November 30, 2020 Revised: January 8, 2021

Tech Contractors 3575 Kenyon Street, Suite 200 San Diego, California 92110

Attn: Raul Guzman

Re: Pavement Recommendations - Revised The Estates at Rolling Hills Ranch Filing No.1 El Paso County, Colorado

Dear Mr. Guzman:

As requested, Entech Engineering, Inc. has obtained samples of the subgrade soils from sections of the roadways in the Estates at Rolling Hills Ranch, Filing No.1, in El Paso County, Colorado. Laboratory testing to determine the pavement support characteristics of the soils was performed. This letter presents the results of the laboratory testing and pavement recommendations for the roadways.

Project Description

The project lies north and east of The Estates at Meridian Ranch Filing No. 3 development. The extent of the roadway construction is shown in Figure 1.

The roadways in this project consist of sections of Rex Road and Sunrise Ridge Drive, and Palmer Peak Place. The site layout and the locations of the test borings, drilled at approximate 500-foot intervals, are shown on the Test Boring Location Plan, Figure 1.

Subgrade Conditions

Eight exploratory test borings were drilled in the roadways to depths of approximately 5 to 10 feet. The Boring Logs are presented in Appendix A. Sieve Analysis and Atterberg Limit testing were performed on the subgrade soil samples obtained from the test borings for the purpose of classification. Sieve analyses performed indicated the percent passing the No. 200 sieve for the roadway subgrade soils ranged from approximately 12 to 29 percent. Atterberg Limit Tests performed on the samples resulted in Liquid Limits ranging from no-value to 30 and Plastic Indexes of non-plastic to 15. One general soil type was encountered at the subgrade depth (Soil Type 1). Soil Type 1 consisted of silty to clayey sand fill which classified as A-2-4, A-2-6 and A-1-b soils based on the AASHTO classification system. The Type 1 soils have good pavement support characteristics. Soil Type 2 was encountered at depths below the subgrade influence zone. Sulfate testing of the subgrade indicated that the soils exhibit a negligible potential for sulfate attack. Ground water was not encountered in the test borings.

Swell testing was required on the several samples of the site soils based on their Plastic Indexes. Volume changes of 0.3 to 0.8 were measured. Based on the low volume changes, mitigation is not required. Laboratory test results are presented in Appendix B and are summarized on Table 1.

ENGINEERING, INC.

APPROVED Engineering Department

01/20/2021 1:32:34 PM dsdnijkamp EPC Planning & Community Development Department

California Bearing Ratio (CBR) testing was performed on a sample of Soil Type 1 to determine the support characteristic of the subgrade soils for the roadway sections. The results of the CBR testing, are presented in Appendix B and summarized as follows:

Soil Type1 - Silty to Clayey Sand Fill

R @ 90% = 22.0 R @ 95% = 73.0 Use R = 50.0 for design

Classification Testing

Liquid Limit	23
Plasticity Index	6
Percent Passing 200	25.4
AASHTO Classification	A-2-4
Group Index	0
Unified Soils Classification	SC-SM

Pavement Design

The CBR testing was used to determine pavement sections for this site. The pavement sections were determined utilizing the El Paso County "Pavement Design Criteria and Report". The following classifications and ESAL values were used for this portion of the filing. Palmer Peak Place classifies as a local (low-volume) roadway which uses an 18k ESAL value of 36, 500 for design. Sunrise Ridge Drive classifies as a local road which uses an 18k ESAL value of 292,000 for design. Rex Road classifies as a residential collector, which uses an 18k ESAL value of 821,000 for design. Pavement alternatives for asphalt over aggregate basecourse and cement stabilized subgrade sections are provided. Design parameters used in the pavement analysis are as follows:

Reliability (Local Low Volume)/Local	80%				
Residential Collector	85%				
Serviceability Index – Local – Low volume	2.0				
Serviceability Index – Local	2.0				
Serviceability Index – Residential Collector	2.5				
Resilient Modulus	13,168 psi				
"R" Value Subgrade	50.0				
Structural Coefficients:					
Hot Bituminous Pavement	0.44				
Aggregate Base Course	0.11				
Cement Stabilized Subgrade	0.12				

Pavement calculations are attached in Appendix C. Pavement sections recommended for this phase of the filing are summarized as follows:

Pavement Sections - Soil Type 1

Local (low_volume	e) – ESAL <u>= 36</u>	6,500 – Palmer Peak	Place
<u>Alternative</u>	<u>Asphalt</u> <u>(in)</u>	<u>Base Course</u> (in)	Cement Stabilized Subgrade (in.)
1. Asphalt Over Base Course	3.0*	4.0*	
2. Cement Stabilized Subgrade	4.0		8.0
<u>Local – ESA</u>	<u>L = 292,000 –</u>	Sunrise Ridge Drive	<u>e</u>
Alternative	<u>Asphalt</u> <u>(in)</u>	Base Course (in)	Cement Stabilized Subgrade (in.)
1 Apphalt Over Been Course			Subgrade (III.)
1. Asphalt Over Base Course	3.0*	8.0*	
2. Cement Stabilized Subgrade	4.0		8.0

Residential Collector - ESAL = 821,000 - Rex Road

Alternative	<u>Asphalt</u>	Base Course	Cement Stabilized
	<u>(in)</u>	<u>(in)</u>	Subgrade (in.)
1. Asphalt Over Base Course	4.0*	8.0*	
2. Cement Stabilized Subgrade	4.0		10.0

Full depth sections are not allowed.

* Minimum sections required by the El Paso County Pavement Design Criteria and Report.

Mitigation

El Paso County criteria requires mitigation of expansive soils for roadway subgrade that have a swell of 2 percent or greater with a 150 pound per square foot surcharge. Due to the results of the swell testing, mitigation for expansive soils will not be required on this site.

Roadway Construction - Full Depth Asphalt and Asphalt on Aggregate Base Course Alternatives

Prior to placement of the asphalt, the subgrade should be proofrolled and compacted to a minimum of 95 percent of its maximum Standard Proctor Dry Density, ASTM D-1557 at \pm 2 percent of optimum moisture content or 95 percent of its maximum Modified Proctor Dry Density, ASTM D-1557 at \pm 2 percent of optimum moisture content. Any loose or soft areas should be removed and replaced with suitable materials. Base course materials should be compacted to a minimum of 95 percent of its maximum Modified Proctor Dry Density, ASTM D-1557 at \pm 2 percent of optimum moisture content. Special attention should be given to areas adjacent to manholes, inlet structures and valves.

Roadway Construction – Cement Stabilized Subgrade Alternative

Prior to placement of the asphalt, the subgrade shall be stabilized by addition of cement to a depth of at least 8 to 10 inches. The depth of the required cement stabilized subgrade is shown in the previous table. The amount of cement applied shall be 2.0 percent (by weight) of the subgrade's maximum dry density as determined by the Modified Proctor Test (ASTM D-1557) based on laboratory cement stabilization testing. The cement should be spread evenly on the subgrade surface and be thoroughly mixed into the subgrade over an 8 to 10-inch depth such that a uniform blend of soil and cement is achieved. Prior to application or mixing of the cement, the upper 8 to 10 inches of subgrade should be thoroughly moisture conditioned to the soil's optimum water content or as much as 2 percent more than the optimum water content as necessary to provide a compactable soil condition. Densification of the subgrade maximum dry density as determined by the Modified Proctor Test (ASTM D-1557). Satisfactory compaction of the subgrade shall be completed shall be thoroughly monitor of the subgrade maximum dry density as determined by the Modified Proctor Test (ASTM D-1557). Satisfactory compaction of the subgrade shall be completed shall be completed to obtain a compaction from the time of mixing the cement into the subgrade.

The following conditions shall be observed as part of the subgrade stabilization:

- Type I/II cement as supplied. A local supplier shall be used. All cement used for stabilization should come from the same source. If cement sources are changed a new laboratory mix design should be completed.
- Moisture conditioning of the subgrade and/or mixing of the cement into the subgrade shall not occur when soil temperatures are below 40°F. Cement treated subgrades should be maintained at a temperature of 40°F or greater until the subgrade has been compacted as required.
- Cement placement, cement mixing and compaction of the cement treated subgrade should be observed by a Soils Engineer. The Soils Engineer should complete in situ compaction tests and construct representative compacted specimens of the treated subgrade material for subsequent laboratory quality assurance testing.
- Pending the results of the field density testing, microfracturing of the stabilized subgrade will likely be required. Soil strengths in excess of 200 psi require microfracturing.

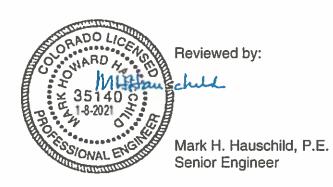
If significant grading is performed, the soils at subgrade may change. Modification to the pavement sections should be evaluated after site grading is completed.

