Ga趡oway

FINAL DRAINAGE REPORT

GRANDVIEW RESERVE FILING NO. 1

El Paso County, Colorado

PREPARED FOR:
D.R. Horton

9555 S. Kingston Court
Englewood, CO

PREPARED BY:
Galloway \& Company, Inc.
1155 Kelly Johnson Blvd., Suite 305
Colorado Springs, CO 80920
DATE:
October 14, 2022

SF2311
PCD Filing No.: Dincrover

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Treven Edwards, PE \#60124
Date
For and on behalf of Galloway \& Company, Inc.

DEVELOPER'S CERTIFICATION

I, The developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By: \qquad
Date
Address: D.R. Horton 9555 S. Kingston Court Englewood, CO

EL PASO COUNTY CERTIFICATION

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E.
Intorim County Engineer/ECM Administrator
Conditions:

TABLE OF CONTENTS

I. Purpose 4
II. General Description 4
III. Drainage Criteria 4
IV. Existing Drainage Conditions 5
V. Four Step Process 8

1. Employ Runoff Reduction Practices 8
2. Stabilize Channels 8
3. Provide Water Quality Capture Volume (WQCV) 8
4. Consider Need for Industrial and Commercial BMPs 8
VI. Interim Drainage Conditions Error! Bookmark not defined.
VII. Proposed Drainage Conditions 8
VIII. Storm Sewer System. 11
IX. Proposed Water Quality Detention Ponds 12
X. Proposed Channel Improvements 12
XI. Maintenance 13
XII. Wetlands Mitigation 13
XIII. Floodplain Statement 13
XIV. Drainage Fees \& Maintenance 13
XV. Conclusion 13
XVI. References 14
Appendices:
A. Exhibits and Figures
B. MDDP \& DBPS Sheet References
C. Hydrologic Computations
D. Hydraulic Computations
E. Water Quality Computations
F. Drainage Maps \& Water Quality Plan

I. Purpose

The purpose of this Final Drainage Report is to identify on and offsite drainage patterns, locate and identify tributary or downstream drainage features and facilities that impact the site, and to identify which types of drainage facilities will be needed and where they will be located. This report will remain in general compliance with the approved MDDP prepared by HR Green, dated November 2020 and Preliminary Drainage Report (PDR) prepared by Galloway \& Company, Inc., dated September 09, 2022. Verify the use of the words project and site throughout. At

II. General Description

 times it seems like these words are specific to filing 1 and sometimes they reference the entire Grandview project.The project is a single-family residential development located in the Falcon area of El Paso County, Colorado. The site is located in a portion of the South half of Section 21, the North half of Section 28, Township 12 South, Range 64 West of the $6^{\text {th }}$ Principal Meridian, County of El Paso, State of Colorado. The subject property is located immediately east from Eastonville Road to the west, which was studied separately in the "Eastonville Road Final Drainage Report", by HR Green, September 2022 (E-FDR). The project site is bounded by undeveloped land proposed as future development to the east, and undeveloped land within the Waterbury Development to the south. A Vicinity Map is included in

Appendix A.

This final drainage report is the basis for the drainage facility design in conformance with the previously approved MDDP for the siteprepared by HR Green, "Grandview Reserve Master Development Drainage Plan), HR Green, November 2020 (MDDP) and the approved preliminary drainage report, "Preliminary Drainzge Report - Grandview Reserve Filing No. 1", Galloway \& Company, Inc., September 09, 2022 (PDR). The site consists of approximately 37.564 acres and includes 125 dwelling units.

The existing soil types within the proposed site as determined by the NRCSWeb Soil Survey for El Paso County Area consist of Columbine gravelly sandy loam (hydrologic soil group A) and Stapleton sandy loam (hydrologic soil group B). See the soils map included in Appendix A.

III. Drainage Criteria

Hydrology calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/EI Paso County Drainage Criteria Manual as revised in May 2014.

The drainage calculations were based on the criteria manual Figure 6-5 and IDF equations to determine the intensity and are listed in Table 1 below.

Table 1 - Precipitation Data

Retum Period	One Hour Depth (in).	Intensity (in/ hr)
5-year	1.50	5.17
100-year	2.52	8.68

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:
$Q=C I A$
Where:

> Q = Peak Discharge (cfs)
> C = Runoff Coefficient
> I = Runoff intensity (inches/hour)
> A = Drainage area (acres)

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the drainage criteria manual (Table 6-6). Composite percent impervious and C values were calculated using the residential, streets, roofs, and lawns coefficients found in Table 6-6 of the manual.
ye this section inage match maps. ection on age and ok to previous

The 100-year event was used as the major storm event. The 5 -year event was used as the minor event. The UD-Inlets v5.01 spreadsheet was utilized for the sizing of the proposed sump inlets.

The UD-Detention v4.04 spreadsheet was utilized for the design of the proposed on-site water quality pohds, Ponds A, B, C, D, E, and Eastonville Pond.

Only include ponds which are being built with Filing 1

IV. Existing Drainage Conditions

This section only needs to discuss basins within Filing 1 or directly
The site is contained fully within one major drain releasing onto Filing 1. All other basins can be listed and referenced tributary to Black Squirrel Creek. The site genere back to PDR and include calcs in appendix under reference materials. slope of 2% outside of the channel. The rational method was used to analyze the individual basins within the site because their size permits it.

Following the preliminary drainage report (PDR), the "existing" condition for this FDR will be after the preliminary / interim grading on the site has taken place.
(overlot)
In the interim condition, overland grading operations will have taken place within the Grandview Reserve Subdivision in preparation for the ultimate proposed condition. While this activity is taking place within the proposed subdivision, no activity is anticipated west of Eastonville Road. The proposed development lies completely within the Gieck Ranch Drainage Basin and consists of six (6) larger basins (EA, A, B, C, D, \& E) which have been broken down into thirteen (13) smaller sub-basins for the Interim Condition. Adjacent Off-site Basins (OS) were also analyzed in the interim condition and have been broken down into five (5) smaller sub-basins. Site runoff will be collected via swales and diverted to one of the eleven proposed temporary sediment basins. All necessary calculations can be found within the appendices of this report.

While the existing upstream tributary analysis (the areas west of Eastonville Road) was performed as part of the E-FDR (including basins EX1, EX2, EX3, EX4, EX5, EX6, and EX7) in the Existing Sub-basin Description, additional analysis was conducted for all of the proposed Eastonville Road in conjunction with the offsite upstream tributary areas in the Proposed Sub-basin Description. This analysis consisted of basins OS1, OS2, OS3, OS4, OS5, OS6, OS7, EA1, EA2, EA3, EA4, EA5. EA6, EA7, EA8, EA9, EA10, EA11, and EA12. See the E-FDR in Appendix B for reference.

Verify 11 TSBs are used. I could not find 11 TSBs on the GEC Plans. If less than 11 are specific to filing 1 clarify this.
Galloway \& Company, Inc.

In addition to the upstream tributary analysis, the E-FDR also addressed the drainage analysis for all of Eastonville Road.

The proposed institutional use (Sub-basin A-1) area flows have been included in this analysis at a preliminary level only. The Sub-basin is located on the northwest corner of the site, East of Eastonville Rd. \& south of the proposed extension of Rex Rd. In the interim condition, Sub-basin A-1 encompasses an area of 19.96 acres and interim developed runoff (imperviousness of 2.0%) for the site has been calculated to be $Q_{5}=5.5 \mathrm{cfs}, Q_{100}=39.4 \mathrm{cfs}$. Runoff from this basin will sheet flow from the northwest to the southeast, intercepted by a proposed 4' bottom x 2' deep trapezoidal swale (Swale A-1). The interim runoff will be routed to the existing 100-year FEMA floodplain. Water quality and detention will be addressed with the future development of the institutional site.

Basin TSB-A1 (18.33 AC, $\mathrm{Q}_{5}=5.1 \mathrm{cfs}, \mathrm{Q}_{100}=36.7 \mathrm{cfs}$): Located at the northern portion of the site, Basin TSB-A1 consists entirely of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the southeast where it is intercepted by proposed TSB-A1. From there, treated runoff enters a proposed 4' bottom x 2' deep trapezoidal swale (Swale A-1). The interim runoff will be routed to the existing 100-year FEMA floodplain.

Design Point 1 ($\left.Q_{5}=13.1 \mathrm{cfs}, Q_{100}=44.7 \mathrm{cfs}\right)$: Located at the northern portion of the site, this design point accounts for the total combined flows from Basins OS4 \& TSB-A1. Flows from this design point are conveyed in a proposed 4' bottom x 2' deep trapezoidal swale (Swale A-1) that conveys the flow southeast to the existing 100-year FEMA floodplain.

Design Point $2\left(Q_{5}=18.7 \mathrm{cfs}, Q_{100}=84.1 \mathrm{cfs}\right)$: Located at the northern portion of the site and to the southeast of Design Point 1, this design point accounts for the total combined flows from Basins OS4, A1, \& TSB-A1. Flows from this design point are conveyed downstream within the existing 100-year FEMA floodplain.

Basin TSB-A2 (4.51 AC, $Q_{5}=1.4 \mathrm{cfs}, Q_{100}=10.1 \mathrm{cfs}$): Located at the northern portion of the site, Basin TSB-A2 consists of future residential lots, future roadways, and future amenity facilities. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the southeast where it is intercepted by proposed TSB-A2 at Design Point 4. From there, treated runoff exits the TSB and sheet flows to the existing 100-year FEMA floodplain.

Basin TSB-A3 (9.49 AC, $\left.\mathrm{Q}_{5}=2.7 \mathrm{cfs}, \mathrm{Q}_{100}=19.5 \mathrm{cfs}\right)$: Located at the north-central portion of the site, Basin TSB-A3 consists of future residential lots, future roadways, and future amenity facilities. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the southeast where it is intercepted by proposed TSB-A3 at Design Point 5. From there, treated runoff exits the TSB and sheet flows to the existing 100-year FEMA floodplain.

Basin TSB-B1 (15.73 AC, Q $\mathrm{Q}_{5}=4.6 \mathrm{cfs}, \mathrm{Q}_{100}=32.4 \mathrm{cfs}$): Located at the northwestern portion of the site, Basin TSB-B1 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the south where it is intercepted by proposed TSB-B1 at Design Point 6. From there, treated runoff exits the TSB and sheet flows downstream to TSB-B3.

Basin TSB-B2 (5.12 AC, $\mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=11.4 \mathrm{cfs}$): Located at the central portion of the site, Basin TSB-B2 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the southeast where it is intercepted by proposed TSB-B2 at Design Point 7. From there, treated runoff exits the TSB and sheet flows downstream to TSB-B3.

Basin TSB-B3 (9.91 AC, $Q_{5}=3.0 \mathrm{cfs}, \mathrm{Q}_{100}=21.2 \mathrm{cfs}$): Located at the central portion of the site, Basin TSB-B3 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the south where it is intercepted by proposed TSB-B3 at Design Point 8. From there, treated runoff exits the TSB and sheet flows downstream to the existing Geick Ranch Tributary-1 / Channel A (E-FDR).

Design Point $8\left(Q_{5}=9.1 .7 \mathrm{cfs}, Q_{100}=65.0 \mathrm{cfs}\right)$: Located at the south-central portion of the site and to the south of Design Point 7, this design point accounts for the total combined flows from Basins TSB-B1, TSB-B2, and TSB-B3. Flows from this design point are conveyed downstream to the existing Geick Ranch Tributary-1 / Channel A (E-FDR).

Basin TSB-C1 (6.84 AC, $\mathrm{Q}_{5}=2.0 \mathrm{cfs}, \mathrm{Q}_{100}=13.8 \mathrm{cfs}$): Located at the eastern portion of the site, Basin TSB-C1 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the south where it is intercepted by proposed TSB-C1 at Design Point 9. From there, treated runoff exits the TSB and sheet flows downstream to TSB-C3 at Design Point 11.

Basin TSB-C2 (17.00 AC, Q $=4.8 \mathrm{cfs}, \mathrm{Q}_{100}=34.0 \mathrm{cfs}$): Located at the eastern portion of the site, Basin TSB-C2 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the south where it is intercepted by proposed TSB-C2 at Design Point 10. From there, treated runoff exits the TSB and sheet flows downstream to TSB-C3 at Design Point 11.

Basin TSB-C3 (18.56.00 AC, $\mathrm{Q}_{5}=5.1 \mathrm{cfs}, \mathrm{Q}_{100}=36.4 \mathrm{cfs}$): Located at the southeastern portion of the site, Basin TSB-C3 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2%). Runoff from this basin will sheet flow to the southeast where it is intercepted by proposed TSB-C3 at Design Point 11. From there, treated runoff exits the TSB and sheet flows downstream to the existing 100-year FEMA floodplain.

Design Point 11 ($Q_{5}=11.8 \mathrm{cfs}, Q_{100}=84.3 \mathrm{cfs}$): Located at the southeastern portion of the site and to the southeast of Design Point 1, this design point accounts for the total combined flows from Basins TSB-C1, TSB-C2, \& TSB-C3. Flows from this design point exit via sheet flow through the TSB proposed spillway and are conveyed downstream within the existing 100-year FEMA floodplain.

Basin TSB-D1 (10.86 AC, Q5 $=3.0$ cfs, $Q_{100}=21.1$ cfs): Located at the southwestern portion of the site, Basin TSB-D1 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the east where it is intercepted by proposed TSB-D1 at Design Point 12. From there, treated runoff exits the TSB and sheet flows downstream to the existing Geick Ranch Tributary-1 / Channel A (E-FDR).

Basin TSB-E1 (19.42 AC, $\mathrm{Q}_{5}=5.1 \mathrm{cfs}, \mathrm{Q}_{100}=36.2 \mathrm{cfs}$): Located at the southern portion of the site, Basin TSB-E1 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2\%). Runoff from this basin will sheet flow to the east where it is intercepted by proposed TSB-E1 at Design Point 13. From there, treated runoff exits the TSB and sheet flows downstream to the existing Geick Ranch Tributary-1 / Channel A (E-FDR).

V. Four Step Process

The Four Step Process is used to minimize the adverse impacts of urbanization and is a vital component of developing a balanced, sustainable project. Below identifies the approach to the four-step process:

1. Employ Runoff Reduction Practices

This step uses low impact development (LID) practices to reduce runoff at the source. Generally, rather than creating point discharges that are directly connected to impervious areas runoff is routed through pervious areas to promote infiltration. The Impervious Reduction Factor (IRF) method was used and calculations can be found in Appendix E. Basin D-7a is treated with runoff reduction. Discuss the methodology and provide calculations in support of the

2. Stabilize Channels

 runoff reduction credited for treating that basin.This step implements stabilization to channels to accommodate developed flows while protecting infrastructure and controlling sediment loading from erosion in the drainageways. Erosion protection in the form of riprap pads at all outfall points to the channel to prevent scouring of the channel from point discharges. The existing channel analysis and design for the Main Stem Tributary \#2 (MST) is to be completed by others and a report for the channel improvements will be submitted for review separately.

3. Provide Water Quality Capture Volume (WQCV)

This step utilizes formalized water quality capture volume to slow the release of runoff from the site. The EURV volume will release in 72 hours, while the WQCV will release in no less than 40 hours. Onsite water quality control volume detention ponds will provide water quality treatment for all of the developed areas, prior to the runoff being released into either of the major drainage ways. Refer to WQCV Plan in Appendix F.

4. Consider Need for Industrial and Commercial BMPs

As this project is all residential development and no commercial or industrial development is proposed, there will be no need for any specialized BMPs which would be associated with an industrial or commercial site.

VI. Proposed Drainage Conditions

The proposed development lies completely within the Gieck Ranch Drainage Basin and consists of two (2) larger basins (D \& E) which have been broken down into sixteen (16) smaller sub-basins. Adjacent Off-site Basins (OS) were analyzed as part of the E-FDR. Site runoff will be collected via inlets \& pipes and diverted to one of the two proposed full spectrum detention ponds. All necessary calculations can be found within the appendices of this report. It appears there are no off-site flows entering Filing 1. Include a statement addressing that.
According to the MDDP, there are twg major drainageways that run through the site. The Main Stem (MS) runs through the site conveying funoff from the northwest to the southeast. This drainageway is
referred to as Channel A within the E-FDR. Presently, this channel receives flows from two off-site basins, one from the west (west of Sub-basin OS-3 per the PDR and Basin B1 per the MDDP; $0.17 \mathrm{mi}^{2}, \mathrm{Q}_{5}= \pm 67$ cfs, $Q_{100}= \pm 413 \mathrm{cfs}$).

There are no proposed major channel improvements for MS (MDDP) / Channel A (E-FDR) associated with this development. The analysis for the channel was performed by HR Green (Grandview Reserve CLOMR Report, HR Green; April 2022).

The site will provide two (2) Full Spectrum Extended Detention Basins (EDBs). Ponds D \& E will discharge treated runoff at historic rates directly into either the MS (MDDP) / Channel A (E-FDR).

As has been mentioned previously, the site is proposed to have a land use of single family re Update location of basins The site will consist primarily of $1 / 8$ Acre lots, with some $1 / 4$ Acre and $1 / 3$ Acre lots, pubtic roc along with dedicated Tracts for amenity uses.

Basin D-1 (3.48 AC, $\mathrm{Q}_{5}=5.4 \mathrm{cfs}, \mathrm{Q}_{100}=12.7 \mathrm{cfs}$): Located on the southwest portion of the site, adjacent to Eastonville Road. This basin consists of residential lots and the west half of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 10' CDOT Type 'R' at-grade inlet, located on the west side of Kate Meadow Lane (DP D1), just south of the intersection of Kate Meadow Lane \& Farm Close Court. Flows will continue downstream to Design Point D3 within Kate Meadow Lane and further downstream to Design Point D7 within Farm Close Court.

Basin D-2 ($0.82 \mathrm{AC}, \mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.8 \mathrm{cfs}$): Located on the southwest portion of the site, this basin consists of residential lots and the eastern half of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 10' CDOT Type ' R ' flow by inlet, located on the east side of Kate Meadow Lane (DP D2), just south of the intersection of Kate Meadow Lane \& Farm Close Court. Flows will continue downstream to Design Point D3 within Kate Meadow Lane and further downstream to Design Point D7 within Farm Close Court.

Basin D-3 (3.67 AC, Q $=6.0$ cfs, Q $_{100}=14.0$ cfs): Located on the southwest portion of the site, this basin consists of residential lots and the western half of Farm Close Court. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type ' R ' inlet in sump conditions, located on the west side of Farm Close Court (DP D4), southeast of the intersection of Kate Meadow Lane \& Farm Close Court. Emergency overflows will overtop the crown and be routed downstream via an emergency overflow swale to the east which conveys runoff directly to Pond D.

Basin D-4 (1.82 AC, $\mathrm{Q}_{5}=3.4 \mathrm{cfs}, \mathrm{Q}_{100}=7.9 \mathrm{cfs}$): Located on the southwest portion of the site, this basin consists of residential lots and the eastern half of Farm Close Court. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 10' CDOT Type ' R ' inlet in sump conditions, located on the east side of Farm Close Court (DP D5), just southeast of the intersection of Kate Meadow Lane \& Farm Close Court. Emergency overflows will overtop curb \& gutter and be routed downstream via a graded swale within the maintenance access path to Pond D.

Basin D-5 (1.45 AC, Q5 = 1.9 cfs, Q100 = 5.9 cfs): Located on the southwest corner of the site, adjacent to the Main Stem channel. This basin consists partially of residential lots and the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will sheet flow directly to Pond D. Flows will then be
routed to the outlet structure (DP D9), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel.

