TRAFFIC IMPACT STUDY

For

Retreat at PrairieRidge Filings 1-3 Preliminary Plan \& Rezones
 El Paso County, Colorado

PCD File No. P2313, P2314, P2316, \& SP239

November 2023
Revised March 2024

Prepared for:
Classic SRJ, LLC
2138 Flying Horse Club Drive
Colorado Springs, Colorado 80921

Prepared by:

TRAFFIC AND TRANSPORTATION CONSULTANTS

8700 Turnpike Drive, Suite 240
Westminster, Colorado 80031
(303) 458-9798

6 South Tejon Street, Suite 618
Colorado Springs, Colorado 80903
(719) 203-6639

Project Engineer/Manager: Mike Rocha, Principal Brandon Wilson, EIT

Engineer in Responsible Charge:
Fred Lantz, PE

Traffic Engineer's Statement

The attached traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Fred Lantz, P.E. \#23410

03/21/2024
Date

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Classic Communities
6385 Corporate Drive, Suite 200
Colorado Springs, CO 80919

Table of Contents

I. Introduction 1
Project Overview 1
Study Area Boundaries 1
Site Description 1
Existing and Committed Surface Transportation Network 5
II. Existing Traffic Conditions 7
Peak Hour Intersection Levels of Service - Existing Traffic 9
Existing Traffic Analysis Results 9
III. Future Traffic Conditions Without Proposed Development. 10
Peak Hour Intersection Levels of Service - Background Traffic 13
Background Traffic Analysis Results - Year 2027 13
Background Traffic Analysis Results - Year 2040 14
IV. Proposed Project Traffic 15
Trip Generation 15
Adjustments to Trip Generation Rates 16
Trip Distribution \& Assignment 17
V. Future Traffic Conditions With Proposed Developments 20
Total Traffic Auxiliary Lane Analysis 20
Multi-Modal Assessment 21
VI. Project Impacts 24
Peak Hour Intersection Levels of Service - Total Traffic 24
Total Traffic Analysis Results Upon Development Build-Out 26
Pedestrian Circulation \& Safety Analysis 27
Queue Length Analysis 27
Recommended Improvements 30
VII. Conclusion 31

List of Figures

Figure 1 - Location.. 3
Figure 2 - Preliminary Plan .. 4
Figure 3 - Existing Traffic Volumes \& Intersection Geometry .. 8
Figure 4 - Background Traffic Volumes \& Intersection Geometry - Year 2027............................... 11
Figure 5 - Background Traffic Volumes \& Intersection Geometry - Year 2040............................... 12
Figure 6A - Distribution and Site Generated Assignment - Year 2027 ... 18
Figure 6B - Distribution and Site Generated Assignment - Year 2040 ... 19
Figure 7 - Total Traffic Volumes \& Intersection Geometry - Year 2027.. 22
Figure 8 - Total Traffic Volumes \& Intersection Geometry - Year 2040.. 23

List of Tables

Table 1 - Intersection Capacity Analysis Summary - Existing Traffic ... 9
Table 2 - Intersection Capacity Analysis Summary - Background Traffic - Year 2027 13
Table 3 - Intersection Capacity Analysis Summary - Background Traffic - Year 2040 14
Table 4 - Trip Generation Rates .. 15
Table 5 - Trip Generation Summary .. 16
Table 6 - Intersection Capacity Analysis Summary - Total Traffic - Year 2027 25
Table 7 - Intersection Capacity Analysis Summary - Total Traffic - Year 2040 26
Table 8 - Turn Lane Queues and Storage Requirements - Total Traffic - Year 2040...................... 29
Table 9 - Recommended Improvements Summary .. 30

Appendices
APPENDIX A TRAFFIC COUNT DATA
APPENDIX B LEVEL OF SERVICE DEFINITIONS
APPENDIX C CAPACITY WORKSHEETS

I. Introduction

Project Overview

This traffic impact study is provided as a planning document and addresses the capacity, geometric, and control requirements associated with the preliminary plan for the development entitled Retreat at PrairieRidge Filings 1-3 Preliminary Plan \& Rezones (Jaynes Property). This traffic impact study is also provided as an update to the master traffic impact study ${ }^{1}$ associated with the sketch plan prepared for Jaynes Property.

This traffic impact study has been revised to address County review comments regarding the addition of proposed roadway classifications, potential mitigations for background Year 2040 traffic conditions, and minor updates throughout.

This proposed mixed-use development consists of a variety of residential, neighborhood commercial and park land uses. This preliminary plan accounts for approximately 109 acres of the overall 142acre development located along the west side of Vollmer Road between Poco Road and Dines Boulevard in El Paso County, Colorado.

Study Area Boundaries

The study area to be examined in this analysis encompasses the Vollmer Road intersections with Poco Road, Briargate Parkway (future) and Dines Boulevard, and the Briargate Parkway (future) intersection with the key site development roadway (future) and the right-in/right-out commercial access (future).

Consistent with Section B.2.3.B of Appendix B - Transportation Impact Study Guidelines from the County's Engineering Criteria Manual (ECM) ${ }^{2}$, the study area did not extend south towards Marksheffel Road since the development's trip distribution pattern does not anticipate much, if any, site traffic traveling to/from Marksheffel Road.

Figure 1 illustrates location of the site and study intersections.

Site Description

Land for the development is vacant and surrou land uses.

> | Unresolved: Grand Peak Academy, located on |
| :--- |
| Cowpoke Rd, is within two miles of the project |
| location. Provide a discussion of the impact |
| the subdivision would have for any potential |
| pedestrian routes in the area. |
| Discussion already added in Multi-Modal Assessment |
| sections throughout. Clarification ans resolution provided |
| during meeting with County Staff on May 20, 2024. |

[^0]> Unresolved: Add discussion or figure to illustrate sight distance for every access and The proposed development's preliminary pla whether it can be met for proposed conditions. finalized. However, there is understood to be a maximy (approximately 230 single-family detached housing

Sight distance exhibit being provided by Classic Consulting in preliminary plan. housing dwelling units) and 4.5 acres of commercial It \qquad et of commercial land use assuming an FAR of 0.15).

Considering the conceptual nature of the proposed development, future access will generally include two access drives along future Briargate Parkway as well as roadways aligning with the existing intersections along Vollmer Road. For purposes of this analysis, primary points of entry to the overall development area are provided at the following locations:

- One full-movement access serving as the west leg of the Vollmer Road and (future) Sam Bass Drive intersection. Sam Bass Drive is located approximately 1,400 feet north of (future) Briargate Parkway.
- One full-movement access serving as the west leg of the Briargate Parkway and Vollmer Road intersection.
- One full-movement access serving as the west leg of the Vollmer Road and Dines Boulevard intersection. Dines Boulevard is located approximately 1,000 feet south of (future) Briargate Parkway. Access movements may be restricted to right-in/right-out or three-quarter movement due to geometric or design constraints. \leftarrow
- One full-movement accesses on (future) Briargate Parkway serving as the north/south roadway connection to proposed development (referred to as Street A). Street A is located approximately 1,000 feet west of Vollmer Road.
- One right-in/right-out access on (future) Briargate Pankay serving the commercial portion of the development (referred to as Commercial Access). Commercial Access is approximately 500 feet west of Vollmer Roaq

For purposes of this study, it is anticipated that development construction would be phased, with initial development phasing assumed to be completed by Year 2027, while total development build-out is assumed to be completed by Year 2040.

A preliminary plan, as prepared by N.E.S. Inc., is shown in Figure 2. This plan is provided for illustrative purposes only.
Per ECM Section 2.2.4.B.2
no direct lot access is
allowed from a principal
arterial
Comment acknowledged.

Per ECM Section 2.2.5.B, intersection spacing for a principal arterial is $1 / 2$ mile. Please provide deviation for the spacing length.
Comment acknowledged.
Per ECM Section 2.2.5.B, intersection spacing for a rural minor arterial is $1 / 4$ mile. Please provide deviation for the spacing length.

Comment acknowledged.

Figure 2
Traffic Impact Study

Existing and Committed Surface Transportation Network

Within the study area, Vollmer Road and Briargate Parkway are the primary roadways that will accommodate traffic to and from the proposed development. A secondary roadway includes Poco Road. A brief description of each roadway, based on the County's 2016 Major Transportation Corridors Plan (MTCP) ${ }^{3}$ and ECM, as well as the City of Colorado Springs' Major Thoroughfare Plan${ }^{4}$, is provided below:

Vollmer Road is a north-south, minor arterial roadway having two through lanes (one lane in each direction) with shared turn lanes at the intersections within the study area. Vollmer Road provides a posted speed limit of 45 MPH .

Pursuant to the County's 2040 MTCP Roadway Plan, Vollmer Road is envisioned to be widened from two to four through lanes from Briargate Parkway to Marksheffel Road, and remain as a two-lane roadway north of Briargate Parkway. Recently approved traffic studies ${ }^{5,6}$ for area development on the east side of Vollmer Road have proposed a modification to the MTCP Roadway Plan and recommend the widening of Vollmer Road to four through lanes between Briargate Parkway and Poco Road. The intermediate vision of Vollmer Road would remain as a two-lane roadway north of Poco Road and remain two lanes through the industrial segment south of Dines Boulevard and north of Sterling Ranch Filing 2.

Briargate Parkway is a future east-west, four-lane principal arterial roadway. Briargate Parkway design plans, for the portion east of Vollmer Road to Sterling Ranch Road, are understood to be under County review as of this study date. The Briargate Parkway extension west of Vollmer Road to Black Forest Road, and ultimately to N Powers Boulevard, will be completed through various future private development or public improvement projects. Briargate Parkway is envisioned to provide a posted speed limit of 45 MPH .

Poco Road is an east-west roadway having two through lanes (one lane in each direction) with shared turn lanes at the intersection within the study area. The County's MTCP does not provide a roadway classification for Poco Road. However, per Sections 2.2.4 and 2.3.2 of the County's ECM, the roadway's estimated right-of-way (ROW) width and its connection to Vollmer Road, Poco Road is assumed to be classified as a collector roadway with a posted speed limit of 35 MPH .

Due to Street A's connection with Vollmer Road and future Briargate Parkway, Street A is assumed to be classified as a collector roadway. All other roadways internal to the preliminary plan are expected to be classified as local roadways.

[^1]The study intersections along Vollmer Road currently operate under stop-controlled conditions. A stopcontrolled intersection is defined as a roadway intersection where vehicle rights-of-way are controlled by one or more "STOP" signs.

Beyond that described in this section, no other regional or specific improvements for the abovedescribed roadways are known to be planned or committed at this time.

