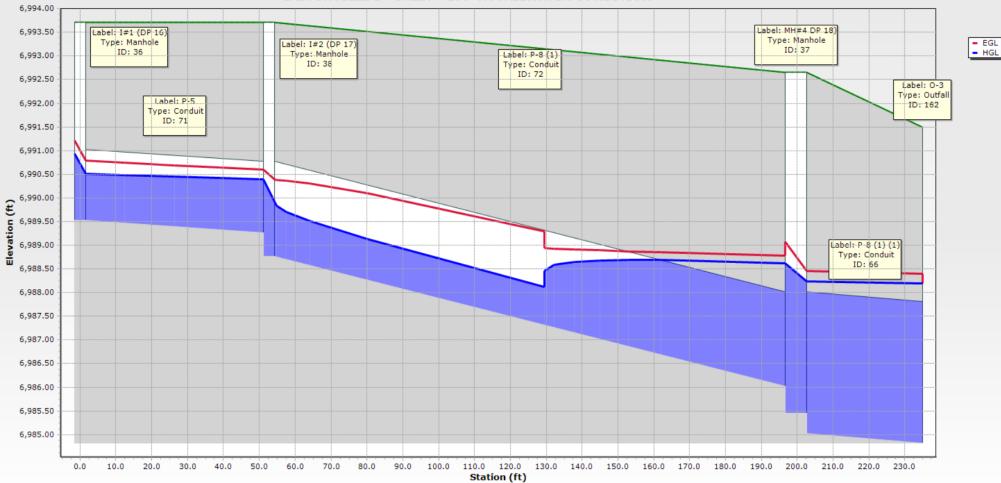



1. The standard inlet parameters must apply to use these charts.


STORMCAD NETWORK LAYOUT: SEGMENT 1

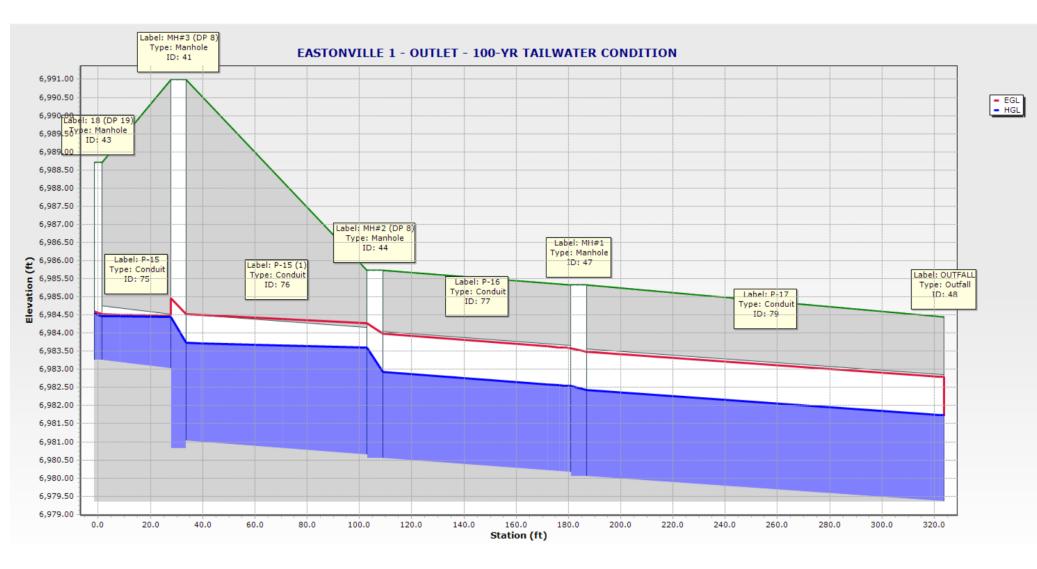
100 YEAR TAILWATER CONDITION: PIPE SUMMARY TABLE

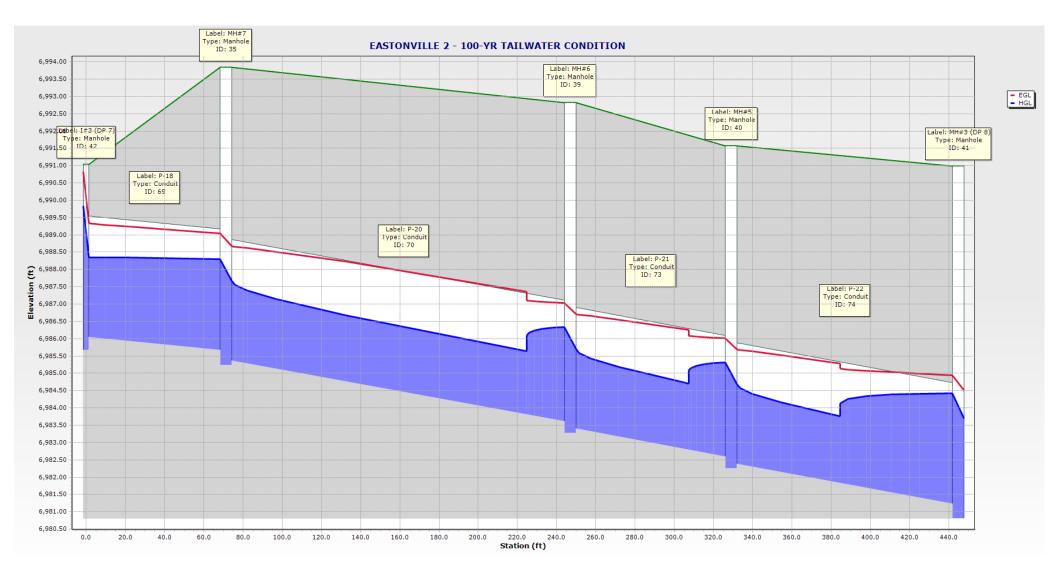
	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
56: P-8 (1) (1)	MH#4 DP 18)	6,985.02	0-3	6,984.82	35.3	0.006	36.0	0.013	26.00	3.68	50.23	51.8	6,988.24	6,988.19
57: P-124	I#5 (DP 14)	6,983.07	O-5	6,981.82	52.9	0.024	18.0	0.013	5.60	8.31	16.15	34.7	6,983.98	6,982.44
59: P-18	I#3 (DP 7)	6,986.04	MH#7	6,985.68	71.3	0.005	42.0	0.013	53.60	8.15	71.48	75.0	6,988.34	6,988.30
70: P-20	MH#7	6,985.37	MH#6	6,983.61	175.6	0.010	42.0	0.013	53.60	10.63	100.73	53.2	6,987.66	6,986.34
71: P-5	I#1 (DP 16)	6,989.53	I#2 (DP 17)	6,989.27	52.7	0.005	18.0	0.013	5.20	4.52	7.38	70.5	6,990.51	6,990.40
72: P-8 (1)	I#2 (DP 17)	6,988.77	MH#4 DP 18)	6,986.02	147.0	0.019	24.0	0.013	10.30	8.86	30.94	33.3	6,989.92	6,988.6
'3: P-21	MH#6	6,983.41	MH#5	6,982.59	82.2	0.010	42.0	0.013	53.60	10.61	100.49	53.3	6,985.70	6,985.3
4: P-22	MH#5	6,982.39	MH#3 (DP 8)	6,981.23	115.7	0.010	42.0	0.013	53.60	10.63	100.72	53.2	6,984.68	6,984.4
5: P-15	18 (DP 19)	6,983.25	MH#3 (DP 8)	6,983.03	30.8	0.007	18.0	0.013	2.90	4.50	8.88	32.7	6,984.46	6,984.4
'6: P-15 (1)	MH#3 (DP 8)	6,981.03	MH#2 (DP 8)	6,980.65	75.1	0.005	42.0	0.013	57.20	8.26	71.57	79.9	6,983.73	6,983.6
77: P-16	MH#2 (DP 8)	6,980.55	MH#1	6,980.16	78.1	0.005	42.0	0.013	57.20	8.22	71.10	80.4	6,982.93	6,982.5
8: P-123	I#4 (DP 13)	6,983.43	I#5 (DP 14)	6,983.17	52.0	0.005	18.0	0.013	3.00	3.98	7.43	40.4	6,984.40	6,984.3
79: P-17	MH#1	6,980.06	OUTFALL	6,979.36	139.8	0.005	42.0	0.013	57.20	8.23	71.18	80.4	6,982.44	6,981.7
0: P-125	44 (69) (DP 15)	6,978.42	44 (70)	6,978.21	42.5	0.005	18.0	0.013	1.00	2.94	7.45	13.4	6,978.80	6,978.5
4: P-121	I#8 (DP 10)	6,964.14	0-6	6,963.31	166.4	0.005	24.0	0.013	13.90	5.73	15.98	87.0	6,965.58	6,964.9
5: P-130	I#6 (DP 1)	6,966.33	I#7 (DP 9)	6,965.90	21.3	0.020	18.0	0.013	3.60	6.95	14.93	24.1	6,967.81	6,967.7
87: P-121 (1)	I#7 (DP 9)	6,965.70	I#8 (DP 10)	6,964.64	53.0	0.020	18.0	0.013	9.30	8.87	14.86	62.6	6,966.88	6,966.1
8: P-131	44 (78) (DP 11)	6,960.12	MH-44(79)	6,958.89	245.4	0.005	18.0	0.013	4.60	4.43	7.44	61.9	6,960.97	6,959.8
27: P-89	MH#8	6,986.76	MH#4 DP 18)	6,986.02	116.1	0.006	24.0	0.013	19.90	6.33	18.06	110.2	6,989.51	6,988.6
.46: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	17.20	9.29	27.70	62.1	6,991.26	6,989.9
244: P-136	MH-44(79)	6,958.69	DP2	6,955.81	373.7	0.008	18.0	0.013	4.60	5.22	9.22	49.9	6,959.51	6,956.5

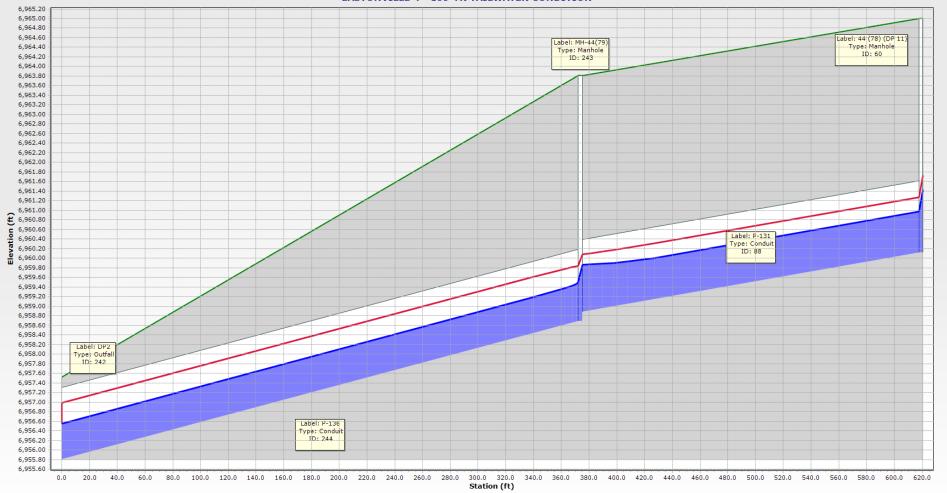

NOTE: EASTONVILLE 1, 5, & 9 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 2 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

100 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

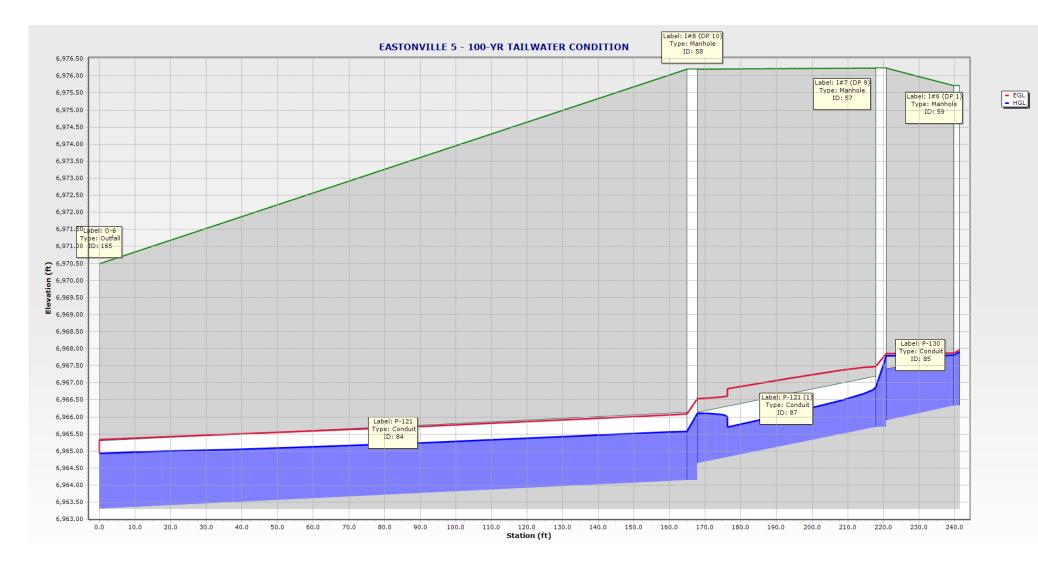
	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
35: MH#7	6,993.84	6,993.84	6,985.68	53.60	6,987.66	Standard	6,988.30
36: I#1 (DP 16	6,993.71	6,993.71	(N/A)	5.20	6,990.51	Standard	6,990.93
37: MH#4 DP	6,992.66	6,992.66	6,986.02	26.00	6,988.24	Standard	6,988.62
38: I#2 (DP 17	6,993.71	6,993.71	6,989.27	10.30	6,989.92	Standard	6,990.40
39: MH#6	6,992.82	6,992.82	6,983.61	53.60	6,985.70	Standard	6,986.34
40: MH#5	6,991.57	6,991.57	6,982.59	53.60	6,984.68	Standard	6,985.32
41: MH#3 (DP	6,990.99	6,990.99	6,981.23	57.20	6,983.73	Standard	6,984.45
42: I#3 (DP 7)	6,991.04	6,991.04	(N/A)	53.60	6,988.34	Standard	6,989.83
43: 18 (DP 19)	6,988.70	6,988.70	(N/A)	2.90	6,984.46	Standard	6,984.54
44: MH#2 (DP	6,985.73	6,985.73	6,980.65	57.20	6,982.93	Standard	6,983.60
45: I#4 (DP 13	6,987.25	6,987.25	(N/A)	3.00	6,984.40	Standard	6,984.54
46: I#5 (DP 14	6,987.25	6,987.25	6,983.17	5.60	6,983.98	Standard	6,984.38
47: MH#1	6,985.33	6,985.33	6,980.16	57.20	6,982.44	Standard	6,982.54
49: 44 (69) (D	6,982.25	6,982.25	(N/A)	1.00	6,978.80	Standard	6,978.81
57: I#7 (DP 9)	6,976.23	6,976.23	6,965.90	9.30	6,966.88	Standard	6,967.79
58: I#8 (DP 10	6,976.19	6,976.19	6,964.64	13.90	6,965.58	Standard	6,966.10
59: I#6 (DP 1)	6,975.72	6,975.72	(N/A)	3.60	6,967.81	Standard	6,967.91
60: 44 (78) (D	6,965.00	6,965.00	(N/A)	4.60	6,960.97	Standard	6,961.43
120: MH#8	6,995.46	6,995.46	6,986.86	19.90	6,989.51	Standard	6,989.91
243: MH-44(79	6,963.81	6,963.81	6,958.89	4.60	6,959.51	Standard	6,959.86

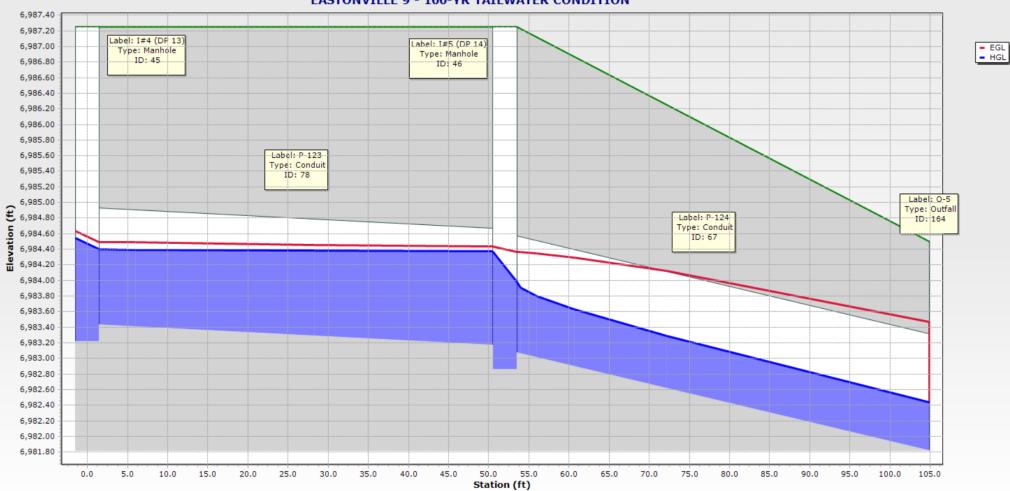

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
48: OUTFALL	6,984.45	6,979.36	Free Outfall		6,981.73	57.20
53: 44 (70)	6,979.71	6,978.21	Free Outfall		6,978.58	1.00
162: 0-3	6,991.50	6,984.82	User Defined Tailwater	6,988.19	6,988.19	26.00
164: 0-5	6,984.50	6,981.82	User Defined Tailwater	6,982.14	6,982.44	5.60
165: 0-6	6,970.50	6,963.31	User Defined Tailwater	6,964.94	6,964.94	13.90
242: DP2	6,957.52	6,955.81	Free Outfall		6,956.56	4.60


NOTE: EASTONVILLE 1, 5 & 9 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 2 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

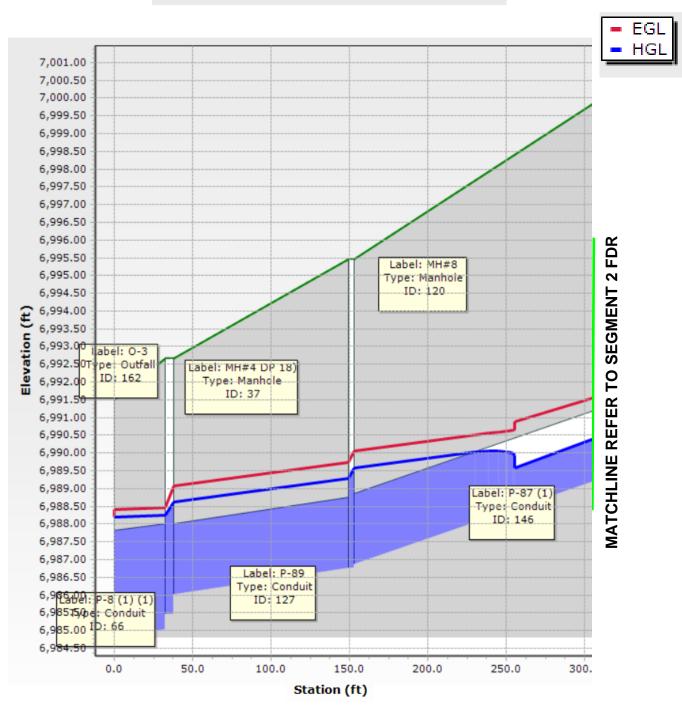


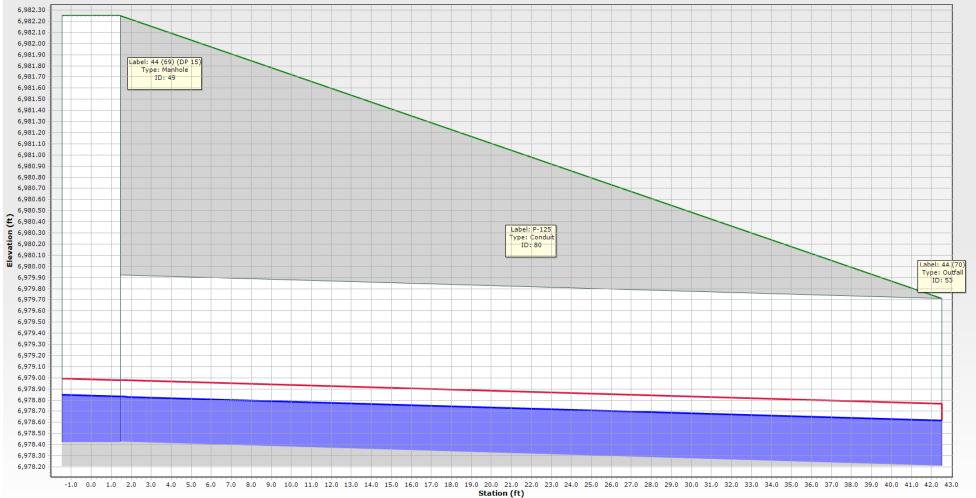
EASTONVILLE 1 - INLET - 100-YR TAILWATER CONDITION


NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS



EASTONVILLE 4 - 100-YR TAILWATER CONDITION


NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS


EASTONVILLE 9 - 100-YR TAILWATER CONDITION

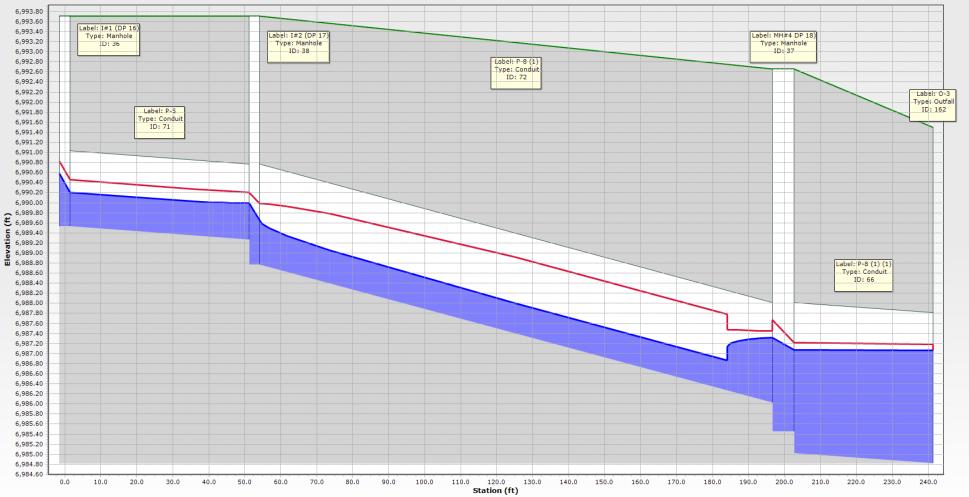
NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS

EASTONVILLE 10 - 100-YR TAILWATER CONDITION

= EGL = HGL

5 YEAR TAILWATER CONDITION: PIPE SUMMARY TABLE

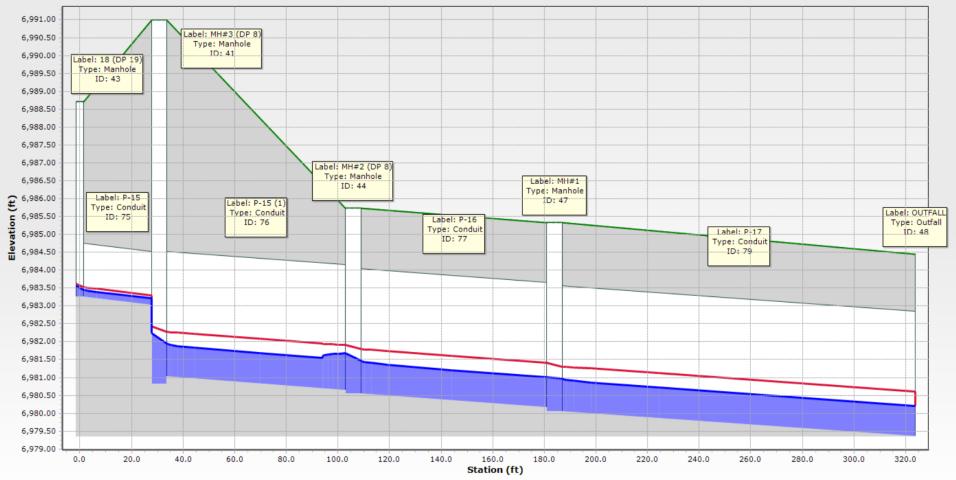
	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
66: P-8 (1) (1)	MH#4 DP 18)	6,985.02	O-3	6,984.82	35.3	0.006	36.0	0.013	15.50	6.26	50.23	30.9	6,987.07	6,987.07
67: P-124	I#5 (DP 14)	6,983.07	O-5	6,981.82	52.9	0.024	18.0	0.013	3.30	7.18	16.15	20.4	6,983.76	6,982.28
69: P-18	I#3 (DP 7)	6,986.04	MH#7	6,985.68	71.3	0.005	42.0	0.013	8.00	4.91	71.48	11.2	6,986.89	6,986.47
70: P-20	MH#7	6,985.37	MH#6	6,983.61	175.6	0.010	42.0	0.013	8.00	6.26	100.73	7.9	6,986.22	6,984.28
71: P-5	I#1 (DP 16)	6,989.53	I#2 (DP 17)	6,989.27	52.7	0.005	18.0	0.013	3.10	3.99	7.38	42.0	6,990.21	6,989.99
72: P-8 (1)	I#2 (DP 17)	6,988.77	MH#4 DP 18)	6,986.02	147.0	0.019	24.0	0.013	6.20	7.69	30.94	20.0	6,989.65	6,987.32
73: P-21	MH#6	6,983.41	MH#5	6,982.59	82.2	0.010	42.0	0.013	8.00	6.25	100.49	8.0	6,984.26	6,983.26
74: P-22	MH#5	6,982.39	MH#3 (DP 8)	6,981.23	115.7	0.010	42.0	0.013	8.00	6.26	100.72	7.9	6,983.24	6,982.24
75: P-15	18 (DP 19)	6,983.25	MH#3 (DP 8)	6,983.03	30.8	0.007	18.0	0.013	0.30	2.33	8.88	3.4	6,983.45	6,983.22
76: P-15 (1)	MH#3 (DP 8)	6,981.03	MH#2 (DP 8)	6,980.65	75.1	0.005	42.0	0.013	9.20	5.12	71.57	12.9	6,981.95	6,981.68
77: P-16	MH#2 (DP 8)	6,980.55	MH#1	6,980.16	78.1	0.005	42.0	0.013	9.20	5.09	71.10	12.9	6,981.47	6,981.01
78: P-123	I#4 (DP 13)	6,983.43	I#5 (DP 14)	6,983.17	52.0	0.005	18.0	0.013	1.80	3.46	7.43	24.2	6,984.04	6,984.03
79: P-17	MH#1	6,980.06	OUTFALL	6,979.36	139.8	0.005	42.0	0.013	9.20	5.10	71.18	12.9	6,980.98	6,980.21
80: P-125	44 (69) (DP 15)	6,978.42	44 (70)	6,978.21	42.5	0.005	18.0	0.013	0.06	1.27	7.45	0.8	6,978.52	6,978.30
84: P-121	I#8 (DP 10)	6,964.14	0-6	6,963.31	166.4	0.005	24.0	0.013	5.40	4.59	15.98	33.8	6,964.96	6,964.47
85: P-130	I#6 (DP 1)	6,966.33	I#7 (DP 9)	6,965.90	21.3	0.020	18.0	0.013	0.50	3.91	14.93	3.3	6,966.78	6,966.79
87: P-121 (1)	I#7 (DP 9)	6,965.70	I#8 (DP 10)	6,964.64	53.0	0.020	18.0	0.013	3.30	6.76	14.86	22.2	6,966.39	6,965.12
88: P-131	44 (78) (DP 11)	6,960.12	MH-44(79)	6,958.89	245.4	0.005	18.0	0.013	0.40	2.24	7.44	5.4	6,960.36	6,959.12
127: P-89	MH#8	6,986.76	MH#4 DP 18)	6,986.02	116.1	0.006	24.0	0.013	10.20	5.92	18.06	56.5	6,987.90	6,987.32
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	10.20	8.15	27.70	36.8	6,990.90	6,988.20
244: P-136	MH-44(79)	6,958.69	DP2	6,955.81	373.7	0.008	18.0	0.013	0.40	2.60	9.22	4.3	6,958.92	6,956.02


NOTE: EASTONVILLE 1, 5 & 9 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 2 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