In addition to the above guidance, the asphalt, cement, subgrade conditions, compaction of materials and roadway construction methods shall meet the El Paso County specifications.

We trust that this has provided you with the information you required. If you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.


DP

Daniel P. Stegman

SCC/bs

Encl.

Entech Job No. 202221 AAprojects/2020/202221 pr-REV

TABLE

-
ш
Ĺ
\mathbf{m}
4
H

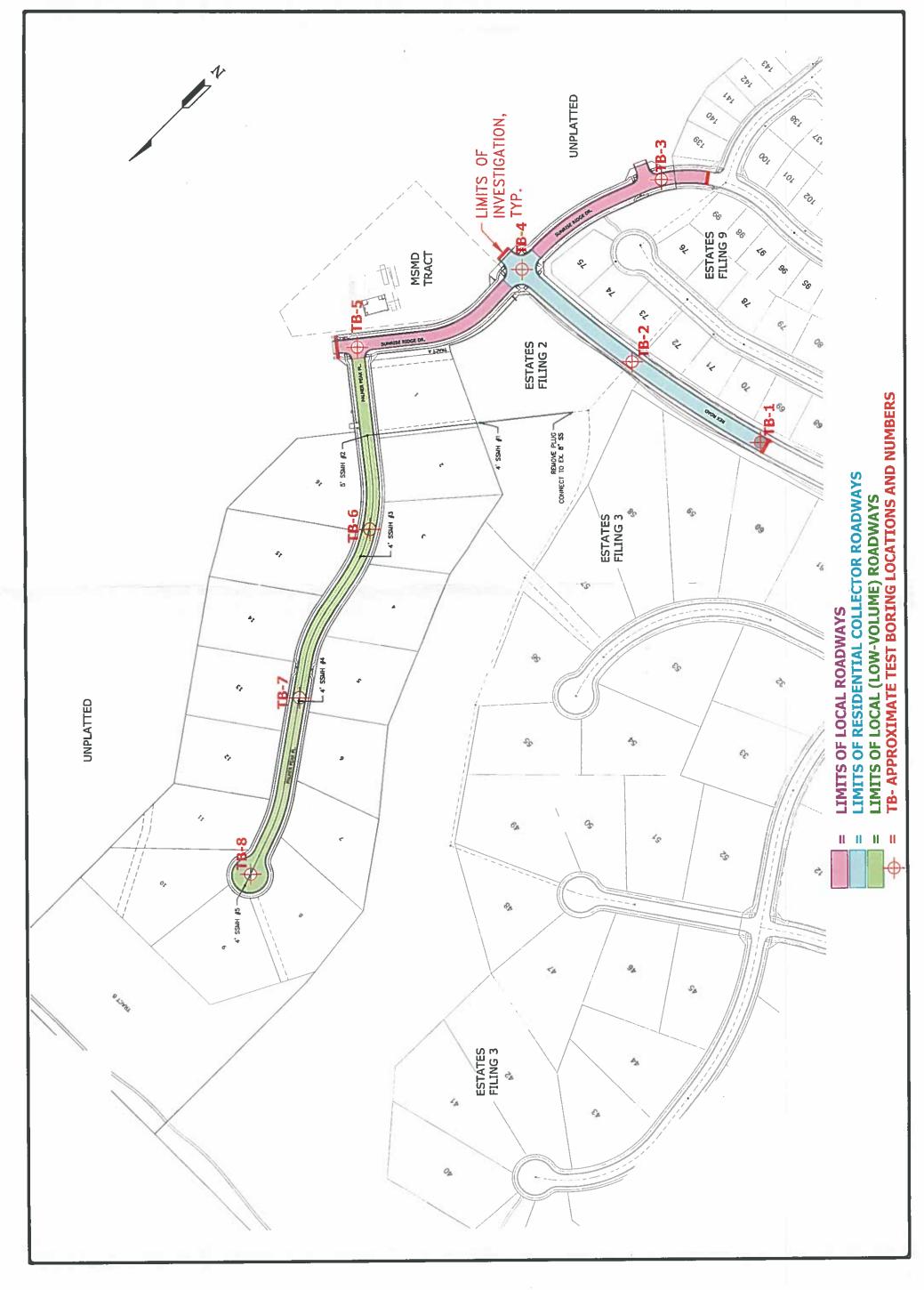
SUMMARY OF LABORATORY TEST RESULTS

202221
<u>JOB NO.</u>

....

Г		Т	-		-	-	_		-	-	Т	-			-	
				FILL, SAIVU, CLATET			FILL, SAND, SILLY	FILL, SAND, CLAYEY	FILL SAND SILTY	EIL CAND CH TV			SANDSTONE, SILTY	SANDSTONE, SILTY	CANDETONE OF AVEV	SANDSTONE, SILTY
	UNIFIED	SC-SM		CMICINI	W	CM	OW	്റാറ	SM	WS	EM	MD	Ŵ	SM	C.C.	SM
	SWELL/ CONSOL		80				00	0.3						_	0.6	
	AASHTO CLASS.	A-2-4	A-2-6	A-1-h	A-1-b	A-2-4		0-2-W	A-1-b	A-1-b	A-1-h		N-1-N	A-1-b	A-2-6	A-1-b
	SULFATE (WT %)				0.00				<0.01					<0.01	<0.01	
	PLASTIC INDEX (%)	9	12	ďZ	ď	dN	ų	2	NP	NP	dz	dN		ЧZ	18	dN
ſ	LIQUID LIMIT (%)	ß	30	N	ž	Z	BC	3	N	N	Ž	2		N	8	N
	PASSING NO. 200 SIEVE (%)	25.4	29.1	11.7	19.6	25.0	770		7.cl	18.7	19.2	18.7		10.0	24.4	13.6
	DRY DENSITY (PCF)		122.9				119.4						T		111.2	
	WATER (%)		11.1				9.4								5.7	
	DEPTH (FT)	6-3	1-2	1-2	1-2	1-2	1-2	с 7	2	1-2	1-2	10	ç	2	£	10
	TEST BORING NO.	-	-	2	0	4	S	ų	5	~	~	4	ď	, (٥	8
	SOIL SOIL	1, CBH	-	-	-	-	-	-	•	-		N	6	1	N	~

FIGURE


್

.

For: TECH CONTRACTORS For: TECH COUNTY, CO FL PASO COUNTY, CO For: TECH CONTRACTORS

APPENDIX A: Test Boring Logs

TEST BORING NO. DATE DRILLED Job #	1 10/15/2020 202221	0					TEST BORING NO. DATE DRILLED CLIENT LOCATION	2 10/15/203 TECH CO ESTATES	20 DNST				LLS	
REMARKS	-	=		÷	%		REMARKS				-		~	
DRY TO 5', 10/15/20		Depth (ft) Symbol	Samples	Blows per foot	Watercontent %	Soil Type	DRY TO 5', 10/15/20		Depth (ft)	Symbol	Samples	Blows per foot	Watercontent %	Soil Type
FILL 0-5', SAND, CLAYEY SILTY, FINE TO COARSE BROWN, MEDIUM DENSE	GRAINED,	5		25	11.2		FILL 0-5', SAND, SLIGHTI SILTY, FINE TO COARSE BROWN, DENSE TO MEDI DENSE, MOIST	GRAINED,	5			31 19	8.5	1
		-			10.2	•		:		•, •		13	0.0	I
	1	10 _ - -							10 -					
	1	15							15 -					
	2	20				1			20					
ENTI ENGINE	ERING, IN		7		DRAW	4:	TEST BO			E:/70			202	ND 2221 NO A- 1

TEST BORING NO. 3 DATE DRILLED 10/15/20 Job # 202221	20		TEST BORING NO. DATE DRILLED CLIENT	4 10/15/2020 TECH CON	STRACTORS	
REMARKS		1	LOCATION REMARKS	ESTATES A	T ROLLING F	IILLS
DRY TO 5', 10/15/20 FILL 0-5', SAND, SILTY, FINE TO COARSE GRAINED, BROWN TO TAN, DENSE, MOIST	c Depth (ft) Symbol Samples	5 7.2 1	DRY TO 10', 10/15/2 FILL 0-5', SAND, SILTY, COARSE GRAINED, BRO DENSE TO MEDIUM DEN MOIST	FINE TO WN,	46	8.3 1
	10 10 15		SANDSTONE, SILTY, FIN COARSE GRAINED, TAN DENSE, MOIST		50 10"	9.4 2
	20			20	1	
ENTECH ENGINEERING, I 505 ELKTON DRIVE COLORADO SPRINGS, COL		DRAWN			2/ Eu	JOB NO.: 202221 FIG NO.: A- 2