Basin D-6 (1.53 AC, Q5 = 0.5 cfs, $\mathrm{Q}_{100}=3.8 \mathrm{cfs}$): Located on the southwest corner of the site, adjacent to the Main Stem channel. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will sheet flow directly to the Main Stem channel (MS).

Basin D-7a (0.26 AC, $Q_{5}=0.2 \mathrm{cfs}, Q_{100}=0.8 \mathrm{cfs}$): Located on the southwest corner of the site, adjacent to the Main Stem channel. This basin consists of the back portions of residential lots. Runoff from this basin will sheet flow directly to the Main Stem Channel. All roof drains (for lots 18-20) within this subbasin will be directed toward Farm Close Court, no impervious surfaces will be allowed within the rear lot setbacks and runoff reduction will be implemented within this sub-basin.

Basin D-7b (0.96 AC, $\mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.9 \mathrm{cfs}$): Located on the southwest corner of the site intercepted by Type D inle Basin $\mathrm{D}-7 \mathrm{~b}\left(0.96 \mathrm{AC}, \mathrm{Q}_{5}=1.6 \mathrm{cfs}, \mathrm{Q}_{100}=3.9 \mathrm{cfs}\right)$. Located on the southwest corner of the site, iat DP D8
to the Main Stem channel. This basin consists of the back portions of residential lots and a drainage swale (Swale D-7). Runoff from this basin will sheet flow from the residential lots, into the adjacent swale and will be routed directly to Pond D.
all of Brixham Dr per map
Basin E-1 (4.91 AC, $\left.Q_{5}=7.2 \mathrm{cfs}, Q_{100}=19.1 \mathrm{cfs}\right)$ Located on the southern portion of the site, this basin consists of residential lots, the southern half of Brixham Drive, Starcross Coult, and the southern half of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located approximately 150 -feet to the northeast of the intersection between Kate Meadow Lane and Starchoss Court (DP F1) Bypass flows are conveyed downstream via curb \& gutter to DP E4.

Basin E-2 (4.06 AC, $\left.\mathrm{Q}_{5}=8.0 \mathrm{cfs}, \mathrm{Q}_{100}=18.6 \mathrm{cfs}\right)$: Located on the southern portion of the stue, ulis Nasill consists of residential lots, a small portion of Mill Yard Circle, and the north half of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located approximately 150 -feet to the northeast of the intersection between Kate Meadow Lane and Starcross Court (DP E2). Bypass flows are conveyed downstream via curb \& gutter to DP E4.

Basin E-3a (2.75 AC, Q $\mathbf{Q}_{5}=5.4$ cfs, $Q_{100}=12.6$ cfs): Located on the southern portion of the site, this basin consists of residential lots the western and southern half of Mill Yard Circle as well as a portion of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located just southeast from the intersection between Kate Meadow Lane and Mill Yard Circle (DP E4). Bypass flows are conveyed downstream via curb \& gutter to DP E7.

Basin E-3b (2.17 AC, $\mathrm{Q}_{5}=3.7 \mathrm{cfs}, \mathrm{Q}_{100}=8.5 \mathrm{cfs}$): Located on the southern portion of the site, this basin consists of the rear portion of residential lots along Kate Meadow Lane and full residential lots and the western half of Mill Yard Circle near the cul-de-sac. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located just northeast from the cul-de-sac of Mill Yard Circle (DP E7). Emergency overflows will overtop the crown and be routed downstream via an emergency overflow swale to the southeast which conveys runoff directly to Pond E via a graded emergency overflow swale.

Basin E-4a (4.68 AC, $Q_{5}=6.9$ cfs, $\left.Q_{100}=16.1 \mathrm{cfs}\right)$: Located on the southern portion of the site, this basin consists of residential lots and the northern and eastern half of Mill Yard Circle. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located just southeast from the intersection between Kate Meadow Lane and Mill Yard Circle (DP E5). Bypass flows are conveyed downstream via curb \& gutter to DP E9.

Basin E-4b ($1.60 \mathrm{AC}, \mathrm{Q}_{5}=2.7 \mathrm{cfs}, \mathrm{Q}_{100}=6.3 \mathrm{cfs}$): Located on the southern portion of the site, this basin consists of residential lots and the eastern half of Mill Yard Circle near the cul-de-sac. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb \& gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located just southeast from the intersection between Kate Meadow Lane and Mill Yard Circle (DP E5). Emergency overflows will overtop the curb and be routed downstream via an emergency overflow swale to the southeast which conveys runoff directly to Pond E via a graded emergency overflow swale.

DP E9
Basin E-5 (1.13 AC, $\left.\mathrm{Q}_{5}=0.4 \mathrm{cfs}, \mathrm{Q}_{100}=3.0 \mathrm{cfs}\right)$: Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to Pond E . Flows will then be routed to the outlet structure (DP E10), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel.

Basin E-6 (2.00 AC, $\mathrm{Q}_{5}=0.7 \mathrm{cfs}, \mathrm{Q}_{100}=4.8 \mathrm{cfs}$): Located on the southeast corner of the site, adjacent to the Main Stem channel. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to the Main Stem channel (MS) and offsite to the south.

VII. Storm Sewer System

Looks like flows will go east
into the Main Stem channel.

All development is anticipated to be urban and will include storm sewer \& street inlets. Storm sewers collect storm water runoff and convey the water to the water quality facilities prior to discharging. Storm sewer systems will be designed to the 100-year storm and checked with the 5 -year storm. Inlets will be placed at sump areas and intersections where street flow is larger than street capacity. UDFCD Inlet spreadsheet has been used to determine the size of all sump inlets.

There will be two (2) proposed storm systems within the site. Each of the two storm sewer systems will discharge storm water into its correlated WQCV pond.

Each system will consist of reinforced concrete pipe (RCP), CDOT Type ' R ' inlets, and storm sewer manholes.

Furthermore, there is one (1) proposed drainage swale that runs along the back of the residential lots in Basin D-7b. The swales were analyzed using the Bentley software FlowMaster to properly size a trapezoidal channel ($1^{\prime} \mathrm{W} \times 1.54^{\prime} \mathrm{D}$), to convey the 100 -year flows from the basin to corresponding outfall location (Pond D), while providing 1.0-ft of freeboard. The sizing calculations can be found in Appendix D.

This Final drainage report includes details concerning at-grade inlet locations, street capacity, storm sewer sizing, outlet protection and locations. The calculations can be found in Appendix D.

VIII. Proposed Water Quality Detention Ponds

Two (2) Full Spectrum Detention Ponds will be provided for the proposed site. Both of these ponds (Ponds D \& E) are private and will be maintained by the DISTRICT, once established. These detention ponds are proposed to be full spectrum and will provide water quality and detention. The WQCV and EURV release will be controlled with an orifice plate. The release rates for the WQCV and EURV will be 40 -hours and 72 -hours, respectively. The 100 -year volume will be controlled by orifice and/or restrictor plate and will be designed to release at or below the pre-development flow rate. Outlet structures, forebays, trickle channels, etc. will be designed with the final drainage report during final plat. The required FSD pond volumes are as described below:

Pond D: Located centrally on the site, just west of the Main Stem channel. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.244 Ac -Ft \& $0.666 \mathrm{Ac}-\mathrm{Ft}$, \uparrow respectively. The provided storage for the WQCV and EURV are $0.246 \mathrm{Ac}-\mathrm{Ft} \& 0.913 \mathrm{Ac}-\mathrm{F}$ The total required detention basin volume is 1.373 Ac - Ft . The totalprovidect detention basin storage is 1.373 Ac -Ft. \longleftarrow

Pond E: Located on the south side of the site, just west of the Marin Stem channel. This pond will discharge into the Main Stem channel. The required wolume WQCV and EURV/are 0.431 Ac -Ft \& 1.163 Ac-Ft, respectively. The provided storage for the WQCV and ELRV are 0.437 Ac -Ft \& $1.601 \mathrm{Ac}-\mathrm{Ft}$, respectively. The total requirect detention basin volume is 2.421 Ac -Ft. The total provided detention basin storage is $2.583 \mathrm{Ac}-\mathrm{Ft}$.

osed Channel Improvements

 Because this drainage report is specific to filing 1 tailor this text to filing 1. The Main Stem does not flow through the F1 site. It flows northwest to southeast along the northern boundary of filing 1. nuculunin to the MDDP, there are two major drainageways that run through the site. The Main Stem (MS) runs through the site conveying runoff from the northwest to the southeast. This drainageway is referred to as Channel A within the E-FDR. Presently, this channel receives flows from two off-site basins, one from the west (west of Sub-basin OS-3 per the PDR and Basin B1 per the MDDP; $0.17 \mathrm{mi}^{2}, \mathrm{Q}_{5}= \pm 67$ cfs, $\mathrm{Q}_{100}= \pm 413 \mathrm{cfs}$). . There are no proposed major channel improvements for MS as part of this project (to be determined with CDB-22-008). An analysis has been done for the Main Stem channel (MS)/with both existing and futtre condition flows as described within the Grandview Reserve CLOMR Report, HR Include name of Green; September 2021; revised April 2022 (CLOMR). All HEC-RAS modelling, velocities, shear, depths, etc. are included within the CLOMR, which can be found in Appendix D. Both scenarios, throughout the channel fall within the channel stability criteria.Was not included in appendix.
Please add with next submittal.
A majority of the developed runoff will be captured and conveyed to one of the corresponding water quality and detention facilities and release at or below historic levels. Some basins will release directly into the respective adjacent channels. These basins are contained within the backs of lots and will provide water quality through runoff reduction; impervious areas will not be permitted in the back of these lots and roof drains are to drain to the front. Therefore, there will be no adverse impact to downstream facilities. The analysis for drainageway (MS), offsite upstream tributary capture were performed by HR Green within the Grandview Reserve CLOMR Report, HR Green; September 2021; revised April 2022 (CLOMR) which has been submitted separately for review. A copy of this report is included in Appendix D.

Additional channel stabilization may be required for erosion control prevention measures, pending the channel design review with the County.
as part of this filing? Ensure all text in the drainage report is clear as to what work is part of filing 1 since that is what this drainage report covers.

X. Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County.

State what drainage facilities are in the public ROW.
Both private detention ponds are to be owned and maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT), once established, unless an agreement is reached stating otherwise. The proposed Main Stem channel (MS) will be maintained by the DISTRICT. Maintenance access for all full spectrum detention facilities will be provided from public Right-of-Way. Maintenance access for MS will be provided along the respective eastern top of channel bank within the proposed tracts.

XI. Wetlands Mitigation

There are two existing wetlands on site associated with the two major channels, MS and MST. The wetlands are both contained within the existing channels with the wetland in MS being classified as jurisdictional. The wetlands USACE determination will be provided with the Grandview Reserve CLOMR Report, HR Green; April 2022, which can be found in Appendix D. Wetlands maintenance will be the responsibility of the Grandview Reserve Metropolitan District No. 2 (DISTRICT).

XII. Floodplain Statement

A portion of the project sit lies with Zone A Special Flood Hazard Area as defined by the FIRM Map number 08041C0552G and 08041C0556G effective December 7, 2018. A copy of the FIRM Panel is included in Appendix A. FEMA-approved floodplain elevations are required to be shown on final plats.

XIII. Drainage Fees \& Maintenance

Gieck Ranch Basin is not listed as part of the El Paso County drainage basin fee program. Unless otherwise instructed, no drainage fees will be assessed. Include cost estimate of proposed facilities

XIV. Conclusion

The Grandview Reserve Filing No. 1 residential subdivision lies within the Gieck Ranch Drainage Basin. Water quality for the site is provided in two on-site Full Spectrum Detention Ponds; Ponds D \& E. All drainage facilities within this report were sized according to the EI Paso County Drainage Criteria Manuals. The proposed facilities are adequate to protect the site from generated runoff. The site runoff will not adversely affect the downstream facilities and surrounding developments. There is one major channel passing through the site, Main Stem channel, which was evaluated by HR Green within the Grandview Reserve CLOMR Report, HR Green; September 2021; revised April 2022. The two (2) WQCV ponds will be maintained by a newly established Grandview Reserve Metropolitan District No. 2 (DISTRICT).

XV. References

1. El Paso County Drainage Criteria Manual, 1990.
2. Drainage Criteria Manual, Volume 2, City of Colorado Springs, 2002.
3. El Paso County Drainage Criteria Manual Update, 2015.
4. El Paso County Engineering Criteria Manual, 2020.
5. Urban Storm Drainage Criteria Manual, Urban Drainage and Flood Control District, January 2016 (with current revisions).
6. Gieck Ranch Drainage Basin Study (DBPS), Drexel Barrell, October 2010 (Not adopted by County).
7. Grandview Reserve Master Development Drainage Plan (MDDP), HR Green, November 2020.
8. Grandview Reserve CLOMR Report, HR Green; April 2022.
9. Meridian Ranch MDDP, January 2018.
10. Preliminary Drainage Report, Grandview Reserve Filing No. 1, Galloway \& Company, Inc.; September 2022
[^0]
APPENDIX A

Exhibits and Figures

GRANDVIEW RESERVE
FILING NO. 1
EASTONVILLE RD
SCALE: $1^{1 " 2,000 '}$
VICINITY MAP

Project No:
Drawn By
Checked By:
HRG02

Galloway

 Nox mox
Nomern Nitir ReEs点童識

FIRM Flood nsurance rate map svazv aivzooryoni any
oavyotioy

\qquad

MAP LEGEND

Area of Interest (AOI)	\square	C
Area of Interest (AOI)	\square	C/D
Soils		
Soil Rating Polygons		
A	\square	Not rated or not available
A/D	Water F	res
	\sim	Streams and Canals
B		
	Transpo	ion
B/D	+ +	Rails
C	\sim	Interstate Highways
C/D	(2)	US Routes
D	\approx	Major Roads
Not rated or not available	\cdots	Local Roads
Soil Rating Lines	Backgro	
$\cdots \mathrm{A}$		Aerial Photography
\cdots A/D		
\cdots B		
$\cdots 3 / D$		
$\cdots \mathrm{C}$		
$\cdots \mathrm{C} / \mathrm{D}$		
\cdots D		
* Not rated or not available		
Soil Rating Points		
$\square \quad \mathrm{A}$		
$\square \mathrm{A} / \mathrm{D}$		
$\square \quad \mathrm{B}$		
- B/D		

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:24,000.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL
Coordinate System: Web Mercator (EPSG:3857)
Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 17, Sep 13, 2019

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Sep 8, 2018-May 26, 2019

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	22.4	2.6\%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	450.7	52.5\%
83	Stapleton sandy loam, 3 to 8 percent slopes	B	385.4	44.9\%
Totals for Area of Interest			858.5	100.0\%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C / D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition
Component Percent Cutoff: None Specified
Tie-break Rule: Higher

NOAA Atlas 14, Volume 8, Version 2
Location name: Peyton, Colorado, USA*
Latitude: 38.985°, Longitude: $\mathbf{- 1 0 4 . 5 6 5}{ }^{\circ}$
Elevation: 6975.71 ft**

* source: ESRI Maps
** source: USGS

POINT PRECIPITATION FREQUENCY ESTIMATES

Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland
PF tabular | PF_graphical | Maps \& aerials
PF tabular