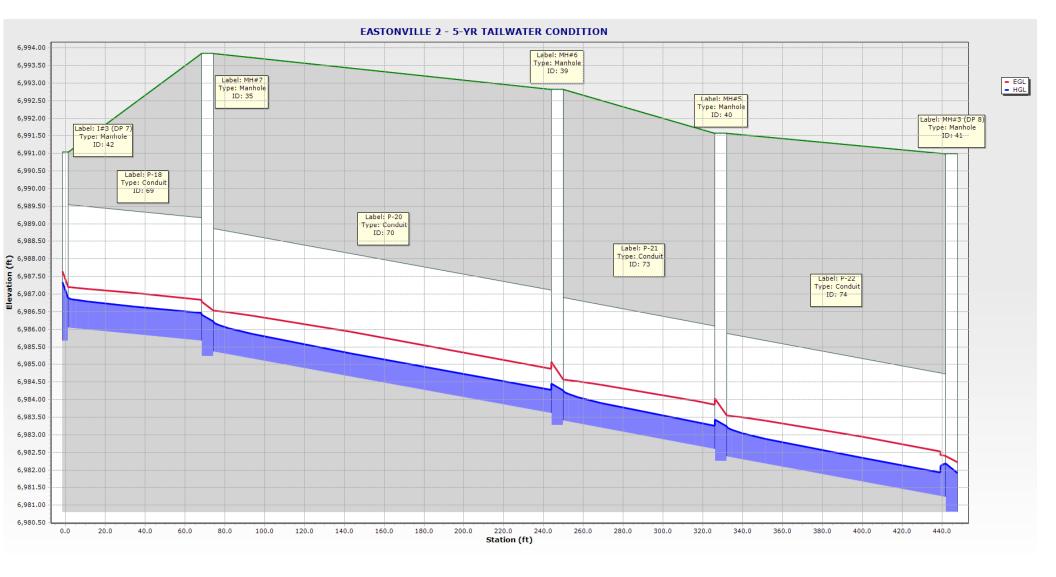
5 YEAR TAILWATER CONDITION: STRUCTURE SUMMARY TABLE

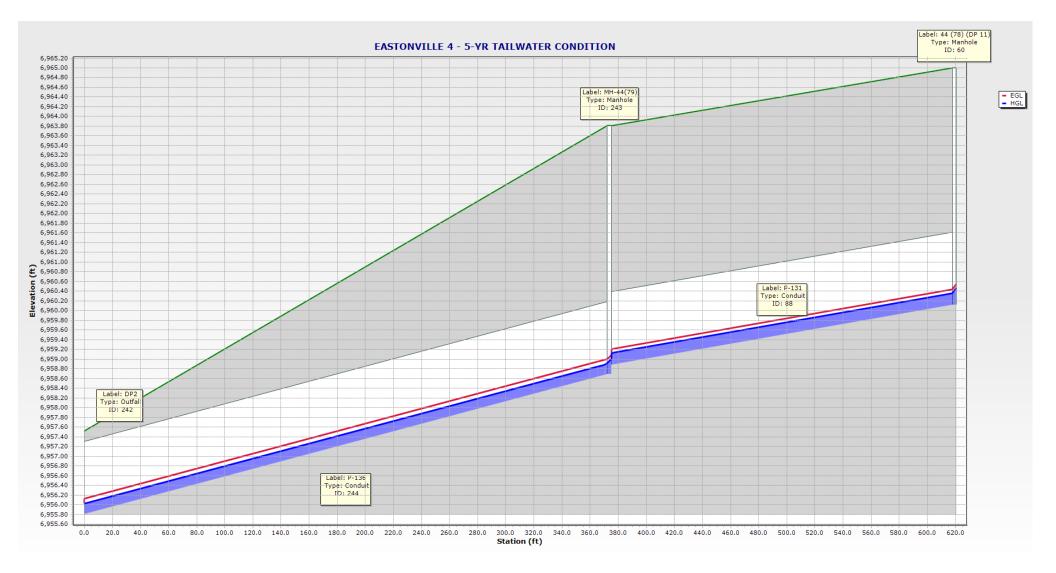
	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
35: MH#7	6,993.84	6,993.84	6,985.68	8.00	6,986.22	Standard	6,986.42
36: I#1 (DP 16	6,993.71	6,993.71	(N/A)	3.10	6,990.21	Standard	6,990.58
37: MH#4 DP	6,992.66	6,992.66	6,986.02	15.50	6,987.07	Standard	6,987.32
38: I#2 (DP 17	6,993.71	6,993.71	6,989.27	6.20	6,989.65	Standard	6,989.99
39: MH#6	6,992.82	6,992.82	6,983.61	8.00	6,984.26	Standard	6,984.46
40: MH#5	6,991.57	6,991.57	6,982.59	8.00	6,983.24	Standard	6,983.44
41: MH#3 (DP	6,990.99	6,990.99	6,981.23	9.20	6,981.95	Standard	6,982.24
42: I#3 (DP 7)	6,991.04	6,991.04	(N/A)	8.00	6,986.89	Standard	6,987.35
43: 18 (DP 19)	6,988.70	6,988.70	(N/A)	0.30	6,983.45	Standard	6,983.56
44: MH#2 (DP	6,985.73	6,985.73	6,980.65	9.20	6,981.47	Standard	6,981.68
45: I#4 (DP 13	6,987.25	6,987.25	(N/A)	1.80	6,984.04	Standard	6,984.21
46: I#5 (DP 14	6,987.25	6,987.25	6,983.17	3.30	6,983.76	Standard	6,984.03
47: MH#1	6,985.33	6,985.33	6,980.16	9.20	6,980.98	Standard	6,981.01
49: 44 (69) (D	6,982.25	6,982.25	(N/A)	0.06	6,978.52	Standard	6,978.52
57: I#7 (DP 9)	6,976.23	6,976.23	6,965.90	3.30	6,966.39	Standard	6,966.79
58: I#8 (DP 10	6,976.19	6,976.19	6,964.64	5.40	6,964.96	Standard	6,965.27
59: I#6 (DP 1)	6,975.72	6,975.72	(N/A)	0.50	6,966.78	Standard	6,966.81
60: 44 (78) (D	6,965.00	6,965.00	(N/A)	0.40	6,960.36	Standard	6,960.47
120: MH#8	6,995.46	6,995.46	6,986.86	10.20	6,987.90	Standard	6,988.20
243: MH-44(79	6,963.81	6,963.81	6,958.89	0.40	6,958.92	Standard	6,959.01

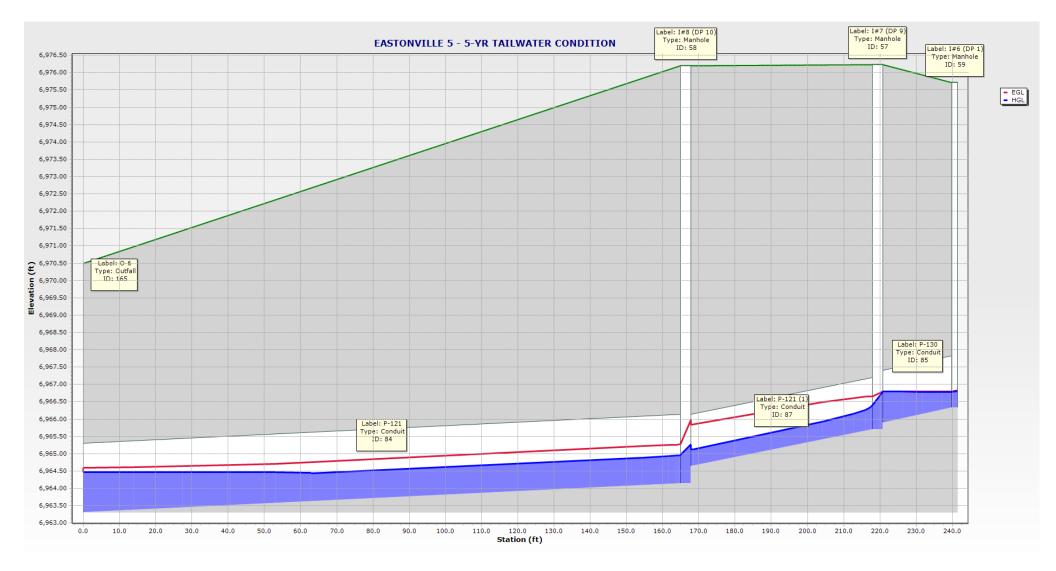
	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
48: OUTFALL	6,984.45	6,979.36	Free Outfall		6,980.21	9.20
53: 44 (70)	6,979.71	6,978.21	Free Outfall		6,978.30	0.06
162: 0-3	6,991.50	6,984.82	User Defined Tailwater	6,987.07	6,987.07	15.50
164: 0-5	6,984.50	6,981.82	User Defined Tailwater	6,981.93	6,982.28	3.30
165: 0-6	6,970.50	6,963.31	User Defined Tailwater	6,964.47	6,964.47	5.40
242: DP2	6,957.52	6,955.81	Free Outfall		6,956.02	0.40


NOTE: EASTONVILLE 1, 5 & 9 SEGMENTS HAVE BEEN ANALYZED IN THE FREE OUTFALL CONDITION BELOW TO MEET CAPACITY & VELOCITY REQUIREMENTS. SEGMENT 2 PIPES & STRUCTURES INCLUDED IN TABLE, REFER TO FDR FOR COMPLETE ANALYSIS.

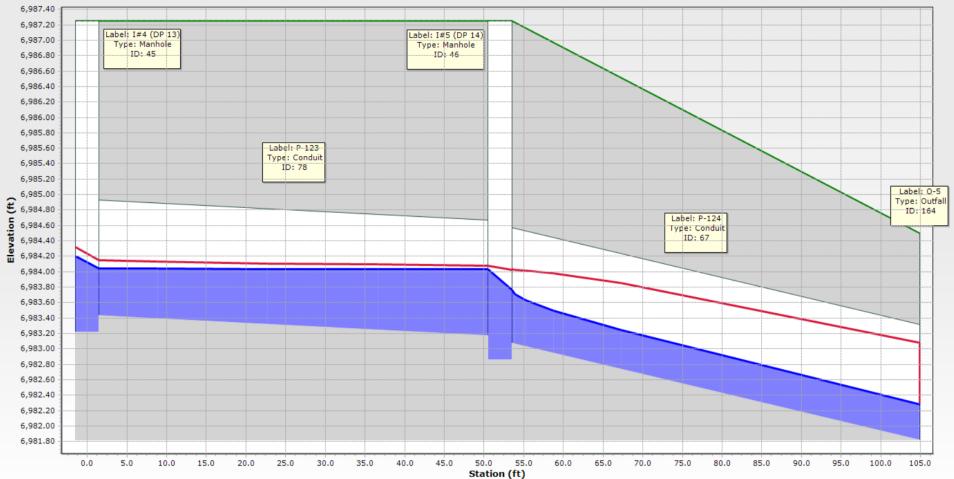
EASTONVILLE 1 - INLET - 5-YR TAILWATER CONDITION

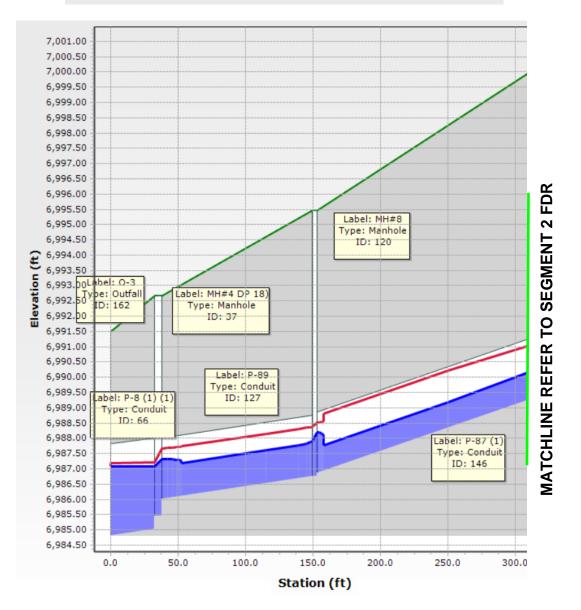

NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS


= EGL = HGL



EASTONVILLE 1 - OUTLET - 5-YR TAILWATER CONDITION


EGL HGL



NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS

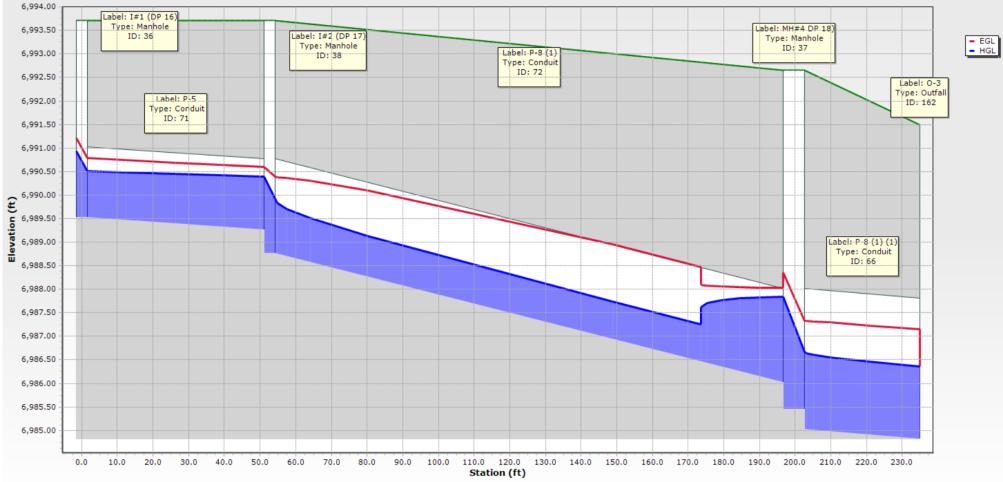
EASTONVILLE 9 - 5-YR TAILWATER CONDITION

NOTE: THIS SEGMENT HAS BEEN ANALYZED IN THE FREE OUTFALL CONDITION BLEOW TO MEET CAPACITY & VELOCITY REQUIREMENTS

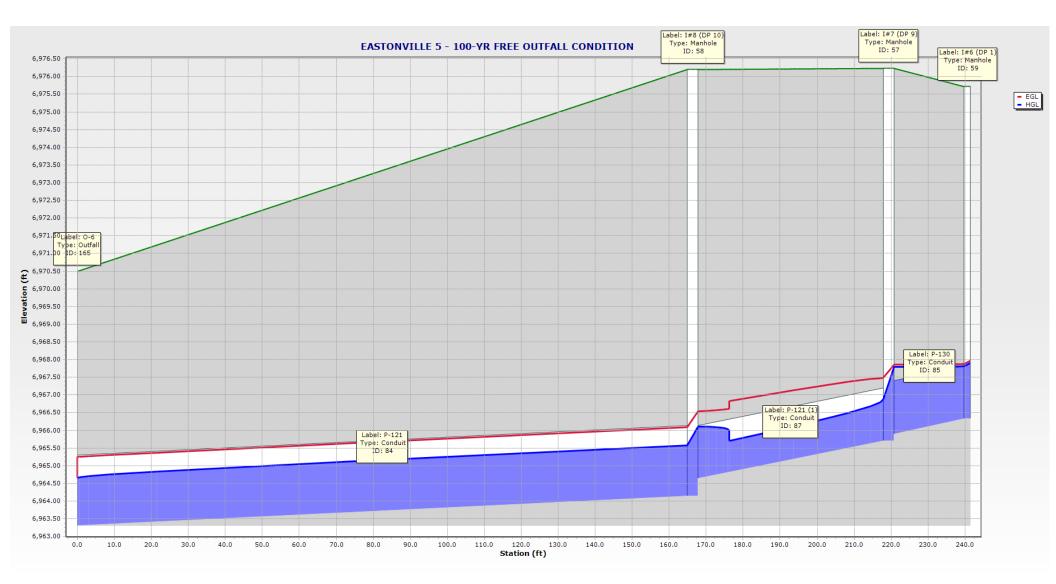
EASTONVILLE 10 - 5-YR TAILWATER CONDITION

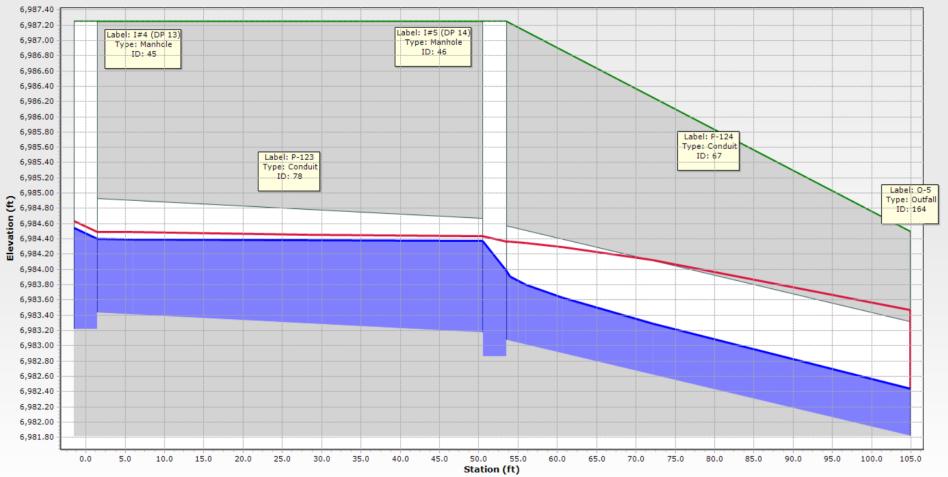
EASTONVILLE 17 - 5-YR TAILWATER CONDITION

= EGL = HGL


100 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE

	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
66: P-8 (1) (1)	MH#4 DP 18)	6,985.02	0-3	6,984.82	35.3	0.006	36.0	0.013	26.00	7.17	50.23	51.8	6,986.67	6,986.36
67: P-124	I#5 (DP 14)	6,983.07	O-5	6,981.82	52.9	0.024	18.0	0.013	5.60	8.31	16.15	34.7	6,983.98	6,982.44
69: P-18	I#3 (DP 7)	6,986.04	MH#7	6,985.68	71.3	0.005	42.0	0.013	53.60	8.15	71.48	75.0	6,988.34	6,988.30
70: P-20	MH#7	6,985.37	MH#6	6,983.61	175.6	0.010	42.0	0.013	53.60	10.63	100.73	53.2	6,987.66	6,986.34
71: P-5	I#1 (DP 16)	6,989.53	I#2 (DP 17)	6,989.27	52.7	0.005	18.0	0.013	5.20	4.52	7.38	70.5	6,990.51	6,990.40
72: P-8 (1)	I#2 (DP 17)	6,988.77	MH#4 DP 18)	6,986.02	147.0	0.019	24.0	0.013	10.30	8.86	30.94	33.3	6,989.92	6,987.84
73: P-21	MH#6	6,983.41	MH#5	6,982.59	82.2	0.010	42.0	0.013	53.60	10.61	100.49	53.3	6,985.70	6,985.32
74: P-22	MH#5	6,982.39	MH#3 (DP 8)	6,981.23	115.7	0.010	42.0	0.013	53.60	10.63	100.72	53.2	6,984.68	6,984.45
75: P-15	18 (DP 19)	6,983.25	MH#3 (DP 8)	6,983.03	30.8	0.007	18.0	0.013	2.90	4.50	8.88	32.7	6,984.46	6,984.45
76: P-15 (1)	MH#3 (DP 8)	6,981.03	MH#2 (DP 8)	6,980.65	75.1	0.005	42.0	0.013	57.20	8.26	71.57	79.9	6,983.73	6,983.60
77: P-16	MH#2 (DP 8)	6,980.55	MH#1	6,980.16	78.1	0.005	42.0	0.013	57.20	8.22	71.10	80.4	6,982.93	6,982.54
78: P-123	I#4 (DP 13)	6,983.43	I#5 (DP 14)	6,983.17	52.0	0.005	18.0	0.013	3.00	3.98	7.43	40.4	6,984.40	6,984.38
79: P-17	MH#1	6,980.06	OUTFALL	6,979.36	139.8	0.005	42.0	0.013	57.20	8.23	71.18	80.4	6,982.44	6,981.73
80: P-125	44 (69) (DP 15)	6,978.42	44 (70)	6,978.21	42.5	0.005	18.0	0.013	1.00	2.94	7.45	13.4	6,978.80	6,978.58
84: P-121	I#8 (DP 10)	6,964.14	O-6	6,963.31	166.4	0.005	24.0	0.013	13.90	5.73	15.98	87.0	6,965.58	6,964.65
85: P-130	I#6 (DP 1)	6,966.33	I#7 (DP 9)	6,965.90	21.3	0.020	18.0	0.013	3.60	6.95	14.93	24.1	6,967.81	6,967.79
87: P-121 (1)	I#7 (DP 9)	6,965.70	I#8 (DP 10)	6,964.64	53.0	0.020	18.0	0.013	9.30	8.87	14.86	62.6	6,966.88	6,966.10
88: P-131	44 (78) (DP 11)	6,960.12	MH-44(79)	6,958.89	245.4	0.005	18.0	0.013	4.60	4.43	7.44	61.9	6,960.97	6,959.86
127: P-89	MH#8	6,986.76	MH#4 DP 18)	6,986.02	116.1	0.006	24.0	0.013	19.90	6.33	18.06	110.2	6,988.65	6,987.84
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	17.20	9.29	27.70	62.1	6,991.26	6,989.07
244: P-136	MH-44(79)	6,958.69	DP2	6,955.81	373.7	0.008	18.0	0.013	4.60	5.22	9.22	49.9	6,959.51	6,956.56

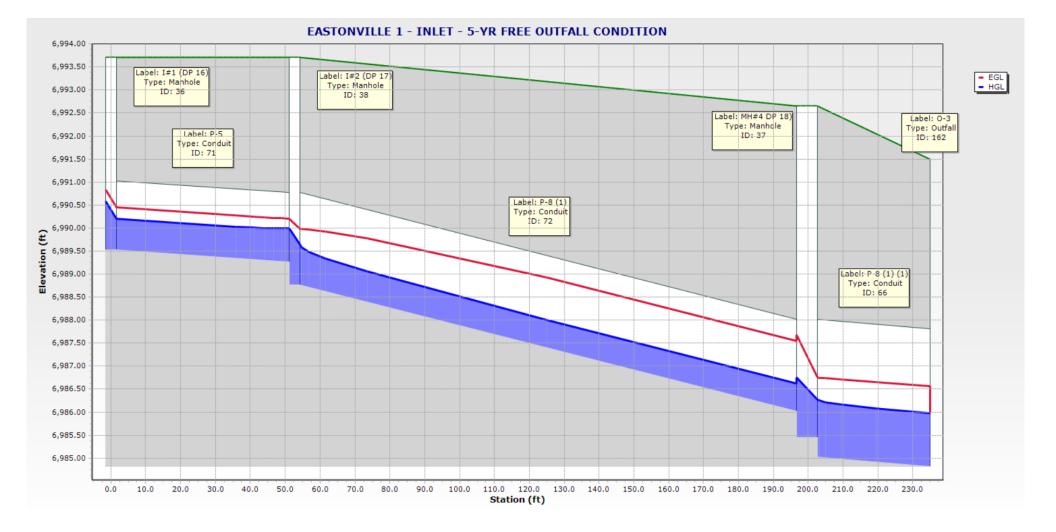

100 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

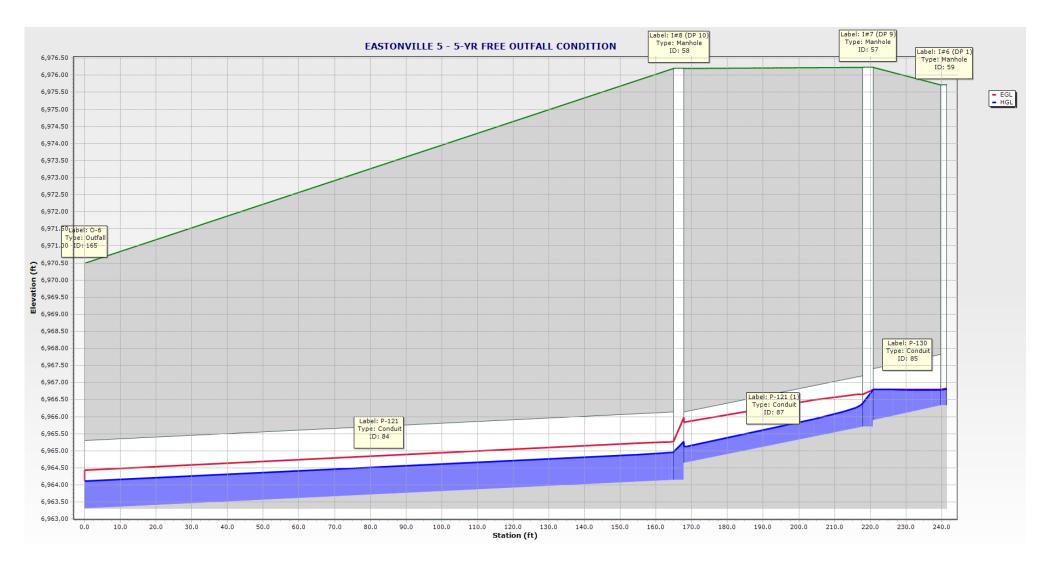

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
35: MH#7	6,993.84	6,993.84	6,985.68	53.60	6,987.66	Standard	6,988.30
36: I#1 (DP 16	6,993.71	6,993.71	(N/A)	5.20	6,990.51	Standard	6,990.93
37: MH#4 DP	6,992.66	6,992.66	6,986.02	26.00	6,986.67	Standard	6,987.84
38: I#2 (DP 17	6,993.71	6,993.71	6,989.27	10.30	6,989.92	Standard	6,990.40
39: MH#6	6,992.82	6,992.82	6,983.61	53.60	6,985.70	Standard	6,986.34
40: MH#5	6,991.57	6,991.57	6,982.59	53.60	6,984.68	Standard	6,985.32
41: MH#3 (DP	6,990.99	6,990.99	6,981.23	57.20	6,983.73	Standard	6,984.45
42: I#3 (DP 7)	6,991.04	6,991.04	(N/A)	53.60	6,988.34	Standard	6,989.83
43: 18 (DP 19)	6,988.70	6,988.70	(N/A)	2.90	6,984.46	Standard	6,984.54
44: MH#2 (DP	6,985.73	6,985.73	6,980.65	57.20	6,982.93	Standard	6,983.60
45: I#4 (DP 13	6,987.25	6,987.25	(N/A)	3.00	6,984.40	Standard	6,984.54
46: I#5 (DP 14	6,987.25	6,987.25	6,983.17	5.60	6,983.98	Standard	6,984.38
47: MH#1	6,985.33	6,985.33	6,980.16	57.20	6,982.44	Standard	6,982.54
49: 44 (69) (D	6,982.25	6,982.25	(N/A)	1.00	6,978.80	Standard	6,978.81
57: I#7 (DP 9)	6,976.23	6,976.23	6,965.90	9.30	6,966.88	Standard	6,967.79
58: I#8 (DP 10	6,976.19	6,976.19	6,964.64	13.90	6,965.58	Standard	6,966.10
59: I#6 (DP 1)	6,975.72	6,975.72	(N/A)	3.60	6,967.81	Standard	6,967.91
60: 44 (78) (D	6,965.00	6,965.00	(N/A)	4.60	6,960.97	Standard	6,961.43
120: MH#8	6,995.46	6,995.46	6,986.86	19.90	6,988.65	Standard	6,989.07
243: MH-44(79	6,963.81	6,963.81	6,958.89	4.60	6,959.51	Standard	6,959.86

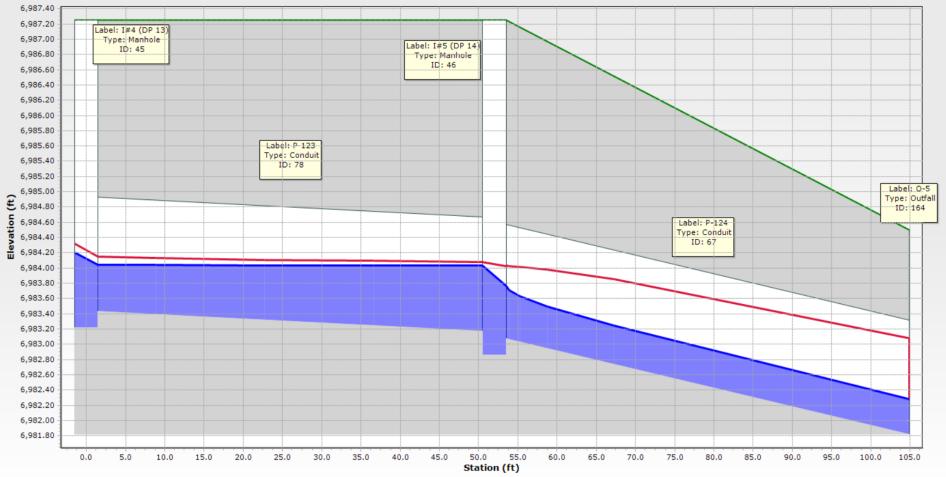
	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
48: OUTFALL	6,984.45	6,979.36	Free Outfall		6,981.73	57.20
53: 44 (70)	6,979.71	6,978.21	Free Outfall		6,978.58	1.00
162: 0-3	6,991.50	6,984.82	Free Outfall		6,986.36	26.00
164: 0-5	6,984.50	6,981.82	Free Outfall		6,982.44	5.60
165: 0-6	6,970.50	6,963.31	Free Outfall		6,964.65	13.90
242: DP2	6,957.52	6,955.81	Free Outfall		6,956.56	4.60

EASTONVILLE 1 - INLET - 100-YR FREE OUTFALL CONDITION

EASTONVILLE 9 - 100-YR FREE OUTFALL CONDITION


5 YEAR FREE OUTFALL CONDITION: PIPE SUMMARY TABLE


	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Length (User Defined) (ft)	Slope (Calculated) (ft/ft)	Diameter (in)	Manning's n	Flow (cfs)	Velocity (ft/s)	Capacity (Full Flow) (cfs)	Flow / Capacity (Design) (%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)
66: P-8 (1) (1)	MH#4 DP 18)	6,985.02	0-3	6,984.82	35.3	0.006	36.0	0.013	15.50	6.26	50.23	30.9	6,986.28	6,985.97
67: P-124	I#5 (DP 14)	6,983.07	O-5	6,981.82	52.9	0.024	18.0	0.013	3.30	7.18	16.15	20.4	6,983.76	6,982.28
69: P-18	I#3 (DP 7)	6,986.04	MH#7	6,985.68	71.3	0.005	42.0	0.013	8.00	4.91	71.48	11.2	6,986.89	6,986.47
70: P-20	MH#7	6,985.37	MH#6	6,983.61	175.6	0.010	42.0	0.013	8.00	6.26	100.73	7.9	6,986.22	6,984.28
71: P-5	I#1 (DP 16)	6,989.53	I#2 (DP 17)	6,989.27	52.7	0.005	18.0	0.013	3.10	3.99	7.38	42.0	6,990.21	6,989.99
72: P-8 (1)	I#2 (DP 17)	6,988.77	MH#4 DP 18)	6,986.02	147.0	0.019	24.0	0.013	6.20	7.69	30.94	20.0	6,989.65	6,986.63
73: P-21	MH#6	6,983.41	MH#5	6,982.59	82.2	0.010	42.0	0.013	8.00	6.25	100.49	8.0	6,984.26	6,983.26
74: P-22	MH#5	6,982.39	MH#3 (DP 8)	6,981.23	115.7	0.010	42.0	0.013	8.00	6.26	100.72	7.9	6,983.24	6,982.24
75: P-15	18 (DP 19)	6,983.25	MH#3 (DP 8)	6,983.03	30.8	0.007	18.0	0.013	0.30	2.33	8.88	3.4	6,983.45	6,983.22
76: P-15 (1)	MH#3 (DP 8)	6,981.03	MH#2 (DP 8)	6,980.65	75.1	0.005	42.0	0.013	9.20	5.12	71.57	12.9	6,981.95	6,981.68
77: P-16	MH#2 (DP 8)	6,980.55	MH#1	6,980.16	78.1	0.005	42.0	0.013	9.20	5.09	71.10	12.9	6,981.47	6,981.01
78: P-123	I#4 (DP 13)	6,983.43	I#5 (DP 14)	6,983.17	52.0	0.005	18.0	0.013	1.80	3.46	7.43	24.2	6,984.04	6,984.03
79: P-17	MH#1	6,980.06	OUTFALL	6,979.36	139.8	0.005	42.0	0.013	9.20	5.10	71.18	12.9	6,980.98	6,980.21
80: P-125	44 (69) (DP 15)	6,978.42	44 (70)	6,978.21	42.5	0.005	18.0	0.013	0.06	1.27	7.45	0.8	6,978.52	6,978.30
84: P-121	I#8 (DP 10)	6,964.14	0-6	6,963.31	166.4	0.005	24.0	0.013	5.40	4.59	15.98	33.8	6,964.96	6,964.11
85: P-130	I#6 (DP 1)	6,966.33	I#7 (DP 9)	6,965.90	21.3	0.020	18.0	0.013	0.50	3.91	14.93	3.3	6,966.78	6,966.79
87: P-121 (1)	I#7 (DP 9)	6,965.70	I#8 (DP 10)	6,964.64	53.0	0.020	18.0	0.013	3.30	6.76	14.86	22.2	6,966.39	6,965.12
88: P-131	44 (78) (DP 11)	6,960.12	MH-44(79)	6,958.89	245.4	0.005	18.0	0.013	0.40	2.24	7.44	5.4	6,960.36	6,959.12
127: P-89	MH#8	6,986.76	MH#4 DP 18)	6,986.02	116.1	0.006	24.0	0.013	10.20	5.92	18.06	56.5	6,987.90	6,987.10
146: P-87 (1)	MH#9	6,989.76	MH#8	6,986.86	193.5	0.015	24.0	0.013	10.20	8.15	27.70	36.8	6,990.90	6,988.20
244: P-136	MH-44(79)	6,958.69	DP2	6,955.81	373.7	0.008	18.0	0.013	0.40	2.60	9.22	4.3	6,958.92	6,956.02