TEST BORING NO. 5 DATE DRILLED 10/15/20 Job # 202221	20		CLIENT T	6 0/15/2020 ECH CONSTRACTOR STATES AT BOLLING	
Job # 20221 REMARKS DRY TO 10', 10/15/20 FILL 0-5', SAND, CLAYEY, FINE TO COARSE GRAINED, BROWN, MEDIUM DENSE, MOIST SANDSTONE, SILTY, FINE TO COARSE GRAINED, TAN, VERY DENSE, MOIST	Depth (ft)	29 3.5 1	CLIENT T	ECH CONSTRACTOR STATES AT ROLLING (I) (I) (I) (I) (I) (I) (I) (I) (I) (I)	
ENTECH ENGINEERING, I 505 ELKTON DRIVE COLORADO SPRINGS, COL		DRAWN:			JOB NO. 202221 Fig No.: A- 3

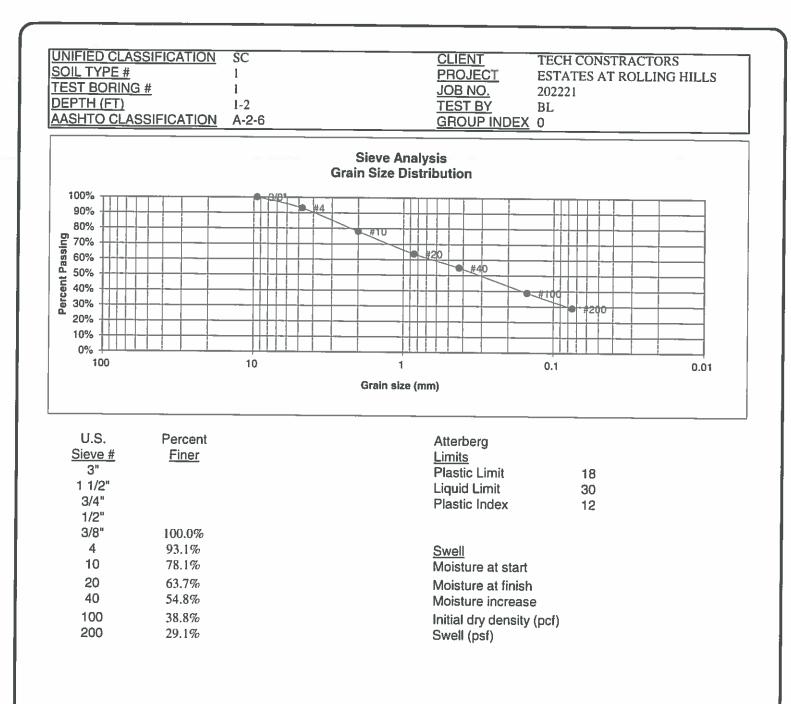
													÷				-
DATE D Job #	ORING NO. PRILLED	7 10/15/20 202221							TEST BORING DATE DRILLEI CLIENT LOCATION	D	8 10/15/202 TECH CO ESTATES	NST				LLS	
POSS F FINE TO () 5', 10/15/20 ILL 0-5', SAND, COARSE GRAIN	SILTY, IED,	Depth (ft)	Symbol	Samples	G Blows per foot	Watercontent %		REMARKS DRY TO 10', 10 FILL 0-6', SAND, S COARSE GRAINE	SILTY, FI D, BROW	INE TO	Depth (ft)	Symbol	Samples		.0 Watercontent %	L Soil Type
BROWN T	O TAN, DENSE,	, MOIST	5			44	6.9	1	TAN, DENSE, MOI SANDSTONE, SIL		то	5			29	5.3	1
			10						COARSE GRAINE DENSE, MOIST	D, TAN, I		10			<u>50</u> 8"	8.3	2
			15 20									15 - 20 -					
\Rightarrow		RING, I	NC.								RING LOG					20	DB NO.: 2221 IG NO.: A- 4
	COLORADO SP		RADO	80907		Jl	DRAV	V INC.	DATE		CHECKED:	_ u/z	Tzo		J		

APPENDIX B: Laboratory Test Results

٠

.

.


JNIFIED CLAS SOIL TYPE # IEST BORING DEPTH (FT) ASHTO CLAS	<u>ì #</u>	SC-SM 1, CBR 1 0-3 A-2-4		<u>CLIENT</u> <u>PROJECT</u> <u>JOB NO.</u> <u>TEST BY</u> <u>GROUP INDEX</u>	TECH CONSTRACTORS ESTATES AT ROLLING HILLS 202221 BL 0
			Sieve Analy Grain Size Distr	ibution	
100% 90% 80% 70% 60% 40% 20% 10% 100		10	1 Grain size (mo		#100 #200 0.1 0.01
U.S. <u>Sieve #</u> 3" 1 1/2" 3/4" 1/2"	Percent <u>Finer</u>			Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index	16 23 6
3/8" 4 10 20 40 100 200	100.0% 94.5% 79.6% 61.6% 49.1% 32.6% 25.4%			<u>Swell</u> Moisture at start Moisture at finish Moisture increas Initial dry density Swell (psf)	n e

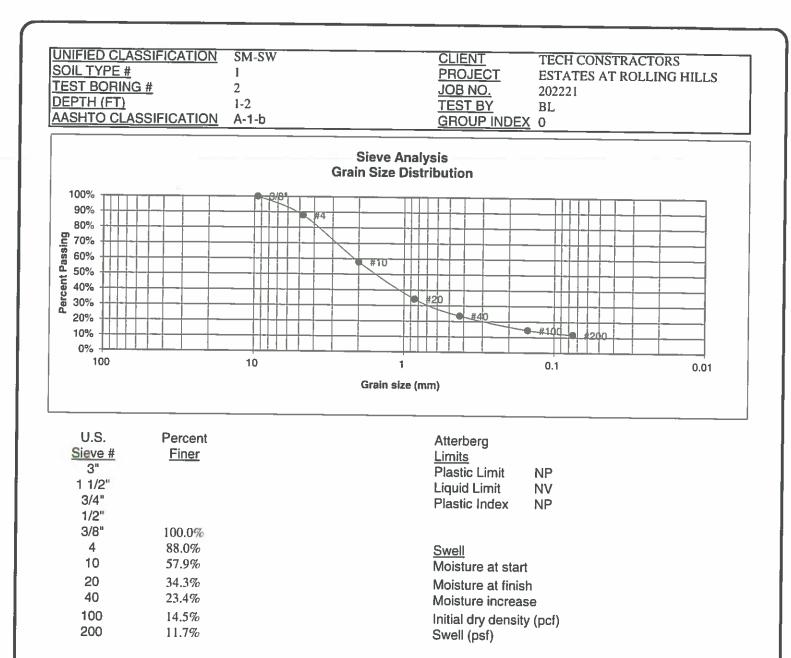
ENIECH	
ENGINEERING, INC.	
505 ELKTON DRIVE	
COLORADO SPRINGS, COLORADO 80	907

-

	LABOF RESUI	RATORY T _TS	EST	
DRAWN	DATE	CHECKED:	6	DATE:

JOB NO.:
202221
FIG NO

ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907


- -

DRAWN

LABOR RESUL	ATORY TI TS	EST	
 DATE	CHECKED:	h	HIZZO

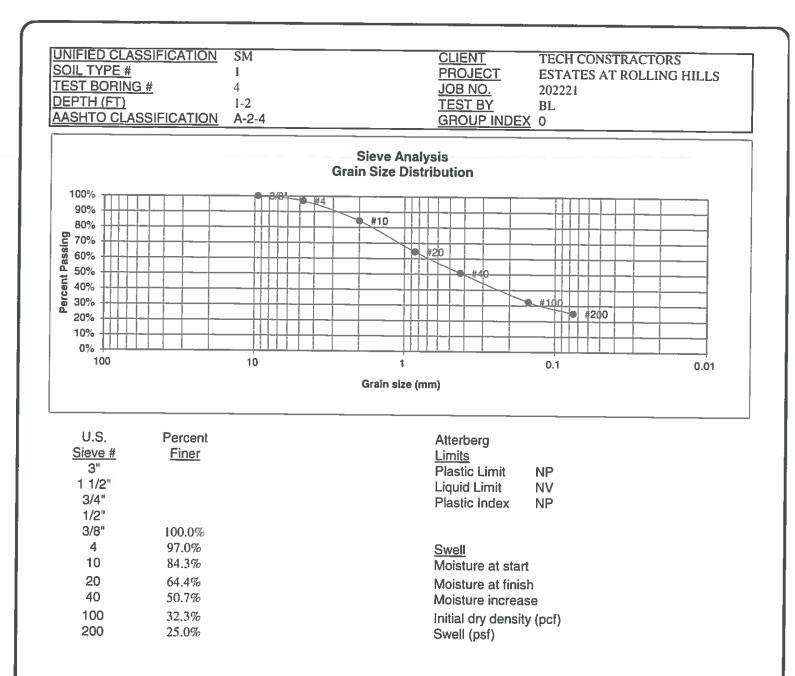
JOB NO.:
202221
FIG NO

6-2

ENTECH	
ENGINEERING, INC.	
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	7