PDS-based point precipitation frequency estimates with 90\% confidence intervals (in inches) ${ }^{1}$										
Duration	Average recurrence interval (years)									
	1	2	5	10	25	50	100	200	500	1000
5-min	$\begin{array}{r} \mathbf{0 . 2} \\ (0.189 \end{array}$	$\begin{array}{\|c\|} \hline \mathbf{0 . 2 9 1} \\ (0.231-0.370) \\ \hline \end{array}$	0.381 $(0.301-0.486)$	$\mathbf{0 . 4 6 1}$ $(0.361-0.589)$	$\begin{array}{c\|} \mathbf{0 . 5 7 6} \\ (0.440-0.768) \\ \hline \end{array}$	$\begin{array}{c\|} \hline \mathbf{0 . 6 7 1} \\ (0.499-0.904) \\ \hline \end{array}$	$\mathbf{0 . 7 7 0}$ $(0.554-1.06)$	$\begin{gathered} \hline 0.875 \\ (0.604-1.24) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.02 \\ (0.678-1.48) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 1.14 \\ (0.733-1.67) \\ \hline \hline \end{array}$
10-1	0.350 $(0.277-0.444)$	0.426 $(0.338-0.542)$	0.558 $(0.441-0.711)$	$\mathbf{0 . 6 7 4}$ $(0.529-0.863)$	0.844 $(0.644-1.13)$	0.982 $(0.731-1.32)$	1.13 $(0.811-1.56)$	$\begin{gathered} \hline 1.28 \\ (0.884-1.81) \end{gathered}$	$\begin{gathered} 1.49 \\ (0.992-2.17) \end{gathered}$	$\begin{gathered} 1.66 \\ (1.07-2.44) \end{gathered}$
15-	$\mathbf{0 . 4 2 6}$ $(0.338-0.541)$	0.520 $(0.412-0.660)$	0.681 $(0.537-0.867)$	$\begin{gathered} 0.823 \\ (0.645-1.05) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 1.03 \\ (0.785-1.37) \\ \hline \end{array}$	$\begin{array}{c\|} \hline 1.20 \\ (0.891-1.62) \\ \hline \end{array}$	$\begin{gathered} 1.37 \\ (0.988-1.9 \end{gathered}$	$\begin{gathered} 1.56 \\ (1.08-2.21) \\ \hline \end{gathered}$	$\begin{gathered} 1.82 \\ (1.21-2.65) \\ \hline \end{gathered}$	$\begin{gathered} 2.03 \\ (1.31-2.98) \\ \hline \end{gathered}$
30-m	0.608 $(0.482-0.771)$	$\begin{gathered} \mathbf{0 . 7 4 0} \\ (0.586-0.940) \\ \hline \end{gathered}$	$\begin{gathered} 0.968 \\ (0.764-1.23) \\ \hline \end{gathered}$	$\begin{gathered} 1.17 \\ (0.916-1.49) \\ \hline \end{gathered}$	$\begin{gathered} 1.46 \\ (1.11-1.94) \end{gathered}$	$\begin{gathered} 1.70 \\ (1.26-2.29) \end{gathered}$		$\begin{gathered} 2.21 \\ (1.52-3.12) \end{gathered}$	$\begin{gathered} 2.57 \\ (1.71-3.73) \end{gathered}$	$\begin{gathered} 2.86 \\ (1.85-4.19) \end{gathered}$
60	0.775 $(0.615-0.984)$	$\begin{gathered} 0.933 \\ (0.739-1.19) \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 1.21 \\ (0.956-1.54) \\ \hline \end{gathered}$	$\begin{gathered} \hline 1.46 \\ (1.15-1.87) \\ \hline \end{gathered}$	1.84	$\begin{gathered} 2.16 \\ (1.61-2.92) \\ \hline \end{gathered}$	$\begin{array}{\|c} \hline 2.49 \\ (1.80-3.45) \\ \hline \end{array}$	$\begin{gathered} 2.85 \\ (1.97-4.05) \\ \hline \end{gathered}$	3.37 $(2.24-4.90)$	$\begin{gathered} \hline 3.78 \\ (2.44-5.55) \\ \hline \end{gathered}$
2-hr	$\begin{gathered} 0.943 \\ (0.754-1.19) \\ \hline \hline \end{gathered}$	$\begin{gathered} 1.13 \\ (0.898-1.42) \\ \hline \end{gathered}$	$\begin{gathered} 1.46 \\ (1.16-1.84) \\ \hline \end{gathered}$	$\begin{gathered} 1.76 \\ (1.39-2.23) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 2 2} \\ (1.72-2.97) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 6 2} \\ (1.97-3.52) \\ \hline \end{gathered}$	$\begin{gathered} 3.04 \\ (2.21-4.19) \\ \hline \end{gathered}$	$\begin{gathered} 3.50 \\ (2.45-4.95) \\ \hline \end{gathered}$	$\begin{gathered} 4.16 \\ (2.80-6.03) \\ \hline \end{gathered}$	$\begin{gathered} 4.70 \\ (3.06-6.85) \\ \hline \end{gathered}$
3-hr	$\begin{gathered} 1.03 \\ (0.829-1.29) \\ \hline \end{gathered}$	$\begin{gathered} 1.22 \\ (0.978-1.53) \\ \hline \end{gathered}$	$\begin{gathered} 1.57 \\ (1.25-1.97) \end{gathered}$	$\begin{gathered} 1.90 \\ (1.51-2.40) \end{gathered}$		$\begin{gathered} 2.86 \\ (2.17-3.84) \end{gathered}$			4.66 $(3.15-6.74)$	$\begin{gathered} 5.29 \\ (3.46-7.69) \end{gathered}$
6-h	$\begin{gathered} 1.20 \\ (0.968-1.49) \\ \hline \end{gathered}$	$\begin{gathered} 1.40 \\ (1.13-1.74) \\ \hline \end{gathered}$	$\begin{gathered} 1.78 \\ (1.44-2.22) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 1 6} \\ (1.73-2.70) \\ \hline \end{gathered}$	$\begin{gathered} 2.76 \\ (2.18-3.66) \\ \hline \end{gathered}$	$\begin{gathered} 3.28 \\ (2.52-4.39) \\ \hline \end{gathered}$	$\begin{gathered} 3.86 \\ (2.86-5.29) \\ \hline \end{gathered}$	$\begin{gathered} \hline 4.51 \\ (3.21-6.34) \\ \hline \end{gathered}$	$\begin{gathered} \hline 5.46 \\ (3.73-7.86) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.24 \\ (4.12-9.01) \\ \hline \end{gathered}$
12-h	$\begin{gathered} 1.38 \\ (1.13-1.70) \\ \hline \end{gathered}$	$\begin{gathered} 1.61 \\ (1.31-1.98) \\ \hline \end{gathered}$	$\begin{gathered} 2.05 \\ (1.67-2.53) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 4 8} \\ (2.00-3.07) \\ \hline \end{gathered}$	$\begin{gathered} 3.15 \\ (2.51-4.15) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.74 \\ (2.89-4.96) \\ \hline \end{gathered}$		$\begin{gathered} 5.12 \\ (3.67-7.13) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.17 \\ (4.25-8.82) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.04 \\ (4.69-10.1) \\ \hline \end{gathered}$
24-hr	$\begin{gathered} 1.60 \\ (1.31-1.95) \\ \hline \end{gathered}$	$\begin{gathered} 1.87 \\ (1.54-2.28) \\ \hline \end{gathered}$	$\begin{gathered} 2.38 \\ (1.94-2.91) \\ \hline \end{gathered}$	$\begin{gathered} 2.85 \\ (2.32-3.51) \end{gathered}$	$\begin{gathered} 3.60 \\ (2.88-4.67) \\ \hline \end{gathered}$	$\begin{gathered} 4.24 \\ (3.29-5.56) \end{gathered}$	$\begin{gathered} \hline 4.94 \\ (3.71-6.63) \\ \hline \end{gathered}$	$\begin{gathered} 5.71 \\ (4.12-7.87) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.82 \\ (4.73-9.66) \\ \hline \end{gathered}$	$\begin{gathered} 7.73 \\ (5.20-11.0) \\ \hline \end{gathered}$
2-day	$\begin{gathered} 1.85 \\ (1.54-2.24) \\ \hline \end{gathered}$	$\begin{gathered} 2.18 \\ (1.80-2.63) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{2 . 7 6} \\ (2.28-3.35) \\ \hline \end{gathered}$	$\begin{gathered} 3.29 \\ (2.70-4.01) \\ \hline \end{gathered}$	$\begin{gathered} 4.11 \\ (3.30-5.27) \\ \hline \end{gathered}$			$\begin{gathered} \hline 6.35 \\ (4.62-8.68) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.50 \\ (5.25-10.5) \\ \hline \end{gathered}$	$\begin{gathered} \hline 8.44 \\ (5.73-11.9) \\ \hline \end{gathered}$
3-da	$\begin{gathered} 2.03 \\ (1.69-2.44) \end{gathered}$	$\begin{gathered} \mathbf{2 . 3 9} \\ (1.98-2.87) \\ \hline \end{gathered}$	$\begin{gathered} 3.02 \\ (2.50-3.64) \\ \hline \end{gathered}$	$\begin{gathered} 3.60 \\ (2.97-4.36) \end{gathered}$	$\begin{gathered} \mathbf{4 . 4 7} \\ (3.60-5.69) \\ \hline \end{gathered}$	$\begin{gathered} 5.20 \\ (4.09-6.70) \end{gathered}$	$\begin{gathered} 5.98 \\ (4.55-7.90) \\ \hline \end{gathered}$	$\begin{gathered} 6.83 \\ (4.99-9.28) \\ \hline \end{gathered}$	$\begin{gathered} 8.03 \\ (5.65-11.2) \\ \hline \end{gathered}$	$\begin{gathered} 9.00 \\ (6.15-12.7) \\ \hline \end{gathered}$
4-day	$\begin{gathered} 2.18 \\ (1.82-2.61) \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.56 \\ (2.13-3.06) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.22 \\ (2.68-3.87) \\ \hline \end{gathered}$	$\begin{gathered} \hline 3.82 \\ (3.16-4.62) \\ \hline \end{gathered}$	$\begin{gathered} 4.73 \\ (3.83-6.00) \\ \hline \end{gathered}$	$\begin{gathered} 5.49 \\ (4.33-7.04) \\ \hline \end{gathered}$	$\begin{gathered} \hline 6.30 \\ (4.81-8.30) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.18 \\ (5.26-9.72) \\ \hline \end{gathered}$	$\begin{gathered} 8.43 \\ (5.95-11.7) \\ \hline \end{gathered}$	$\begin{gathered} 9.43 \\ (6.46-13.3) \\ \hline \end{gathered}$
7-day	$\begin{gathered} 2.58 \\ (2.17-3.07) \\ \hline \end{gathered}$	$\begin{gathered} 2.98 \\ (2.50-3.54) \\ \hline \end{gathered}$	$\begin{gathered} 3.68 \\ (3.08-4.39) \\ \hline \end{gathered}$	$\begin{gathered} 4.32 \\ (3.60-5.18) \\ \hline \end{gathered}$	$\begin{gathered} 5.29 \\ (4.31-6.65) \\ \hline \end{gathered}$	$\begin{gathered} 6.09 \\ (4.84-7.76) \\ \hline \end{gathered}$	$\begin{gathered} 6.96 \\ (5.34-9.09) \\ \hline \end{gathered}$	$\begin{gathered} 7.89 \\ (5.82-10.6) \\ \hline \end{gathered}$	$\begin{gathered} 9.21 \\ (6.55-12.8) \end{gathered}$	$\begin{gathered} 10.3 \\ (7.10-14.4) \\ \hline \end{gathered}$
10-day	$\begin{gathered} 2.93 \\ (2.48-3.47) \\ \hline \end{gathered}$	$\begin{gathered} 3.37 \\ (2.84-3.98) \\ \hline \end{gathered}$	$\begin{gathered} 4.13 \\ (3.47-4.90) \\ \hline \end{gathered}$	$\begin{gathered} 4.81 \\ (4.02-5.74) \\ \hline \end{gathered}$	$\begin{gathered} 5.83 \\ (4.76-7.29) \\ \hline \end{gathered}$	$\begin{gathered} 6.68 \\ (5.32-8.45) \\ \hline \end{gathered}$	$\begin{gathered} 7.58 \\ (5.85-9.86) \\ \hline \end{gathered}$	$\begin{gathered} 8.55 \\ (6.34-11.4) \\ \hline \end{gathered}$	$\begin{gathered} 9.92 \\ (7.09-13.7) \\ \hline \end{gathered}$	$\begin{gathered} 11.0 \\ (7.65-15.4) \\ \hline \end{gathered}$
20-day	$\begin{gathered} 3.91 \\ (3.33-4.58) \\ \hline \end{gathered}$	$\begin{gathered} 4.51 \\ (3.84-5.29) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 5 2} \\ (4.68-6.50) \\ \hline \end{gathered}$	$\begin{gathered} 6.39 \\ (5.39-7.55) \\ \hline \end{gathered}$	$\begin{gathered} 7.63 \\ (6.25-9.37) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{8 . 6 2} \\ (6.90-10.8) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{9 . 6 4} \\ (7.47-12.4) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (7.98-14.1) \\ \hline \end{gathered}$	$\begin{gathered} 12.2 \\ (8.74-16.6) \\ \hline \end{gathered}$	$\begin{gathered} 13.3 \\ (9.31-18.4) \\ \hline \end{gathered}$
30-day	$\begin{gathered} 4.70 \\ (4.02-5.47) \\ \hline \end{gathered}$	$\begin{gathered} \mathbf{5 . 4 4} \\ (4.65-6.34) \\ \hline \end{gathered}$	$\begin{gathered} 6.65 \\ (5.66-7.78) \\ \hline \end{gathered}$	$\begin{gathered} 7.66 \\ (6.49-9.00) \\ \hline \end{gathered}$	$\begin{gathered} 9.06 \\ (7.44-11.0) \\ \hline \end{gathered}$	$\begin{gathered} 10.1 \\ (8.15-12.5) \\ \hline \end{gathered}$	$\begin{gathered} 11.2 \\ (8.74-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 12.3 \\ (9.24-16.2) \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline 13.8 \\ (9.98-18.7) \\ \hline \hline \end{array}$	$\begin{gathered} 15.0 \\ (10.5-20.6) \\ \hline \end{gathered}$
45-day	$\begin{gathered} 5.67 \\ (4.88-6.57) \\ \hline \end{gathered}$	$\begin{gathered} 6.55 \\ (5.63-7.60) \\ \hline \end{gathered}$	$\begin{gathered} 7.97 \\ (6.82-9.27) \\ \hline \end{gathered}$	$\begin{gathered} 9.12 \\ (7.77-10.7) \\ \hline \end{gathered}$	$\begin{gathered} 10.7 \\ (8.79-12.9) \\ \hline \end{gathered}$	$\begin{gathered} 11.9 \\ (9.56-14.5) \\ \hline \end{gathered}$	$\begin{gathered} 13.0 \\ (10.2-16.4) \\ \hline \end{gathered}$	$\begin{gathered} 14.2 \\ (10.6-18.4) \\ \hline \end{gathered}$	$\begin{gathered} 15.6 \\ (11.3-21.0) \\ \hline \end{gathered}$	$\begin{gathered} 16.7 \\ (11.9-23.0) \\ \hline \end{gathered}$
60-day	$\begin{gathered} 6.49 \\ (5.60-7.48) \\ \hline \end{gathered}$	$\begin{gathered} \hline 7.46 \\ (6.43-8.62) \\ \hline \end{gathered}$	$\begin{gathered} 9.01 \\ (7.74-10.4) \\ \hline \end{gathered}$	$\begin{gathered} 10.3 \\ (8.77-11.9) \\ \hline \end{gathered}$	$\begin{gathered} 11.9 \\ (9.82-14.3) \\ \hline \end{gathered}$	$\begin{gathered} 13.1 \\ (10.6-16.0) \\ \hline \end{gathered}$	$\begin{gathered} 14.3 \\ (11.2-18.0) \\ \hline \end{gathered}$	$\begin{gathered} 15.5 \\ (11.7-20.0) \\ \hline \end{gathered}$	$\begin{gathered} 16.9 \\ (12.3-22.6) \\ \hline \end{gathered}$	$\begin{gathered} 18.0 \\ (12.8-24.6) \\ \hline \end{gathered}$
1^{1} Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS). Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.										

PF graphical

PDS-based depth-duration-frequency (DDF) curves Latitude: 38.9850°, Longitude: -104.5650°

Average recurrence interval (years)
-1
-2
-5
-10
-25
-50
-100
-200
-1000

NOAA Atlas 14, Volume 8, Version 2
Created (GMT): Thu Dec 2 17:16:51 2021
Back to Top
Maps \& aerials

Small scale terrain

Large scale aerial

Back to Top

US Department of Commerce

National Oceanic and Atmospheric Administration
National Weather Service
National Water Center 1325 East West Highway
Silver Spring, MD 20910
Questions?: HDSC.Questions@noaa.gov
Disclaimer

APPENDIX B

DBPS \&, MDDP Sheet References

APPENDIX C

Hydrologic Computations

Subdivision: Grandview Reserve
Location: CO, El Paso County

For Existing Western Offsite Sub-basin analysis, see Rational Calcs Included, from titled "Eastonville Road Final Drainage Report", by HR Green, September 2022

EX-1	16.18	100	0	0	2	16.18	2	65	0	0	40	0	0
EX-2	46.06	100	0	0	2	46.06	2	65	0	0	40	0	0
EX-3	64.34	100	0	0	2	64.34	2	65	0	0	40	0	0
EX-4	2.68	100	0	0	2	2.68	2	65	0	0	40	0	0
EX-5	26.15	100	0	0	2	26.15	2	65	0	0	40	0	0
EX-6	31.53	100	0	0	2	31.53	2	65	0	0	40	0	0
RIM													

For Existing Western Offsite Sub-basin analysis and Proposed Eastonville Road, see Rational Calcs Included, from titled "Eastonville Road Final Drainage Report", by HR Green, September 2022

A-1	19.96	100	0.00	0.0	2	19.96	2.0	65.0	0.00	0.0	40	0.00	0.0
EA-1	3.98	100	0.00	0.0	2	3.98	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-A1	18.33	100	0.00	0.0	2	18.33	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-A2	4.51	100	0.00	0.0	2	4.51	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-A3	9.49	100	0.00	0.0	2	9.49	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-B1	15.73	100	0.00	0.0	2	15.73	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-B2	5.12	100	0.00	0.0	2	5.12	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-B3	9.91	100	0.00	0.0	2	9.91	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-C1	6.84	100	0.00	0.0	2	6.84	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-C2	17.00	100	0.00	0.0	2	17.00	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-C3	18.56	100	0.00	00	2	18.56	2.0	65.0	0.00	0.0	40	0.00	00
TSB-D1	10.86	100	0.00	0.0	2	10.86	2.0	65.0	0.00	0.0	40	0.00	0.0
TSB-E1	19.42	100	0.00	0.0	2	19.42	2.0	65.0	0.00	0.0	40	0.00	0.0

Lot Type Identification: Lot Size (SF) Lot Size (Acre)	
$0-8,167$	$1 / 8$ Acre
$8,168-12,704$	$1 / 4$ Acre
$12,705-18,149$	$1 / 3$ Acre
$18,150-32,670$	$1 / 2$ Acre
$32,671-43,560$	1 Acre

NOTES:
\% Impervious values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001)

It appears part of spreadsheet may not have printed

Lot Type Identification:	
$\frac{\text { Lot Stie (} \text { SF) }}{0.8 .167}$	
8.168-12,704	$1 / 4 \mathrm{Acre}$
12,705-18,149	$1 / 3 \mathrm{Ac}$
18,150-32,670	$1 / 2$ Acre

[^1]| $18,150-32,670$ | $1 / 2$ Acre |
| :--- | :--- |
| $32,671-23,560$ | 1 Acre |

STANDARD FORM SF-2: EXISTING \& INTERIM

TIME OF CONCENTRATION

Subdivision: Grandview Reserve

Project Name: Grandview Subdivision PDR - Interim Conditions Project No.: HRG01
Calculated By: TJE
Checked By: BAS
Date: 9/9/22

													Date:	9/9/22			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
SUB-BASIN						INITIAL/OVERLAND			TRAVEL TIME					Tc CHECK			FINAL
DATA						(\mathbf{T}_{i})			(T_{t})					(T_{c})			
$\begin{gathered} \hline \text { BASIN } \\ \text { ID } \\ \hline \end{gathered}$	$\begin{aligned} & \hline \text { D.A. } \\ & \text { (AC) } \\ & \hline \end{aligned}$	Hydrologic Soils Group	$\begin{array}{\|c\|} \hline \text { Impervious } \\ (\%) \\ \hline \end{array}$	C_{5}	C_{100}	$\begin{gathered} \hline \mathbf{L} \\ (\mathbf{F T}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathrm{S} \\ (\%) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathbf{i}} \\ (\mathrm{MIN}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{L} \\ (\mathbf{F T}) \end{gathered}$	$\begin{gathered} \hline \mathbf{S} \\ (\%) \\ \hline \end{gathered}$	Cv	$\begin{aligned} & \hline \text { VEL. } \\ & \text { (FPS) } \end{aligned}$	$\begin{gathered} \mathbf{T}_{\mathbf{t}} \\ \text { (MIN) } \end{gathered}$	$\begin{array}{\|c\|} \hline \text { COMP. T } \\ \text { (MIN) } \end{array}$	TOTAL LENGTH $(\mathrm{FT})$$\|$	$\begin{gathered} \hline \text { Calculated } \mathbf{T}_{\mathbf{c}} \\ \text { (MIN) } \end{gathered}$	$\begin{gathered} \mathbf{T}_{\mathbf{c}} \\ (\mathbf{M I N}) \end{gathered}$
EXISTING																	
For Existing Western Offsite Sub-basin analysis, see Rational Calcs Included, from titled "Eastonville Road Final Drainage Report", by HR Green, September 2022																	
EX-1	16.18	A	2.0	0.09	0.36	300	3.3	21.6	1433	2.5	15	2.4	10.0	31.6	1732.7	19.6	31.6
EX-2	46.06	A	2.0	0.09	0.36	300	2.5	23.6	3127	2.0	15	2.1	24.7	48.3	3427.0	29.0	48.3
EX-3	64.34	A	2.0	0.09	0.36	300	3.2	21.7	3964	2.1	15	2.2	30.4	52.1	4263.6	33.7	52.1
EX-4	2.68	A	2.0	0.09	0.36	300	2.5	23.8	462	2.4	15	2.3	3.3	27.1	762.3	14.2	27.1
EX-5	26.15	A	2.0	0.09	0.36	300	3.1	22.1	2121	2.3	15	2.3	15.6	37.7	2420.8	23.4	37.7
5y 6	21.52	\wedge	20	000	026	200	2.6	20 O	1400	2.	15	22	11.4	22.2	17005	100	22
INTERIM																	
A-1	19.96	A	2. 2.0	0.09	0.36	50	2.0	10.4	1600	3.3	10	1.8	14.8	25.2	1650.0	19.2	19.2
EA-1	3.98	A	2.0	0.09	0.36	75	5.0	9.4	1037	0.8	10	0.9	19.1	28.5	1112.0	16.2	16.2
TSB-A1	18.33	A	2.0	0.09	0.36	100	2.0	14.7	1454	3.1	10	1.8	13.7	28.4	1554.0	18.6	18.6
TSB-A2	4.51	A	2.0	0.09	0.36	216	2.0	21.6	591	1.1	10	1.1	9.3	30.9	807.0	14.5	14.5
TSB-A3	9.49	A	2.0	0.09	0.36	160	2.0	18.6	1219	1.0	10	1.0	20.3	38.9	1379.0	17.7	17.7
TSB-B1	15.73	A	2.0	0.09	0.36	230	2.0	22.3	1126	1.0	10	1.0	18.8	41.0	1356.0	17.5	17.5
TSB-B2	5.12	A	2.0	0.09	0.36	60	2.0	11.4	819	2.7	10	1.6	8.4	19.8	879.0	14.9	14.9
TSB-B3	9.91	A	2.0	0.09	0.36	152	2.0	18.1	979	3.0	10	1.7	9.4	27.5	1131.0	16.3	16.3
TSB-C1	6.84	A	2.0	0.09	0.36	65	2.0	11.8	1399	2.2	10	1.5	15.6	27.4	1464.0	18.1	18.1
TSB-C2	17.00	A	2.0	0.09	0.36	50	2.0	10.4	1506	3.2	10	1.8	14.0	24.4	1556.0	18.6	18.6
TSB-C3	18.56	A	2.0	0.09	0.36	135	2.0	17.1	1553	2.0	10	1.4	18.5	35.5	1688.0	19.4	19.4
TSB-D1	10.86	A	2.0	0.09	0.36	120	2.0	16.1	1643	1.6	10	1.2	21.9	38.0	1763.0	19.8	19.8
TSB-E1	19.42	A	2.0	0.09	0.36	75	2.5	11.8	1979	1.7	10	1.3	25.3	37.1	2054.0	21.4	21.4