5 YEAR FREE OUTFALL CONDITION: STRUCTURE SUMMARY TABLE

	Elevation (Ground) (ft)	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (Out) (ft)	Headloss Method	Hydraulic Grade Line (In) (ft)
35: MH#7	6,993.84	6,993.84	6,985.68	8.00	6,986.22	Standard	6,986.42
36: I#1 (DP 16	6,993.71	6,993.71	(N/A)	3.10	6,990.21	Standard	6,990.58
37: MH#4 DP	6,992.66	6,992.66	6,986.02	15.50	6,986.28	Standard	6,986.76
38: I#2 (DP 17	6,993.71	6,993.71	6,989.27	6.20	6,989.65	Standard	6,989.99
39: MH#6	6,992.82	6,992.82	6,983.61	8.00	6,984.26	Standard	6,984.46
40: MH#5	6,991.57	6,991.57	6,982.59	8.00	6,983.24	Standard	6,983.44
41: MH#3 (DP	6,990.99	6,990.99	6,981.23	9.20	6,981.95	Standard	6,982.24
42: I#3 (DP 7)	6,991.04	6,991.04	(N/A)	8.00	6,986.89	Standard	6,987.35
43: 18 (DP 19)	6,988.70	6,988.70	(N/A)	0.30	6,983.45	Standard	6,983.56
44: MH#2 (DP	6,985.73	6,985.73	6,980.65	9.20	6,981.47	Standard	6,981.68
45: I#4 (DP 13	6,987.25	6,987.25	(N/A)	1.80	6,984.04	Standard	6,984.21
46: I#5 (DP 14	6,987.25	6,987.25	6,983.17	3.30	6,983.76	Standard	6,984.03
47: MH#1	6,985.33	6,985.33	6,980.16	9.20	6,980.98	Standard	6,981.01
49: 44 (69) (D	6,982.25	6,982.25	(N/A)	0.06	6,978.52	Standard	6,978.52
57: I#7 (DP 9)	6,976.23	6,976.23	6,965.90	3.30	6,966.39	Standard	6,966.79
58: I#8 (DP 10	6,976.19	6,976.19	6,964.64	5.40	6,964.96	Standard	6,965.27
59: I#6 (DP 1)	6,975.72	6,975.72	(N/A)	0.50	6,966.78	Standard	6,966.81
60: 44 (78) (D	6,965.00	6,965.00	(N/A)	0.40	6,960.36	Standard	6,960.47
120: MH#8	6,995.46	6,995.46	6,986.86	10.20	6,987.90	Standard	6,988.20
243: MH-44(79	6,963.81	6,963.81	6,958.89	0.40	6,958.92	Standard	6,959.01

	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
48: OUTFALL	6,984.45	6,979.36	Free Outfall		6,980.21	9.20
53: 44 (70)	6,979.71	6,978.21	Free Outfall		6,978.30	0.06
162: 0-3	6,991.50	6,984.82	Free Outfall		6,985.97	15.50
164: 0-5	6,984.50	6,981.82	Free Outfall		6,982.28	3.30
165: 0-6	6,970.50	6,963.31	Free Outfall		6,964.11	5.40
242: DP2	6,957.52	6,955.81	Free Outfall		6,956.02	0.40

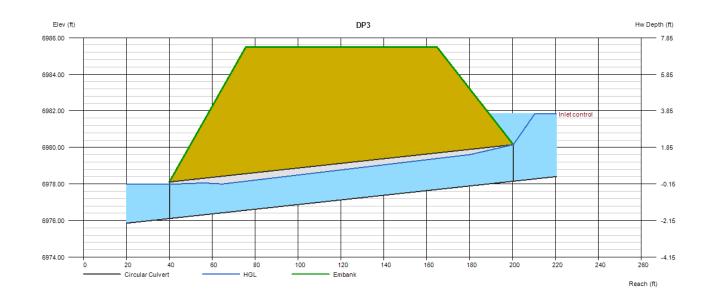
EASTONVILLE 9 - 5-YR FREE OUTFALL CONDITION

= EGL = HGL

Culvert Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Aug 23 2024


DP3

Invert Elev Dn (ft)	= 6976.11	Calculations	
Pipe Length (ft)	= 160.34	Qmin (cfs)	= 24.20
Slope (%)	= 1.27	Qmax (cfs)	= 24.20
Invert Elev Up (ft)	= 6978.15	Tailwater Élev (ft)	= (dc+D)/2
Rise (in)	= 24.0		, , , , , , , , , , , , , , , , , , ,
Shape	= Circular	Highlighted	
Span (in)	= 24.0	Qtotal (cfs)	= 24.20
No. Barrels	= 1	Qpipe (cfs)	= 24.20
n-Value	= 0.012	Qovertop (cfs)	= 0.00
Culvert Type	= Circular Concrete	Veloc Dn (ft/s)	= 7.92
Culvert Entrance	= Square edge w/headwall (C)	Veloc Up (ft/s)	= 8.34
Coeff. K,M,c,Y,k	= 0.0098, 2, 0.0398, 0.67, 0.5	HGL Dn (ft)	= 6977.98
		HGL Up (ft)	= 6979.89
Embankment		Hw Elev (ft)	= 6981.84
Top Elevation (ft)	= 6985.50	Hw/D (ft)	= 1.84

Top Elevation (f Top Width (ft) Crest Width (ft) Elevation (IT)

=	6985.50
=	89.00
=	15.00

5 5		
Qtotal (cfs)	=	24.20
Qpipe (cfs)	=	24.20
Qovertop (cfs)	=	0.00
Veloc Dn (ft/s)	=	7.92
Veloc Up (ft/s)	=	8.34
HGL Dn (ft)	=	6977.98
HGL Up (ft)	=	6979.89
Hw Elev (ft)	=	6981.84
Hw/D (ft)	=	1.84
Flow Regime	=	Inlet Control

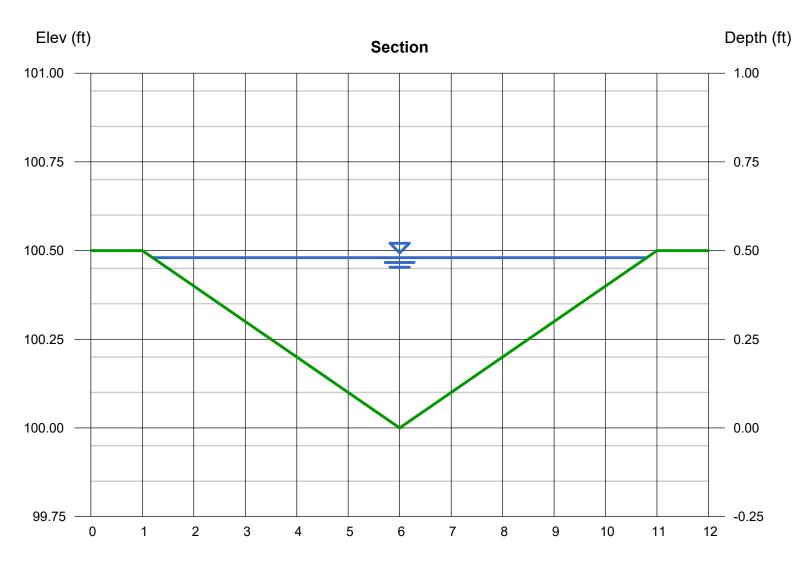
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Roadside Swale Capacity DP1

Triangular
Side Slopes (z:1)

Total Depth (ft)

Invert Elev (ft) Slope (%) N-Value


	10.00, 10.00 0.50
=	100.00
=	0.50
=	0.025

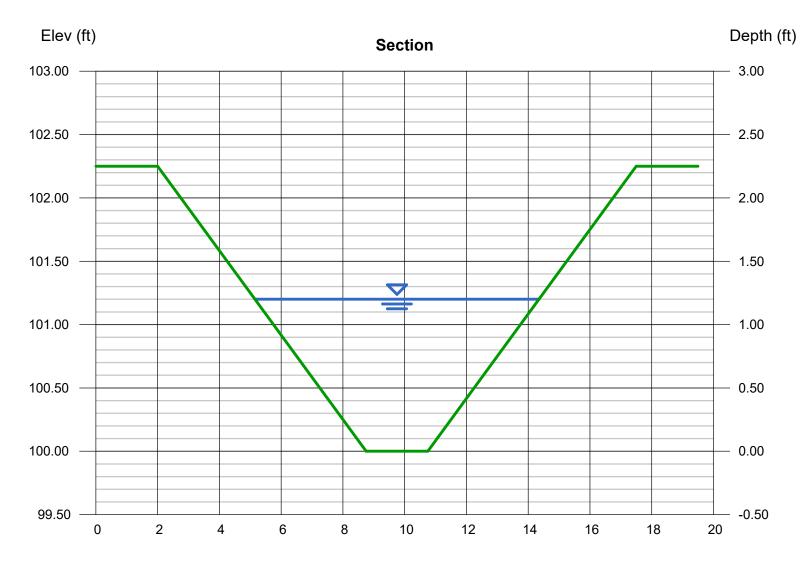
Q

Calculations

Compute by:	Known
Known Q (cfs)	= 3.60

Highlighted		
Depth (ft)	=	0.48
Q (cfs)	=	3.600
Area (sqft)	=	2.30
Velocity (ft/s)	=	1.56
Wetted Perim (ft)	=	9.65
Crit Depth, Yc (ft)	=	0.39
Top Width (ft)	=	9.60
EGL (ft)	=	0.52

Reach (ft)

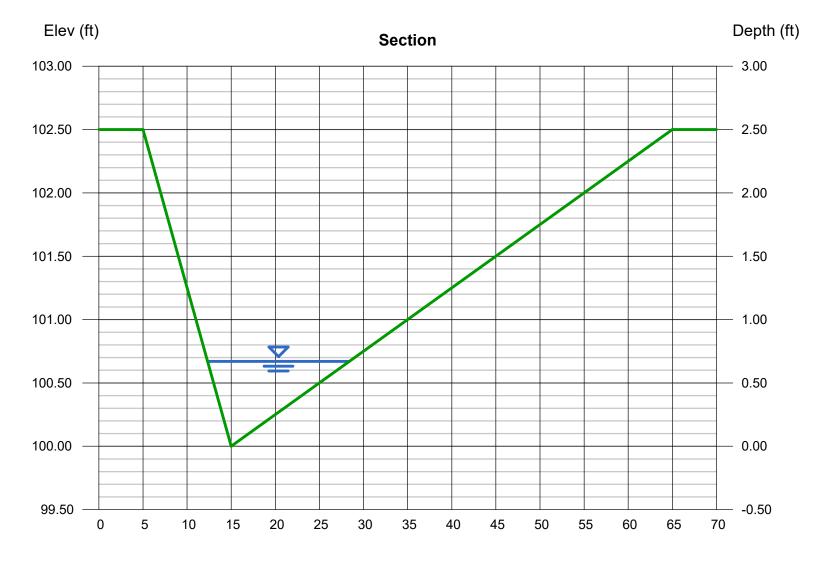

FROUDE	NUMBER CAL	CULATIONS	CALCULATED BY:	SPC	DATE:	10/4/2024
			CHECKED BY:	СМ		-11-
			Calculations: 100-YR			
DP	Velocity	Gravitational Constant	Hydraulic depth	Xsectional Area	top Width	Froude #
-	ft/s		ft		ft	N/A
8.3	3.42	32.17	1.00	17.54		0.60
4	5.31	32.17	0.34			1.62
4-DOWNSTREAM	1.99	32.17	0.25	12.62	50.47	0.70
1	1.56	33.17	0.24	2.3	9.6	0.55
3	3.6	34.17	0.73	6.72	9.2	0.72
7	4.4	35.17	0.99	12.19	12.26	0.74

	SHEAR STRESS & CHANNEL L				SPC	DATE:	10/4/2024]			
PF	ROJECT: EASTONVILLE RD SEC	GMENT 1	CH	ECKED BY:	CM						
		Calculations: 100-							ining Determinati		
DP	unit weight of water			Shear Stress			Calculated Value		P300 Max \	/alues	
-	lb/ft^3	ft		lb/ft^2		DP	Shear Stress	Velocity	Shear Stress		Lining Required
8.3	62.43	1.27	0.006	0.48		8.3	0.48	3.42	3		NO LINING RQD
4	62.43	0.67	0.050	2.09		4	2.09	5.31	3		P300
4-DOWNS	62.43	0.50	0.029	0.91		4-DOWNST	0.91	1.99	3	9	NO LINING RQD
1	63.43	0.48	0.005	0.15		1	0.15	1.56	3	9	NO LINING RQD
3	64.43	1.20	0.006	0.46		3	0.46	3.60	3	9	NO LINING RQD
7	65.43	1.71	0.006	0.67		7	0.67	4.40	3	9	NO LINING RQD
							-				
											<u> </u>
-											

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

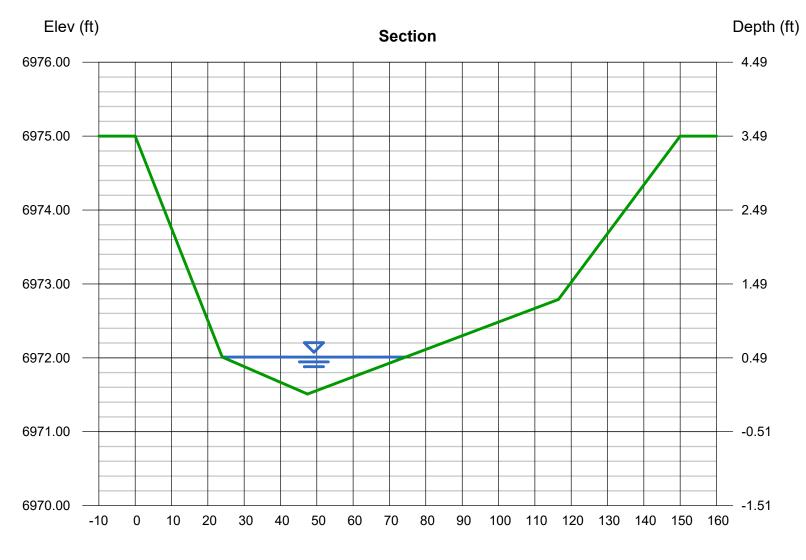
Roadside Swale Capacity DP3

Trapezoidal		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 1.20
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 24.20
Total Depth (ft)	= 2.25	Area (sqft)	= 6.72
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.60
Slope (%)	= 0.60	Wetted Perim (ft)	= 9.59
N-Value	= 0.025	Crit Depth, Yc (ft)	= 1.04
		Top Width (ft)	= 9.20
Calculations		EGL (ft)	= 1.40
Compute by:	Known Q		
Known Q (cfs)	= 24.20		


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

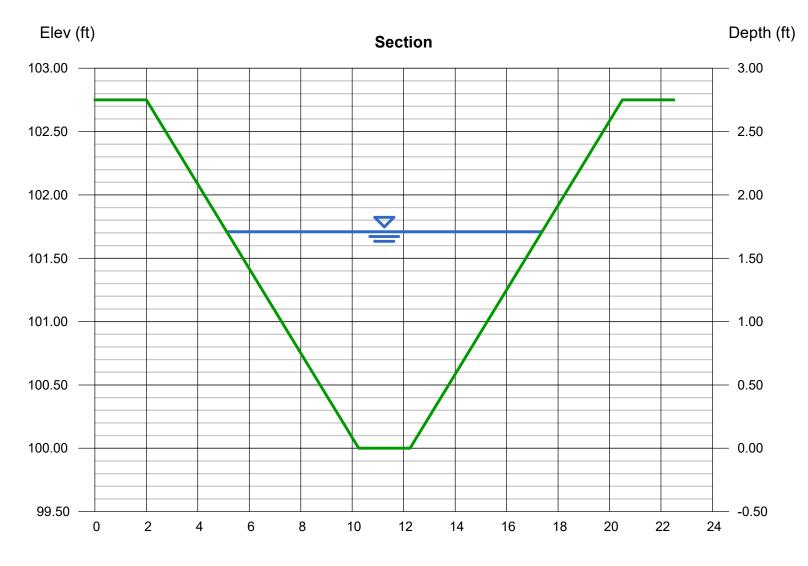
Tuesday, Oct 1 2024

SFB A - OUTLET SWALE


Triangular

Triangular		Highlighted	
Side Slopes (z:1)	= 4.00, 20.00	Depth (ft)	= 0.67
Total Depth (ft)	= 2.50	Q (cfs)	= 28.60
		Area (sqft)	= 5.39
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 5.31
Slope (%)	= 5.00	Wetted Perim (ft)	= 16.18
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.82
		Top Width (ft)	= 16.08
Calculations		EGL (ft)	= 1.11
Compute by:	Known Q		
Known Q (cfs)	= 28.60		

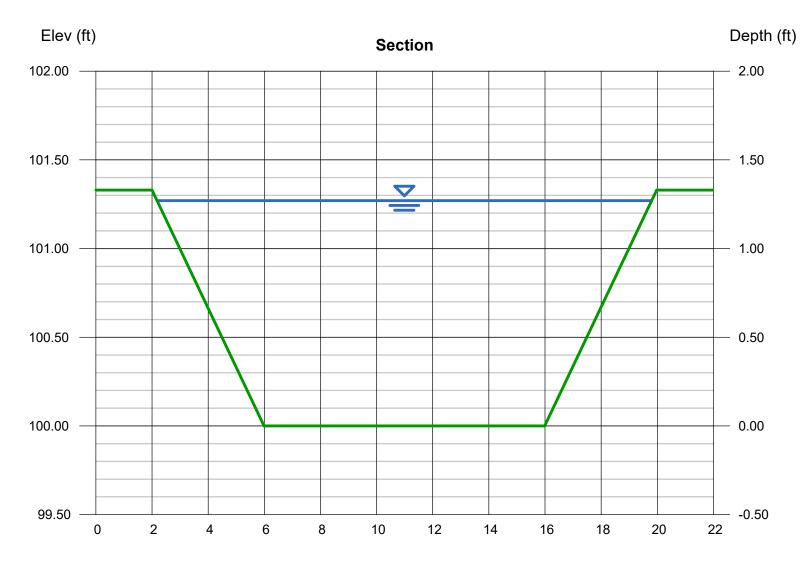
Channel Report Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc. EX CHANNEL DOWNSTREAM OF DP 4		Larger Mannings N used for downstream channel area that appears to have more dense brush, weeds, and grass.	Wednesday, Oct 2 2024
User-defined Invert Elev (ft) Slope (%) N-Value	= 6971.51 = 2.90 = 0.050	Highlighted Depth (ft) Q (cfs) Area (sqft) Velocity (ft/s)	= 0.50 = 25.10 = 12.62 = 1.99
Calculations Compute by: Known Q (cfs)	Known Q = 25.10	Wetted Perim (ft) Crit Depth, Yc (ft) Top Width (ft) EGL (ft)	= 50.48 = 0.44 = 50.47 = 0.56


(Sta, El, n)-(Sta, El, n)... (0.00, 6975.00)-(23.95, 6972.01, 0.050)-(47.45, 6971.51, 0.050)-(116.51, 6972.79, 0.050)-(150.00, 6975.00, 0.050)

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Roadside Swale Capacity DP7

	Highlighted	
= 2.00	Depth (ft)	= 1.71
= 3.00, 3.00	Q (cfs)	= 53.60
= 2.75	Area (sqft)	= 12.19
= 100.00	Velocity (ft/s)	= 4.40
= 0.60	Wetted Perim (ft)	= 12.81
= 0.025	Crit Depth, Yc (ft)	= 1.53
	Top Width (ft)	= 12.26
	EGL (ft)	= 2.01
Known Q		
= 53.60		
	= 3.00, 3.00 = 2.75 = 100.00 = 0.60 = 0.025 Known Q	= 2.00 Depth (ft) = 3.00, 3.00 Q (cfs) = 2.75 Area (sqft) = 100.00 Velocity (ft/s) = 0.60 Wetted Perim (ft) = 0.025 Crit Depth, Yc (ft) Top Width (ft) EGL (ft) Known Q Known Q

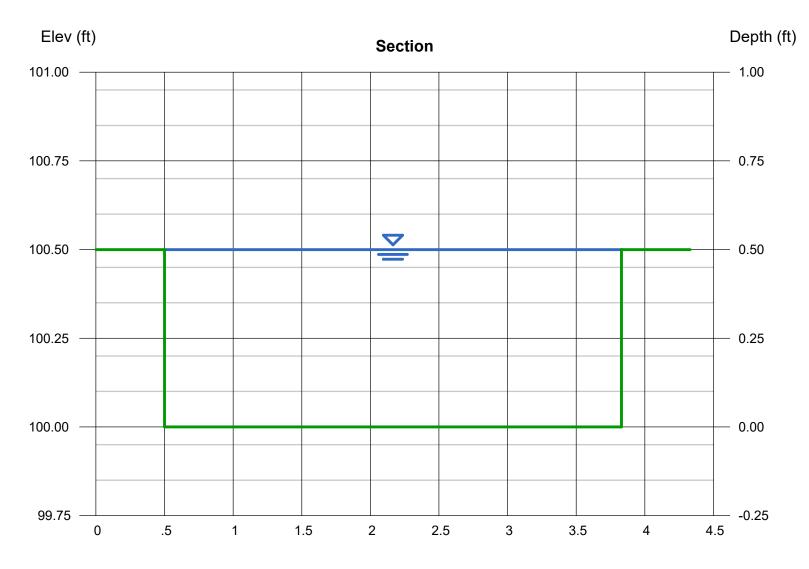

Reach (ft)

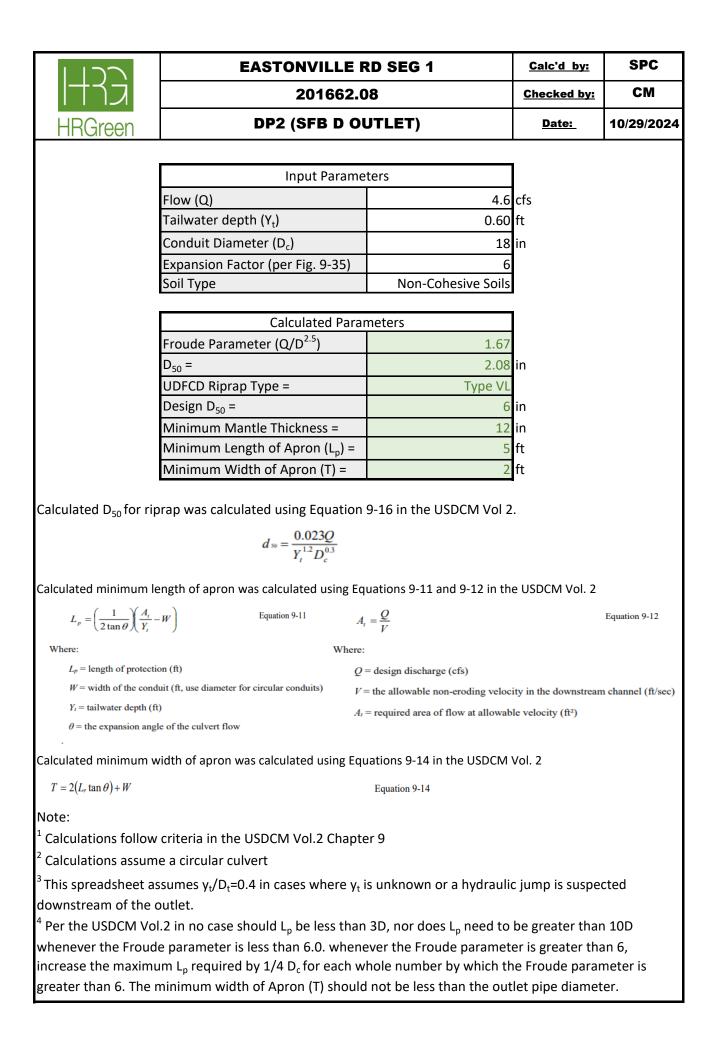
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

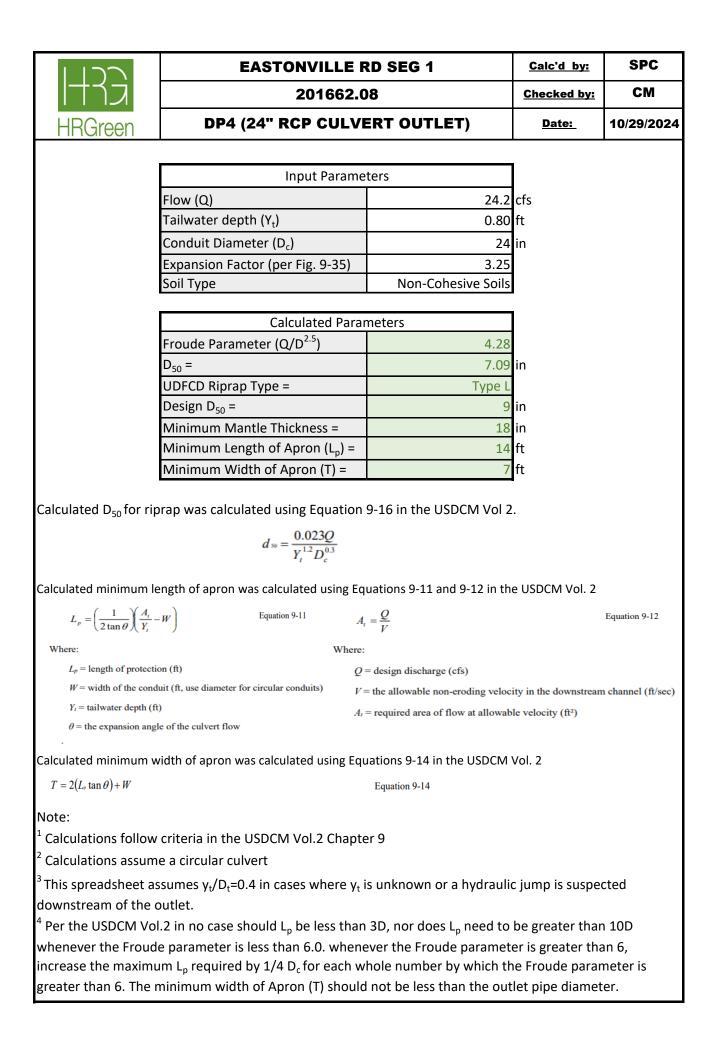
Tuesday, Oct 1 2024

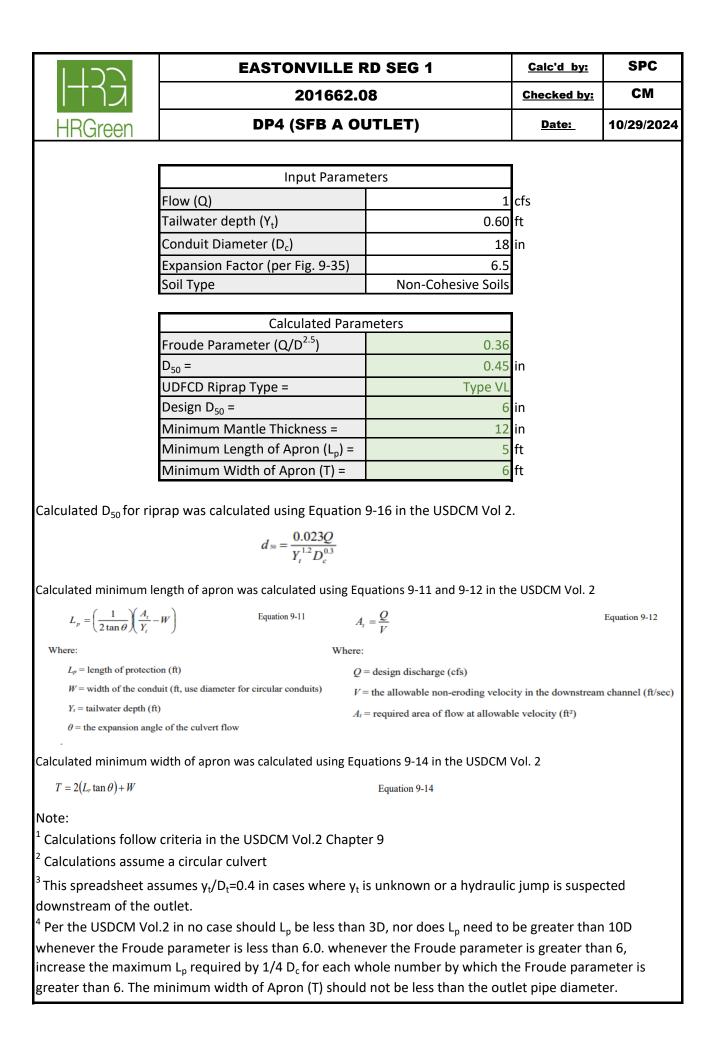
EDB B - OUTLET SWALE

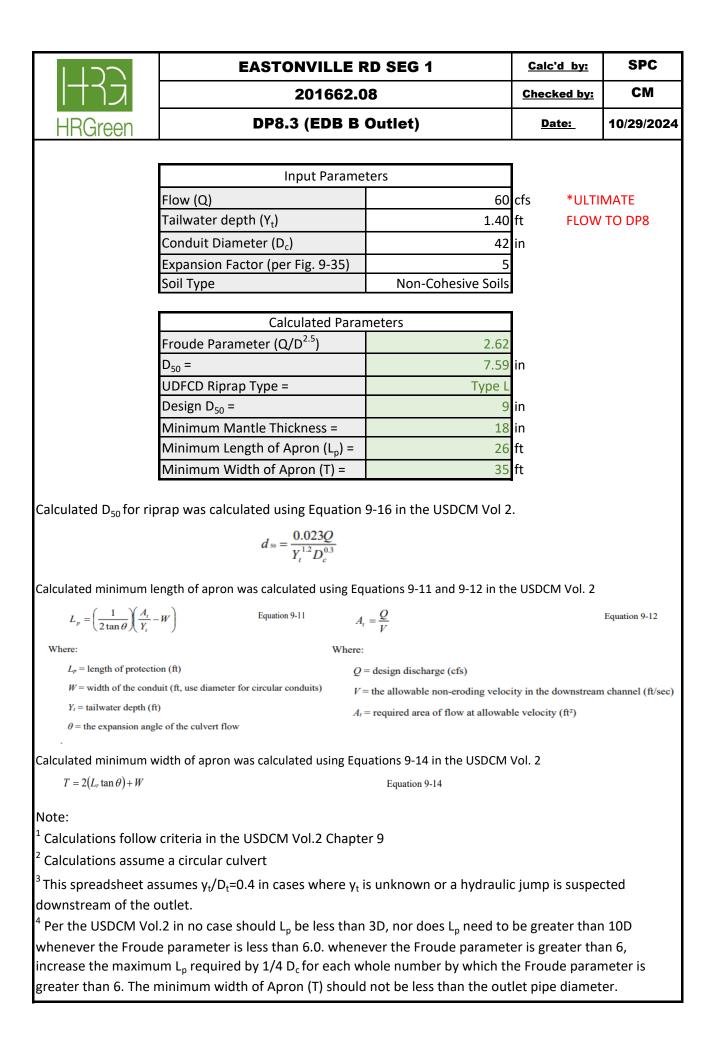
Trapezoidal		Highlighted	
Bottom Width (ft)	= 10.00	Depth (ft)	= 1.27
Side Slopes (z:1)	= 3.00, 3.00	Q (cfs)	= 60.00
Total Depth (ft)	= 1.33	Area (sqft)	= 17.54
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 3.42
Slope (%)	= 0.50	Wetted Perim (ft)	= 18.03
N-Value	= 0.030	Crit Depth, Yc (ft)	= 0.95
		Top Width (ft)	= 17.62
Calculations		EGL (ft)	= 1.45
Compute by:	Known Q		
Known Q (cfs)	= 60.00		


Reach (ft)


Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.