II. Existing Traffic Conditions

Morning (AM) and afternoon (PM) peak hour traffic counts were collected at the following intersections:

- Vollmer Road / Poco Road
- Vollmer Road / Dines Boulevard

Average daily (24-hour) traffic volumes for study areas were derived from collected intersection peak hour volumes using standard average daily traffic volume conversion relationships or from adjacent traffic studies as earlier referenced.

Peak hour traffic counts and 24-hour traffic volumes mentioned above were obtained from the previous Jaynes Property master traffic impact study. Counts were collected on Thursday, March 24, 2022, with AM peak hour counts being collected during the period of 7:00 AM to 9:00 AM, and PM peak hour counts being collected during the period of 4:00 PM to 6:00 PM.

In order to represent traffic volumes during existing conditions, these counts were grown one year at a conservative annual growth rate of seven percent. A seven percent growth rate was chosen due to the County experiencing a large degree of regional growth in this area and in order to provide for a conservative analysis. In comparison to population growth estimates provided by the Pikes Peak Area Council of Governments' (PPACG) 2045 Long Range Transportation Plan7, this annual growth rate is aggressive but is considered to be consistent with long-term regional growth projections and the level of in-fill development expected within the area.

Existing volumes and intersection geometry are shown in Figure 3. Referenced traffic count data is included for reference in Appendix A.

[^2]

Figure 3

RETREAT AT PRAIRIERIDGE FILINGS 1-3 PRELIMINARY PLAN \& REZONES
Traffic Impact Study

Traffic and Transportation Consultants

Peak Hour Intersection Levels of Service - Existing Traffic

The Signalized, Unsignalized, and Roundabout Intersection Analysis techniques, as published in the Highway Capacity Manual (HCM) by the Transportation Research Board and as incorporated into the SYNCHRO computer program, were used to analyze the study intersections for existing and future traffic conditions. These nationally accepted techniques allow for the determination of intersection level of service (LOS) based on the congestion and delay of each traffic movement and based on the volume to capacity ratio and control delay for each approach.

Level of service is a method of measurement used by transportation professionals to quantify a driver's perception of travel conditions that include travel time, number of stops, and total amount of stopped delay experienced on a roadway network. The HCM categorizes level of service into a range from "A" which indicates little, if any, vehicle delay, to "F" which indicates a level of operation considered unacceptable to most drivers. These levels of service grades with brief descriptions of the operating condition, for unsignalized and signalized intersections, are included for reference in Appendix B and have been used throughout this study.

The level of service analyses results for existing conditions are summarized in Table 1.
Intersection capacity worksheets developed for this study are provided in Appendix C.

Table 1 - Intersection Capacity Analysis Summary - Existing Traffic

INTERSECTION	LEVEL OF SERVICE	
	AM PEAK HOUR	PM PEAK HOUR
Poco Road / Vollmer Road (Stop-Controlled)		
Eastbound Left, Through and Right	A	B
Westbound Left, Through and Right	B	B
Northbound Left, Through and Right	A	A
Southbound Left, Through and Right	A	A
Dines Boulevard / Vollmer Road (Stop-Controlled)		
Westbound Left and Right	B	B
Southbound Left and Through	A	A

Key: Stop-Controlled Intersection: Lev el of Service

Existing Traffic Analysis Results

Under existing conditions, the stop-controlled intersections of Poco Road and Dines Boulevard with Vollmer Road have turn movement operations at or better than LOS B during both the morning and afternoon peak traffic hours.

III. Future Traffic Conditions Without Proposed Development

Background traffic is the traffic projected to be on area roadways without consideration of the proposed development. Background traffic includes traffic generated by development of vacant parcels in the area.

To account for projected increases in background traffic for Years 2027 and 2040, a compounded annual growth rate was determined using population growth estimates provided by the PPACG 2045 Long Range Transportation Plan. As mentioned in Section II, PPACG's 2045 Long Range Transportation Plan anticipates a 20-year growth rate between one and three percent. Because this area of the County is experiencing a large degree of regional growth and in order to provide for a conservative analysis, a growth rate of seven percent was applied to existing traffic volumes, where short-term or long-term background traffic volumes were not considered in adjacent development traffic studies. This annual growth rate is aggressive but is considered to be consistent with long-term regional growth projections and the level of in-fill development expected within the area.

Additionally, this study's background traffic analysis includes through traffic and intersection traffic generated by adjacent developments as described within the earlier referenced traffic studies for Retreat at Timber Ridge and Homestead North Phase I.

Pursuant to the committed area roadway improvements discussed in Section I, Year 2027 background traffic conditions assume the completion of various, earlier explained, roadway improvements for Vollmer Road (south of Poco Road) and Briargate Parkway (east of Vollmer Road) to accommodate regional transportation demands. Year 2040 background traffic conditions assume the new construction and westerly extension of Briargate Parkway (west of Vollmer Road). Year 2040 also assumes signal timing parameters for Briargate Parkway and Vollmer Road consistent with that described in the referenced traffic study for Homestead North Phase I. These assumptions provide for a conservative analysis.

Projected background traffic volumes and intersection geometry for Year 2027 are shown on Figure 4.

Figure 5 shows projected background traffic volumes and intersection geometry for Year 2040.

Multi-Modal Assessment

Within the area, multi-modal networks could have an effect on mode split and trip generation from the proposed development. These networks promote alternate modes of transportation and include but may not be limited to, pedestrian and bicycle facilities.

The County's MTCP currently identifies that no pedestrian or bicycle routes currently exist within the development area. However, pursuant to the County's MTCP, a 4.51 mile bicycle \& pedestrian regional trail along Vollmer Road from Marksheffel Road to Shoup Road is currently planned.

BACKGROUND TRAFFIC - YEAR 2027
Volumes \& Intersection Geometry
AM / PM Peak Hour
RETREAT AT PRAIRIERIDGE FILINGS 1-3 PRELIMINARY PLAN \& REZONES
Traffic Impact Study
(ADT) : Average Daily Traffic

BACKGROUND TRAFFIC - YEAR 2040
Volumes \& Intersection Geometry
AM / PM Peak Hour
RETREAT AT PRAIRIERIDGE FILINGS 1-3 PRELIMINARY PLAN \& REZONES
Traffic Impact Study
(ADT) : Average Daily Traffic

Peak Hour Intersection Levels of Service - Background Traffic

As with existing traffic conditions, the operations of study intersections were analyzed under background conditions, without the proposed development, using the SYNCHRO computer program.

Background traffic level of service analysis results for Year 2027 are listed in Table 2. Year 2040 operational results are summarized in Table 3.

Definitions of levels of service are given in Appendix B. Intersection capacity worksheets are provided in Appendix C.

Table 2 - Intersection Capacity Analysis Summary - Background Traffic - Year 2027

INTERSECTION	LEVEL OF SERVICE	
	AM PEAK HOUR	PM PEAK HOUR
Poco Road / Vollmer Road (Stop-Controlled)		
Eastbound Left, Through and Right	B	B
Westbound Left, Through and Right	B	C
Northbound Left, Through and Right	A	A
Southbound Left, Through and Right	A	A
Sam Bass Drive / Vollmer Road (Stop-Controlled)	B	B
Westbound Left and Right	A	A
Southbound Left	B	B
Briargate Parkway / Vollmer Road (Stop-Controlled)	A	A
Westbound Left	A	A
Westbound Right		C
Southbound Left	B	A
Dines Boulevard / Vollmer Road (Stop-Controlled)	A	
Westbound Left and Right		
Southbound Left		

Key: Stop-Controlled Intersection: Lev el of Service

Background Traffic Analysis Results - Year 2027

Year 2027 background traffic analysis indicates that all stop-controlled intersections within the study area experience turn movement operations at or better than LOS B during the morning peak traffic hour and LOS C during the afternoon peak traffic hour.

Table 3 - Intersection Capacity Analysis Summary - Background Traffic - Year 2040

INTERSECTION	LEVEL OF SERVICE	
LANE GROUPS	AM PEAK HOUR	PM PEAK HOUR
Poco Road / Vollmer Road (Stop-Controlled)		
Eastbound Left, Through and Right	B	C
Westbound Left, Through and Right	A	D
Northbound Left, Through and Right	A	A
Southbound Left, Through and Right	B	A
Sam Bass Drive / Vollmer Road (Stop-Controlled)	A	C
Westbound Left and Right	C (29.0)	A
Southbound Left		$\mathrm{D}(50.9)$
Briargate Parkway / Vollmer Road (Signalized)	C	E
Dines Boulevard / Vollmer Road (Stop-Controlled)	A	B
Westbound Left and Right		
Southbound Left		

Key: Signalized Intersection: Lev el of Service (Control Delay in sec/veh) Stop-Controlled Intersection: Lev el of Serv ice

Background Traffic Analysis Results - Year 2040

By Year 2040 and without the proposed development, the signalized intersection of Briargate Parkway and Vollmer Road is projected to have an overall operation at LOS C during the morning peak traffic hour and LOS D within the afternoon peak hour. These projected operations remain similar to referenced traffic studies for adjacent development.

All stop-controlled intersections within the study area project turn movement operations at or better than LOS C during the AM peak traffic hour and LOS D during the PM peak traffic hour. An exception is the existing westbound left and right turn movement for Dines Boulevard at Vollmer Road where a LOS E is projected during the afternoon peak hour. The LOS E operation is attributed to the long-term projected through traffic volume along Vollmer Road and the stop-controlled nature of the intersection. To mitigate the projected LOS E operation, it is recommended to install a westbound to southbound left turn acceleration lane along Vollmer Road. This is projected to allow for LOS C or better operations during peak traffic hours.

It is emphasized that it is not uncommon for unsignalized movements to or from an arterial roadway, in urbanized areas, to operate with noticeable delays during peak traffic hours. It is, however, likely that turn movements will operate better than the results obtained with this HCM Two-Way Stop-Control (TWSC) level of service analysis would indicate, as HCM analysis limitations may not accurately account for the effect of vehicle platooning and gaps caused by upstream signals. Upstream signal controls along Vollmer Road may create additional gaps in the traffic stream for turning movements at Dines Boulevard which could provide mitigation to the LOS E operations projected during the peak afternoon traffic hour.

IV. Proposed Project Traffic

Trip Generation

Standard traffic generation characteristics compiled by the Institute of Transportation Engineers (ITE) in their report entitled Trip Generation Manual, $11^{\text {th }}$ Edition, were applied to the proposed land use in order to estimate average daily traffic (ADT), AM Peak Hour, and PM Peak Hour vehicle trips. A vehicle trip is defined as a one-way vehicle movement from a point of origin to a point of destination.