NOTES:
$\mathrm{T}_{\mathrm{i}}=\left(0.395^{*}\left(1.1-\mathrm{C}_{5}\right)^{*}(\mathrm{~L})^{\wedge} 0.5\right) /\left((\mathrm{S})^{\wedge} 0.33\right)$, S in ft/ft
$\mathrm{T}_{\mathrm{i}}=\mathrm{L} / 60 \mathrm{~V}$ (Velocity From Fig. 501)
Velocity $\mathrm{V}=\mathrm{Cv}^{*} \mathrm{~S}^{\wedge} 0.5$, S in ft/ft
Tc Check $=10+\mathrm{L} / 180$
For Urbanized basins a minimum T_{c} of 5.0 minutes is required.
For non-urbanized basins a minimum T_{c} of 10.0 minutes is required

Project Name：Grandview Subdivision PDR－Interim Conditions Project No．：HRG01
Calculated By：TJE
Checked By：BAS
Date：9／9／22

Street		DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			REMARKS
					$\begin{aligned} & \text { en } \\ & \text { 昆 } \\ & \hline \end{aligned}$			$\frac{\widehat{x}}{\stackrel{0}{0}}$			佱	$\frac{\boxed{\pi}}{0}$	$\begin{aligned} & \overparen{O} \\ & 0 \\ & \stackrel{0}{0} \\ & \stackrel{0}{n} \end{aligned}$			$\begin{aligned} & \mathscr{O} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$				咸	
EXISTING																					
	1	EX－1	16.18	0.09	31.6	1.46	2.35	3.4				4.7									Sheet flow to Main Stem Channel Total Flow from DP 10，DP 11 \＆Basin EX－1
		EX－2	46.06	0.09	48.3	4.15	1.82	7.6													Sheet flow to Main Stem Channel
	2											79.1									Total Flow from DP 8，DP 9 \＆Basin EX－2
	3	EX－3	64.34	0.09	52.1	5.79	1.73	10.0				10.0									Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel
	4	EX－4	2.68	0.09	27.1	0.24	2.57	0.6				06									Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel
		EX－5	26.15	0.09	37.7	2.35	2.12	5.0													Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel
	5											5.0									
	6	EX－6	31.53	0.09	32.3	2.84	2.32	6.6				14.6									Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel Total Flow from DP 7 \＆EX－6
For Existing Western Offsite Sub－basin analysis，see Rational Calcs Included，from titled＂Eastonville Road Final Drainage Report＂，by HR Green，September 2022																					
	12											89.2									Total Existing Flow offsite－outfalls to Main Stem Tributary \＃2 Channel
Interim																					
For Existing Western Offsite Sub－basin analysis and Proposed Eastonville Road，see Rational Calcs Included，from titled＂Eastonville Road Final Drainage Report＂，by HR Green，September 2022																					
	2	A－1	19.96	0.09	19.2	1.80	3.08	5.5				$\begin{gathered} \hline 5.5 \\ 18.7 \end{gathered}$									Institutional Tract－Undeveloped Combined flow from DP1 and A－1
	3	EA－1	3.98	0.09	16.2	0.36	3.34	1.2				$\begin{aligned} & 1.2 \\ & 5.7 \\ & \hline \end{aligned}$									Existing Eastonville Road Combined flow from OS－3（DP32）and EA－1（Existing Eastonville Rd）
	1	TSB－A1	18.33	0.09	18.6	1.65	3.12	5.1				$\begin{gathered} 5.1 \\ 13.1 \end{gathered}$									Residential Undeveloped－Overland Graded Combined flow from OS－5（DP35）and TSB－A1
	4	TSB－A2	4.51	0.09	14.5	0.41	${ }^{3.52}$	1.4				${ }^{1.4}$									Residential Undeveloped－Overland Graded
	5	TSB－A3	9.49	0.09	17.7	0.85	3.21	2.7				2.7									Residential Undeveloped－Overland Graded
	${ }^{6}$	TSB－B1	15.73	0.09	17.5	1.42	3.22	4.6				4.6									Residential Undeveloped－Overland Graded
	7	TSB－B2	5.12	0.09	14.9	0.46	3.47	1.6				1.6									Residential Undeveloped－Overland Graded
	8	TSB－B3	9.91	0.09	16.3	0.89	3.33	3.0				$\begin{aligned} & 3.0 \\ & 9.1 \end{aligned}$									Residential Undeveloped－Overland Graded Combined Flows from DP6，DP7，\＆TSB－B3
	9	TSB－C1	6.84	0.09	18.1	0.62	3.17	2.0				2.0									Residential Undeveloped－Overland Graded
	10	TSB－C2	17.00	0.09	18.6	1.53	3.12	4.8				4.8									Residential Undeveloped－Overland Graded
	11	TSB－C3	18.56	0.09	19.4	1.67	3.06	5.1				$\begin{gathered} \hline 5.1 \\ 11.8 \end{gathered}$									Residential Undeveloped－Overland Graded Combined flows from DP9＿DP10 \＆TSB－C3
	12	TSB－D1	10.86	0.09	19.8	0.98	3.03	3.0				3.0									Residential Undeveloped－Overland Graded
	13	TSB－E1	19.42	0.09	21.4	1.75	2.91	5.1				5.1									Residential Undeveloped－Overland Graded

\qquad
Project Name：Grandview Subdivision PDR－Interim Conditions
Project No．：HRG0
Calculated By：TJE
Checked By：BAS Date：9／9／22

		DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			
STREET				$\begin{aligned} & \text { 范 } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \\ & \hline \end{aligned}$	$\begin{array}{r} \hat{H} \\ \text { 暑 } \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{S}} \\ & \stackrel{y}{4} \\ & \hline \end{aligned}$	Eِ	$\stackrel{\stackrel{x}{0}}{0}$	$\begin{aligned} & \text { 挐 } \\ & \text { en } \\ & \hline \end{aligned}$		$\begin{aligned} & \hat{Y} \\ & \text { EِE } \\ & \hline \end{aligned}$	$\stackrel{\leftrightarrow x}{0}$	$\begin{aligned} & \text { 厄 } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \bar{\omega} \\ & \hline \end{aligned}$			$\begin{aligned} & \overparen{0} \\ & \stackrel{0}{0} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\square} \\ & \hline \end{aligned}$				会	REMARKS
EXISTING																					
		EX－1	16.18	0.36	31.6	5.82	4.19	24.4													Sheet flow to Main Stem Channel
	1											33.3									Total Flow from DP 10，DP 11 \＆Basin EX－1
	2	EX－2	46.06	0.36	48.3	16.58	3.24	53.7				497.2									Sheet flow to Main Stem Channel Total Flow from DP 8，DP 9 \＆Basin EX－2
		EX－3	64.34	0.36	52.1	23.16	3.09	71.6													Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel
	3											71.6									
	4	EX－4	2.68	0.36	27.1	0.96	4.57	4.4				4.4									Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel
		EX－5	26.15	0.36	37.7	9.41	3.77	35.5													Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel
	5											35.5									
	6	EX－6	31.53	0.36	32.3	11.35	4.13	46.9				584.9									Sheet flow offiste－outfalls to Main Stem Tributary \＃2 Channel Total Flow from DP 7 \＆EX－6
For Existing Western Offsite Sub－basin analysis，see Rational Calcs Included，from titled＂Eastonville Road Final Drainage Report＂，by HR Green，September 2022																					
	12											976.3									Total Existing Flow offsite－outfalls to Main Stem Tributary \＃2 Channel
INTERIM																					
For Existing Western Offsite Sub－basin analysis and Proposed Eastonville Road，see Rational Calcs Included，from titled＂Eastonville Road Final Drainage Report＂，by HR Green，September 2022																					
	2	A－1	19.96	0.36	19.2	7.19	5.48	39.4				$\begin{aligned} & 39.4 \\ & 84.1 \\ & \hline \end{aligned}$									Institutional Tract－Undeveloped Combined flow from DP1 and A－1
	3	EA－1	3.98	0.36	16.2	1.43	5.95	8.5				$\begin{aligned} & 8.5 \\ & 13.0 \\ & 13 \end{aligned}$									Existing Eastonville Road Combined flow from OS－3（DP32）and EA－1（Existing Eastonville Rd）
	1	TSB－A1	18.33	0.36	18.6	6.60	5.56	36.7				$\begin{aligned} & 36.7 \\ & 44.7 \end{aligned}$									Residential Undeveloped－Overland Graded Combined flow from OS－5（DP35）and TSB－A1
	4	TSB－A2	4.51	0.36	14.5	1.62	6.26	10.1				10.1									Residential Undeveloped－Overland Graded
	5	TSB－A3	9.49	0.36	17.7	3.42	5.71	19.5				19.5									Residential Undeveloped－Overland Graded
	6	TSB－B1	15.73	0.36	17.5	5.66	5.73	32.4				32.4									Residential Undeveloped－Overland Graded
	7	TSB－B2	5.12	0.36	14.9	1.84	6.18	11.4				11.4									Residential Undeveloped－Overland Graded
	8	TSB－B3	9.91	0.36	16.3	3.57	5.93	21.2				$\begin{aligned} & 21.2 \\ & 65.0 \\ & \hline \end{aligned}$									Residential Undeveloped－Overland Graded Combined Flows from DP6，DP7，\＆TSB－B3
	9	TSB－C1	6.84	0.36	18.1	2.46	5.63	13.8				13.8									Residential Undeveloped－Overland Graded
	10	TSB－C2	17.00	0.36	18.6	6.12	5.56	34.0				34.0									Residential Undeveloped－Overland Graded
	1	TSB－C3	18.56	0.36	19.4	6.68	5.45	36.4				36.4									Residential Undeveloped－Overland Graded Comind flow from DPo DP10 \＆－TCD
	12	TSB－D1	10.86	0.36	19.8	3.91	5.39	21.1				21.1									Residential Undeveloped－Overland Graded
	13	TSB－E1	19.42	0.36	21.4	6.99	5.18	36.2				36.2									Residential Undeveloped－Overland Graded

Calculated By: TJE
Checked By:
Date:
$\frac{B A S}{10 / 6}$
Date: $\frac{10 / 6 / 22}{}$

Basin ID	Total Area (ac)	Paved/Gravel Roads			$6 \quad \frac{7}{\text { Lawns/Undeveloped }}$			$\frac{12}{12} \frac{13}{\text { Residential }-1 / 8 \text { Acre }}$			$\frac{15}{{ }^{\text {Residential }-1 / 4 \text { Acre }}}$			20			21	22	23	Residential - 1 Acre			Basins Total Weighted \% Imp.						
						dential -1/3					Residential - $1 / 2$ Acre																		
		\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$				\% Imp.	Area (ac)	$\begin{gathered} \text { Weighted } \\ \text { \% Imp. } \\ \hline \end{gathered}$				\% Imp.	Area (ac)	$\begin{gathered} \text { Weighted } \\ \text { \% Imp. } \\ \hline \end{gathered}$	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$		\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$	\% Imp.	Area (ac)	$\begin{aligned} & \text { Weighted } \\ & \text { \% Imp. } \end{aligned}$
D-1	3.48	100	0.00	0.0	2	0.00	0.0	65.0	3.48	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
D-2	0.82	100	0.00	0.0	2	0.00	0.0	65.0	0.82	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
D-3	3.67	100	0.00	0.0	2	0.00	0.0	65.0	3.67	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
D-4	1.82	100	0.00	0.0	2	0.00	0.0	65.0	1.82	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
D-5	1.45	100	0.00	0.0	2	0.63	0.9	65.0	0.82	36.8	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	37.7						
D-6	1.53	100	0.00	0.0	2	1.53	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0						
D-7a	0.26	100	0.02	7.7	2	0.23	1.8	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	9.5						
D-7b	0.96	100	0.00	0.0	2	0.00	0.0	65.0	0.88	59.6	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	59.6						
E-1	4.91	100	0.00	0.0	2	1.40	0.6	65.0	3.51	46.5	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	47.1						
E-2	4.06	100	0.00	0.0	2	0.00	0.0	65.0	4.06	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
E-3a	2.75	100	0.00	0.0	2	0.00	0.0	65.0	2.75	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
E-3b	2.17	100	0.00	0.0	2	0.00	0.0	65.0	2.17	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
E-4a	4.68	100	0.00	0.0	2	0.00	0.0	65.0	4.68	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
E-4b	1.60	100	0.00	0.0	2	0.00	0.0	65.0	1.60	65.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	65.0						
E-5	1.13	100	0.00	0.0	2	1.13	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0						
E-6	2.00	100	0.00	0.0	2	2.00	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0						

[^2]Need to include area for
roads within each basin.
of Kate Meadow Lane.

Basin ID	1 Area (ac)	Paved/Gravel Roads			LawnssUndeveloped			${ }_{\text {Roofs }}^{10}$			$12{ }^{12}{ }^{13} \text { Residential - } 1 / 8 \mathrm{Acrace}$			${ }^{15} \frac{16}{}{ }^{\text {Residential }-1 / 4 \text { Acre }}$			$\frac{18}{18}{ }^{\text {Residential }-1 / 3 \text { Acre }}{ }^{20}$			$\frac{21}{2_{\text {Residential }-1 / 2 \text { Acre }}^{22}}$				24		$27 \quad 28$	
							Composite																				
		C_{5}	C_{100}	Area (ac)				c_{5}	C_{100}	Area (ac)	Composite C_{5}	C_{100}															
D-1	3.48	${ }_{0} 0.90$	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	3.48	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	${ }_{0}^{0.44}$	0.00	0.45	0.59
$\frac{\mathrm{D}-2}{\text { D-3 }}$	$\frac{0.82}{3.67}$	0.90 0.90 0	0.96 0.96	0.00 0.00	0.09 0.09	0.36 0.36	0.00 0.00	0.73 0.73	$\frac{0.81}{0.81}$	0.00 0.00	0.45 0.45	$\frac{0.59}{0.59}$	0.82 3.67	0.30 0.30	0.50 0.50	0.00 0.00	$\frac{0.25}{0.25}$	0.47 0.47	0.00 0.00	0.22 0.22	0.46 0.46	0.00 0.00	0.20 0.20	0.44	0.00 0.00	0.45 0.45	$\frac{0.59}{0.59}$
D.4	${ }^{3.1 .62}$	0.90 0.90	0.096	0.00	0.09	0.36	0	${ }_{0}^{0.73}$	0.81	0.00	0.45	0.59	3.6 1.82	0.30	${ }_{0} 0.50$	0.00	0.25	${ }_{0}^{0.47}$	${ }_{0} 0.00$	0.22	${ }_{0} 0.46$	0.00	0.20	$\frac{0.44}{0.44}$	${ }_{0} 0.00$	0.45	0.59
D.5	1.45	0.90	0.96	0.00	0.09	0.36	0.63	0.73	0.81	0.00	0.45	0.59	0.82	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.29	0.49
D-6	1.53	0.90	0.96	0.00	0.09	0.36	1.53	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
D.7a	0.26	0.90 0.90	${ }^{0.96}$	0.02	0.09	0.36 0.36	0.23	${ }_{0}^{0.73}$	0.81	0.00	0.45 0.45	0.59 0.59	0.00	0.30 0.30	0.50 0.50	0.00	${ }_{0}^{0.25}$	0.47 0.47	0.00 0.00	0.22 0.22	0.46 0.46	0.00 0.00	0.20 0.20	0.44	0.00 0.00	0.15 0.41	0.39
D-1	0.961	0.90 0.90	0.96	0.00	0.09 0.09	0.0	${ }^{0.1 .00}$	0.0	${ }_{0}^{0.81}$	0	0.45	0.59	${ }_{3}^{0.85}$	0.30	0.50	0.00	${ }_{0}^{0.25}$	${ }_{0}^{0.47}$	0.00	O.22	O.46	0.00	0.20	$\frac{0.44}{0.44}$	0.00	0.45	0.54
E-2	4.06	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	4.06	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
E-3a	2.75	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.75	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
E-3b	2.17	0.90	0.96	0.00	0.09	0.36	0.00	0.73	0.81	0.00	0.45	0.59	2.17	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
$\frac{\text { E-4a }}{\text { E-4b }}$	4.68	0.90 0.90	0.96	0.00	0.09	0.36 0.36	0.00	0.73	${ }_{0}^{0.81}$	0.00	0.45	0.59	4.68	0.30 0.30	0.50 0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.45	0.59
${ }_{\text {E-4 }}$	1.1.00	0.90 0.90	0.96	0	0.09	0.36 0.36	0.00 1.13	${ }_{0}^{0.73}$	${ }_{0}^{0.81}$	${ }_{0}^{0.00}$	${ }_{0}^{0.45}$	${ }_{0}^{0.59}$	$\stackrel{1.60}{0.00}$	0.30 0.30	${ }_{0}^{0.50}$	${ }_{0}^{0.00}$	${ }_{0}^{0.25}$	${ }_{0}^{0.47}$	0.000	0.22	${ }_{0}^{0.46}$	0	0.20	0.44	0	0.45	0.39
E-6	2.00	0.90	0.96	0.00	0.09	0.36	2.00	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36

Lot Type Identification:	
Lot Size (SF)	Loos Sie f foc
0-8,167	$4=1 / 8$ Acre
8,168-12,704	$1 / 4$ Acre
12,705-18,149	1/3 Acre
18,150-32,670	$1 / 2 \mathrm{Ac}$
32,671-43,560	1 Acre

notes:

Coeffficients use HSG A\&B s. \backslash s- Refere to "Appendix A: Exhibits and Figures" for soil map

Need to include area for
oads within each basin.
Such as D-1 has west half
of Kate Meadow Lane

STANDARD FORM SF-2: PROPOSED TIME OF CONCENTRATION

Subdivision: Grandview Reserve
Location: CO, El Paso County

Project Name: Grandview Subdivision PDR
Project No.: HRG01
Calculated By: TJE
Checked By: BAS
Date: 10/6/22