Friday, Mar 15 2024


EDB B Trickle Channel Capacity


Rectangular		Highlighted	
Bottom Width (ft)	= 3.33	Depth (ft) = 0.50)
Total Depth (ft)	= 0.50	Q (cfs) = 7.70)7
		Area (sqft) = 1.67	7
Invert Elev (ft)	= 100.00	Velocity (ft/s) = 4.63	3
Slope (%)	= 0.50	Wetted Perim (ft) = 4.33	3
N-Value	= 0.012	Crit Depth, Yc (ft) = 0.50)
		Top Width (ft) = 3.33	3
Calculations		EGL (ft) $= 0.83$	3
Compute by:	Known Depth		
Known Depth (ft)	= 0.50		

	Riprap Sizing - Spillway						
	q (cfs/ft)	S (ft/ft)	C_{f}	n	D ₅₀ min. (in)		
SFB-A	0.50	0.33	3	0.025	4.82		
EDB-B	1.14	0.33	3	0.025	7.65		
SFB-D	1.78	0.33	3	0.025	9.80		

Type L Riprap (D_{50} = 9") will be utilized for the spillway protection for SFB A. Type L Riprap (D50 = 9") will be utilized for the spillway protection for EDB B.Type M Riprap (D50 = 12") will be utilized for the spillway protection for SFB D.

 $D_{50} = 5.23 \ S^{0.43} \ (1.35 C_f q)^{0.56}$

Where:

 D_{50} median rock size (in) -

longitudinal slope (ft/ft) S=

$$C_f$$
 = concentration factor (1.0 to 3.0)

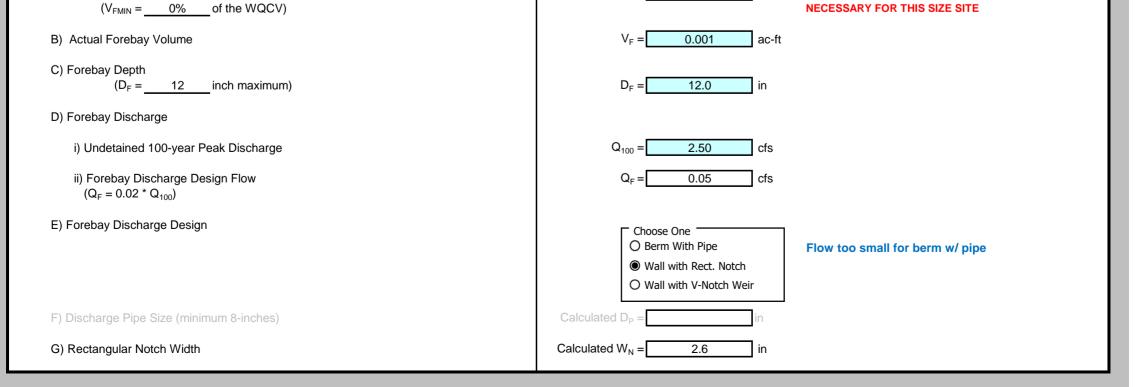
unit discharge (cfs/ft) _

qWhen:

 η (porosity) = 0.0 (i.e., for buried soil riprap)

Equation 13-9

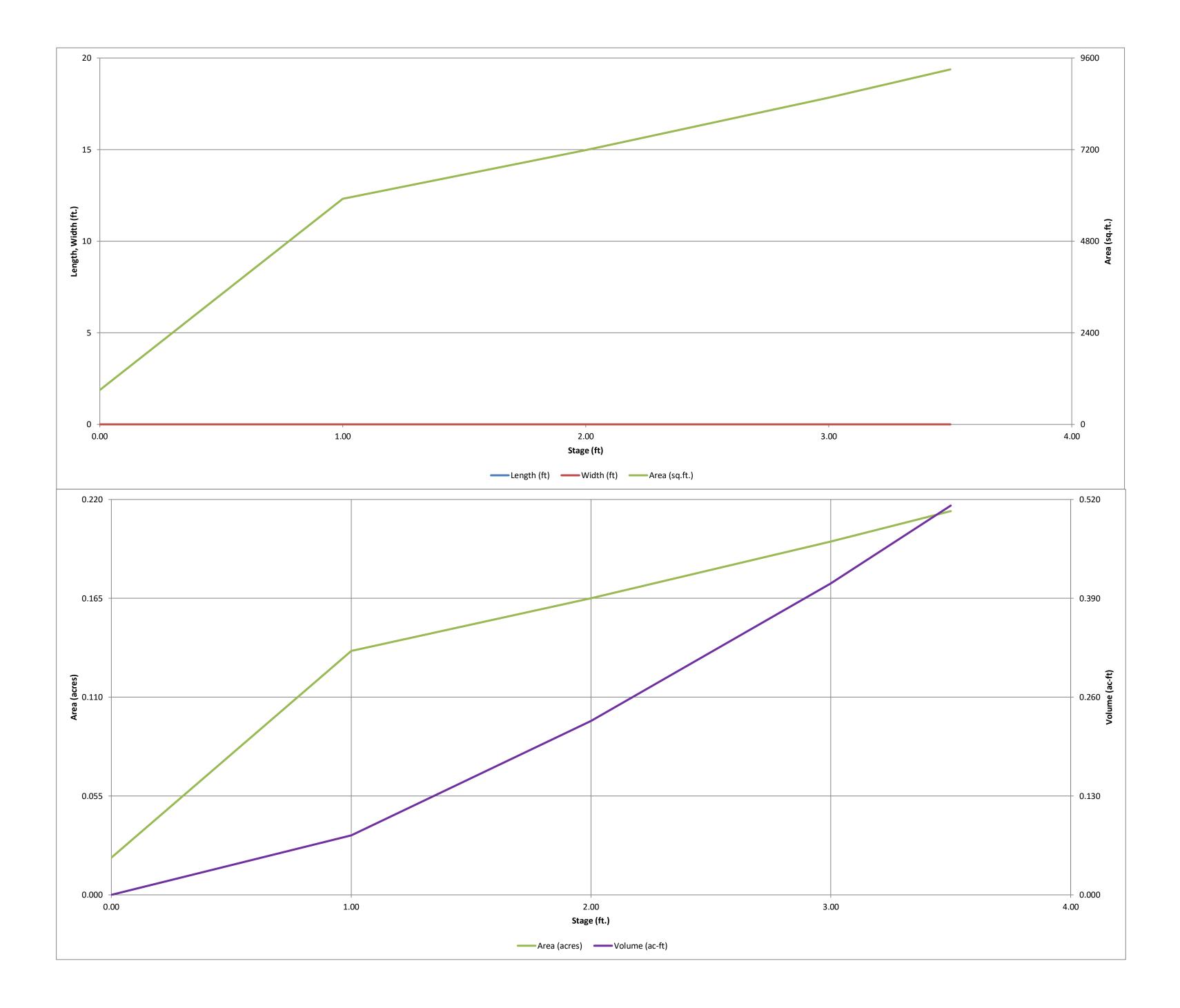
Eastonville Road Segment 1 Final Drainage Report Project No.: 201662.08


APPENDIX D – WATER QUALITY & DETENTION

	Design Procedure Forr	m: Sand Filter (SF)	
	UD-BMP (Version 3.07	, March 2018)	Sheet 1 of 2
Designer:	SPC		
Company:	HR Green		
Date:	October 2, 2024 Eastonville Road - Segment 1 Improvements SFB A		
Project: Location:	El Paso County, CO		
1. Basin Sto	rage Volume		
	ve Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of sand filter)	$I_a = 53.0\%$	
B) Tributa	ary Area's Imperviousness Ratio (i = I _a /100)	i = 0.530	
	Quality Capture Volume (WQCV) Based on 12-hour Drain Time $V = 0.8 * (0.91* i^3 - 1.19 * i^2 + 0.78 * i)$	WQCV = 0.17 watershed inches	
D) Contri	buting Watershed Area (including sand filter area)	Area = <u>68,825</u> sq ft	
	Quality Capture Volume (WQCV) Design Volume _v = WQCV / 12 * Area	V _{WQCV} = cu ft	
	atersheds Outside of the Denver Region, Depth of ge Runoff Producing Storm	d ₆ = in	
	atersheds Outside of the Denver Region, Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} =cu ft	
	nput of Water Quality Capture Volume (WQCV) Design Volume f a different WQCV Design Volume is desired)	$V_{WQCV USER} = 662$ cu ft	
2. Basin Geo	ometry		
A) WQCV	' Depth	$D_{WQCV} = 0.4$ ft	
	Filter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	Z = 4.00 ft / ft	
C) Minimu	ım Filter Area (Flat Surface Area)	A _{Min} = 456 sq ft	
D) Actual	Filter Area	A _{Actual} = <u>902</u> sq ft	
E) Volume	e Provided	$V_{T} = 22300$ cu ft	
3. Filter Mat	erial	Choose One 18" CDOT Class B or C Filter Material Other (Explain):	
4. Underdra	in System	Choose One	
A) Are un	derdrains provided?	YES NO	
B) Underg	drain system orifice diameter for 12 hour drain time		
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	Refer to MHFD Detention Calcs	
	ii) Volume to Drain in 12 Hours		
	iii) Orifice Diameter, 3/8" Minimum		

	Design Procedure For	m: Sand Filter (SF)	
			Sheet 2 of 2
Designer:	SPC		
Company:	HR Green		
Date:	October 2, 2024		
Project:	Eastonville Road - Segment 1 Improvements SFB A		
Location:	El Paso County, CO		
A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One	
	tlet Works ribe the type of energy dissipation at inlet points and means of eying flows in excess of the WQCV through the outlet	Engery dissapation at inlet points provide of conveying flows in excess of the WQC modified type 'C' inlet outlet structure grad	V through the outlet is via the
Notes:			

THIS SHEET USED FOR FOREBAY CALCULATIONS ONLY.


	UD-BM	P (Version 3.07, March 2018)	Sheet 1 of						
Designer: SP	c								
	Green								
	tober 2, 2024								
·	Eastonville Road - Segment 1 Improvements SFB A EL PASO COUNTY, CO								
Location: <u>EL</u>	PA30 COUNTY, CO								
1. Basin Storage Volum	e								
A) Effective Impervio	usness of Tributary Area, I _a	$I_a = 53.0$ %							
B) Tributary Area's In	nperviousness Ratio (i = $I_a/100$)	i = 0.530							
C) Contributing Wate	ershed Area	Area = <u>1.580</u> ac							
D) For Watersheds (Runoff Producing	Dutside of the Denver Region, Depth of Average Storm	$d_6 = 0.42$ in							
E) Design Concept		Choose One							
	en also designing for flood control)	O Water Quality Capture Volume (WQCV)							
		Excess Urban Runoff Volume (EURV)							
	VQCV) Based on 40-hour Drain Time	V _{DESIGN} =ac-ft							
$(V_{\text{DESIGN}} = (1.0 * ($	0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)								
	Dutside of the Denver Region, pture Volume (WQCV) Design Volume ₆ *(V _{DESIGN} /0.43))	V _{DESIGN OTHER} = ac-ft							
	er Quality Capture Volume (WQCV) Design Volume t WQCV Design Volume is desired)	V _{DESIGN USER} = 0.015 ac-ft							
i) Percentage of ii) Percentage of	Soil Groups of Tributary Watershed Watershed consisting of Type A Soils f Watershed consisting of Type B Soils f Watershed consisting of Type C/D Soils	$HSG_{A} = 0 \%$ $HSG_{B} = 100 \%$ $HSG_{C/D} = 0 \%$							
For HSG A: EUR For HSG B: EUR		EURV _{DESIGN} = 0.090 ac-f t							
, ,	ess Urban Runoff Volume (EURV) Design Volume t EURV Design Volume is desired)	EURV _{DESIGN USER} = ac-f t							
2. Basin Shape: Length (A basin length to wic	to Width Ratio Ith ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1							
3. Basin Side Slopes									
A) Basin Maximum S (Horizontal distan	Side Slopes ce per unit vertical, 4:1 or flatter preferred)	Z = ft / ft							
4. Inlet									
 A) Describe means of inflow locations: 	of providing energy dissipation at concentrated								
5. Forebay									
A) Minimum Forebay	Volumo	V _{FMIN} = 0.000 ac-ft A FOREBAY MAY NOT BE							

MHFD-Detention, Version 4.05 (January 2022)

	Eastonville F	Road SEGME	NT 1	עזחויי	Detention, Version	4.05 (Janu	diy 2022)							
Basin ID:	SFB A													
		T												
	$ \rightarrow $	100-YEA	R				1.							
PERMANENT ORIFIC		ORIFICE	L		Depth Increment =		ft Optional			A	Optional	<u>.</u>) (aluma	
POOL Example Zone C	Configuratior	(Retention	Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Watershed Information		1		6981			0.00				902	0.021		
Selected BMP Type = Watershed Area =	SF 1.58	acres	Note: L / W L / W Ratio		6982 6983		1.00 2.00				5,914 7,188	0.136	3,408 9,959	0.078
Watershed Length =	1,100	ft		- 17.50	6984		3.00				8,563	0.105	17,834	0.409
Watershed Length to Centroid =	500	ft			6984.5		3.50				9,301	0.214	22,300	0.512
Watershed Slope = Watershed Imperviousness =	0.030 53.00%	ft/ft percent												
Percentage Hydrologic Soil Group A =	0.0%	percent												
Percentage Hydrologic Soil Group B = Percentage Hydrologic Soil Groups C/D =	100.0% 0.0%	percent percent												
Target WQCV Drain Time =	12.0	hours												
Location for 1-hr Rainfall Depths =														
After providing required inputs above incl depths, click 'Run CUHP' to generate rund	off hydrographs	s using												
the embedded Colorado Urban Hydro	r	-	Optional User											
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =		acre-feet acre-feet	0.015	acre-feet acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) =	0.084	acre-feet	1.19	inches										
5-yr Runoff Volume (P1 = 1.5 in.) = 10 -yr Runoff Volume (P1 = 1.75 in.) =	0.119 0.150	acre-feet acre-feet	1.50 1.75	inches inches										
25-yr Runoff Volume (P1 = 2 in.) =	0.190	acre-feet	2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) = 100-yr Runoff Volume (P1 = 2.52 in.) =	0.223 0.264	acre-feet acre-feet	2.25 2.52	inches inches										
500-yr Runoff Volume (P1 = 2.52 in.) = 500-yr Runoff Volume (P1 = 3.68 in.) =	0.264	acre-feet	3.68	inches										
Approximate 2-yr Detention Volume =	0.068	acre-feet												
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	0.093 0.122	acre-feet acre-feet											<u> </u>	
Approximate 25-yr Detention Volume =	0.133	acre-feet												
Approximate 50-yr Detention Volume = Approximate 100-yr Detention Volume =	0.139 0.154	acre-feet acre-feet												
		7												
Define Zones and Basin Geometry Zone 1 Volume (WQCV) =	0.015	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.015	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	0.064	acre-feet												
Total Detention Basin Volume = Initial Surcharge Volume (ISV) =	0.154 N/A	acre-feet ft ³												
Initial Surcharge Depth (ISD) =	N/A	ft												
Total Available Detention Depth (H _{total}) = Depth of Trickle Channel (H _{TC}) =		ft ft												
Slope of Trickle Channel (S_{TC}) =	N/A	ft/ft												
Slopes of Main Basin Sides $(S_{main}) =$ Basin Length-to-Width Ratio $(R_{L/W}) =$		H:V												
	user	J												
Initial Surcharge Area $(A_{ISV}) =$		ft ²												
Surcharge Volume Length (L_{ISV}) = Surcharge Volume Width (W_{ISV}) =		ft												
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft												
Length of Basin Floor (L_{FLOOR}) = Width of Basin Floor (W_{FLOOR}) =	user user	ft ft												
Area of Basin Floor (A_{FLOOR}) =	user	ft ²												
Volume of Basin Floor (V_{FLOOR}) = Depth of Main Basin (H_{MAIN}) =		ft ³												
Length of Main Basin $(L_{MAIN}) =$		ft												
Width of Main Basin (W_{MAIN}) = Area of Main Basin (A_{MAIN}) =	user	ft ft ²												
Volume of Main Basin (V_{MAIN}) =	user user	ft ³												
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												
												_		
													 	
Pond A view Basin													10/0	/2021 3.12 PM

MHFD-Detention, Version 4.05 (January 2022)

	DE					CTON			
	DE		BASIN OUT			SIGN			
Project	Eastonville Road		FD-Detention, Ver	sion 4.05 (Januar)	y 2022)				
Basin ID:									
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zana 1 (14/001)			Filtration Media	l		
T T			Zone 1 (WQCV)		0.015				
ZONE 1 AND 2	-100-YEAR ORIFICE		Zone 2 (EURV)		0.075	Circular Orifice			
PERMANENT ORIFICES POOL Example Zono	Configuration (Re	tontion Bond)	Zone 3 (100-year)		0.064	Weir&Pipe (Restrict)			
•	•			Total (all zones)	0.154				
er Input: Orifice at Underdrain Outlet (typical	·	1		. .			Calculated Parame	1	in
Underdrain Orifice Invert Depth =			the filtration media	surface)		Irain Orifice Area =	0.0	ft ²	
Underdrain Orifice Diameter =	0.60	linches			Underdrain	Orifice Centroid =	0.03	feet	
er Input: Orifice Plate with one or more orifice	and or Elliptical Clat		d to drain WOCV a	nd/or ELID/(in a co	dimentation PMD)			tore for Dista	
Centroid of Lowest Orifice =	N/A	1	n bottom at Stage =	-		ce Area per Row =	Calculated Parame N/A	ft ²	
Depth at top of Zone using Orifice Plate =	N/A N/A	•	n bottom at Stage =	•	-	ptical Half-Width =	N/A	feet	
	N/A N/A	inches	ii bolloiii al Slaye -	= 0 11)		ical Slot Centroid =	N/A N/A	feet	
Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	N/A N/A	sq. inches			•	Iliptical Slot Area =	N/A	ft ²	
onnee nater onnee Area per Now =	14/7	Jodi meneo			E			lic	
ser Input: Stage and Total Area of Each Orific	•	from lowest to high Row 2 (optional)		Row 4 (optional)	Row E (ontional)	Pow 6 (antional)	Row 7 (optional)	Row 8 (optional)	٦
Stage of Orifice Centroid (ft)	Row 1 (optional) N/A	N/A	Row 3 (optional) N/A	Row 4 (optional) N/A	Row 5 (optional) N/A	Row 6 (optional) N/A	N/A	N/A	
Orifice Area (sq. inches)		N/A	N/A N/A	N/A N/A	N/A	N/A N/A	N/A N/A	N/A N/A	
	N/A	N/A		11/7	N/A	N/A	11/7	177	
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Orifice Area (sq. inches)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
		•	·					•	-
ser Input: Vertical Orifice (Circular or Rectang	<u>ular)</u>		_				Calculated Parame	eters for Vertical O	rifice
	Zone 2 Circular	Not Selected]				Zone 2 Circular	Not Selected	
Invert of Vertical Orifice =	0.50	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Ver	tical Orifice Area =	0.01	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	1.09	N/A	ft (relative to basir	n bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	0.06	N/A	feet
Vertical Orifice Diameter =	1.33	N/A	inches						
			-						
ser Input: Overflow Weir (Dropbox with Flat c	or Sloped Grate and	l Outlet Pipe OR Re	ectangular/Trapezoi	dal Weir and No Ou	utlet Pipe)		Calculated Parame	eters for Overflow	Weir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
								fact	
Overflow Weir Front Edge Height, Ho =	1.25	N/A	ft (relative to basin b	pottom at Stage = 0 f	ft) Height of Grate	e Upper Edge, $H_t =$	1.25	N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	1.25 3.00	N/A N/A	ft (relative to basin l feet	bottom at Stage = 0 f	, -	e Upper Eage, H _t = /eir Slope Length =	3.00	N/A N/A	feet
			- ·	-	Overflow W				_

Overflow Weir Grate Slope = 0.00 N/A H:V N/A Horiz. Length of Weir Sides = 3.00 feet Overflow Grate Type = Type C Grate N/A Debris Clogging % = 50% N/A %

Calculated Parameters for Outlet Pipe w/ Flow Restriction Plate

6.26

3.13

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.58	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.11	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.10	N/A	feet
Restrictor Plate Height Above Pipe Invert =	2.00		inches Half-Central Angle	of Restrictor Plate on Pipe =	0.68	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

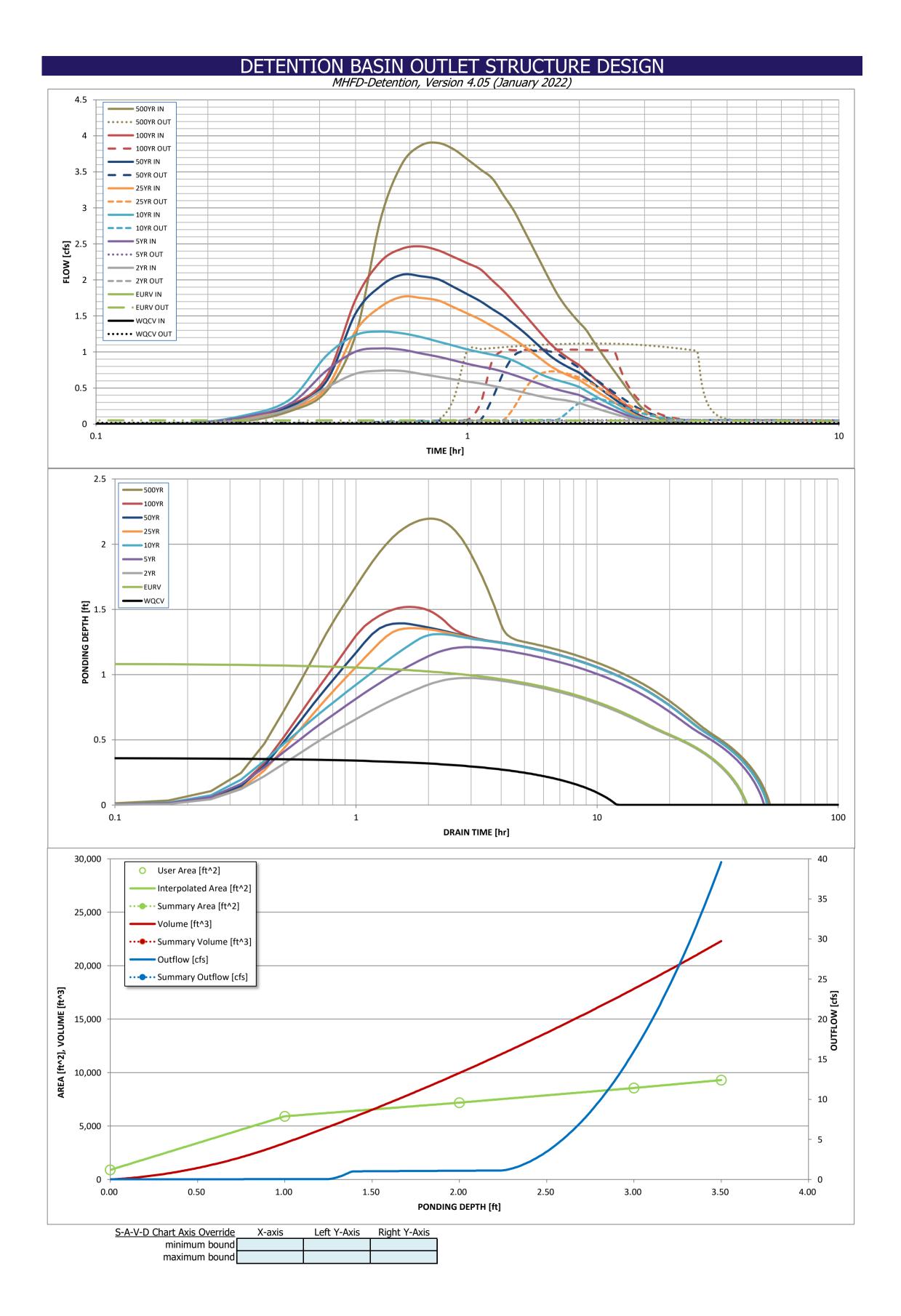
Spillway Invert Stage=	2.24	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	5.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway

N/A

N/A

 ft^2


ft²

Spillway Design Flow Depth=	0.26	feet
Stage at Top of Freeboard =	3.50	feet
Basin Area at Top of Freeboard =	0.21	acres
Basin Volume at Top of Freeboard =	0.51	acre-ft

Overflow Grate Open Area w/o Debris =

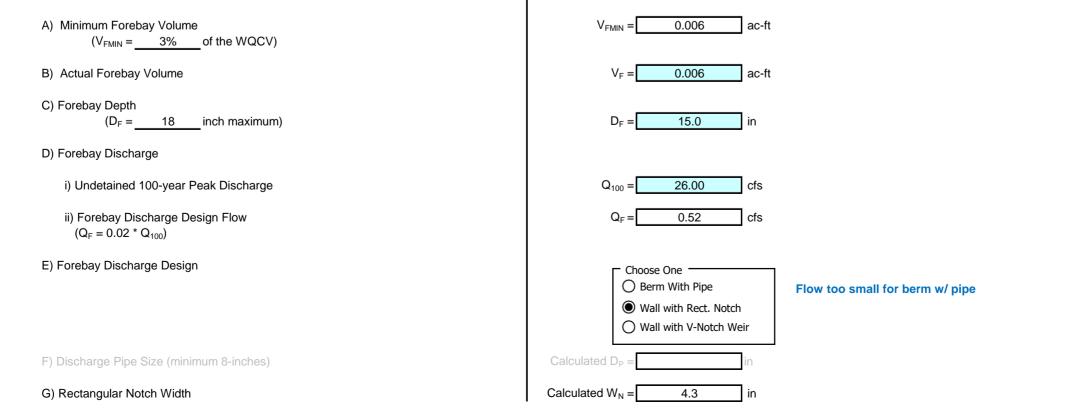
Overflow Grate Open Area w/ Debris =

Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs and	d runoff volumes b	y entering new valu	les in the Inflow Hy	drographs table (C	Columns W through	1 AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =		0.090	0.084	0.119	0.150	0.190	0.223	0.264	0.423
Inflow Hydrograph Volume (acre-ft) =		N/A	0.084	0.119	0.150	0.190	0.223	0.264	0.423
CUHP Predevelopment Peak Q (cfs) =		N/A	0.1	0.2	0.4	0.7	0.8	1.1	1.9
OPTIONAL Override Predevelopment Peak Q (cfs) =	'	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =		N/A	0.05	0.14	0.22	0.41	0.52	0.68	1.22
Peak Inflow Q (cfs) =		N/A	0.7	1.0	1.3	1.8	2.1	2.5	3.9
Peak Outflow Q (cfs) =		0.1	0.0	0.06	0.3	0.7	1.0	1.0	1.1
Ratio Peak Outflow to Predevelopment Q =		N/A	N/A	0.2	1.0	1.1	1.2	1.0	0.6
Structure Controlling Flow =	Filtration Media	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =		N/A	N/A	N/A	0.0	0.1	0.2	0.2	0.2
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =		40	40	46	47	46	46	45	42
Time to Drain 99% of Inflow Volume (hours) =		41	41	48	50	50	49	49	49
Maximum Ponding Depth (ft) =		1.09	0.97	1.21	1.31	1.36	1.39	1.52	2.20
Area at Maximum Ponding Depth (acres) =	0.06	0.14	0.13	0.14	0.14	0.15	0.15	0.15	0.17
Maximum Volume Stored (acre-ft) =	0.016	0.091	0.074	0.107	0.122	0.128	0.133	0.151	0.261

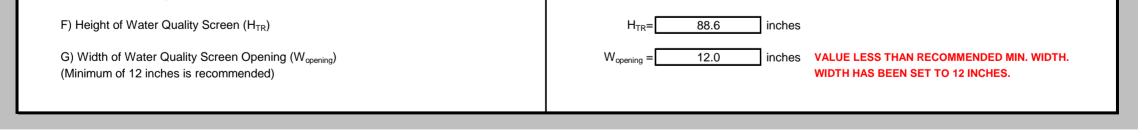
DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can c		ulated inflow hyd	drographs from	this workbook	with inflow hydr	ographs develog	oed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.04
	0:15:00	0.00	0.00	0.06	0.10	0.12	0.08	0.10	0.10	0.18
	0:20:00	0.00	0.00	0.21	0.28	0.35	0.21	0.25	0.26	0.45
	0:25:00	0.00	0.00	0.50	0.74	0.95	0.50	0.59	0.65	1.24
	0:30:00 0:35:00	0.00	0.00	0.70 0.74	1.01 1.05	1.23 1.28	1.29	<u>1.54</u> 1.91	1.73 2.25	2.84 3.61
	0:40:00	0.00	0.00	0.74	1.03	1.26	1.63 1.77	2.07	2.23	3.87
	0:45:00	0.00	0.00	0.70	0.98	1.21	1.75	2.05	2.47	3.90
	0:50:00	0.00	0.00	0.66	0.94	1.15	1.72	2.01	2.41	3.82
	0:55:00	0.00	0.00	0.62	0.88	1.09	1.62	1.90	2.32	3.67
	1:00:00	0.00	0.00	0.59	0.84	1.04	1.53	1.80	2.23	3.54
	1:05:00	0.00	0.00	0.56	0.80	1.00	1.45	1.70	2.15	3.41
	1:10:00 1:15:00	0.00	0.00	0.53 0.50	0.77	0.96 0.93	1.36 1.27	1.60	1.99 1.85	3.18 2.96
	1:20:00	0.00	0.00	0.30	0.68	0.88	1.18	1.39	1.69	2.70
	1:25:00	0.00	0.00	0.44	0.63	0.81	1.09	1.28	1.53	2.45
	1:30:00	0.00	0.00	0.41	0.59	0.75	0.99	1.16	1.39	2.22
	1:35:00	0.00	0.00	0.38	0.55	0.69	0.90	1.05	1.25	1.99
	1:40:00	0.00	0.00	0.36	0.51	0.64	0.81	0.95	1.12	1.79
	1:45:00	0.00	0.00	0.34	0.48	0.61	0.75	0.87	1.02	1.64
	1:50:00 1:55:00	0.00	0.00	0.33 0.31	0.45 0.43	0.58 0.55	0.69 0.65	0.81	0.94	1.52 1.41
	2:00:00	0.00	0.00	0.31	0.43	0.55	0.65	0.76	0.88	1.41
	2:05:00	0.00	0.00	0.25	0.36	0.31	0.55	0.64	0.73	1.18
	2:10:00	0.00	0.00	0.23	0.32	0.41	0.49	0.58	0.66	1.05
	2:15:00	0.00	0.00	0.21	0.29	0.36	0.44	0.51	0.58	0.93
	2:20:00	0.00	0.00	0.18	0.25	0.32	0.39	0.45	0.52	0.82
	2:25:00	0.00	0.00	0.16	0.22	0.28	0.34	0.39	0.45	0.72
	2:30:00 2:35:00	0.00	0.00	0.14	0.19	0.24	0.29	0.34	0.39	0.62
	2:40:00	0.00	0.00	0.12	0.16	0.20 0.17	0.25 0.20	0.29	0.33	0.52
	2:45:00	0.00	0.00	0.10	0.10	0.17	0.20	0.19	0.27	0.33
	2:50:00	0.00	0.00	0.06	0.08	0.11	0.13	0.14	0.16	0.25
	2:55:00	0.00	0.00	0.05	0.07	0.09	0.10	0.11	0.12	0.19
	3:00:00	0.00	0.00	0.04	0.06	0.07	0.07	0.09	0.09	0.15
	3:05:00	0.00	0.00	0.03	0.05	0.06	0.06	0.07	0.07	0.12
	3:10:00 3:15:00	0.00	0.00	0.03	0.04	0.05	0.05	0.06	0.06	0.09
	3:20:00	0.00	0.00	0.03	0.03	0.04	0.04	0.05	0.04	0.07
	3:25:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.04
	3:30:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.04
	3:35:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:40:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.01	0.02
	3:45:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:50:00 3:55:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	4:00:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00 4:55:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00 0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