The ITE land use codes 210 (Single-Family Detached Housing), 215 (Single-Family Attached Housing), and 822 (Strip Retail Plaza) were used for estimating trip generation because of their conservative rates and best fit to the proposed land use descriptions.

Due to the conceptual nature of the proposed development, no specific commercial land uses have been determined. As such, a floor-area-ratio (FAR) of 0.15 was applied to the assumed commercial area of development.

Unresolved: If still conceptual, why did FAR drop from 0.20 to 0.15 , which was used in TIS for the
As actual land uses, densities or site plans within the Retreat at Pr Sketch Plan?
Plan \& Rezones become defined over time and through additi Discussion added. Be approval procedures, it is expected that traffic generation characteristics constuercu vornirrurro sudy will need to be updated by more specific traffic analyses or studies to help assess if transportation improvements are needed to mitigate potential traffic impacts.

Trip generation rates used in this study are presented in Table 4.

Table 4 - Trip Generation Rates

$\begin{gathered} \text { ITE } \\ \text { CODE } \end{gathered}$	LAND USE	UNIT	TRIP GENERATION RATES						
			$\begin{gathered} 24 \\ \text { HOUR } \end{gathered}$	AM PEAK HOUR			PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
210	Single-Family Detached	DU	9.43	0.18	0.52	0.70	0.59	0.35	0.94
215	Single-Family Attached	DU	7.20	0.15	0.33	0.48	0.32	0.25	0.57
822	Strip Retail Plaza	KSF	54.45	1.42	0.94	2.36	3.30	3.30	6.59

Key: \quad KSF = Thousand Square Feet Gross Floor Area.
Note: All data and calculations above are subject to being rounded to nearest value.

Table 5 illustrates projected ADT, AM Peak Hour, and PM Peak Hour traffic volumes likely generated by the proposed development upon build-out.

Table 5 - Trip Generation Summary

$\left\lvert\, \begin{gathered} \text { ITE } \\ \text { CODE } \end{gathered}\right.$	LAND USE	SIZE	TOTAL TRIPS GENERATED						
			$\begin{gathered} 24 \\ \text { HOUR } \end{gathered}$	AM PEAK HOUR			PM PEAK HOUR		
				ENTER	EXIT	TOTAL	ENTER	EXIT	TOTAL
Site Development- Sketch Plan									
	Single-Family Detached	298 DU	2,810	54	154	209	176	104	280
	Single-Family Attached	332 DU	2,390	49	110	159	108	81	189
	Strip Retail Plaza	39.2 KSF	2,134	56	37	93	129	129	258
Sketch Plan Total:			7,335	159	301	460	414	314	728
Site Development - Preliminary Plan									
210	Single-Family Detached	230 DU	2,169	42	119	161	136	80	216
215	Single-Family Attached	220 DU	1,584	33	73	106	71	54	125
822	Strip Retail Plaza	30.0 KSF	1,634	42	28	71	99	99	198
Preliminary Plan Total:			5,386	117	220	337	307	233	539
Difference Total:			-1,949	-42	-81	-123	-107	-81	-188

Key: KSF = Thousand Square Feet Gross Floor Area.
Note: All data and calculations above are subject to being rounded to nearest value.

Upon build-out and without consideration of applicable vehicle trip reductions, Table 5 illustrates that the proposed development has the potential to generate approximately 5,386 daily trips with 337 of those occurring during the morning peak hour and 539 during the afternoon peak hour.

Compared to trip generation estimates from the previous Jaynes Property master traffic impact study associated with the sketch plan, trip generation estimates associated with the preliminary plan, as shown in Table 5, represent an approximate 27 percent decrease in site trips.

Adjustments to Trip Generation Rates

While a mixed-use development of this type is likely to attract trips from within area land uses as well as pass-by or diverted linked trips from the adjacent roadway system, no trip reduction was taken in this analysis due to its conceptual nature. This assumption provides for a conservative analysis.

Trip Distribution \& Assignment

The construction of this development is assumed to be phased with the initial phase being completed by Year 2027 and entailing the portion of residential (153 dwelling units) located south of future Briargate Parkway. The build-out phase entails the construction of commercial land uses as well as 297 residential dwelling units north of the future Briargate Parkway.

Traffic assignment is how generated and distributed vehicle trips are expected to be loaded onto the available roadway network.

The initial and overall directional distribution of site-generated traffic was determined based on the location of development site within the County, proposed and existing area land uses, allowed turning movements, available roadway network, and in compliance to the adjacent traffic study prepared for Homestead North Phase I previously referenced.

Trip distribution patterns for the initial phase of development are shown in Figure 6A. Applying trip distribution patterns to initial phase of site-generated traffic provides the initial site-generated trip assignments are also shown on Figure 6A.

Overall, long-term, trip distribution patterns and site-generated traffic assignment for development build-out are shown on Figure 6B.

Unresolved: How did site generated trips decrease from what was shown in Sketch Plan TIS, when DU's increased? Sketch plan assumed 361 DU, this report assumed 450 (153+297).

Comment resolved with County Staff via clarification meeting on May 20, 2024.
(Sketch plan proposed 630 DU, not 361 DU as noted above).

Figure 6A

Development Site
Figure 6B
SITE DEVELOPMENT DISTRIBUTION - YEAR 2040
(\%) : Overall
RETREAT AT PRAIRIERIDGE FILINGS 1-3 PRELIMINARY PLAN \& REZONES
Traffic Impact Study

V. Future Traffic Conditions With Proposed Developments

Total traffic is the traffic projected to be on area roadways with consideration of the proposed development. Total traffic includes background traffic projections for Years 2027 and 2040 with consideration of site-generated traffic. For analysis purposes, it was assumed that overall development construction would be completed by end of Year 2040.

Pursuant to area roadway improvement discussions provided in Section III, Year 2027 and Year 2040 total traffic conditions assume no additional roadway improvements to accommodate regional transportation demands than that described for each background analysis year. Roadway improvements associated with site development are expected to be limited to site access and frontage as required by the governing agency.

Projected Year 2027 total traffic volumes and intersection geometry are shown in Figure 7.
Figure 8 shows projected total traffic volumes and intersection geometry for Year 2040.

Total Traffic Auxiliary Lane Analysis

Auxiliary lanes for site development access drive
An evaluation of auxiliary lane requirements, pur that a southbound right turn deceleration lane alo until Year 2040, upon overall build-out of the surro volume exceeds the 25 VPH threshold. In additi turn at the intersection of Briargate Parkway and Commercial Access is required since the expected peak hour right turn ingress volume exceeds the 25 vehicles per hour threshold.

Considering development build-out (Year 2040), peak hour volumes for southbound right turn ingress movements along Vollmer Road at Sam Bass Drive and Dines Boulevard are not projected to exceed the 25 vehicles per hour threshold. However, right turn lanes were assumed for analysis purposes. Dedicated right turn lanes were also assumed along the future, ultimate section of Briargate Parkway at Vollmer Road.

Section 2.3.7 of the County's ECM also reveals that, by Year 2040, an exclusive left turn deceleration lane is required along ultimate Briargate Parkway at Vollmer Road, and along Vollmer Road at Dines Boulevard and Briargate Parkway since the projected left turn ingress volume exceeds the County's threshold of 10 vehicles per hour.

Due to the conservative analysis performed throughout this study and the conceptual nature of site development, it is expected that auxiliary lane requirements evaluated within this study will need to be updated by more specific traffic analyses or studies as actual area development occurs, to help assess if transportation improvements are needed to meet the County's vehicle volume thresholds.

Multi-Modal Assessment

The proposed development would accommodate pedestrians and bicyclists by maintaining the proposed pedestrian and bicycle facilities currently proposed pursuant to Section III.

With the assumption that the preliminary plan for the proposed development was designed per the County's ECM, and pursuant to the Federal Highway Administration's (FHWA) Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations ${ }^{8}$, traffic calming, and pedestrian crossing treatments are not applicable, and traffic calming is not expected to be needed for the proposed conditions.

[^3]

TOTAL TRAFFIC - YEAR 2027 Volumes \& Intersection Geometry

AM / PM Peak Hour
RETREAT AT PRAIRIERIDGE FILINGS 1-3 PRELIMINARY PLAN \& REZONES
Traffic Impact Study
(ADT) : Average Daily Traffic

TOTAL TRAFFIC - YEAR 2040 Volumes \& Intersection Geometry

AM / PM Peak Hour
RETREAT AT PRAIRIERIDGE FILINGS 1-3 PRELIMINARY PLAN \& REZONES
Traffic Impact Study
(ADT) : Average Daily Traffic

VI. Project Impacts

The analyses and procedures described in this study were performed in accordance with the Highway Capacity Manual (HCM) and are based upon the worst-case conditions that occur during a typical weekday upon build-out of site development and analyzed land uses. Therefore, study intersections are likely to operate with traffic conditions better than those described within this study, which represent the peak hours of weekday operations only.

Peak Hour Intersection Levels of Service - Total Traffic

As with background traffic, the operations of the study intersections were analyzed under projected total traffic conditions using the SYNCHRO computer program. Total traffic level of service analysis results for Years 2027 and 2040 are summarized in Table 6 and Table 7, respectively.

Definitions of levels of service are given in Appendix B. Intersection capacity worksheets are provided in Appendix C.