LABOF RESUL	RATORY T .TS	EST	
DATE:	CHECKED	n	1/2/20

JOB NO.
202221
FIG NO


8-3

UNIFIED CLASSIFICATION SOIL TYPE # TEST BORING # DEPTH (FT) AASHTO CLASSIFICATION	1 3 1-2	CLIENT PROJECT JOB NO. TEST BY GROUP_INDE	TECH CONSTRACTORS ESTATES AT ROLLING HILLS 202221 BL <u>K</u> 0			
Sieve Analysis Grain Size Distribution						
100% 90% 80% 57% 60% 50% 40% 20% 10% 0%	10 t Grain size		 #100 #200 0.1 			
U.S. Percent <u>Sieve # Finer</u> 3" 1 1/2" 3/4" 1/2"		Atterberg <u>Limits</u> Plastic Limit Liquid Limit Plastic Index	NP NV NP			
3/8" 100.0% 4 92.7% 10 70.9% 20 51.5% 40 39.8% 100 25.3% 200 19.6%		<u>Swell</u> Moisture at star Moisture at finis Moisture increas Initial dry density Swell (psf)	h se			

ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

LABO RESU	RATORY TE LTS	EST	
 DATE	CHECKED:	h	11/2/20

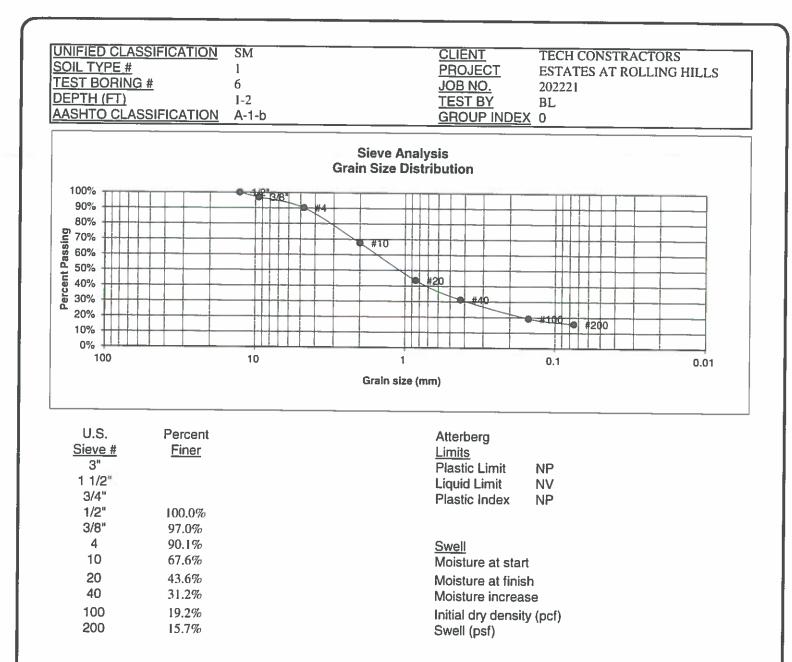
JOB NO	
202221	
FIG NO.:	

$\leftarrow \rightarrow$
16

ENIEGA
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

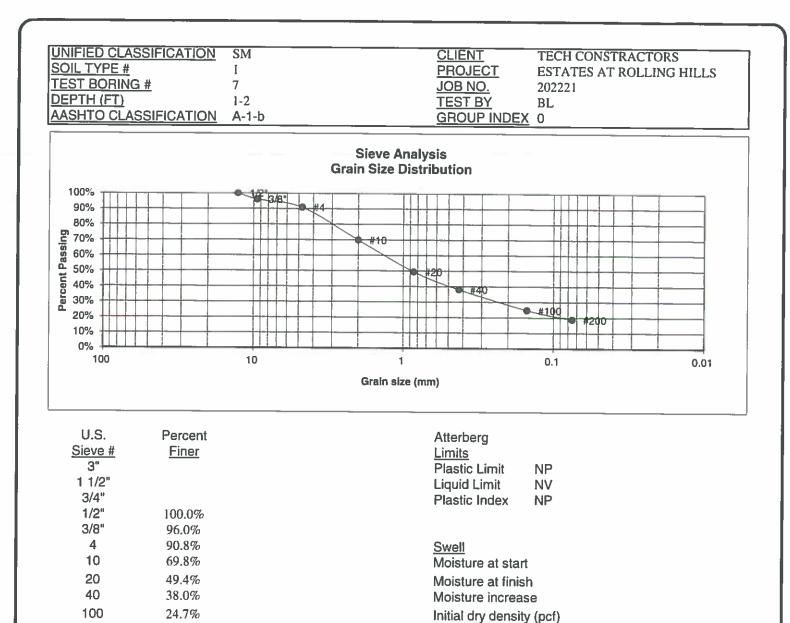
ENTECH

LABOF	RATORY TE .TS	ST	
DATE:	CHECKED:	10	DATE:


JOB NO.
202221
FIG NO.
D.C

ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

 LABOI RESU	RATORY TI LTS	EST	
DATE:	CHECKED:	h	DATE: 11/2/20


JOB NO
202221
FIG NO.:

ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

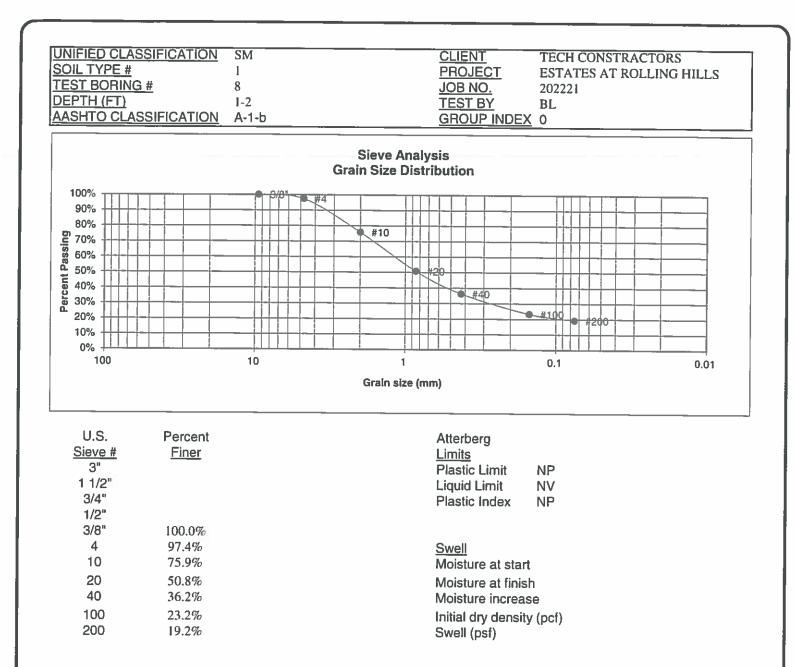
LABORATORY TEST RESULTS				
	DATE	CHECKED:	h	DATE: A/2/20

JOB NO.:
202221
FIG NO:

	ENTECH
57	ENGINEERING,
	505 ELKTON DRIVE
	COLORADO SPRINGS, CO

200

18.7%

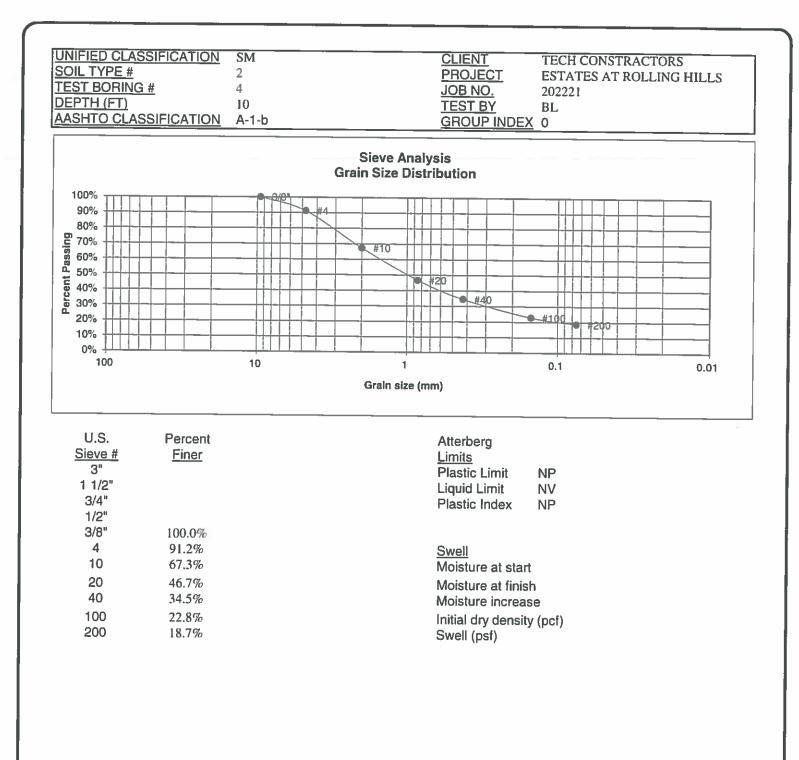

NGINEERING, INC.
5 ELKTON DRIVE
OLORADO SPRINGS, COLORADO 80907

DRAWN:

LABORATORY TEST RESULTS				
	DATE	CHECKED:	h	DATE:

Swell (psf)

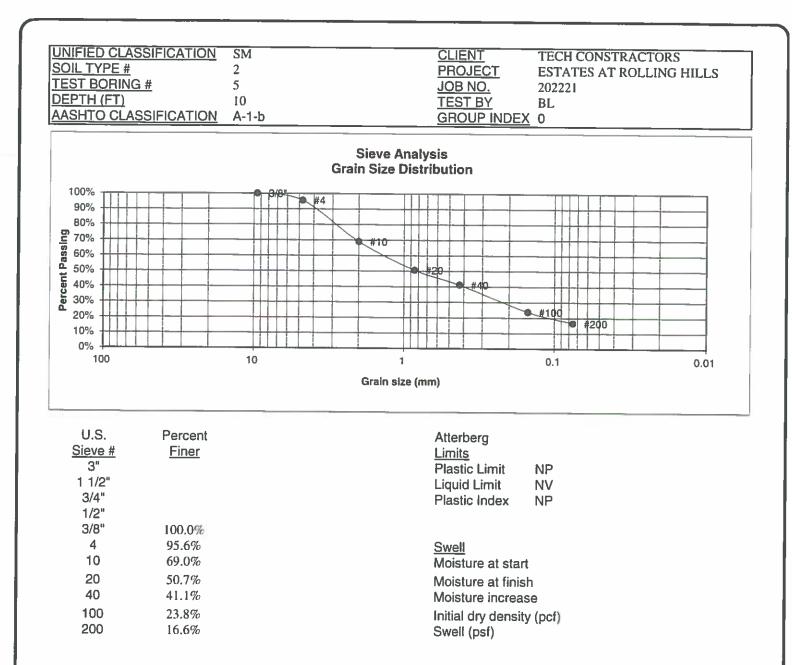
JOB NO
202221
FIG NO.:
B-8



ENIEVA	
ENGINEERING, INC.	
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 8090	7

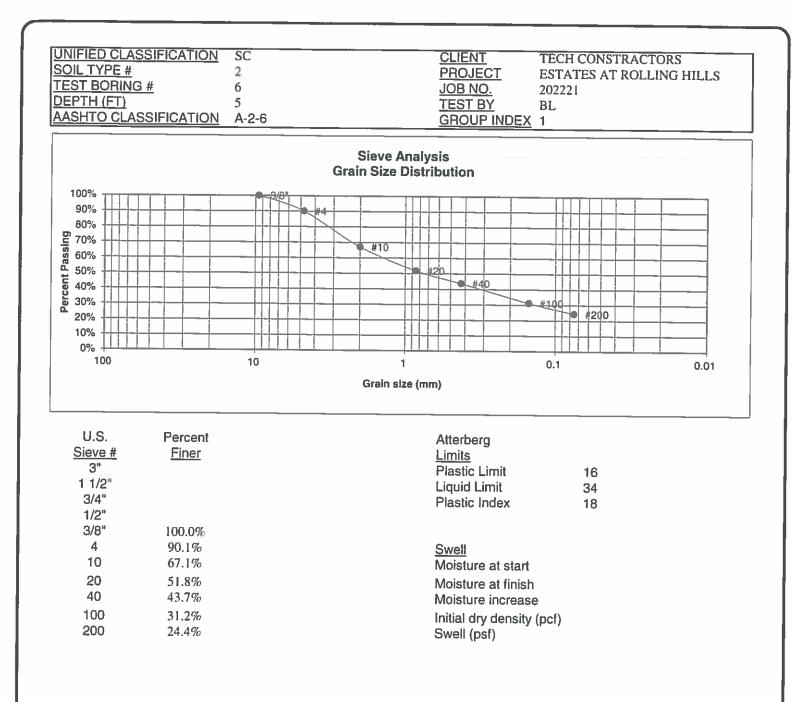
ENTECH

 LABOF	RATORY T .TS	EST	
DATE:	CHECKED:	In	DATE:


JOB NO.
202221

ENTECH	
ENGINEERING, INC.	
505 ELKTON DRIVE	
COLORADO SPRINGS, COLORADO 809	Юł

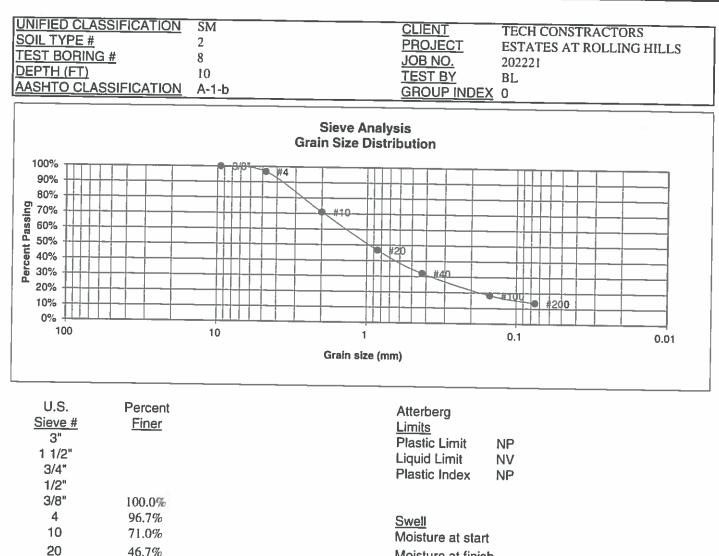
LABO RESL	RATORY T	EST	
DATE	CHECKED:	h	DATE:


JOB NO.;
202221
FIG NO.
B-10

ENTECH
ENGINEERING, INC.
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907

LABOF	ATORY T .TS	EST	
DATE:	CHECKED:	h	DATE:

ſ	JOB NO.:
	202221
	FIG NO ::
	8-11



ENIEGH	
ENGINEERING, INC.	
505 ELKTON DRIVE	
COLORADO SPRINGS, COLORADO 809	07

LABOF RESUL	RATORY T _TS	EST	
DATE	CHECKED:	h	11/2/20

JOB NO
202221
EIG NO 1

-12-

 20
 46.7%

 40
 32.0%

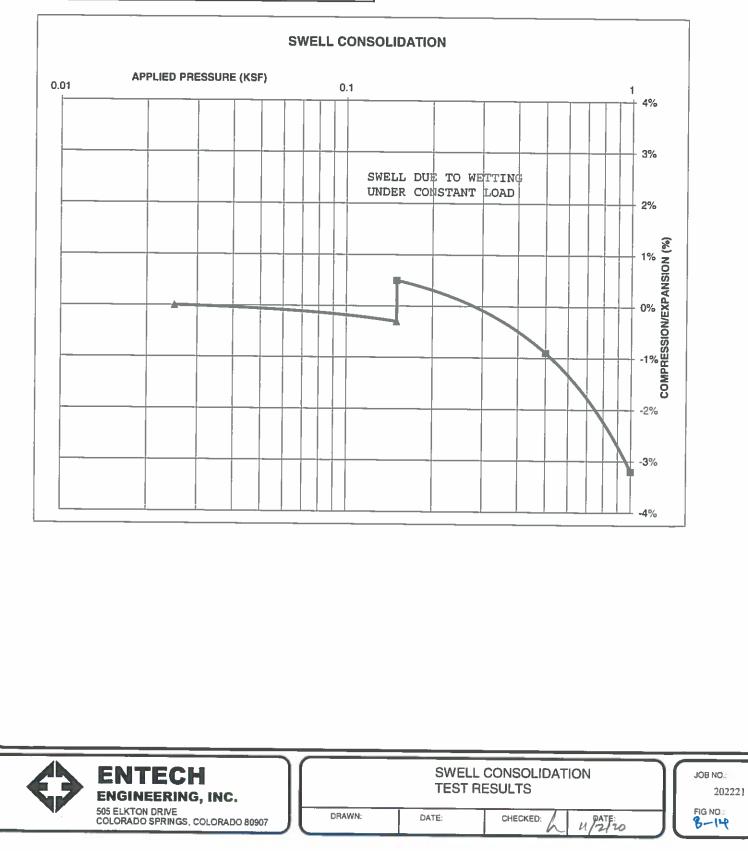
 100
 18.2%

 200
 13.6%

Swell Moisture at start Moisture at finish Moisture increase Initial dry density (pcf) Swell (psf)