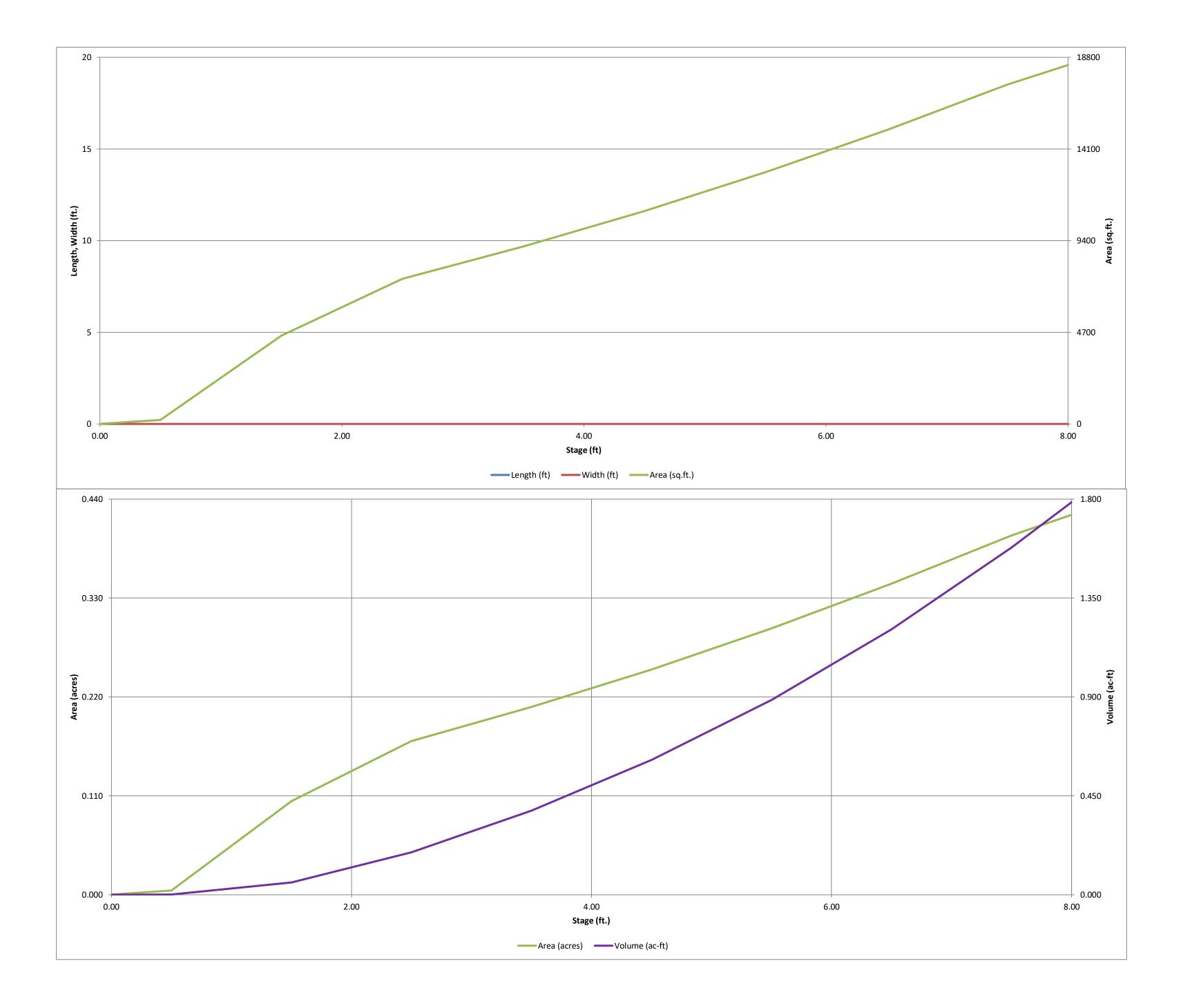
Summary Stage-Area-Volume-Discharge Relationships


The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							where applicable).
							-
							4
							-
							-
							-
							4
							4
							4
							4
							1
							1
							1
]
							-
							-
							-
							-
							-
							-
							-
							4
							4
							4
							4
							4
							1
]
							4
							4
							1
]
							4
							4
							1
							4
							4
							1
							4
							4
							4
]
							4
				ļ			1

	D-BMP (Version 3.07, March 2018) Sheet 1 of
Designer: SPC	
Company: HR Green	
Date: October 28, 2024	
Project: Eastonville Road - Segment 1 Improvements EDB B ULTIMAT	E CONDITIONS
Location: EL PASO COUNTY, CO	
1. Basin Storage Volume	
A) Effective Imperviousness of Tributary Area, I_a	I _a = <u>66.0</u> %
B) Tributary Area's Imperviousness Ratio (i = $I_a / 100$)	i = 0.660
C) Contributing Watershed Area	Area = <u>9.480</u> ac
 D) For Watersheds Outside of the Denver Region, Depth of Average Runoff Producing Storm 	d ₆ = 0.42 in
E) Design Concept	Choose One
(Select EURV when also designing for flood control)	O Water Quality Capture Volume (WQCV)
	Excess Urban Runoff Volume (EURV)
F) Design Volume (WQCV) Based on 40-hour Drain Time	V _{DESIGN} =ac-ft
(V _{DESIGN} = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	
G) For Watersheds Outside of the Denver Region,	V _{DESIGN OTHER} = 0.199 ac-ft
Water Quality Capture Volume (WQCV) Design Volume	
$(V_{WQCV \text{ OTHER}} = (d_6^*(V_{DESIGN}/0.43))$	
 H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) 	V _{DESIGN USER} = ac-ft
I) NRCS Hydrologic Soil Groups of Tributary Watershed	
i) Percentage of Watershed consisting of Type A Soils	$HSG_A = 100\%$
 ii) Percentage of Watershed consisting of Type B Soils iii) Percentage of Watershed consisting of Type C/D Soils 	$HSG_{B} = 0 \%$ $HSG_{C/D} = 0 \%$
ing recentage of watershed consisting of Type O/D Solis	
J) Excess Urban Runoff Volume (EURV) Design Volume	
For HSG A: EURV _A = 1.68 * $i^{1.28}$ For HSG B: EURV _B = 1.36 * $i^{1.08}$	EURV _{DESIGN} = 0.780 ac-f t
For HSG C/D: EURV _{C/D} = $1.20 * i^{1.08}$	
K) User Input of Excess Urban Runoff Volume (EURV) Design Volume	EURV _{DESIGN USER} = ac-f t
(Only if a different EURV Design Volume is desired)	
2. Basin Shape: Length to Width Ratio	L : W = 2.0 : 1
(A basin length to width ratio of at least 2:1 will improve TSS reduction.)	
3. Basin Side Slopes	
 A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) 	Z = 4.00 ft / ft
4. Inlet	
 A) Describe means of providing energy dissipation at concentrated inflow locations: 	
5. Forebay	

	Design Procedure Form: Ex	ctended Detention Basin (EDB)
Designer	SPC	Sheet 2 of 3
Designer: Company:	HR Green	
Date:	October 28, 2024	
Project:	Eastonville Road - Segment 1 Improvements EDB B ULTIMATE CONDIT	TIONS
Location:	EL PASO COUNTY, CO	
6. Trickle Channel	I	Choose One Concrete
A) Type of Tric	kle Channel	Soft Bottom
F) Slope of Tric	ckle Channel	S = 0.0050 ft / ft
7. Micropool and 0	Outlet Structure	
A) Depth of Mid	cropool (2.5-feet minimum)	$D_{\rm M} = 2.5$ ft
B) Surface Are	ea of Micropool (10 ft ² minimum)	A _M = <u>10</u> sq ft
C) Outlet Type		
		Choose One Choose One One One One One One One One One On
		O Other (Describe):
D) Smallest Dir (Use UD-Deten	mension of Orifice Opening Based on Hydrograph Routing	D _{orifice} = 1.00 inches
E) Total Outlet	Area	A _{ot} = <u>5.50</u> square inches
8. Initial Surcharge	e Volume	
	tial Surcharge Volume	$D_{IS} = 4$ in
(Minimum re	ecommended depth is 4 inches)	
	tial Surcharge Volume	$V_{IS} = 26$ cu ft
(Minimum vo	lume of 0.3% of the WQCV)	
C) Initial Surcha	arge Provided Above Micropool	$V_s = 3.3$ cu ft
9. Trash Rack		
A) Water Quali	ity Screen Open Area: $A_t = A_{ot} * 38.5*(e^{-0.095D})$	A _t = <u>193</u> square inches
	een (If specifying an alternative to the materials recommended	S.S. Well Screen with 60% Open Area
	indicate "other" and enter the ratio of the total open are to the e for the material specified.)	
	Other (Y/N): N	
C) Ratio of Tota	al Open Area to Total Area (only for type 'Other')	User Ratio =
	Quality Screen Area (based on screen type)	A _{total} = 321 sq. in.
	sign Volume (EURV or WQCV) design concept chosen under 1E)	H= 5.05 feet



	Design Procedure Form: I	Extended Detention Basin (EDB)
Designer: Company: Date: Project: Location:	SPC HR Green October 28, 2024 Eastonville Road - Segment 1 Improvements EDB B ULTIMATE CONI EL PASO COUNTY, CO	DITIONS
B) Slope of Ov	nkment nbankment protection for 100-year and greater overtopping: rerflow Embankment distance per unit vertical, 4:1 or flatter preferred)	Ze = 4.00 ft / ft
11. Vegetation		 Choose One Irrigated Not Irrigated
12. Access A) Describe Se	ediment Removal Procedures	
Notes:		

MHFD-Detention, Version 4.05 (January 2022)

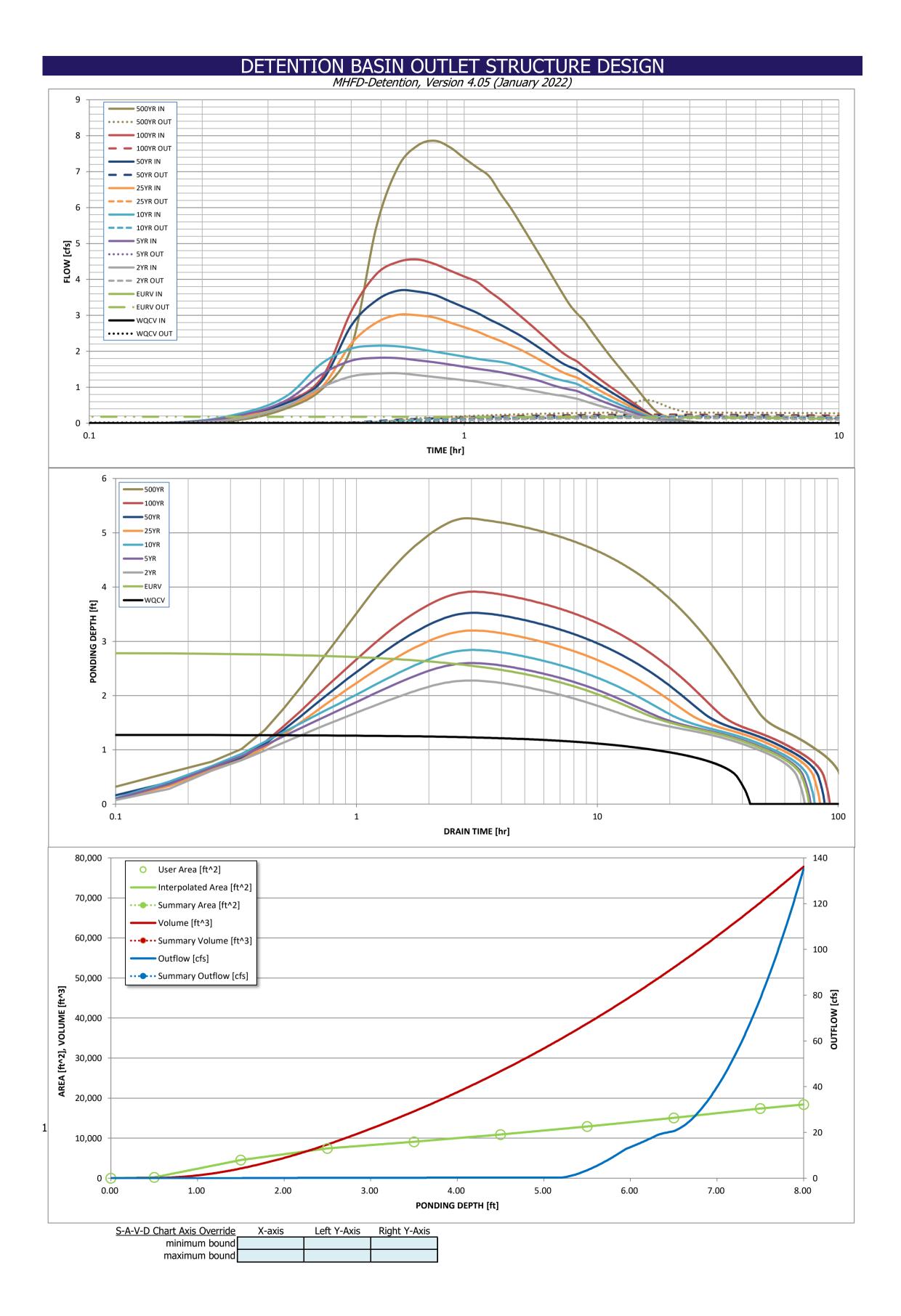
			ent 1 Improv		-Detention, Version	1.05 (54114	ury 2022)							
-			TION, BASIN		J									
		T												
		100-YEA			. [1.							
PERMANENT ORIFIC	1 AND 2	ORIFICE	E		Depth Increment =		ft Optional			_	Optional			
POOL Example Zone C	Configuration	n (Retention	Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Watershed Information		_		6983.5			0.00				10	0.000		
Selected BMP Type =	EDB	_	Note: L / W		6984		0.50				211	0.005	55	0.001
Watershed Area =	3.95	acres	L / W Ratio) = 17.8	6985		1.50				4,539	0.104	2,430	0.056
Watershed Length = Watershed Length to Centroid =	1,750 500	ft			6986 6987		2.50 3.50				7,443 9,104	0.171	8,421 16,695	0.193 0.383
Watershed Slope =	0.009	ft/ft			6988		4.50				10,914	0.251	26,704	0.613
Watershed Imperviousness =	53.00%	percent			6989		5.50				12,910	0.296	38,616	0.886
Percentage Hydrologic Soil Group A = Percentage Hydrologic Soil Group B =	100.0% 0.0%	percent percent			6990 6991		6.50 7.50				15,069 17,408	0.346	52,605 68,844	1.208 1.580
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			6991.5		8.00				17,408	0.400	77,797	1.786
Target WQCV Drain Time =	40.0	hours												
Location for 1-hr Rainfall Depths =														
After providing required inputs above include depths, click 'Run CUHP' to generate runo														
the embedded Colorado Urban Hydrog			Optional Use	r Overrides										
Water Quality Capture Volume (WQCV) =		acre-feet	0.035	acre-feet										
Excess Urban Runoff Volume (EURV) = 2-yr Runoff Volume (P1 = 1.19 in.) =		acre-feet acre-feet	1.19	acre-feet inches										
5-yr Runoff Volume (P1 = 1.5 in.) =	0.244	acre-feet	1.50	inches										
10-yr Runoff Volume (P1 = 1.75 in.) =	0.292	acre-feet	1.75	inches										
25-yr Runoff Volume (P1 = 2 in.) = 50 -yr Runoff Volume (P1 = 2.25 in.) =	0.364	acre-feet acre-feet	2.00 2.25	inches inches										
100-yr Runoff Volume (P1 = 2.52 in.) =	0.524	acre-feet	2.23	inches										
500-yr Runoff Volume (P1 = 3.68 in.) =	0.895	acre-feet	3.68	inches										
Approximate 2-yr Detention Volume =	0.158	acre-feet												
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	0.208	acre-feet acre-feet												
Approximate 25-yr Detention Volume =	0.308	acre-feet												
Approximate 50-yr Detention Volume =	0.343	acre-feet												
Approximate 100-yr Detention Volume =	0.384	acre-feet												
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	0.035	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.210	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	0.139 0.384	acre-feet acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³												
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth $(H_{total}) =$ Depth of Trickle Channel $(H_{TC}) =$	user	ft ft												
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft												
Slopes of Main Basin Sides $(S_{main}) =$		H:V												
Basin Length-to-Width Ratio $(R_{L/W}) =$	user													
Initial Surcharge Area $(A_{ISV}) =$	user	ft ²												
Surcharge Volume Length $(L_{ISV}) =$	user	ft												
Surcharge Volume Width (W_{ISV}) =	user	ft												
Depth of Basin Floor $(H_{FLOOR}) =$ Length of Basin Floor $(L_{FLOOR}) =$	user													
Width of Basin Floor (W_{FLOOR}) =	user	ft												
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²												
Volume of Basin Floor (V _{FLOOR}) = Depth of Main Basin (H _{MAIN}) =	user	ft ³												
Length of Main Basin $(L_{MAIN}) =$		ft												
Width of Main Basin (W_{MAIN}) =	user	ft												
Area of Main Basin $(A_{MAIN}) =$	user	ft ² ft ³												
Volume of Main Basin (V _{MAIN}) = Calculated Total Basin Volume (V _{total}) =	user user	acre-feet												
Pond B INT xIsm Basin													10/2	/2024 4·09 PM

MHFD-Detention, Version 4.05 (January 2022)

			BASIN OUT					
Project	Factonville Road .	///// Segment 1 Impro	FD-Detention, Ver vements	rsion 4.05 (Januar	y 2022)			
-		CONDITION, BASIN						
ZONE 3				Estimated	Estimated			
ZONE 2 ZONE 1					Volume (ac-ft)	Outlet Type		
				Stage (ft)			1	
			Zone 1 (WQCV)		0.035	Orifice Plate		
ZONE 1 AND 2	-100-YEAR ORIFICE		Zone 2 (EURV)	2.80	0.210	Rectangular Orifice		
PERMANENT ORIFICES			Zone 3 (100-year)	3.51	0.139	Weir&Pipe (Restrict)		
Example Zone (Configuration (Re	etention Pond)		Total (all zones)	0.384			
Jser Input: Orifice at Underdrain Outlet (typical	<u>y used to drain W</u>	QCV in a Filtration E	<u>3MP)</u>				Calculated Parame	eters for Underdrai
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	a surface)	Underd	Irain Orifice Area =	N/A	ft ²
Underdrain Orifice Diameter =	N/A	inches			Underdrair	Orifice Centroid =	N/A	feet
Iser Input: Orifice Plate with one or more orific	<u>es or Elliptical Slot</u>	Weir (typically use	ed to drain WQCV a	nd/or EURV in a se	dimentation BMP)		Calculated Parame	eters for Plate
Centroid of Lowest Orifice =	0.00	ft (relative to basir	n bottom at Stage =	= 0 ft)	WQ Orifi	ce Area per Row =	1.250E-03	ft ²
Depth at top of Zone using Orifice Plate =	1.28	ft (relative to basin	n bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipt	ical Slot Centroid =	N/A	feet
Orifice Plate: Orifice Area per Row =	0.18	sq. inches (diamet	ter = 1/2 inch)		E	Iliptical Slot Area =	N/A	ft ²
Jser Input: Stage and Total Area of Each Orifice	•	_		Dow 4 (antional)		Dow ((antional)	Dow 7 (antional)	Dow & (antional)
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	Row 1 (required) 0.00	Row 2 (optional) 0.50	Row 3 (optional) 1.00	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	Row 1 (required) 0.00 0.18	Row 2 (optional) 0.50 0.18	Row 3 (optional) 1.00 0.18					
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required) 0.00 0.18 Row 9 (optional)	Row 2 (optional) 0.50	Row 3 (optional) 1.00				Row 7 (optional)	
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft)	Row 1 (required) 0.00 0.18 Row 9 (optional)	Row 2 (optional) 0.50 0.18	Row 3 (optional) 1.00 0.18					
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required) 0.00 0.18 Row 9 (optional)	Row 2 (optional) 0.50 0.18	Row 3 (optional) 1.00 0.18					
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches)	Row 1 (required) 0.00 0.18 Row 9 (optional)	Row 2 (optional) 0.50 0.18	Row 3 (optional) 1.00 0.18				Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang	Row 1 (required) 0.00 0.18 Row 9 (optional)	Row 2 (optional) 0.50 0.18 Row 10 (optional)	Row 3 (optional) 1.00 0.18			Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula	Row 2 (optional) 0.50 0.18 Row 10 (optional)	Row 3 (optional) 1.00 0.18 Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional) <u>Calculated Parame</u> Zone 2 Rectangula	Row 16 (optional) eters for Vertical O Not Selected
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang Invert of Vertical Orifice =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional) <u>Calculated Parame</u> Zone 2 Rectangula 0.03	Row 16 (optional) eters for Vertical O Not Selected N/A
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional) <u>Calculated Parame</u> Zone 2 Rectangula 0.03	Row 16 (optional) eters for Vertical O Not Selected
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice = Vertical Orifice Height =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80 4.00	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin inches	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional) <u>Calculated Parame</u> Zone 2 Rectangula 0.03	Row 16 (optional) eters for Vertical O Not Selected N/A
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional) <u>Calculated Parame</u> Zone 2 Rectangula 0.03	Row 16 (optional) eters for Vertical O Not Selected N/A
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice = Vertical Orifice Height = Vertical Orifice Width =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80 4.00 1.00	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin inches inches inches	Row 12 (optional)	Row 13 (optional) = 0 ft) Ver = 0 ft) Vertica	Row 14 (optional)	Row 15 (optional) <u>Calculated Parame</u> Zone 2 Rectangula 0.03 0.17	Row 16 (optional) eters for Vertical O Not Selected N/A N/A
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice = Vertical Orifice Height =	Row 1 (required) 0.00 0.18 Row 9 (optional) Ular) Zone 2 Rectangula 1.33 2.80 4.00 1.00 r Sloped Grate and	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A N/A Outlet Pipe OR Re	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin inches inches inches	Row 12 (optional)	Row 13 (optional) = 0 ft) Ver = 0 ft) Vertica	Row 14 (optional)	Row 15 (optional) Calculated Parame Zone 2 Rectangula 0.03 0.17	Row 16 (optional) eters for Vertical O Not Selected N/A N/A
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) User Input: Vertical Orifice (Circular or Rectange Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice = Vertical Orifice Height = Vertical Orifice Width =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80 4.00 1.00 r Sloped Grate and Zone 3 Weir	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A N/A N/A Outlet Pipe OR Re Not Selected	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin inches inches ectangular/Trapezoi	Row 12 (optional) n bottom at Stage = n bottom at Stage = idal Weir and No Ou	Row 13 (optional) = 0 ft) Ver = 0 ft) Vertica	Row 14 (optional)	Row 15 (optional) Calculated Parame Zone 2 Rectangula 0.03 0.17	Row 16 (optional) eters for Vertical O Not Selected N/A N/A eters for Overflow Y Not Selected
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice = Vertical Orifice Height = Vertical Orifice Width = Jser Input: Overflow Weir (Dropbox with Flat o Overflow Weir Front Edge Height, Ho =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80 4.00 1.00 r Sloped Grate and Zone 3 Weir 5.20	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A N/A O/A Outlet Pipe OR Re Not Selected N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin inches inches inches ft (relative to basin	Row 12 (optional) n bottom at Stage = n bottom at Stage = idal Weir and No Ou	Row 13 (optional) = 0 ft) Ver = 0 ft) Vertica utlet Pipe) ft) Height of Grate	Row 14 (optional) tical Orifice Area = I Orifice Centroid =	Row 15 (optional) Calculated Parame Zone 2 Rectangula 0.03 0.17	Row 16 (optional) eters for Vertical O Not Selected N/A N/A eters for Overflow Not Selected N/A
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectange Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice = Vertical Orifice Height = Vertical Orifice Width = Jser Input: Overflow Weir (Dropbox with Flat o Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Height, Ho =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80 4.00 1.00 r Sloped Grate and Zone 3 Weir 5.20 3.00	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A N/A Outlet Pipe OR Re Not Selected N/A N/A N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin inches inches ectangular/Trapezoi ft (relative to basin feet	Row 12 (optional) Row 12 (optional) n bottom at Stage = n bottom at Stage = idal Weir and No Or bottom at Stage = 0	Row 13 (optional) = 0 ft) Ver = 0 ft) Vertica utlet Pipe) ft) Height of Grate Overflow W	Row 14 (optional) tical Orifice Area = l Orifice Centroid = e Upper Edge, H _t = /eir Slope Length =	Row 15 (optional) Calculated Parame Zone 2 Rectangula 0.03 0.17 Calculated Parame Zone 3 Weir 5.20 3.00	Row 16 (optional) eters for Vertical O Not Selected N/A N/A N/A eters for Overflow Y Not Selected N/A N/A N/A
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectang Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice = Vertical Orifice Height = Vertical Orifice Width = Jser Input: Overflow Weir (Dropbox with Flat o Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80 4.00 1.00 r Sloped Grate and Zone 3 Weir 5.20 3.00 0.00	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A N/A Outlet Pipe OR Re Not Selected N/A N/A N/A N/A N/A N/A N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin inches inches ectangular/Trapezoi ft (relative to basin feet H:V	Row 12 (optional) n bottom at Stage = n bottom at Stage = idal Weir and No Ou bottom at Stage = 0	Row 13 (optional) = 0 ft) Ver = 0 ft) Vertica utlet Pipe) ft) Height of Grate Overflow Wate Open Area / 10	Row 14 (optional) tical Orifice Area = l Orifice Centroid = e Upper Edge, H _t = /eir Slope Length = 0-yr Orifice Area =	Row 15 (optional) <u>Calculated Parame</u> Zone 2 Rectangula 0.03 0.17 <u>Calculated Parame</u> Zone 3 Weir 5.20 3.00 3.54	Row 16 (optional) eters for Vertical O Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A
Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Stage of Orifice Centroid (ft) Orifice Area (sq. inches) Jser Input: Vertical Orifice (Circular or Rectange Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice = Vertical Orifice Height = Vertical Orifice Width = Jser Input: Overflow Weir (Dropbox with Flat o Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Height, Ho =	Row 1 (required) 0.00 0.18 Row 9 (optional) ular) Zone 2 Rectangula 1.33 2.80 4.00 1.00 r Sloped Grate and Zone 3 Weir 5.20 3.00 0.00	Row 2 (optional) 0.50 0.18 Row 10 (optional) Not Selected N/A N/A N/A Outlet Pipe OR Re Not Selected N/A N/A N/A	Row 3 (optional) 1.00 0.18 Row 11 (optional) ft (relative to basin ft (relative to basin inches inches ectangular/Trapezoi ft (relative to basin feet	Row 12 (optional) Row 12 (opti	Row 13 (optional) = 0 ft) Ver = 0 ft) Vertica utlet Pipe) ft) Height of Grate Overflow Wate Open Area / 10 rerflow Grate Open	Row 14 (optional) tical Orifice Area = l Orifice Centroid = e Upper Edge, H _t = /eir Slope Length =	Row 15 (optional) Calculated Parame Zone 2 Rectangula 0.03 0.17 Calculated Parame Zone 3 Weir 5.20 3.00 3.54 6.26	Row 16 (optional) eters for Vertical O Not Selected N/A N/A N/A eters for Overflow Y Not Selected N/A N/A N/A

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	1.77	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.75	N/A	feet
Restrictor Plate Height Above Pipe Invert =	18.00		inches Half-Central Angle of F	Restrictor Plate on Pipe =	3.14	N/A	radians


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	15.50	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway

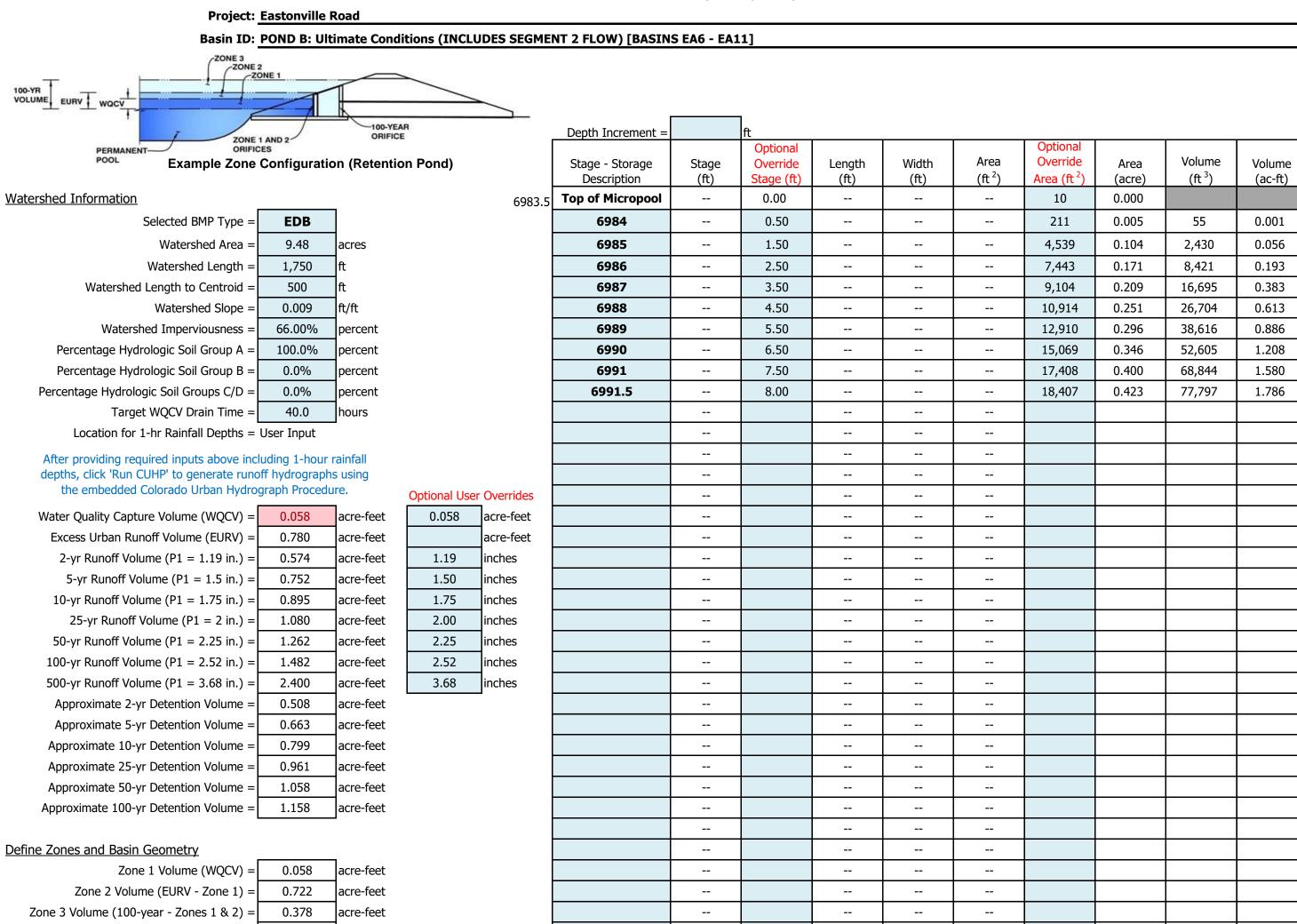
Spillway Design Flow Depth=	0.50	feet
Stage at Top of Freeboard =	8.00	feet
Basin Area at Top of Freeboard =	0.42	acres
Basin Volume at Top of Freeboard =	1.79	acre-ft