Table 6 - Intersection Capacity Analysis Summary - Total Traffic - Year 2027

INTERSECTION LANE GROUPS	LEVEL OF SERVICE	
	AM PEAK HOUR	PM PEAK HOUR
Poco Road / Vollmer Road (Stop-Controlled) Eastbound Left, Through and Right Westbound Left, Through and Right Northbound Left, Through and Right Southbound Left, Through and Right	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
Sam Bass Drive / Vollmer Road (Stop-Controlled) Westbound Left and Right Southbound Left	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \end{aligned}$
Briargate Parkway / Vollmer Road (Stop-Controlled) Eastbound Left Eastbound Through Eastbound Right Westbound Left Westbound Through Westbound Right Northbound Left Southbound Left	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{B} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
Dines Boulevard / Vollmer Road (Stop-Controlled) Eastbound Left, Through and Right Westbound Left, Through and Right Northbound Left Southbound Right	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{C} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$
Street A / Briargate Parkway (Roundabout) Eastbound Through Eastbound Through and Right Westbound Left and Through Westbound Through Northbound Left and Right	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$

Key: Stop-Controlled Intersection: Lev el of Service Roundabout Intersection: Lev el of Serv ice

Table 7 - Intersection Capacity Analysis Summary - Total Traffic - Year 2040

INTERSECTION	LEVEL OF SERVICE	
LANE GROUPS	AM PEAK HOUR	PM PEAK HOUR
Poco Road / Vollmer Road (Stop-Controlled)		
Eastbound Left, Through and Right	B	C
Westbound Left, Through and Right	A	D
Northbound Left, Through and Right	A	A
Southbound Left, Through and Right		A
Sam Bass Drive / Vollmer Road (Stop-Controlled)	C	
Eastbound Left, Through and Right	B	B
Westbound Left, Through and Right	A	C
Northbound Left	A	A
Southbound Left	$\mathrm{C} \mathrm{(30.1)}$	A
Briargate Parkway / Vollmer Road (Signalized)	$\mathrm{D}(50.6)$	
Dines Boulevard / Vollmer Road (Stop-Controlled)	B	B
Eastbound Left, Through and Right	C	F
Westbound Left, Through and Right	A	A
Northbound Left	A	B
Southbound Left		C
StreetA / Briargate Parkway (Roundabout)	A	C
Eastbound Left and Through	A	C
Eastbound Through and Right	B	C
Westbound Left and Through	C	C
Westbound Through and Right	A	C
Northbound Left, Through and Right	D	C
Southbound Left, Through and Right	C	
Briargate Parkway / Commercial Access (Stop-Controlled)		
Southbound Right		

Key: Signalized Intersection: Level of Service (Control Delay in sec/veh)
Stop-Controlled Intersection: Lev el of Serv ice
Roundabout Intersection: Lev el of Service

Total Traffic Analysis Results Upon Development Build-Out

Table 7 illustrates how, by Year 2040 and upon assumed development build-out, the signalized intersection of Briargate Parkway with Vollmer Road experiences overall operations at LOS C during the morning peak traffic hour and LOS D during the afternoon peak traffic hour.

The stop-controlled intersections along Vollmer Road are projected to have turn movement operations at or better than LOS C during the morning peak traffic hour and LOS D or better during the afternoon peak traffic hour. Exceptions would include the westbound turning movements at the intersection of Dines Boulevard and Vollmer Road which operate at LOS F during the PM peak traffic hour. The LOS F operation is attributed to the through traffic volume along Vollmer Road and the stop-controlled nature of the intersection.

The stop-controlled intersection of Briargate Parkway with Commercial Access is anticipated to have turning movement operations at LOS C during the morning and afternoon peak traffic hours.

The roundabout-controlled intersection of Street A and Briargate Parkway is expected to have turning movement operations at LOS D or better during the morning peak traffic hour and LOS C during the afternoon peak traffic hour.

It is again emphasized that it is not uncommon for unsignalized movements to or from an arterial roadway, in urbanized areas, to operate with noticeable delays during peak traffic hours. It is, however, likely that turn movements will operate better than the results obtained with this HCM Two-Way StopControl (TWSC) level of service analysis would indicate, as the HCM analysis limitations may not accurately account for the effect of vehicle platooning and gaps caused by upstream signals. Upstream signal controls along Vollmer Road may create additional gaps in the traffic stream for turning movements onto Vollmer Road which could provide mitigation to the LOS F operation projected during the PM peak traffic hour.

Pedestrian Circulation \& Safety Analysis

An assessment to pedestrian connectivity and safety was considered.
The proposed development would accommodate pedestrians and bicyclists with the following improvements:

- Attached and detached sidewalks along applicable roadways per County roadway design standards.
- Bicycle lanes along applicable roadways per County roadway design standards.

With the assumption that the development's preliminary plan was designed per the County's ECM, and pursuant to the FHWA's Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations, pedestrian safety is not expected to be of concern. Moreover, as discussed in Section V, traffic calming and pedestrian crossing treatments are not applicable, and traffic calming is not recommended for the proposed conditions.

Queue Length Analysis

Queue lengths for the study intersections were analyzed using Year 2040 total traffic conditions. The analysis yields estimate of $95^{\text {th }}$ percentile queue lengths, which have only a five percent probability of being exceeded during the analysis time period. An average vehicle length of 25 feet was assumed. Queue lengths were modeled and are included with the Synchro worksheets in Appendix C.

Table 8 summarizes the $95^{\text {th }}$ percentile queue results in comparison to the projected storage requirements for turn movements within study area for Year 2040. Table 8 further provides recommended turn lane lengths based on minimum requirements from Section 2.3.7 of the County's ECM, projected $95^{\text {th }}$ percentile queue lengths, and assuming design speeds for future roadways.

For example, at the Briargate Parkway and Vollmer Road intersection, exclusive left and right turn deceleration lanes are recommended to accommodate a minimum of 235 feet of lane length. Exceptions include the eastbound left turn lane and the westbound left and right turn lanes, which are recommended to be between approximately 255 and 300 feet in length in order to accommodate projected $95^{\text {th }}$ percentile vehicle queue lengths.

Table 8 - Turn Lane Queues and Storage Requirements - Total Traffic - Year 2040

Intersection	Turn Movement		Existing Turn Lane Length (feet)	AM Peak Hour 95th Percentile Queue Length (feet)	PM Peak Hour 95th Percentile Queue Length (feet)	Recommended Turn Lane Length (feet)
Signalized Intersections						
Briargate Parkway / Vollmer Road	EB	L	-	46'	258'	260'
		T	-	355'	831'	-
		R	-	0^{\prime}	21'	235'
	WB	L	-	207'	185'	235'
		T	-	612	712'	-
		R	-	9'	0^{\prime}	235'
	NB	L	-	141'	297'	300'
		T	-	90^{\prime}	249'	-
		R	-	45'	252'	255'
	SB	L	-	97'	98'	235'
		T	-	191'	179'	-
		R	-	59'	18'	235'
Stop-Controlled Intersections						
Poco Road / Vollmer Road	EB	L,T,R	-	0^{\prime}	$0 '$	-
	WB	L,T,R	-	23'	38'	-
	NB	L,T,R	-	0^{\prime}	0^{\prime}	-
	SB	L,T,R	-	0^{\prime}	0^{\prime}	-
Sam Bass Drive / Vollmer Road	EB	L,T,R	-	$5 '$	$5 '$	-
	WB	L,T,R	-	15^{\prime}	13^{\prime}	-
	NB	L	-	$0 '$	0^{\prime}	235'
		T	-	0^{\prime}	0^{\prime}	-
		R	-	0^{\prime}	0^{\prime}	235'
	SB	L	-	0^{\prime}	0^{\prime}	235'
		T	-	0^{\prime}	$0 '$	-
		R	-	0^{\prime}	0^{\prime}	235'
Dines Boulevard / Vollmer Road	EB	L,T,R	-	15^{\prime}	18'	-
	WB	L,T,R	-	18^{\prime}	50'	-
	NB	L	-	3'	5'	-
		T	-	0^{\prime}	0^{\prime}	-
		R	380'	0^{\prime}	0^{\prime}	235'
	SB	L	-	0^{\prime}	3^{\prime}	235'
		T	-	0^{\prime}	0^{\prime}	-
		R	-	0^{\prime}	0^{\prime}	-
Briargate Parkway / Commercial Access	EB	T	-	0^{\prime}	0^{\prime}	-
	WB	T	-	0^{\prime}	0^{\prime}	-
		R	-	$0 '$	0^{\prime}	235'
	SB	R	-	8'	35^{\prime}	-
Roundabout Intersections						
Street A / Briargate Parkway	EB	L, T	-	$50 '$	250'	-
		T,R	-	50'	325'	-
	WB	L, T	-	175'	200	-
		T, R	-	225	250'	-
	NB	L,T,R	-	0^{\prime}	25	-
	SB	L,T,R	-	75'	25^{\prime}	-

Note: Turn Lane Length does not include taper length.

Recommended Improvements

Table 9 illustrates the recommended roadway and intersection control improvements associated with the proposed Retreat at PrairieRidge Filings 1-3 Preliminary Plan \& Rezones development and adjacent area.

> | Unresolved: Highlighted items show a different |
| :--- |
| responsible party than was shown on Sketch |
| Plan TIS. Why have they changed? |

Table 9 - Recommended Improvements Sur Per developer, responsibilities changes from

IMPROVEMENT	TYPE	TIMING	County Staff during May 20, note below Table 9 provided
Signalization of Vollmer Road / Briargate Parkway	Traffic Signal	When Warranted	
Widen Vollmer Road to four-lane cross-section from Marksheffel Road to Poco Road (excluding industrial development site)	Roadway Segment	Shown on MTCP by 2040	By Others (Sterling Ranch)
Construct Sam Bass Drive west of Vollmer Road	Roadway Segment	With Final Plat Application(s) / Site Development	Applicant/ Developer
Construct Dines Boulevard west of Vollmer Road	Roadway Segment	With Final Plat Application(s) / Site Development	Applicant/ Developer
Construct Briargate Parkway west of Vollmer Road	Roadway Segment	With Final Plat Application(s) / Site Development	Developer (subject to reimbursement under the County's Road Impact Fee Program) or PPRTA
Construct southbound right turn lanes along Vollmer Road at Sam Bass Drive and Dines Boulevard	Auxiliary Lane	With final phasing of Site Development	Applicant/ Developer (upon appropriate development phase)
Construct southbound right turn lane along Vollmer Road at Briargate Parkway	Auxiliary Lane	Upon overall development builtout (DHV < 25 VPH)	Applicant/ Developer (upon appropriate development phase)
Construct northbound left turn lanes along Vollmer Road at Dines Boulevard	Auxiliary Lane	Construction estimated by $2023 \text { / } 2024$	By Others (Sterling Ranch)
Construct northbound left turn lanes along Vollmer Road at Briargate Parkway	Auxiliary Lane	Construction estimated by $2023 \text { / } 2024$	By Others (Sterling Ranch)

Recommended improvements, as shown in Table 9 above, which may be reimbursable under the County's MTCP include roadway widening improvements and auxiliary lane improvements along Vollmer Road or Briargate Parkway.

> | Unresolved: What about other necessary |
| :--- |
| improvements, such as Briargate/Dines |
| intersection? |
| $\begin{array}{l}\text { Already included in table above. Table } \\ \text { reformatted to better assist County review. }\end{array}$ |

VII. Conclusion

This traffic impact study is provided as a planning document and addressed the capacity, geometric, and control requirements associated with the preliminary plan for the development entitled Retreat at PrairieRidge Filings 1-3 Preliminary Plan \& Rezones (Jaynes Property). This traffic impact study is also provided as an update to the master traffic impact study associated with the sketch plan prepared for Jaynes Property. This proposed mixed-use development consists of a variety of residential, neighborhood commercial and park land uses. The 142-acre development is located along the west side of Vollmer Road between Poco Road and Dines Boulevard in El Paso County, Colorado.