ENTECH	
ENGINEERING, INC.	
05 ELKTON DRIVE	
COLORADO SPRINGS, COLORADO 80907	

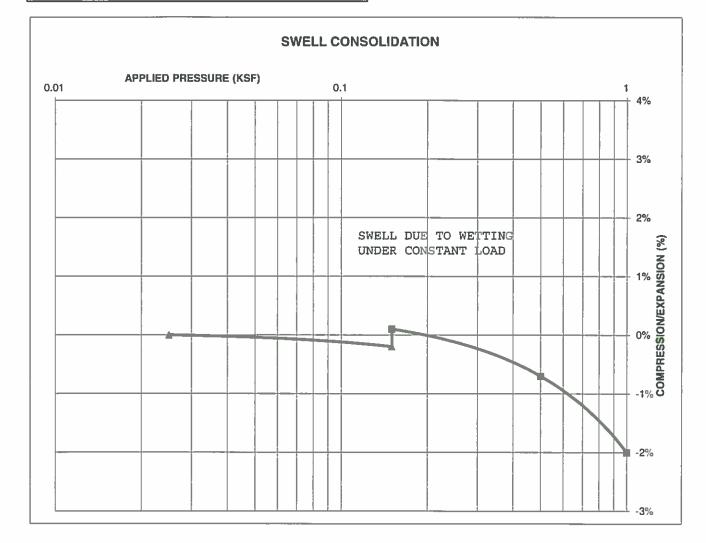
DRAWN:


 LABOI RESU	RATORY TI	EST	
DATE:	CHECKED:	h	DATE:

JUB NU.
202221
FIG NO.
2 _1

CONSOLIDATION TEST RESULTS

TEST BORING #	1	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	1
NATURAL UNIT DRY	WEIGH	HT (PCF)	123
NATURAL MOISTUR	E CONT	TENT (11.1%
SWELL/CONSOLIDA	TION (%	%)	0.8%


JOB NO.	202221
CLIENT	TECH CONSTRACTORS
PROJECT	ESTATES AT ROLLING HILLS

CONSOLIDATION TEST RESULTS

TEST BORING #	6	DEPTH(ft)	5	
DESCRIPTION	SC	SOIL TYPE	2	
NATURAL UNIT DRY	WEIG	HT (PCF)	119	
NATURAL MOISTUR	E CON	TENT	9.4%	
SWELL/CONSOLIDA	TION (%)	0.3%	

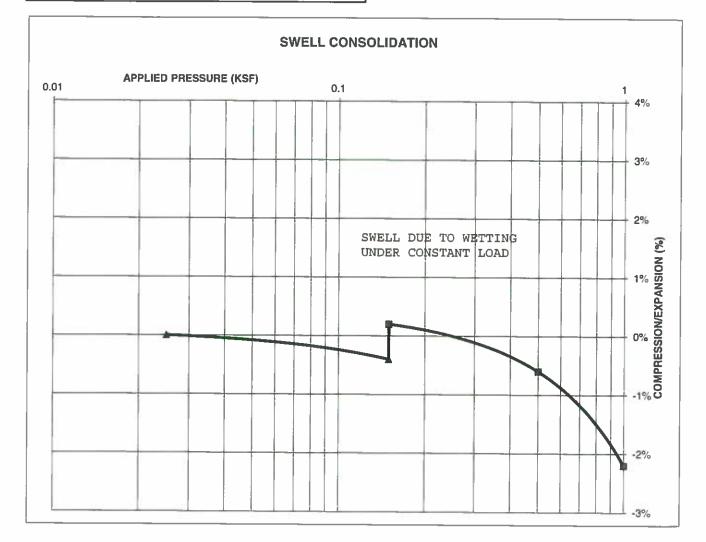
JOB NO.	202221
CLIENT	TECH CONSTRACTORS
PROJECT	ESTATES AT ROLLING HILLS

 ENTECH
 SWELL CONSOLIDATION

 ENGINEERING, INC.
 TEST RESULTS

 505 ELKTON DRIVE
 DRAWN:

 DRAWN:
 DATE:


 CHECKED:
 II

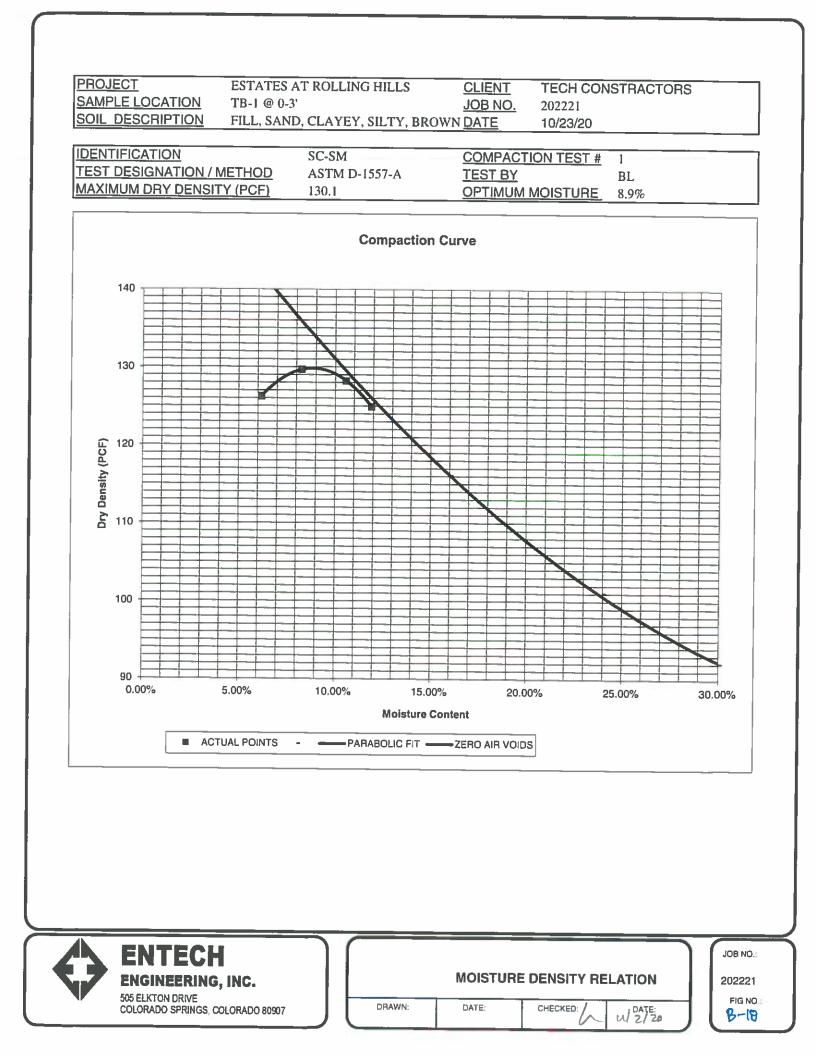
 III
 III

CONSOLIDATION TEST RESULTS

TEST BORING #	5	DEPTH(ft)	1-2
DESCRIPTION	SC	SOIL TYPE	1
NATURAL UNIT DRY	WEIGH	IT (PCF)	111
NATURAL MOISTUR	E CON ⁻	TENT	5.7%
SWELL/CONSOLIDA	TION (9	6)	0.6%

JOB NO.	202221
CLIENT	TECH CONSTRACTORS
PROJECT	ESTATES AT ROLLING HILLS

505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907 DRAWN: DATE: CHECKED: DATE: N/2/20	ENTECH ENGINEERING, INC.			- CONSOLIDATION RESULTS	JOB NO.: 0 202221
	505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	DRAWN:	DATE:	CHECKED: M DATE:	FIG NO


CLIENT	TECH CONSTRACTORS	JOB NO.	202221
PROJECT	ESTATES AT ROLLING HILLS	DATE	10/23/2020
LOCATION	ESTATES AT ROLLING HILLS	TEST BY	BL

BORING NUMBER	DEPTH, (ft)	SOIL TYPE NUMBER	UNIFIED CLASSIFICATION	WATER SOLUBLE SULFATE, (wt%)
TB-3	1-2	11	SM-SW	0.00
TB-5	10	2	SM	<0.01
TB-6	1-2	11	SM	<0.01
TB-6	5	2	sc	<0.01