Routed Hydrograph Results	The user can over	rride the default CUI	HP hydrographs an	d runoff volumes b	y entering new valu	les in the Inflow Hy	/drographs table (C	olumns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =		N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =		0.245	0.184	0.244	0.292	0.364	0.435	0.524	0.895
Inflow Hydrograph Volume (acre-ft) =		N/A	0.184	0.244	0.292	0.364	0.435	0.524	0.895
CUHP Predevelopment Peak Q (cfs) =	-	N/A	0.0	0.0	0.0	0.3	0.6	1.0	2.8
OPTIONAL Override Predevelopment Peak Q (cfs) =		N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =		N/A	0.00	0.01	0.01	0.08	0.15	0.26	0.70
Peak Inflow Q (cfs) =		N/A	1.4	1.8	2.2	3.0	3.7	4.6	7.9
Peak Outflow Q (cfs) =		0.2	0.1	0.2	0.2	0.2	0.2	0.2	0.6
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	7.2	5.6	0.7	0.4	0.2	0.2
Structure Controlling Flow =		Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Verflow Weir
Max Velocity through Grate 1 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.1
Max Velocity through Grate 2 (fps) =		N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	61	60	62	63	65	66	67	71
Time to Drain 99% of Inflow Volume (hours) =	41	69	67	70	72	75	77	81	90
Maximum Ponding Depth (ft) =		2.80	2.28	2.60	2.84	3.20	3.53	3.92	5.27
Area at Maximum Ponding Depth (acres) =		0.18	0.16	0.17	0.18	0.20	0.21	0.23	0.29
Maximum Volume Stored (acre-ft) =	0.035	0.246	0.156	0.209	0.254	0.322	0.387	0.472	0.817

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

	The user can c		ulated inflow hy	drographs from	this workbook	with inflow hydr	ographs develor	oed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.09
	0:15:00	0.00	0.00	0.13	0.21	0.26	0.17	0.22	0.21	0.40
	0:20:00 0:25:00	0.00	0.00	0.47	0.62	0.73	0.47	0.55	0.58	0.94
	0:23:00	0.00	0.00	1.00 1.30	1.36 1.74	1.66 2.07	1.00 2.21	1.16 2.72	1.26 3.11	2.11 5.47
	0:35:00	0.00	0.00	1.38	1.82	2.15	2.80	3.42	4.15	7.13
	0:40:00	0.00	0.00	1.39	1.81	2.14	3.02	3.69	4.49	7.72
	0:45:00	0.00	0.00	1.34	1.75	2.07	3.00	3.66	4.55	7.86
	0:50:00	0.00	0.00	1.29	1.69	1.99	2.94	3.57	4.43	7.68
	0:55:00 1:00:00	0.00	0.00	1.24	1.63	1.92	2.80	3.39	4.25	7.38
	1:05:00	0.00	0.00	1.19 1.15	1.57 1.51	1.85 1.79	2.67 2.55	3.22 3.07	4.08 3.93	7.11 6.87
	1:10:00	0.00	0.00	1.10	1.47	1.75	2.33	2.89	3.67	6.39
	1:15:00	0.00	0.00	1.05	1.42	1.71	2.29	2.74	3.44	5.98
	1:20:00	0.00	0.00	1.01	1.36	1.65	2.16	2.58	3.20	5.54
	1:25:00	0.00	0.00	0.96	1.30	1.56	2.04	2.43	2.97	5.12
	1:30:00	0.00	0.00	0.92	1.24	1.48	1.91	2.27	2.75	4.71
	1:35:00 1:40:00	0.00	0.00	0.87 0.83	1.18 1.11	1.39 1.31	1.77 1.65	2.10 1.95	2.54 2.33	4.33 3.95
	1:45:00	0.00	0.00	0.83	1.11	1.31	1.65	1.95	2.33	3.95
	1:50:00	0.00	0.00	0.76	0.98	1.19	1.41	1.66	1.96	3.28
	1:55:00	0.00	0.00	0.72	0.94	1.14	1.33	1.56	1.82	3.05
	2:00:00	0.00	0.00	0.68	0.89	1.09	1.27	1.49	1.72	2.87
	2:05:00	0.00	0.00	0.62	0.82	1.00	1.16	1.36	1.57	2.62
	2:10:00 2:15:00	0.00	0.00	0.57	0.75	0.91 0.82	1.06 0.97	1.24	1.44 1.30	2.38
	2:20:00	0.00	0.00	0.51 0.47	0.68 0.61	0.82	0.97	1.13	1.18	2.16 1.95
	2:25:00	0.00	0.00	0.42	0.55	0.67	0.79	0.92	1.06	1.76
	2:30:00	0.00	0.00	0.38	0.50	0.60	0.71	0.83	0.96	1.58
	2:35:00	0.00	0.00	0.34	0.44	0.53	0.63	0.74	0.85	1.40
	2:40:00	0.00	0.00	0.30	0.39	0.47	0.56	0.65	0.75	1.23
	2:45:00 2:50:00	0.00	0.00	0.26	0.34	0.41	0.49	0.57	0.65	1.07
	2:55:00	0.00	0.00	0.22	0.29 0.25	0.35 0.30	0.42 0.35	0.49	0.56	0.90
	3:00:00	0.00	0.00	0.15	0.23	0.25	0.29	0.33	0.37	0.59
	3:05:00	0.00	0.00	0.13	0.17	0.20	0.23	0.26	0.29	0.45
	3:10:00	0.00	0.00	0.10	0.14	0.17	0.18	0.20	0.22	0.34
	3:15:00	0.00	0.00	0.09	0.12	0.14	0.14	0.16	0.17	0.26
	3:20:00 3:25:00	0.00	0.00	0.08	0.10	0.12	0.12	0.13	0.14	0.21
	3:30:00	0.00	0.00	0.06	0.09 0.07	0.11 0.09	0.10	0.11 0.09	0.11	0.17
	3:35:00	0.00	0.00	0.05	0.06	0.08	0.07	0.08	0.07	0.11
	3:40:00	0.00	0.00	0.04	0.05	0.06	0.06	0.06	0.06	0.09
	3:45:00	0.00	0.00	0.03	0.04	0.05	0.05	0.05	0.05	0.07
	3:50:00	0.00	0.00	0.03	0.04	0.04	0.04	0.04	0.04	0.06
	3:55:00	0.00	0.00	0.02	0.03	0.03	0.03	0.03	0.03	0.04
	4:00:00 4:05:00	0.00	0.00	0.02	0.02	0.03	0.02	0.03	0.03	0.04
	4:10:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.01	0.02
	4:15:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.01
	4:20:00 4:25:00	0.00	0.00	0.00	0.01	0.01 0.00	0.01	0.01	0.01	0.01
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00 0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00 5:00:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00 5:15:00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00	0.00	0.00 0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00 5:30:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00 0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00 0.00	0.00	0.00	0.00	0.00 0.00	0.00 0.00	0.00	0.00 0.00	0.00 0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00


DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							stages of all grade slope changes (e.g. ISV and Floor)
							from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice,
							overflow grate, and spillway,
							where applicable).
							-
							4
							-
							-
							-
							4
							4
							4
							4
							1
							1
							1
]
							-
							-
							-
							-
							-
							-
							-
							4
							4
							4
							4
							4
							1
]
							4
							4
							1
]
							4
							4
							1
							4
							4
							1
							4
							4
							4
]
							4
				ļ			1

MHFD-Detention, Version 4.05 (January 2022)

--

--

--

--

--

--

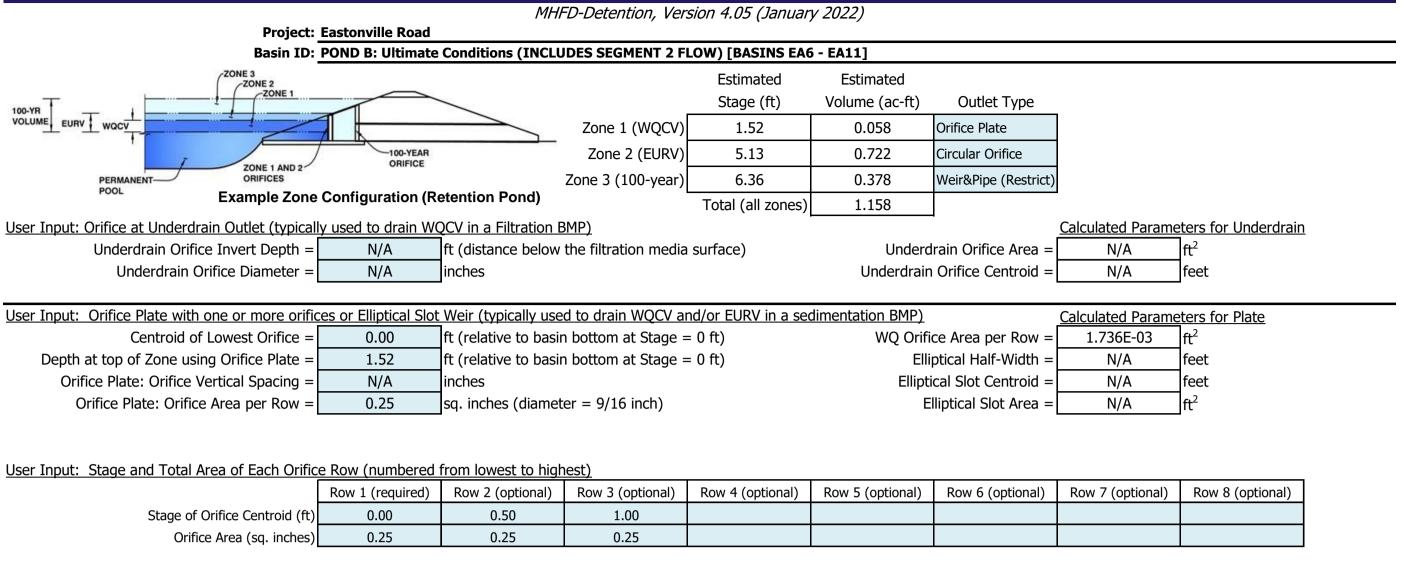
--

Initial Surcharge Volume (ISV) = user ft ³

Total Detention Basin Volume

,		
Initial Surcharge Depth (ISD) =	user	ft
Total Available Detention Depth $(H_{total}) =$	user	ft
Depth of Trickle Channel $(H_{TC}) =$	user	ft
Slope of Trickle Channel (S_{TC}) =	user	ft/ft
Slopes of Main Basin Sides $(S_{main}) =$	user	H:V
Basin Length-to-Width Ratio (R _{L/W}) =	user	
Initial Surcharge Area (A_{ISV}) =	user	ft²
Surcharge Volume Length (L_{ISV}) =	user	ft
Surcharge Volume Width (W_{ISV}) =	user	ft
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft
Length of Basin Floor $(L_{FLOOR}) =$	user	ft
Width of Basin Floor (W_{FLOOR}) =	user	ft
Area of Basin Floor $(A_{FLOOR}) =$	user	ft ²
Volume of Basin Floor (V_{FLOOR}) =	user	ft ³
Depth of Main Basin $(H_{MAIN}) =$	user	ft
Length of Main Basin $(L_{MAIN}) =$	user	ft
Width of Main Basin (W_{MAIN}) =	user	ft
Area of Main Basin $(A_{MAIN}) =$	user	ft²
Volume of Main Basin (V_{MAIN}) =	user	ft ³
Calculated Total Basin Volume (V_{total}) =	user	acre-feet

1.158


acre-feet

		 		7

MHFD-Detention, Version 4.05 (January 2022)

DETENTION BASIN OUTLET STRUCTURE DESIGN

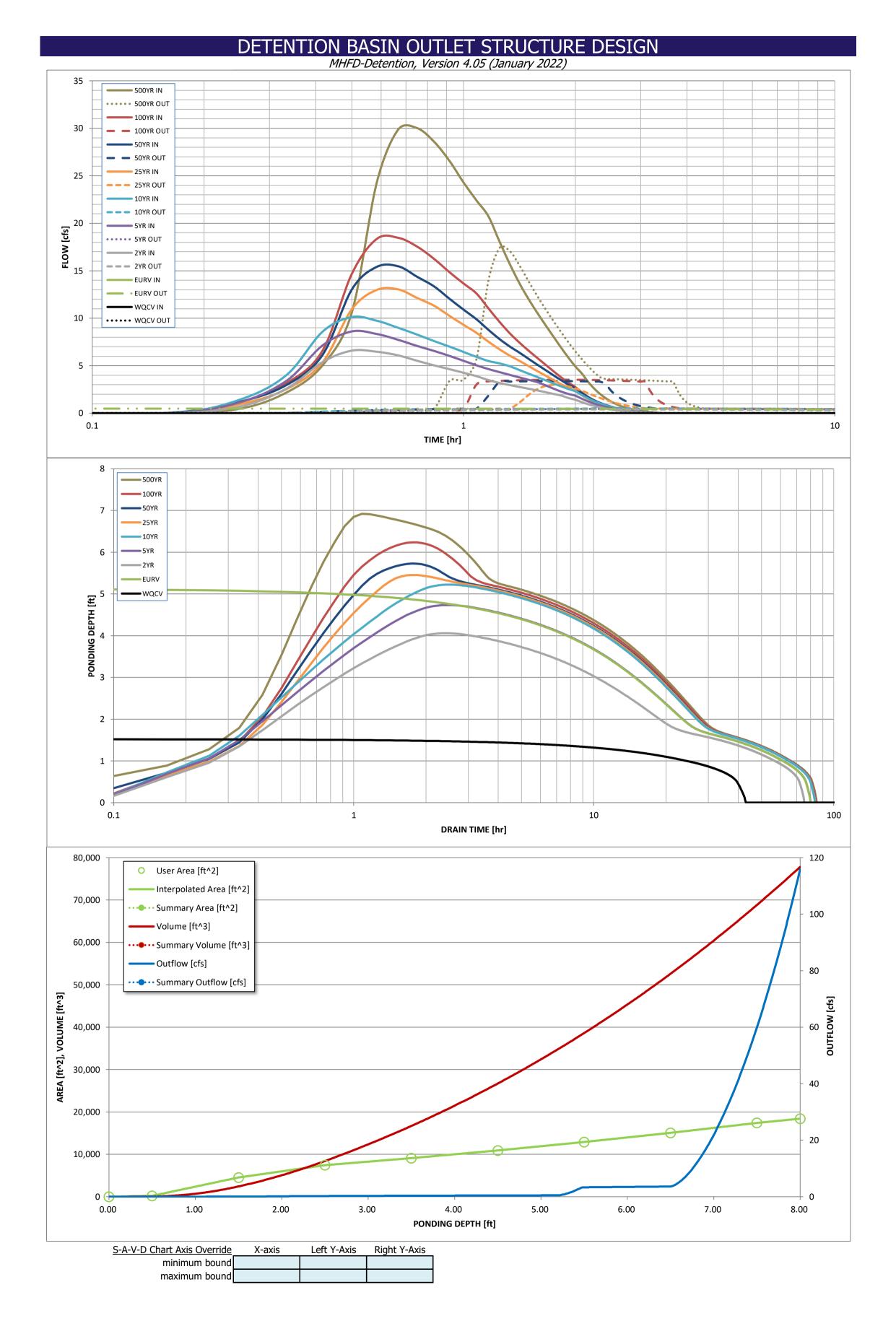
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectang	ular)				Calculated Parame	ters for Vertical O	rifice
	Zone 2 Circular	Not Selected]		Zone 2 Circular	Not Selected	1
Invert of Vertical Orifice =	1.60	N/A	ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Area =			ft ²
Depth at top of Zone using Vertical Orifice =	5.13		ft (relative to basin bottom at Stage = 0 ft)	Vertical Orifice Centroid =	0.13	N/A	feet
Vertical Orifice Diameter =	3.00	N/A	inches				-

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir and No Outlet Pipe) Calculated Parameters for Overflow Weir									
	Zone 3 Weir	Not Selected		Zone 3 Weir	Not Selected]			
Overflow Weir Front Edge Height, Ho =	5.20	N/A	ft (relative to basin bottom at Stage = 0 ft) Height of Grate Upper Edge, H_t =	5.20	N/A	feet			
Overflow Weir Front Edge Length =	3.00	N/A	feet Overflow Weir Slope Length =	3.00	N/A	feet			
Overflow Weir Grate Slope =	0.00	N/A	H:V Grate Open Area / 100-yr Orifice Area =	21.42	N/A				
Horiz. Length of Weir Sides =	3.00	N/A	feet Overflow Grate Open Area w/o Debris =	6.26	N/A	ft ²			
Overflow Grate Type =	Type C Grate	N/A	Overflow Grate Open Area w/ Debris =	3.13	N/A	ft ²			
Debris Clogging % =	50%	N/A	%						

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice)

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	0.25	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.29	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.20	N/A	feet
Restrictor Plate Height Above Pipe Invert =	4.00		inches Half-Central Angle c	of Restrictor Plate on Pipe =	0.98	N/A	radians


User Input: Emergency Spillway (Rectangular or Trapezoidal)

Spillway Invert Stage=	6.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	15.50	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway

Spillway Design Flow Depth=		feet
Stage at Top of Freeboard =	8.00	feet
Basin Area at Top of Freeboard =	0.42	acres
Basin Volume at Top of Freeboard =	1.79	acre-ft

Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs an	d runoff volumes b	y entering new valu	les in the Inflow Hy	drographs table (C	Columns W through	AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.058	0.780	0.574	0.752	0.895	1.080	1.262	1.482	2.400
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.574	0.752	0.895	1.080	1.262	1.482	2.400
CUHP Predevelopment Peak Q (cfs) =		N/A	0.0	0.1	0.1	1.0	2.1	3.5	9.4
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.00	0.01	0.01	0.11	0.22	0.37	0.99
Peak Inflow Q (cfs) =	N/A	N/A	6.6	8.6	10.1	13.0	15.5	18.5	30.0
Peak Outflow Q (cfs) =	0.0	0.5	0.4	0.5	0.6	3.0	3.4	3.5	17.4
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	5.6	4.9	2.9	1.6	1.0	1.9
Structure Controlling Flow =	Plate	Vertical Orifice 1	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Spillway
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	N/A	0.0	0.4	0.5	0.5	0.5
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	39	56	56	57	57	54	51	48	35
Time to Drain 99% of Inflow Volume (hours) =	41	69	66	69	71	70	68	67	61
Maximum Ponding Depth (ft) =	1.53	5.14	4.06	4.73	5.22	5.45	5.73	6.24	6.92
Area at Maximum Ponding Depth (acres) =	0.11	0.28	0.23	0.26	0.28	0.29	0.31	0.33	0.37
Maximum Volume Stored (acre-ft) =	0.059	0.783	0.504	0.672	0.805	0.872	0.953	1.116	1.354

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	The user can o	verride the calcu	ilated inflow hy	drographs from	this workbook v	vith inflow hydro	ographs develop	ed in a separate	program.	
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
5.00 11111	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.08	0.00	0.48
	0:15:00	0.00	0.00	0.71	1.16	1.44	0.00	1.21	1.18	2.18
	0:20:00	0.00	0.00	2.59	3.41	4.01	2.54	2.97	3.17	5.02
	0:25:00	0.00	0.00	5.38	7.13	8.57	5.34	6.11	6.57	10.59
	0:30:00	0.00	0.00	6.59	8.61	10.13	10.94	13.02	14.66	24.23
	0:35:00	0.00	0.00	6.48	8.35	9.74	12.98	15.41	18.34	29.86
	0:40:00	0.00	0.00	6.09	7.73	9.00	13.04	15.47	18.47	30.02
	0:45:00	0.00	0.00	5.52	7.08	8.28	12.14	14.36	17.54	28.58
	0:50:00	0.00	0.00	5.04	6.56	7.60	11.32	13.35	16.24	26.56
	0:55:00	0.00	0.00	4.64	6.03	7.02	10.25	12.05	14.85	24.30
	1:00:00	0.00	0.00	4.26	5.52	6.45	9.31	10.91	13.66	22.41
	1:05:00	0.00	0.00	3.90	5.05	5.93	8.47	9.90	12.61	20.74
	1:10:00	0.00	0.00	3.49	4.65	5.50	7.54	8.78	11.04	18.07
	1:15:00	0.00	0.00	3.19	4.33	5.25	6.73	7.81	9.62	15.67
	1:20:00	0.00	0.00	2.96	4.03	4.94	6.06	7.01	8.40	13.63
	1:25:00	0.00	0.00	2.76	3.76	4.54	5.50	6.36	7.41	11.96
	1:30:00 1:35:00	0.00	0.00	2.57	3.51	4.15	4.94	5.70	6.56	10.51
	1:35:00	0.00	0.00	2.39	3.27	3.80	4.42	5.09	5.79	9.22
	1:40:00	0.00	0.00	2.21 2.03	2.92	3.45 3.12	3.94	4.52 3.97	5.08	8.02 6.88
	1:50:00	0.00	0.00	1.86	2.58 2.28	2.82	3.48 3.05	3.97	4.40 3.77	5.85
	1:55:00	0.00	0.00	1.61	2.23	2.55	2.66	3.02	3.22	4.93
	2:00:00	0.00	0.00	1.42	1.85	2.35	2.35	2.65	2.75	4.18
	2:05:00	0.00	0.00	1.17	1.53	1.92	1.89	2.03	2.18	3.30
	2:10:00	0.00	0.00	0.95	1.24	1.57	1.51	1.70	1.72	2.58
	2:15:00	0.00	0.00	0.77	1.01	1.28	1.21	1.36	1.35	2.02
	2:20:00	0.00	0.00	0.62	0.82	1.03	0.97	1.08	1.06	1.58
	2:25:00	0.00	0.00	0.50	0.66	0.83	0.77	0.87	0.83	1.23
	2:30:00	0.00	0.00	0.40	0.53	0.66	0.61	0.69	0.65	0.95
	2:35:00	0.00	0.00	0.32	0.42	0.52	0.48	0.54	0.50	0.73
	2:40:00	0.00	0.00	0.25	0.32	0.40	0.37	0.42	0.39	0.56
	2:45:00	0.00	0.00	0.20	0.25	0.31	0.29	0.32	0.30	0.44
	2:50:00	0.00	0.00	0.16	0.20	0.25	0.23	0.26	0.24	0.35
	2:55:00	0.00	0.00	0.12	0.15	0.19	0.18	0.20	0.19	0.27
	3:00:00	0.00	0.00	0.09	0.11	0.14	0.13	0.15	0.14	0.20
	3:05:00	0.00	0.00	0.06	0.08	0.10	0.10	0.11	0.10	0.14
	3:10:00 3:15:00	0.00	0.00	0.04	0.05	0.07	0.06	0.07	0.07	0.10
	3:20:00	0.00	0.00	0.02	0.03	0.04	0.04	0.04	0.04	0.06
	3:25:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.03
	3:30:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00 0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00 4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00 4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor) from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway,
							where applicable).
							-
							4
							1
							1
							1
							1
]
]
							-
]
							-
							1
							1
							1
]
							ļ
							4
							4
							1
							1
							4
							4
							1
							4
							1
							1
							4
							4
							1
							1
							4
							4
							1
							•

	Design Procedure Form	n: Sand Filter (SF)	
	UD-BMP (Version 3.07	, March 2018)	Sheet 1 of 2
Designer: Company:	SPC HR Green		
Date:	December 2, 2024		
Project:	Eastonville Road - Segment 1 Improvements SFB D		
Location:	El Paso County, CO		
1. Basin Sto	orage Volume		
	ve Imperviousness of Tributary Area, I _a if all paved and roofed areas upstream of sand filter)	l _a = <u>34.0</u> %	
B) Tribut	ary Area's Imperviousness Ratio (i = $I_a/100$)	i = 0.340	
	r Quality Capture Volume (WQCV) Based on 12-hour Drain Time CV= 0.8 * (0.91* i ³ - 1.19 * i ² + 0.78 * i)	WQCV = 0.13 watershed inches	
D) Contri	ibuting Watershed Area (including sand filter area)	Area = <u>171,191</u> sq ft	
	r Quality Capture Volume (WQCV) Design Volume _{2V} = WQCV / 12 * Area	V _{WQCV} =cu ft	
	atersheds Outside of the Denver Region, Depth of age Runoff Producing Storm	d ₆ = 0.42 in	
	/atersheds Outside of the Denver Region, r Quality Capture Volume (WQCV) Design Volume	V _{WQCV OTHER} =cu ft	
	Input of Water Quality Capture Volume (WQCV) Design Volume if a different WQCV Design Volume is desired)	V _{WQCV USER} = 1,293 cu ft	
2. Basin Ge	ometry		
A) WQCV	/ Depth	$D_{WQCV} = 0.8$ ft	
	Filter Side Slopes (Horizontal distance per unit vertical, flatter preferred). Use "0" if sand filter has vertical walls.	Z = 4.00 ft / ft	
C) Minimu	um Filter Area (Flat Surface Area)	A _{Min} = 728 sq ft	
D) Actual	Filter Area	A _{Actual} = 791 sq ft	
E) Volum	e Provided	V _T = 46068 cu ft	
3. Filter Mat	erial	Choose One 18" CDOT Class B or C Filter Material	
		Other (Explain):	
4. Underdra	in System	Choose One	
A) Are un	derdrains provided?	YES NO	
B) Under	drain system orifice diameter for 12 hour drain time	O NO	
	i) Distance From Lowest Elevation of the Storage Volume to the Center of the Orifice	y = 2.3 ft	
	ii) Volume to Drain in 12 Hours	Vol ₁₂ = 1,293 cu ft	
	iii) Orifice Diameter, 3/8" Minimum	D _o = <u>13/16</u> in	

	Design Procedure Form	n: Sand Filter (SF)
		Sheet 2 of 2
Designer:		
Company:	HR Green	
Date:	December 2, 2024	
Project:	Eastonville Road - Segment 1 Improvements SFB D	
Location:	El Paso County, CO	
A) Is an i	able Geomembrane Liner and Geotextile Separator Fabric impermeable liner provided due to proximity uctures or groundwater contamination?	Choose One
6. Inlet / Out A) Descr	tlet Works ibe the type of energy dissipation at inlet points and means of	Engery dissapation at inlet points provided via riprap/forebay, and means of conveying flows in excess of the WQCV through the outlet is via the
	eying flows in excess of the WQCV through the outlet	modified type 'C' inlet outlet structure grate, and a restricted outlet pipe.
Notes:		

Design Procedure Form: Extended Detention Basin (EDB)					
		(Version 3.07, March 2018) Sheet 1 of 3			
Designer:	SPC				
Company: Date:	HR Green October 4, 2024				
Project:	Eastonville Road - Segment 1 Improvements SFB D				
Location:	EL PASO COUNTY, CO				
1. Basin Storage	Volume				
A) Effective Imp	perviousness of Tributary Area, I _a	l _a = <u>34.0</u> %			
B) Tributary Are	ea's Imperviousness Ratio (i = I _a / 100)	i = 0.340			
C) Contributing	g Watershed Area	Area = 3.930 ac			
D) For Waters	heds Outside of the Denver Region, Depth of Average	d ₆ = 0.42 in			
	ducing Storm				
E) Design Con	cept	Choose One O Water Quality Capture Volume (WQCV)			
(Select EUR	V when also designing for flood control)	Excess Urban Runoff Volume (EURV)			
	Ime (WQCV) Based on 40-hour Drain Time	V _{DESIGN} =ac-ft			
	1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)				
	heds Outside of the Denver Region, ity Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} =ac-ft			
	$_{RR} = (d_6^*(V_{DESIGN}/0.43))$				
	of Water Quality Capture Volume (WQCV) Design Volume	V _{DESIGN USER} = 0.030 ac-ft			
(Only if a di	fferent WQCV Design Volume is desired)				
	ologic Soil Groups of Tributary Watershed age of Watershed consisting of Type A Soils	HSG _A = 0%			
ii) Percent	age of Watershed consisting of Type B Soils	HSG _B = <u>100</u> %			
	tage of Watershed consisting of Type C/D Soils	HSG _{CD} =%			
	an Runoff Volume (EURV) Design Volume x: EURV _A = 1.68 * i ^{1.28}	EURV _{DESIGN} = 0.139 ac-f t			
For HSG B	: EURV _n = 1.36 * i ^{1.08} :/D: EURV _{cin} = 1.20 * i ^{1.08}				
	of Excess Urban Runoff Volume (EURV) Design Volume fferent EURV Design Volume is desired)	EURV _{DESIGN USER} =ac-f t			
	ength to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W = 2.0 : 1			
(, , , , , , , , , , , , , , , , , , ,					
3. Basin Side Slop	Des				
A) Basin Maxir	num Side Slopes	$Z = \frac{4.00}{\text{ft}}$ ft / ft			
(Horizontal	distance per unit vertical, 4:1 or flatter preferred)				
4 1-1-4					
4. Inlet					
 A) Describe me inflow locati 	eans of providing energy dissipation at concentrated ions:				
5. Forebay					
A) Minimum Fo		V _{FMIN} = 0.0000 ac-ft			
(V _{FMIN}	= <u>1%</u> of the WQCV)				
B) Actual Forel	bay Volume	$V_{\rm F} = 0.0008$ ac-ft			
C) Forebay Dep					
	= <u>12</u> inch maximum)	$D_{\rm F} = 12.0$ in			
D) Forebay Dis	charge				
i) Undetain	ed 100-year Peak Discharge	Q ₁₀₀ = 7.10 cfs			
ii) Forebay (Q _F = 0.0	Discharge Design Flow $12 * Q_{100}$	Q _F = 0.14 cfs			
E) Forebay Dis					
2, . 01050y Dia	gg''	Choose One Berm With Pipe Flow too small for berm w/ pipe			
		Wall with Rect. Notch			
		O Wall with V-Notch Weir			
F) Discharge Pi	ipe Size (minimum 8-inches)	Calculated D _P =in			
G) Rectangular	Notch Width	Calculated W _N = in			