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
SUB-BASIN						INITIAL/OVERLAND			TRAVEL TIME					Tc CHECK			FINAL
DATA						(T_{i})			(T_{t})					(T_{c})			
$\begin{gathered} \text { BASIN } \\ \text { ID } \end{gathered}$	$\begin{aligned} & \text { D.A. } \\ & \text { (AC) } \end{aligned}$	Hydrologic Soils Group	Impervious $(\%)$	C_{5}	C_{100}	$\begin{gathered} \mathbf{L} \\ (\mathrm{FT}) \end{gathered}$	$\begin{gathered} \hline \mathbf{S} \\ (\%) \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{i}} \\ (\mathbf{M I N}) \end{gathered}$	$\begin{gathered} \mathbf{L} \\ (\mathbf{F T}) \end{gathered}$	$\begin{gathered} \mathrm{S} \\ (\%) \end{gathered}$	Cv	$\begin{gathered} \hline \text { VEL. } \\ \text { (FPS) } \end{gathered}$	$\begin{gathered} \mathrm{T}_{\mathrm{t}} \\ \text { (MIN) } \end{gathered}$	$\begin{aligned} & \hline \text { COMP. T } \\ & \text { (MIN) } \end{aligned}$	TOTAL	Calculated T_{c} (MIN)	$\begin{gathered} \mathrm{T}_{\mathrm{c}} \\ (\mathrm{MIN}) \end{gathered}$
D-1	3.48	A	65.0	0.45	0.59	170	3.0	10.8	715	1.0	20	2.0	6.0	16.7	885.0	14.9	14.9
D-2	0.82	A	65.0	0.45	0.59	10	2.0	3.0	700	1.3	20	2.3	5.1	8.1	710.0	13.9	8.1
D-3	3.67	A	65.0	0.45	0.59	140	3.0	9.8	660	2.2	20	3.0	3.7	13.5	800.0	14.4	13.5
D-4	1.82	A	65.0	0.45	0.59	50	3.0	5.8	663	2.0	20	2.8	3.9	9.7	713.0	14.0	9.7
D-5	1.45	A	37.7	0.29	0.49	110	25.0	5.3	201	1.0	20	2.0	1.7	7.0	311.0	11.7	7.0
D-6	1.53	A	2.0	0.09	0.36	300	5.0	18.7	0	0.0	10	0.0	0.0	18.7	300.0	11.7	11.7
D-7a	0.26	A	9.5	0.15	0.39	75	5.0	8.8	0	0.0	20	0.0	0.0	8.8	75.0	10.4	8.8
D-7b	0.96	A	59.6	0.41	0.54	75	8.0	5.5	478	2.0	15	2.1	3.8	9.2	553.0	13.1	9.2
E-1	4.91	A	47.1	0.35	0.52	25	4.0	4.3	1103	3.3	20	3.6	5.1	9.4	1128.0	16.3	9.4
E-2	4.06	A	65.0	0.45	0.59	20	2.0	4.2	960	3.5	20	3.7	4.3	8.5	980.0	15.4	8.5
E-3a	2.75	A	65.0	0.45	0.59	10	2.0	3.0	786	1.5	20	2.4	5.3	8.3	796.0	14.4	8.3
E-3b	2.17	A	65.0	0.45	0.59	225	4.0	11.2	261	1.5	20	2.4	1.8	13.0	486.0	12.7	12.7
E-4a	4.68	A	65.0	0.45	0.59	305	7.0	10.9	928	1.6	20	2.5	6.1	17.0	1233.0	16.9	16.9
E-4b	1.60	A	65.0	0.45	0.59	150	2.0	11.6	261	1.5	20	2.4	1.8	13.3	411.0	12.3	12.3
E-5	1.13	A	2.0	0.09	0.36	127	25.0	7.1	315	1.0	20	2.0	2.6	9.8	442.0	12.5	9.8
E-6	2.00	A	2.0	0.09	0.36	350	2.0	27.5	113	2.0	10	1.4	1.3	28.8	463.0	12.6	12.6

NOTES:

$\mathrm{T}_{\mathrm{i}}=\left(0.395^{*}\left(1.1-\mathrm{C}_{5}\right)^{*}(\mathrm{~L})^{\wedge} 0.5\right) /\left((\mathrm{S})^{\wedge} 0.33\right), \mathrm{S}$ in $\mathrm{ft} / \mathrm{ft}$
$\mathrm{T}_{\mathrm{t}}=\mathrm{L} / 60 \mathrm{~V}$ (Velocity From Fig. 501)
Velocity $\mathrm{V}=\mathrm{Cv} * \mathrm{~S}^{\wedge} 0.5$, S in $\mathrm{ft} / \mathrm{ft}$
Tc Check $=10+\mathrm{L} / 180$
For Urbanized basins a minimum T_{c} of 5.0 minutes is required.
For non-urbanized basins a minimum T_{c} of 10.0 minutes is required

Subdivision：	Grandview Reserve
Location：	CO，El Paso County
Design Storm：	

Project Name：Grandview Subdivision PDR
Project No．：HRG01
Calculated By：TJE
Checked By：BAS

$$
\text { Date: } 10 / 6 / 22
$$

		DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			
STREET			$\begin{aligned} & \frac{9}{4} \\ & \text { 坒 } \end{aligned}$			$\underset{\underset{i}{e}}{\substack{e}}$	E.	$\begin{aligned} & \frac{\hat{B}}{0} \\ & \hline 0 \end{aligned}$		$\begin{gathered} \frac{刃}{4} \\ \substack{4 \\ \hline} \\ \hline \end{gathered}$	$\stackrel{\overparen{E}}{\stackrel{E}{E}}$	$\frac{\stackrel{\pi}{6}}{0}$	$\begin{aligned} & \text { 厄̀ } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\omega} \end{aligned}$			$\begin{aligned} & \text { 厄̀ } \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$				首	REMARKS
	D1	D－1	3.48	0.45	14.9	1.57	3.47	5.4					1	0.8	4.6						On－Grade 10 ＇CDOT Type R Inlet Qcap $=4.6$ cfs，Qco $=0.8$ cfs to DP D4
	D2	D－2	0.82	0.45	8.1	0.37	4.42	1.6					1	0.0	1.6						On－Grade 10^{\prime} CDOT Type R Inlet Qcap $=1.6 \mathrm{cfs}, \mathrm{Qco}=0 \mathrm{cfs}$ to DP D4
	D3														6.2						Total Captured flows from DP D1 \＆D2
	D4	D－3	3.67	0.45	13.5	1.65	3.63	6.0	14.9	1.90	3.47	6.6			6.6						Receives Bypass from DP D1 \＆D2 Sump 15＇CDOT Type R Inlet
	D5	D－4	1.82	0.45	9.7	0.82	4.14	3.4							3.4						Sump 10^{\prime} CDOT Type R Inlet
	D6														10.0						Total Captured flows from DP D4 \＆D5
	D7														16.2						Totacl Captured flows from DP D3 \＆D6
	D8	D－7b	0.96	0.41	9.2	0.39	4.23	1.6							1.6						Sheet flows to Channel and Conveyed to Pond D
	D9	D－5	1.45	0.29	7.0	0.42	4.64	1.9	14.9	5.22	3.47	18.1			0.3						Pond D Outlet Structure Release－From MHFD Pond Calc
		D－6	1.53	0.09	11.7	0.14	3.86	0.5													Un－developed area－Sheet flows to MS
		D－7a	0.26	0.15	8.8	0.04	4.30	0.2													Back of Lots 18－20－Sheet Flows to MST
	E1	E－1	4.91	0.35	9.4	1.72	4.20	7.2					3.3	0.2	7.0						On－Grade 15^{\prime} CDOT Type R Inlet Qcap＝7 cfs，Qco＝0．2 cfs to DP E4
	E2	E－2	4.06	0.45	8.5	1.83	4.35	8.0					3.3	0.4	7.6						On－Grade 15^{\prime} CDOT Type R Inlet Qcap $=7.6$ cfs，Qco $=0.4$ cfs to DP E4
	E3														14.6						Totacl Captured flows from DP E1 \＆E2
	E4	E－3a	2.75	0.45	8.3	1.24	4.38	5.4	9.4	1.38	4.20	5.8	1.5	0.0	5.8						On－Grade 15＇CDOT Type R Inlet Qcap $=5.8 \mathrm{cfs}, \mathrm{Qco}=0 \mathrm{cfs}$ to DP E7
	E5	E－4a	4.68	0.45	16.9	2.11	3.28	6.9					1.5	0.2	6.7						On－Grade 15＇CDOT Type R Inlet Qcap $=6.7 \mathrm{cfs}, \mathrm{Qco}=0.2 \mathrm{cfs}$ to DP E9
	E6														27.1						Totacl Captured flows from DP E3，E4 \＆E5
	E7	E－3b	2.17	0.45	12.7	0.98	3.73	3.7	12.7	0.98	3.73	3.6			3.6						Sump 15＇CDOT Type R Inlet
	E8														30.7						Total Captured flows from DP E6 \＆E7
		E－4b	1.60	0.45	12.3	0.72	3.78	2.7	16.9	0.79	3.28	2.6			2.6						Sump 15＇CDOT Type R Inlet
	E9														33.3						Total Flow to Pond E－Thru Inlet（Basin E－4b \＆DP E8）
	E10	E－5	1.13	0.09	9.8	0.10	4.14	0.4	16.9	8.70	3.28	28.5			0.6						Pond E Outlet Structure Release－From MHFD Pond Calc
		E－6	2.00	0.09	12.6	0.18	3.74	0.7													Un－developed area－Sheet flows to MS

Subdivision：Grandview Reserve Location：CO，El Paso County Design Storm：100－Year																				
Street	DIRECT RUNOFF							TOTAL RUNOFF				STREET		PIPE			TRAVEL TIME			
	寿曹品		$\begin{aligned} & \text { 4. } \\ & \text { \% } \\ & \text { U世 } \\ & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \tilde{d} \\ \stackrel{y}{4} \\ \underset{\sim}{4} \end{gathered}$	E.	$\frac{\sqrt[3]{0}}{0}$											$\begin{aligned} & \frac{0}{4} \\ & \frac{8}{4} \\ & \frac{0}{2} \\ & \frac{0}{0} \\ & \hline \end{aligned}$	豆	REMARKS
D1	D－1	3.48	0.59	14.9	2.05	6.18	12.7							7.4						On－Grade 10^{\prime} CDOT Type R Inlet Qcap $=7.4 \mathrm{cfs}$ ，Qco $=5.3 \mathrm{cfs}$ to DP D4
D2	D－2	0.82	0.59	8.1	0.48	7.88	3.8					1	0.1	3.7						On－Grade 10 ＇CDOT Type R Inlet Qcap $=3.7 \mathrm{cfs}, \mathrm{Qco}=0.1 \mathrm{cfs}$ to DP D4
D3														11.1						Total Captured flows from DP D1 \＆D2
D4	D－3	3.67	0.59	13.5	2.17	6.46	14.0	14.9	3.03	6.18	18.7			18.7						Receives Bypass from DP D1 \＆D2 Sump 15＇CDOT Type R Inlet
D5	D－4	1.82	0.59	9.7	1.07	7.37	7.9							7.9						Sump 10＇CDOT Type R Inlet
D6														26.6						Total Captured flows from DP D4 \＆D5
D7														37.7						Totacl Captured flows from DP D3 \＆D6
D8	D－7b	0.96	0.54	9.2	0.52	7.52	3.9							3.9						Sheet flows to Channel and Conveyed to Pond D
D9	D－5	1.45	0.49	7.0	0.71	8.26	5.9	14.9	7.00	6.18	43.3			5.7						Pond D Outlet Structure
	D－6	1.53	0.36	11.7	0.55	6.87	3.8													Un－developed area－Sheet flows to MS
	D－7a	0.26	0.39	8.8	0.10	7.65	0.8													Back of Lots 18－20－Sheet Flows to MST
E1	E－1	4.91	0.52	9.4	2.55	7.48	19.1					3.3	6.4	12.7						On－Grade 15＇CDOT Type R Inlet Qcap $=12.7 \mathrm{cfs}, \mathrm{Qco}=6.4 \mathrm{cfs}$ to DP E4
E2	E－2	4.06	0.59	8.5	2.40	7.75	18.6					3.3	6.1	12.5						On－Grade 15＇CDOT Type R Inlet Qcap $=12.5 \mathrm{cfs}, \mathrm{Qco}=6.1 \mathrm{cfs}$ to DP E4
E3														25.2						Totacl Captured flows from DP E1 \＆E2
E4	E－3a	2.75	0.59	8.3	1.62	7.80	12.6	9.4	3.26	7.48	24.4	1.5	9.8	14.6						On－Grade 15＇CDOT Type R Inlet Qcap $=14.6 \mathrm{cfs}, \mathrm{Qco}=9.8 \mathrm{cfs}$ to DP E7
E5	E－4a	4.68	0.59	16.9	2.76	5.84	16.1					1.5	4.6	11.5						On－Grade 15^{\prime} CDOT Type R Inlet Qcap $=11.5 \mathrm{cfs}, \mathrm{Qco}=4.6 \mathrm{cfs}$ to DP E9
E6														51.3						Totacl Captured flows from DP E3，E4 \＆E5
E7	E－3b	2.17	0.59	12.7	1.28	6.63	8.5	12.7	2.59	6.63	17.2			17.2						Sump 15＇CDOT Type R Inlet
E8														68.5						Total Captured flows from DP E6 \＆E7
	E－4b	1.60	0.59	12.3	0.94	6.73	6.3	16.9	1.73	5.84	10.1			10.1						Sump 15＇CDOT Type R Inlet
E9														78.6						Total Flow to Pond E－Thru Inlet（Basin E－4b \＆DP E8）
E10	E－5	1.13	0.36	9.8	0.41	7.37	3.0	16.9	11.96	5.84	69.8			10.5						Pond E Outlet Structure Release－From MHFD Pond Calc
	E－6	2.00	0.36	12.6	0.72	6.66	4.8													Un－developed area－Sheet flows to MS

APPENDIX D

Hydraulic Computations

MHFD-Inlet, Version 5.01 (April 2021) Update to never version
 INLET MANAGEMENT
 of spreadsheet

INLET NAME	Basin D-1 (DP D1)	Basin D-2 (DP D2)	Basin D-3 (DP D4)	Basin D-4 (DP D5)
Site Type (Urban or Rural)	STREET	STREET	STREET	
Inlet Application (Street or Area)	On Grade	On Grade	STREET	
Hydraulic Condition	In Sump	In Sump		
Inlet Type	CDOT Type R Curb Opening			

CALCULATED OUTPUT

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin D-1 (DP D1)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Typ	Openin	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{-} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	5.4	12.7	cfs
Water Spread Width	$\mathrm{T}=$	13.4	16.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.9	5.1	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.6	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.179	0.128	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	4.4	11.1	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{w}=$	1.0	1.6	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.24	0.32	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	4.1	5.0	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.9	8.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{\text {O-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	$f p s$
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$L_{\text {e }}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{0}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q a}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathbf{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.085	0.066	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	14.30	24.81	
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\top}$)	L =	10.00	10.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	4.8	7.7	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.06	0.06	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	8.75	8.75	ft
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	4.6	7.4	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {bgreata) }}-\mathrm{O}_{\text {a }}$	$\mathbf{Q}^{\text {b }}=$	0.8	5.3	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	$\mathbf{Q}=$	4.6	7.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.8	5.3	cfs
Capture Percentage $=\mathrm{Q}_{2} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	86	58	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin D-2 (DP D2)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(d_{C}-\left(W * S_{x} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desian Information (Input) coot		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	1.6	3.8	cfs
Water Spread Width	$\mathrm{T}=$	8.4	11.8	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	2.6	3.5	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.294	0.207	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	1.1	3.0	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	0.5	0.8	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.15	0.21	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	3.1	3.7	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	5.6	6.5	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{O}_{0}-\mathrm{O}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{O}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.127	0.095	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	6.40	11.36	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	6.40	10.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	1.6	3.7	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.25	1.25	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog $=$	0.06	0.06	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	8.75	8.75	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	1.6	3.7	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathbf{Q}_{\mathrm{b}}=$	0.0	0.1	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	1.6	3.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{\mathrm{b}}=$	0.0	0.1	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	C\% $=$	100	96	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin D-3 (DP D4)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input' CDOT Type R Curb Opening Type of Inlet		CDOT Type R Curb Opening		inches
Local Depression (additional to continuous gutter depression 'a' from above)	$\begin{aligned} & \text { Type }= \\ & \mathrm{a}_{\text {local }}= \\ &\end{aligned}$	3.00	3.00	
Number of Unit Inlets (Grate or Curb Opening)	No $=$	3	3	inches V Override Depths
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.4	7.7	
Grate Information		MINOR	MAJOR	
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value $0.60-0.80$)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value $0.60-0.70$)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog $=$	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	7.5	26.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	7.2	25.4	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	25.2	32.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	24.1	31.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	12.8	27.5	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	12.2	26.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	7.2	25.4	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.6	29.4	ft.> T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	3.2	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.29	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.41	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.67	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	7.2	25.4	cfs
Inlet Capacity IS GOOD for Minor and Major Storms($>$ Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	6.8	19.4	cfs

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin D-4 (DP D5)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W ($\mathrm{Q}_{\mathrm{T}}-\mathrm{Q}_{\mathrm{X}}$)
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\text {XTH }}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input' CDOT Type R Curb Opening -	Type =	MINOR	" MAJOR	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	2	2	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.4	7.7	inches
Grate Information		MINOR	MAJOR	\checkmark Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{\mathrm{o}}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {throat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{Cf}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{oi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\mathrm{ma}}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$Q_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef $=$	1.25	1.25	
Clogging Factor for Multiple Units	Clog $=$	0.06	0.06	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	6.1	20.2	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	5.7	18.9	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0}=$	16.8	21.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	15.7	20.6	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	9.4	19.6	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	8.8	18.3	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {curb }}=$	5.7	18.3	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	10.00	10.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.6	29.4	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	3.2	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.29	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {combination }}=$	0.41	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RFcurb $=$	0.82	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	$R F_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	5.7	18.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms($>$ Q PEAK)	$\mathrm{Q}_{\text {peak required }}=$	3.4	7.9	cfs

Warning 1: Dimension entered is not a typical dimension for inlet type specified.