QC BLANK PASS

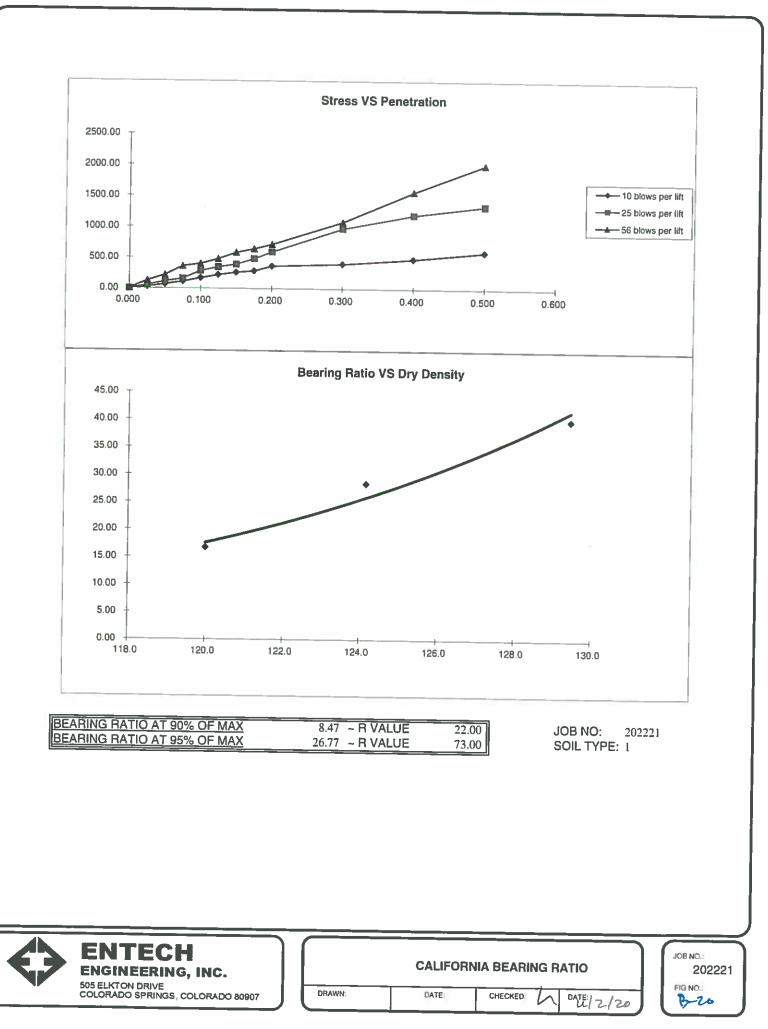
ſ		DATODY TEAT	JOB NO
		RATORY TEST ATE RESULTS	202221
DRAWN:	DATE		FIG NO.:
DRAWIN:	DATE	CHECKED: h U/2/20	8-17

CBR TEST LOAD DATA

CBR TEST LOAD DATA	PISTON		JOB NO: CLIENT: PROJECT:	202221 TECH CONS ESTATES A	TRACTORS	115
DIAMETER (cm)	AREA (in ²)		SOIL TYPE:			
4.958	2.993					
	10 BLOWS		25 BLOWS		56 BLOWS	
PENETRATION	MOLD #	-	MOLD #	2	MOLD #	3
DEPTH	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS	LOAD(LBS)	STRESS
(INCHES)	(LBS)	(PSI)	(LBS)	(PSI)	(LBS)	(PSI)
0.000	0	0.00	0	0.00	0	0.00
0.025	81	27.07	158	52.80	374	124.98
0.050	197	65.83	339	113.28	652	217.88
0.075	334	111.61	474	158.40	1077	359.90
0.100	499	166,75	849	283.71	1193	398.66
0.125	664	221.89	1039	347.20	1432	478.53
0.150	782	261.32	1172	391.64	1743	582.45
0.175	858	286.72	1447	483.54	1919	641.27
0.200	1087	363.24	1779	594.48	2140	715.12
0.300	1202	401.67	2914	973.76	3225	1077.69
0.400	1452	485.21	3580	1196.32	4691	1567.58
0.500	1786	596.82	4014	1341.35	6000	2005.01

FINAL MOISTURE CONTENT

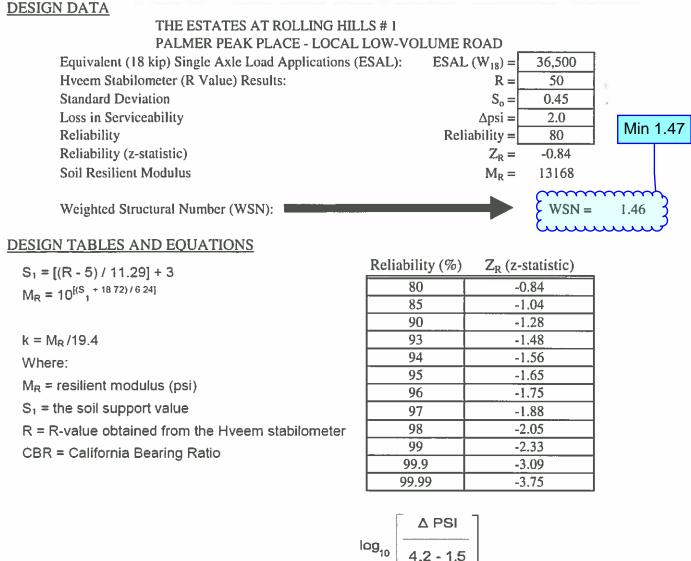
	MOLD #	t	MOLD #	2	MOLD #	3
CAN #		A-166		A-7		A-51
WT. CAN		239.12		237.71		150.08
WT. CAN+WET		746.42		974.4		728.11
WT. CAN+DRY		680.44		898.12		678.74
WT. H20		65.98		76.28		49.37
		441.32		660.41		528.66
MOISTURE CONTENT		14.95%		11.55%		9.34%
WET DENSITY (PCF) DRY DENSITY (PCF)		130.7		135.2		141.0
DHT DENSITT (PCF)		120.0		124.2		129.5
BEARING RATIO		16.67				
		10.07		28.37		39.87
90% OF DRY DENSITY	117.1					
95% OF DRY DENSITY	123.6					
BEARING RATIO AT 90% OF MAX		8.47	- R VALUE	22		
BEARING RATIO AT 95% OF MAX			- R VALUE	73		


DRAWN:

	1
ENTECH	
ENGINEERING, INC.	ł
505 ELKTON DRIVE COLORADO SPRINGS, COLORADO 80907	

ſ	JOB NO.
	202221
L	FIG NO.:
	8-19

DATE:



APPENDIX C: Pavement Design Calculations

.

.

FLEXIBLE PAVEMENT DESIGN

$$\log_{10}W_{18} = Z_R^* S_0 + 9.36^* \log_{10}(SN+1) - 0.20 +$$

Left Right

4.56

4.56

Difference

0.0

$$0.40 + \frac{1094}{(SN+1)^{5.19}}$$

+ 2.32*log₁₀M_R- 8.07

DESIGN CALCULATIONS

DESIGN DATA

THE ESTATES AT ROLLING HILLS # 1			
PALMER PEAK PLACE - LOCAL LOW-VOLUME ROAD			
Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	36,500	
Hveem Stabilometer (R Value) Results:	R =	50	
Weighted Structural Number (WSN):	WSN =	1.46	

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 3.3$ inches of Full Depth Asphalt Use 4.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 1.3$ inches of Aggregate Base Course, use 4.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 4.0 inches of Aggregate Base Course, or
- 2. 4.0 inches of Full Depth Asphalt

DESIGN CALCULATIONS

CEMENT TREATED SECTIONS DESIGN DATA: THE ESTATES AT ROLLING HILLS # 1 PALMER PEAK PLACE - LOCAL LOW-VOLUME ROAD

Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	36,500
Hveem Stabilometer (R Value) Results:	R =	50
Weighted Structural Number (WSN):	WSN =	1.46

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt

 $C_2 = 0.11$ Strength Coefficient - Cement Treated Subgrade.

D₁ = Depth of Asphalt (inches)D₂ = Depth of Cement Treated Subgrade (inches)

FOR FULL DEPTH ASPHALT SECTION - (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 3.3$ inches of Full Depth Asphalt Use 4.0 inches Full Depth

FOR ASPHALT + CEMENT TREATED SUBGRADE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = -2.7$ inches Use 8.0 inches of Cement Treated Subgrade.