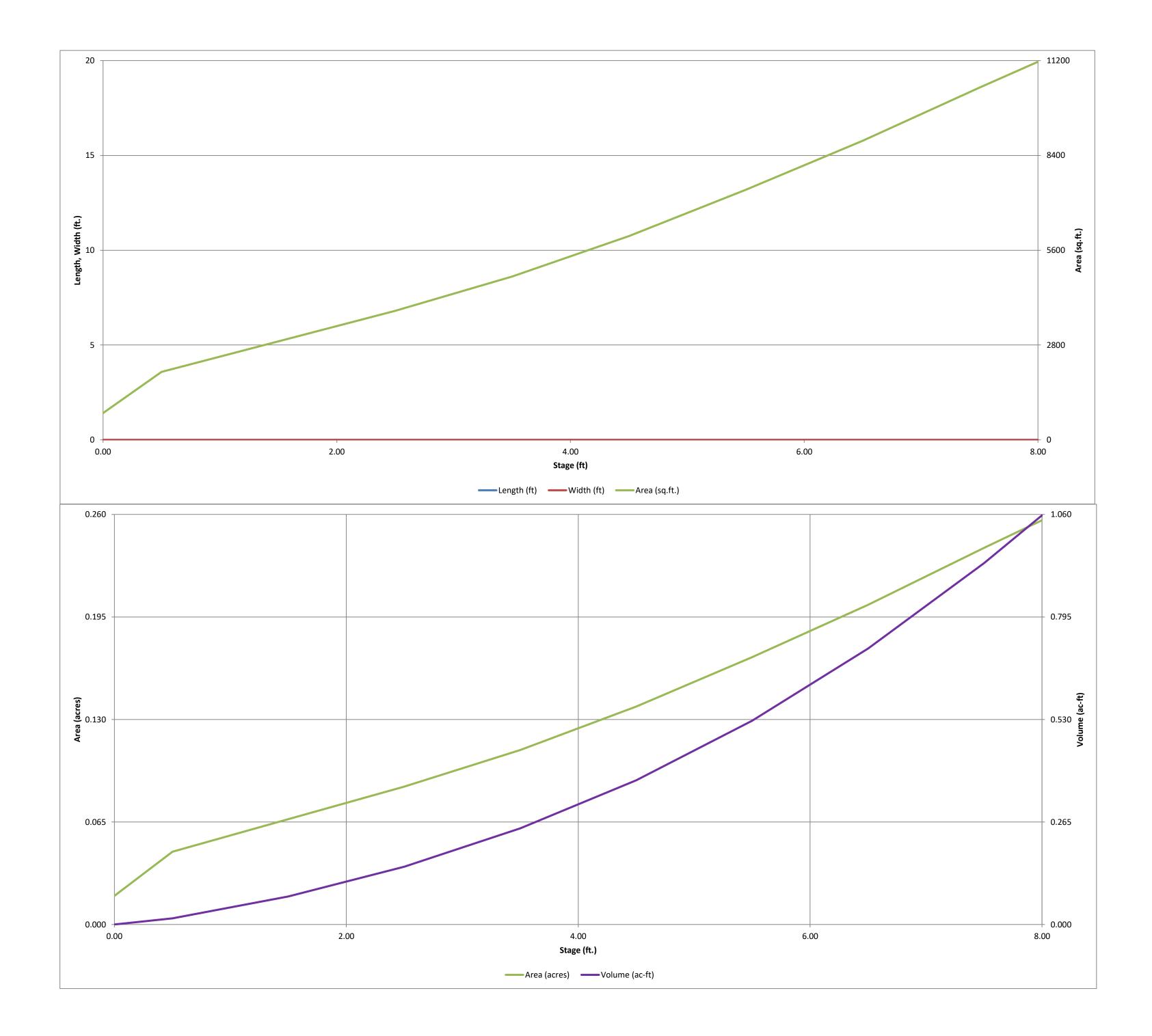
MHFD-Detention, Version 4.05 (January 2022)

Project: <u>Easton</u>	ville Road		<i>ש</i> וו וויז	Detention, Version	יייא (Jain	iai y 2022)							
Basin ID: SFB D													
	100-Y ORIFI			Depth Increment =] _{ft}							
PERMANENT ZONE 1 AND 2 PERMANENT ORIFICES POOL Example Zone Config				Stage - Storage	Stage	Optional Override	Length	Width	Area	Optional Override	Area	Volume	Volume
				Description	(ft)	Stage (ft)	(ft)	(ft)	(ft ²)	Area (ft ²)	(acre)	(ft ³)	(ac-ft)
Watershed Information Selected BMP Type = SI			6962.5			0.00				791	0.018	600	0.016
Selected BMP Type = Si Watershed Area = 3.9				6963		0.50				2,006 2,909	0.046 0.067	699 3,157	0.016 0.072
Watershed Length = 89						2.50				3,809	0.087	6,516	0.150
Watershed Length to Centroid = 24						3.50				4,821	0.111	10,831	0.249
Watershed Slope = 0.0 Watershed Imperviousness = 34.0				6,967.00		4.50 5.50				6,018 7,383	0.138 0.169	16,250 22,951	0.373 0.527
Percentage Hydrologic Soil Group A = 0.0						6.50				8,831	0.203	31,058	0.713
Percentage Hydrologic Soil Group B = 100.						7.50				10,405	0.239	40,676	0.934
Percentage Hydrologic Soil Groups C/D = 0.0 Target WQCV Drain Time = 12				6,970.50		8.00				11,164	0.256	46,068	1.058
Location for 1-hr Rainfall Depths = User In													
After providing required inputs above including 1													
depths, click 'Run CUHP' to generate runoff hydro the embedded Colorado Urban Hydrograph Pi		Ontional Llas	n Overnidee										<u> </u>
Water Quality Capture Volume (WQCV) = 0.03		Optional Use 0.030	acre-feet										
Excess Urban Runoff Volume (EURV) = 0.13	9 acre-feet		acre-feet										
2-yr Runoff Volume (P1 = 1.19 in.) = 0.13		1.19	inches]
5-yr Runoff Volume (P1 = 1.5 in.) = 0.21 10-yr Runoff Volume (P1 = 1.75 in.) = 0.28		1.50 1.75	inches inches										
25-yr Runoff Volume (P1 = 2 in.) = 0.38		2.00	inches										
50-yr Runoff Volume (P1 = 2.25 in.) = 0.46		2.25	inches										
100-yr Runoff Volume (P1 = 2.52 in.) = 0.56 500-yr Runoff Volume (P1 = 3.68 in.) = 0.95		2.52 3.68	inches inches										
Approximate 2-yr Detention Volume $= 0.10$		5.00											
Approximate 5-yr Detention Volume = 0.14													
Approximate 10-yr Detention Volume =0.20Approximate 25-yr Detention Volume =0.23													
Approximate 50-yr Detention Volume = 0.22													
Approximate 100-yr Detention Volume = 0.28													
Define Zanas and Davis Counstant													
Define Zones and Basin Geometry Zone 1 Volume (WQCV) = 0.0	0 acre-feet												
Zone 2 Volume (EURV - Zone 1) = 0.1													
Zone 3 Volume (100-year - Zones 1 & 2) = 0.1													
Total Detention Basin Volume = 0.2 Initial Surcharge Volume (ISV) = N/													
Initial Surcharge Depth (ISD) = $N/$													
Total Available Detention Depth (H _{total}) = use													
Depth of Trickle Channel $(H_{TC}) = N/Slope of Trickle Channel (S_{TC}) = N/Slope of Trickle Channel (S_{$													
Slopes of Main Basin Sides $(S_{main}) = use$													
Basin Length-to-Width Ratio $(R_{L/W}) =$ use	r												
	- 0 2												
Initial Surcharge Area $(A_{ISV}) =$ use Surcharge Volume Length $(L_{ISV}) =$ use													
Surcharge Volume Width $(W_{ISV}) = use$													
Depth of Basin Floor $(H_{FLOOR}) = use$													
Length of Basin Floor $(L_{FLOOR}) =$ use Width of Basin Floor $(W_{FLOOR}) =$ use													
Area of Basin Floor $(A_{FLOOR}) = use$													
Volume of Basin Floor (V _{FLOOR}) = use													
Depth of Main Basin $(H_{MAIN}) =$ use Length of Main Basin $(L_{MAIN}) =$ use													
Width of Main Basin (W_{MAIN}) =UseUseuse													
Area of Main Basin $(A_{MAIN}) =$ use	r ft ²												
Volume of Main Basin (V_{MAIN}) =useCalculated Total Basin Volume (V_{total}) = US													I
Calculated Total Basin Volume (V_{total}) = us													
]
]
]

--

--

--



--

--

MHFD-Detention, Version 4.05 (January 2022)

	DE			FLET STRU		SIGN			
Project:	Eastonville Road	МНІ	D-Detention, Vei	rsion 4.05 (Januai	y 2022)				
Basin ID:									
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
VOLUME EURY WOCY			Zone 1 (WQCV)			Filtration Media]		
+ $+$ $+$	100-YEAR		Zone 2 (EURV)			Circular Orifice			
ZONE 1 AND 2	ORIFICE								
PERMANENT	Configuration (R		Zone 3 (100-year)			Weir&Pipe (Restrict)			
•	•			Total (all zones)	0.282]	Calculated Darama	tore for Undordroi	-
ser Input: Orifice at Underdrain Outlet (typical Underdrain Orifice Invert Depth =	-	ft (distance below	-		Undord	rain Orifice Area =	Calculated Parame 0.0	ft ²	<u>n</u>
Underdrain Orifice Diameter =		inches		surface)		Orifice Centroid =		feet	
	0.05	Inches			onderaran		0.01		
ser Input: Orifice Plate with one or more orific	<u>ces or E</u> lliptical Slot	Weir (typically use	d to drain WOCV a	nd/or EURV in a se	dimentation BMP)		Calculated Parame	ters for Plate	
Centroid of Lowest Orifice =	•	ft (relative to basir	-		•	ce Area per Row =		ft ²	
Depth at top of Zone using Orifice Plate =	N/A	ft (relative to basir	n bottom at Stage :	= 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches			Ellipti	ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	N/A	sq. inches			E	lliptical Slot Area =	N/A	ft ²	
ser Input: Stage and Total Area of Each Orific	e Row (numbered Row 1 (optional)	from lowest to high Row 2 (optional)	nest) Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	1
Stage of Orifice Centroid (ft)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	-
Orifice Area (sq. inches)		N/A	N/A	N/A	N/A	N/A	N/A	N/A	
, , , , , , , , , , , , , , , , , , ,	i								
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
Orifice Area (sq. inches)	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	
ser Input: Vertical Orifice (Circular or Rectand	ular)						Calculated Parame	ters for Vertical O	rifice
	Zone 2 Circular	Not Selected]				Zone 2 Circular	Not Selected	7
Invert of Vertical Orifice =	0.80		ft (relative to basi	n bottom at Stage =	= 0 ft) Ver	tical Orifice Area =		N/A	ft ²
Depth at top of Zone using Vertical Orifice =	2.38	N/A	· ·	n bottom at Stage :		Orifice Centroid =		N/A	feet
Vertical Orifice Diameter =		N/A	inches	5	-				-
			1						
ser Input: Overflow Weir (Dropbox with Flat o	or Sloped Grate and	l Outlet Pipe OR Re	ctangular/Trapezo	idal Weir and No O	utlet Pipe)		Calculated Parame	ters for Overflow	Weir
· · ·	Zone 3 Weir	Not Selected			-		Zone 3 Weir	Not Selected	7
Overflow Weir Front Edge Height, Ho =	2.50	N/A	ft (relative to basin	bottom at Stage = 0	ft) Height of Grate	e Upper Edge, $H_t =$	2.50	N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	2.50 3.00	N/A N/A	ft (relative to basin feet	bottom at Stage = 0	, -	e Upper Edge, H _t = /eir Slope Length =		N/A N/A	feet feet

User Input: Outlet Pipe w/ Flow Restriction Plate (Circular Orifice, Restrictor Plate, or Rectangular Orifice) Zono 3 Postrictor Not Soloctod

0.00

3.00

Type C Grate

50%

N/A

N/A

N/A

N/A

H:V

feet

%

15.21

6.26

3.13

	Zone 3 Restrictor	Not Selected			Zone 3 Restrictor	Not Selected	
Depth to Invert of Outlet Pipe =	2.38	N/A	ft (distance below basin bottom at Stage = 0 ft)	Outlet Orifice Area =	0.41	N/A	ft ²
Outlet Pipe Diameter =	18.00	N/A	inches	Outlet Orifice Centroid =	0.25	N/A	feet
Restrictor Plate Height Above Pipe Invert =	5.10		inches Half-Central Angle o	f Restrictor Plate on Pipe =	1.12	N/A	radians

User Input: Emergency Spillway (Rectangular or Trapezoidal)

Overflow Weir Grate Slope =

Horiz. Length of Weir Sides =

Overflow Grate Type =

Debris Clogging % =

Spillway Invert Stage=	6.50	ft (relative to basin bottom at Stage = 0 ft)
Spillway Crest Length =	4.00	feet
Spillway End Slopes =	4.00	H:V
Freeboard above Max Water Surface =	1.00	feet

Calculated Parameters for Spillway

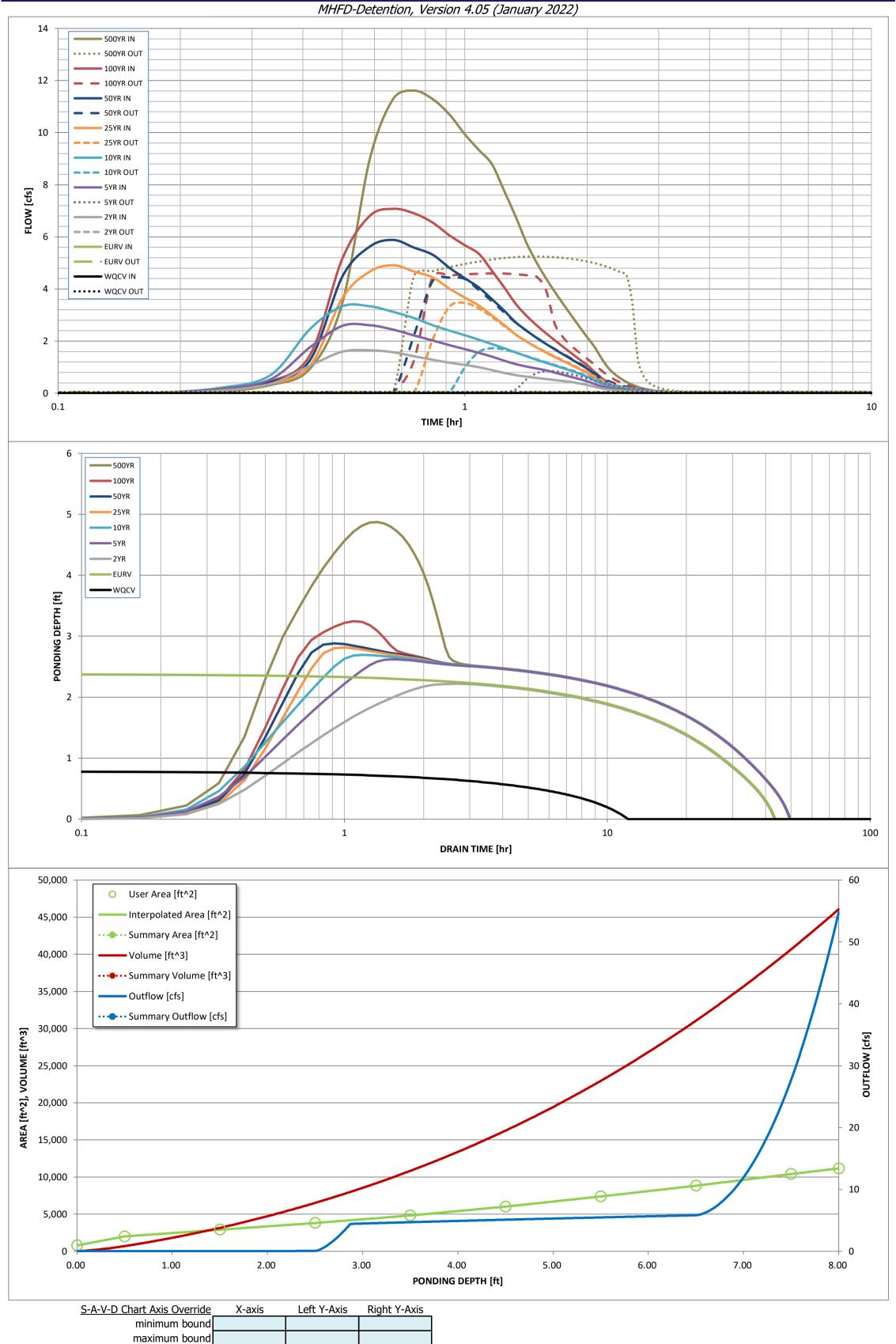
N/A

N/A

N/A

ft²

ft²


Spillway Design Flow Depth=	0.50	feet
Stage at Top of Freeboard =	8.00	feet
Basin Area at Top of Freeboard =	0.26	acres
Basin Volume at Top of Freeboard =	1.06	acre-ft

Grate Open Area / 100-yr Orifice Area =

Overflow Grate Open Area w/o Debris =

Overflow Grate Open Area w/ Debris =

Routed Hydrograph Results	The user can over	ride the default CUI	HP hydrographs an	d runoff volumes b	y entering new valu	les in the Inflow Hy	drographs table (C	Columns W through	h AF).
Design Storm Return Period =	WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
One-Hour Rainfall Depth (in) =	N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
CUHP Runoff Volume (acre-ft) =	0.030	0.139	0.136	0.212	0.282	0.385	0.465	0.569	0.954
Inflow Hydrograph Volume (acre-ft) =	N/A	N/A	0.136	0.212	0.282	0.385	0.465	0.569	0.954
CUHP Predevelopment Peak Q (cfs) =	N/A	N/A	0.4	1.1	1.6	2.9	3.6	4.6	8.1
OPTIONAL Override Predevelopment Peak Q (cfs) =	N/A	N/A							
Predevelopment Unit Peak Flow, q (cfs/acre) =	N/A	N/A	0.10	0.27	0.41	0.73	0.92	1.18	2.07
Peak Inflow Q (cfs) =	N/A	N/A	1.6	2.6	3.3	4.9	5.9	7.1	11.6
Peak Outflow Q (cfs) =	0.0	0.0	0.0	0.8	1.7	3.5	4.4	4.6	5.2
Ratio Peak Outflow to Predevelopment Q =	N/A	N/A	N/A	0.8	1.1	1.2	1.2	1.0	0.6
Structure Controlling Flow =	Filtration Media	Vertical Orifice 1	Vertical Orifice 1	Overflow Weir 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Outlet Plate 1	Outlet Plate 1
Max Velocity through Grate 1 (fps) =	N/A	N/A	N/A	0.1	0.3	0.5	0.7	0.7	0.8
Max Velocity through Grate 2 (fps) =	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Time to Drain 97% of Inflow Volume (hours) =	12	42	42	47	46	45	44	43	38
Time to Drain 99% of Inflow Volume (hours) =	12	43	43	49	48	48	48	47	46
Maximum Ponding Depth (ft) =	0.79	2.38	2.22	2.62	2.70	2.81	2.88	3.25	4.87
Area at Maximum Ponding Depth (acres) =	0.05	0.08	0.08	0.09	0.09	0.09	0.10	0.10	0.15
Maximum Volume Stored (acre-ft) =	0.030	0.139	0.125	0.159	0.167	0.178	0.184	0.221	0.426

DETENTION BASIN OUTLET STRUCTURE DESIGN

DETENTION BASIN OUTLET STRUCTURE DESIGN

Outflow Hydrograph Workbook Filename:

Inflow Hydrographs

The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

								ed in a separate		
	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.07
	0:15:00	0.00	0.00	0.10	0.16	0.20	0.14	0.17	0.17	0.31
	0:20:00	0.00	0.00	0.36	0.54	0.70	0.36	0.42	0.46	0.95
	0:25:00	0.00	0.00	1.06	1.77	2.47	1.06	1.27	1.47	3.46
	0:30:00	0.00	0.00	1.59	2.58	3.34	3.65	4.47	5.16	8.94
	0:35:00	0.00	0.00	1.65 1.57	2.61 2.44	3.34 3.12	4.66 4.91	5.62 5.88	6.80 7.08	11.29 11.61
	0:45:00	0.00	0.00	1.37	2.44	2.89	4.91	5.59	6.91	11.01
	0:50:00	0.00	0.00	1.28	2.03	2.61	4.45	5.32	6.55	10.70
	0:55:00	0.00	0.00	1.17	1.85	2.40	4.02	4.82	6.06	9.94
	1:00:00	0.00	0.00	1.08	1.69	2.23	3.67	4.41	5.68	9.33
	1:05:00	0.00	0.00	1.00	1.55	2.05	3.36	4.06	5.35	8.79
	1:10:00	0.00	0.00	0.89	1.40	1.88	2.99	3.61	4.70	7.77
	1:15:00	0.00	0.00	0.78	1.25	1.73	2.62	3.17	4.07	6.79
	1:20:00	0.00	0.00	0.70	1.12	1.57	2.25	2.72	3.44	5.79
	1:25:00	0.00	0.00	0.64	1.03	1.42	1.99	2.41	2.98	5.03
	1:30:00 1:35:00	0.00	0.00	0.59	0.95	1.29	1.76	2.13	2.62	4.42
	1:40:00	0.00	0.00	0.55 0.51	0.88 0.79	1.17 1.06	1.56 1.39	1.90 1.68	2.31 2.03	3.89 3.40
	1:45:00	0.00	0.00	0.31	0.79	0.95	1.39	1.68	1.77	2.96
	1:50:00	0.00	0.00	0.43	0.62	0.85	1.07	1.30	1.52	2.54
	1:55:00	0.00	0.00	0.37	0.54	0.75	0.92	1.11	1.29	2.15
	2:00:00	0.00	0.00	0.32	0.46	0.63	0.78	0.94	1.08	1.79
	2:05:00	0.00	0.00	0.25	0.36	0.49	0.60	0.73	0.83	1.35
	2:10:00	0.00	0.00	0.19	0.27	0.38	0.44	0.53	0.59	0.99
	2:15:00	0.00	0.00	0.15	0.21	0.30	0.32	0.39	0.44	0.74
	2:20:00	0.00	0.00	0.12	0.17	0.25	0.25	0.30	0.33	0.57
	2:25:00	0.00	0.00	0.10	0.14	0.20	0.19	0.23	0.24	0.43
	2:30:00	0.00	0.00	0.08	0.12	0.17	0.15	0.18	0.18	0.32
	2:35:00 2:40:00	0.00	0.00	0.07 0.05	0.09	0.13	0.11	0.14	0.14	0.24
	2:45:00	0.00	0.00	0.03	0.08	0.08	0.09	0.11	0.10	0.13
	2:50:00	0.00	0.00	0.03	0.05	0.06	0.05	0.06	0.06	0.10
	2:55:00	0.00	0.00	0.03	0.04	0.05	0.04	0.05	0.04	0.08
	3:00:00	0.00	0.00	0.02	0.03	0.04	0.03	0.04	0.04	0.06
	3:05:00	0.00	0.00	0.02	0.02	0.03	0.03	0.03	0.03	0.05
	3:10:00	0.00	0.00	0.01	0.02	0.02	0.02	0.02	0.02	0.04
	3:15:00	0.00	0.00	0.01	0.01	0.02	0.01	0.02	0.02	0.03
	3:20:00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01	0.02
	3:25:00	0.00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01
	3:30:00 3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00 4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00 4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00 5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00 5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00 5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

DETENTION BASIN OUTLET STRUCTURE DESIGN MHFD-Detention, Version 4.05 (January 2022)

Summary Stage-Area-Volume-Discharge Relationships

The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							changes (e.g. ISV and Floor) from the S-A-V table on
							Sheet 'Basin'.
							Also include the inverts of all
							outlets (e.g. vertical orifice, overflow grate, and spillway,
							where applicable).
							-
							4
							1
							1
							1
							1
]
]
							-
]
							-
							1
							1
							1
]
							ļ
							4
							4
							1
							1
							4
							4
							1
							4
							1
							1
							4
							4
							1
							1
							4
							4
							1
							•

Eastonville Road Segment 1 Final Drainage Report Project No.: 201662.08

APPENDIX E – REFERENCE MATERIAL

Final Drainage Report

for

Meridian Ranch Filing 11A

EL PASO COUNTY, COLORADO

Prepared For:

GTL DEVELOPMENT, INC. 3575 Kenyon Street San Diego, CA 92110

March 2014

Prepared By: Tech Contractors 12311 Rex Road Falcon, CO 80831 719.495.7444 As a part of the analysis, the pond was modeled using the as-built contours and recalculation of the WQCV stand pipe. The Pond D Stage Storage Table and WQCV calculation can be found in Appendix E - Detention Pond Information.

Two models were calculated for Pond D, the interim and future final, to determine the storage volume and maximum storage elevation with the pond for the 5-year storm event and the 100-year event. The current future maximum storage volume is determined to be 21.1 acft at an elevation of 7056.4 ft. This elevation leaves sufficient freeboard below the emergency overflow spillway; the maximum volume of Pond D to the spillway is 32.0 ac-ft providing 50 percent additional capacity at final build out. Another model was created using current condition plus the Filing 11A downstream of Pond D. This model was used to help design the second pond constructed with this filing. This interim model used the as-build topographic survey information for Pond D and the upstream area tributary to the pond was modeled under its current existing state. This model yielded a maximum storage volume of 16.3 ac-ft with a maximum surface elevation of 7055.7 feet, leaving ample space for future upstream development.

A WQCV analysis was also performed on account of the changed conditions shown by the as-built survey of the pond after its construction. The analysis showed that a different water quality stand pipe could be installed with the construction of the permanent concrete outfall structure. These calculations can be found in the appendix and have been incorporated into the construction plans.

The storm drain outfall system including the permanent concrete outfall structure and the storm drain pipe from Pond D to Lambert Drive will be constructed ahead of the improvements for Meridian Ranch Filing 11A. This construction is necessary to complete the system associated with a CLOMR on file with FEMA so that the process can move forward to complete LOMR and remove the floodplain from the maps in this area. The design and construction of the Pond D outfall system is based on the calculations and analysis found in this report.

	·		POND D	-						
	PEAK INFLOW	PEAK OUTFLOW	TOTAL INFLOW	TOTAL OUTFLOW	PEAK STORAGE	PEAK ELEVATION				
	CFS	CFS	AC-FT	AC-FT	AC-FT	FT				
		INTERIM CC	NDITIONS - FIL	ING 11A						
100-YEAR STORM	361	64	34.5	29.6	16.3	7055.7				
5-YEAR STORM	95	8	11.2	8.0	6.0	_7053.5				
	FUTURE CONDITIONS									
100-YEAR STORM	495	105	45.7	40.3	21.1	7056.4				
5-YEAR STORM	153	15.0	16.3	12.8	8.4	7054.1				

Table 2: Pond D Summary Data

Pond E Detention Storage Criteria

Detention Pond E is located south of Londonderry and west of Eastonville, southeast of the project site and will be owned and maintained by the Meridian Service Metropolitan District

(MSMD). A maintenance agreement between the Meridian Service Metropolitan District and El Paso County will be executed and recorded as a part of the Meridian Ranch Filing 11A Final Plat process.

The SCS calculation method was used to determine inflow and outflow from the detention pond to ensure that the additional runoff does not overcharge the pond and the discharges do not adversely impact drainage patterns downstream of Eastonville Road. Storm drainage runoff will enter the pond from the project site via an existing pipe network and overland through existing drainage swales. The ultimate future build-out design of the pond was analyzed to insure that additional grading and sizing of the pond would be unnecessary after development of Meridian Ranch Filing 11A other areas tributary to the detention pond. This SCS calculation can be found in the appendix.

The pond is designed to accommodate the final inflow from Meridian Ranch Filing 11A as well as the ultimate build out of all the tributary areas. Concrete control structures have been preliminarily designed to reduce the developed flows to at or below the historic peak flow rates and will be installed at a later date. Temporary CMP control structures that were installed with the grading operation will continue to be used in the interim to reduce the flow rates that will cross Eastonville Road at Design Points H08 and H09. The control structures will be analyzed with each development that is tributary to the pond.

The temporary control structure at DP H08 consists of a 12" CMP water quality control riser with a trash grate having a top elevation of 6968.00. The water quality control riser will be connected to a 54" CMP control riser with a 12" CMP pipe at 1%. The temporary control structure will consist of a 54" CMP with a top elevation of 6970.95 in order to accept storm flows from larger events. The pipe is to be equipped with a welded trash rack. The riser also has a 1.5'x 8' slot opening (elev. = 6969.45) is proposed along the front of the control structure to pass lower flows.

	·····		PONDE			<u> </u>
	— — —					
	PEAK INFLOW	PEAK	TOTAL	TOTAL	PEAK	PEAK
		OUTFLOW	INFLOW	OUTFLOW	STORAGE	ELEVATION
	CFS	CFS	AC-FT	AC-FT	AC-FT	FT
		INTERIM CO	NDITIONS - FIL	NG 11A		
		De	sign Point H08			
100-YEAR STORM	333	74	70.9	65.2	17.6	6971.2
5-YEAR STORM	66	12	20.6	18.4	6.2	6969.7
		De	sign Point H09			
100-YEAR STORM	333	67	70.9	65.2	17.6	6971.2
5-YEAR STORM	66	6.3	20.6	18.4	6.2	6969.7
		FUTU	RECONDITION	s		•
		De	sign Point H08			
100-YEAR STORM	707	155	107.3	91.9	33.5	6972.6
5-YEAR STORM	233	15.8	38.2	27.4	17.5	6971.2
		De	sign Point H09			<u> </u>
100-YEAR STORM	707	62	107.3	91.9	33.5	6972.6
5-YEAR STORM	233	8.7	38.2	27.4	17.5	6971.2

Table 3: Pond E Summary Data

The temporary control structure at DP H09 consists of a 12" CMP water quality control riser with a trash grate having a top elevation of 6968.00. The water quality control riser will be connected to a 54" CMP control riser with a 12" CMP pipe at 1%. The temporary control structure will consist of a 54" CMP with a top elevation of 6970.95 in order to accept storm flows from larger events. The pipe is to be equipped with a welded trash rack. The riser also has a 1.2'x 5' slot opening (elev. = 6969.75) is proposed along the front of the control structure to pass lower flows.

An analysis of the SCS calculations show that with the control structures in place for the developed flows, the flow rates are reduced sufficiently to reduce the peak rates below the target of 80-percent of historic at Eastonville Road during the post grading condition.

EASTONVILLE FLOW RATES										
	HISTORIC	FILING 11A	PERCENT	FUTURE	PERCENT					
EVENT	PEAK	PEAK	OF	PEAK	OF					
	FLOW	FLOW	HISTORIC	FLOW	HISTORIC					
	(CFS)	(CFS)		(CFS)						
H08										
100-YEAR	232	74	32%	155	67%					
5-YEAR	22	12	55%	15.8	72%					
		H)9							
100-YEAR	87	67	77%	62	71%					
5-YEAR	11	6.3	57%	8.7	79%					

Table 4: Eastonville Road at DP H08 and H09

A water quality capture volume (WQCV) was added to the required storage volume for the final build out condition. The purpose of the WQCV is to allow particulates to settle out and accumulate over time to improve water quality and to maintain full volume for detention during the life of the facility for a major storm event. 332 acres are tributary to the detention pond during the developed condition resulting in a required WQCV of 1.6 ac-ft.

The WQCV of 1.6 ac-ft. was added to the detention of the minor storm and half (0.8 ac-ft.) was added to the detention volume of the major storm. This was accomplished with respect to the HEC-HMS computer run by providing a starting detention volume of 1.6 ft. for the 5-year storm and 0.8 ft. for the 100-year storm. The resulting storage elevations remain well below the emergency spillway elevation. See Appendix B for more information.