The study area to be examined in this analysis encompasses the Vollmer Road intersections with Poco Road, Briargate Parkway (future) and Dines Boulevard, and the Briargate Parkway (future) intersection with the key site development roadway (future) and the right-in/right-out commercial access (future).

Analysis was conducted for critical AM Peak Hour and PM Peak Hour traffic operations for existing traffic conditions, Year 2027 and Year 2040 background traffic conditions, and Year 2027 and Year 2040 total traffic conditions.

Analysis of existing traffic conditions indicates that the stop-controlled intersections of Poco Road and Dines Boulevard with Vollmer Road have turn movement operations at or better than LOS B during both the morning and afternoon peak traffic hours.

Without the proposed development, Year 2027 background operational analysis shows all stopcontrolled intersections within the study area experience turn movement operations at or better than LOS C during both the morning and afternoon peak traffic hours.

By Year 2040 and without the proposed development, the signalized intersection of Briargate Parkway and Vollmer Road is projected to have an overall operation at or better than LOS C during the morning peak traffic hour and LOS D or better during the afternoon peak hour, consistent with referenced traffic studies for adjacent developments. All stop-controlled intersections within the study area project turn movement operations at or better than LOS D during both peak traffic hours. The exception is the existing westbound left and right turn movement for Dines Boulevard at Vollmer Road where an LOS E is projected during the afternoon peak hour. The LOS E operation is attributed to the long-term projected through traffic volume along Vollmer Road and the stop-controlled nature of the intersection. To mitigate the projected LOS E operation, it is recommended to install a westbound to southbound left turn acceleration lane along Vollmer Road. This is projected to allow for LOS C or better operations during peak traffic hours.

Analysis of future traffic conditions indicates that the addition of site-generated traffic is expected to create no negative impact to traffic operations for the existing and surrounding roadway system upon roadway and intersection control improvements assumed within this analysis.

This site is subjected to the El Paso County Road Impact Fee Program (Resolution 19-471), as amended. An option for payment will be selected at the final land use approval stage.

APPENDIX A

Traffic Count Data

Note: Total study counts contained in parentheses.
Traffic Counts

Interval	Dines Blvd Eastbound				Dines Blvd Westbound				Vollmer Road Northbound					Vollmer Road Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru R	Right	U-Turn	Left		Thru	Right	U-Turn	Left	Thru	Right			West	East	South	
7:00 AM	0	0	0	0	0	11	0	1	0	0		25	14	0	2	16	0	69	370	0	0	0	0
7:15 AM	0	0	0	0	0	15	0	3	0	0		22	13	0	1	29	0	83	389	0	0	0	0
7:30 AM	0	0	0	0	0	21	0	5	0	0		27	13	0	0	39	0	105	381	0	0	0	0
7:45 AM	0	0	0	0	0	11	0	6	0	0		38	21	0	1	36	0	113	375	0	0	0	0
8:00 AM	0	0	0	0	0	23	0	3	0	0		25	7	0	1	29	0	88	348	0	0	0	0
8:15 AM	0	0	0	0	0	18	0	2	0	0		23	8	0	0	24	0	75		0	0	0	0
8:30 AM	0	0	0	0	0	23	0	1	1	0		28	13	1	2	30	0	99		0	0	0	0
8:45 AM	0	0	0	0	0	15	0	4	0	0		31	8	0	0	28	0	86		0	0	0	0
Count Total	0	0	0	0	0	137	0	- 25	1	0		219	97	1	7	231	0	718		0	0	0	0
Peak Hour	0	0	0	0	0	70	0	17	0	0	0	112	54	0		3133		0389		0	0	0	0

Note: Total study counts contained in parentheses.

Traffic Counts

Interval	Dines Blvd Eastbound				Dines Blvd Westbound				Vollmer Road Northbound				Vollmer Road Southbound				Total	Rolling Hour	Pedestrian Crossings			
Start Time	U-Turn	Left	Thru	Right			West	East	South													
4:00 PM	0	0	0	0	0	24	0	3	0	0	46	18	0	2	44	0	137	470	0	0	0	0
4:15 PM	0	0	0	0	0	13	0	5	0	0	36	25	0	5	37	0	121	441	0	0	0	0
4:30 PM	0	0	0	0	0	12	0	2	0	0	35	11	0	3	30	0	93	436	0	0	0	0
4:45 PM	0	0	0	0	0	16	0	0	0	0	49	21	0	3	30	0	119	452	0	0	0	0
5:00 PM	0	0	0	0	0	14	0	5	0	0	42	18	0	2	27	0	108	425	0	0	0	0
5:15 PM	0	0	0	0	0	17	0	3	0	0	39	17	0	4	36	0	116		0	0	0	0
5:30 PM	0	0	0	0	0	12	0	1	0	0	36	21	0	8	31	0	109		0	0	0	0
5:45 PM	0	0	0	0	0	14	0	1	0	0	30	16	0	4	27	0	92		0	0	0	0
Count Total	0	0	0	0	0	122	0	- 20	0	0	313	147	0	31	262	0	- 895		0	0	0	0
Peak Hour	0	0	0	0	0	65	0	- 10	0	0	- 166	75	0	13	141		$0 \quad 470$		0	0	0	0

Note: Total study counts contained in parentheses.
Traffic Counts

Interval	Poco Road Eastbound				Poco Road Westbound				Vollmer Road Northbound					Vollmer Road Southbound				Total		Rolling Hour	Pedestrian Crossings				
Start Time	U-Turn	Left	Thru	Right	U-Turn	Left	Thru	Right	U-Turn	Left		Thru	Right	U-Turn	Left	Thru	Right			West	East	South			
7:00 AM	0	0	0	0	0	0	0	0	0	0		10	15	0	1	20	0	0	46		264	0	0	0	0
7:15 AM	0	0	0	0	0	1	0	2	0	0		18	8	0	2	27	0	0	58	279	0	0	0	0	
7:30 AM	0	0	0	0	0	1	0	2	0	1		26	8	0	2	36	0	0	76	273	0	0	0	0	
7:45 AM	0	0	0	0	0	4	0	0	0	0		34	9	0	4	33	0	0	84	265	0	0	0	0	
8:00 AM	0	0	0	0	0	0	1	0	0	0		18	10	0	0	32	0	0	61	245	0	0	0	0	
8:15 AM	0	0	0	0	0	1	0	1	0	0		24	3	0	0	23	0	0	52		0	0	0	0	
8:30 AM	0	0	0	2	0	3	0	2	0	1		24	6	0	1	29	0	0	68		0	0	0	0	
8:45 AM	0	2	0	1	0	1	0	0	0	1		23	10	0	0	26	0	0	64		0	0	0	0	
Count Total	0	2	0	3	0	11	1	7	0	3		177	69	0	10	226		0	509		0	0	0	0	
Peak Hour	0	0	0	0	0	6	1	4	0	1		96	35	0	8	128		0	279		0	0	0	0	

Location: 6 Vollmer Road \& Poco Road PM
Date: Thursday, March 24, 2022
Peak Hour: 04:00 PM - 05:00 PM
(303) 216-2439 www.alltrafficdata.net

Peak 15-Minutes: 04:15 PM - 04:30 PM

Peak Hour - All Vehicles

Peak Hour - Pedestrians/Bicycles on Crosswalk

Note: Total study counts contained in parentheses.

Traffic Counts

APPENDIX B

Level of Service Definitions

The following information is referenced from the Highway Capacity Manual: A Guide for Multimodal Mobility Analysis, $6^{\text {th }}$ Edition, Transportation Research Board, 2016: Chapter 19 - Signalized Intersections.

Motorized Vehicle Level of Service (LOS) for Signalized Intersections

Levels of service are defined to represent reasonable ranges in control delay.
LOS A Describes operations with a control delay of $10 \mathrm{~s} / \mathrm{veh}$ or less and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is exceptionally favorable or the cycle length is very short. If it is due to favorable progression, most vehicles arrive during the green indication and travel through the intersection without stopping.

LOS B Describes operations with control delay between 10 and 20 s/veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is low and either progression is highly favorable or the cycle length is short. More vehicles stop than with LOS A.

LOS C Describes operations with control delay between 20 and $35 \mathrm{~s} /$ veh and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when progression is favorable or the cycle length is moderate. Individual cycle failures (i.e., one or more queued vehicles are not able to depart as a result of insufficient capacity during the cycle) may begin to appear at this level. The number of vehicles stopping is significant, although many vehicles still pass through the intersection without stopping.

LOS D Describes operations with control delay between 35 and $55 \mathrm{~s} /$ veh and a volume-to-capacity ratio no greater than 1.0 . This level is typically assigned when the volume-to-capacity ratio is high and either progression is ineffective or the cycle length is long. Many vehicles stop and individual cycle failures are noticeable.

LOS E Describes operations with control delay between 55 and $80 \mathrm{~s} / \mathrm{veh}$ and a volume-to-capacity ratio no greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is high, progression is unfavorable, and the cycle length is long. Individual cycle failures are frequent.

LOS F Describes operations with control delay exceeding $80 \mathrm{~s} /$ veh or a volume-to-capacity ratio greater than 1.0. This level is typically assigned when the volume-to-capacity ratio is very high, progression is very poor, and the cycle length is long. Most cycles fail to clear the queue.

Control Delay (s/veh)	LOS by Volume-to-Capacity Ratio ${ }^{\text {a }}$	
	$v / c \leq 1.0$	$v / c>1.0$
≤ 10	A	F
> $10-20$	B	F
> 20-35	C	F
> $35-55$	D	F
$>55-80$	E	F
>80	F	F

Note: a For approach-based and intersectionwide assessments, LOS is defined solely by control delay.

The following information is referenced from the Highway Capacity Manual: A Guide for Multimodal Mobility Analysis, $6^{\text {th }}$ Edition, Transportation Research Board, 2016: Chapter 20 - Two-Way Stop-Controlled Intersections, Chapter 21 - All-Way Stop-Controlled Intersections, and Chapter 22 - Roundabouts.

Motorized Vehicle Level of Service (LOS) for Unsignalized \& Roundabout Intersections

LOS is a quantitative stratification of performance measure(s) representing quality of service. Quality of service describes how well a transportation facility or service operates from a traveler's perspective. LOS is measured on an A - F scale, with LOS A representing the best operating conditions from a traveler's perspective.