MHHD-DThet Vession 5.0 (Aprit 2021 INLET MANAGEMENT

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-1 (DP E1)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- | :--- | :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desian Information (Input) coot		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	7.2	19.1	cfs
Water Spread Width	$\mathrm{T}=$	11.9	16.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.5	4.8	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	0.3	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.203	0.137	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	5.7	16.5	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	1.5	2.6	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.21	0.30	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	6.9	8.7	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.5	7.8	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.094	0.070	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	16.98	31.97	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	7.1	13.0	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	13.03	13.03	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	7.0	12.7	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.2	6.4	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.0	12.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.2	6.4	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	97	66	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-2 (DP E2)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression ($\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)$)
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{X}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion
Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'
Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management'

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desian Information (Input)		MINOR	MAJOR	
Type of Inlet ${ }_{\text {P }}$ CDOT Typ	Type $=$	CDOT Typ	Openin	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	8.0	18.6	cfs
Water Spread Width	T =	12.3	16.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.6	4.7	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.2	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.197	0.140	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	6.4	16.0	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	1.6	2.6	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.22	0.30	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	7.2	8.8	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.6	7.7	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{O}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.092	0.071	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	18.17	31.43	
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\top}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	7.7	12.8	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	13.03	13.03	ft
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	7.6	12.5	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {bgrate }} \mathrm{O}^{\text {- }}$ a	$\mathbf{Q}_{\mathrm{b}}=$	0.4	6.1	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	7.6	12.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.4	6.1	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	94	67	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-3a (DP E4)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desiqn Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Typ	Opening	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{C}_{\mathrm{F}} \mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	6.0	25.1	cfs
Water Spread Width	$\mathrm{T}=$	13.0	16.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.7	6.1	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {crown }}=$	0.0	1.6	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.186	0.108	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	4.9	22.4	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	1.1	2.7	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.23	0.39	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	4.9	6.9	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.7	9.1	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathrm{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{Q}_{\text {a }}$ (to be applied to curb opening or next d/s inlet)	$\mathrm{Q}_{\mathrm{b}}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.088	0.059	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	15.24	37.92	ft
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\mathrm{T}}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	6.0	15.0	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef =	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	13.03	13.03	ft
Actual Interception Capacity	$\mathrm{Q}_{\mathrm{a}}=$	6.0	14.6	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }}-\mathrm{Q}_{\mathrm{a}}$	$\mathrm{Q}_{\mathrm{b}}=$	0.0	10.5	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.0	14.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.0	10.5	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	100	58	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-4a (DP E5)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Allow Flow Depth at Street Crown (check box for yes, leave blank for no)

Maximum Capacity for 1/2 Street based On Allowable Spread

 Water Depth without Gutter Depression (Eq. ST-2)Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section W $\left(\mathrm{Q}_{T}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth

Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section W $\left(\mathrm{Q}_{d}-\mathrm{Q}_{\mathrm{x}}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion
MAJOR STORM Allowable Capacity is based on Depth Criterion

| Minor storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |
| :--- | :--- |
| Major storm max. allowable capacity GOOD - greater than the design flow given on sheet 'Inlet Management' |

INLET ON A CONTINUOUS GRADE

MHFD-Inlet, Version 5.01 (April 2021)

Desian Information (Input)		MINOR	MAJOR	
	Type $=$	CDOT Ty	Openin	
Local Depression (additional to continuous gutter depression 'a')	$\mathrm{a}_{\text {LOCAL }}=$	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$\mathrm{L}_{0}=$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$\mathrm{W}_{0}=$	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value $=0.5$)	$\mathrm{C}_{\mathrm{f}}-\mathrm{G}=$	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value $=0.1$)	$\mathrm{Cr}_{\mathrm{f}}-\mathrm{C}=$	0.10	0.10	
Street Hydraulics: OK - 0 < Allowable Street Capacity'		MINOR	MAJOR	
Design Discharge for Half of Street (from Inlet Management)	$\mathrm{Q}_{0}=$	6.9	16.1	cfs
Water Spread Width	T =	13.7	16.0	ft
Water Depth at Flowline (outside of local depression)	$\mathrm{d}=$	3.9	5.2	inches
Water Depth at Street Crown (or at $\mathrm{T}_{\text {max }}$)	$\mathrm{d}_{\text {CROWN }}=$	0.0	0.7	inches
Ratio of Gutter Flow to Design Flow	$\mathrm{E}_{0}=$	0.176	0.126	
Discharge outside the Gutter Section W, carried in Section T_{x}	$\mathrm{Q}_{\mathrm{x}}=$	5.7	14.1	cfs
Discharge within the Gutter Section W	$\mathrm{Q}_{\mathrm{w}}=$	1.2	2.0	cfs
Discharge Behind the Curb Face	$\mathrm{Q}_{\text {back }}=$	0.0	0.0	cfs
Flow Area within the Gutter Section W	$\mathrm{A}_{\mathrm{w}}=$	0.24	0.33	sq ft
Velocity within the Gutter Section W	$\mathrm{V}_{\mathrm{w}}=$	5.0	6.2	fps
Water Depth for Design Condition	$\mathrm{d}_{\text {IOCAL }}=$	6.9	8.2	inches
Grate Analysis (Calculated)		MINOR	MAJOR	
Total Length of Inlet Grate Opening	$\mathrm{L}=$	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$\mathrm{E}_{0 \text {-GRATE }}=$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoef $=$	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	$\mathrm{L}_{\mathrm{e}}=$	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$\mathrm{V}_{\mathrm{o}}=$	N/A	N/A	fps
Interception Rate of Frontal Flow	$\mathrm{R}_{\mathrm{f}}=$	N/A	N/A	
Interception Rate of Side Flow	$\mathrm{R}_{\mathrm{x}}=$	N/A	N/A	
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	N/A	N/A	cfs
Carry-Over Flow $=\mathrm{Q}_{0}-\mathrm{O}_{3}$ (to be applied to curb opening or next d/s inlet)	$\mathbf{Q}_{\text {b }}=$	N/A	N/A	cfs
Curb or Slotted Inlet Opening Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope S_{e} (based on grate carry-over)	$\mathrm{S}_{\mathrm{e}}=$	0.084	0.066	$\mathrm{ft} / \mathrm{ft}$
Required Length L_{T} to Have 100\% Interception	$\mathrm{L}_{T}=$	16.69	28.78	
Under No-Clogging Condition		MINOR	MAJOR	
Effective Length of Curb Opening or Slotted Inlet (minimum of $\mathrm{L}, \mathrm{L}_{\top}$)	$\mathrm{L}=$	15.00	15.00	ft
Interception Capacity	$\mathrm{Q}_{\mathrm{i}}=$	6.8	11.8	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoef $=$	1.31	1.31	
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	
Effective (Unclogged) Length	$\mathrm{L}_{\mathrm{e}}=$	13.03	13.03	ft
Actual Interception Capacity	$\mathbf{Q}_{\mathbf{a}}=$	6.7	11.5	cfs
Carry-Over Flow $=\mathrm{Q}_{\text {b(grate }} \mathrm{O}^{-} \mathrm{Q}^{\text {a }}$	$\mathbf{Q}_{\mathrm{b}}=$	0.2	4.6	cfs
Summary		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	6.7	11.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathrm{Q}_{\mathrm{b}}=$	0.	4.6	cfs
Capture Percentage $=\mathrm{Q}_{3} / \mathrm{Q}_{0}=$	$\mathrm{C} \%=$	97	72	\%

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-3b (DP E7)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.4	7.7	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	0.83	0.83	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	6.3	22.5	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	6.1	21.5	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	25.2	32.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	24.1	31.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	11.8	25.3	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	11.2	24.2	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	6.1	21.5	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.6	29.4	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	3.2	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.29	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.41	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RFCurb $=$	0.67	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	6.1	21.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(PQ PEAK) $^{\text {a }}$	$\mathrm{Q}_{\text {peak required }}=$	3.7	19.0	cfs

MHFD-Inlet, Version 5.01 (April 2021)

ALLOWABLE CAPACITY FOR ONE-HALF OF STREET (Minor \& Major Storm)

 (Based on Regulated Criteria for Maximum Allowable Flow Depth and Spread)Project: Grandview Reserve
Inlet ID: Basin E-4b (DP E9)

Gutter Geometry:
Maximum Allowable Width for Spread Behind Curb
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)
Height of Curb at Gutter Flow Line
Distance from Curb Face to Street Crown
Gutter Width
Street Transverse Slope
Gutter Cross Slope (typically 2 inches over 24 inches or $0.083 \mathrm{ft} / \mathrm{ft}$)
Street Longitudinal Slope - Enter 0 for sump condition
Manning's Roughness for Street Section (typically between 0.012 and 0.020)

Max. Allowable Spread for Minor \& Major Storm
Max. Allowable Depth at Gutter Flowline for Minor \& Major Storm Check boxes are not applicable in SUMP conditions

Maximum Capacity for $1 / 2$ Street based On Allowable Spread
Water Depth without Gutter Depression (Eq. ST-2)
Vertical Depth between Gutter Lip and Gutter Flowline (usually 2")
Gutter Depression $\left(\mathrm{d}_{\mathrm{C}}-\left(\mathrm{W} * \mathrm{~S}_{\mathrm{x}} * 12\right)\right)$
Water Depth at Gutter Flowline
Allowable Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Discharge outside the Gutter Section W, carried in Section T_{X}
Discharge within the Gutter Section $W\left(Q_{T}-Q_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Maximum Flow Based On Allowable Spread
Flow Velocity within the Gutter Section
V*d Product: Flow Velocity times Gutter Flowline Depth
Maximum Capacity for $1 / 2$ Street based on Allowable Depth
Theoretical Water Spread
Theoretical Spread for Discharge outside the Gutter Section W (T - W)
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. ST-7)
Theoretical Discharge outside the Gutter Section W, carried in Section $\mathrm{T}_{\mathrm{XTH}}$
Actual Discharge outside the Gutter Section W, (limited by distance $T_{\text {CROWN }}$)
Discharge within the Gutter Section $W\left(\mathrm{Q}_{\mathrm{d}}-\mathrm{Q}_{x}\right)$
Discharge Behind the Curb (e.g., sidewalk, driveways, \& lawns)
Total Discharge for Major \& Minor Storm (Pre-Safety Factor)
Average Flow Velocity Within the Gutter Section
V*d Product: Flow Velocity Times Gutter Flowline Depth
Slope-Based Depth Safety Reduction Factor for Major \& Minor ($\mathrm{d} \geq 6$ ") Storm
Max Flow Based on Allowable Depth (Safety Factor Applied)
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)
Resultant Flow Depth at Street Crown (Safety Factor Applied)
MINOR STORM Allowable Capacity is based on Depth Criterion MAJOR STORM Allowable Capacity is based on Depth Criterion

INLET IN A SUMP OR SAG LOCATION
 MHFD-Inlet, Version 5.01 (April 2021)

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type $=$	CDOT Ty	Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	$\mathrm{a}_{\text {local }}=$	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth $=$	4.4	7.7	inches
Grate Information		MINOR	MAJOR	\sqrt{V} Override Depths
Length of a Unit Grate	$\mathrm{L}_{0}(\mathrm{G})=$	N/A	N/A	feet
Width of a Unit Grate	$\mathrm{W}_{0}=$	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	$\mathrm{A}_{\text {ratio }}=$	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50-0.70)	$\mathrm{C}_{\mathrm{f}}(\mathrm{G})=$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15-3.60)	$\mathrm{C}_{\mathrm{w}}(\mathrm{G})=$	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60-0.80)	$\mathrm{C}_{0}(\mathrm{G})=$	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	$\mathrm{L}_{0}(\mathrm{C})=$	15.00	15.00	feet
Height of Vertical Curb Opening in Inches	$\mathrm{H}_{\text {vert }}=$	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	$\mathrm{H}_{\text {trroat }}=$	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta $=$	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	$\mathrm{W}_{\mathrm{p}}=$	0.83	0.83	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$\mathrm{C}_{\mathrm{f}}(\mathrm{C})=$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$\mathrm{C}_{\mathrm{w}}(\mathrm{C})=$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60-0.70)	$\mathrm{C}_{0}(\mathrm{C})=$	0.67	0.67	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	
Clogging Factor for Multiple Units	Clog $=$	N/A	N/A	
Grate Capacity as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{wi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	N/A	N/A	cfs
Grate Capacity as a Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	N/A	N/A	cfs
Grate Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	N/A	N/A	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	N/A	N/A	cfs
Resulting Grate Capacity (assumes clogged condition)	$\mathbf{Q}_{\text {Grate }}=$	N/A	N/A	cfs
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR	
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	
Curb Opening as a Weir (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\text {wi }}=$	6.3	22.5	cfs
Interception with Clogging	$\mathrm{Q}_{\text {wa }}=$	6.1	21.5	cfs
Curb Opening as an Orifice (based on Modified HEC22 Method)		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{0 \mathrm{i}}=$	25.2	32.9	cfs
Interception with Clogging	$\mathrm{Q}_{\text {oa }}=$	24.1	31.5	cfs
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	
Interception without Clogging	$\mathrm{Q}_{\mathrm{mi}}=$	11.8	25.3	cfs
Interception with Clogging	$\mathrm{Q}_{\text {ma }}=$	11.2	24.2	cfs
Resulting Curb Opening Capacity (assumes clogged condition)	$Q_{\text {curb }}=$	6.1	21.5	cfs
Resultant Street Conditions		MINOR	MAJOR	
Total Inlet Length	$\mathrm{L}=$	15.00	15.00	feet
Resultant Street Flow Spread (based on street geometry from above)	T =	15.6	29.4	ft.>T-Crown
Resultant Flow Depth at Street Crown	$\mathrm{d}_{\text {crown }}=$	0.0	3.2	inches
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	$\mathrm{d}_{\text {Grate }}=$	N/A	N/A	ft
Depth for Curb Opening Weir Equation	$\mathrm{d}_{\text {curb }}=$	0.29	0.57	ft
Combination Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Combination }}=$	0.41	0.72	
Curb Opening Performance Reduction Factor for Long Inlets	RFCurb $=$	0.67	0.88	
Grated Inlet Performance Reduction Factor for Long Inlets	$\mathrm{RF}_{\text {Grate }}=$	N/A	N/A	
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	$\mathbf{Q}_{\mathbf{a}}=$	6.1	21.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(PQ PEAK) $^{\text {a }}$	$\mathrm{Q}_{\text {peak required }}=$	2.9	10.9	cfs

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Basin D-7b Swale

Trapezoidal

Bottom Width (ft)	$=1.00$
Side Slopes (z:1)	$=3.00,3.00$
Total Depth (ft)	$=1.54$
Invert Elev (ft)	$=1.00$
Slope (\%)	$=2.00$
N-Value	$=0.035$
Calculations	
Compute by:	Known Q
Known Q (cfs)	$=3.90$

Highlighted
Depth (ft)
$=0.54$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=3.900$
$=1.41$
$=2.76$
$=4.42$
$=0.50$
$=4.24$
$=0.66$

Elev (ft)

Section

Depth (ft)

Reach (ft)

Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Pond D Emergency Overflow Swale

Trapezoidal

Bottom Width (ft)
$=3.00$
Side Slopes (z:1)
$=3.00,3.00$
Total Depth (ft)
Invert Elev (ft)
Slope (\%)
N -Value

Calculations
Compute by:
$=2.00$
= 100.00
$=2.00$
$=0.020$
Why is n-value so low?
\dagger Discuss within report.
Known Q (cfs)
$=26.60$

Depth (ft)

Highlighted
Depth (ft)
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.76$
$=26.60$
$=\$ 4.01$
$=6.63$
$=7.81$
$=0.98$
$=7.56$
$=1.44$

Elev (ft)

Section

Pond E Emergency Overflow Swale

Trapezoidal

Bottom Width (ft)
Side Slopes (z:1)
Total Depth (ft) Invert Elev (ft)
Slope (\%) N -Value

Calculations
Compute by:
Known Q (cfs)

$$
=15.00
$$

$=3.00,3.00$
= 1.52
$=1.00$
$=2.00$
$=0.02 q$
Why is n -value so low?
Known Q Discuss within report. $=53.80$

Highlighted

Elev (ft)
Section
Depth (ft)

Reach (ft)

Grandview Reserve Filing No. 1

FlexTable: Conduit Table

Active Scenario: 5-YR Event

Label	Diameter (in)	Material	Manning's n	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Slope (Calculat ed) ($\mathrm{ft} / \mathrm{ft}$)	Flow / Capacity (Design) (\%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Velocity (ft/s)
P-D1	24.0	Concrete	0.013	D1	6,978.34	D3	6,978.24	0.010	20.3	6,979.31	6,979.33	5.65
P-D2	24.0	Concrete	0.013	D2	6,978.54	D3	6,978.24	0.010	7.1	6,979.32	6,979.33	4.16
P-D3	24.0	Concrete	0.013	D3	6,977.94	D3A	6,977.76	0.005	38.8	6,978.82	6,978.78	4.77
P-D4	24.0	Concrete	0.013	D3A	6,977.46	D3B	6,977.03	0.005	38.8	6,978.34	6,977.89	4.77
P-D5	24.0	Concrete	0.013	D3B	6,976.93	D3C	6,976.57	0.005	38.8	6,977.81	6,977.43	4.77
P-D6	24.0	Concrete	0.013	D3C	6,976.47	D3D	6,976.28	0.005	38.8	6,977.35	6,977.14	4.77
P-D7	24.0	Concrete	0.013	D3D	6,976.18	D3E	6,975.95	0.005	38.8	6,977.06	6,976.81	4.77
P-D8	24.0	Concrete	0.013	D3E	6,975.83	D3F	6,975.46	0.005	39.0	6,976.71	6,976.33	4.75
P-D9	24.0	Concrete	0.013	D3F	6,975.36	D7	6,973.58	0.014	23.4	6,976.24	6,974.61	6.88
P-D10	18.0	Concrete	0.013	D4	6,974.45	D6	6,974.27	0.020	44.9	6,975.50	6,975.60	8.10
P-D11	18.0	Concrete	0.013	D5	6,974.45	D6	6,974.27	0.006	41.2	6,975.62	6,975.60	4.44
P-D12	24.0	Concrete	0.013	D6	6,973.77	D7	6,973.58	0.014	37.2	6,974.90	6,974.52	7.93
P-D13	36.0	Concrete	0.013	D7	6,972.58	0-1	6,970.76	0.010	24.4	6,973.87	6,972.81	7.75
P-D14	15.0	Concrete	0.013	D8	6,970.84	O-D2	6,970.75	0.005	35.0	6,972.82	6,972.81	1.30
P-D15	18.0	Concrete	0.013	D9	6,968.47	O-D3	6,968.00	0.006	4.7	6,968.70	6,968.22	2.45
P-E1	24.0	Concrete	0.013	E1	6,957.80	E3	6,957.21	0.066	12.0	6,958.74	6,958.77	12.52
P-E2	24.0	Concrete	0.013	E2	6,957.80	E3	6,957.21	0.016	26.5	6,958.78	6,958.77	7.72
P-E3	30.0	Concrete	0.013	E3	6,956.71	E3A	6,953.62	0.015	29.1	6,958.00	6,954.54	8.87
P-E4	30.0	Concrete	0.013	E3A	6,953.52	E3B	6,952.46	0.015	28.6	6,954.81	6,953.40	8.96
P-E5	30.0	Concrete	0.013	E3B	6,952.29	E3C	6,951.91	0.013	31.7	6,953.58	6,953.39	8.32
P-E6	36.0	Concrete	0.013	E3C	6,951.41	E6	6,950.58	0.012	19.6	6,953.14	6,953.20	8.17
P-E7	24.0	Concrete	0.013	E4	6,951.63	E6	6,951.48	0.016	20.0	6,953.20	6,953.20	7.20
P-E8	24.0	Concrete	0.013	E5	6,951.63	E6	6,951.48	0.005	41.3	6,953.22	6,953.20	4.92
P-E9	36.0	Concrete	0.013	E6	6,950.48	E6A	6,949.46	0.012	36.4	6,952.16	6,950.75	9.70
P-E10	36.0	Concrete	0.013	E6A	6,949.36	E6B	6,949.09	0.005	57.2	6,951.04	6,950.72	6.92
P-E11	36.0	Concrete	0.013	E6B	6,948.99	E6C	6,948.74	0.005	57.4	6,950.67	6,950.71	6.91
P-E12	36.0	Concrete	0.013	E6C	6,948.54	E8	6,948.45	0.005	59.4	6,950.69	6,950.68	6.73
P-E13	36.0	Concrete	0.013	E7	6,948.70	E8	6,948.45	0.040	2.7	6,950.68	6,950.68	8.18
P-E14	42.0	Concrete	0.013	E8	6,947.95	E9	6,947.80	0.005	42.5	6,949.66	6,949.52	7.20
P-E15	42.0	Concrete	0.013	E9	6,947.70	O-E1	6,947.00	0.005	46.7	6,949.49	6,949.12	7.29
P-E16	18.0	Concrete	0.013	E10	6,944.01	O-E2	6,943.01	0.005	7.8	6,944.30	6,943.30	2.59