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8 inches of Cement Treated Subgrade.
- 2. 4.0 inches of Full Depth Asphalt

FLEXIBLE PAVEMENT DESIGN

DESIGN DATA

THE ESTATES AT ROLLING HILLS # 1 SUNRISE RIDGE - LOCAL RESIDENTIAL ROAD Equivalent (18 kip) Single Axle Load Applications (ESAL): $ESAL(W_{18}) =$ 292,000 Hveem Stabilometer (R Value) Results: **R** = 50 Standard Deviation $S_0 =$ 0.45 Loss in Serviceability $\Delta psi =$ 2.0 Reliability = 80 Reliability Reliability (z-statistic) -0.84 $Z_R =$ Soil Resilient Modulus $M_R =$ 13168 2.10 🗸 Weighted Structural Number (WSN): WSN =DESIGN TABLES AND EQUATIONS Reliability (%) Z_R (z-statistic) $S_1 = [(R - 5) / 11.29] + 3$ $M_R = 10^{[(S_1 + 18.72)/6.24]}$ 80 -0.84 85 -1.04 90 -1.28 93 -1.48 $k = M_{R}/19.4$ 94 -1.56 Where: 95 -1.65 M_R = resilient modulus (psi) 96 -1.75 S₁ = the soil support value 97 -1.88 -2.05 98 R = R-value obtained from the Hveem stabilometer 99 -2.33 CBR = California Bearing Ratio 99.9 -3.09 99.99 -3.75

 $\log_{10}W_{10} = Z_{R}^{*}S_{O}^{+} 9.36^{*}\log_{10}(SN+1) - 0.20 + ---$

$$\log_{10} \left[\frac{\Delta PSI}{4.2 - 1.5} \right]$$

$$0.40 + \frac{1094}{(SN+1)^{5.19}}$$

+ 2.32*log₁₀M_R- 8.07

Job No. 202221

Fig. No. C-4

Left	Right	Difference
5.47	5.47	0.0

DESIGN CALCULATIONS

DESIGN DATA

THE ESTATES AT ROLLING HILLS # 1		
SUNRISE RIDGE - LOCAL RESIDENTIAL ROAD		
Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	292,000
Hveem Stabilometer (R Value) Results:	R =	50
Weighted Structural Number (WSN):	WSN =	2.09

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 4.7$ inches of Full Depth Asphalt Use 5.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 3 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 7.0$ inches of Aggregate Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 3.0 inches of Asphalt + 8.0 inches of Aggregate Base Course, or
- 2. 5.0 inches of Full Depth Asphalt

DESIGN CALCULATIONS

CEMENT TREATED SECTIONS DESIGN DATA: THE ESTATES AT ROLLING HILLS # 1 SUNRISE RIDGE - LOCAL RESIDENTIAL ROAD

Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	292,000
Hveem Stabilometer (R Value) Results:	R =	50
Weighted Structural Number (WSN):	WSN =	2.09

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

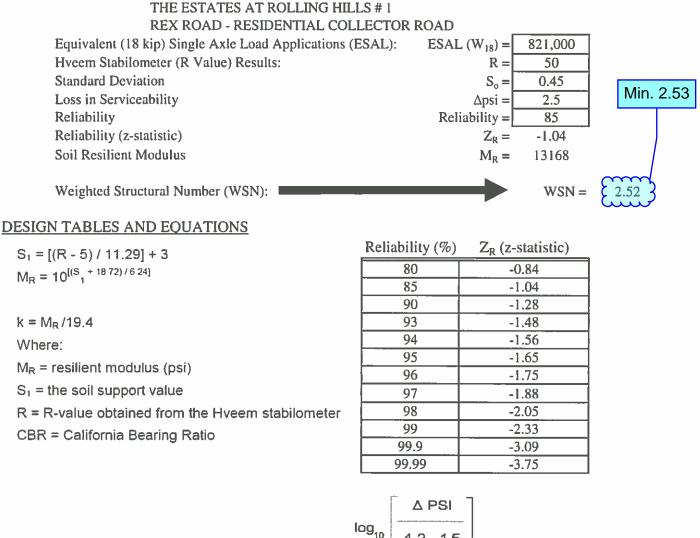
 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Cement Treated Subgrade.

D₁ = Depth of Asphalt (inches)D₂ = Depth of Cement Treated Subgrade (inches)

FOR FULL DEPTH ASPHALT SECTION - (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 4.8$ inches of Full Depth Asphalt Use 5.0 inches Full Depth

FOR ASPHALT + CEMENT TREATED SUBGRADE SECTION


Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 3.0$ inches Use 8.0 inches of Cement Treated Subgrade.

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8 inches of Cement Treated Subgrade.
- 2. 5.0 inches of Full Depth Asphalt

FLEXIBLE PAVEMENT DESIGN

$$0.40 + \frac{1094}{(SN+1)^{5.19}}$$

+ 2.32*log₁₀M_R- 8.07

Left	Right	Difference
5.91	5.91	0.0

DESIGN CALCULATIONS

DESIGN DATA

THE ESTATES AT ROLLING HILLS # 1		
REX ROAD - RESIDENTIAL COLLECTOR ROAD		
Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	821,000
Hveem Stabilometer (R Value) Results:	R =	50
Weighted Structural Number (WSN):	WSN =	2.54

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Aggregate Base Course

 D_1 = Depth of Asphalt (inches) D_2 = Depth of Base Course (inches)

FOR FULL DEPTH ASPHALT SECTION (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 5.8$ inches of Full Depth Asphalt Use 6.0 inches Full Depth

FOR ASPHALT + AGGREGATE BASE COURSE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 7.1$ inches of Aggregate Base Course, use 8.0 inches

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 8.0 inches of Aggregate Base Course, or
- 2. 6.0 inches of Full Depth Asphalt

DESIGN CALCULATIONS

CEMENT TREATED SECTIONS DESIGN DATA: THE ESTATES AT ROLLING HILLS # 1 SUNRISE RIDGE - RESIDENTIAL COLLECTOR ROAD

Equivalent (18 kip) Single Axle Load Applications (ESAL):	ESAL =	821,000
Hveem Stabilometer (R Value) Results:	R =	50
Weighted Structural Number (WSN):	WSN =	2.54

DESIGN EQUATION

 $WSN = C_1D_1 + C_2D_2$

 $C_1 = 0.44$ Strength Coefficient - Hot Bituminous Asphalt $C_2 = 0.11$ Strength Coefficient - Cement Treated Subgrade.

D₁ = Depth of Asphalt (inches)D₂ = Depth of Cement Treated Subgrade (inches)

FOR FULL DEPTH ASPHALT SECTION - (CURRENTLY NOT ALLOWED)

 $D_1 = (WSN)/C_1 = 5.8$ inches of Full Depth Asphalt Use 6.0 inches Full Depth

FOR ASPHALT + CEMENT TREATED SUBGRADE SECTION

Asphalt Thickness (t) = 4 inches $D_2 = ((WSN) - (t)(C_1))/C_2 = 7.1$ inches Use 10.0 inches of Cement Treated Subgrade.

RECOMMENDED ALTERNATIVES

- 1. 4.0 inches of Asphalt + 10 inches of Cement Treated Subgrade.
- 2. 6.0 inches of Full Depth Asphalt

November 30, 2020

Tech Contractors 3575 Kenyon Street, Suite 200 San Diego, California 92110

Attn: Raul Guzman

- Re: Cement Stabilized Subgrade Results Laboratory Testing The Estate at Rolling Hills Ranch, Filing No. 1 El Paso County, Colorado
- Ref: Pavement Recommendations Report by Entech Engineering, Inc., dated November 24, 2020, Entech Job No. 200221

Dear Mr. Guzman:

As requested, personnel of Entech Engineering, Inc. have performed strength testing on two sets of three soil/cement composite samples for the above reference project. Testing was performed on soil samples prepared with 2% and 4% Portland Cement Type 1/2, from Martin Marietta, near Pueblo, Colorado.

A minimum compression strength of 160 psi is recommended for cement stabilized subgrade. The 5-day average strength values of the 2% mix was 204 psi. The 5-day average strength values of the 4% mix was 243 psi. A 2% mix is recommended based on the laboratory test results. A summary of the testing results is attached.

Pending the results of the field density testing, microfracturing of the stabilized subgrade will likely be required. Soil strengths in excess 200 psi require microfracturing.

We trust this has provided you with the information you required. if you have any questions or need additional information, please do not hesitate to contact us.

Respectfully Submitted,

ENTECH ENGINEERING, INC.

Daniel P. Stegman

DPS/bs

Encl.

Entech Job No. 202221 AAprojects/2020/202221 - cssr — lab

505 ELKTON DRIVE COLORADO SPRINGS, CO 80907 PHONE (719) 531-5599 FAX (719) 531-5238

SUMMARY OF CTS TEST RESULTS LAB TESTING

CLIENT TECH CONSTRACTORS		JOB	NO 202221
PROJECT ESTATES AT ROLLING HILLS		DAT	E 11/24/20
FIELD SAMPLE ID	TB-1 @ 0-3'	BY	BL
SOIL ADDITIVE	TYPE I/II CEMENT	_	

ADDITIVE %	WATER %	DENSITY (dry)	AGE (days)	STRENGTH (psi)
2	7.9	124.6	5	184
2	7.9	124.8	5	219
2	7.9	124.8	5	208
			AVERAGE:	204
4	7.9	124.6	5	232
4	7.9	124.7	5	240
4	7.9	124.6	5	257
			AVERAGE:	243

CURING METHOD

100° HUMIDIFIED OVEN