Control Delay (s/veh)	LOS by Volume-to-Capacity Ratio ${ }^{\text {a }}$	
	$v / \mathrm{c} \leq 1.0$	$v / c>1.0$
0-10	A	F
> $10-15$	B	F
> 15-25	C	F
> 25-35	D	F
> 35-50	E	F
>50	F	F

Note: The LOS criteria apply to each lane on a given approach and to each approach on the minor street. LOS is not calculated for major-street approaches or for the intersection as a whole.
a For approaches and intersectionwide assessment, LOS is defined solely by control delay.

APPENDIX C

Capacity Worksheets

Intersection						
Int Delay, s/veh	2.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	$\mathbf{4}$		$\mathbf{4}$	\mathbf{F}		$\mathbf{\uparrow}$
Traffic Vol, veh/h	75	18	123	58	3	142
Future Vol, veh/h	75	18	123	58	3	142
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	380	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	82	20	134	63	3	154

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	294	134	0	0	197	0
Stage 1	134	-	-	-	-	-
Stage 2	160	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	697	915	-	-	1376	-
Stage 1	892	-	-	-	-	-
Stage 2	869	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	696	915	-	-	1376	-
Mov Cap-2 Maneuver	696	-	-	-	-	-
Stage 1	892	-	-	-	-	-
Stage 2	867	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	10.7		0		0.2	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	730	1376	-
HCM Lane V/C Ratio		-	-	0.138	0.002	-
HCM Control Delay (s)		-	-	10.7	7.6	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.5	0	-

Intersection						
Int Delay, s/veh	2.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{Y}		$\mathbf{4}$	$\mathbf{7}$		$\boldsymbol{\uparrow}$
Traffic Vol, veh/h	70	11	179	80	14	151
Future Vol, veh/h	70	11	179	80	14	151
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	380	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	76	12	195	87	15	164

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	389	195	0	0	282	0
Stage 1	195	-	-	-	-	-
Stage 2	194	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	615	846	-	-	1280	-
Stage 1	838	-	-	-	-	-
Stage 2	839	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	607	846	-	-	1280	-
Mov Cap-2 Maneuver	607	-	-	-	-	-
Stage 1	838	-	-	-	-	-
Stage 2	828	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.6		0		0.7	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	631	1280	-
HCM Lane V/C Ratio		-	-	0.14	0.012	-
HCM Control Delay (s)		-	-	11.6	7.8	0
HCM Lane LOS		-	-	B	A	A
HCM 95th \%tile Q(veh)		-	-	0.5	0	-

Intersection												
Int Delay, s/veh	2.5											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		*			*			\uparrow			\uparrow	
Traffic Vol, veh/h	1	0	5	77	1	12	2	223	50	15	207	2
Future Vol, veh/h	1	0	5	77	1	12	2	223	50	15	207	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	1	0	5	84	1	13	2	242	54	16	225	2

Intersection						
Int Delay, s/veh	2.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{Y}		4.	$\mathbf{7}$	$\mathbf{1}$	个4
Traffic Vol, veh/h	131	24	262	75	5	358
Future Vol, veh/h	131	24	262	75	5	358
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	250	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	142	26	285	82	5	389

Intersection						
Int Delay, s/veh	0.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	17		4	\mathbf{F}	-	个4
Traffic Vol, veh/h	17	9	266	8	3	286
Future Vol, veh/h	17	9	266	8	3	286
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	200	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	18	10	289	9	3	311

Intersection						
Int Delay, s/veh	1.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	$\mathbf{7}$	4.	$\mathbf{7}$	$\mathbf{1}$	个4
Traffic Vol, veh/h	63	6	275	11	3	300
Future Vol, veh/h	63	6	275	11	3	300
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	375	0	-	250	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	68	7	299	12	3	326

Intersection												
Int Delay, s/veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\ddagger			\ddagger			\ddagger			\ddagger	
Traffic Vol, veh/h	3	0	2	49	1	10	4	275	85	15	250	6
Future Vol, veh/h	3	0	2	49	1	10	4	275	85	15	250	6
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	3	0	2	53	1	11	4	299	92	16	272	7

Intersection						
Int Delay, s/veh	1.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		44	F	${ }^{7}$	44
Traffic Vol, veh/h	86	15	429	144	20	313
Future Vol, veh/h	86	15	429	144	20	313
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	250	250	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	93	16	466	157	22	340

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	680	233	0	0	623	0
Stage 1	466	-	-	-	-	-
Stage 2	214	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	385	769	-	-	954	-
Stage 1	598	-	-	-	-	-
Stage 2	801	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	376	769	-	-	954	-
Mov Cap-2 Maneuver	376	-	-	-	-	-
Stage 1	598	-	-	-	-	-
Stage 2	783	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	17.1		0		0.5	
HCM LOS	C					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	407	954	-
HCM Lane V/C Ratio		-	-	0.27	0.023	-
HCM Control Delay (s)		-	-	17.1	8.9	-
HCM Lane LOS		-	-	C	A	-
HCM 95th \%tile Q(veh)		-	-	1.1	0.1	-

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		44	7	${ }^{7}$	44
Traffic Vol, veh/h	11	6	358	27	10	291
Future Vol, veh/h	11	6	358	27	10	291
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	200	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	12	7	389	29	11	316

Intersection						
Int Delay, s/veh	0.9					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	\mathbf{T}	$\mathbf{7}$	个.	$\mathbf{7}$	$\mathbf{1}$	个4
Traffic Vol, veh/h	41	4	406	38	10	292
Future Vol, veh/h	41	4	406	38	10	292
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	375	0	-	250	250	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	45	4	441	41	11	317

Intersection												
Int Delay, s/veh 1.7												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			*			\$			\$	
Traffic Vol, veh/h	0	0	5	62	0	5	2	235	24	1	407	2
Future Vol, veh/h	0	0	5	62	0	5	2	235	24	1	407	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	5	67	0	5	2	255	26	1	442	2

Intersection						
Int Delay, s/veh	0.6					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		44	F	${ }^{*}$	44
Traffic Vol, veh/h	29	13	350	12	4	748
Future Vol, veh/h	29	13	350	12	4	748
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	250	250	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	32	14	380	13	4	813

Intersection						
Int Delay, s/veh	1.1					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		44	F	${ }^{7}$	44
Traffic Vol, veh/h	62	3	258	14	1	473
Future Vol, veh/h	62	3	258	14	1	473
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	200	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	67	3	280	15	1	514

4：Vollmer Road \＆Briargate Parkway

	4	\rightarrow		7			4				$\frac{1}{\square}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	中4	7	＊＊	44	「	${ }^{7}$	中4	「	${ }^{7}$	中4	「
Traffic Volume（vph）	69	835	58	373	1488	69	89	146	128	81	321	133
Future Volume（vph）	69	835	58	373	1488	69	89	146	128	81	321	133
Satd．Flow（prot）	1770	3539	1583	3433	3539	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.095			0.950			0.384			0.651		
Satd．Flow（perm）	177	3539	1583	3433	3539	1583	715	3539	1583	1213	3539	1583
Satd．Flow（RTOR）			155			109			155			155
Lane Group Flow（vph）	75	908	63	405	1617	75	97	159	139	88	349	145
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split（s）	10.0	53.0	53.0	22.0	65.0	65.0	15.0	30.0	30.0	15.0	30.0	30.0
Total Split（\％）	8．3\％	44．2\％	44．2\％	18．3\％	54．2\％	54．2\％	12．5\％	25．0\％	25．0\％	12．5\％	25．0\％	25．0\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	Min	Min	None	Min	Min						
Act Effct Green（s）	45.8	40.4	40.4	16.4	55.0	55.0	23.4	16.5	16.5	23.2	16.4	16.4
Actuated g／C Ratio	0.46	0.40	0.40	0.16	0.55	0.55	0.23	0.17	0.17	0.23	0.16	0.16
v／c Ratio	0.45	0.63	0.09	0.72	0.83	0.08	0.37	0.27	0.36	0.27	0.60	0.37
Control Delay	21.6	26.6	0.2	51.2	25.8	1.3	33.9	41.5	7.9	31.8	46.2	8.8
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	21.6	26.6	0.2	51.2	25.8	1.3	33.9	41.5	7.9	31.8	46.2	8.8
LOS	C	C	A	D	C	A	C	D	A	C	D	A
Approach Delay		24.7			29.8			27.8			34.7	
Approach LOS		C			C			C			C	
Queue Length 50th（ ft ）	19	255	0	144	491	0	53	53	0	48	125	0
Queue Length 95th（ft）	46	349	0	\＃225	668	11	95	86	43	89	175	49
Internal Link Dist（ft）		3244			884			915			1327	
Turn Bay Length（ft）	375		250	375		250	250		250	250		250
Base Capacity（vph）	166	1825	891	626	2250	1046	283	950	538	347	950	538
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.45	0.50	0.07	0.65	0.72	0.07	0.34	0.17	0.26	0.25	0.37	0.27
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 99.9												
Natural Cycle： 75												
Control Type：Actuated－Uncoordinated												
Maximum v／c Ratio： 0.83												

Intersection Signal Delay: 29.0
Intersection Capacity Utilization 75.8\%
Analysis Period (min) 15
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 4: Vollmer Road \& Briargate Parkway

Intersection												
Int Delay, s/veh 1.3												
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\uparrow			*			*			*	
Traffic Vol, veh/h	0	0	2	42	0	3	4	575	83	6	355	2
Future Vol, veh/h	0	0	2	42	0	3	4	575	83	6	355	2
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	-	-	-	-	-	-
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	0	0	2	46	0	3	4	625	90	7	386	2

Intersection						
Int Delay, s/veh	0.7					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	*		44	7	${ }^{7}$	44
Traffic Vol, veh/h	20	9	1024	42	13	661
Future Vol, veh/h	20	9	1024	42	13	661
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	250	250	-
Veh in Median Storage, \#	\# 0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	22	10	1113	46	14	718

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	1500	557	0	0	1159	0
Stage 1	1113	-	-	-	-	-
Stage 2	387	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	113	474	-	-	599	-
Stage 1	276	-	-	-	-	-
Stage 2	656	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	110	474	-	-	599	-
Mov Cap-2 Maneuver	110	-	-	-	-	-
Stage 1	276	-	-	-	-	-
Stage 2	641	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	36.9		0		0.2	
HCM LOS	E					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	144	599	-
HCM Lane V/C Ratio		-	-	0.219	0.024	-
HCM Control Delay (s)		-	-	36.9	11.2	-
HCM Lane LOS		-	-	E	B	-
HCM 95th \%tile Q(veh)		-	-	0.8	0.1	-