Grandview Reserve Filing No. 1
 FlexTable: Manhole Table
 Active Scenario: 5-YR Event

Label	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Elevation (Invert in 2) (ft)	Elevation (Invert in 3) (ft)	Elevation (Invert Out) (ft)	Headloss Method	Headloss Coefficient (Standard)	$\begin{aligned} & \text { Flow } \\ & \text { (Known) } \end{aligned}$ (cfs)
D1	6,988.83	(N/A)	(N/A)	(N/A)	6,978.34	Standard	0.050	4.60
D2	6,988.25	(N/A)	(N/A)	(N/A)	6,978.54	Standard	0.050	1.60
D3	6,988.32	6,978.24	6,978.24	(N/A)	6,977.94	Standard	1.520	6.20
D3A	6,988.09	6,977.76	(N/A)	(N/A)	6,977.46	Standard	1.320	6.20
D3B	6,986.73	6,977.03	(N/A)	(N/A)	6,976.93	Standard	0.050	6.20
D3C	6,985.54	6,976.57	(N/A)	(N/A)	6,976.47	Standard	0.050	6.20
D3D	6,984.94	6,976.28	(N/A)	(N/A)	6,976.18	Standard	0.050	6.20
D3E	6,984.17	6,975.95	(N/A)	(N/A)	6,975.83	Standard	0.050	6.20
D3F	6,982.98	6,975.46	(N/A)	(N/A)	6,975.36	Standard	0.050	6.20
D4	6,981.53	(N/A)	(N/A)	(N/A)	6,974.45	Standard	0.050	6.60
D5	6,981.53	(N/A)	(N/A)	(N/A)	6,974.45	Standard	0.050	3.40
D6	6,981.20	6,974.27	6,974.27	(N/A)	6,973.77	Standard	1.520	10.00
D7	6,981.22	6,973.58	6,973.58	(N/A)	6,972.58	Standard	1.520	16.20
D8	6,975.45	(N/A)	(N/A)	(N/A)	6,970.84	Standard	0.050	1.60
D9	6,973.25	(N/A)	(N/A)	(N/A)	6,968.47	Standard	0.050	0.40
E1	6,962.37	(N/A)	(N/A)	(N/A)	6,957.80	Standard	0.400	7.00
E2	6,962.72	(N/A)	(N/A)	(N/A)	6,957.80	Standard	0.050	7.60
E3	6,962.03	6,957.21	6,957.21	(N/A)	6,956.71	Standard	1.520	14.60
E3A	6,958.79	6,953.62	(N/A)	(N/A)	6,953.52	Standard	0.050	14.60
E3B	6,957.65	6,952.46	(N/A)	(N/A)	6,952.29	Standard	0.100	14.60
E3C	6,957.37	6,951.91	(N/A)	(N/A)	6,951.41	Standard	1.320	14.60
E4	6,956.87	(N/A)	(N/A)	(N/A)	6,951.63	Standard	0.050	5.80
E5	6,956.87	(N/A)	(N/A)	(N/A)	6,951.63	Standard	0.050	6.70
E6	6,956.54	6,950.58	6,951.48	6,951.48	6,950.48	Standard	1.520	27.10
E6A	6,955.51	6,949.46	(N/A)	(N/A)	6,949.36	Standard	0.050	27.10
E6B	6,954.76	6,949.09	(N/A)	(N/A)	6,948.99	Standard	0.050	27.10
E6C	6,954.30	6,948.74	(N/A)	(N/A)	6,948.54	Standard	0.050	27.10
E7	6,954.65	(N/A)	(N/A)	(N/A)	6,948.70	Standard	0.050	3.60
E8	6,954.29	6,948.45	6,948.45	(N/A)	6,947.95	Standard	1.520	30.70
E9	6,954.65	6,947.80	(N/A)	(N/A)	6,947.70	Standard	0.050	33.30
E10	6,949.01	(N/A)	(N/A)	(N/A)	6,944.01	Standard	0.050	0.60

Grandview Reserve Filing No. 1

FlexTable: Outfall Table

Active Scenario: 5-YR Event

Label | Elevation |
| :---: |
| (Ground) |
| (ft) |

	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)	
O-D3	$6,970.21$	$6,968.00$	Free Outfall O-E2	$6,945.22$	$6,943.01$	Free Outfall O-D1
$6,974.81$	$6,970.76$	User Defined Tailwater	$6,972.81$	$6,943.22$	0.40	
O-D2	$6,974.50$	$6,970.00$	User Defined Tailwater	$6,972.81$	$6,972.81$	16.20
O-E1	$6,951.34$	$6,946.25$	User Defined Tailwater	$6,949.12$	$6,949.12$	1.60

Grandview Reserve Filing No. 1

Engineering Profile - D2 to O-1 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 5-YR Event

Station (ft)

Grandview Reserve Filing No.

Profile Report Engineering Profile - D1 to D3 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event

Grandview Reserve Filing No. 1

Profile Report Engineering Profile - D4 to D7 (HRG02_FDR Storm Analysis.stsw)

Active Scenario: 5-YR Event
D4
Rim: $6,981.53 \mathrm{ft}$
Invert: $6,974.45 \mathrm{ft}$
Invert In (1): (N/A) ft ; (2) (N/A) ft
Invert Out: $6,975.52 \mathrm{ft}$
D6
D6
Rim: 6,981.20 ft

Station (ft)

Grandview Reserve Filing No. 1
Profile Report
Engineering Profile - D5 to D6 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 5-YR Event
nvert 6,974.45 f
Invert In (1): (N/A) ft ; (2) (N/A) ft
Invert Out: 6,975.52 ft

Station (ft)

Grandview Reserve Filing No. 1
Profile Report
Engineering Profile - D8 to O-D2 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 5-YR Event

Station (ft)

Grandview Reserve Filing No. 1
Profile Report
Engineering Profile - D9 to O-D3 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 5-YR Event

Station (ft)

Grandview Reserve Filing No.

Profile Report
Engineering Profile - E7 to O-E1 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 5-YR Event

Rim: 6,954.65 ft
Invert: 6,948.70 ft
Invert In (1): (N/A) ft ; (2) (N/A) ft
Invert Out: $6,948.70 \mathrm{ft}$
E8
Rim: 6,954.29 ft
Invert: 6,947.95 f
Invert $\ln (1): 6,948.45 \mathrm{ft} ;(2) 6,948.45 \mathrm{ft}$
Invert Out: $6,947.95 \mathrm{ft}$
E9
Rim: $6,954.65 \mathrm{ft}$
Invert: $6,947.70 \mathrm{ft}$
Invert $\operatorname{In}(1):$: $6,947.80 \mathrm{ft} ;(2)(\mathrm{N} / \mathrm{A}) \mathrm{ft}$
Invert Out: $6,947.70 \mathrm{ft}$
E9
Rim: $6,954.65 \mathrm{ft}$
Invert: $6,947.70 \mathrm{ft}$
Invert $\operatorname{In}(1):$: $6,947.80 \mathrm{ft} ;(2)(\mathrm{N} / \mathrm{A}) \mathrm{ft}$
Invert Out: $6,947.70 \mathrm{ft}$

Grandview Reserve Filing No. 1

Profile Report
Engineering Profile - E2 to E8 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 5-YR Event

Grandview Reserve Filing No. 1

Profile Report

Engineering Profile - E1 to E3 (HRG02_FDR Storm Analysis.stsw)

Active Scenario: 5-YR Event

Station (ft)

Grandview Reserve Filing No. 1

Profile Report Engineering Profile - E4 to E6 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event

Station (ft)

Grandview Reserve Filing No. 1
Profile Report
Engineering Profile - E5 to E6 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 5-YR Event

Station (ft)

Grandview Reserve Filing No. 1

Profile Report
Engineering Profile - E10 to O-E2 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 5-YR Event

Station (ft)

Grandview Reserve Filing No. 1

FlexTable: Conduit Table Active Scenario: 100-YR Event

Label	Diameter (in)	Material	Manning's n	Start Node	Invert (Start) (ft)	Stop Node	Invert (Stop) (ft)	Slope (Calculat ed) (ft/ft)	Flow / Capacity (Design) (\%)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Velocity (ft/s)
P-D1	24.0	Concrete	0.013	D1	6,978.34	D3	6,978.24	0.010	32.7	6,979.87	6,979.87	6.44
P-D2	24.0	Concrete	0.013	D2	6,978.54	D3	6,978.24	0.010	16.4	6,979.87	6,979.87	5.31
P-D3	24.0	Concrete	0.013	D3	6,977.94	D3A	6,977.76	0.005	69.4	6,979.36	6,979.31	5.50
P-D4	24.0	Concrete	0.013	D3A	6,977.46	D3B	6,977.03	0.005	69.4	6,978.69	6,978.22	5.50
P-D5	24.0	Concrete	0.013	D3B	6,976.93	D3C	6,976.57	0.005	69.4	6,978.15	6,977.76	5.50
P-D6	24.0	Concrete	0.013	D3C	6,976.47	D3D	6,976.28	0.005	69.4	6,977.69	6,977.47	5.50
P-D7	24.0	Concrete	0.013	D3D	6,976.18	D3E	6,975.95	0.005	69.4	6,977.41	6,977.14	5.50
P-D8	24.0	Concrete	0.013	D3E	6,975.83	D3F	6,975.46	0.005	69.8	6,977.06	6,976.66	5.47
P-D9	24.0	Concrete	0.013	D3F	6,975.36	D7	6,973.58	0.014	41.9	6,976.56	6,975.92	8.06
P-D10	18.0	Concrete	0.013	D4	6,974.45	D6	6,974.27	0.020	127.1	6,978.09	6,977.80	10.58
P-D11	18.0	Concrete	0.013	D5	6,974.45	D6	6,974.27	0.006	95.7	6,977.97	6,977.80	4.47
P-D12	24.0	Concrete	0.013	D6	6,973.77	D7	6,973.58	0.014	99.0	6,976.11	6,975.92	8.47
P-D13	36.0	Concrete	0.013	D7	6,972.58	O-D1	6,970.76	0.010	56.8	6,974.58	6,974.08	9.69
P-D14	15.0	Concrete	0.013	D8	6,970.84	O-D2	6,970.75	0.005	85.4	6,974.15	6,974.08	3.18
P-D15	18.0	Concrete	0.013	D9	6,968.47	O-D3	6,968.00	0.006	66.2	6,969.38	6,968.89	5.12
P-E1	24.0	Concrete	0.013	E1	6,957.80	E3	6,957.21	0.066	21.8	6,959.59	6,959.59	14.84
P-E2	24.0	Concrete	0.013	E2	6,957.80	E3	6,957.21	0.016	43.5	6,959.69	6,959.59	8.82
P-E3	30.0	Concrete	0.013	E3	6,956.71	E3A	6,953.62	0.015	50.1	6,958.42	6,956.08	10.24
P-E4	30.0	Concrete	0.013	E3A	6,953.52	E3B	6,952.46	0.015	49.4	6,956.06	6,955.80	5.13
P-E5	30.0	Concrete	0.013	E3B	6,952.29	E3C	6,951.91	0.013	54.8	6,955.76	6,955.64	5.13
P-E6	36.0	Concrete	0.013	E3C	6,951.41	E6	6,950.58	0.012	33.9	6,955.38	6,955.29	3.57
P-E7	24.0	Concrete	0.013	E4	6,951.63	E6	6,951.48	0.016	50.5	6,955.32	6,955.29	4.65
P-E8	24.0	Concrete	0.013	E5	6,951.63	E6	6,951.48	0.005	70.9	6,955.36	6,955.29	3.66
P-E9	36.0	Concrete	0.013	E6	6,950.48	E6A	6,949.46	0.012	68.9	6,954.04	6,953.56	7.26
P-E10	36.0	Concrete	0.013	E6A	6,949.36	E6B	6,949.09	0.005	108.4	6,953.52	6,953.20	7.26
P-E11	36.0	Concrete	0.013	E6B	6,948.99	E6C	6,948.74	0.005	108.7	6,953.16	6,952.86	7.26
P-E12	36.0	Concrete	0.013	E6C	6,948.54	E8	6,948.45	0.005	112.4	6,952.82	6,952.71	7.26
P-E13	36.0	Concrete	0.013	E7	6,948.70	E8	6,948.45	0.040	12.9	6,952.71	6,952.71	2.43
P-E14	42.0	Concrete	0.013	E8	6,947.95	E9	6,947.80	0.005	94.8	6,951.51	6,951.38	7.12
P-E15	42.0	Concrete	0.013	E9	6,947.70	O-E1	6,947.00	0.005	110.1	6,951.33	6,950.48	8.17
P-E16	18.0	Concrete	0.013	E10	6,944.01	O-E2	6,943.01	0.005	136.3	6,946.24	6,944.26	5.94

Grandview Reserve Filing No. 1
 FlexTable: Manhole Table
 Active Scenario: 100-YR Event

Label	Elevation (Rim) (ft)	Elevation (Invert in 1) (ft)	Elevation (Invert in 2) (ft)	Elevation (Invert in 3) (ft)	Elevation (Invert Out) (Invert Out) (ft)	Headloss Method	Headloss Coefficient (Standard)	Flow (Known) (cfs)
D1	6,988.83	(N/A)	(N/A)	(N/A)	6,978.34	Standard	0.050	7.40
D2	6,988.25	(N/A)	(N/A)	(N/A)	6,978.54	Standard	0.050	3.70
D3	6,988.32	6,978.24	6,978.24	(N/A)	6,977.94	Standard	1.520	11.10
D3A	6,988.09	6,977.76	(N/A)	(N/A)	6,977.46	Standard	1.320	11.10
D3B	6,986.73	6,977.03	(N/A)	(N/A)	6,976.93	Standard	0.050	11.10
D3C	6,985.54	6,976.57	(N/A)	(N/A)	6,976.47	Standard	0.050	11.10
D3D	6,984.94	6,976.28	(N/A)	(N/A)	6,976.18	Standard	0.050	11.10
D3E	6,984.17	6,975.95	(N/A)	(N/A)	6,975.83	Standard	0.050	11.10
D3F	6,982.98	6,975.46	(N/A)	(N/A)	6,975.36	Standard	0.050	11.10
D4	6,981.53	(N/A)	(N/A)	(N/A)	6,974.45	Standard	0.050	18.70
D5	6,981.53	(N/A)	(N/A)	(N/A)	6,974.45	Standard	0.050	7.90
D6	6,981.20	6,974.27	6,974.27	(N/A)	6,973.77	Standard	1.520	26.60
D7	6,981.22	6,973.58	6,973.58	(N/A)	6,972.58	Standard	1.520	37.70
D8	6,975.45	(N/A)	(N/A)	(N/A)	6,970.84	Standard	0.050	3.90
D9	6,973.25	(N/A)	(N/A)	(N/A)	6,968.47	Standard	0.050	5.60
E1	6,962.37	(N/A)	(N/A)	(N/A)	6,957.80	Standard	0.400	12.70
E2	6,962.72	(N/A)	(N/A)	(N/A)	6,957.80	Standard	0.050	12.50
E3	6,962.03	6,957.21	6,957.21	(N/A)	6,956.71	Standard	1.520	25.20
E3A	6,958.79	6,953.62	(N/A)	(N/A)	6,953.52	Standard	0.050	25.20
E3B	6,957.65	6,952.46	(N/A)	(N/A)	6,952.29	Standard	0.100	25.20
E3C	6,957.37	6,951.91	(N/A)	(N/A)	6,951.41	Standard	1.320	25.20
E4	6,956.87	(N/A)	(N/A)	(N/A)	6,951.63	Standard	0.050	14.60
E5	6,956.87	(N/A)	(N/A)	(N/A)	6,951.63	Standard	0.050	11.50
E6	6,956.54	6,950.58	6,951.48	6,951.48	6,950.48	Standard	1.520	51.30
E6A	6,955.51	6,949.46	(N/A)	(N/A)	6,949.36	Standard	0.050	51.30
E6B	6,954.76	6,949.09	(N/A)	(N/A)	6,948.99	Standard	0.050	51.30
E6C	6,954.30	6,948.74	(N/A)	(N/A)	6,948.54	Standard	0.050	51.30
E7	6,954.65	(N/A)	(N/A)	(N/A)	6,948.70	Standard	0.050	17.20
E8	6,954.29	6,948.45	6,948.45	(N/A)	6,947.95	Standard	1.520	68.50
E9	6,954.65	6,947.80	(N/A)	(N/A)	6,947.70	Standard	0.050	78.60
E10	6,949.01	(N/A)	(N/A)	(N/A)	6,944.01	Standard	0.050	10.50

Grandview Reserve Filing No. 1 FlexTable: Outfall Table Active Scenario: 100-YR Event

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	$\begin{aligned} & \text { Flow (Total Out) } \\ & \text { (cfs) } \end{aligned}$
O-D3	6,970.21	6,968.00	Free Outfall		6,968.89	5.60
O-E2	6,945.22	6,943.01	Free Outfall		6,944.26	10.50
O-D1	6,974.81	6,970.76	User Defined Tailwater	6,974.08	6,974.08	37.70
O-D2	6,974.50	6,970.00	User Defined Tailwater	6,974.08	6,974.08	3.90
O-E1	6,951.34	6,946.25	User Defined Tailwater	6,950.48	6,950.48	78.60

Grandview Reserve Filing No. 1

Profile Report
Engineering Profile - D2 to 0-1 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Station (ft)

Grandview Reserve Filing No. 1

Profile Report Engineering Profile - D1 to D3 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Grandview Reserve Filing No． 1

Profile Report Engineering Profile－D4 to D7（HRG02＿FDR Storm Analysis．stsw） Active Scenario：100－YR Event

Rim： $6,981.53 \mathrm{ft}$
Invert： $6,974.45 \mathrm{ft}$
Invert In（1）：（N／A）ft ；（2）（N／A）ft
Invert Out： $6,974.45 \mathrm{ft}$
D6
Rim： $6,981.20 \mathrm{ft}$
Invert \ln（1）： $6,974.27 \mathrm{ft}$ ；（2）6，974．27 ft
Invert $\ln (1): 6,974.27$
Invert Out： $6,973.77 \mathrm{ft}$

Grandview Reserve Filing No. 1
Profile Report
Engineering Profile - D5 to D6 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Station (ft)

Grandview Reserve Filing No. 1
Profile Report
Engineering Profile - D8 to O-D2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Station (ft)

Grandview Reserve Filing No. 1
Profile Report
Engineering Profile - D9 to O-D3 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Station (ft)

Grandview Reserve Filing No. 1

Profile Report
Engineering Profile - E7 to O-E1 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Grandview Reserve Filing No. 1

Profile Report

Engineering Profile - E2 to E8 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 100-YR Event

Grandview Reserve Filing No. 1

Profile Report

Engineering Profile - E1 to E3 (HRG02_FDR Storm Analysis.stsw)

Active Scenario: 100-YR Event

Station (ft)

Grandview Reserve Filing No.