The WQCV was calculated by using the equations found in Volume 2, of the Drainage Criteria Manual (DCM). The release rate from the WQCV is generally very small, which helps minimize downstream impacts. Detaining the WQCV also serves to cleanse the "first flush" of runoff from the higher initial concentration of sediment and pollutants by allowing for settlement to occur. This greatly improves the quality of runoff, leaving the facility and reduces the potential for erosion. The positive impact on water quality is expected to be significant, particularly during the construction phase of the development.

Future Condition - SCS Calculation Method

Following is a tabulation of the surface drainage characteristics for the future developed conditions using the SCS calculation method. Please refer to Figure 6 - Meridian Ranch SCS Calculations – Future Basins Map

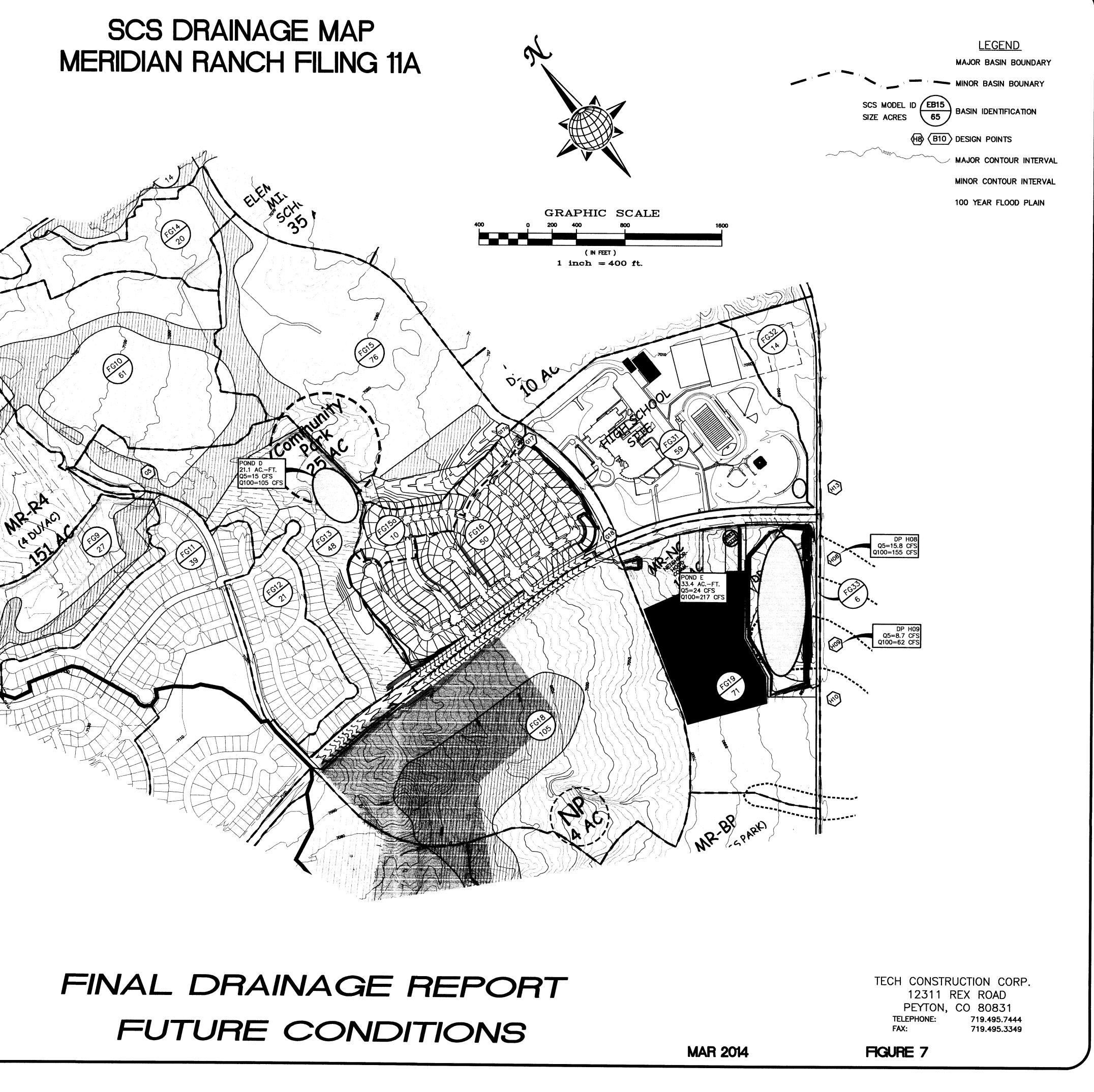
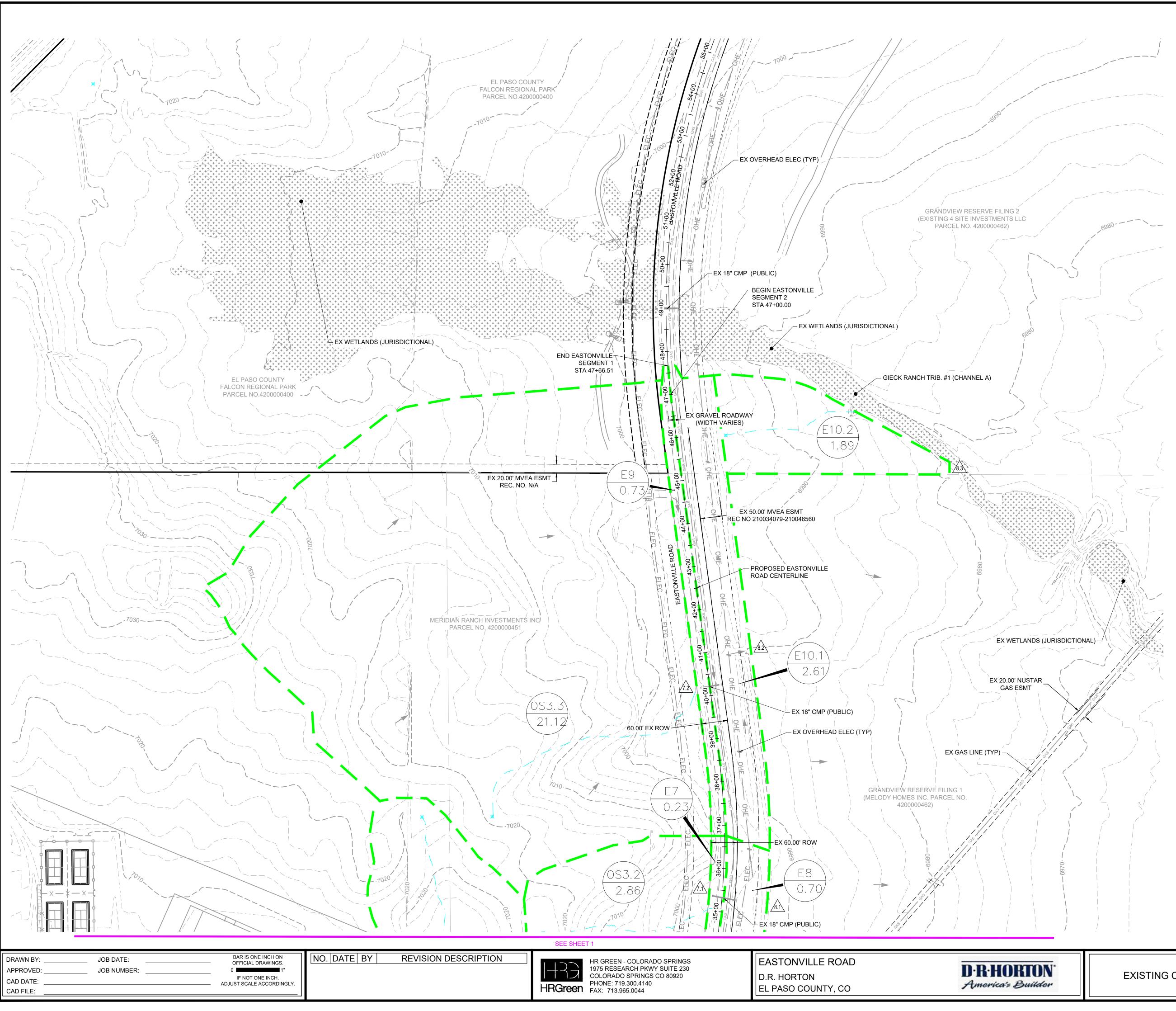

		FUT	URE		
HYDROLOGIC ELEMENT	DRAINAGE AREA (SQ. MI.)	DISCHARGE PEAK Q ₁₀₀ (CFS)	TOTAL VOLUME Q ₁₀₀ (AC. FT.)	DISCHARGE PEAK Q₅ (CFS)	TOTAL VOLUME Q₅ (AC. FT.)
FG08 FG11 FG09	0.1453 0.0608 0.0416	170 85 53	15.8 7.2 4.0	55 30 16	5.8 2.8 1.4
G05 G05-POND D FG10 FG13	0.2477 0.2477 0.0953 0.075	302 301 94 53	27.1 27.0 9.2 5.2	99 98 27 10	10.0 10.0 3.2 1.4
FG12 POND D FG15	0.0328 0.4508 0.4508 0.1188	55 105 105 132	4.1 40.3 40.3 11.2	21 15 38	1.7 12.8 12.8 3.7
FG14 FG14-G17 G17a	0.0313 0.0313 0.1501	47 47 179	3.6 3.6 14.7	17 16 54	1.4 1.4 5.1
FG15a G17 G17-G18 FG16	0.0156 0.6165 0.6165 0.0773	27 212 212 109	1.8 56.8 56.7 8.8	10 63 63 37	0.7 18.6 18.6 3.4
G18 G18-POND E FG18 FG18-POND E	0.6938 0.6938 0.1641	319 317 198 198	65.6 65.6 16.9 16.9	99 99 62	21.9 21.9 6.0
FG19 FG19 FG31 POND HS	0.1641 0.0977 0.0922 0.0922	203 123 79	13.2 11.6 11.6	62 83 45 25	6.0 5.6 4.7 4.7
POND E FG33 H08 H09	1.0478 0.0109 1.0587	217 15 155 62	92.1 1.0 93.1	24 4 15.8 8.7	27.7 0.3 28
* FROM OUTLET	STAGE-STOR				

Table 7: Future Drainage Basins-SCS

A comparison of the peak flow rates at Eastonville Road for the design storms may be found in Table 5 – Eastonville Road at DP H08 and H09 (below). As a result of the development of Meridian Ranch Filing 11A and future development, the calculations do show that the project does not adversely affect the existing drainage facilities.

		FUT	URE		
HYDROLOGIC ELEMENT	DRAINAGE AREA (SQ. MI.)	PEAK	TOTAL VOLUME Q ₁₀₀ (AC. FT.)	DISCHARGE PEAK Q₅ (CFS)	TOTAL VOLUME Q₅ (AC. FT.
· · · · · · · · · · · · · · · · · · ·					
FG08	0.1453	170	15.8	55	5.8
FG11	0.0608	85	7.2	30	2.8
FG09	0.0416	53	4.0	16	1.4
G05	0.2477	302	27.1	99	10.0
G05-POND D	0.2477	301	27.0	98	10.0
FG10	0.0953	94	9.2	27	3.2
FG13	0.075	53	5.2	10	1.4
FG12	0.0328	55	4.1	21	1.7
POND D	0.4508	105	40.3	15	12.8
POND D-G17	0.4508	105	40.3	15	12.8
FG15	0.1188	132	11.2	38	3.7
FG14	0.0313	47	3.6	17	1.4
FG14-G17	0.0313	47	3.6	16	1.4
G17a	0.1501	179	14.7	54	5.1
FG15a	0.0156	27	1.8	10	0.7
G17	0.6165	212	56.8	63	18.6
G17-G18	0.6165	212	56.7	63	18.6
FG16	0.0773	109	8.8	37	3.4
G18	0.6938	319	65.6	99	21.9
G18-POND E	0.6938	317	65.6	99	21.9
FG18	0.1641	198	16.9	62	6.0
FG18-POND E	0.1641	198	16.9	62	6.0
FG19	0.0977	203	13.2	83	5.6
FG31	0.0922	123	11.6	45	4.7
POND HS	0.0922	79	11.6	25	4.7
POND E	1.0478	217	92.1	24	27.7
FG33	0.0109	15	1.0	4	0.3
H08	1.0587	155	93.1 15.8	15.8	28
H09	1.0007	62	9 0 . I	8.7	20


HAECHMEDRAN

Eastonville Road Segment 1 Final Drainage Report Project No.: 201662.08

APPENDIX F – DRAINAGE MAPS

LEGEND:

EXISTING MAJOR CONTOUR EXISTING MINOR CONTOUR EX STORM SEWER EX DRAINAGE SWALE EX PROPERTY LINE EXISTING FLOW DIRECTION PROPOSED DRAINAGE BASIN

13

— — — 5250 · — —

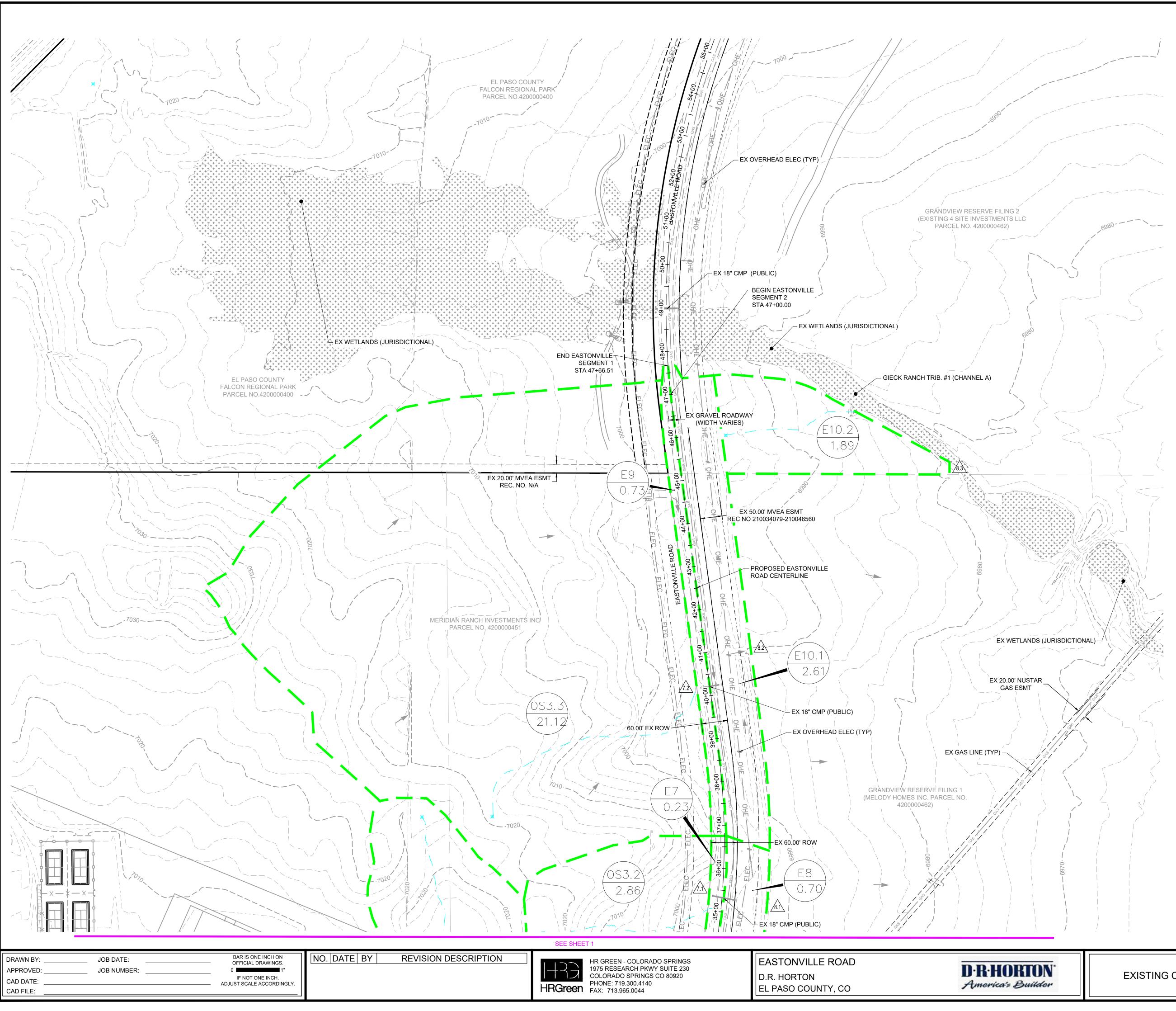
DESIGN POINT

FILING 1 FDR

PROPOSED BASIN LABEL

DESIGN POINT PER THE SANCTUARY

(NAME)


AREA/

SUMMARY RUNOFF TABLE					
BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs)	
E1	0.45	48	0.7	1.7	
E2.1	1.82	13	1.2	4.8	
E2.2	0.40	2	0.1	1.0	
E3	0.72	39	1.0	2.5	
E4	3.17	12	1.9	7.8	
E5	0.23	45	0.5	1.1	
E6	0.79	14	0.7	2.6	
E7	0.23	45	0.5	1.2	
E8	0.70	16	0.6	2.1	
E9	0.73	45	1.2	2.8	
E10.1	2.61	15	1.9	7.0	
E10.2	1.89	2	0.7	4.4	
OS1	1.58	2	0.5	3.6	
OS2	12.21	2	3.6	24.3	
OS3.1	1.51	2	0.5	3.6	
OS3.2	2.86	2	1.0	6.6	
OS3.3	21.12	2	6.4	42.7	

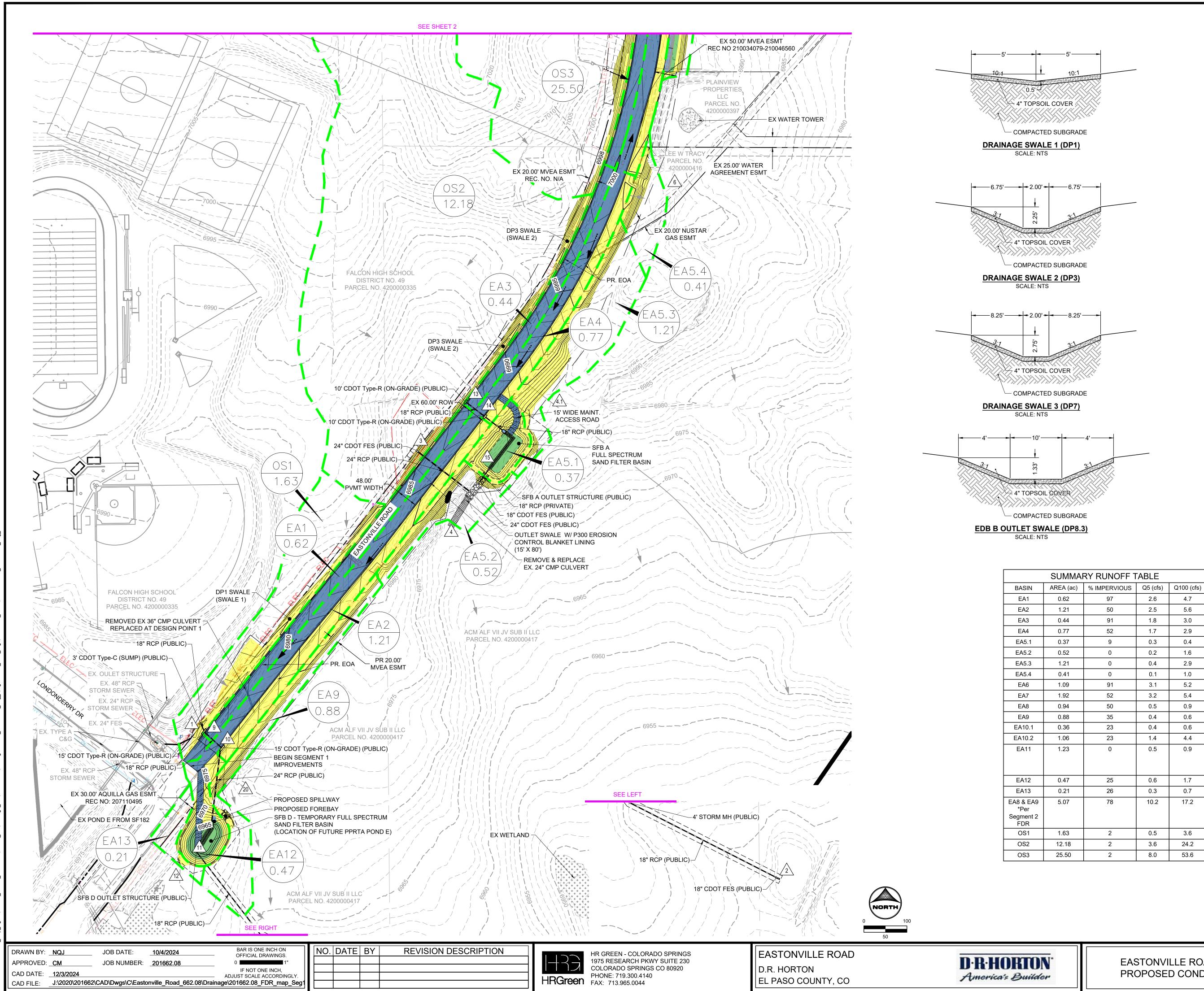
DESIGN POINT SUMMARY TABLE					
DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)		
1	E1,OS1	1.2	4.9		
2	E2,DP1	2.3	9.3		
2.2	E2.2	0.1	1.0		
3	E3,OS2	4.6	26.6		
4	DP3,E4	6.3	33.9		
5	E5,OS3.1	0.9	4.5		
6	DP5,E6	1.5	6.7		
7.1	E7,OS3.2	1.4	7.5		
8.1	DP7.1,E8	1.9	9.4		
7.2	OS3.3,E9	7.5	45.3		
8.2	DP7.2,E10.1	9.2	51.6		
8.3	E10.2	0.7	4.4		

LEGEND:	
EXISTING MAJOR CONTOUR	<u> </u>
EXISTING MINOR CONTOUR	
EX STORM SEWER	
EX DRAINAGE SWALE	\rightarrow
EX PROPERTY LINE	
EXISTING FLOW DIRECTION	-
PROPOSED DRAINAGE BASIN	
DESIGN POINT	13
PROPOSED BASIN LABEL	AME

DESIGN POINT

PROPOSED BASIN L

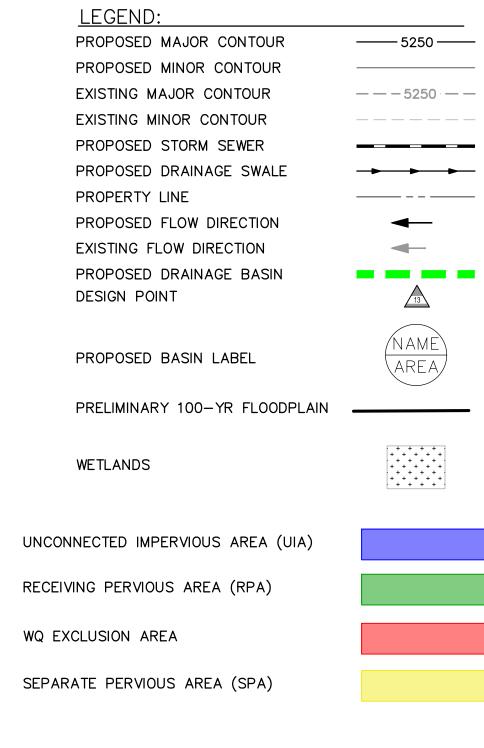
AREA DESIGN POINT PER THE SANCTUARY FILING 1 FDR

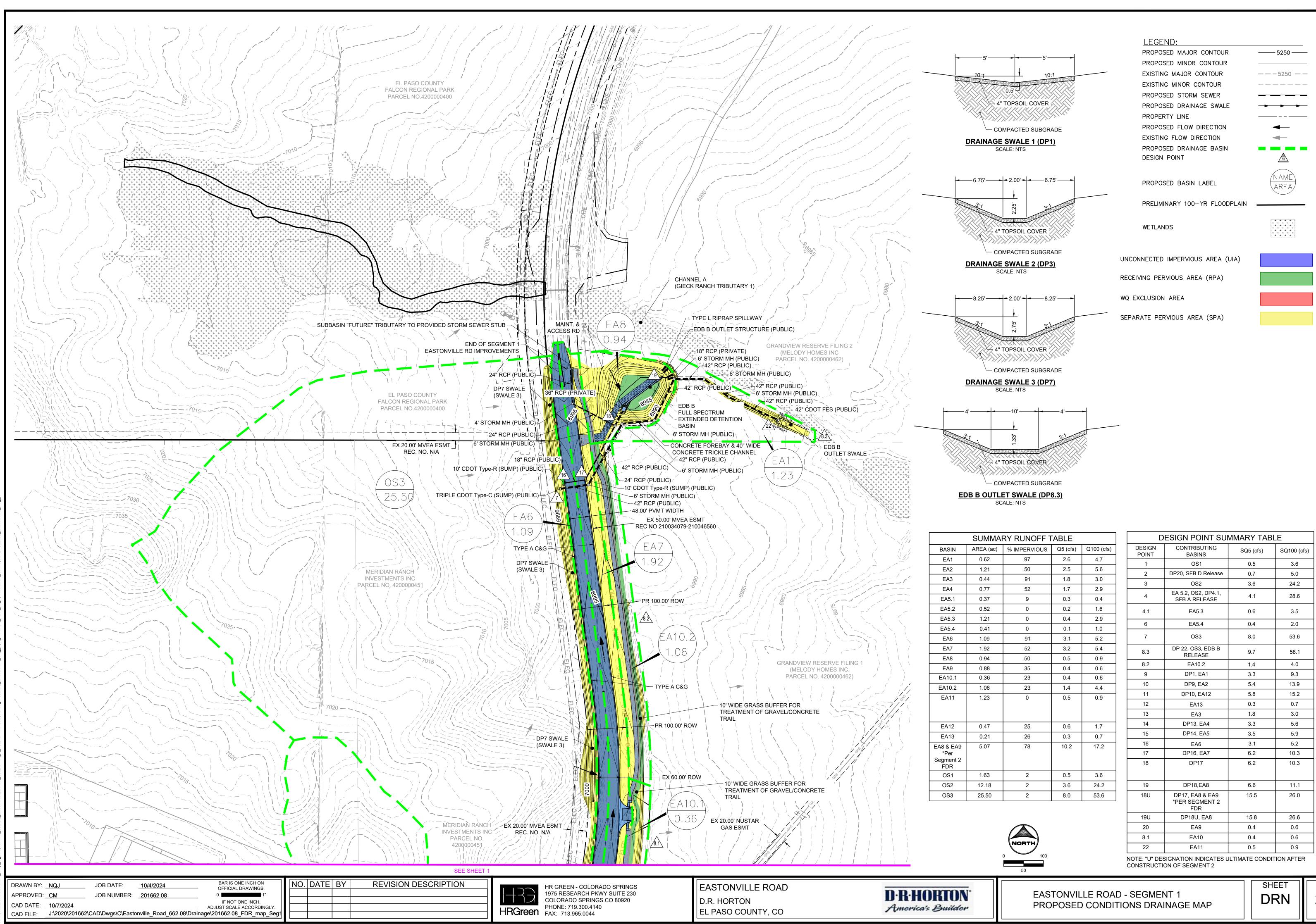


SUMMARY RUNOFF TABLE					
BASIN	AREA (ac)	% IMPERVIOUS	Q5 (cfs)	Q100 (cfs)	
E1	0.45	48	0.7	1.7	
E2.1	1.82	13	1.2	4.8	
E2.2	0.40	2	0.1	1.0	
E3	0.72	39	1.0	2.5	
E4	3.17	12	1.9	7.8	
E5	0.23	45	0.5	1.1	
E6	0.79	14	0.7	2.6	
E7	0.23	45	0.5	1.2	
E8	0.70	16	0.6	2.1	
E9	0.73	45	1.2	2.8	
E10.1	2.61	15	1.9	7.0	
E10.2	1.89	2	0.7	4.4	
OS1	1.58	2	0.5	3.6	
OS2	12.21	2	3.6	24.3	
OS3.1	1.51	2	0.5	3.6	
OS3.2	2.86	2	1.0	6.6	
OS3.3	21.12	2	6.4	42.7	

DESIGN POINT SUMMARY TABLE					
DESIGN POINT	CONTRIBUTING BASINS	SQ5 (cfs)	SQ100 (cfs)		
1	E1,OS1	1.2	4.9		
2	E2,DP1	2.3	9.3		
2.2	E2.2	0.1	1.0		
3	E3,OS2	4.6	26.6		
4	DP3,E4	6.3	33.9		
5	E5,OS3.1	0.9	4.5		
6	DP5,E6	1.5	6.7		
7.1	E7,OS3.2	1.4	7.5		
8.1	DP7.1,E8	1.9	9.4		
7.2	OS3.3,E9	7.5	45.3		
8.2	DP7.2,E10.1	9.2	51.6		
8.3	E10.2	0.7	4.4		

SHEET EX-DRN





NOTE: "U" DESIGNATION INDICATES ULTIMATE CONDITION AFTER CONSTRUCTION OF SEGMENT 2

EA1	0.62	97	2.6	4.7
EA2	1.21	50	2.5	5.6
EA3	0.44	91	1.8	3.0
EA4	0.77	52	1.7	2.9
EA5.1	0.37	9	0.3	0.4
EA5.2	0.52	0	0.2	1.6
EA5.3	1.21	0	0.4	2.9
EA5.4	0.41	0	0.1	1.0
EA6	1.09	91	3.1	5.2
EA7	1.92	52	3.2	5.4
EA8	0.94	50	0.5	0.9
EA9	0.88	35	0.4	0.6
EA10.1	0.36	23	0.4	0.6
EA10.2	1.06	23	1.4	4.4
EA11	1.23	0	0.5	0.9
EA12	0.47	25	0.6	1.7
EA13	0.21	26	0.3	0.7
EA8 & EA9 *Per Segment 2 FDR	5.07	78	10.2	17.2
OS1	1.63	2	0.5	3.6
OS2	12.18	2	3.6	24.2
OS3	25.50	2	8.0	53.6

DESIGN POINT SUMMARY TABLE					
POINT	BASINS	SQ5 (cfs)	SQ100 (cfs)		
1	OS1	0.5	3.6		
2	DP20, SFB D Release	0.7	5.0		
3	OS2	3.6	24.2		
4	EA 5.2, OS2, DP4.1, SFB A RELEASE	4.1	28.6		
4.1	EA5.3	0.6	3.5		
6	EA5.4	0.4	2.0		
7	OS3	8.0	53.6		
8.3	DP 22, OS3, EDB B RELEASE	9.7	58.1		
8.2	EA10.2	1.4	4.0		
9	DP1, EA1	3.3	9.3		
10	DP9, EA2	5.4	13.9		
11	DP10, EA12	5.8	15.2		
12	EA13	0.3	0.7		
13	EA3	1.8	3.0		
14	DP13, EA4	3.3	5.6		
15	DP14, EA5	3.5	5.9		
16	EA6	3.1	5.2		
17	17 DP16, EA7		10.3		
18	DP17	6.2	10.3		
19	19 DP18,EA8		11.1		
18U	DP17, EA8 & EA9 *PER SEGMENT 2 FDR	15.5	26.0		
19U	DP18U, EA8	15.8	26.6		
20	EA9	0.4	0.6		
8.1	EA10	0.4	0.6		
22	EA11	0.5	0.9		