Intersection						
Int Delay, s/veh	0.8					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	M		4	\mathbf{F}	$\mathbf{7}$	个4
Traffic Vol, veh/h	38	2	660	58	5	394
Future Vol, veh/h	38	2	660	58	5	394
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	200	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	41	2	717	63	5	428

4：Vollmer Road \＆Briargate Parkway

Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	个4	「	${ }^{7}$	个 \uparrow	「	\％	个4	F	${ }^{7}$	个 \uparrow	「
Traffic Volume（vph）	230	1447	105	346	1216	82	206	459	368	94	223	115
Future Volume（vph）	230	1447	105	346	1216	82	206	459	368	94	223	115
Satd．Flow（prot）	1770	3539	1583	3433	3539	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.088			0.950			0.377			0.324		
Satd．Flow（perm）	164	3539	1583	3433	3539	1583	702	3539	1583	604	3539	1583
Satd．Flow（RTOR）			200			155			400			200
Lane Group Flow（vph）	250	1573	114	376	1322	89	224	499	400	102	242	125
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split（s）	20.0	44.0	44.0	35.0	59.0	59.0	20.0	28.0	28.0	13.0	21.0	21.0
Total Split（\％）	16．7\％	36．7\％	36．7\％	29．2\％	49．2\％	49．2\％	16．7\％	23．3\％	23．3\％	10．8\％	17．5\％	17．5\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	Min	Min	None	Min	Min						
Act Efftt Green（s）	59.9	45.8	45.8	17.7	49.3	49.3	33.2	20.8	20.8	22.5	14.7	14.7
Actuated g／C Ratio	0.53	0.41	0.41	0.16	0.44	0.44	0.30	0.19	0.19	0.20	0.13	0.13
v / c Ratio	0.86	1.09	0.15	0.70	0.85	0.11	0.66	0.76	0.65	0.51	0.52	0.33
Control Delay	57.5	85.1	0.4	52.5	34.9	0.3	43.0	52.5	9.5	41.0	51.1	2.6
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	57.5	85.1	0.4	52.5	34.9	0.3	43.0	52.5	9.5	41.0	51.1	2.6
LOS	E	F	A	D	C	A	D	D	A	D	D	A
Approach Delay		76.6			36.9			35.3			36.0	
Approach LOS		E			D			D			D	
Queue Length 50th（ft）	133	~ 702	0	143	462	0	138	191	0	58	92	0
Queue Length 95th（ft）	\＃290	\＃899	0	188	561	1	214	255	90	105	136	2
Internal Link Dist（ft）		3244			884			915			1327	
Turn Bay Length（tt）	375		250	375		250	250		250	250		250
Base Capacity（vph）	305	1443	763	927	1720	849	354	733	645	206	509	399
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.82	1.09	0.15	0.41	0.77	0.10	0.63	0.68	0.62	0.50	0.48	0.31

Intersection Summary

Cycle Length： 120
Actuated Cycle Length： 112.2
Natural Cycle： 90
Control Type：Actuated－Uncoordinated
Maximum v／c Ratio： 1.09

Intersection Signal Delay: 50.9
Intersection Capacity Utilization 84.4\%
Intersection LOS: D

Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 4: Vollmer Road \& Briargate Parkway

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	463	150	0	0	308	0
Stage 1	299	-	-	-	-	-
Stage 2	164	-	-	-	-	-
Critical Hdwy	6.84	6.94	-	-	4.14	-
Critical Hdwy Stg 1	5.84	-	-	-	-	-
Critical Hdwy Stg 2	5.84	-	-	-	-	-
Follow-up Hdwy	3.52	3.32	-	-	2.22	-
Pot Cap-1 Maneuver	528	870	-	-	1249	-
Stage 1	726	-	-	-	-	-
Stage 2	848	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	527	870	-	-	1249	-
Mov Cap-2 Maneuver	527	-	-	-	-	-
Stage 1	726	-	-	-	-	-
Stage 2	846	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	11.2		0		0.1	
HCM LOS	B					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	610	1249	-
HCM Lane V/C Ratio		-	-	0.046	0.003	-
HCM Control Delay (s)		-	-	11.2	7.9	-
HCM Lane LOS		-	-	B	A	-
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

Intersection			
Intersection Delay, s/veh	2.8		
Intersection LOS	A		WB
Approach	EB	2	
Entry Lanes	2	2	1
Conflicting Circle Lanes	2	13	2
Adj Approach Flow, veh/h	0	13	33
Demand Flow Rate, veh/h	0	0	34
Vehicles Circulating, veh/h	13	0	13
Vehicles Exiting, veh/h	0	0	0
Ped Vol Crossing Leg, \#/h	0	1.000	1.000
Ped Cap Adj	1.000	2.7	A
Approach Delay, s/veh	0.0	A	

Lane	Left	Right	Left	Right	Left
Designated Moves	LT	TR	LT	TR	LR
Assumed Moves	LT	TR	L	TR	LR
RT Channelized					
Lane Util	0.500	0.500	1.000	0.000	1.000
Follow-Up Headway, s	2.667	2.535	2.667	2.535	2.535
Critical Headway, s	4.645	4.328	4.645	4.328	4.328
Entry Flow, veh/h	0	0	13	0	34
Cap Entry Lane, veh/h	1334	1405	1350	1420	1420
Entry HV Adj Factor	1.000	1.000	1.000	1.000	0.971
Flow Entry, veh/h	0	0	13	0	33
Cap Entry, veh/h	1334	1405	1350	1420	1378
V/C Ratio	0.000	0.000	0.010	0.000	0.024
Control Delay, s/veh	2.7	2.6	2.7	2.5	2.8
LOS	A	A	A	A	A
95th \%tile Queue, veh	0	0	0	0	0

Intersection						
Int Delay, s/veh	0.4					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	1		4	\mathbf{F}	$\mathbf{7}$	个4
Traffic Vol, veh/h	11	6	364	27	10	300
Future Vol, veh/h	11	6	364	27	10	300
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	150	200	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	12	7	396	29	11	326

Intersection			
Intersection Delay, s/veh	2.8		
Intersection LOS	A		WB
Approach	EB	2	1
Entry Lanes	2	2	2
Conflicting Circle Lanes	2	33	23
Adj Approach Flow, veh/h	0	34	23
Demand Flow Rate, veh/h	0	0	0
Vehicles Circulating, veh/h	34	23	34
Vehicles Exiting, veh/h	0	0	0
Ped Vol Crossing Leg, \#/h	0	1.000	1.000
Ped Cap Adj	1.000	2.9	A
Approach Delay, s/veh	0.0	A	

Lane	Left	Right	Left	Right	Left
Designated Moves	LT	TR	LT	TR	LR
Assumed Moves	LT	TR	L	TR	LR
RT Channelized					
Lane Util	0.500	0.500	1.000	0.000	1.000
Follow-Up Headway, s	2.667	2.535	2.667	2.535	2.535
Critical Headway, s	4.645	4.328	4.645	4.328	4.328
Entry Flow, veh/h	0	0	34	0	23
Cap Entry Lane, veh/h	1308	1380	1350	1420	1420
Entry HV Adj Factor	1.000	1.000	0.971	1.000	1.000
Flow Entry, veh/h	0	0	33	0	23
Cap Entry, veh/h	1308	1380	1310	1420	1420
V/C Ratio	0.000	0.000	0.025	0.000	0.016
Control Delay, s/veh	2.8	2.6	2.9	2.5	2.7
LOS	A	A	A	A	A
95th \%tile Queue, veh	0	0	0	0	0

Intersection												
Int Delay，s／veh	1.6											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\＆			\＆		${ }^{*}$	44	「	${ }^{*}$	中4	「
Traffic Vol，veh／h	23	0	0	62	0	3	0	258	14	1	480	5
Future Vol，veh／h	23	0	0	62	0	3	0	258	14	1	480	5
Conflicting Peds，\＃／hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	－	－	None									
Storage Length	－	－	－	－	－	－	200	－	150	200	－	150
Veh in Median Storage，\＃	\＃	0	－	－	0	－	－	0	－	－	0	－
Grade，\％	－	0	－	－	0	－	－	0	－	－	0	－
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles，\％	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	0	0	67	0	3	0	280	15	1	522	5

4：Vollmer Road \＆Briargate Parkway

	4	\rightarrow		\checkmark			4				$\frac{1}{\square}$	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{*}$	中4	7	${ }^{7} 1$	44	「	＊	中4	「	${ }^{*}$	中4	「
Traffic Volume（vph）	69	858	71	373	1499	69	125	146	128	81	321	140
Future Volume（vph）	69	858	71	373	1499	69	125	146	128	81	321	140
Satd．Flow（prot）	1770	3539	1583	3433	3539	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.091			0.950			0.274			0.651		
Satd．Flow（perm）	170	3539	1583	3433	3539	1583	510	3539	1583	1213	3539	1583
Satd．Flow（RTOR）			155			109			155			155
Lane Group Flow（vph）	75	933	77	405	1629	75	136	159	139	88	349	152
Turn Type	pm＋pt	NA	Perm	Prot	NA	Perm	pm＋pt	NA	Perm	pm＋pt	NA	Perm
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2			6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split（s）	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split（s）	10.0	57.0	57.0	26.0	73.0	73.0	16.0	26.0	26.0	11.0	21.0	21.0
Total Split（\％）	8．3\％	47．5\％	47．5\％	21．7\％	60．8\％	60．8\％	13．3\％	21．7\％	21．7\％	9．2\％	17．5\％	17．5\％
Yellow Time（s）	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All－Red Time（s）	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust（s）	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time（s）	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead／Lag	Lead	Lag	Lag									
Lead－Lag Optimize？	Yes											
Recall Mode	None	Min	Min	None	Min	Min						
Act Effct Green（s）	47.7	42.5	42.5	17.4	57.7	57.7	29.6	21.6	21.6	20.8	14.5	14.5
Actuated g／C Ratio	0.45	0.40	0.40	0.17	0.55	0.55	0.28	0.21	0.21	0.20	0.14	0.14
v／c Ratio	0.48	0.65	0.11	0.72	0.84	0.08	0.52	0.22	0.31	0.32	0.72	0.43
Control Delay	24.4	27.7	0.3	51.4	25.2	1.0	40.6	40.9	7.2	37.7	55.1	11.4
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	24.4	27.7	0.3	51.4	25.2	1.0	40.6	40.9	7.2	37.7	55.1	11.4
LOS	C	C	A	D	C	A	D	D	A	D	E	B
Approach Delay		25.5			29.4			30.0			41.2	
Approach LOS		C			C			C			D	
Queue Length 50th（ ft ）	20	275	0	148	507	0	79	53	0	50	131	0
Queue Length 95th（ft）	46	355	0	207	612	9	141	90	45	97	191	59
Internal Link Dist（ft）		412			884			915			1327	
Turn Bay Length（ft）	375		250	375		250	500		250	250		250
Base Capacity（vph）	156	1825	891	715	2387	1103	281	747	456	272	561	381
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v／c Ratio	0.48	0.51	0.09	0.57	0.68	0.07	0.48	0.21	0.30	0.32	0.62	0.40
Intersection Summary												
Cycle Length： 120												
Actuated Cycle Length： 105.3												
Natural Cycle： 75												
Control Type：Actuated－Uncoordinated												
Maximum v／c Ratio： 0.84												