Profile Report Engineering Profile - E4 to E6 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Station (ft)

Grandview Reserve Filing No. 1
Profile Report
Engineering Profile - E5 to E6 (HRG02_FDR Storm Analysis.stsw)
Active Scenario: 100-YR Event

Station (ft)

Grandview Reserve Filing No. 1

Profile Report
Engineering Profile - E10 to 0-E2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Station (ft)

APPENDIX E

Water Quality Computations

Detention Pond Tributary Areas

Subdivision: Grandview Reserve
Location: CO, El Paso County
Project Name: Grandview Reserve
Project No.: HRG01
Calculated By: TJE
Checked By: BAS
Date: 10/6/22
Pond D

Basin	Area	\% Imp
D-1	3.48	65
D-2	0.82	65
D-3	3.67	65
D-4	1.82	65
D-5	1.45	37.7
D-7b	0.96	59.6
Total	$\mathbf{1 2 . 2 0}$	$\mathbf{6 1 . 3}$

Pond E

Basin	Area	\% Imp
E-1	4.91	47.1
E-2	4.06	65
E-3a	2.75	65
E-3b	2.17	65
E-4a	4.68	65
E-4b	1.60	65
E-5	1.13	2
Total	$\mathbf{2 1 . 3 0}$	$\mathbf{5 7 . 5}$

Define Zones and Basin Geometry
Zone 1 Volume (WQC

CV) $=$	0.245	acre-feet acre-feet
Zone 2 Volume (EURV - Zone 1) =	0.668	
Zone 3 Volume (100 -year - Zones 1 \& 2) $=$	0.466	acre-feet
Total Detention Basin Volume =	1.379	eet
Initial Surcharge Volume (ISV) =	user	ft^{3}
Initial Surcharge Depth (ISD) =	user	t
Total Available Detention Depth ($\mathrm{H}_{\text {total }}$) $=$	user	t
Depth of Trickle Channel ($\mathrm{H}_{\text {TC }}$) =	user	t
Slope of Trickle Channel ($\mathrm{S}_{\text {TC }}$) $=$	user	f / ft
Slopes of Main Basin Sides ($\mathrm{S}_{\text {main }}$) $=$	user	$\mathrm{H}: \mathrm{V}$
Basin Length-to-Width Ratio ($\mathrm{R}_{L / w}$) $=$	user	

on Pond)

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.00	2.00					
Orifice Area (sq. inches)	0.89	0.89	0.89					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								

User Input: Overflow Weir (Dropbox with Flat or Sloped Grate and Outlet Pipe OR Rectangular/Trapezoidal Weir (and No Outlet Pipe)					Calculated Parameters for Overflow Weir	
	Zone 3 Weir	Not Selected	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)	Height of Grate Upper Edge, $\mathrm{H}_{\mathrm{t}}=$ Overflow Weir Slope Length =	Zone 3 Weir	Not Selected
Overflow Weir Front Edge Height, $\mathrm{Ho}=$	4.50	N/A			5.23	N/A
Overflow Weir Front Edge Length =	2.92	N/A	feet		3.01	N/A
Overflow Weir Grate Slope =	4.00	N/A	H:V Grater	Open Area / 100-yr Orifice Area =	11.86	N/A
Horiz. Length of Weir Sides =	2.92	N/A	feet O-	Overflow Grate Open Area w/o Debris = Overflow Grate Open Area w/ Debris =	6.12	N/A
Overflow Grate Type =	Type C Grate	N/A			6.12	N/A
Debris Clogging \% =	0\%	N/A	\%			

Verify - ratio should be around 1

100-yr volume provided does not meet 100-yr required volume (1.379 ac-ft)

WQCV	EURV	2 Year	5 Year	10 Year	25 Year	50 Year	100 Year	500 Year
N/A	N/A	1.19	1.50	1.75	2.00	2.25	2.52	3.68
0.245	0.913	0.669	0.880	1.049	1.277	1.502	1777	2.928
N/A	N/A	0.669	0.880	1.049	1.277	1.502	1.777	2.928
N/A	N/A	0.1	0.2	0.2	2.0	4.0	6.5	16.8
N/A	N/A		-					
N/A	N/A	0.01	0.01 L	0.02	0.16	0.33	7.53	1.38
N/A	N/A	9.9	13.0	15.3	19.8	23.8	28.9	47.7
0.1	0.3	0.3	0.3	0.4	1.7	3.4	5.7	17.7
N/A	N/A	N/A	2.2	17	0.8	0.9	0.9	1.1
Plate	Vertical Orifice 1	Vertical Orifice 1	Vertic) Orifice 1	Vertipa/Orifice 1	Overflow Weir 1	Overflow Weir 1	Outlet Plate 1	Spillway
N/A	N/A	N/A	N/A	N/A	0.2	0.5	0.9	1.0
N/A								
38	68	61	68	72	74	73	71	66
40	72	65	72	77	79	79	79	77
2.45	4.28	3.53	4.06	4.46	4.83	5.03	5.33	6.68
0.32	0.41	0.37	0.40	0.42	0.43	0.44	0.46	0.53
0.247	0.917	0.624	0.824	0.987	1.144	1.232	71.367	2.031

Per ECM Chap 3.2.8.B, "The proposed project or developed land use shall not change historical runoff values, cause downstream damage, or adversely impact adjacent properties." Increases from the historical flowrates are allowable (with or without full spectrum detention) if it is shown (via text and/or calcs) that the flow increase can be accommodated downstream (i.e., show that there is a suitable outfall, per ECM Chap 3.2.4). If applicable, reference the downstream facilities in a DBPS or MDDP.

DETENTION BASIN OUTLET STRUCTURE DESIGN

S-A-V-D Chart Axis Override	Left Y-Axis	Right Y-Axis
minimum bound maximum bound		

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.14	0.01	0.81
	0:15:00	0.00	0.00	1.20	1.95	2.42	1.63	2.03	1.99	3.60
	0:20:00	0.00	0.00	4.25	5.56	6.54	4.13	4.81	5.15	8.07
	0:25:00	0.00	0.00	8.58	11.36	13.74	8.50	9.70	10.42	16.97
	0:30:00	0.00	0.00	9.88	13.00	15.30	17.52	21.13	24.04	40.61
	0:35:00	0.00	0.00	9.07	11.74	13.71	19.83	23.79	28.85	47.71
	0:40:00	0.00	0.00	8.09	10.26	11.94	18.72	22.43	27.22	44.90
	0:45:00	0.00	0.00	6.95	8.95	10.47	16.33	19.49	24.30	40.31
	0:50:00	0.00	0.00	5.97	7.85	9.06	14.55	17.31	21.41	35.79
	0:55:00	0.00	0.00	5.19	6.79	7.87	12.39	14.66	18.45	30.83
	1:00:00	0.00	0.00	4.67	6.07	7.12	10.55	12.37	15.91	26.62
	1:05:00	0.00	0.00	4.29	5.55	6.57	9.31	10.88	14.28	24.06
	1:10:00	0.00	0.00	3.74	5.09	6.06	8.12	9.44	12.07	20.15
	1:15:00	0.00	0.00	3.23	4.50	5.54	7.06	8.18	10.11	16.70
	1:20:00	0.00	0.00	2.77	3.86	4.83	5.91	6.81	8.10	13.24
	1:25:00	0.00	0.00	2.39	3.34	4.06	4.90	5.62	6.36	10.25
	1:30:00	0.00	0.00	2.13	2.99	3.52	3.93	4.47	4.89	7.74
	1:35:00	0.00	0.00	2.00	2.82	3.22	3.26	3.68	3.89	6.09
	1:40:00	0.00	0.00	1.93	2.54	3.02	2.87	3.23	3.33	5.15
	1:45:00	0.00	0.00	1.89	2.32	2.88	2.62	2.95	2.97	4.52
	1:50:00	0.00	0.00	1.86	2.16	2.78	2.46	2.76	2.73	4.10
	1:55:00	0.00	0.00	1.64	2.04	2.65	2.34	2.64	2.56	3.79
	2:00:00	0.00	0.00	1.45	1.89	2.42	2.27	2.55	2.43	3.58
	2:05:00	0.00	0.00	1.11	1.44	1.84	1.73	1.95	1.84	2.68
	2:10:00	0.00	0.00	0.83	1.08	1.37	1.28	1.44	1.35	1.97
	2:15:00	0.00	0.00	0.62	0.80	1.01	0.95	1.07	1.00	1.46
	2:20:00	0.00	0.00	0.46	0.59	0.74	0.70	0.79	0.75	1.08
	2:25:00	0.00	0.00	0.33	0.42	0.54	0.51	0.57	0.54	0.78
	2:30:00	0.00	0.00	0.24	0.30	0.39	0.36	0.41	0.39	0.56
	2:35:00	0.00	0.00	0.17	0.21	0.28	0.26	0.29	0.28	0.41
	2:40:00	0.00	0.00	0.11	0.14	0.19	0.18	0.20	0.19	0.28
	2:45:00	0.00	0.00	0.06	0.09	0.12	0.12	0.13	0.12	0.17
	2:50:00	0.00	0.00	0.03	0.05	0.06	0.06	0.07	0.07	0.09
	2:55:00	0.00	0.00	0.01	0.02	0.03	0.03	0.03	0.03	0.04
	3:00:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically,
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft $\left.{ }^{2}\right]$	Area [acres]	Volume [ft $\left.{ }^{3}\right]$	Volume [ac-ft]	Total outflow [cfs]
						For best results, include the stages of all grade slope changes (e.g. ISV and Floor) from the S-A-V table on Sheet 'Basin'.

Project: Grandview Reserve Filing No. 1

Basin ID: Pond E

DETENTION BASIN OUTLET STRUCTURE DESIGN

User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)
$\begin{aligned} \text { Underdrain Orifice Invert Depth } & =\begin{array}{ll}\text { N/A } & \mathrm{ft} \text { (distance below the filtration media surface) } \\ \text { Underdrain Orifice Diameter } & = \\ & \text { N/A } \\ \text { inches }\end{array}\end{aligned}$

Underdrain Orifice Area	Calculated Parameters
Underdrain Orifice Centroid	$=$ ft^{2} N/A fee

				d	
Invert of Lowest Orifice = Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing = Orifice Plate: Orifice Area per Row =	0.00	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches sq. inches (diameter $=1-3 / 8$ inches)	WQ Orifice Area per Row $=$ Elliptical Half-Width = Elliptical Slot Centroid = Elliptical Slot Area =	$1.014 \mathrm{E}-02$	ft^{2}
	3.20			N/A	feet
	N/A			N/A	feet
	1.46			N/A	ft^{2}

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.50	3.00					
Orifice Area (sq. inches)	1.46	1.46	1.46					
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								

er Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches	Vertical Orifice Area $=$ Vertical Orifice Centroid $=$	Calculated Parameters for Vertical Orifice	
	Zone 2 Circular	Not Selected			Zone 2 Circular	Not Selected
Invert of Vertical Orifice $=$	3.20	N/A			0.06	N/A
Depth at top of Zone using Vertical Orifice $=$	5.02	N/A			0.13	N/A
Vertical Orifice Diameter $=$	3.20	N/A				

Label on plans.

Verify - ratio should be around 1

DETENTION BASIN OUTLET STRUCTURE DESIGN

Inflow Hydrographs
The user can override the calculated inflow hydrographs from this workbook with inflow hydrographs developed in a separate program.

	SOURCE	CUHP								
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.20	0.02	1.21
	0:15:00	0.00	0.00	1.80	2.93	3.64	2.45	3.07	2.99	5.51
	0:20:00	0.00	0.00	6.53	8.61	10.15	6.42	7.49	8.01	12.62
	0:25:00	0.00	0.00	13.44	18.03	21.75	13.34	15.40	16.59	27.43
	0:30:00	0.00	0.00	16.39	21.49	25.32	28.44	34.00	38.44	64.40
	0:35:00	0.00	0.00	15.53	20.00	23.35	33.58	39.99	47.93	78.67
	0:40:00	0.00	0.00	14.13	17.90	20.85	32.71	38.87	46.73	76.33
	0:45:00	0.00	0.00	12.44	15.94	18.64	29.41	34.85	43.09	70.50
	0:50:00	0.00	0.00	10.96	14.29	16.52	26.54	31.33	38.80	63.82
	0:55:00	0.00	0.00	9.69	12.61	14.64	23.22	27.33	34.31	56.72
	1:00:00	0.00	0.00	8.63	11.17	13.06	20.17	23.70	30.35	50.41
	1:05:00	0.00	0.00	7.91	10.21	12.05	17.64	20.66	27.02	45.09
	1:10:00	0.00	0.00	7.10	9.53	11.33	15.50	18.11	23.17	38.58
	1:15:00	0.00	0.00	6.36	8.73	10.66	13.81	16.07	20.00	33.09
	1:20:00	0.00	0.00	5.69	7.82	9.67	12.08	14.00	16.86	27.65
	1:25:00	0.00	0.00	5.06	6.94	8.40	10.44	12.06	14.02	22.79
	1:30:00	0.00	0.00	4.46	6.15	7.24	8.79	10.10	11.52	18.53
	1:35:00	0.00	0.00	3.96	5.49	6.30	7.28	8.32	9.28	14.71
	1:40:00	0.00	0.00	3.63	4.80	5.69	6.02	6.83	7.40	11.54
	1:45:00	0.00	0.00	3.47	4.33	5.34	5.21	5.89	6.19	9.59
	1:50:00	0.00	0.00	3.38	4.02	5.11	4.72	5.33	5.47	8.38
	1:55:00	0.00	0.00	3.03	3.78	4.86	4.42	4.99	5.00	7.57
	2:00:00	0.00	0.00	2.70	3.52	4.48	4.21	4.75	4.67	6.98
	2:05:00	0.00	0.00	2.15	2.81	3.57	3.36	3.78	3.66	5.43
	2:10:00	0.00	0.00	1.66	2.16	2.76	2.58	2.90	2.76	4.05
	2:15:00	0.00	0.00	1.29	1.67	2.12	1.98	2.22	2.08	3.03
	2:20:00	0.00	0.00	0.99	1.28	1.62	1.51	1.69	1.58	2.30
	2:25:00	0.00	0.00	0.75	0.97	1.22	1.14	1.28	1.20	1.74
	2:30:00	0.00	0.00	0.57	0.72	0.91	0.85	0.95	0.90	1.30
	2:35:00	0.00	0.00	0.42	0.53	0.67	0.63	0.70	0.67	0.97
	2:40:00	0.00	0.00	0.31	0.39	0.50	0.47	0.53	0.51	0.73
	2:45:00	0.00	0.00	0.22	0.28	0.36	0.34	0.38	0.37	0.53
	2:50:00	0.00	0.00	0.14	0.19	0.24	0.24	0.26	0.25	0.36
	2:55:00	0.00	0.00	0.08	0.12	0.15	0.15	0.16	0.16	0.22
	3:00:00	0.00	0.00	0.04	0.06	0.08	0.08	0.09	0.08	0.12
	3:05:00	0.00	0.00	0.02	0.03	0.03	0.03	0.04	0.03	0.04
	3:10:00	0.00	0.00	0.00	0.01	0.01	0.01	0.01	0.01	0.01
	3:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	3:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:15:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:30:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:50:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	6:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

Summary Staqe-Area-Volume-Discharge Relationships
The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically,
The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft $\left.{ }^{2}\right]$	Area [acres]	Volume [ft $\left.{ }^{3}\right]$	Volume [ac-ft]	Total Outflow [cfs]

Put this spreadsheet before the pond related spreadsheets. It's harder to find this when it is in between pond related documents.

Site-Level Low Impact Development (LID) Design Effective Impervious Calculator LID Credit by Impervious Reduction Factor (IRF) Method

	User Input		hes
	Calculated cells		
.--Design Storm: 1-Hour Rain Depth	Wacv Event	0.60	
.-MMinor Storm: 1-Hour Rain Depth	5-Year Event	1.50	inches
--Major Storm: 1 -Hour Rain Depth	100-Year Event	2.52	inches
Optional User Defined Storm	CUHP		
(CUHP) NOAA 1 Hour Rainfall Depth and Frequency for User Defined Storm	100-vear Event		
tensity for Optional User Defined Storm	0		

UD-BMP (Version 3.06, November 2016)

Channel Report

Pond D Trickle Channel

Rectangular	
Bottom Width (ft)	$=2.00$
Total Depth (ft)	$=0.50$
	$=100.00$
Invert Elev (ft)	$=0.50$
Slope (\%)	$=0.013$
N-Value	
Calculations	Known Q
Compute by:	$=0.77$

Highlighted
Depth (ft)
$=0.18$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=0.770$
$=0.36$
$=2.14$
$=2.36$
$=0.17$
$=2.00$
$=0.25$

Elev (ft)
Section
Depth (ft)

Reach (ft)

Channel Report

Pond E Trickle Channel

Rectangular

Bottom Width (ft)	$=2.00$
Total Depth (ft)	$=0.50$
	$=100.00$
Invert Elev (ft)	$=0.50$
Slope (\%)	$=0.013$

Calculations

Compute by:
Known Q (cfs)

Known Q
$=1.38$

Highlighted
Depth (ft)
$=0.25$
Q (cfs)
Area (sqft)
Velocity (ft/s)
Wetted Perim (ft)
Crit Depth, Yc (ft)
Top Width (ft)
EGL (ft)
$=1.380$
$=0.50$
$=2.76$
$=2.50$
$=0.25$
$=2.00$
$=0.37$

Elev (ft)

Section

Depth (ft)

Micropool/ISV SIZING CALCULATIONS

Subdivision: Grandview Reserve
Location: CO, El Paso County

Grandview Subdivision PDR
HRG01
TJE
BAS
$10 / 6 / 22$

	Pond D	Pond E	
WQCV Volume (Ac-Ft)	0.245	0.430	From MHFD-Detention Spreadsheet
Provided ISV Depth (in)	6.00	9.00	4" Min. per USDCM, Volume 3
Provided Micropool/ISV Area (Sq. Ft.)	78.00	93.00	
Provided ISV Volume (Cu. Ft.)	39.00	69.75	
Micropool/ISV Deisgn Results			
Minimum Micropool Area (Sq. Ft.)	64	75	Assuming ISV above - Min. $10 \mathrm{ft}^{2}$ per USDCM, Volume 3
Required ISV Volume (Cu. Ft.)	32	56	0.3\% of WQCV, per USDCM, Volume 3
Is Required Micropool Area Met?	YES	YES	
Is Required ISV Volume Met?	YES	YES	

Include calculations for sizing of riprap for spillways

APPENDIX F

Drainage Maps

[^0]: For proposed runoff reduction measures:
 In accordance with the MHFD, runoff reduction has vegetation requirements that have been overlooked in the past. Going forward the following will be required for runoff reduction:

 - The runoff reduction RPA is considered a WQ Facility and requires a signed Maintenance Agreement
 - All RPA/SPA areas will need to be within a no build/drainage easement (or tract) and discussed in
 the maintenance agreement and O\&M manual.
 RPA vegetation should be turf grass (from seed [provide appropriate seed mix] or sod).
 - Turf grass vegetation should have a uniform density of at least 80%.
 - RPA/SPA limits must be shown on GEC Plans (not just FDR) so our SW inspectors and the QSM know that these areas are to remain pervious and vegetated (80%). Our SW inspectors do not look at drainage reports.

[^1]: notes:
 calues are taken directly from Table --6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001)

[^2]: Notes:
 \% Impervio
 \%\% Impervions values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. I. CH. 6 (Referencing UDFCD 2001)