Intersection Signal Delay: 30.1 Intersection Capacity Utilization 78.1\% Analysis Period (min) 15

Splits and Phases: 4: Vollmer Road \& Briargate Parkway

Intersection						
Int Delay，s／veh	0.2					
Movement	EBL	EBT	WBT	WBR	SBL	SBR
Lane Configurations		个4	个中	\mathbf{F}		$\mathbf{7}$
Traffic Vol，veh／h	0	998	1744	20	0	25
Future Vol，veh／h	0	998	1744	20	0	25
Conflicting Peds，\＃／hr	0	0	0	0	0	0
Sign Control	Free	Free	Free	Free	Stop	Stop
RT Channelized	-	None	-	None	-	None
Storage Length	-	-	-	0	-	-
Veh in Median Storage，\＃	-	0	0	-	0	-
Grade，\％	-	0	0	-	0	-
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles，\％	2	2	2	2	2	2
Mvmt Flow	0	1085	1896	22	0	27

Intersection												
Int Delay, s/veh	1.2											
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		$\$$			\&		${ }^{7}$	44	「	${ }^{7}$	44	「
Traffic Vol, veh/h	23	0	0	38	0	2	0	660	58	5	140	14
Future Vol, veh/h	23	0	0	38	0	2	0	660	58	5	140	14
Conflicting Peds, \#/hr	0	0	0	0	0	0	0	0	0	0	0	0
Sign Control	Stop	Stop	Stop	Stop	Stop	Stop	Free	Free	Free	Free	Free	Free
RT Channelized	-	-	None									
Storage Length	-	-	-	-	-	-	200	-	150	200	-	150
Veh in Median Storage, \#	\#	0	-	-	0	-	-	0	-	-	0	-
Grade, \%	-	0	-	-	0	-	-	0	-	-	0	-
Peak Hour Factor	92	92	92	92	92	92	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	25	0	0	41	0	2	0	717	63	5	152	15

4: Vollmer Road \& Briargate Parkway

	4	\rightarrow		7			4	\dagger			\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	${ }^{7}$	44	7	${ }^{*} 1$	44	「	${ }^{7}$	44	F	${ }^{7}$	44	7
Traffic Volume (vph)	230	1470	114	346	1247	82	300	459	368	94	223	131
Future Volume (vph)	230	1470	114	346	1247	82	300	459	368	94	223	131
Satd. Flow (prot)	1770	3539	1583	3433	3539	1583	1770	3539	1583	1770	3539	1583
Flt Permitted	0.075			0.083			0.286			0.469		
Satd. Flow (perm)	140	3539	1583	300	3539	1583	533	3539	1583	874	3539	1583
Satd. Flow (RTOR)			155			200			238			200
Lane Group Flow (vph)	250	1598	124	376	1355	89	326	499	400	102	242	142
Turn Type	pm+pt	NA	Perm									
Protected Phases	5	2		1	6		3	8		7	4	
Permitted Phases	2		2	6		6	8		8	4		4
Detector Phase	5	2	2	1	6	6	3	8	8	7	4	4
Switch Phase												
Minimum Initial (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Minimum Split (s)	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0	10.0
Total Split (s)	23.0	58.0	58.0	16.0	51.0	51.0	32.0	30.0	30.0	16.0	14.0	14.0
Total Split (\%)	19.2\%	48.3\%	48.3\%	13.3\%	42.5\%	42.5\%	26.7\%	25.0\%	25.0\%	13.3\%	11.7\%	11.7\%
Yellow Time (s)	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0	3.0
All-Red Time (s)	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
Lost Time Adjust (s)	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Lost Time (s)	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
Lead/Lag	Lead	Lag	Lag									
Lead-Lag Optimize?	Yes											
Recall Mode	None	Max	Max	Max	Max	Max	Max	Min	Min	Max	Min	Min
Act Effct Green (s)	67.8	53.0	53.0	59.0	48.0	48.0	41.0	25.0	25.0	20.0	9.0	9.0
Actuated g/C Ratio	0.56	0.44	0.44	0.49	0.40	0.40	0.34	0.21	0.21	0.17	0.08	0.08
v/c Ratio	0.84	1.02	0.16	0.87	0.96	0.12	0.71	0.68	0.77	0.45	0.91	0.47
Control Delay	54.5	62.1	1.9	49.3	51.7	0.3	41.4	49.1	28.9	36.4	92.2	7.0
Queue Delay	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
Total Delay	54.5	62.1	1.9	49.3	51.7	0.3	41.4	49.1	28.9	36.4	92.2	7.0
LOS	D	E	A	D	D	A	D	D	C	D	F	A
Approach Delay		57.4			48.7			40.5			55.6	
Approach LOS		E			D			D			E	
Queue Length 50th (ft)	136	~ 692	0	100	545	0	203	188	121	55	100	0
Queue Length 95th (ft)	\#258	\#831	21	\#185	\#712	0	297	249	\#252	98	\#179	18
Internal Link Dist (ft)		412			884			915			1327	
Turn Bay Length (ft)	375		250	375		250	500		250	250		250
Base Capacity (vph)	325	1563	785	434	1414	752	460	737	518	227	265	303
Starvation Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Spillback Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Storage Cap Reductn	0	0	0	0	0	0	0	0	0	0	0	0
Reduced v/c Ratio	0.77	1.02	0.16	0.87	0.96	0.12	0.71	0.68	0.77	0.45	0.91	0.47
Intersection Summary												
Cycle Length: 120												
Actuated Cycle Length: 120												
Natural Cycle: 90												
Control Type: Semi Act-Uncoord												
Maximum v/c Ratio: 1.02												

Intersection Signal Delay: 50.6
Intersection Capacity Utilization $90.0 \% \quad$ ICU Level of Service
Analysis Period (min) 15
~ Volume exceeds capacity, queue is theoretically infinite.
Queue shown is maximum after two cycles.
\# 95th percentile volume exceeds capacity, queue may be longer.
Queue shown is maximum after two cycles.
Splits and Phases: 4: Vollmer Road \& Briargate Parkway

V2_Traffic Impact Study review 2.pdf Markup Summary

Bret (15)		
	Subject: High Volume OR Complexity of Comments Page Label: 5 Author: Bret Date: 5/3/2024 2:52:46 PM Status:	Unresolved: Grand Peak Academy, located on Cowpoke Rd, is within two miles of the project location. Provide a discussion of the impact the subdivision would have for any potential pedestrian routes in the area.
	Layer:	
	Space:	

	Subject: High Volume OR Complexity of Comments	Unresolved: Add discussion or figure to illustrate Page Label: 6
sight distance for every access and whether it can		
Author: Bret	be met for proposed conditions.	

Subject: Callout
 Page Label: 6

Per ECM Section 2.2.5.B, intersection spacing for
Author: Bret a principal arterial is $1 / 2$ mile. Please provide
Date: 5/3/2024 3:27:55 PM
Status:
Color:
Layer:
Space: deviation for the spacing length.

Subject: Callout

Page Label: 6
Per ECM Section 2.2.5.B, intersection spacing for Author: Bret a rural minor arterial is $1 / 4$ mile. Please provide Date: 5/3/2024 3:28:10 PM deviation for the spacing length.
Status:
Color:
Layer:
Space:

Subject: Callout

Page Label: 6
Per ECM Section 2.2.4.B. 2 no direct lot access is Author: Bret allowed from a principal arterial
Date: 5/3/2024 3:33:53 PM
Status:
Color:
Layer:
Space:

[^4]Unresolved: If still conceptual, why did FAR drop

Subject: Highlight
Page Label: 34
Author: Bret
Date: 5/3/2024 3:12:13 PM
Status:
Color:
Layer:
Space:
Subject: Highlight
Page Label: 34
By Others (Sterling Ranch)
Author: Bret
Date: 5/3/2024 3:12:17 PM
Status:
Color:
Layer:
Space:

By Oners (Sering Ranch)	Subject: Highlight Page Label: 34	By Others (Sterling Ranch)
By Oners (Sering Ranch)	Author: Bret	
	Date: 5/3/2024 3:12:19 PM	
	Status: Color:	
	Layer:	
	Space:	

Mobile User (1)

Subject: Stamp	
Page Label: 2	
Author: Mobile User	
Date: 3/22/2024 1:12:29 PM	
Status:	
Color: \square	
	Layer:
Space:	

[^0]: ${ }^{1}$ Jaynes Property: Traffic Impact Study, SM ROCHA, LLC, January 19, 2023.
 ${ }^{2}$ El Paso County Engineering Criteria Manual, El Paso County, October 2020.

[^1]: ${ }^{3}$ El Paso County 2016 Major Transportation Corridors Plan Update, Felsburg Holt \& Ullevig, December 2016.
 ${ }^{4}$ Major Thoroughfare Plan, City of Colorado Springs, August 2011.
 ${ }^{5}$ The Retreat at Timber Ridge Preliminary Plan Transportation Memorandum, LSC Transportation Consultants Inc., June 29, 2018.
 ${ }^{6}$ Homestead North Phase 1 Updated Traffic Impact Study, LSC Transportation Consultants Inc., January 11, 2022.

[^2]: ${ }^{7}$ Moving Forward 2045: Pikes Peak Area Regional Transportation Plan, Pikes Peak Area Council of Governments, January 2020.

[^3]: ${ }^{8}$ Guide for Improving Pedestrian Safety at Uncontrolled Crossing Locations, Federal Highway Administration, July 2018.

[^4]: Subject: Callout
 Page Label: 19
 Author: Bret
 Date: 5/3/2024 3:02:42 PM
 Status:
 Color:
 Layer:
 Space:

