

FINAL DRAINAGE REPORT

GRANDVIEW RESERVE FILING NO. 1

El Paso County, Colorado

PREPARED FOR: D.R. Horton 9555 S. Kingston Court Englewood, CO

PREPARED BY: Galloway & Company, Inc. 1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920

DATE: June 21, 2024

PCD Filing No.: SF2311

ENGINEER'S STATEMENT

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omissions on my part in preparing this report.

Treven Edwards, PE #60124 For and on behalf of Galloway & Company, Inc. Date

DEVELOPER'S CERTIFICATION

I, The developer, have read and will comply with all of the requirements specified in this drainage report and plan.

By:

Date

Address: D.R. Horton 9555 S. Kingston Court Englewood, CO

EL PASO COUNTY CERTIFICATION

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Joshua Palmer, P.E. County Engineer/ECM Administrator

Date

Conditions:

_

TABLE OF CONTENTS

I.	Purpo	se4
II.	Gener	al Description4
III.	Draina	age Criteria4
IV.	Interi	m Drainage Conditions5
	HIS	TORIC CONDITIONS
	HIS	TORIC OFF-SITE FLOWS
	INT	ERIM OFF-SITE FLOWS
	INT	ERIM ON-SITE FLOWS
V.	Four S	Step Process
	1.	Employ Runoff Reduction Practices7
	2.	Stabilize Channels
	3.	Provide Water Quality Capture Volume (WQCV)8
	4.	Consider Need for Industrial and Commercial BMPs8
VI.	Prop	osed Drainage Conditions8
VII.	Storn	n Sewer System11
VIII.	Prop	osed Water Quality Detention Ponds11
IX.	Prop	osed Channel Improvements12
Х.	Mainte	enance
XI.	Wetla	ands Mitigation
XII.	Flood	dplain Statement
XIII.	Drair	nage Fees & Maintenance13
XIV.	C	Conclusion
XV.	Refe	rences

Appendices:

- A. Exhibits and Figures
- B. MDDP & DBPS Sheet References
- C. Hydrologic Computations
- D. Hydraulic Computations
- E. Water Quality Computations
- F. Drainage Maps & Water Quality Plan

I. Purpose

The purpose of this Final Drainage Report is to identify on and offsite drainage patterns, locate and identify tributary or downstream drainage features and facilities that impact the site, and to identify which types of drainage facilities will be needed and where they will be located. This report will remain in general compliance with the approved MDDP prepared by HR Green, dated November 2020 and Preliminary Drainage Report (PDR) prepared by Galloway & Company, Inc., dated January 19, 2024.

II. General Description

The Filing No. 1 project site is a single-family residential development located in the Falcon area of El Paso County, Colorado. The Filing No. 1 project site is located in a portion of the South half of Section 21, the North half of Section 28, Township 12 South, Range 64 West of the 6th Principal Meridian, County of El Paso, State of Colorado. The subject property includes Eastonville Road to the west, which was studied separately in the <u>"Eastonville Road Preliminary Drainage Report"</u>, by HR Green, September 2023, EPC # CDR2321 (E-PDR), and is currently in review with El Paso County. The project site is bounded by undeveloped land proposed as future development to the east, and undeveloped land within the Waterbury Development to the south. A Vicinity Map is included in **Appendix A**...

This final drainage report is the basis for the drainage facility design in conformance with the previously approved MDDP for the site prepared by HR Green, "*Grandview Reserve Master Development Drainage Plan*", HR Green, November 2020, EPC # SKP201 (**MDDP**) and the approved preliminary drainage report, "*Preliminary Drainage Report - Grandview Reserve Filing No. 1*", Galloway & Company, Inc., January 19, 2024 (**PDR**). The site consists of approximately 37.564 acres and includes 119 dwelling units.

The existing soil types within the proposed site as determined by the NRCS Web Soil Survey for El Paso County Area consist of Columbine gravelly sandy loam (hydrologic soil group A) and Stapleton sandy loam (hydrologic soil group B). See the soils map included in **Appendix A**.

III. Drainage Criteria

Hydrology calculations were performed using the City of Colorado Springs/El Paso County Drainage Criteria Manual, as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.

The drainage calculations were based on the criteria manual Figure 6-5 and IDF equations to determine the intensity and are listed in Table 1 below.

Return Period	One Hour Depth (in).	Intensity (in/hr)				
5-year	1.50	5.17				
100-year	2.52	8.68				

Table 1 - Precipitation Data

The rational method was used to calculate peak flows as the tributary areas are less than 100 acres. The rational method has been proven to be accurate for basins of this size and is based on the following formula:

Q = CIA

Where:

Q = Peak Discharge (cfs)
C = Runoff Coefficient
I = Runoff intensity (inches/hour)
A = Drainage area (acres)

The runoff coefficients are calculated based on land use, percent imperviousness, and design storm for each basin, as shown in the drainage criteria manual (Table 6-6). Composite percent impervious and C values were calculated using the residential, streets, roofs, and lawns coefficients found in Table 6-6 of the manual.

The 100-year event was used as the major storm event. The 5-year event was used as the minor event. The UD-Inlets v5.01 spreadsheet was utilized for the sizing of the proposed sump inlets.

The UD-Detention v4.04 spreadsheet was utilized for the design of the proposed on-site water quality ponds, Ponds D and E.

Swales

The proposed emergency overflow swales were analyzed using criteria with the City DCM Vol.1, Chapter 12, section 3. These swales were analyzed using Federal Highway Administration (FHWA) Hydraulic Toolbox for a 100-year major storm event. The FHWA Hydraulic Toolbox calculates the capacity and stability of swales. Stability is determined by ensuring that the permissible shear stress is greater than the maximum shear stress calculated in the swale. This software utilizes equations for shear stress from HEC 15.

In the instances when the maximum shear stress exceeds the permissible shear stress Pmax 300 lining from North American Green (NAG) is proposed. Swale stability in these scenarios were analyzed using NAG Erosion Control Materials Design Software (ECMDS). This software computes channel stability for the proposed swale utilizing an appropriate NAG lining.

Swale computations can be found in **Appendix D**.

IV. Interim Drainage Conditions

HISTORIC CONDITIONS

The site is contained fully within one major drainage basin; the Gieck Ranch Drainage Basin and is tributary to Black Squirrel Creek. The site generally drains from north to south with an average slope of 2% outside of the channel. The rational method was used to analyze the individual basins within the site because their size permits it.

HISTORIC OFF-SITE FLOWS

As described in the approved <u>"Preliminary Drainage Report for Grandview Reserve Filing No. 1",</u> Galloway & Company, February 2024, EPC # PUDSP2110 (**PDR**). There is one (1) major drainageway bordering the Grandview Reserve Filing No. 1 project site to the northeast that currently conveys existing on & off-site flows through and adjacent to the project site to the southeast; This is the Gieck Ranch Tributary #1 (Hereon referred to as Channel A), located along the northeastern boundary of the project site. Channel A drainageway generally flows to the southeast towards Highway 24, before crossing via existing drainage structures. This drainageway is analyzed in the report titled "Grandview Reserve CLOMR Report," Prepared by HR Green. This report is still in review – a discussion will be included in the report about the difference between FEMA flows and the Meridian Ranch MDDP. Subsequent Final Drainage Reports will be revised as necessary to incorporate any changes from the CLOMR report.

Existing upstream tributary analysis (the areas west of Eastonville Road) was performed as part of the **E-PDR** and includes basins EX1, EX2, EX3, EX4, EX5, EX6, and EX7. See the **E-PDR** in **Appendix F** for reference. A description of critical design points from the **E-PDR** that enter the site are summarized below.

Channel A: enters the site via an existing 18" (Public) CMP under Eastonville Rd. The flows at this point are associated with **Design Point 4** of the **E-PDR** and correlates to **Design Point G06** of <u>"The Sanctuary Filing 1 FDR (Meridian Ranch)"</u>, Tech Contractors, August 2022; Per the **E-PDR**, the total upstream tributary area is 832.7 acres, and Channel A flows entering the existing pipe culvert at **Design Point 4** are: $Q_5 = 22.4$ cfs, $Q_{100} = 491.0$ cfs.

Design Point 5: off-site flows enter the site via an existing 18" (Public) CMP crossing Eastonville Rd. The off-site flows are associated with **Design Point 5** of the **E-PDR**; Per the **E-PDR**, the total upstream tributary area is 22.35 acres, and flows entering the existing pipe culvert at **Design Point 5** are: $Q_5 = 7.0$ cfs, $Q_{100} = 43.3$ cfs.

Design Point 6: off-site flows enter the site via an existing 18" (Public) CMP crossing Eastonville Rd. The off-site flows are associated with **Design Point 6** of the **E-PDR**; Per the **E-PDR**, the total upstream tributary area is 3.05 acres, and flows entering the existing pipe culvert at **Design Point 5** are: $Q_5 = 1.2$ cfs, $Q_{100} = 6.9$ cfs.

Following the preliminary drainage report (PDR), the "existing" condition for this FDR will be after the preliminary / interim overlot grading on the site has taken place.

In the interim condition, overland grading operations will have taken place within the Grandview Reserve Subdivision in preparation for the ultimate proposed condition. While this activity is taking place within the proposed subdivision, no activity is anticipated west of Eastonville Road. The proposed project site lies completely within the Gieck Ranch Drainage Basin and is also situated within two (2) of the larger identified basins (D & E) which have been broken down into four (4) smaller sub-basins. More specifically, within the interim drainage condition, the project site is located within Basins EA-1, TSB-D1, TSB-E1, & TSB-E2. Site runoff will be collected via swales and diverted to one of the three proposed temporary sediment basins. All necessary calculations can be found within the appendices of this report.

INTERIM OFF-SITE FLOWS

Existing upstream tributary analysis (the areas west of Eastonville Road) was performed as part of the **E-PDR** and was discussed earlier in the report under **Section IV – Off-Site Flows**. These design basins remain the same as the existing condition during the interim phase and discussion of them are not included in this section.

INTERIM ON-SITE FLOWS

Basin TSB-D1 (10.09 AC, $Q_5 = 2.8$ cfs, $Q_{100} = 20.0$ cfs): Located at the north portion of the proposed site, Basin TSB-D1 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2%). Runoff from this basin will sheet flow to the east where it is intercepted by proposed TSB-D1 at **DP 18**. From there, treated runoff from TSB-D1 will be discharged downstream directly to existing Channel A.

Basin TSB-E1 (8.21 AC, $Q_5 = 2.5$ cfs, $Q_{100} = 18.0$ cfs): Located at the southern portion of the proposed site, Basin TSB-E1 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2%). Runoff from this basin will sheet flow to the east where it is intercepted by proposed TSB-E1 at DP 19. From there, treated runoff from TSB-E1 will be discharged downstream directly to **Basin TSB-E2**.

Basin TSB-E2 (13.57 AC, $Q_5 = 4.0$ cfs, $Q_{100} = 28.3$ cfs): Located at the southeastern portion of the site, Basin TSB-E2 consists of future residential lots and future roadways. In the interim overland graded phase of development, imperviousness for this sub-basin can be described as nearly bare ground (2%). Runoff from this basin will sheet flow to the east where it is intercepted by proposed TSB-E2 at **DP 20**. From there, treated runoff from TSB-E2 will be discharged downstream directly to existing Channel A.

Design Point 20 ($Q_5 = 6.5$ cfs, $Q_{100} = 46.3$ cfs): Located at the south portion of the site, this design point accounts for the total combined flows from **Basin TSB-E1** & **TSB-E2**. Flows from this design point are discharged directly into the existing Channel A.

Basin EA-1 (2.50 AC, $Q_5 = 0.7$ cfs, $Q_{100} = 5.1$ cfs): Located along the southeastern property line, Basin EA-1 consists primarily of un-developed disturbed area with a temporary diversion swale put in place to convey existing off-site flows from **DP 5 & 6** through the site to Channel A, as they had in the existing condition. Runoff from this basin will sheet flow into a temporary trapezoidal diversion swale (Swale OS-1) with a 4' bottom width and 3' deep. Flows will then be conveyed north and discharge directly into Channel A at **DP 21**.

Each of the temporary sediment basins (TSBs) has been sized according to the detail from City of Colorado Springs Stormwater Quality Manual, Figure SB-1 and the pond calculations in the Mile High Flood District (MHFD) spreadsheet. Riser pipes within each TSB will discharge flows downstream, following the interim grading patterns, which will adhere to historic drainage patterns and eventually enter respective drainageway (Channel A). Similarly, each TSB will have an overflow spillway which will discharge excess flows downstream in the same drainage pattern as the discharge from the riser pipes within the corresponding TSB. See **Appendix D** for calculation spreadsheets.

V. Four Step Process

The Four Step Process is used to minimize the adverse impacts of urbanization and is a vital component of developing a balanced, sustainable project. Below identifies the approach to the four-step process:

1. Employ Runoff Reduction Practices

This step uses low impact development (LID) practices to reduce runoff at the source. Generally, rather than creating point discharges that are directly connected to impervious areas runoff is routed through pervious areas to promote infiltration. The Impervious Reduction Factor (IRF) method was used and calculations can be found in **Appendix E**.

2. Stabilize Channels

This step implements stabilization to channels to accommodate developed flows while protecting infrastructure and controlling sediment loading from erosion in the drainageways. Erosion protection in the form of riprap pads at all outfall points to the channel to prevent scouring of the channel from point discharges. The existing channel analysis and design for the Main Stem Tributary #2 (MST) is to be completed by others and a report for the channel improvements will be submitted for review separately.

3. Provide Water Quality Capture Volume (WQCV)

This step utilizes formalized water quality capture volume to slow the release of runoff from the site. The EURV volume will release in 72 hours, while the WQCV will release in no less than 40 hours. Onsite water quality control volume detention ponds will provide water quality treatment for all of the developed areas, prior to the runoff being released into either of the major drainage ways. Refer to the WQCV Plan in **Appendix F**.

4. Consider Need for Industrial and Commercial BMPs

As this project is all residential development and no commercial or industrial development is proposed, there will be no need for any specialized BMPs which would be associated with an industrial or commercial site.

VI. Proposed Drainage Conditions

The proposed project site lies completely within the Gieck Ranch Drainage Basin and consists of two (2) larger basins (D & E) which have been broken down into fourteen (14) smaller sub-basins. Adjacent Offsite Basins (OS) were analyzed as part of the **E-PDR**. Site runoff for Grandview Reserve Filing No. 1 will be collected via inlets & pipes and diverted to one of the two proposed full spectrum detention ponds. No offsite flows enter the Grandview Reserve Filing No. 1 project site. All necessary calculations can be found within the appendices of this report.

There are no proposed major channel improvements for Channel A associated with this project site / development. The analysis for the channel was completed by HR Green (*Grandview Reserve CLOMR Report*, HR Green; March 22, 2023 (**CLOMR**). The Construction Drawings and Drainage Report for the channel improvements can be found under the project number CDR-22-008. A copy of the CLOMR Report is included in **Appendix G** for reference – the CLOMR Report is currently still in review. Final design values will be revised as necessary in subsequent Final Drainage Report submittals.

The project site will provide two (2) Full Spectrum Extended Detention Basins (EDBs). Ponds D & E will discharge treated runoff at historic rates directly into Gieck Ranch Tributary #1 (**MDDP**) / Channel A (**E-PDR**).

As has been mentioned previously, the project site is proposed to have a land use of single family residential. The project site will consist primarily of 1/8 Acre lots, with some 1/4 Acre and 1/3 Acre lots, public roadways, along with dedicated Tracts for amenity uses.

Basin D-1 (2.73 AC, $Q_5 = 2.6$ cfs, $Q_{100} = 8.0$ cfs): Located on the western portion of the project site, adjacent to Eastonville Road. This basin consists of residential lots and the west half of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 5' CDOT Type 'R' sump inlet, located on the west side of Kate Meadow Lane (**DP D1**), just north of the intersection of Kate Meadow Lane & Farm Close Court. In the major storm

event, flows will overtop the roadway crown and will be split between basins D-1 and D-2. Emergency overflows will be routed downstream via proposed curb and gutter to Design Point D4 within Farm Close Court.

Basin D-2 (0.57 AC, $Q_5 = 1.0$ cfs, $Q_{100} = 2.5$ cfs): Located on the western portion of the project site, this basin consists of residential lots and the eastern half of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 5' CDOT Type 'R' sump inlet, located on the east side of Kate Meadow Lane **(DP D2)**, just north of the intersection of Kate Meadow Lane & Farm Close Court. In the major storm event, flows will overtop the roadway crown and will be split between basins D-1 and D-2. Emergency overflows will be routed downstream via proposed curb and gutter to Design Point D4 within Farm Close Court.

Basin D-3 (4.33 AC, $Q_5 = 6.1$ cfs, $Q_{100} = 16.3$ cfs): Located in the west-central portion of the project site, this basin consists of residential lots, the western half of Farm Close Court, and a north portion of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump condition, located on the west side of Farm Close Court (**DP D4**), southeast of the intersection of Kate Meadow Lane & Farm Close Court cul-de-sac. In the major storm event, flows will overtop the roadway crown and will be split between basins D-3 and D-4. Emergency overflows will overtop the crown and be routed downstream via an emergency overflow swale to the east which conveys runoff directly to Pond D.

Basin D-4 (3.65 AC, $Q_5 = 4.4$ cfs, $Q_{100} = 11.8$ cfs): Located in the north-central portion of the project site, this basin consists of residential lots and the eastern half of Farm Close Court. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' inlet in sump condition, located on the east side of Farm Close Court (**DP D6**), just southeast of the intersection of Kate Meadow Lane & Farm Close Court cul-de-sac. In the major storm event, flows will overtop the roadway crown and will be split between basins D-3 and D-4. Emergency overflows will overtop curb & gutter and be routed downstream via a graded swale within the maintenance access path to Pond D.

Basin D-5 (1.59 AC, $Q_5 = 0.7$ cfs, $Q_{100} = 3.0$ cfs): Located along the northwest corner of the project site, adjacent to the Gieck Ranch Tributary #1 / Channel A drainageway. This basin consists partially of residential lots and the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will sheet flow directly to Pond D. Flows will then be routed to the outlet structure (DP D7), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Main Stem channel (Channel A).

Basin D-6 (0.92 AC, Q₅ = 0.2 cfs, Q₁₀₀ = 1.5 cfs): Located along the northwest corner of the project site, adjacent to the Gieck Ranch Tributary #1 / Channel A drainageway. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond D. Runoff from this basin will sheet flow directly to the Gieck Ranch Tributary #1 / Channel A drainageway. All roof drains (for lots 18-20) within this sub-basin will be directed toward Farm Close Court, no impervious surfaces will be allowed within the rear lot setbacks and runoff reduction will be implemented within this sub-basin.

Basin E-1 (4.47 AC, $Q_5 = 3.6$ cfs, $Q_{100} = 11.2$ cfs): Located in the southwestern portion of the project site, this basin consists of residential lots, the southern half of Brixham Drive, Starcross Court, and the southern half of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet,

located approximately 150-feet to the northeast of the intersection between Kate Meadow Lane and Starcross Court **(DP E1)**. Bypass flows are conveyed downstream via curb & gutter to **DP E4**.

Basin E-2 (1.94 AC, $Q_5 = 3.3$ cfs, $Q_{100} = 8.4$ cfs): Located on the southwestern portion of the project site, this basin consists of residential lots, a small portion of Mill Yard Circle, and the north half of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located approximately 150-feet to the northeast of the intersection between Kate Meadow Lane and Starcross Court (DP E2). Bypass flows are conveyed downstream via curb & gutter to DP E4.

Basin E-3a (2.90 AC, $Q_5 = 4.3$ cfs, $Q_{100} = 11.0$ cfs): Located on the south-central portion of the project site, this basin consists of residential lots the western and southern half of Mill Yard Circle as well as a portion of Kate Meadow Lane. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located just southeast from the intersection between Kate Meadow Lane and Mill Yard Circle (**DP E4**). In the major storm event, flows will overtop the roadway crown and will be split between basins E-3a and E-4a. Bypass flows are conveyed downstream via curb & gutter to **DP E7**.

Basin E-3b (2.12 AC, $Q_5 = 3.5$ cfs, $Q_{100} = 8.9$ cfs): Located on the southeastern portion of the project site, this basin consists of the rear portion of residential lots along Kate Meadow Lane and full residential lots and the western half of Mill Yard Circle near the cul-de-sac. Runoff from this basin will sheet flow to the adjacent roadways. Flows will then be routed, via curb & gutter, to a proposed (public) 10' CDOT Type 'R' sump inlet, located just northeast from the cul-de-sac of Mill Yard Circle (**DP E7**). In the major storm event, flows will overtop the roadway crown and will be split between basins E-3b and E-4b. Emergency overflows will overtop the crown and be routed downstream via an emergency overflow swale to the southeast which conveys runoff directly to Pond E via a graded emergency overflow swale.

Basin E-4a (7.45 AC, $Q_5 = 6.8$ cfs, $Q_{100} = 20.3$ cfs): Located in the central portion of the project site, this basin consists of residential lots and the northern and eastern half of Mill Yard Circle. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' at-grade inlet, located just southeast from the intersection between Kate Meadow Lane and Mill Yard Circle (**DP E5**). In the major storm event, flows will overtop the roadway crown and will be split between basins E-4a and E-3a. Bypass flows are conveyed downstream via curb & gutter to **DP E9**.

Basin E-4b (1.00 AC, $Q_5 = 1.7$ cfs, $Q_{100} = 4.2$ cfs): Located on the southeastern corner of the project site, this basin consists of residential lots and the eastern half of Mill Yard Circle near the cul-de-sac. Runoff from this basin will sheet flow to the adjacent roadway. Flows will then be routed, via curb & gutter, to a proposed (public) 15' CDOT Type 'R' sump inlet, located just southeast from the intersection between Kate Meadow Lane and Mill Yard Circle (**DP E9**). In the major storm event, flows will overtop the roadway crown and will be split between basins E-3b and E-4b. Emergency overflows will overtop the curb and be routed downstream via an emergency overflow swale to the southeast which conveys runoff directly to Pond E via a graded emergency overflow swale.

Basin E-5 (1.43 AC, $Q_5 = 0.3$ cfs, $Q_{100} = 1.8$ cfs): Located on the southeast corner of the project site, adjacent to the Gieck Ranch Tributary #1 / Channel A drainageway. This basin consists of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to Pond E. Flows will then be routed to the outlet structure (**DP E10**), via a concrete trickle channel, where it will eventually discharge, at historic rates, into the adjacent Gieck Ranch Tributary #1 / Channel A drainageway.

Basin E-6 (2.40 AC, $Q_5 = 0.7$ cfs, $Q_{100} = 4.4$ cfs): Located on the southeast corner of the project site, adjacent to the Gieck Ranch Tributary #1 / Channel A drainageway. This basin consists of the undeveloped area outside and downstream of the proposed (private) Full Spectrum Detention Pond E. Runoff from this basin will sheet flow directly to the Gieck Ranch Tributary #1 / Channel A drainageway and offsite to the east.

VII. Storm Sewer System

All development is anticipated to be urban and will include storm sewer & street inlets. Storm sewers collect storm water runoff and convey the water to the water quality facilities prior to discharging. Storm sewer systems will be designed to the 100-year storm and checked with the 5-year storm. Inlets will be placed at sump areas and intersections where street flow is larger than street capacity. UDFCD Inlet spreadsheet has been used to determine the size of all sump inlets.

There will be two (2) proposed storm systems within the project site. Each of the two storm sewer systems will discharge storm water into its correlated WQCV pond.

Each system will consist of reinforced concrete pipe (RCP), CDOT Type 'R' inlets, and storm sewer manholes.

This Final drainage report includes details concerning sump and at-grade inlet locations, street capacity, storm sewer sizing, outlet protection and locations. The calculations can be found in **Appendix D**.

VIII. Proposed Water Quality Detention Ponds

Two (2) Full Spectrum Detention Ponds will be provided for the proposed site. Both of these ponds (Ponds D & E) are private and will be maintained by the DISTRICT, once established. These detention ponds are proposed to be full spectrum and will provide water quality and detention. The WQCV and EURV release will be controlled with an orifice plate. The release rates for the WQCV and EURV will be 40-hours and 72-hours, respectively. All storm event volumes up to the 100-year event will be controlled by orifice and/or restrictor plate and will be designed to release at or below the pre-development flow rate. Outlet structures, forebays, trickle channels, etc. are included with this final drainage report. The required FSD pond volumes are as described below:

Pond D: Located centrally on the site, just west of the Gieck Ranch Tributary #1 / Channel A drainageway. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.227 Ac-Ft & 0.782 Ac-Ft, respectively. The provided storage for the WQCV and EURV are 0.229 Ac-Ft & 0.787 Ac-Ft, respectively. The total required detention basin volume is 1.596 Ac-Ft. The total provided detention basin storage is 1.145 Ac-Ft. In the 100-year event, Pond D releases 90% of the predeveloped peak flow (6.8 cfs). The historic flow rate in this area is 8.6 cfs in the 100-year event. Please see the "Detention Basin Outlet Structure Design" for Pond D in **Appendix E** for more details.

Pond E: Located on the south side of the site, just west of Gieck Ranch Tributary #1 / Channel A drainageway. This pond will discharge into the Main Stem channel. The required volume WQCV and EURV are 0.372 Ac-Ft & 1.263 Ac-Ft, respectively. The provided storage for the WQCV and EURV are 0.373Ac-Ft & 1.265 Ac-Ft, respectively. The total required detention basin volume is 2.602 Ac-Ft. The total provided detention basin storage is 1.808 Ac-Ft. In the 100-year event, Pond E releases 90% of the

predeveloped peak flow (14.8 cfs). The historic flow rate in this area is 16.0 cfs in the 100-year event. Please see the "Detention Basin Outlet Structure Design" for Pond E in **Appendix E** for more details.

The ratio peak outflow to predevelopment flows exceeds 1.00 cfs for the 5-year flows in both proposed ponds. This cannot get close to 1.00 cfs without exceeding a 72-hour drain time for the 5-year storm to meet Colorado's revised statute 47-92-602 (8). Furthermore, the difference in flow is 0.1 cfs for Pond D and 0.2 cfs for Pond E. This should be considered a nominal increase.

IX. Proposed Channel Improvements

According to the **MDDP**, there is one (1) major drainageway that runs immediately adjacent to the project site. The Gieck Ranch Tributary #1 / Channel A drainageway (**E-PDR**) along the northeastern boundary of the project site conveying runoff from the northwest to the southeast. There are no proposed major channel improvements for Channel A as part of this project (to be determined with EPC # CDR-22-008; *Grandview Reserve Geick Basin Channel*). An analysis has been done for Channel A with both existing and future condition flows as described within the *Grandview Reserve CLOMR Report*, HR Green; March 22, 2023 (**CLOMR**). All HEC-RAS modelling, velocities, shear, depths, etc. are included within the CLOMR, which can be found in **Appendix E**. Both scenarios, throughout the channel fall within the channel stability criteria.

A majority of the developed runoff will be captured and conveyed to one of the corresponding water quality and detention facilities and release at or below historic levels. Ponds D and E will release directly into the Gieck Ranch Tributary #1 / Channel A drainageway. These basins are contained within the backs of lots and will provide water quality through runoff reduction; impervious areas will not be permitted in the back of these lots and roof drains are to drain to the front. Therefore, there will be no adverse impact to downstream facilities. The analysis for the drainageway (Channel A) and offsite upstream tributary capture was done by HR Green within the *Grandview Reserve CLOMR Report*, HR Green; March 22, 2023 (CLOMR) which will be submitted separately for review. A copy of this report is included in **Appendix E**.

X. Maintenance

After completion of construction and upon the Board of County Commissioners acceptance, it is anticipated all drainage facilities within the public Right-of-Way are to be owned and maintained by El Paso County (i.e. Eastonville Road FSD).

Both private detention ponds are to be owned and maintained by the Grandview Reserve Metropolitan District No. 2 (DISTRICT), once established, unless an agreement is reached stating otherwise. The proposed Gieck Ranch Tributary #1 / Channel A drainageway is not proposed to be disturbed. Maintenance access for all full spectrum detention facilities will be provided from public Right-of-Way.

XI. Wetlands Mitigation

There are two existing wetlands on site associated with the one (1) major channel, Gieck Ranch Tributary #1 / Channel A drainageway. The wetlands are contained within the existing channel with the wetland in Gieck Ranch Tributary #1 / Channel A drainageway being classified as jurisdictional. The wetlands USACE determination will be provided with the *Grandview Reserve CLOMR Report*, HR Green; March 22, 2023 (**CLOMR**), which can be found in Appendix D. Wetlands maintenance will be the responsibility of the Grandview Reserve Metropolitan District No. 2 (DISTRICT).

XII. Floodplain Statement

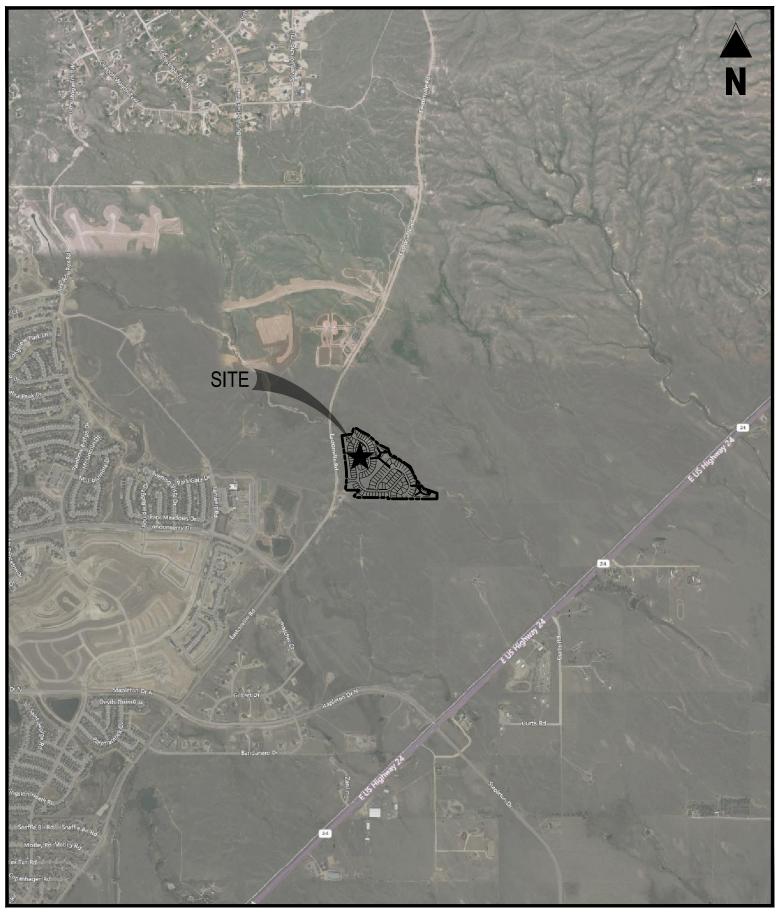
A portion of the project sit lies with Zone A Special Flood Hazard Area as defined by the FIRM Map number 08041C0552G effective December 7, 2018. A copy of the FIRM Panel is included in **Appendix A**. FEMA-approved floodplain elevations are required to be shown on final plats.

XIII. Drainage Fees & Maintenance

Gieck Ranch Basin is not listed as part of the El Paso County drainage basin fee program. Unless otherwise instructed, no drainage fees will be assessed.

COST OPINION

Item	Quantity	Unit	Unit Cost	Cost
Storm Drain Infrastructure (Public)				
24″ RCP	655	LF	\$96.00	\$62,880.00
30″ RCP	305	LF	\$120.00	\$36,600.00
36″ RCP	440	LF	\$150.00	\$66,000.00
42" RCP	165	LF	\$275.00	\$45,375.00
CDOT TYPE R 5' Curb Inlet	3	EA	\$5,500.00	\$16,500.00
CDOT TYPE R 15' Curb Inlet	7	EA	\$10,000.00	\$70,000.00
CDOT Storm 5' DIA Manhole	15	EA	\$7,500.00	\$112,500.00
CDOT Storm 6' DIA Manhole	1	EA	\$10,000.00	\$10,000.00
Subtotal				\$419,855.00
Total (Public)				\$419,855.00
Contingency			10%	\$41,985.50
Grand Total (Public)			2011 (8.84) (91	\$461,840.50
Storm Drain Infrastructure (Private)				
Trapezoidal Channel	175	LF	\$12.00	\$2,100.00
Triangular Channel	150	LF	\$8.00	\$1,200.00
Channel RECP (North American Green)	4,538	SY	\$8.00	\$36,304.00
18" Flared End Section	2	EA	\$2,750.00	\$5,500.00
Subtotal				\$45,104.00
Pond D Improvements (Private)				
Earthwork	7,435	CY	\$20.00	\$148,700.00
Forebay	1	EA	\$10,000.00	\$10,000.00
Hand Rail Fence (Forebays)	180	LF	\$6.00	\$1,080.00
Type L Rip-Rap (Emergency Spillway)	75	CY	\$120.00	\$9,000.00
Trickle Channel	325	LF	\$15.00	\$4,875.00
Outlet Structure w/ Micropool	1	EA	\$15,000.00	\$15,000.00
18" RCP Storm Pipe	100	LF	\$80.00	\$8,000.00
Gravel Maintenance Access	39	CY	\$45.00	\$1,755.00
Subtotal				\$198,410.00
Pond E Improvements (Private)				
Earthwork	5,775	CY	\$20.00	\$115,500.00
Forebay	1	EA	\$10,000.00	\$10,000.00
Hand Rail Fence (Forebays)	180	LF	\$6.00	\$1,080.00
Type L Rip-Rap (Emergency Spillway)	75	CY	\$120.00	\$9,000.00
Trickle Channel	450	LF	\$15.00	\$6,750.00
Outlet Structure w/ Micropool	1	EA	\$15,000.00	\$15,000.00
18" RCP Storm Pipe	70	LF	\$80.00	\$5,600.00
Gravel Maintenance Access	26	CY	\$45.00	\$1,170.00
Subtotal			÷ .0.00	\$164,100.00
Total (Private)	1			\$407,614.00
Contingency			10%	\$40,761.40
Grand Total (Private)			-370	\$448,375.40

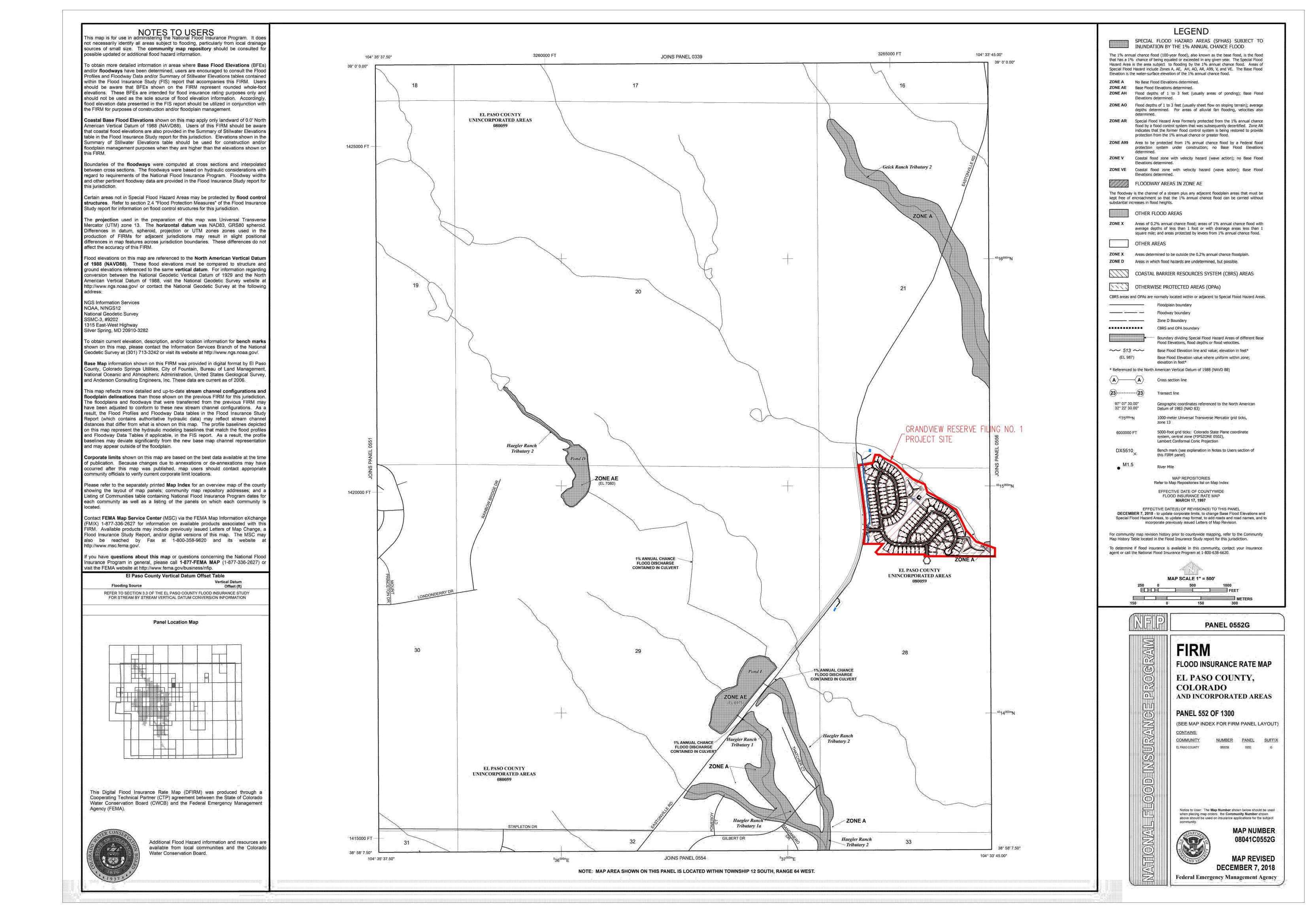

XIV. Conclusion

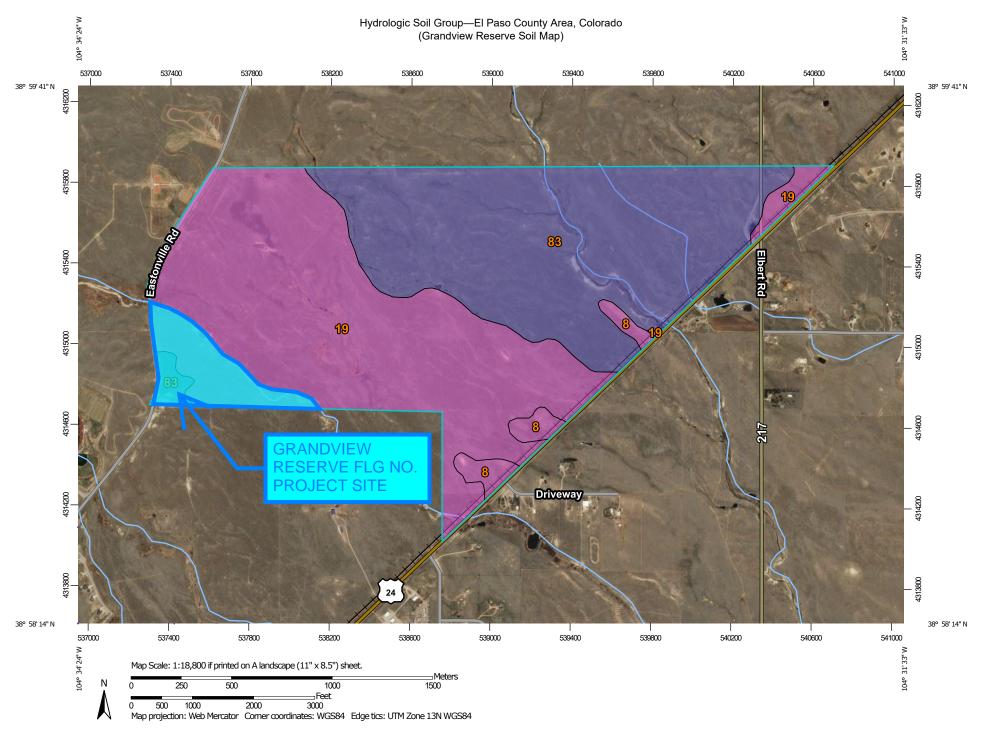
The Grandview Reserve residential subdivision lies within the Gieck Ranch Drainage Basin. Water quality for the project site is provided in two (2) on-site Full Spectrum Detention Ponds; Ponds D & E. All drainage facilities within this report were sized according to the El Paso County Drainage Criteria Manuals. The proposed facilities are adequate to protect the site from generated runoff. The site runoff will not adversely affect the downstream facilities and surrounding developments. There is one (1) major drainageway bordering the Grandview Reserve Filing No. 1 project site to the northeast, which will be addressed by the report titled "Grandview Reserve CLOMR Report," Prepared by HR Green. The two (2) WQCV ponds will be maintained by a newly established Grandview Reserve Metropolitan District No. 2 (DISTRICT).

XV. References

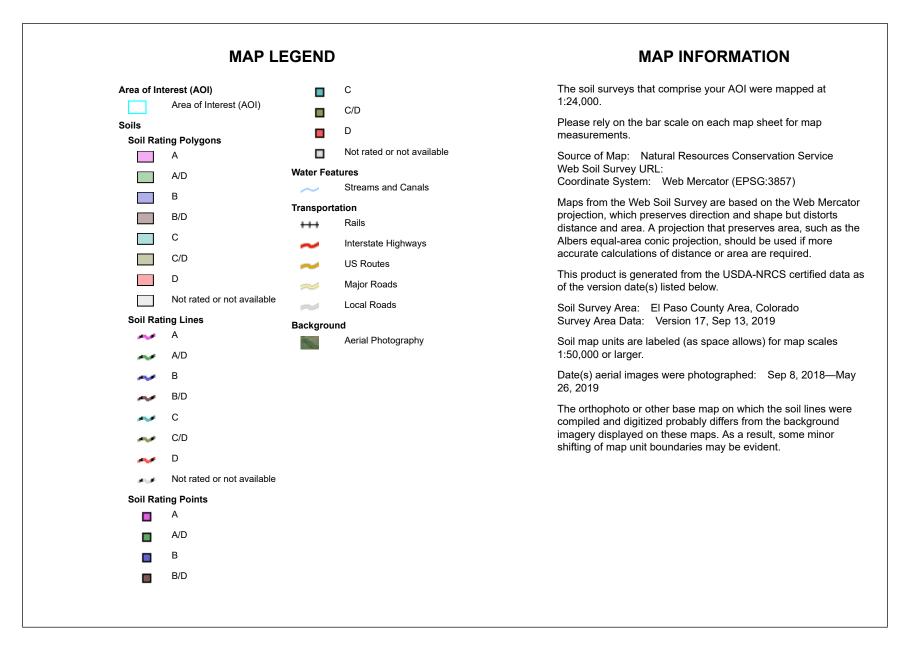
- 1. El Paso County Drainage Criteria Manual, 1990.
- 2. Drainage Criteria Manual, Volume 2, City of Colorado Springs, 2002.
- 3. El Paso County Drainage Criteria Manual Update, 2015.
- 4. El Paso County Engineering Criteria Manual, 2020.
- 5. *Urban Storm Drainage Criteria Manual*, Urban Drainage and Flood Control District, January 2016 (with current revisions).
- 6. *Gieck Ranch Drainage Basin Study (DBPS),* Drexel Barrell, October 2010 (Not adopted by County).
- 7. Grandview Reserve Master Development Drainage Plan (MDDP), HR Green, November 2020.
- 8. Grandview Reserve CLOMR Report, HR Green; March 22, 2023.
- 9. Meridian Ranch MDDP, January 2018, updated 2021.
- 10. Eastonville Road Preliminary Drainage Report", HR Green, September 2023.
- 11. The Sanctuary Filing 1 FDR (Meridian Ranch), Tech Contractors, August 2022.

APPENDIX A Exhibits and Figures




GRANDVIEW RESERVE FILING NO. 1 EASTONVILLE RD SCALE: 1"=2,000' VICINITY MAP

Project No:	HRG02
Drawn By:	JDM
Checked By:	CMWJ
Date:	03/15/2024


1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920 719.900.7220 • GallowayUS.com

USDA Natural Resources

Conservation Service

USDA

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
8	Blakeland loamy sand, 1 to 9 percent slopes	A	22.4	2.6%
19	Columbine gravelly sandy loam, 0 to 3 percent slopes	A	450.7	52.5%
83	Stapleton sandy loam, 3 to 8 percent slopes	В	385.4	44.9%
Totals for Area of Inter	rest	I	858.5	100.0%

Description

Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.

Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Precipitation Frequency Data Server

NOAA Atlas 14, Volume 8, Version 2 Location name: Peyton, Colorado, USA* Latitude: 38.985°, Longitude: -104.565° Elevation: 6975.71 ft** * source: ESRI Maps ** source: USGS

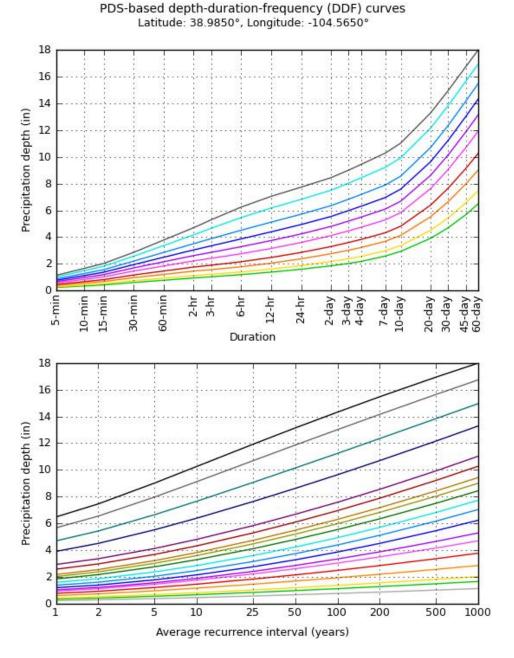
POINT PRECIPITATION FREQUENCY ESTIMATES

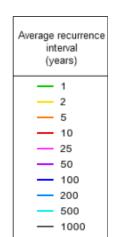
Sanja Perica, Deborah Martin, Sandra Pavlovic, Ishani Roy, Michael St. Laurent, Carl Trypaluk, Dale Unruh, Michael Yekta, Geoffery Bonnin

NOAA, National Weather Service, Silver Spring, Maryland

PF_tabular | PF_graphical | Maps_&_aerials

PF tabular


100				quency es	recurrence					1163)
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.239	0.291	0.381	0.461	0.576	0.671	0.770	0.875	1.02	1.14
	(0.189-0.303)	(0.231-0.370)	(0.301-0.486)	(0.361-0.589)	(0.440-0.768)	(0.499-0.904)	(0.554-1.06)	(0.604-1.24)	(0.678-1.48)	(0.733-1.67)
10-min	0.350	0.426	0.558	0.674	0.844	0.982	1.13	1.28	1.49	1.66
	(0.277-0.444)	(0.338-0.542)	(0.441-0.711)	(0.529-0.863)	(0.644-1.13)	(0.731-1.32)	(0.811-1.56)	(0.884-1.81)	(0.992-2.17)	(1.07-2.44)
15-min	0.426	0.520	0.681	0.823	1.03	1.20	1.37	1.56	1.82	2.03
	(0.338-0.541)	(0.412-0.660)	(0.537-0.867)	(0.645-1.05)	(0.785-1.37)	(0.891-1.62)	(0.988-1.90)	(1.08-2.21)	(1.21-2.65)	(1.31-2.98)
30-min	0.608	0.740	0.968	1.17	1.46	1.70	1.94	2.21	2.57	2.86
	(0.482-0.771)	(0.586-0.940)	(0.764-1.23)	(0.916-1.49)	(1.11-1.94)	(1.26-2.29)	(1.40-2.68)	(1.52-3.12)	(1.71-3.73)	(1.85-4.19)
60-min	0.775	0.933	1.21	1.46	1.84	2.16	2.49	2.85	3.37	3.78
	(0.615-0.984)	(0 739-1 19)	(0.956-1.54)	(1.15-1.87)	(1.41-2.47)	(1.61-2.92)	(1.80-3.45)	(1.97-4.05)	(2.24-4.90)	(2.44-5.55)
2-hr	0.943	1.13	1.46	1.76	2.22	2.62	3.04	3.50	4.16	4.70
	(0.754-1.19)	(0.898-1.42)	(1.16-1.84)	(1.39-2.23)	(1.72-2.97)	(1.97-3.52)	(2.21-4.19)	(2.45-4.95)	(2.80-6.03)	(3.06-6.85)
3-hr	1.03	1.22	1.57	1.90	2.41	2.86	3.35	3.88	4.66	5.29
	(0.829-1.29)	(0.978-1.53)	(1.25-1.97)	(1.51-2.40)	(1.88-3.22)	(2.17-3.84)	(2.45-4.60)	(2.73-5.48)	(3 15-6.74)	(3.46-7.69)
6-hr	1.20	1.40	1.78	2.16	2.76	3.28	3.86	4.51	5.46	6.24
	(0.968-1.49)	(1.13-1.74)	(1.44-2.22)	(1.73-2.70)	(2.18-3.66)	(2.52-4.39)	(2.86-5.29)	(3.21-6.34)	(3.73-7.86)	(4.12-9.01)
12-hr	1.38	1.61	2.05	2.48	3.15	3.74	4.39	5.12	6.17	7.04
	(1.13-1.70)	(1.31-1.98)	(1.67-2.53)	(2.00-3.07)	(2.51-4.15)	(2.89-4.96)	(3.28-5.96)	(3.67-7.13)	(4.25-8.82)	(4.69-10.1)
24-hr	1.60	1.87	2.38	2.85	3.60	4.24	4.94	5.71	6.82	7.73
	(1.31-1.95)	(1.54-2.28)	(1.94-2.91)	(2.32-3.51)	(2.88-4.67)	(3.29-5.56)	(3.71-6.63)	(4.12-7.87)	(4.73-9.66)	(5.20-11.0)
2-day	1.85	2.18	2.76	3.29	4.11	4.80	5.54	6.35	7.50	8.44
	(1.54-2.24)	(1.80-2.63)	(2.28-3.35)	(2.70-4.01)	(3.30-5.27)	(3.76-6.22)	(4.19-7.36)	(4.62-8.68)	(5.25-10.5)	(5.73-11.9)
3-day	2.03	2.39	3.02	3.60	4.47	5.20	5.98	6.83	8.03	9.00
	(1.69-2.44)	(1.98-2.87)	(2.50-3.64)	(2.97-4.36)	(3.60-5.69)	(4.09-6.70)	(4.55-7.90)	(4.99-9.28)	(5.65-11.2)	(6.15-12.7)
4-day	2.18	2.56	3.22	3.82	4.73	5.49	6.30	7.18	8.43	9.43
	(1.82-2.61)	(2.13-3.06)	(2.68-3.87)	(3.16-4.62)	(3.83-6.00)	(4.33-7.04)	(4.81-8.30)	(5.26-9.72)	(5.95-11.7)	(6.46-13.3)
7-day	2.58	2.98	3.68	4.32	5.29	6.09	6.96	7.89	9.21	10.3
	(2.17-3.07)	(2.50-3.54)	(3.08-4.39)	(3.60-5.18)	(4.31-6.65)	(4.84-7.76)	(5.34-9.09)	(5.82-10.6)	(6.55-12.8)	(7 10-14 4)
10-day	2.93	3.37	4.13	4.81	5.83	6.68	7.58	8.55	9.92	11.0
	(2.48-3.47)	(2.84-3.98)	(3.47-4.90)	(4.02-5.74)	(4.76-7.29)	(5.32-8.45)	(5.85-9.86)	(6.34-11.4)	(7.09-13.7)	(7.65-15.4)
20-day	3.91	4.51	5.52	6.39	7.63	8.62	9.64	10.7	12.2	13.3
	(3.33-4.58)	(3.84-5.29)	(4.68-6.50)	(5.39-7.55)	(6.25-9.37)	(6.90-10.8)	(7.47-12.4)	(7.98-14.1)	(8.74-16.6)	(9.31-18.4)
30-day	4.70	5.44	6.65	7.66	9.06	10.1	11.2	12.3	13.8	15.0
	(4.02-5.47)	(4.65-6.34)	(5.66-7.78)	(6.49-9.00)	(7.44-11.0)	(8.15-12.5)	(8.74-14.3)	(9.24-16.2)	(9.98-18.7)	(10.5-20.6)
45-day	5.67	6.55	7.97	9.12	10.7	11.9	13.0	14.2	15.6	16.7
	(4.88-6.57)	(5.63-7.60)	(6.82-9.27)	(7.77-10.7)	(8.79-12.9)	(9.56-14.5)	(10.2-16.4)	(10.6-18.4)	(11.3-21.0)	(11.9-23.0)
60-day	6.49 (5.60-7.48)	7.46 (6.43-8.62)	9.01 (7.74-10.4)	10.3 (8.77-11.9)	11.9 (9.82-14.3)	13.1 (10.6-16.0)	14.3 (11.2-18.0)	15.5 (11.7-20.0)	16.9 (12.3-22.6)	18.0 (12.8-24.6)

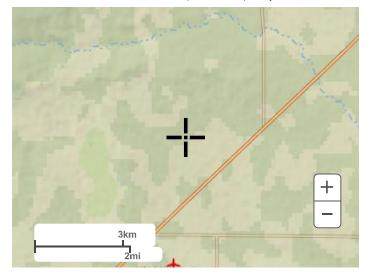

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

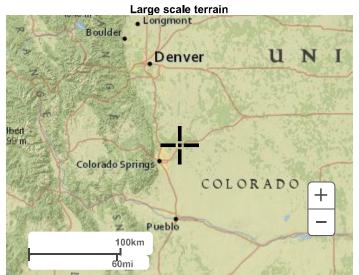
Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values. Please refer to NOAA Atlas 14 document for more information.

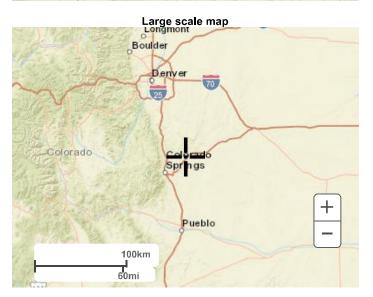
Back to Top

PF graphical

Duration 2-day 5-min 10-min 3-day 15-min 4-day 30-min 7-day 60-min 10-day 2-hr 20-day 30-day 3-hr 6-hr 45-day 12-hr 60-day 24-hr

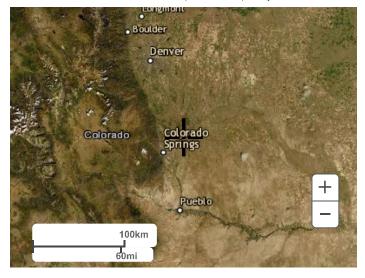

NOAA Atlas 14, Volume 8, Version 2


Created (GMT): Thu Dec 2 17:16:51 2021


Back to Top

Maps & aerials

Small scale terrain



Large scale aerial

Precipitation Frequency Data Server

Back to Top

US Department of Commerce National Oceanic and Atmospheric Administration National Weather Service National Water Center 1325 East West Highway Silver Spring, MD 20910 Questions?: <u>HDSC.Questions@noaa.gov</u>

<u>Disclaimer</u>

Rating Options

Aggregation Method: Dominant Condition Component Percent Cutoff: None Specified Tie-break Rule: Higher

APPENDIX C

Hydrologic Computations

COMPOSITE % IMPERVIOUS CALCULATIONS: EXISTING & INTERIM

Subdivision: Grandview Reserve

Location: CO, El Paso County

1	2	3	4	5	6	7	8	12	13	14	15 D	16	17	18	19	20	21	22	23	24	25	26	27
		Pav	ved/Gravel Ro		La	wns/Undevelo	1	Res	idential - 1/8 Acre		Res	idential - 1/4 A			Residential - 1/3		Res	Residential - 1/2 Acre		Re	sidential - 1 A		Basins Total
Basin ID	Total Area (ac)	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Weighted % Imp.
EXISTING																							
For Existing West	r Existing Western Offsite Sub-basin analysis, see Rational Calcs Included, from titled "Eastonville Road Preliminary Drainage Report", by HR Green, September 2023																						
ES-1	16.37	100	0	0	2	16.37	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
ES-2	46.05	100	0	0	2	46.05	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
ES-3	64.3	100	0	0	2	64.3	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
ES-4	2.68	100	0	0	2	2.68	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
ES-5	26.15	100	0	0	2	26.15	2	65	0	0	40	0	0	30	0	0	25	0	0	20	0	0	2
ES 6	21.26	100	0	0	2	21.26	2	65	0	0	40	0	0	20	0	0	25	0	0	20	0	0	2
INTERIM																							
For Existing West	ern Offsite Sub-bas	ın analysıs, se	ee Rational Ca	lics Included,	trom titled "	Eastonville R	oad Prelimina	ry Drainage	Report", by H	IR Green, Sep	tember 2023												
A-1	2.29	100	0.00	0.0	2	2.29	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
A-2	3.96	100	0.00	0.0	2	3.96	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
EA-1	2.50	100	0.00	0.0	2	2.50	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-A1	10.67	100	0.00	0.0	2	10.67	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-A2	4.56	100	0.00	0.0	2	4.56	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-A3	13.72	100	0.00	0.0	2	13.72	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-B1	14.03	100	0.00	0.0	2	14.03	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-B2	14.48	100	0.00	0.0	2	14.48	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-C1	11.26	100	0.00	0.0	2	11.26	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-C2	11.92	100	0.00	0.0	2	11.92	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-C3	15 29	100	0.00	0.0	2	15 29	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-D1	10.09	100	0.00	0.0	2	10.09	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-E1	8.21	100	0.00	0.0	2	8.21	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0
TSB-E2	13.57	100	0.00	0.0	2	13.57	2.0	65.0	0.00	0.0	40	0.00	0.0	30	0.00	0.0	25	0.00	0.0	20	0.00	0.0	2.0

Lot Type Identification:									
Lot Size (SF)	Lot Size (Acre)								
0 - 8,167	1/8 Acre								
8,168 - 12,704	1/4 Acre								
12,705 - 18,149	1/3 Acre								
18,150 - 32,670	1/2 Acre								
32,671 - 43,560	1 Acre								

NOTES:

% Impervious values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001)

Project Name: Grandview Subdivision PDR - Interim Conditions

Project No.: HRG01 Calculated By: TJE

 Checked By:
 BAS

 Date:
 12/21/23

COMPOSITE RUNOFF COEFFICIENT CALCULATIONS: EXISTING & INTERIM

Subdivision: Grandview Reserve

Location: CO, El Paso County

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28
		Pav	ed/Gravel R	oads	Lav	wns/Undevelo	oped	,	Roofs	11	Res	idential - 1/8	Acre	Res	idential - 1/4	Acre	Res	idential - 1/3	Acre	Residential - 1/2 Acre		Acre	Re	sidential - 1	Acre	27	
Basin ID	Total Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Composite C ₅	Composite C ₁₀₀
EXISTING	TING																										
For Existing Wes	or Existing Western Offsite Sub-basin analysis, see Rational Cales Included, from titled "Eastonville Road Preliminary Drainage Report", by HR Green, September 2023																										
ES-1	16.37	0.90	0.96	0.00	0.09	0.36	16.37	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
ES-2	46.05	0.90	0.96	0.00	0.09	0.36	46.05	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
ES-3	64.30	0.90	0.96	0.00	0.09	0.36	64.30	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
ES-4	2.68	0.90	0.96	0.00	0.09	0.36	2.68	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
ES-5	26.15	0.90	0.96	0.00	0.09	0.36	26.15	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
ES 6	21.26	0.00	0.06	0.00	0.00	0.26	21.26	0.72	0.81	0.00	0.45	0.50	0.00	0.20	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.00	0.26
INTERIM	TERIM																										
For Existing Wes	tern Offsite Sub-ba	sin analysis,	see Rational	Cales Includ	ed, from title	d "Eastonvil	le Road Prelin	ninary Drain	age Report"	, by HR Gree	n, September	2023															
A-1	2.29	0.90	0.96	0.00	0.09	0.36	2.29	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
A-2	3.96	0.90	0.96	0.00	0.09	0.36	3.96	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
EA-1	2.50	0.90	0.96	0.00	0.09	0.36	2.50	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-A1	10.67	0.90	0.96	0.00	0.09	0.36	10.67	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-A2	4.56	0.90	0.96	0.00	0.09	0.36	4.56	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-A3	13.72	0.90	0.96	0.00	0.09	0.36	13.72	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-B1	14.03	0.90	0.96	0.00	0.09	0.36	14.03	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-B2	14.48	0.90	0.96	0.00	0.09	0.36	14.48	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-C1	11.26	0.90	0.96	0.00	0.09	0.36	11.26	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-C2	11.92	0.90	0.96	0.00	0.09	0.36	11.92	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-C3	15.29	0.90	0.96	0.00	0.09	0.36	15 29	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-D1	10.09	0.90	0.96	0.00	0.09	0.36	10.09	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-E1	8.21	0.90	0.96	0.00	0.09	0.36	8.21	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36
TSB-E2	13.57	0.90	0.96	0.00	0.09	0.36	13.57	0.73	0.81	0.00	0.45	0.59	0.00	0.30	0.50	0.00	0.25	0.47	0.00	0.22	0.46	0.00	0.20	0.44	0.00	0.09	0.36

Lot Type Ide	entification:
Lot Size (SF)	Lot Size (Acre)
0 - 8,167	= 1/8 Acre</td
8,168 - 12,704	1/4 Acre
12,705 - 18,149	1/3 Acre
18,150 - 32,670	1/2 Acre
32,671 - 43,560	1 Acre

NOTES:

C values are taken directly from Table 6-6 in the Colorado Springs DCM Vol. 1. CH. 6 (Referencing UDFCD 2001) Coeffficients use HSG A&B soils - Refer to "Appendix A: Exhibits and Figures" for soil map

Project Name:	Grandview Subdivision PDR - Interim Conditions
Project No.:	HRG01
Calculated By:	TJE
Checked By:	BAS

Calculated By:	1
Checked By:	F

Date: 12/21/23

STANDARD FORM SF-2: EXISTING & INTERIM TIME OF CONCENTRATION

		Grandview										3			v Subdivision	PDR - Interim	Conditions
	ocation:	CO, El Paso	o County											HRG01			
												Calculat	ted By:	TJE			
												Check	ed By:	BAS			
													Date:	12/21/23			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
		SUB-BA	SIN			INITIA	L/OVERI	LAND		TR	AVEL TI	ME			Te CHECK		
		DAT	A				(T _i)				(T_t)				(T _c)		FINAL
BASIN	D.A.	Hydrologic	Impervious	C5	C100	L	S	Ti	L	S	Cv	VEL.	Tt	COMP. T _c	TOTAL	Calculated T _c	T _c
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH(FT)	(MIN)	(MIN)
EXISTING									<u> </u>								
For Existing	g Western	Offsite Sub-ba	asin analysis	, see Ratio	onal Calcs	Included, f	rom titled	"Eastony	ville Road	Prelimina	ry Drainag	ge Report",	by HR G	reen, Septem	nber 2023		
ES-1	16.37	A	2.0	0.09	0.36	300	3.3	21.6	1433	2.5	15	2.4	10.0	31.6	1732.7	19.6	31.6
ES-2	46.05	А	2.0	0.09	0.36	300	2.5	23.6	3127	2.0	15	2.1	24.7	48.3	3427.0	29.0	48.3
ES-3	64.30	А	2.0	0.09	0.36	300	3.2	21.7	3964	2.1	15	2.2	30.4	52.1	4263.6	33.7	52.1
ES-4	2.68	А	2.0	0.09	0.36	300	2.5	23.8	462	2.4	15	2.3	3.3	27.1	762.3	14.2	27.1
ES-5	26.15	А	2.0	0.09	0.36	300	3.1	22.1	2121	2.3	15	2.3	15.6	37.7		23.4	37.7
ES 6	21.26	^	2.0	0.00	0.26	200	2.6	20.0	1/00	2.1	15	2.2	11.4	22.2	1700 5	10.0	22.2
INTERIM																	
C		Offsite Sub-ba		/							v .	9 1 /		/ 1			
A-1	2.29	A	2.0	0.09	0.36	40	2.0	9.3	927	2.9	10	1.7	9.1	18.4		15.4	15.4
A-2	3.96	A	2.0	0.09	0.36	56	2.0	11.0	828	2.5	10	1.6	8.7	19.7	884.0	14.9	14.9
EA-1	2.50	A	2.0	0.09	0.36	160	5.0	13.7	1254	0.5	10	0.7	29.6	43.2	1414.0	17.9	17.9
TSB-A1	10.67	А	2.0	0.09	0.36	136	2.0	17.1	865	3.0	10	1.7	8.4	25.5		15.6	15.6
TSB-A2	4.56	A	2.0	0.09	0.36	163	2.0	18.7	749	3.8	10	1.9	6.4	25.1	912.0	15.1	15.1
TSB-A3	13.72	A	2.0	0.09	0.36	159	2.0	18.5	1220	2.3	10	1.5	13.4	31.9		17.7	17.7
TSB-B1	14.03	A	2.0	0.09	0.36	212	2.0	21.4	1035	3.2	10	1.8	9.6	31.0		16.9	16.9
TSB-B2	14.48	A	2.0	0.09	0.36	60	2.0	11.4	1245	2.8	10	1.7	12.4	23.7	1305.0	17.3	17.3
TSB-C1	11.26	A	2.0	0.09	0.36	300	2.0	25.4	1105	2.0	10	1.4	12.9	38.3		17.8	17.8
TSB-C2	11.92	A	2.0	0.09	0.36	50	2.0	10.4	1151	3.1	10	1.8	10.9	21.3		16.7	16.7
TSB-C3	15.29	A	2.0	0.09	0.36	181	2.0	19.7	1745	2.6	10	1.6	18.2	38.0		20.7	20.7
TSB-D1	10.09	A	2.0	0.09	0.36	155	2.0	18.3	1450	2.0	10	1.4	17.1	35.4		18.9	
TSB-E1 TSB-E2	8.21 13.57	A	2.0	0.09	0.36	150 300	2.0 2.0	18.0	842 989	4.1	10	2.0	6.9	24.9		15.5	15.5
13D-E2	13.3/	А	2.0	0.09	0.36	300	2.0	23.4	989	2.0	10	1.4	11.7	37.1	1289.0	17.2	17.2

NOTES:

$$\begin{split} T_i &= (0.395^*(1.1 - C_5)^*(L)^{>}0.5)/((S)^{>}0.33), \ S \ in \ fl/ft \\ T_t &= L/60V \ (Velocity \ From \ Fig. \ 501) \\ Velocity \ V &= Cv^*S^{>}0.5, \ S \ in \ fl/ft \\ T_c \ Check &= 10 + L/180 \\ For \ Urbanized \ basins \ a \ minimum \ T_c \ of \ 5.0 \ minutes \ is \ required. \\ For \ non-urbanized \ basins \ a \ minimum \ T_c \ of \ 10.0 \ minutes \ is \ required. \end{split}$$

STANDARD FORM SF-3: EXISTING & INTERIM

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

																			ubdivi	sion PD	R - Interim Conditions
Subdivision									-								: HRG	01			
		El Paso Co	unty						-						lculate						
Design Storm	: <u>5-Yea</u>	ar							-					C			BAS 12/21	/22			
																Date:	12/21	123			
				DIRI	ECT RU	NOFF				TOTAL	RUNOF	F	STR	EET		PIPI	E	TRAV	/EL T	IME	
STREET	Jesign Point	asin ID	Area (Ac)	Runoff Coeff.	[c (min)	*A (Ac)	(in/hr)	Q (cfs)	Tc (min)	℃*A (Ac)	(in/hr)	Q (cfs)	Slope (%)	treet Flow (cfs)	design Flow (cfs)	Slope (%)	ipe Size (inches)	ength (ft)	Velocity (fps)	Tt (min)	REMARKS
EXISTING				<u> </u>									8	0		S			/	н	
	1	EX1	321.53					28.3				28.3									**SEE NOTE
	2	EX2	18.88					1.7				1.7									**SEE NOTE
	3	EX3	131.26					6.1				6.1									**SEE NOTE
	4	EX4	832.70					22.4				22.4									**SEE NOTE
	5	EX5	22.35					7.0				7.0									**SEE NOTE
	6	EX6	3.05					1.2				1.2									**SEE NOTE
	7	EX7	1.47	0.00	21.6	1.47	0.05	0.9				0.9									**SEE NOTE
	X1	ES-1 ES-2	16.37 46.05	0.09	31.6 48.3	1.47 4.14	2.35	3.5 7.5				4.7									Sheet flow to Channel A Total Flow from DP 6 & Basin ES-1 Sheet flow to Channel A
	X2	ES-2 ES-3	64.30	0.09	52.1	5.79	1.82	10.0				36.9									Total Flow from DP 4, DP 5 & Basin ES-2 Sheet flow offiste - outfalls to Channel B
	X3	ES-3 ES-4	2.68	0.09	27.1	0.24	2.57	0.6				10.0									Sheet flow offiste - outfalls to Channel B Sheet flow offiste - outfalls to Channel B
	X4	ES-5	26.15	0.09	37.7	2.35	2.12	5.0				0.6									Sheet flow offiste - outfalls to Channel B Sheet flow offiste - outfalls to Channel B
	X5	ES-6	31.26	0.09	32.3	2.81	2.32	6.5				5.0									Sheet flow offiste - outfalls to Channel B
	X6											40.9									Total Flow from DP 1, DP 3 & ES-6
	X7		**Eeg E	-indian We		ite Carla ha		Defe		Tradedad	for an didle	56.5		and Day		- Deni		a contil de		-	Total Existing Flow offsite - outfalls to Channel B
			""FOF E	xisting we	stern Ons	site Sub-Da	isin anaiysi	is, see Ratio	onal Cales	included,	irom uue	u Lastor	Iville Ko	Jau Pre	mmar	y Drai	nage Ke	port , b	упкс	reen, se	otember 2023
INTERIM																					
	8	A-1	2.29	0.09	15.4	0.21	3.42	0.7				0.7									Flows offsite through Pr. Swale A-1
	9	TSB-A1	10.67	0.09	15.6	0.96	3.40	3.3				3.3									Residential Undeveloped-Overland Graded
	10	A-2	3.96	0.09	14.9	0.36	3.47	1.2				10.6									Flows offsite through Pr. Swale A-2 Combined flow of Basin A-2, DP 3 & DP 9
	11	TSB-A2	4.56	0.09	15.1	0.41	3.46	1.4				1.4									Residential Undeveloped-Overland Graded
	12	TSB-A3	13.72	0.09	17.7	1.23	3.21	3.9				5.4									Residential Undeveloped-Overland Graded Combined flow of Basin TSB-A3 & DP 11
	13	TSB-B1	14.03	0.09	16.9	1.26	3.27	4.1				4.1									Residential Undeveloped-Overland Graded
	14	TSB-B2 TSB-C1	14.48	0.09	17.5	1.01	3.19	3.2				8.3									Residential Undeveloped-Overland Graded Combined flow of Basin TSB-B2 & DP13 Residential Undeveloped-Overland Graded
	15	TSB-C1		0.09	17.8	1.01	3.30	3.5				3.2									Residential Undeveloped-Overland Graded Residential Undeveloped-Overland Graded
	16	TSB-C2 TSB-C3		0.09	20.7	1.38	2.96	4.1				3.5									Residential Undeveloped-Overland Graded Residential Undeveloped-Overland Graded
	17	TSB-D1	10.09	0.09	18.9	0.91	3.10	2.8				73									Combined flow of Basin TSB-C3 & DP 15 Residential Undeveloped-Overland Graded
	18	TSB-E1	8.21	0.09	15.5	0.74	3.41	2.5				2.8									Residential Undeveloped-Overland Graded
	19	TSB-E2	13.57	0.09	17.2	1.22	3.25	4.0				2.5									Residential Undeveloped-Overland Graded
	20	EA-1	2.50	0.09	17.9	0.23	3.19	0.7				6.5									Combined flow of Basin TSB-E2 & DP 19 Existing Eastonville Road
	21					1						8.9		1	1						Combined flow of Basin EA-1, DP 5 & DP 6

STANDARD FORM SF-3: EXISTING & INTERIM

STORM DRAINAGE SYSTEM DESIGN

(RATIONAL METHOD PROCEDURE)

Subdivision:	Grand	view Res	serve											Pr			Grand		ubdiv	ision P	DR - Interim Conditions
Location:														Ca	lculate						
Design Storm:	100-Y	'ear												(Checke						
																Date:	12/21	/23			
	DIRECT RUNOFF TOTA				TOTAL RUNOFF STREET PIPE TRAV									VEL 1	IME						
STREET	besign Point	asin ID	rrea (Ac)	unoff Coeff.	Tc (min)	(*A (Ac)	(in/hr)	Q (cfs)	Tc (min)	*A (Ac)	(in/hr)	Q (cfs)	lope (%)	treet Flow (cfs)	besign Flow (cfs)	lope (%)	ipe Size (inches)	ength (ft)	/elocity (fps)	Tt (min)	REMARKS
EXISTING	<u> </u>						н		<u> </u>		<u> </u>		S I	S	<u> </u>						
	1	EX1	321.53					365.2				365.2									**SEE NOTE
	2	EX2	18.88					18.8				18.8									**SEE NOTE
	3	EX3	131.26					112.1				112.1									**SEE NOTE
	4	EX4	832.70					491.0				491.0									**SEE NOTE
	5	EX5	22.35					43.3				43.3									**SEE NOTE
	6	EX6	3.05					6.9				6.9									**SEE NOTE
	7	EX7	1.47					4.2				4.2									**SEE NOTE
	X1	ES-1	16.37	0.36	31.6	5.89	4.19	24.7				31.6									Sheet flow to Channel A Total Flow from DP 6 & Basin ES-1
	X2	ES-2	46.05	0.36	48.3	16.58	3.24	53.7				588.0									Sheet flow to Channel A Total Flow from DP 4, DP 5 & Basin ES-2
	X3	ES-3	64.30	0.36	52.1	23.15	3.09	71.5				71.5									Sheet flow offiste - outfalls to Channel B
	X4	ES-4	2.68	0.36	27.1	0.96	4.57	4.4				4.4									Sheet flow offiste - outfalls to Channel B
	X5	ES-5	26.15	0.36	37.7	9.41	3.77	35.5				35.5									Sheet flow offiste - outfalls to Channel B
	X6	ES-6	31.26	0.36	32.3	11.25	4.13	46.5				523.8									Sheet flow offiste - outfalls to Channel B Total Flow from DP 1, DP 3 & ES-6
	X7											635.2									Total Existing Flow offsite - outfalls to Channel B
			**For	Existing V	Western O	ffsite Sub-	basin anal	ysis, see Ra	tional Ca	les Include	ed, from ti	tled "Eas	tonville l	Road Prel	liminary	Draina	age Rep	ort", by	HR G	reen, Se	ptember 2023
INTERIM																					
	8	A-1	2.29	0.36	15.4	0.82	6.09	5.0				5.0									Flows offsite through Pr. Swale A-1
	9	TSB-A1	10.67	0.36	15.6	3.84	6.06	23.3				23.3									Residential Undeveloped-Overland Graded
	10	A-2	3.96	0.36	14.9	1.43	6.18	8.8				144.2									Flows offsite through Pr. Swale A-2 Combined flow of Basin A-2, DP 3 & DP 9
	11	TSB-A2		0.36	15.1	1.64	6.15	10.1				10.1									Residential Undeveloped-Overland Graded
	12	TSB-A3		0.36	17.7	4.94	5.71	28.2				38.3									Residential Undeveloped-Overland Graded Combined flow of Basin TSB-A3 & DP 11
	13	TSB-B1	14.03	0.36	16.9	5.05	5.82	29.4				29.4									Residential Undeveloped-Overland Graded
	14	TSB-B2		0.36	17.3	5.21	5.77	30.1				59.5									Residential Undeveloped-Overland Graded Combined flow of Basin TSB-B2 & DP13
	15	TSB-C1	11.26	0.36	17.8	4.05	5.68	23.0				23.0									Residential Undeveloped-Overland Graded
	16	TSB-C2		0.36	16.7	4.29	5.87	25.2				25.2									Residential Undeveloped-Overland Graded
	17	TSB-C3		0.36	20.7	5.50	5.27	29.0				52.0									Residential Undeveloped-Overland Graded
	18	TSB-D1	10.09	0.36	18.9	3.63	5.52	20.0				20.0									Residential Undeveloped-Overland Graded
	19	TSB-E1	8.21	0.36	15.5	2.96	6.07	18.0				18.0									Residential Undeveloped-Overland Graded
	20	TSB-E2		0.36	17.2	4.89	5.79	28.3				46.3									Residential Undeveloped-Overland Graded Combined flow of Basin TSB-E2 & DP 19
	21	EA-1	2.50	0.36	17.9	0.90	5.68	5.1				55.3									Existing Eastonville Road Combined flow of Basin EA-1, DP 5 & DP 6

COMPOSITE % IMPERVIOUS CALCULATIONS

Subdivision: Grandview Reserve Filing No. 1

Location: CO, Falcon (El Paso County)

Project Name: Grandview Reserve Filing No. 1

Project No.: HRG02.20

Calculated By: TJE

Checked By: BAS

Date: 6/21/24

			Paved Road	ds	Law	ns / Undevel	oped	Resi	dential - 1/8	Acre	Pasing Total
Basin ID	Total Area (ac)	% Imp.	Area (ac) Weighted % Imp.		% Imp.	Area (ac)	Weighted % Imp.	% Imp.	Area (ac)	Weighted % Imp.	Basins Total Weighted % Imp.
D-1	2.73	100		0.0	2	0.80	0.6	65	1.93	46.0	46.6
D-2	0.57	100		0.0	2		0.0	65	0.57	65.0	65.0
D-3	4.33	100		0.0	2	0.36	0.2	65	3.97	59.6	59.8
D-4	3.65	100	0.11	3.0	2	0.48	0.3	65	3.06	54.5	57.8
D-5	1.59	100		0.0	2	1.07	1.3	65	0.52	21.3	22.6
D-6	0.92	100		0.0	2	0.75	1.6	65	0.17	12.0	13.6
E-1	4.47	100	0.21	4.7	2	1.72	0.8	65	2.54	36.9	42.4
E-2	1.94	100		0.0	2		0.0	65	1.94	65.0	65.0
E-3a	2.90	100		0.0	2		0.0	65	2.90	65.0	65.0
E-3b	2.12	100		0.0	2		0.0	65	2.12	65.0	65.0
E-4a	7.45	100		0.0	2	1.92	0.5	65	5.53	48.2	48.7
E-4b	1.00	100		0.0	2		0.0	65	1.00	65.0	65.0
E-5	1.43	100		0.0	2	1.18	1.7	65	0.25	11.4	13.1
E-6	2.40	100	0.25	10.4	2	2.00	1.7	65	0.15	4.1	16.2

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Grandview Reserve Filing No. 1

Location: CO, Falcon (El Paso County)

Project Name: Grandview Reserve Filing No. 1

Project No.: HRG02.20

Calculated By: TJE Checked By: BAS

Date: 6/21/24

Date. 0/21/2

		SUB-BA	ASIN			INIT	IAL/OVERI	LAND		TR	AVEL TIM	E			Tc CHECK			
		DAT	Α				(T _i)		(T _t) (URBANIZED BASINS)									
BASIN	D.A.	Hydrologic	Impervious	C ₁₀₀	C₅	L	S	Ti	L	S	Cv	VEL.	T _t	COMP. T _c	TOTAL	Urbanized T _c	Τ _c	
ID	(AC)	Soils Group	(%)			(FT)	(%)	(MIN)	(FT)	(%)		(FPS)	(MIN)	(MIN)	LENGTH (FT)	(MIN)	(MIN)	
D-1	2.73	A	46.6	0.47	0.32	64	4.8	6.8	425	2.2	20.0	3.0	2.4	9.2	489.0	12.7	9.2	
D-2	0.57	А	65.0	0.62	0.50	18	2.0	3.7	313	1.0	20.0	2.0	2.6	6.3	331.0	11.8	6.3	
D-3	4.33	А	59.8	0.58	0.45	25	2.0	4.7	522	1.5	20.0	2.4	3.6	8.3	547.0	13.0	8.3	
D-4	3.65	A	57.8	0.56	0.43	70	4.0	6.5	679	1.5	20.0	2.4	4.6	11.1	749.0	14.2	11.1	
D-5	1.59	А	22.6	0.29	0.13	72	25.0	5.2	238	0.5	20.0	1.4	2.8	8.0	310.0	11.7	8.0	
D-6	0.92	A	13.6	0.22	0.07	40	33.3	3.7				0.0	0.0	3.7	40.0	10.2	5.0	
E-1	4.47	A	42.4	0.44	0.29	55	3.0	7.6	804	3.0	20.0	3.5	3.9	11.5	859.0	14.8	11.5	
E-2	1.94	А	65.0	0.62	0.50	31	2.0	4.9	346	3.0	20.0	3.5	1.7	6.5	377.0	12.1	6.5	
E-3a	2.90	А	65.0	0.62	0.50	55	4.0	5.1	644	1.5	20.0	2.4	4.4	9.5	699.0	13.9	9.5	
E-3b	2.12	А	65.0	0.62	0.50	55	4.0	5.1	248	1.0	20.0	2.0	2.1	7.2	303.0	11.7	7.2	
E-4a	7.45	А	48.7	0.49	0.34	55	4.0	6.5	813	1.5	20.0	2.4	5.5	12.0	868.0	14.8	12.0	
E-4b	1.00	А	65.0	0.62	0.50	55	4.0	5.1	248	1.0	20.0	2.0	2.1	7.2	303.0	11.7	7.2	
E-5	1.43	A	13.1	0.21	0.06	75	15.0	6.7	318	0.5	20.0	1.4	3.7	10.4	393.0	12.2	10.4	
E-6	2.40	А	16.2	0.24	0.08	50	33.3	4.1				0.0	0.0	4.1	50.0	10.3	5.0	

NOTES:

$$\begin{split} T_i &= (0.395^*(1.1 - C_5)^*(L)^{0.5})/((S)^{0.33}), \ S \ in \ ft/ft \\ T_t &= L/60V \ (Velocity \ From \ Fig. \ 501) \\ Velocity \ V &= Cv^*S^{0.5}, \ S \ in \ ft/ft \\ Tc \ Check &= 10 + L/180 \\ For \ Urbanized \ basins \ a \ minimum \ T_c \ of \ 5.0 \ minutes \ is \ required. \end{split}$$

For non-urbanized basins a minimum $T_{c}\, of\, 10.0$ minutes is required

												EM DES									
Loc	rision: <u>Grand</u> ation: <u>CO, Fa</u> torm: <u>5-Yea</u>	lcon (El Pa							(RATION	AL METH		OCEDURE)			Calculate Checke	ct No.: ed By: ed By:	HRG02. TJE	20	erve Fi	ling No	.1
										TOTAL RUNOFF						-	0/21/24				
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	STR (%) adolS	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	D1	D-1	2.73	0.32	9.2	0.87	3.03	2.6							2.6						CDOT TYPE 'R' INLET (SUMP)
	D2	D-2	0.57	0.50	6.3	0.29	3.46	1.0							1.0						CDOT TYPE 'R' INLET (SUMP)
	D3														3.6						DP D1 + D2
	D3	D-3	4.33	0.45	8.3	1.95	3.15	6.1							6.1						CDOT TYPE 'R' INLET (SUMP)
																					· · · · ·
	D5	D-4	3.65	0.43	11.1	1.57	2.80	4.4							9.8 14.2						DP D3 + D4 CDOT TYPE 'R' INLET (SUMP) -> BASIN D-4 + DP D5
	D6	D-5	1.59	0.13	8.0	0.21	3.19	0.7							14.2						TOTAL FLOW ENTERING POND D
	D7	D-6	0.02	0.07	5.0	0.00	2.70								0.2						DISCHARGE FROM POND D (MHFD - DETENTION)
		D-6	0.92	0.07	5.0	0.06	3.70	0.2													FLOWS OFF SITE TO CHANNEL B
	E1	E-1	4.47	0.29	11.5	1.30	2.75	3.6					3.0	0.0	3.6						CDOT TYPE 'R' INLET (AT-GRADE) Qcap=3.6 cfs, Qco=0 cfs to DP E4
	E2	E-2	1.94	0.50	6.5	0.97	3.42	3.3					3.0	0.0	3.3						CDOT TYPE 'R' INLET (AT-GRADE) Qcap=3.3 cfs, Qco=0 cfs to DP E4
	E3														6.9						DP E1 + E2
	E4	E-3a	2.9		9.5	1.45	2.98	4.3					1.5	0.0	4.3						CDOT TYPE 'R' INLET (AT-GRADE) Qcap=4.3 cfs, Qco=0 cfs to DP E7
	E5	E-4a	7.45	0.34	12.0	2.53	2.70	6.8					1.5	0.2	6.6						CDOT TYPE 'R' INLET (AT-GRADE) Qcap=6.6 cfs, Qco=0.2 cfs to DP E9
	E6														17.8						DP E3 + E4 + E5
	E7	E-3b	2.12	0.50	7.2	1.06	3.31	3.5							3.5						CDOT TYPE 'R' INLET (SUMP)
	E8														21.3						DP E6 + E7
	E9	E-4b	1.00	0.50	7.2	0.50	3.31	1.7	12.0	0.59	2.70	1.7			1.7						CDOT TYPE 'R' INLET (SUMP) -> BASIN E-4b + DP E8
	E10	E-5	1.43	0.06	10.4	0.09	2.87	0.3							2.0						TOTAL FLOW ENTERING POND E
	E11														0.4						DISCHARGE FROM POND E (MHFD - DETENTION)
		E-6	2.40	0.08	5.0	0.19	3.70	0.7													FLOWS OFF SITE TO CHANNEL B

								ST	ORM D	RAINA	D FORM GE SYST	EM DESI	IGN								
Subdivision: Location: Design Storm:	CO, Fa	lcon (El Pas)					(RATIO		THOD PRO	CEDURE)		(Proje Calculat	Name: ect No.: ted By: ced By: Date:	HRG02. TJE BAS	20			1
				DI	RECT RUI	NOFF				TOTAL	RUNOFF		STR	EET		PIPE		TR/	AVEL TI	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Tc (min)	C*A (Ac)	l (in/hr)	Q (cfs)	Slope (%)	Street Flow (cfs)	Design Flow (cfs)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	Tt (min)	REMARKS
	D1	D-1	2.73	0.47	9.2	1.28	6.23	8.0							5.3						FLOWS OVERTOP CROWN -> Q=(8.0+2.5)/2=5.3 CFS CDOT TYPE 'R' INLET (SUMP)
	D1 D2	D-2	0.57	0.62	6.3	0.35	7.11	2.5							5.3						FLOWS OVERTOP CROWN -> Q=(8.0+2.5)/2=5.3 CFS CDOT TYPE 'R' INLET (SUMP)
	D3														10.5						DP D1 + D2
	D4	D-3	4.33	0.58	8.3	2.51	6.48	16.3							14.1						FLOWS OVERTOP CROWN -> Q=(16.3+11.8)/2=14.1 CFS CDOT TYPE 'R' INLET (SUMP)
	D5														24.6						DP D3 + D4
	D6	D-4	3.65		11.1	2.04	5.76	11.8							25.8						FLOWS OVERTOP CROWN -> Q=(16.3+11.8)/2=14.1 CFS CDOT TYPE 'R' INLET (SUMP) -> BASIN D-4 + DP D5
	D7	D-5	1.59	0.29	8.0	0.46	6.57	3.0							28.8						TOTAL FLOW ENTERING POND D
	D8	D-6	0.92	0.22	5.0	0.20	7.62	1.5							8.0						DISCHARGE FROM POND D (MHFD - DETENTION) FLOWS OFF SITE TO CHANNEL B
		E-1	4.47	0.44	11.5	1.97	5.66	11.2					3.0	1.9							CDOT TYPE 'R' INLET (AT-GRADE)
	E1	E-2	1.94	0.62	6.5	1.20	7.04	8.4					3.0	0.6	9.3						Qcap=9.3 cfs, Qco=1.9 cfs to DP E4 CDOT TYPE 'R' INLET (AT-GRADE)
	E2														7.8						Qcap=7.8 cfs, Qco=0.6 cfs to DP E4
	E3														17.1						DP E1 + E2
	E4	E-3a	2.9	0.62	9.5	1.80	6.13	11.0	11.5	2.22	5.66	12.6	1.5	5.1	11.7						CDOT TYPE 'R' INLET (AT-GRADE) Qcap=11.7 cfs, Qco=5.1 cfs to DP E7
	E5	E-4a	7.45	0.49	12.0	3.65	5.55	20.3				11.6	1.5	0.0	11.6						CDOT TYPE 'R' INLET (AT-GRADE) Qcap=11.6 cfs, Qco=0 cfs to DP E9
	E6														40.4						DP E3 + E4 + E5
	E7	E-3b	2.12	0.62	7.2	1.31	6.81	8.9	9.5	2.21	6.13	13.6			11.0						FLOWS OVERTOP CROWN -> Q=(13.5+8.5)/2=11.0 CFS CDOT TYPE 'R' INLET (SUMP)
	E8														51.4						DP E6 + E7
	E9	E-4b	1	0.62	7.2	0.62	6.81	4.2	12.0	0.62	5.55	3.4			62.4						FLOWS OVERTOP CROWN -> Q=(13.5+8.5)/2=11.0 CFS CDOT TYPE 'R' INLET (SUMP) -> BASIN E-4b + DP E8
	E10	E-5	1.43	0.21	10.4	0.30	5.91	1.8							64.2						TOTAL FLOW ENTERING POND E
	E11	E-6	2.40	0.24	5.0	0.58	7.62	4.4							14.9						DISCHARGE FROM POND E (MHFD - DETENTION) FLOWS OFF SITE TO CHANNEL B

APPENDIX D

Hydraulic Computations

MHFD-Inlet, Version 5.03 (August 2023)

INLET MANAGEMENT

Worksheet Protected

INLET NAME	Inlet D1 (Basin D-1)	Inlet D2 (Basin D-2)	Inlet D4 (Basin D-3)	Inlet D6 (Basin D-4)
Site Type (Urban or Rural)	URBAN	URBAN	URBAN	URBAN
Inlet Application (Street or Area)	STREET	STREET	STREET	STREET
Hydraulic Condition	In Sump	In Sump	In Sump	In Sump
Inlet Type	CDOT Type R Curb Opening			

USER-DEFINED INPUT

_					
Γ	User-Defined Design Flows				
I	Minor Q _{Known} (cfs)	2.6	1.0	6.1	4.4
I	Major Q _{Known} (cfs)	5.3	5.3	14.1	14.1
I					

Bypass (Carry-Over) Flow from Upstream	Inlets must be organized from upstro	eam (left) to downstream (right) in orde	r for bypass flows to be linked.	
Receive Bypass Flow from:	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received	No Bypass Flow Received
Minor Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0
Major Bypass Flow Received, Q _b (cfs)	0.0	0.0	0.0	0.0

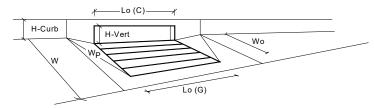
Watershed Characteristics

L	Subcatchment Area (acres)		
L	Percent Impervious		
L	NRCS Soil Type		

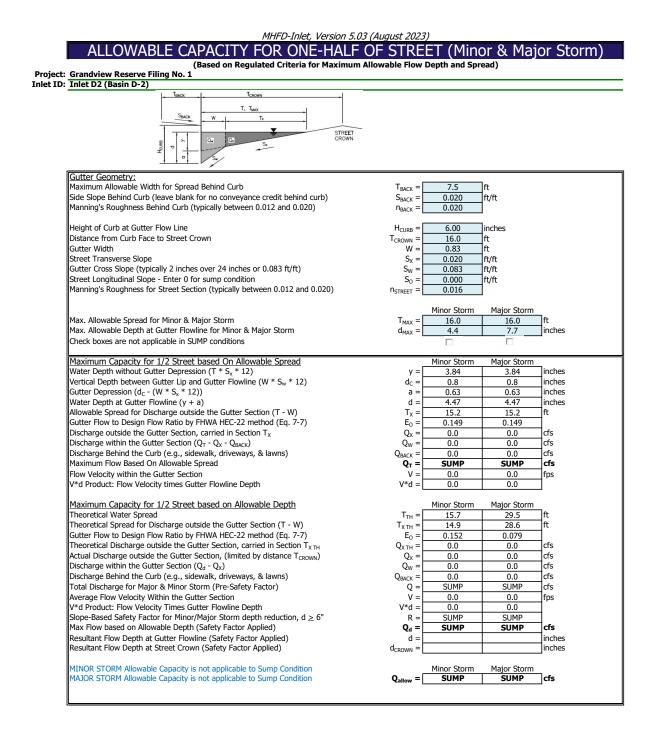
Watershed Profile

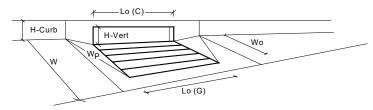
Overland Slope (ft/ft)		
Overland Length (ft)		
Channel Slope (ft/ft)		
Channel Length (ft)		

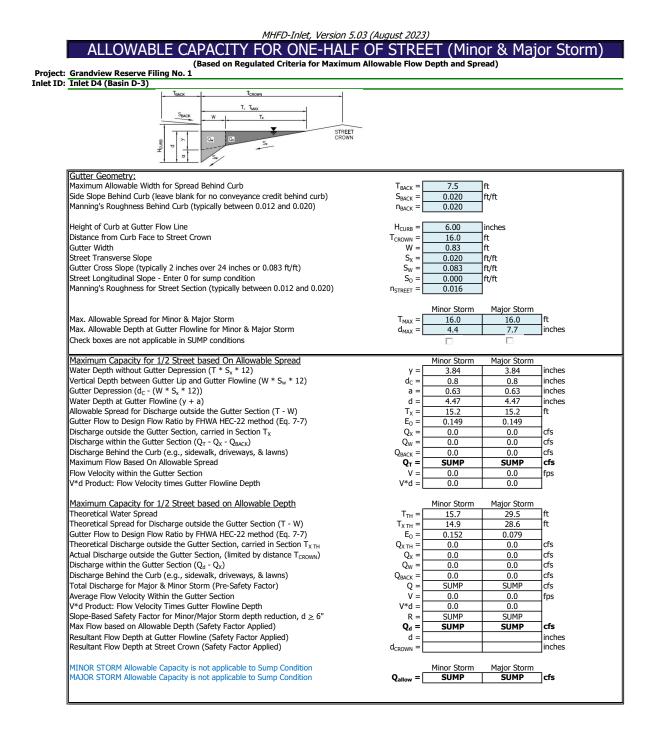
Minor Storm Rainfall Input

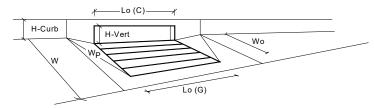

Design Storm Return Period, T _r (years)		
One-Hour Precipitation, P ₁ (inches)		
Major Storm Rainfall Input		
Major Storm Rainfall Input Design Storm Return Period, T _r (years)		

CALCULATED OUTPUT

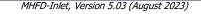

Minor Total Design Peak Flow, Q (cfs)	2.6	1.0	6.1	4.4
Major Total Design Peak Flow, Q (cfs)	5.3	5.3	14.1	14.1
Minor Flow Bypassed Downstream, Qb (cfs)	N/A	N/A	N/A	N/A
Major Flow Bypassed Downstream, Qb (cfs)	N/A	N/A	N/A	N/A

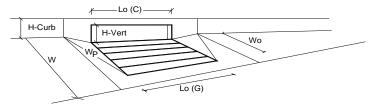



Display Laboration (LBBA) COOTType R Curb Covening MURR MU						_
$ y_{\text{rec}} (1) y$	Design Information (Input)	_			_	1
Number Of Unit Intels (Gate Or Curb Opening) No = 1 1 Grate Information Grate Info	l ype of Inlet	Type =				
Water Depth at Flowine (outside of local degression) Ponding Depth = 4.4 7.7 Invites Length of 1 bit Grade Li(G) = NUA NUA NUA NUA Mixed or 1 bit Grade Li(G) = NUA NUA NUA NUA Mixed or 1 bit Grade NuA NUA NUA NUA NUA Cogging Factor for a Single Grade (typical values 0.15 - 0.70) C; (G) = NUA NUA NUA Cogging Factor for a Single Grade (typical values 0.80 - 0.80) C; (G) = NUA NUA NUA Length of a Unit Curb Opening In Index Huse Huse 6.33 0.30 fieth State Grade Times Huse 6.33 0.30 fieth fieth Cogging Factor for Single Curb Opening (typical value 0.10) C; (C) = 0.10 0.10 0.10 fieth Cogging Grade Tork Multiple Units NUA NUA NUA NUA NUA NUA NUA NUA NUA NUA <td></td> <td>a_{local} =</td> <td>3.00</td> <td>3.00</td> <td>inches</td> <td></td>		a _{local} =	3.00	3.00	inches	
State Information MIXOR MODR MODR Powende Despha Verind 14 Unit Grite L (G) N/A I/A Feet Wahr of a lun Cale W, a N/A I/A I/A Opening Path for Samp Grate (Uprice) Value 0.50 - 0.70) C, (G) N/A I/A I/A Grate Information C, (G) N/A I/A I/A I/A Grate Wert Call Club Opening Information L, (G) N/A I/A I/A Light of Lun Cab Opening Information E. (G) I/A I/A Sold Wort Call Club Opening Information L, (G) I/A I/A I/A Light of Lun Call Cab Opening (Sreat Value 1.0) C (G) I/A I/A I/A Sold Wort Call Cable Opening Wert Call Cable Opening Value 2.3.3.7) C, (G) I/A I/A I/A Carl Dopening Mert Cable Cable On MHED - CSU 2010 Study) Call I/A N/A I/A Carl Dopening Mert Cable On MHED - CSU 2010 Study) Call I/A N/A I/A MINOR MAOR I/A <td></td> <td></td> <td></td> <td>_</td> <td></td> <td></td>				_		
Lingth of a Unit Grate L (G) N/A 1/A Feet Qpen Area Rato for a Grate (pipcal value 0.15-0.90) A_as N/A 1/A Feet Qpen Area Rato for a Grate (pipcal value 0.15-0.90) C. (G) N/A 1/A 1/A Grate Wert Coefficient (pipcal value 0.15-0.90) C. (G) N/A 1/A 1/A Grate Wert Coefficient (pipcal value 0.15-0.90) C. (G) N/A 1/A 1/A Grate Wert Coefficient (pipcal value 0.15-0.90) C. (G) N/A 1/A 1/A Grate Wert Coefficient (pipcal value 0.15-0.70) C. (G) N/A 1/A 1/A Langth of Lung Coefficient (pipcal value 0.15-0.70) C. (G) N/A 1/A 1/A See Work for Depression Rn (pipcal value 0.50-0.70) C. (G) 0.33 0.33 1.64 Grate Brow Analysis Claculated 0 0.00 0.07 0.77 1.65 Grate Brow Analysis Claculated 0 0.00 0.07 0.77 1.66 Grate Brow Analysis Claculated 0 0.00 0.07 0.77 1.66 Grate Brow Analysis		Ponding Depth =				
With a tuni Grate Wate Wate <td></td> <td>-</td> <td></td> <td></td> <td>Polyment -</td> <td></td>		-			Polyment -	
Open Area Ratio for a Grate (pycal values 0.15-0.90) A _{max} N/A N/A N/A Grate Metri Coefficient (tycical values 0.15-0.90) C, (G) N/A N/A N/A Grate Weit Coefficient (tycical values 0.15-0.80) C, (G) N/A N/A N/A Grate Metric Coefficient (tycical values 0.15-0.80) C, (G) N/A N/A N/A Magin of 11AC Objening N/A N/A N/A N/A N/A Magin of 11AC Too Opening N/A N/A N/A N/A N/A Side Width for Depression Part (tycical value 2.3-7.7) C, (C) 0.03 0.31 refer Side Width for Depression Part (tycical value 2.3-7.7) C, (C) 0.637 0.37 refer Curb Opening Orthon Coefficient (tycical value 2.3-7.7) C, (C) 0.637 0.37 refer Carla Capacity, as Metric (Dased on MHED - CSU 2010 Study) Cord N/A N/A N/A Carla Capacity, as Metric (Dased on MHED - CSU 2010 Study) Cord N/A N/A N/A Interception with Cogging Cord MiADR M/A						
Clogging protor for a Single Grate (typical value 5.0 - 0.70) C (\bar{G}) = NA N/A Card World Confine (typical value 5.1 - 3.60) C (\bar{G}) = NA N/A Card Densing Information L (G) = S.00 3.00 10.4 Length of a Unit Cub Opening In Interes Hindow Mode Minol Mode Minol Mode Angle of Throat Hindow Desers (a Unit Cub) Coloring (typical value 3.0 - 0.70) C (G = 3.40 0.40 Cub Opening Unite Hindow Mode Hindow Mode Hindow Mode Hindow Mode Hindow Mode Cub Opening Virtice Confficient (typical value 2.0.3 - 0.70) C (G = 3.60 3.60 1.60 Cub Opening Virtice Confficient (typical value 2.0.60 - 0.70) C (G = 3.60 1.60 1.60 Cast Consc Class A With Clogging Conficient (tor MMIPD - CSU 2010 Study) Coof = N/A N/A N/A Interception with Clogging Confice (tor Mulpipe Units Coof = N/A N/A N/A N/A Cub Opening Virtice (based on MHED - CSU 2010 Study) Coof = N/A					feet	
Grate Wire Cellificant (typical value 2.15 - 3.60) Grate Ortice Cellificant (typical value 0.60 - 0.80) Grate Ortice Cellificant (typical value 0.60 - 0.70) Grate Diamona Single Curb Ortice (typical value 0.60 - 0.70) Grate Cellificant for Multiple Units Grate Cellificant for Multiple Units Grate Capacity as Were Cellificant (typical value 0.60 - 0.70) Grate Cellificant for Multiple Units Grate Capacity as Were Cellificant (typical value 0.60 - 0.70) Grate Cellificant for Multiple Units Grate Capacity as Were Cellificant (typical value 0.60 - 0.70) Grate Cellificant for Multiple Units Grate Capacity as Mixed Down Interception without Clogging Grate Capacity as Alfwerd Down Interception without Clogging Grate Capacity as Mixed Down Interception without Clogging Grate Capacity as Alfwerd Down Interception without Clogging Interception with		A _{ratio} =				
Grate Orthe Coefficient (typical value 0.60 - 0.80) Length of a Unit Curb Opening in Inches Height of Vertical Curb Opening Opening Opening Online Coefficient (typical value 0.60 - 0.70) Curb Opening Office Coefficient (typical value 0.60 - 0.70) Cur						
Curb Opening Lindto Depening Information Lengh of a UNIC to Spening Information Height of UN for the Shares in Thesis Angle of Threat See With for Depression Pain (typically the gutter withh of 2 feet) Cho Opening Vertical Curb Opening (typically the gutter withh of 2 feet) Cho Opening Vertical Curb Opening (typically the gutter withh of 2 feet) Cho Opening Vertical Curb Opening (typically the gutter withh of 2 feet) Cho Opening Vertical Curb Opening (typically the gutter withh of 2 feet) Cho Opening Vertical Curb Opening (typically the gutter withh of 2 feet) Cho Opening Vertical Coefficient (typically the 2.33.7) Curb Opening Vertical Coefficient (typically value 2.33.7) Curb Opening Vertical Coefficient (the MADOR Case I Interception without Coogning Case I Intervention wit						
Langth of unit Curb Opening Inches Height of Vetical Curb Opening Inches Height of Curb Curb Curb Curb Curb Curb Curb Curb		$C_{o}(G) =$,	,		
Height of Urb forms in Inches Angle of Trotat See Wath for Depression Pan (typically the gutter width of 2 feet) Clogging Factor for a Single Curb Opening (typically vue 0.10) Curb Opening Orfice Coefficient (typically vue 0.23-7) Curb Opening Orfice Coefficient (typically vue 0.2-3-7) Curb Opening Orfice (tassed on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate Coapacity as an Office (based on MHED - CSU 2010 Study) Thereception without Coogning Grate The Maxie (Figure 1		_		MAJOR	_	
Height of curb Orfice Trivita Inches Angle of Trivita Sale With for Depresion Pin (typically the gutter width of 2 feet) Sale With for Depresion Pin (typically the gutter width of 2 feet) Sale With for Depresion Pin (typically the gutter width of 2 feet) Curb Opening Office Coefficient (typical value 2.3.3.7) Curb Opening Office Coefficient (typical value 2.3.3.7) Curb Opening Office Coefficient (typical value 2.3.3.7) Carate Endow Analysis (Calculated) Cogging Genter for Muttiple Units Cogging Genter for Muttiple Units Carate Capacity as a Weir (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as Mixed Elsay Interception without Cogging Carate Capacity as Mixed Elsay Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as Mixed Elsay Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Cardy Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Cardy Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Carate Capacity as an Onfice (Dased on MHED - CSU 2010 Study) Interception without Cogging Cara = 100 - 100 100 Car						
Angle of Throat Theta = 63.40 63.40 degrees Gogding Factor for a Single Curb Opening (tripical value 0.10) C (C) = 0.03 0.03 0.03 Curb Opening Witce Coefficient (trypical value 0.60 - 0.70) C (C) = 0.00 0.00 0.00 Clogging Factor for Multiple Units Coef = N/A N/A N/A N/A Clogging Coefficient for Multiple Units Coef = N/A N/A N/A N/A Grate Capachy as a Weir (based on MHED - CSU 2010 Study) Q _{an} = N/A N/A A/A Single Coefficient (from Multiple Units Coef = N/A N/A A/A Crate Capachy as a Morin (Clogging Q _{an} = N/A N/A A/A Single Coefficient (from Multiple Units Coef = N/A N/A A/A Single Coefficient (from Multiple Units Coef = N/A N/A A/A Single Coefficient (from Multiple Units Coef = N/A N/A A/A Single Coefficient (from Multiple Units Coef = N/A N/A A/A Single Coefficient (from Multiple Units Coef = N/A N/A N/A Coefficient (from Multiple Units Coef = N/A <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Side Width for Depression Pan (typically the gutter width of 2 feet) Capting Factor for a Single Curb Opening (Vipci View 00.10) Curb Opening Office Coefficient (typical View 2.3.37) Curb Opening Office Coefficient (typical View 2.3.37) Cartes Enow Analysis (Calculated) Copging Factor for Multiple Units Copging Factor for Multiple Units Copging Factor for Multiple Units Copging Coefficient for Multiple Units Copging Factor for Multiple Units Copging Coefficient for Multi						
Clogging Factor for a Single Curb Opening (Unpical value 0.3-7.7) Curb Opening Wire Coefficient (typical value 0.3-7.7) Curb Opening Wire Coefficient (typical value 0.4-7.7) Curb Opening Wire Coefficient (typical value 0.4-7.7) Curb Opening Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Coapcity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Coapcity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Coapcity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Coapcity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Coapcity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Coapcity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Coapcity (Sauues Coaped condition) Curb Caapcity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Caapcity as an Orifice (Dased on MHED - CSU 2010 Study) Interception with Ocoging Curb Caapcity (Sauues Coaped condition) Curb Caapcity (Sauues Coaped condition) Curb Caapcity (Sauues Coap						
Curb Opening Weir Coefficient (typical value 2.3-3.7) Curb Opening Office Coefficient (typical value 0.60 - 0.70) Grate Thow Analysis (Calculated) Origin Coeffice Coefficient (for Multiple Units Coggin (Coeffice Coefficient (for Multiple Units Coggin (Coeffice Coefficient (for Multiple Units Grate Capacity as a Weir (Cased on MHED - CSU 2010 Study) Interception without Cogging Grate Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Cogging Grate Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Cogging Grate Capacity as Mixed Flow Interception without Cogging Grate Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Cogging Grate Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Cogging Grate Capacity as an Orifice (Cased on MHED - CSU 2010 Study) Interception without Cogging Grate Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Cogging Curb Opening Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Cogging Curb Opening Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Cogging Curb Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception with Cogging Curb Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception with Cogging Curb Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception with Cogging Curb Capacity as Mixed Flow Interception with Cogging Curb Capacity as Mixed Flow Interception with Cogging Resulting Curb Opening Capacity as Mixed Flow Interception with Cogging Resulting Curb Opening Capacity as Mixed Flow Interception with Cogging Curb Capacity as Mixed Flow Int					feet	
Curb Opening Ordine Coefficient (pyclat value 0.60 - 0.70) Cg (Cg = 0.67 0.67 Carte Flow Analysis (Calculated) Cogaine Factor for Multiple Units Cogaine Factor for Multiple Units Cogaine Factor for Multiple Units Crafte Capacity as a Weifer (based on MHFD - CSU 2010 Study) Interception with Clogging Carte Capacity as an Ordine Chosed on MHFD - CSU 2010 Study) Interception with Clogging Carte Capacity as Multiple Units Crafte Capacity as Multiple Units Crafter Capacity as Multiple Units Craft Interception with Clogging Interception with						
Grate Flow Analysis (Calculated) MNOR MAOR Cogging Cartor for Multiple Units Cof = N/A N/A Crate Canacity as an Orifice (based on MHFD - CSU 2010 Study) Q _{eff} = N/A N/A Interception with Cogging Q _{eff} = N/A N/A N/A Crate Canacity as an Orifice (based on MHFD - CSU 2010 Study) Q _{eff} = N/A N/A N/A Interception with Cogging Q _{eff} = N/A N/A N/A K/A Interception with Cogging Q _{eff} = N/A N/A N/A K/A Interception with Cogging Q _{eff} = N/A N/A K/A K/A Interception with Cogging Q _{eff} = N/A N/A K/A K/A Interception with Cogging Q _{eff} = N/A N/A K/A K/A Curb Copacity as Mice Chacety (assumes cloqued condition) Q _{eff} = State Canacity as N/A K/A K/A K/A K/A Curb Copacity as an Orifice (based on MHFD - CSU 2010 Study) R _{eff} = State S						
Clogging Coefficient for Multiple Units $Coeff = \frac{ V A}{NA} \frac{ V A}{NA}$ Grate Capacity as a Weir (based on MHED - CSU 2010 Study) Intercepton with Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton with Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton with Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton with Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton with Clogging Crate Capacity as Simme cloged condition) Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton with Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton with Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton with Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton without Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton without Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton without Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton without Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton without Clogging Crate Capacity as an Orffice (based on MHED - CSU 2010 Study) Intercepton without Clogging Crate Capacity as an Orffice (based on Street geometry from above) Resultant Street Conditions Crate Capacity as Maked Flow L = Store The Capacity as and on fice (based on street geometry from above) Resultant Street Conditions Crate Capacity as and the fertorwance Reduction Factor for Long Inlets Croth Opening Capacity (assumes clogged condition) Crate Capacity Capacity (assu		$C_{o}(C) =$		0.0.		<u>_</u>
$ \begin{array}{llllllllllllllllllllllllllllllllllll$		_			_	
$ \begin{array}{c} Grade Capacity as a Weir (based on MHED - CSU 2010 Study) \\ Interception with Clogging \\ Grade Capacity as an Orifice (based on MHED - CSU 2010 Study) \\ Interception with Clogging \\ Grade Capacity as an Orifice (based on MHED - CSU 2010 Study) \\ Interception with Clogging \\ Grade Capacity as Mixed Flow \\ Interception with Clogging \\ Grade Capacity (assumes cloged condition) \\ Resulting Grate Capacity (assumes cloged condition) \\ Curb Opening Flow Analysis (Calculated) \\ Cogging Coefficient for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Curb Opening Capacity as an Orifice (based on MHED - CSU 2010 Study) \\ Interception with Clogging \\ Curb Opening Coefficient for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Cogging Coefficient for Multiple Units \\ Curb Opening Capacity as an Orifice (based on MHED - CSU 2010 Study) \\ Interception with Clogging \\ Curb Opening Capacity as an Orifice (based on MHED - CSU 2010 Study) \\ Interception with Clogging \\ Curb Opening Capacity as an With Clogging \\ Resultant Street Conditions \\ Total Inter Clogging Coefficient for Multiple Units \\ Curb Opening Capacity as an Orifice (based on MHED - CSU 2010 Study) \\ Interception with Clogging \\ Curb Opening Capacity as an With Clogging \\ Resultant Street Conditions \\ Total Interception with Clogging \\ Curb Opening Capacity as Miked Flow \\ Total Inter Chown into Clogging \\ Curb Opening Capacity (assumes cloged condition) \\ Resultant Street Conditions \\ Total Inter Chown into Clogging \\ Curb Opening Capacity (based on street geometry from above) \\ Resultant Street Conditions \\ Curb Opening Capacity (based on factor for Long Inlets \\ RF_{curbe} = \frac{NIA}{A} \frac{NIA}{A} = \frac{K}{A} \\ Condition factor for Long Inlets \\ RF_{curbe} = \frac{NIA}{A} \frac{NIA}{A} \\ Condition factor for Long Inlets \\ Curb Opening $						
Interception without Clogging Interception without Clogging Interception without Clogging Interception without Clogging Interception without Clogging Grate Capacity as Mixed Flow Interception without Clogging Grate Capacity as Mixed Flow Interception without Clogging Grate Capacity as Mixed Flow Interception with Clogging Curb Opening Flow Analysis (Calculated) Ogging Catchie tor Multiple Units Curb Capacity as an Unite (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as an Unite (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as an Unite (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as an Unite (based on MHED - CSU 2010 Study) Interception with Clogging Curb Capacity as Mixed Flow Interception with Clogging Curb Capacity (assumes cloged condition) C Resultant Street Crown Resultant Flow Depth at Street Crown Canown Int S-YR Event Mixed Canown Int S-YR Event Mixed Canown Int Street Crown Curb Opening Capacity (assumes cloged condition) C Carb Depting Capacity (assumes cloged condition) C Carb Depring C		Clog =				
Interception with Clogging $C_{\text{Garde Capacity as an Orifice (based on MHED - CSU 2010 Study)}$ Interception with Clogging $Q_{\text{orif}} = \frac{NA}{NA} \frac{N/A}{NA}$ of s Interception with Clogging $Q_{\text{orif}} = \frac{N/A}{NA} \frac{N/A}{NA}$ of s Interception with Clogging (Calculated) Curb Capacity as a Weir (based on MHED - CSU 2010 Study) Interception with Clogging $Q_{\text{orif}} = \frac{3.4}{2.6} \frac{9.1}{9.1}$ of s Interception with Clogging $Q_{\text{orif}} = \frac{3.4}{2.6} \frac{9.1}{9.1}$ of s CROWN IN 100-YR EVENT, BUT MEETS Interception with Clogging $Q_{\text{orif}} = \frac{3.4}{2.6} \frac{9.1}{9.3}$ of s Interception with Clogging $Q_{\text{orif}} = \frac{3.4}{2.6} \frac{9.8}{9.5}$ of s Interception with Clogging $Q_{\text{orif}} = \frac{1.5.7}{2.9.5} \frac{9.8}{2.6}$ of s Interception with Clogging $Q_{$		-			-	
Grate Capacity as an Ordifice (based on MHED - CSU 2010 Study) Qase MINOR MAIOR Interception with Out Gogging Qase N/A N/A N/A Interception with Out Gogging Qase N/A N/A N/A Interception with Out Gogging Qase N/A N/A N/A Interception with Clogging Qase N/A N/A Cfs Grate Capacity as Mixed Flow N/A N/A N/A Cfs Grate Capacity as Mixed Flow N/A N/A N/A Cfs Grate Capacity as a Weir (based on MHED - CSU 2010 Study) N/A N/A N/A Cfs Interception with Clogging Qase 8.4 10.0 Cfs CROWN IN 100-YR Curb Capacity as an Orifice (based on MHED - CSU 2010 Study) Qase 8.4 11.0 dfs Interception without Clogging Qase 8.4 11.0 dfs CROWN IN 100-YR Eventra Capacity as Mixed Flow Mixed Flow Mixed Flow Mixed Flow CROWN IN 5-YR Interception without Clogging Qase 8.4 11.0 dfs CROWN IN 5-YR						
Interception without Cogging $Q_{cas} = NA NA NA fs$ Interception without Cogging $Q_{cas} = NA NA NA fs$ Resulting Grate Capacity assumes cloged condition) C and C	1 55 5	Q _{wa} =			cfs	
Interception with Cogging		_			_	
Crate Capacity as Mixed How MiNOR MINOR MAIOR Interception with Clogging Qmax N/A N/A N/A Cfs Interception with Clogging Qmax N/A N/A N/A Cfs Curb Opening How Analysis (Calculated) Calculated) MINOR MAIOR N/A N/A Cfs Cogging Coefficient for Multiple Units Cogging = 1.00 1.00 1.00 Cogging Factor for Multiple Units Cogging = 3.4 9.1 cfs Curb Capacity as a Mixed Flow MINOR MAIOR MAIOR CROWN IN 100-YR CROWN IN 100-YR Interception without Clogging Qmax 3.4 9.1 cfs CROWN IN 100-YR Interception without Clogging Qmax 8.4 11.0 cfs CROWN IN 100-YR Interception without Clogging Qmax 8.4 11.0 cfs CROWN IN 100-YR Interception without Clogging Qmax 8.3 1.0 cfs CROWN IN 100-YR Interception without Clogging Qmax 9.3 1.4 8.8 cfs CROWN IN 100-YR Interception without Clogging Qm						
Interception without Clogging $Q_{ma} = \frac{N/A}{N/A} \frac{N/A}{N/A}$ cfs $Q_{ma} = \frac{N/A}{N/A} \frac{N/A}{N/A} \frac{N/A}{N/A} \frac{N/A}{N/A} \frac{N/A}{N/A} \frac{N/A}{N/A} \frac{N/A}{N/A} \frac{N/A}{N/A} \frac$		Q _{oa} =			cfs	
Interception with Clogging $Q_{ma} = \frac{N/A}{N/A} \frac{N/A}{N/A} cfs$ Resulting Grate Capacity (assumes clogged condition) $Q_{orte} = \frac{N/A}{N/A} \frac{N/A}{N/A} cfs$ MINOR MAJOR Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging Coefficient for Multiple Units Clogging Clogging Clogging Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Curb Capacity as an Orifice (based on street geometry from above) Resultant Street Conditions Curb Head Performance Reduction factor for Long Inlets Curb Opening Performance Reduction Fa		-			-	
Resulting Grate Capacity (assumes cloqged condition) Qeries N/A N/A refs Curb Opening Flow Analysis (Calculated) Coord MINOR MADOR Clogging Coefficient for Multiple Units Coord 0.10 0.10 Curb Capacity as a Weir (Lossed on MHED - CSU 2010 Study) Quit 3.4 10.1 cfs Interception without Clogging Quit 3.4 9.1 cfs CROWN IN 100-YR Event Capacity as a Weir (Lossed on MHED - CSU 2010 Study) Quit 3.4 9.1 cfs CROWN IN 100-YR Interception without Clogging Quit 3.4 9.1 cfs CROWN IN 100-YR Event Chapting Capacity as Mixed Flow MINOR MADOR MADOR CROWN IN 100-YR Interception without Clogging Quit 5.3 9.8 cfs Crown NADOR Interception with Clogging Quit Street Conditions MINOR MADOR Crown NADOR Resulting Curb Opening Capacity assumes cloqged condition) Cace = 3.4 8.8 cfs Crown NADOR Total Inlet Length L = 5.00 5.00 fet FL - Streewin Cac						
Curb Opening Flow Analysis (Calculated)MINORMAJORClogging Coefficient for Multiple UnitsCoef = 1.00 1.00 Cogging Factor for Multiple UnitsCoef = 1.00 0.10 Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)MINORMAJORInterception without CloggingQ _{int} = 3.4 9.1 CrifsGrifsGrifsGrifsCurb Capacity as an Orfice (based on MHFD - CSU 2010 Study)MINORMAJORInterception without CloggingQ _{int} = 3.4 9.1 Curb Copening Capacity as an Orfice (based on MHFD - CSU 2010 Study)Q _{int} = 6.4 11.0 Interception without CloggingQ _{int} = 6.5 9.9 $Crifs$ Curb Opening Capacity as Mixed FlowMINORMAJOR $MINOR$ $MAJOR$ Interception without CloggingQ _{int} = 5.3 9.8 $Cris$ Interception with CloggingQ _{int} = 5.3 9.8 $Cris$ Resultant Street Conditions Q_{corb} = 3.4 8.8 $cris$ Total Inter LengthResultant Street Flow Spread (based on street geometry from above) T = 15.7 29.5 ft Resultant Street Flow Spread (based on factor for Long Inlets R_{Corb} = 3.30 $0.52.7$ ft Low Head Performance Reduction Factor for Long Inlets R_{Corb} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets R_{Corb} = N/A N/A N/A Curb Opening Performance Reducti	1 55 5	Q _{ma} =				
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units Curb Capacity as a Weir (based on MHED - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Clogging Curb Capacity as an Orifice (based on MHED - CSU 2010 Study) Interception without Clogging Que = 3.8 3.4 9.1 5.3 9.8 cfs WATER FLOWS OVER CROWN IN 100-YR EVENT, BUT MEETS CRITERIA OF 0 FLOW OVER CROWN IN 100-YR EVENT, BUT MEETS CRITERIA OF 0 FLOW OVER CROWN IN 5-YR EVENT, BUT MEETS CRITERIA OF 0 FLOW OVER CROWN IN 5-YR EVENT, BUT MEETS CRITERIA OF 0 FLOW OVER CROWN IN 5-YR EVENTWATER FLOWS OVER CROWN IN 100-YR EVENT, BUT MEETS CRITERIA OF 0 FLOW OVER CROWN IN 5-YR EVENTInterception without Clogging Resultant Street Conditions Resultant Street Flow Spread (based on street geometry from above) Resultant Flow Depth at Street Crown Low Head Performance Reduction Factor for Long Inlets Curb Opening Reformance Reduction Factor for Long Inlets Reformered Reformered Reduction Factor for Long Inlets Reformered Reformered Reduction Factor for Long Inlets Combination Inlet Performance Reduction Factor for Long Inlets Reformered Reformered Reduction Factor for Long Inlets Reformered Reduction Factor for Long Inlets		Q _{Grate} =			cfs	<u>_</u>
Clogging Factor for Multiple UnitsCurb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without CloggingClog = 0.10 0.10 0.10 Interception without CloggingQwi = 3.4 9.1 cfsCurb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without CloggingQwi = 3.4 9.1 cfsInterception without CloggingQwi = 3.4 9.1 cfsCOULD CloggingInterception without CloggingQwi = 3.4 9.1 cfsCOULD CloggingInterception without CloggingQwi = 3.4 9.1 cfsCOULD CloggingInterception without CloggingQmi = 5.3 9.8 cfsCfsInterception without CloggingQmi = 5.3 9.8 cfsCfsInterception without CloggingQmi = 5.00 5.00 feetVENTResulting Chron Capacity (assumes clogged condition)Curb 0.0 3.2 inchesTotal Inlet LengthL = 0.0 5.00 feet 1.00 Resultant Street Flow Spread (based on street geometry from above)T = 15.7 29.5 ft. 7.5 Resultant Street Flow Spread (based on factor for Long Inlets $RF_{Gate} = N/A$ N/A N/A N/A Low Head Performance Reduction Factor for Long Inlets $RF_{Gate} = N/A$ N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Gate} = N/A$ N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Gate} = N/A$ N/A </td <td></td> <td>-</td> <td></td> <td></td> <td>-</td> <td></td>		-			-	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study) Interception without CloggingMINORMAUOR MAUORCurb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging $Q_{wi} = 3.8$ 10.1cfsWATER FLOWS OVER CROWN IN 100-YRCurb Capacity as an Orifice (based on MHFD - CSU 2010 Study) Interception without Clogging $Q_{via} = 3.4$ 9.1cfsWATER FLOWS OVER CROWN IN 100-YRCurb Capacity as Mixed Flow $Q_{via} = 7.6$ 9.9cfsCfsCROWN IN 100-YRInterception without Clogging $Q_{oil} = 5.3$ 9.8cfsCfsCROWN IN 5-YRInterception without Clogging $Q_{mi} = 4.7$ 8.8cfsCfsCFsResultant Street Conditions $Q_{ma} = 4.7$ 8.8cfsEVENTTotal Intel LengthL = 5.005.00feetFeetResultant Street Flow Spread (based on street geometry from above)T = 15.729.5ft> T-CrownResultant Flow Depring Capacity (assumes clogged condition) $C_{crown} = 0.30$ 0.57ftDepth for Grate Midwidth $d_{Grate} = 0.30$ 0.57ftDepth for Curb Opening Weir Equation $G_{curb} = RF_{Curb} = 1.00$ 1.001.00Grate Hore Performance Reduction Factor for Long InletsRFRFN/ACurb Opening Performance Reduction Factor for Long InletsRFRFN/ACurb Opening Performance Reduction Factor for Long InletsRFN/AN/ACurb Opening Performance Reduction Factor for Long Inlets <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
Interception without CloggingQ $=$ 3.8 10.1 cfs Interception with CloggingQ 3.4 9.1 cfs $CWC Pace Active Source $		Clog =				
Interception with Clogging Curb Capacity as an Orffice (based on MHFD - CSU 2010 Study) Interception without Clogging Interception without Clogging Curb Opening Capacity as Mixed Flow Interception without Clogging Curb Opening Capacity (assumes clogged condition) Resultant Street Conditions Total Inlet Length Resultant Street Crown Resultant Street Crown Curb Opening Capacity (assumes clogged condition) Curb Opening Performance Reduction Factor for Long Inlets Curb Opening Performance Reduction Fac		-			_	
Interception with Clogging Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study) $Q_{wa} = \begin{bmatrix} 3.4 & 9.1 \\ MINOR & MAJOR \\ MINOR & MAJOR \\ Curb Cogning Capacity as a Mixed FlowInterception with CloggingCurb Opening Capacity as Mixed FlowInterception with CloggingQ_{ol} = \begin{bmatrix} 8.4 & 11.0 \\ 7.6 & 9.9 \\ MINOR & MAJOR \\ MINOR & MAJOR \\ MINOR & MAJOR \\ Curb Opening Capacity (assumes clogged condition)Q_{oni} = \begin{bmatrix} 5.3 & 9.8 \\ 4.7 & 8.8 \\ cfs \\ cfs$				-		WATER FLOWS OVER
Curb Capacity as an OFFICE (based on PINPD - CSU 2010 Study)PHINORPHAORInterception with Clogging $Q_{cir} = \frac{8.4 \\ 11.0}{7.6}$ rs rs Interception with Clogging $Q_{cir} = \frac{8.4 \\ 11.0}{7.6}$ rs rs rs Interception with Clogging $Q_{cir} = \frac{8.4 \\ 11.0}{7.6}$ rs rs rs Interception with Clogging $Q_{cir} = \frac{8.4 \\ 11.0}{7.6}$ rs rs rs rs Interception with Clogging $Q_{cir} = \frac{1.7 \\ 20.3}$ $9.8 \\ rs$ rs rs rs rs rs Interception with Clogging $Q_{cir} = \frac{1.7 \\ 20.3}$ $9.8 \\ rs$ rs		Q _{wa} =	-		cfs	
Interception with Clogging Que Or. <		-			_	
Curb Opening Capacity as Mixed Flow MINOR MAIOR OVER CROWN IN 5-YR Interception without Clogging $Q_{ma} =$ 5.3 9.8 cfs Interception with Clogging $Q_{ma} =$ 5.3 9.8 cfs Resultant Curb Opening Capacity (assumes clogged condition) $Q_{curb} =$ 3.4 8.8 cfs Resultant Street Conditions MINOR MAIOR MAIOR Event Event Resultant Street Flow Spread (based on street geometry from above) T = 15.7 29.5 ft. >T-Crown Resultant Flow Depth at Street Crown dc _{ROWN} = 0.0 3.2 inches inches Low Head Performance Reduction (Calculated) MINOR MAJOR MAJOR ft Depth for Grate Midwidth dc _{crate} = N/A N/A ft Depth for Curb Opening Weir Equation Garate flow Street for Long Inlets RF _{cate} = N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{cate} = N/A N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Qa = 3.4 8.8 cfs						
Interception without CloggingInterception with OloggingResulting Curb Opening Capacity (assumes clogged condition) Q_{curb} Resultant Street ConditionsTotal Inlet LengthResultant Street Flow Spread (based on street geometry from above)Resultant Street Flow Spread (based on street geometry from above)Resultant Street Flow Spread (based on street geometry from above)Low Head Performance Reduction (Calculated)Depth for Grate MidwidthDepth for Grate MidwidthCurb Opening Veir EquationGrated Inlet Performance Reduction Factor for Long InletsCurb Opening Performance Reduction Factor for Long InletsResultant Inlet Interception Capacity (assumes clogged condition)Qate Inlet Interception Capacity (assumes clogged co	1 55 5	Q _{oa} =			cfs	CRITERIA OF 0 FLOW
Interception with Clogging $Q_{ma} =$ 4.7 8.8 cfs Resulting Curb Opening Capacity (assumes clogged condition) $Q_{ma} =$ 4.7 8.8 cfs Resultant Street Conditions MINOR MADOR Total Inlet Length L = 5.00 5.00 feet Resultant Street Flow Spread (based on street geometry from above) T = 15.7 29.5 ft. > T-Crown Resultant Flow Depth at Street Crown d _{Grate} N/A N/A ft Low Head Performance Reduction (Calculated) MINOR MADOR ft Depth for Grate Midwidth d _{Grate} N/A N/A ft Curb Opening Veir Equation G _{Carb} = N/A N/A ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Carb} = 1.00 1.00 1.00 1.00 1.00 Curb Opening Performance Reduction Factor for Long Inlets RF _{Carb} = N/A N/A N/A N/A N/A N/A N/A Curb Opening Performance Reduction Factor for Long In		-			_ /	OVER CROWN IN 5-YR
Interception with Clogging $Q_{ma} =$ 4.7 8.8 cfs Resulting Curb Opening Capacity (assumes clogged condition) $Q_{curb} =$ 3.4 8.8 cfs Resultant Street Conditions MINOR MAJOR Total Inlet Length L = 5.00 5.00 feet Resultant Street Flow Spread (based on street geometry from above) T = 15.7 29.5 ft. >T-Crown Resultant Flow Depth at Street Crown d _{CROWN} = 0.0 3.2 inches Low Head Performance Reduction (Calculated) MINOR MAJOR 0.0 3.2 Depth for Grate Midwidth d _{Crate} = N/A N/A ft Grated Inlet Performance Reduction Factor for Long Inlets RF crate = 0.30 0.57 ft Curb Opening Performance Reduction Factor for Long Inlets RF crate = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF crate = N/A N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Qa = 3.4 8.8 cfs						EVENT
Resultant Street Conditions MINOR MAJOR Total Inlet Length L = 5.00 5.00 fet Resultant Street Flow Spread (based on street geometry from above) T = 15.7 29.5 ft. >T-Crown Resultant Flow Depth at Street Crown $d_{CROWN} =$ 0.0 3.2 inches Low Head Performance Reduction (Calculated) MINOR MAJOR MAJOR Depth for Grate Midwidth $d_{Grate} =$ N/A N/A ft Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.30 0.57 ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A R Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Combination} = N/A N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_a =$ 3.4 8.8 cfs						1
Total Inlet LengthL $=$ 5.00 5.00 feetResultant Street Flow Spread (based on street geometry from above)T $=$ 15.7 29.5 ft.>T-crownResultant Flow Depth at Street Crown $d_{CROWN} =$ 0.0 3.2 inchesLow Head Performance Reduction (Calculated)MINORMAJORDepth for Grate Midwidth $d_{Crate} =$ N/A N/A Depth for Curb Opening Weir Equation $d_{Carbe} =$ N/A N/A Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Crate} =$ N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Crate} =$ N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Crate} =$ N/A N/A Curb Opening Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} =$ N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_a =$ 3.4 8.8 cfs		Q _{Curb} =			cfs	<u>_</u>
Resultant Street Flow Spread (based on street geometry from above) T = 15.7 29.5 ft. >T-Crown Resultant Flow Depth at Street Crown $d_{CROWN} = 0.0$ 3.2 inches Low Head Performance Reduction (Calculated) MINOR MAIOR Depth for Grate Midwidth $d_{Grate} = 0.30$ 0.57 ft. Curb Opening Weir Equation $d_{Curb} = 0.30$ 0.57 ft. Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} = N/A$ N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Carb} = 1.00$ 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} = N/A$ N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_a = 3.4$ 8.8 cfs		-			- V/	
Resultant Flow Depth at Street Crown $d_{CROWN} =$ 0.0 3.2 inches Low Head Performance Reduction (Calculated) $MINOR$ MAJOR Depth for Grate Midwidth $d_{Grate} =$ N/A N/A Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.30 0.57 Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} =$ N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} =$ 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Combination} =$ N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_a =$ 3.4 8.8 cfs						
Low Head Performance Reduction (Calculated) MINOR MAJOR Depth for Grate Midwidth $d_{Grate} = N/A N/A$ N/A Depth for Curb Opening Weir Equation $d_{Curb} = 0.30$ 0.57 Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Grate} = 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_a = 3.4$ 8.8 cfs		T =				
Depth for Grate Midwidth $d_{Grate} =$ N/A N/A ft Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.30 0.57 ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{corb} = 1.00 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets RF _{combination} = N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Qa = 3.4 8.8 cfs	Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	3.2	inches	
Depth for Grate Midwidth $d_{Grate} =$ N/A N/A ft Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.30 0.57 ft Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{corb} = 1.00 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets RF _{combination} = N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Qa = 3.4 8.8 cfs						
Depth for Curb Opening Weir Equation $d_{Curb} =$ 0.30 0.57 ft Grated Inlet Performance Reduction Factor for Long Inlets $RF_{Grate} =$ N/A N/A Curb Opening Performance Reduction Factor for Long Inlets $RF_{Curb} =$ 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets $RF_{Curb} =$ N/A N/A Total Inlet Interception Capacity (assumes clogged condition) $Q_a =$ 3.4 8.8 cfs		-			-	
Grated Inlet Performance Reduction Factor for Long Inlets RF _{Grate} = N/A N/A Curb Opening Performance Reduction Factor for Long Inlets RF _{Curb} = 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets RF _{Combination} = N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Q _a = 3.4 8.8						
Curb Opening Performance Reduction Factor for Long Inlets RF_{curb} = 1.00 1.00 Combination Inlet Performance Reduction Factor for Long Inlets $RF_{combination}$ = N/A N/A Total Inlet Interception Capacity (assumes clogged condition) Q_a = 3.4 8.8 cfs					ft	
Combination Inlet Performance Reduction Factor for Long Inlets RF _{Combination} = N/A N/A MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Qa = 3.4 8.8 cfs	5		,	,	4	
MINOR MAJOR Total Inlet Interception Capacity (assumes clogged condition) Qa = 3.4 8.8 cfs					4	
Total Inlet Interception Capacity (assumes clogged condition) Q _a = <u>3.4</u> 8.8 cfs	Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A		
Total Inlet Interception Capacity (assumes clogged condition) Q _a = <u>3.4</u> 8.8 cfs						
		-			-	
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak) Q PEak REQUIRED = 2.6 5.3 Icts						
	Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	2.6	5.3	CTS	<u>_</u>



						-
Design Information (Input)	CDOT Type R Curb Opening		MINOR	MAJOR		
Type of Inlet		Type =	/ 1	Curb Opening		
	continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches	
Number of Unit Inlets (Grate of		No =	1		4	
Water Depth at Flowline (outs	ide of local depression)	Ponding Depth =	4.4	7.7	inches Override Depths	
Grate Information			MINOR N/A	MAJOR	Ifeet	
Length of a Unit Grate Width of a Unit Grate		$L_{o}(G) =$	N/A N/A	N/A N/A	feet	
Open Area Ratio for a Grate (1		W _o =	N/A N/A	N/A N/A		
	rate (typical value 0.50 - 0.70)	$A_{ratio} = $ $C_f(G) = $	N/A N/A	N/A N/A	-	
Grate Weir Coefficient (typical			N/A N/A	N/A N/A	-	
Grate Orifice Coefficient (typical		C_w (G) = C_0 (G) =	N/A N/A	N/A N/A	-	
Curb Opening Information	al value 0.00 - 0.80)	C ₀ (G) =	MINOR	MAJOR		
Length of a Unit Curb Opening		L _o (C) =	5.00	5.00	feet	
Height of Vertical Curb Opening			6.00	6.00	linches	
Height of Curb Orifice Throat i		H _{vert} =	6.00	6.00	linches	
Angle of Throat	II IIIches	H _{throat} = Theta =	63.40	63.40	degrees	
	(typically the gutter width of 2 feet)	W _p =	0.83	0.83	feet	
	urb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10		
Curb Opening Weir Coefficient		$C_{f}(C) = C_{w}(C) $	3.60	3.60	-	
Curb Opening Weir Coefficien		$C_{w}(C) = C_{v}(C) $	0.67	0.67	-	
Grate Flow Analysis (Calcula		C ₀ (C) =	MINOR	MAJOR	1	1
Clogging Coefficient for Multip		Coef =	N/A	N/A	7	
Clogging Factor for Multiple U		Clog =	N/A	N/A N/A	-	
	ased on MHFD - CSU 2010 Study)	ciog = _	MINOR	MAJOR		
Interception without Clogging	ased on Mill D - CSO 2010 Study	Q _{wi} =	N/A	N/A	lcfs	
Interception with Clogging			N/A	N/A N/A	lcfs	
	e (based on MHFD - CSU 2010 Study)	Qwa = L	MINOR	MAJOR		
Interception without Clogging	$\frac{1}{2} \left(\frac{1}{2} \frac$	Q _{oi} =	N/A	N/A	cfs	
Interception with Clogging		$Q_{oa} =$	N/A	N/A	lcfs	
Grate Capacity as Mixed Flo	W	20a – L	MINOR	MAJOR		
Interception without Clogging		Q _{mi} =	N/A	N/A	lcfs	
Interception with Clogging		Q _{ma} =	N/A	N/A	lcfs	
Resulting Grate Capacity (assu	imes clogged condition)	Q _{Grate} =	N/A	N/A	cfs	
Curb Opening Flow Analysis		Contract	MINOR	MAJOR		1
Clogging Coefficient for Multip		Coef =	1.00	1.00	7	
Clogging Factor for Multiple U		Clog =	0.10	0.10	-	
	ased on MHFD - CSU 2010 Study)		MINOR	MAJOR	-	
Interception without Clogging		Q _{wi} =	3.8	10.1	cfs	WATER FLOWS OVER
Interception with Clogging		Q _{wa} =	3.4	9.1	cfs	
	(based on MHFD - CSU 2010 Study)	Civia L	MINOR	MAJOR		CROWN IN 100-YR
Interception without Clogging		Q _{oi} =	8.4	11.0	lcfs	EVENT, BUT MEETS
Interception with Clogging		Q _{oa} =	7.6	9.9	cfs	CRITERIA OF 0 FLOW
Curb Opening Capacity as N	1ixed Flow		MINOR	MAJOR	- /	OVER CROWN IN 5-YR
Interception without Clogging		Q _{mi} =	5.3	9.8	cfs	EVENT
Interception with Clogging		Q _{ma} =	4.7	8.8	cfs	
Resulting Curb Opening Capac	ity (assumes clogged condition)	Q _{Curb} =	3.4	8.8	cfs	
Resultant Street Conditions			MINOR	MAJOR		
Total Inlet Length		L = [5.00	5.00	feet	
Resultant Street Flow Spread	based on street geometry from above)	т = 🗌	15.7	29.5	ft. >T-Crown	
Resultant Flow Depth at Stree		d _{CROWN} =	0.0	3.2	inches	
				-	_	
Low Head Performance Rec	luction (Calculated)		MINOR	MAJOR	_	
Depth for Grate Midwidth		d _{Grate} =	N/A	N/A	ft	
Depth for Curb Opening Weir		d _{Curb} =	0.30	0.57	ft	
Grated Inlet Performance Red	uction Factor for Long Inlets	RF _{Grate} =	N/A	N/A		
Curb Opening Performance Re	duction Factor for Long Inlets	RF _{Curb} =	1.00	1.00		
Combination Inlet Performanc	e Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A		
1	-	·····		-	_	
1			MINOR	MAJOR	_	
	ty (assumes clogged condition)	Q _a =	3.4	8.8	cfs	
Inlet Capacity IS GOOD for	Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	1.0	5.3	cfs	

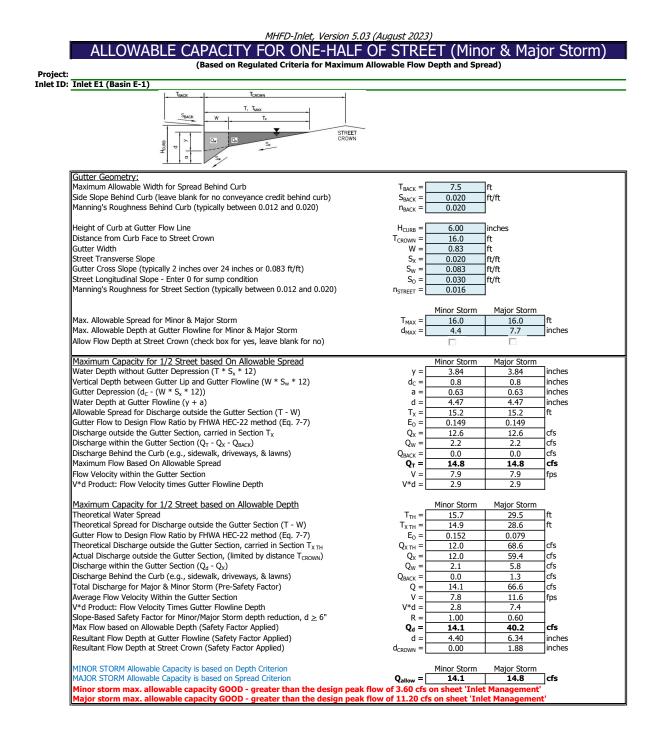


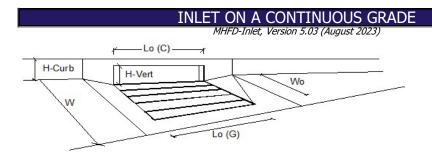


					7
Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	3	
Type of Inlet	Type =		Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	7.7	linches ✓ Override Depths	
Grate Information		MINOR	MAJOR	feet	
Length of a Unit Grate Width of a Unit Grate	L _o (G) = W _o =	N/A N/A	N/A N/A	feet	
Open Area Ratio for a Grate (typical values 0.15-0.90)	· · ·	N/A N/A	,		
Clogging Factor for a Single Grate (typical values 0.15-0.90)	$A_{ratio} = C_f(G) = C_f(G)$	N/A N/A	N/A N/A	-	
Grate Weir Coefficient (typical value 2.15 - 3.60)	$C_{f}(G) = C_{w}(G) $	N/A N/A	N/A	-	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{0}(G) = C_{0}(G) = C_{0}(G)$	N/A	N/A	4	
Curb Opening Information	cº (0) = [MINOR	MAJOR		
Length of a Unit Curb Opening	L ₀ (C) =	15.00	15.00	lfeet	
Height of Vertical Curb Opening in Inches	$H_{vert} =$	6.00	6.00	linches	
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	linches	
Angle of Throat	Theta =	63.40	63.40	degrees	
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _n =	0.83	0.83	feet	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10		
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{w}(C) =$	3.60	3.60		
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67	1	
Grate Flow Analysis (Calculated)		MINOR	MAJOR	•	1
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7	
Clogging Factor for Multiple Units	Clog =	N/A	N/A	1	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR		
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs	
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs	
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	_	MINOR	MAJOR	_	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs	
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs	
Grate Capacity as Mixed Flow		MINOR	MAJOR	٦.	
Interception without Clogging	$Q_{mi} =$	N/A	N/A	cfs	
Interception with Clogging	Q _{ma} = Q_{Grate} =	N/A N/A	N/A N/A	cfs cfs	
Resulting Grate Capacity (assumes clogged condition) Curb Opening Flow Analysis (Calculated)	QGrate -	MINOR	MAJOR	CIS	
	Coef =		1.31	7	
Clogging Coefficient for Multiple Units Clogging Factor for Multiple Units	Clog =	<u>1.31</u> 0.04	0.04	4	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	ciug – [MINOR	MAJOR	1	
Interception without Clogging	Q _{wi} =	6.5	22.6	lcfs	
Interception with Clogging	$Q_{wa} = Q_{wa} = 0$	6.2	21.6	ofe	WATER FLOWS OVER
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	≪wa − L	MINOR	MAJOR		CROWN IN 100-YR
Interception without Clogging	Q _{oi} =	25.3	33.0	lcfs 📃	EVENT, BUT MEETS
Interception with Clogging	$Q_{oa} =$	24.2	31.5		CRITERIA OF 0 FLOW
Curb Opening Capacity as Mixed Flow	COU L	MINOR	MAJOR		OVER CROWN IN 5-YR
Interception without Clogging	Q _{mi} =	11.9	25.4	-f-	EVENT
Interception with Clogging	Q _{ma} =	11.4	24.3	cfs	
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	6.2	21.6	cfs	
Resultant Street Conditions		MINOR	MAJOR		
Total Inlet Length	L =[15.00	15.00	feet	
Resultant Street Flow Spread (based on street geometry from above)	T =	15.7	29.5	ft. >T-Crown	
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	3.2	inches	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	٦.	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	_ft	
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.57	ft	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	4	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.67	0.88	4	
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Combination} =$	N/A	N/A]	
		MINOR	MAJOR		
Total Inlat Intercention Canacity (accumes cleared condition)	o – [6.2	MAJOR 21.6	cfs	
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	$\mathbf{Q}_{\mathbf{a}} = \mathbf{Q}_{PEAK REQUIRED}$	6.1	14.1	lcfs	
THE Capacity 15 GOOD for Philor and Major Storms (>Q Peak)	Y PEAK REQUIRED	0.1	1 1.1	1013	<u>1</u>

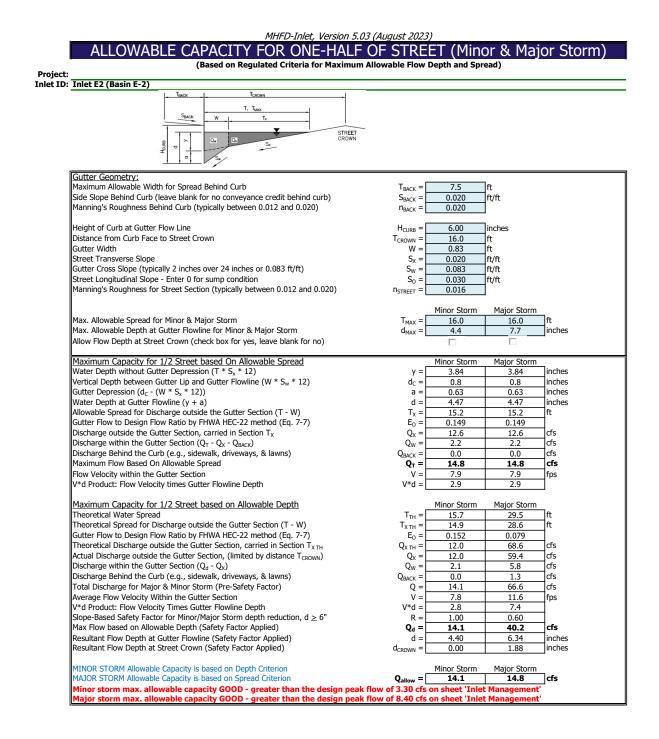
MHFD-Inlet, Version 5.03 ALLOWABLE CAPACITY FOR ONE-HALF C	E CTDE	ET (Min	or 8. Ma	ior Ctor
				JUL SLOL
(Based on Regulated Criteria for Maximum Al	lowable Flow	Depth and Sp	read)	
Grandview Reserve Filing No. 1				
Inlet D6 (Basin D-4)				
TBACK TCROWN				
T. Twax				
SBACK W Tx				
STREET CROWN				
S Creek				
T S.				
Gutter Geometry:	_		_	
Maximum Allowable Width for Spread Behind Curb	$T_{BACK} =$	7.5	ft	
Side Slope Behind Curb (leave blank for no conveyance credit behind curb)	$S_{BACK} =$	0.020	ft/ft	
Manning's Roughness Behind Curb (typically between 0.012 and 0.020)	n _{BACK} =	0.020		
	-		_	
Height of Curb at Gutter Flow Line	H _{CURB} =	6.00	inches	
Distance from Curb Face to Street Crown	T _{CROWN} =	16.0	ft	
Gutter Width	W =	0.83	ft	
Street Transverse Slope	S _x =	0.020	ft/ft	
Gutter Cross Slope (typically 2 inches over 24 inches or 0.083 ft/ft)	S _W =	0.083	ft/ft	
Street Longitudinal Slope - Enter 0 for sump condition	S ₀ =	0.000	ft/ft	
Manning's Roughness for Street Section (typically between 0.012 and 0.020)		0.000		
n anning 5 Noughness for Succe Section (typically between 0.012 and 0.020)	$n_{\text{STREET}} =$	0.010	_	
		Minor Storm	Major Storm	
Max. Allowable Spread for Minor & Major Storm	т – Г	16.0	16.0	ft
Max. Allowable Depth at Gutter Flowline for Minor & Major Storm	T _{MAX} =	4.4	7.7	inches
	d _{MAX} =			incries
Check boxes are not applicable in SUMP conditions				
Maximum Canacity for 1/2 Streat based On Allowable Spread		Minor Ctorm	Majar Charm	
Maximum Capacity for 1/2 Street based On Allowable Spread Water Depth without Gutter Depression (T * S _v * 12)		Minor Storm	Major Storm	inches
	y =	3.84	3.84	
Vertical Depth between Gutter Lip and Gutter Flowline (W * S_w * 12)	d _C =	0.8	0.8	inches
Gutter Depression (d_c - (W * S _x * 12))	a =	0.63	0.63	inches
Water Depth at Gutter Flowline (y + a)	_d =	4.47	4.47	inches
Allowable Spread for Discharge outside the Gutter Section (T - W)	T _x =	15.2	15.2	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)	$E_0 =$	0.149	0.149	
Discharge outside the Gutter Section, carried in Section T_X	$Q_X =$	0.0	0.0	cfs
Discharge within the Gutter Section ($Q_T - Q_X - Q_{BACK}$)	Q _W =	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	$Q_{BACK} =$	0.0	0.0	cfs
Maximum Flow Based On Allowable Spread	$Q_T =$	SUMP	SUMP	cfs
Flow Velocity within the Gutter Section	V =	0.0	0.0	fps
V*d Product: Flow Velocity times Gutter Flowline Depth	V*d =	0.0	0.0	
	-			
Maximum Capacity for 1/2 Street based on Allowable Depth	-	Minor Storm	Major Storm	
Theoretical Water Spread	$T_{TH} =$	15.7	29.5	ft
Theoretical Spread for Discharge outside the Gutter Section (T - W)	$T_{X TH} =$	14.9	28.6	ft
Gutter Flow to Design Flow Ratio by FHWA HEC-22 method (Eq. 7-7)	E _o =	0.152	0.079	
Theoretical Discharge outside the Gutter Section, carried in Section T_{XTH}	Q _{X TH} =	0.0	0.0	cfs
Actual Discharge outside the Gutter Section, (limited by distance T _{CROWN})	$Q_X =$	0.0	0.0	cfs
Discharge within the Gutter Section ($Q_d - Q_x$)	$Q_W =$	0.0	0.0	cfs
Discharge Behind the Curb (e.g., sidewalk, driveways, & lawns)	$Q_{BACK} =$	0.0	0.0	cfs
Total Discharge for Major & Minor Storm (Pre-Safety Factor)	$Q_{BACK} = Q =$	SUMP	SUMP	cfs
Average Flow Velocity Within the Gutter Section	Q = V =	0.0	0.0	fps
V*d Product: Flow Velocity Times Gutter Flowline Depth	v = V*d =	0.0	0.0	- ips
Slope-Based Safety Factor for Minor/Major Storm depth reduction, $d \ge 6$ "	R =	SUMP	SUMP	
Max Flow based on Allowable Depth (Safety Factor Applied)	Q _d =	SUMP	SUMP	cfs
Resultant Flow Depth at Gutter Flowline (Safety Factor Applied)	d =			inches
Resultant Flow Depth at Street Crown (Safety Factor Applied)	d _{CROWN} =			inches
MINOR STORM Allowable Capacity is not applicable to Sump Condition		Minor Storm	Major Storm	
MAJOR STORM Allowable Capacity is not applicable to Sump Condition	$Q_{allow} =$	SUMP	SUMP	cfs

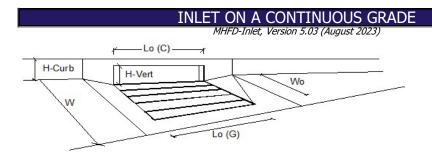
					9
Design Information (Input)		MINOR	MAJOR		
Type of Inlet	Type =		Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	7.7		
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4		inches	
Grate Information Length of a Unit Grate	L (C) -	MINOR N/A	MAJOR N/A	Override Depths feet	
Width of a Unit Grate	L _o (G) = W _o =	N/A N/A	N/A N/A	feet	
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A N/A	N/A N/A	leet	
Clogging Factor for a Single Grate (typical values 0.15-0.50)	$A_{ratio} = C_f(G) =$	N/A	N/A		
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	-	
Grate Orifice Coefficient (typical value 2.19 5.00)	$C_{0}(G) = C_{0}(G) = C_{0}(G)$	N/A	N/A	-	
Curb Opening Information	C ₀ (C) =	MINOR	MAJOR		
Length of a Unit Curb Opening	$L_{0}(C) =$	15.00	15.00	feet	
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches	
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches	
Angle of Throat	Theta =	63.40	63.40	degrees	
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	0.83	0.83	feet	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10		
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60		
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{o}(C) =$	0.67	0.67		
Grate Flow Analysis (Calculated)		MINOR	MAJOR	•	
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A		
Clogging Factor for Multiple Units	Clog =	N/A	N/A		
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR		
Interception without Clogging	Q _{wi} =	N/A	N/A	cfs	
Interception with Clogging	Q _{wa} =	N/A	N/A	cfs	
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-	MINOR	MAJOR	-	
Interception without Clogging	Q _{oi} =	N/A	N/A	cfs	
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs	
Grate Capacity as Mixed Flow		MINOR	MAJOR	٦.	
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs	
Interception with Clogging	$Q_{ma} =$	N/A N/A	N/A N/A	cfs cfs	
Resulting Grate Capacity (assumes clogged condition) Curb Opening Flow Analysis (Calculated)	Q _{Grate} =	MINOR	MAJOR	cis	4
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	7	
Clogging Eactor for Multiple Units	Clog =	0.04	0.04	-	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)	ciug –	MINOR	MAJOR	1	
Interception without Clogging	Q _{wi} =	6.5	22.6	cfs	
Interception with Clogging	Q _{wa} =	6.2	21.6	cfs	WATER FLOWS OVER
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	-C.Wd	MINOR	MAJOR		CROWN IN 100-YR
Interception without Clogging	Q _{oi} =	25.3	33.0	cfs 📃	EVENT, BUT MEETS
Interception with Clogging	Q _{oa} =	24.2	31.5	cfs	CRITERIA OF 0 FLOW
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	- / I	OVER CROWN IN 5-YR
Interception without Clogging	Q _{mi} =	11.9	25.4	cfs	EVENT
Interception with Clogging	Q _{ma} =	11.4	24.3	cfs	
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	6.2	21.6	cfs	<u>_</u>
Resultant Street Conditions		MINOR	MAJOR		
Total Inlet Length	L =	15.00	15.00	feet 🖌	
Resultant Street Flow Spread (based on street geometry from above)	T =	15.7	29.5	ft. >T-Crown	
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	3.2	inches	
Low Lord Deutemannes Deduction (C-1-1-1-1)		MINOR	MAJOD		
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	٦	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A 0.57	ft ft	
Depth for Curb Opening Weir Equation Grated Inlet Performance Reduction Factor for Long Inlets	d _{Curb} =	0.30 N/A	0.57 N/A		
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Grate} = RF _{Curb} =	0.67	0.88	-	
Combination Inlet Performance Reduction Factor for Long Inlets	$RF_{Curb} =$ $RF_{Combination} =$	0.67 N/A	0.88 N/A	1	
Combination Internet renormance reduction ratio for Long Infets	Combination -	N/A	11/5	1	
		MINOR	MAJOR		
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.2	21.6	cfs	
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	4.4	14.1	cfs	J
					=

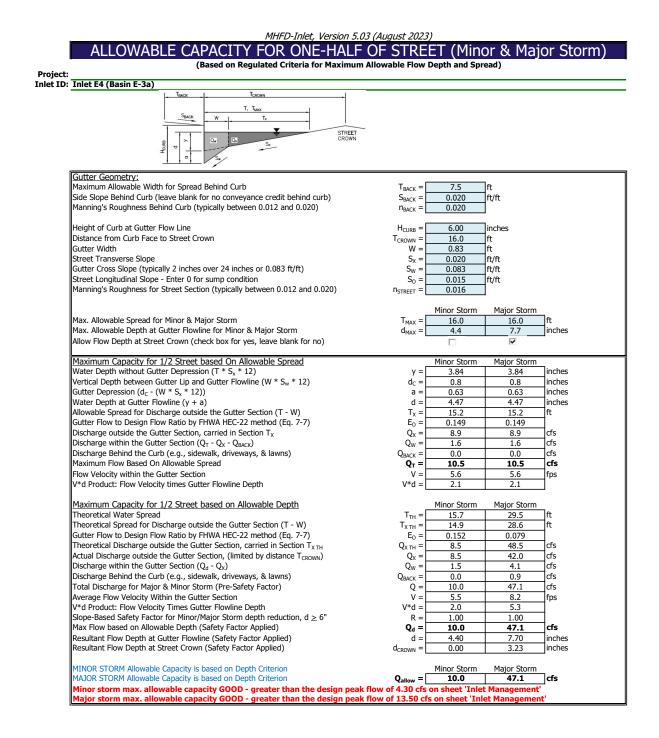

MHFD-Inlet, Version 5.03 (August 2023) INLET MANAGEMENT

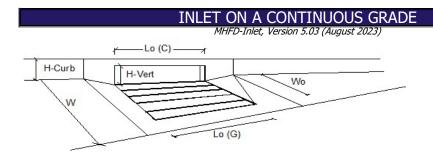

Worksheet Protected

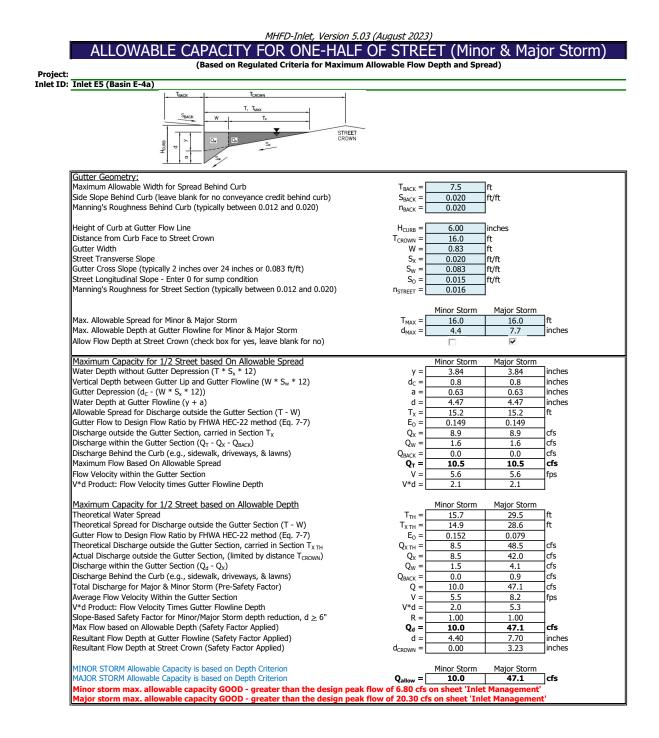
Bypass [Carry-Over) Flow from Upstream Bypass [Carry-Over) Flow from Upstream Inicel Suppose Flow from: No	URBAN STREET On Grade OT Type R Curb Opening 3.6 11.2 s must be organized from upstre o Bypass Flow Received 0.0	URBAN STREET On Grade CDOT Type R Curb Opening 3.3 8.4 sam (left) to downstream (right) in ordee No Bypass Flow Received	URBAN STREET On Grade CDOT Type R Curb Opening 4.3 11.0 for bypass flows to be linked.	URBAN STREET On Grade CDOT Type R Curb Opening 6.8 20.3	URBAN STREET In Sump CDOT Type R Curb Opening 3.5 8.9	URBAN STREET In Sump CDOT Type R Curb Opening 1.7 4.2
Hydraulic Condition CDO Inlet Type CDO Be-DEFINED INPUT User-Defined Design Flows Winor Question (cfs) Mark Question (cfs) Bypass (Carry-Over) Flow from Upstream Inlets Receive Bypass Flow from: No Winor Bypass Flow from: No	On Grade OT Type R Curb Opening 3.6 11.2 s must be organized from upstree o Bypass Flow Received	On Grade CDOT Type R Curb Opening 3.3 8.4 eam (left) to downstream (right) in order	On Grade CDOT Type R Curb Opening 4.3 11.0	On Grade CDOT Type R Curb Opening 6.8	In Sump CDOT Type R Curb Opening 3.5	In Sump CDOT Type R Curb Opening 1.7
Intel Type CDO ER-DEFINED INPUT User-Defined Design Flows Minor Q _{comm} (cfs) Major Q _{comm} (cfs) Bypass (Carry-Over) Flow from Upstream Inlets Receive Bypass Flow from: No Minor Bypass Flow from Received, Q _b (cfs) No	OT Type R Curb Opening 3.6 11.2 s must be organized from upstree o Bypass Flow Received	CDOT Type R Curb Opening 3.3 8.4 cam (left) to downstream (right) in order	CDOT Type R Curb Opening 4.3 11.0	CDOT Type R Curb Opening 6.8	CDOT Type R Curb Opening 3.5	CDOT Type R Curb Opening 1.7
ER-DEFINED INPUT User-Defined Design Flows Minor Qecom (ds) Major Qecom (ds) Bypass (Carry-Over) Flow from Upstream Inlets Receive Bypass Flow from: No Minor Bypass Flow Received, Q. (cfs)	3.6 11.2 s must be organized from upstre o Bypass Flow Received	3.3 8.4 eam (left) to downstream (right) in order	4.3 11.0	6.8	3.5	1.7
User-Defined Design Flows Minor Q _{tocom} (cfs) Major Q _{com} (cfs) Bypass (Carry-Over) Flow from Upstream Inlets Receive Bypass Flow from: No Minor Bypass Flow Received, Q _a (cfs)	11.2 s must be organized from upstre o Bypass Flow Received	8.4 eam (left) to downstream (right) in order	11.0			
User-Defined Design Flows Minor Q _{tocom} (cfs) Major Q _{com} (cfs) Bypass (Carry-Over) Flow from Upstream Inlets Receive Bypass Flow from: No Minor Bypass Flow Received, Q _a (cfs)	11.2 s must be organized from upstre o Bypass Flow Received	8.4 eam (left) to downstream (right) in order	11.0			
Major Q _{kcown} (cfs) Inlets Bypass (Carry-Over) Flow from Upstream Inlets Receive Bypass Flow from: No Minor Bypass Flow Received, Q _b (cfs) No	11.2 s must be organized from upstre o Bypass Flow Received	8.4 eam (left) to downstream (right) in order	11.0			
Bypass (Carry-Over) Flow from Upstream Inlets Receive Bypass Flow from: No Minor Bypass Flow Received, Q _b (cfs) No	s must be organized from upstre o Bypass Flow Received	eam (left) to downstream (right) in order		20.3	8.9	4.2
Receive Bypass Flow from: No Minor Bypass Flow Received, Q _b (cfs)	o Bypass Flow Received		r for bypass flows to be linked.			
Minor Bypass Flow Received, Qb (cfs)		No Bypass Flow Received				
	0.0		User-Defined	No Bypass Flow Received	User-Defined	User-Defined
tain Danage Flow Developed O. (afr)		0.0	0.0	0.0	0.0	0.2
Major Bypass Flow Received, Q _h (cfs)	0.0	0.0	2.5	0.0	3.1	7.4
Watershed Characteristics Subcatchment Area (acres)						
Percent Impervious						
NRCS Soil Type						
Watershed Profile						
Overland Slope (ft/ft)						
Overland Length (ft)						
Channel Slope (ft/ft)						
Channel Length (ft)						
Minor Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
One-Hour Precipitation, P1 (inches)						
Major Storm Rainfall Input						
Design Storm Return Period, T _r (years)						
One-Hour Precipitation, P1 (inches)						

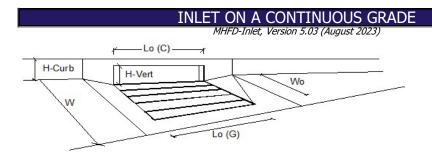

CALCULATED OUTPUT

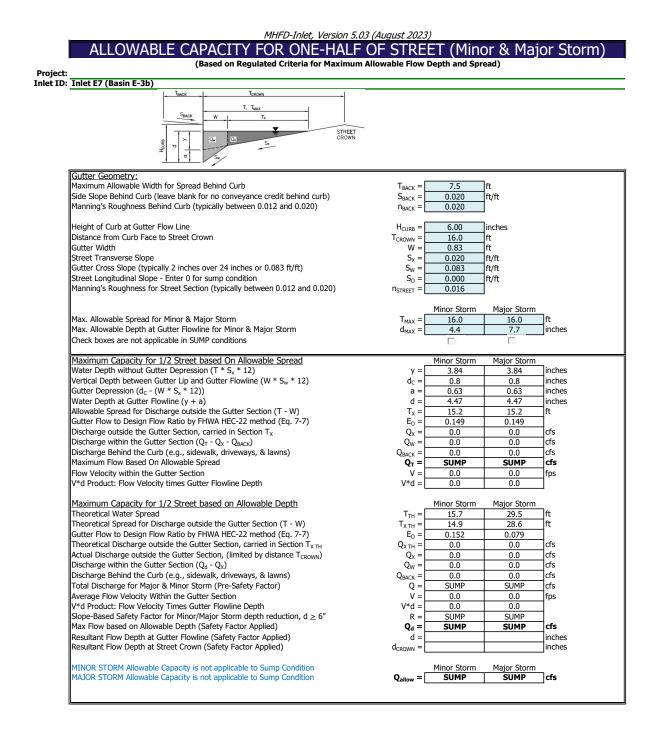

Minor Total Design Peak Flow, Q (cfs)	3.6	3.3	4.3	6.8	3.5	1.9
Major Total Design Peak Flow, Q (cfs)	11.2	8.4	13.5	20.3	12.0	11.6
Minor Flow Bypassed Downstream, Q _b (cfs)	0.0	0.0	0.0	0.2	N/A	N/A
Major Flow Bypassed Downstream, Q _b (cfs)	1.9	0.6	3.1	7.4	N/A	N/A



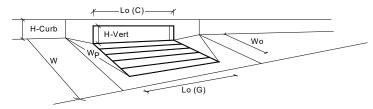

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Turno – [Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	Type =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	3.0	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 = $	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	Ц _о = W _o =	 N/A	N/A	
		N/A N/A	N/A N/A	- ^{III}
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	0.10	0.10	-
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < Allowable Street Capacity'	$C_{f}(C) =$	MINOR	MAJOR	
	o _[3.6	1	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	Q ₀ = T =		11.2	cfs ft
Water Spread Width	· .	9.3	14.4	-1·*
Water Depth at Flowline (outside of local depression)	d =	2.9	4.1	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E ₀ =	0.263	0.166	4.
Discharge outside the Gutter Section W, carried in Section T_x	$Q_x =$	2.7	9.3	cfs
Discharge within the Gutter Section W	Q _w =	0.9	1.9	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.17	0.25	sq ft
Velocity within the Gutter Section W	V _W =	5.6	7.3	fps
Water Depth for Design Condition	d _{LOCAL} =	5.9	7.1	inches
Grate Analysis (Calculated)	,	MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	$Q_i = [$	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	1
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	7
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$V_0 =$	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	1
Interception Rate of Side Flow	R _x =	N/A	N/A	7
Actual Interception Capacity	$Q_a =$	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_a$ (to be applied to curb opening or next d/s inlet)	$Q_{\rm b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope Se	S _e =	0.116	0.080]ft/ft
Required Length L_T to Have 100% Interception	L _T =	10.77	22.70	ft
Under No-Clogging Condition		MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =[10.77	15.00	Tft
Interception Capacity	$Q_i =$	3.6	9.6	lcfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoeff =	1.31	1.31	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	1
Effective (Unclogged) Length	L _e =	10.77	14.35	
Actual Interception Capacity	$\mathbf{Q}_{a}^{-e} = \mathbf{Q}_{a}$	3.6	9.3	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	$\mathbf{Q}_{\mathbf{b}} = \mathbf{Q}_{\mathbf{b}}$	0.0	1.9	cfs
Summary		MINOR	MAJOR	1
Total Inlet Interception Capacity	Q =[3.6	9.3	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_{b} =$	0.0	1.9	cfs
Capture Percentage = Q_a/Q_a	с% =	100	83	

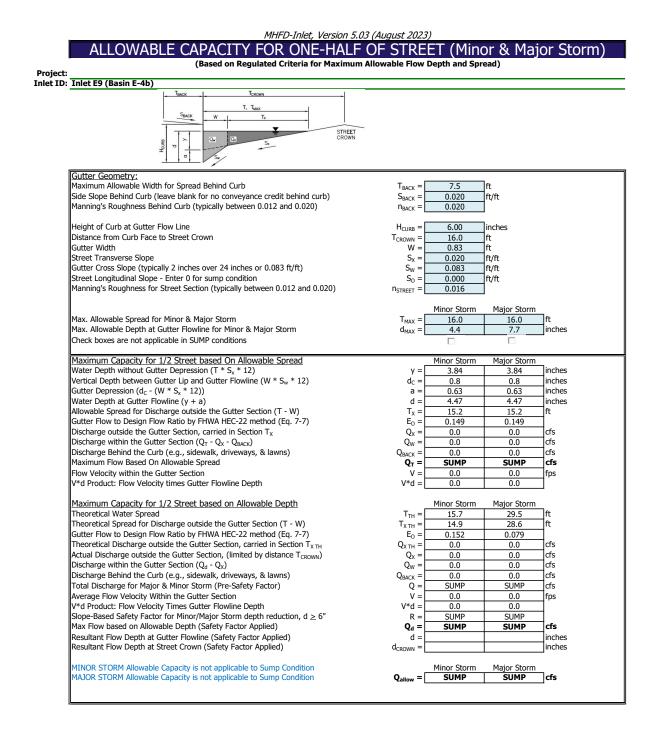


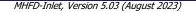

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')		3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	3.0	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	15.00	15.00	ft
		 N/A	N/A	-l't ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A N/A	N/A N/A	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$			-
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(C) =$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	0 -1	MINOR	MAJOR	٦
Design Discharge for Half of Street (from <i>Inlet Management</i>)	Q ₀ = T =	3.3	8.4	_cfs ft
Water Spread Width		9.0	12.9	
Water Depth at Flowline (outside of local depression)	d =	2.8	3.7	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	0.0	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.272	0.187	4.
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	2.4	6.8	cfs
Discharge within the Gutter Section W	Q _w =	0.9	1.6	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.16	0.23	sq ft
Velocity within the Gutter Section W	V _W =	5.5	6.8	fps
Water Depth for Design Condition	d _{LOCAL} =	5.8	6.7	inches
Grate Analysis (Calculated)		MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A]
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	1
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V ₀ =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	1
Interception Rate of Side Flow	R _x =	N/A	N/A	1
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_a$ (to be applied to curb opening or next d/s inlet)	$Q_{\rm b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope Se	S _e =	0.119	0.088]ft/ft
Required Length L_T to Have 100% Interception	L _T =	10.17	18.82	Tft
Under No-Clogging Condition		MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	10.17	15.00	7ft
Interception Capacity	$\overline{Q_i} =$	3.3	7.9	lcfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoeff =	1.31	1.31	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	1
Effective (Unclogged) Length	L _e =	10.17	14.35	
Actual Interception Capacity	$\mathbf{Q}_{a} =$	3.3	7.8	cfs
Carry-Over Flow = $Q_{h(GRATE)}$ - Q_a	$\mathbf{Q}_{\mathbf{b}} =$	0.0	0.6	cfs
Summary	₹ b = 1	MINOR	MAJOR	1
Total Inlet Interception Capacity	Q =	3.3	7.8	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.0	0.6	cfs
Capture Percentage = Q_a/Q_o	Qь – С% =	100	92	%

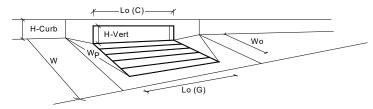


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =		Curb Opening	- I
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W ₀ =	N/A	N/A	- Ift
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	N/A	N/A	- ⁻ 1
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	$C_{f}(G) = C_{f}(C) = C_{f}(C)$	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	G(C) = [MINOR	MAJOR	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	Q ₀ =	4.3	13.5	lcfs
Water Spread Width	Q₀ - T =	11.4	16.0	-ft
Water Depth at Flowline (outside of local depression)	d =	3.4	4.9	linches
Water Depth at Flowline (outside of local depression) Water Depth at Street Crown (or at T_{Max})		0.0	0.4	linches
1 1000	d _{CROWN} =		-	
Ratio of Gutter Flow to Design Flow	E ₀ =	0.212	0.134	
Discharge outside the Gutter Section W, carried in Section T_x	$Q_x =$	3.4	11.7	cfs
Discharge within the Gutter Section W	Q _w =	0.9	1.8	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.20	0.31	sq ft
Velocity within the Gutter Section W	. V _W =	4.5	5.9	fps
Water Depth for Design Condition	d _{LOCAL} =	6.4	7.9	inches
Grate Analysis (Calculated)		MINOR	MAJOR	٦.
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	$Q_i = [$	N/A	N/A	cfs
Under Clogging Condition	-	MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	7
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = Q_0 - Q_a (to be applied to curb opening or next d/s inlet)	$Q_{\rm b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope Se	S _e =	0.097	0.069]ft/ft
Required Length L_T to Have 100% Interception	L _T =	12.28	25.77	ft
Under No-Clogging Condition		MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =[12.28	15.00	ft
Interception Capacity	$\overline{Q_i} =$	4.3	10.7	lcfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient	CurbCoeff =	1.31	1.31	ן ר
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	-
Effective (Unclogged) Length	$L_e =$	12.28	14.35	-lft -
Actual Interception Capacity	$\mathbf{Q}_{a} =$	4.3	10.4	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	$Q_a = Q_b =$	0.0	3.1	cfs
Summary		MINOR	MAJOR	1414
Total Inlet Interception Capacity	Q =[4.3	10.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$\mathbf{Q}_{b} = \mathbf{Q}_{b}$	0.0	3.1	cfs
Capture Percentage = Q_a/Q_o	Qь – С% =	100	77	%
	U /0 - 1			




Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Tupo _		Curb Opening	1
Local Depression (additional to continuous gutter depression 'a')	Type =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	a _{LOCAL} = No =	3.0	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	$L_0 =$	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	$W_0 =$	 N/A	N/A	
		N/A N/A	N/A N/A	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	$C_{f}(G) =$	0.10	0.10	-
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1) Street Hydraulics: OK - Q < Allowable Street Capacity'	$C_{f}(C) =$	MINOR	MAJOR	
	0 -1		20.3	
Design Discharge for Half of Street (from <i>Inlet Management</i>)	Q ₀ = T =	6.8		cfs ft
Water Spread Width		13.6	16.0	-1·*
Water Depth at Flowline (outside of local depression)	d =	3.9	5.6	inches
Water Depth at Street Crown (or at T _{MAX})	d _{CROWN} =	0.0	1.1	inches
Ratio of Gutter Flow to Design Flow	E _o =	0.176	0.115	4.
Discharge outside the Gutter Section W, carried in Section T_x	Q _x =	5.6	18.0	cfs
Discharge within the Gutter Section W	Q _w =	1.2	2.3	cfs
Discharge Behind the Curb Face	$Q_{BACK} =$	0.0	0.0	cfs
Flow Area within the Gutter Section W	A _W =	0.24	0.36	sq ft
Velocity within the Gutter Section W	V _W =	5.0	6.5	fps
Water Depth for Design Condition	d _{LOCAL} =	6.9	8.6	inches
Grate Analysis (Calculated)		MINOR	MAJOR	-
Total Length of Inlet Grate Opening	L =	N/A	N/A	ft
Ratio of Grate Flow to Design Flow	$E_{o-GRATE} =$	N/A	N/A	
Under No-Clogging Condition		MINOR	MAJOR	_
Minimum Velocity Where Grate Splash-Over Begins	V _o =	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	
Interception Rate of Side Flow	R _x =	N/A	N/A	
Interception Capacity	Q _i =	N/A	N/A	cfs
Under Clogging Condition		MINOR	MAJOR	
Clogging Coefficient for Multiple-unit Grate Inlet	GrateCoeff =	N/A	N/A	1
Clogging Factor for Multiple-unit Grate Inlet	GrateClog =	N/A	N/A	7
Effective (unclogged) Length of Multiple-unit Grate Inlet	L _e =	N/A	N/A	ft
Minimum Velocity Where Grate Splash-Over Begins	$V_0 =$	N/A	N/A	fps
Interception Rate of Frontal Flow	R _f =	N/A	N/A	1
Interception Rate of Side Flow	R _x =	N/A	N/A	7
Actual Interception Capacity	Q _a =	N/A	N/A	cfs
Carry-Over Flow = $Q_0 - Q_a$ (to be applied to curb opening or next d/s inlet)	$Q_{\rm b} =$	N/A	N/A	cfs
Curb Opening or Slotted Inlet Analysis (Calculated)		MINOR	MAJOR	
Equivalent Slope Se	S _e =	0.084	0.062	_ft/ft
Required Length L_T to Have 100% Interception	L _T =	16.57	33.35	ft
Under No-Clogging Condition		MINOR	MAJOR	-
Effective Length of Curb Opening or Slotted Inlet (minimum of L, L_T)	L =	15.00	15.00	Tft
Interception Capacity	$Q_i =$	6.7	13.4	lcfs
Under Clogging Condition		MINOR	MAJOR	_
Clogging Coefficient	CurbCoeff =	1.31	1.31	7
Clogging Factor for Multiple-unit Curb Opening or Slotted Inlet	CurbClog =	0.04	0.04	1
Effective (Unclogged) Length	L _e =	14.35	14.35	
Actual Interception Capacity	$\mathbf{Q}_{a}^{-e} =$	6.6	12.9	cfs
Carry-Over Flow = $Q_{b(GRATE)}$ - Q_a	$Q_{\rm b} =$	0.2	7.4	cfs
Summary	₹ b = 1	MINOR	MAJOR	1
Total Inlet Interception Capacity	Q =	6.6	12.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	$Q_b =$	0.2	7.4	cfs
Capture Percentage = Q_a/Q_o	Qь – С% =	97	64	%





V					3
Design Information (Input) CDOT Type R Curb Opening	_	MINOR	MAJOR	-	
Type of Inlet	Type =		Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches	
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1		
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	7.7	linches	
Grate Information	. (a) [MINOR	MAJOR	Override Depths	
Length of a Unit Grate	$L_{o}(G) =$	N/A	N/A	feet	
Width of a Unit Grate	W _o =	N/A	N/A	feet	
Open Area Ratio for a Grate (typical values 0.15-0.90)	$A_{ratio} =$	N/A	N/A	-	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	-	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C_w (G) =	N/A	N/A	4	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	$C_{o}(G) =$	N/A	N/A		
Curb Opening Information Length of a Unit Curb Opening	L (C) - [MINOR 10.00	MAJOR 10.00	lfeet	
Height of Vertical Curb Opening in Inches	L _o (C) =	6.00	6.00	linches	
Height of Curb Orifice Throat in Inches	H _{vert} =	6.00	6.00	inches	
Angle of Throat	H _{throat} = Theta =	63.40	63.40	degrees	
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	0.83	0.83	feet	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_f(C) =$	0.10	0.10		
Curb Opening Weir Coefficient (typical value 0.10)	$C_{f}(C) = C_{w}(C) $	3.60	3.60	-	
Curb Opening Orifice Coefficient (typical value 2.3-3.7) Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	$C_{w}(C) = C_{c}(C) $	0.67	0.67	4	
Grate Flow Analysis (Calculated)	0,07	MINOR	MAJOR	1	1
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7	
Clogging Eactor for Multiple Units	Clog =	N/A	N/A	-	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	_	
Interception without Clogging	Q _{wi} =	N/A	N/A	lcfs	
Interception with Clogging	$Q_{wa} =$	N/A	N/A	cfs	
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	•cwa	MINOR	MAJOR		
Interception without Clogging	$Q_{oi} = $	N/A	N/A	lcfs	
Interception with Clogging	Q _{oa} =	N/A	N/A	cfs	
Grate Capacity as Mixed Flow	-coa [_	MINOR	MAJOR		
Interception without Clogging	Q _{mi} =	N/A	N/A	cfs	
Interception with Clogging	Q _{ma} =	N/A	N/A	cfs	
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs	
Curb Opening Flow Analysis (Calculated)		MINOR	MAJOR		1
Clogging Coefficient for Multiple Units	Coef =	1.25	1.25	7	
Clogging Factor for Multiple Units	Clog =	0.06	0.06	1	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-	
Interception without Clogging	Q _{wi} =	5.5	17.9	cfs	WATER FLOWS OVER
Interception with Clogging	Q _{wa} =	5.2	16.8	cfs	CROWN IN 100-YR
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)		MINOR	MAJOR		
Interception without Clogging	Q _{oi} =	16.9	22.0		EVENT, BUT MEETS
Interception with Clogging	Q _{oa} =	15.8	20.6	cfs	CRITERIA OF 0 FLOW
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	_ /	OVER CROWN IN 5-YR
Interception without Clogging	Q _{mi} =	9.0	18.5	cfs	EVENT
Interception with Clogging	Q _{ma} =	8.4	17.3	cfs 🛛	_ · · _ · · ·
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	5.2	16.8	cfs	
Resultant Street Conditions	_	MINOR	MAJOR		
Total Inlet Length	L =	10.00	10.00	feet	
Resultant Street Flow Spread (based on street geometry from above)	T =	15.7	29.5	ft. >T-Crown	
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	3.2	inches	
Low Head Performance Reduction (Calculated)	. –	MINOR	MAJOR	7.0	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft	
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.57	ft	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	4	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.82	1.00	4	
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A		
		MINOR	MAJOR		
Total Inlat Intercention Canacity (accumes clogged condition)	o - [5.2	16.8	cfs	
Total Inlet Interception Capacity (assumes clogged condition) Inlet Capacity IS GOOD for Minor and Major Storms (>O Peak)	$\mathbf{Q}_{a} =$ Q PEAK REQUIRED =	3.5	12.0	cfs	
The capacity is doop for minor and Major Storms (>Q Peak)	✓ PEAK REQUIRED =	5.5	1 12.0	1013	<u></u>

Design Information (Input) CDOT Type R Curb Opening		MINOR	MAJOR	-	
Type of Inlet	Type =	/ 1	Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches	
Number of Unit Inlets (Grate or Curb Opening)	No =	1		4	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	4.4	7.7	inches Override Depths	
Grate Information		MINOR N/A	MAJOR	Polymer -	
Length of a Unit Grate Width of a Unit Grate	$L_{o}(G) =$	N/A N/A	N/A N/A	feet feet	
Open Area Ratio for a Grate (typical values 0.15-0.90)	W _o =	N/A N/A	N/A N/A		
Clogging Factor for a Single Grate (typical values 0.15-0.90)	$A_{ratio} = $ $C_f(G) = $	N/A N/A	N/A N/A	-	
Grate Weir Coefficient (typical value 2.15 - 3.60)		N/A N/A	N/A N/A	-	
Grate Orifice Coefficient (typical value 2.15 - 3.60)	$C_{w}(G) = $ $C_{0}(G) = $	N/A N/A	N/A N/A	-	
Curb Opening Information	C ₀ (G) =	MINOR	MAJOR		
Length of a Unit Curb Opening	L _o (C) =	15.00	15.00	feet	
Height of Vertical Curb Opening in Inches		6.00	6.00	linches	
Height of Curb Orifice Throat in Inches	H _{vert} =	6.00	6.00	linches	
Angle of Throat	H _{throat} = Theta =	63.40	63.40	degrees	
Side Width for Depression Pan (typically the gutter width of 2 feet)	$W_p =$	0.83	0.83	feet	
Clogging Factor for a Single Curb Opening (typical value 0.10)	$V_p = C_f(C) =$	0.10	0.10		
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_{\rm r}({\rm C}) = C_{\rm w}({\rm C}) = 0$	3.60	3.60	-	
Curb Opening Orifice Coefficient (typical value 2.5-3.7)	$C_{0}(C) = C_{0}(C) $	0.67	0.67	-	
Grate Flow Analysis (Calculated)		MINOR	MAJOR		=
Clogging Coefficient for Multiple Units	Coef =	N/A	N/A	7	
Clogging Eactor for Multiple Units	Clog =	N/A	N/A	-	
Grate Capacity as a Weir (based on MHFD - CSU 2010 Study)	ciog – [MINOR	MAJOR		
Interception without Clogging	Q _{wi} =	N/A	N/A	lcfs	
Interception with Clogging		N/A	N/A N/A	lcfs	
Grate Capacity as an Orifice (based on MHFD - CSU 2010 Study)	Qwa -	MINOR	MAJOR		
Interception without Clogging	$Q_{oi} = $	N/A	N/A	cfs	
Interception with Clogging	$Q_{oa} =$	N/A	N/A	lcfs	
Grate Capacity as Mixed Flow	20a - L	MINOR	MAJOR		
Interception without Clogging	Q _{mi} =	N/A	N/A	lcfs	
Interception with Clogging	Q _{ma} =	N/A	N/A	lcfs	
Resulting Grate Capacity (assumes clogged condition)	Q _{Grate} =	N/A	N/A	cfs	
Curb Opening Flow Analysis (Calculated)	Condice	MINOR	MAJOR		1
Clogging Coefficient for Multiple Units	Coef =	1.31	1.31	7	
Clogging Factor for Multiple Units	Clog =	0.04	0.04	-	
Curb Capacity as a Weir (based on MHFD - CSU 2010 Study)		MINOR	MAJOR	-	
Interception without Clogging	Q _{wi} =	6.5	22.6	cfs	WATER FLOWS OVER
Interception with Clogging	Q _{wa} =	6.2	21.6	cfs	
Curb Capacity as an Orifice (based on MHFD - CSU 2010 Study)	Civia L	MINOR	MAJOR		CROWN IN 100-YR
Interception without Clogging	Q _{oi} =	25.3	33.0	lcfs	EVENT, BUT MEETS
Interception with Clogging	Q _{oa} =	24.2	31.5	cfs	CRITERIA OF 0 FLOW
Curb Opening Capacity as Mixed Flow		MINOR	MAJOR	- /	OVER CROWN IN 5-YR
Interception without Clogging	Q _{mi} =	11.9	25.4	cfs	EVENT
Interception with Clogging	Q _{ma} =	11.4	24.3	cfs	
Resulting Curb Opening Capacity (assumes clogged condition)	Q _{Curb} =	6.2	21.6	cfs	
Resultant Street Conditions		MINOR	MAJOR		
Total Inlet Length	L = [15.00	15.00	feet	
Resultant Street Flow Spread (based on street geometry from above)	т = Г	15.7	29.5	ft. >T-Crown	
Resultant Flow Depth at Street Crown	d _{CROWN} =	0.0	3.2	inches	
			-	_	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	_	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft	
Depth for Curb Opening Weir Equation	d _{Curb} =	0.30	0.57	ft	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A		
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.67	0.88		
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	N/A	N/A		
	· · · · ·			_	
		MINOR	MAJOR	_	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	6.2	21.6	cfs	
Inlet Capacity IS GOOD for Minor and Major Storms (>Q Peak)	Q PEAK REQUIRED =	1.9	11.6	cfs	

Hydraulic Analysis Report

Project Data

Project Title: Designer: Project Date: Thursday, June 20, 2024 Project Units: U.S. Customary Units Notes:

Channel Analysis: Pond D

Notes:

Input Parameters

Channel Type: Triangular

Side Slope 1 (Z1): 3.0000 ft/ft

Side Slope 2 (Z2): 3.0000 ft/ft

Longitudinal Slope: 2.0000 ft/ft

Manning's n: 0.0111

Flow 14.1000 cfs

Result Parameters

Depth 0.3015 ft

Area of Flow 0.2726 ft²

Wetted Perimeter 1.9066 ft

Hydraulic Radius 0.1430 ft

Average Velocity 51.7166 ft/s

Top Width 1.8088 ft

Froude Number: 23.4747

Critical Depth 1.0653 ft

Critical Velocity 4.1414 ft/s Critical Slope: 0.0024 ft/ft Critical Top Width 6.39 ft Calculated Max Shear Stress 37.6226 lb/ft^2 Calculated Avg Shear Stress 17.8459 lb/ft^2

Channel Analysis: Pond E

Notes:

Input Parameters

Channel Type: Triangular

Side Slope 1 (Z1): 3.0000 ft/ft

Side Slope 2 (Z2): 3.0000 ft/ft

Longitudinal Slope: 2.0000 ft/ft

Manning's n: 0.0114

Flow 11.6000 cfs

Result Parameters

Depth 0.2829 ft

Area of Flow 0.2401 ft²

Wetted Perimeter 1.7891 ft

Hydraulic Radius 0.1342 ft

Average Velocity 48.3224 ft/s

Top Width 1.6972 ft

Froude Number: 22.6432

Critical Depth 0.9853 ft

Critical Velocity 3.9829 ft/s

Critical Slope: 0.0026 ft/ft

Critical Top Width 5.91 ft

Calculated Max Shear Stress 35.3028 lb/ft^2

Calculated Avg Shear Stress 16.7456 lb/ft^2

Channel Lining Analysis: Pond D Design Analysis

Notes:

Lining Input Parameters

Channel Lining Type: Vegetation Specific Weight of Water: 62.4 lb/ft^3 Height of Vegetation: 0.333 ft Vegetation Condition is good Growth Form of Vegetation is mixed Cf: 0.75 See HEC-15, Table 4.5 (default: 0.75 for Good cover factor and Mixed growth form) soil is noncohesive D75: 2.54 mm Safety Factor: 1 Lining Results Cn: 0.165205 Permissible Soil Shear Stress: 0.04 lb/ft^2 Mean Boundary Shear Stress: 17.8459 lb/ft^2 Maximum Shear Stress on the Channel Bottom: 37.6226 lb/ft^2

Manning's n: 0.0111119

Soil Grain Roughness: 0.0177136

Effective Shear Stress: 19.5009 lb/ft^2

Permissible Shear Stress on Vegetation: 0.0629623 lb/ft^2

This value is compared with the maximum shear stress times the safety factor to determine lining stability

This value is compared with the maximum shear stress times the safety factor to determine lining stability

Channel bottom is NOT stable

Channel Lining Stability Results 2

The channel is NOT stable

Channel Summary

Name of Selected Channel: Pond D

Channel Lining Analysis: Pond E Design Analysis

Notes:

Lining Input Parameters

Channel Lining Type: Vegetation

Specific Weight of Water: 62.4 lb/ft^3

Height of Vegetation: 0.333 ft

Vegetation Condition is good

Growth Form of Vegetation is mixed

Cf: 0.75

See HEC-15, Table 4.5 (default: 0.75 for Good cover factor and Mixed growth form)

soil is noncohesive

D75: 2.54 mm

Safety Factor: 1

Lining Results

Cn: 0.165205

Permissible Soil Shear Stress: 0.04 lb/ft^2

Mean Boundary Shear Stress: 16.7456 lb/ft^2

Maximum Shear Stress on the Channel Bottom: 35.3028 lb/ft^2

Manning's n: 0.0113984

Soil Grain Roughness: 0.0177136

Effective Shear Stress: 17.3902 lb/ft^2

Permissible Shear Stress on Vegetation: 0.0662509 lb/ft^2

This value is compared with the maximum shear stress times the safety factor to determine lining stability

This value is compared with the maximum shear stress times the safety factor to determine lining stability

Channel bottom is NOT stable

Channel Lining Stability Results 2

The channel is NOT stable

Channel Summary

Name of Selected Channel: Pond E

6/20/24, 1:01 PM

ECMDS 7.0

Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0

CHANNEL ANALYSIS >>> Pond D Emergency Overflow Swale

Name	Pond D Emergency Overflow Swale
Discharge	14.1
Channel Slope	0.02
Channel Bottom Width	0
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardence Class	D 2-6 in
Vegetation Type	Mix (Sod and Bunch)
Vegetation Density	Good 65-79%
Soil Type	Sandy Loam (GM)

Shoremax

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Shoremax w/ P300 Unvegetated	Straight	14.1 cfs	4.37 ft/s	1.04 ft	0.03	8.5 lbs/ft2	1.29 lbs/ft2	6.57	STABLE	F
Underlying Substrate	Straight	14.1 cfs	4.37 ft/s	1.04 ft	0.03	5.68 lbs/ft2	0.61 lbs/ft2	9.25	STABLE	F
Shoremax w/ P300 Reinforced Vegetation	Straight	14.1 cfs	4.37 ft/s	1.04 ft	0.03	14 lbs/ft2	1.29 lbs/ft2	10.81	STABLE	F
Underlying Substrate	Straight	14.1 cfs	4.37 ft/s	1.04 ft	0.03	8.5 lbs/ft2	0.61 lbs/ft2	13.84	STABLE	F

6/20/24, 1:03 PM

ECMDS 7.0

Tel. 800.772.2040 >Fax 812.867.0247 www.nagreen.com ECMDS v7.0

CHANNEL ANALYSIS
>>> Pond E Emergency Overflow Swale

Name	Pond E Emergency Overflow Swale
Discharge	11.6
Channel Slope	0.02
Channel Bottom Width	0
Left Side Slope	3
Right Side Slope	3
Low Flow Liner	
Retardence Class	D 2-6 in
Vegetation Type	Mix (Sod and Bunch)
Vegetation Density	Good 65-79%
Soil Type	Sandy Loam (GM)

Shoremax

Phase	Reach	Discharge	Velocity	Normal Depth	Mannings N	Permissible Shear Stress	Calculated Shear Stress	Safety Factor	Remarks	Staple Pattern
Shoremax w/ P300 Unvegetated	Straight	11.6 cfs	4.16 ft/s	0.96 ft	0.03	8.5 lbs/ft2	1.2 lbs/ft2	7.06	STABLE	F
Underlying Substrate	Straight	11.6 cfs	4.16 ft/s	0.96 ft	0.03	5.68 lbs/ft2	0.57 lbs/ft2	9.95	STABLE	F
Shoremax w/ P300 Reinforced Vegetation	Straight	11.6 cfs	4.16 ft/s	0.96 ft	0.03	14 lbs/ft2	1.2 lbs/ft2	11.63	STABLE	F
Underlying Substrate	Straight	11.6 cfs	4.16 ft/s	0.96 ft	0.03	8.5 lbs/ft2	0.57 lbs/ft2	14.89	STABLE	F

OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Grandview Reserve Filing No. 1

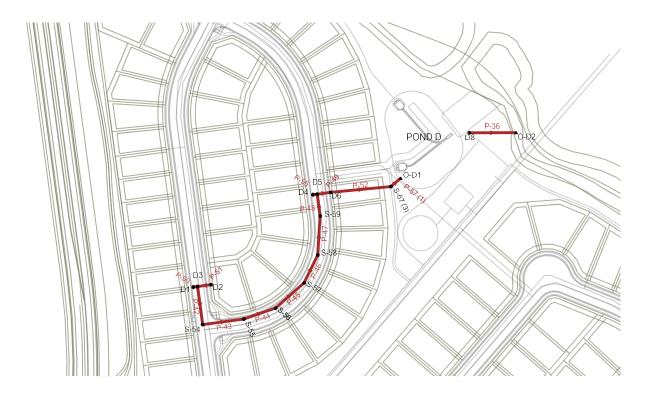
Location: CO, Falcon (El Paso County)

Project Name: Grandview Reserve Filing No. 1

Project No.: HRG02.20

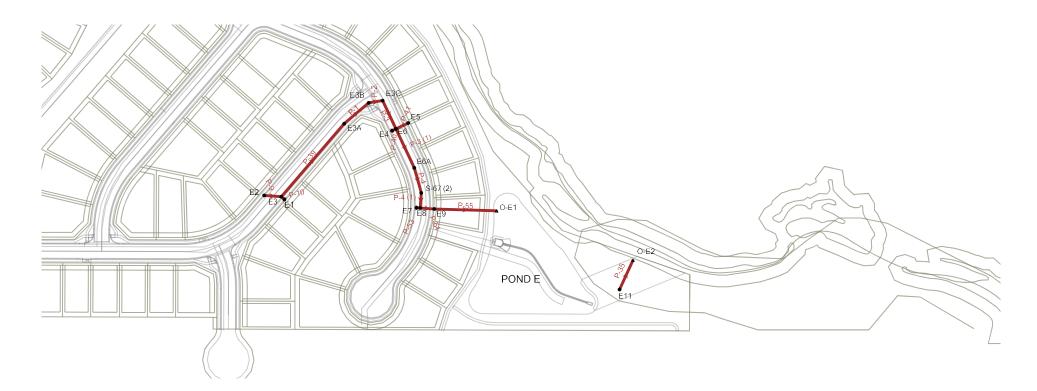
Calculated By: TJE

Checked By: BAS


Date: 6/21/24

	STORM DRAIN SYSTEM						
	Pond D FES	Pond E FES					
Q100 (cfs)	8.0	14.9					
D or H (in)	18	18					
W (ft)							
Slope (%)	1	1					
Yn (in)	18.00	18.00					
Yt (ft)	unknown	unknown	If "unknown" Yt/D=0.4				
Yt/D, Yt/H	0.40	0.40					
Supercritical	Yes	Yes					
Q/D^2.5, Q/WH^1.5	2.90	5.41					
Q/D^1.5, Q/WH^0.5							
Da, Ha (in) *	18.00	18.00	Da=0.5(D+Yn), Ha=0.5(H+Yn)				
Q/Da^1.5, Q/WHa^0.5 *	4.35	8.11					
d50 (in), Required	3.77	7.01					
d50 (in)	9	9					
RipRap Size	Type L	Type L					
1/(2 tan q)	4.50	2.25	Fig. 9-35 OR Fig 9-36				
Erosive Soils	Yes	Yes					
At	1.45	2.71	At=Q/5.5				
L	4.2	6.8	L=(1/(2 tan q))(At/Yt - D)				
Min L	4.5	4.5	Min L=3D or 3H				
Max L	15.0	15.0	Max L=10D or 10H				
Length (ft)	4.5	7.0					
Bottom Width (ft)	4.5	4.5	Width=3D (Minimum)				
Riprap Depth (in)	18	18	Depth=2(d50)				
Type II Base Depth (in)	6	6					
Cutoff Wall	Yes	Yes					
Cutoff Wall Depth (ft)	3.0	3.0	Depth of Riprap and Base				
Cutoff Wall Width (ft)	6.2	6.2					

Grandview Reserve Filing No. 1


D Basin Schematic

HRG02_FDR Storm Analysis.stsw 3/15/2024

Bentley Systems, Inc. Haestad Methods Solution Center 76 Watertown Road, Suite 2D Thomaston, CT 06787 USA +1-203-755-1666 StormCAD [10.03.04.53] Page 1 of 1

Grandview Reserve Filing No. 1 E Basin Schematic

Grandview Reserve Filing No. 1

FlexTable: Conduit Table

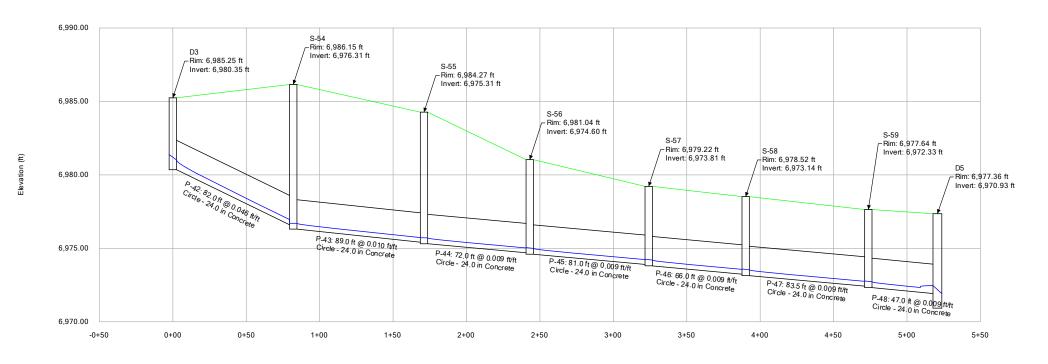
Active Scenario: 5-YR Event

Label	Start Node	Stop Node	Invert (Start)	Invert (Stop)	Length (User	Slope (Calculat	Diamet er	Mannin g's n	Material	Flow (cfs)	Velocity (ft/s)	Hydraulic Grade Line	Hydraulic Grade
	Noue	Noue	(ft)	(500p) (ft)	Defined) (ft)	ed) (ft/ft)	(in)	9511		(03)	(143)	(In) (ft)	Line (Out)
													(ft)
P-1	E3A	E3B	6,955.27	6,954.75	68.6	0.007	30.0	0.012	Concrete	6.90	5.93	6,956.14	6,955.47
P-2	E3B	E3C	6,954.55	6,954.32	30.2	0.007	30.0	0.012	Concrete	6.90	5.93	6,955.42	6,955.44
P-3	E3C	E6	6,953.82	6,953.32	66.7	0.007	36.0	0.012	Concrete	6.90	5.82	6,955.37	6,955.39
P-3 (1)	E6	E6A	6,953.22	6,952.53	92.0	0.007	36.0	0.012	Concrete	17.80	7.63	6,954.57	6,953.64
P-4	E6A	S-67 (2)	6,952.43	6,952.01	55.4	0.007	36.0	0.012	Concrete	17.80	7.63	6,953.78	6,953.14
P-4 (1)	S-67 (2)	E8	6,951.92	6,951.67	32.3	0.007	36.0	0.012	Concrete	17.80	7.63	6,953.27	6,953.40
P-9	E2	E3	6,958.38	6,957.40	35.4	0.027	24.0	0.012	Concrete	3.30	7.78	6,959.01	6,958.26
P-10	E1	E3	6,957.65	6,957.40	9.0	0.027	24.0	0.012	Concrete	3.60	7.98	6,958.32	6,958.26
P-35	E11	0-E2	6,945.69	6,945.01	66.2	0.010	18.0	0.012	Concrete	0.40	3.05	6,945.92	6,945.21
P-36	D8	0-D2	6,964.99	6,964.01	98.7	0.010	18.0	0.012	Concrete	0.20	2.45	6,965.16	6,964.15
P-39	E3	E3A	6,956.91	6,955.36	205.8	0.007	30.0	0.012	Concrete	6.90	5.93	6,957.78	6,956.08
P-40	E4	E6	6,954.51	6,954.32	9.2	0.020	24.0	0.012	Concrete	4.30	7.51	6,955.24	6,955.39
P-41	E5	E6	6,954.62	6,954.32	29.1	0.010	24.0	0.012	Concrete	6.60	6.62	6,955.53	6,955.39
P-42	D3	S-54	6,980.35	6,976.60	82.0	0.046	24.0	0.012	Concrete	3.60	9.55	6,981.02	6,976.96
P-43	S-54	S-55	6,976.31	6,975.42	89.0	0.010	24.0	0.012	Concrete	1.32	4.16	6,976.70	6,975.73
P-44	S-55	S-56	6,975.31	6,974.70	72.0	0.009	24.0	0.012	Concrete	1.32	3.93	6,975.71	6,975.03
P-45	S-56	S-57	6,974.60	6,973.91	81.0	0.009	24.0	0.012	Concrete	1.32	3.93	6,974.99	6,974.23
P-46	S-57	S-58	6,973.81	6,973.24	66.0	0.009	24.0	0.012	Concrete	1.32	3.93	6,974.20	6,973.57
P-47	S-58	S-59	6,973.14	6,972.43	83.5	0.009	24.0	0.012	Concrete	1.32	3.93	6,973.54	6,972.75
P-48	S-59	D5	6,972.33	6,971.92	47.0	0.009	24.0	0.012	Concrete	1.32	3.93	6,972.72	6,972.47
P-49	D5	D6	6,970.93	6,970.51	27.7	0.015	36.0	0.012	Concrete	9.80	8.25	6,971.92	6,971.63
P-50	D3	D1	6,980.66	6,980.75	9.2	-0.010	24.0	0.012	Concrete	2.60	5.08	6,981.31	6,981.39
P-51	D3	D2	6,980.66	6,980.80	29.2	-0.005	24.0	0.012	Concrete	1.00	3.00	6,981.38	6,981.39
P-52	D6	S-67 (3)	6,970.41	6,968.49	127.8	0.015	36.0	0.012	Concrete	14.20	9.18	6,971.61	6,969.31
P-53	E7	E8	6,951.72	6,951.67	8.2	0.005	36.0	0.012	Concrete	3.50	4.14	6,953.40	6,953.40
P-54	E8	E9	, 6,951.17	, 6,951.02	30.2	0.005	42.0	0.012	Concrete	21.30	6.85	6,952.59	6,952.31
P-55	E9	0-E1	6,950.92	6,950.26	131.8	0.005	42.0	0.012	Concrete	1.70	3.27	6,951.31	6,951.30
P-56	D4	D5	6,972.06	6,971.92	13.2	0.010	24.0	0.012	Concrete	6.10	6.58	6,972.94	6,972.66
P-57 (1)	S-67 (3)	0-D1	6,968.29	6,968.01	27.8	0.010	36.0	0.012	Concrete	14.20	7.94	6,969.49	6,968.99

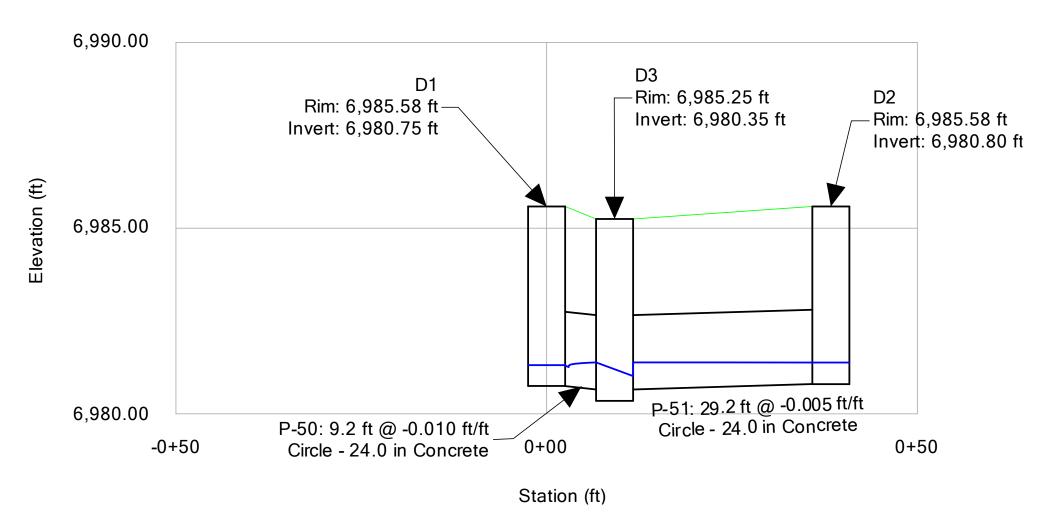
Grandview Reserve Filing No. 1

FlexTable: Manhole Table

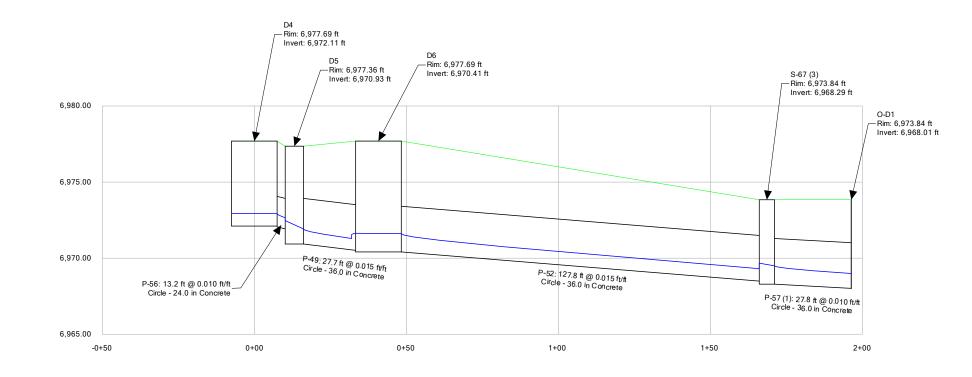
Active Scenario: 5-YR Event

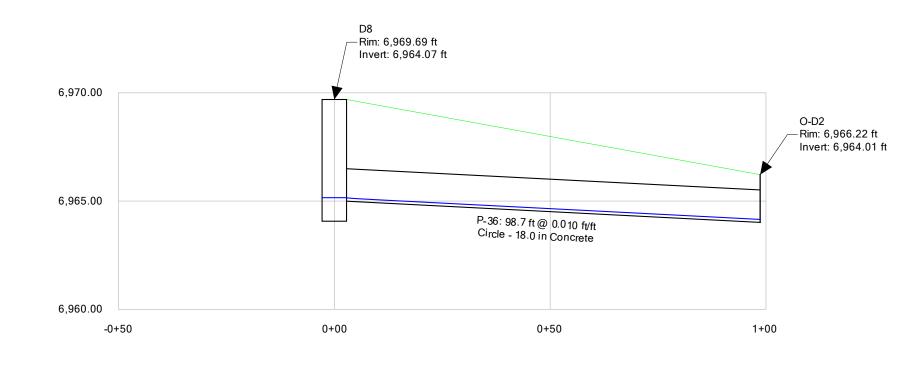

Label	Notes	Elevation	Elevation	Elevation	Flow (Total	Headloss	Headloss	Hydraulic	Hydraulic
		(Ground)	(Invert in 1)	(Invert Out)	Out)	Coefficient	Method	Grade Line	Grade Line
		(ft)	(ft)	(ft)	(cfs)	(Standard)		(In)	(Out)
								(ft)	(ft)
D1	CDOT-TYPE R INLET (5')	6,985.58	(N/A)	6,980.75	2.60	0.000	Standard	6,981.31	6,981.31
D2	CDOT-TYPE R INLET (5')	6,985.58	(N/A)	6,980.80	1.00	0.000	Standard	6,981.38	6,981.38
D3	MH-ECCENTRIC (5' %%C)	6,985.25	6,980.66	6,980.35	3.60	1.520	Standard	6,981.39	6,981.02
D4	CDOT-TYPE R INLET (15') - (PUB)	6,977.69	(N/A)	6,972.06	6.10	0.000	Standard	6,972.94	6,972.94
D5	MH-ECCENTRIC (6' %%C)	6,977.36	6,971.92	6,970.93	9.80	1.520	Standard	6,972.47	6,971.92
D6	CDOT-TYPE R INLET (15') - (PUB)	6,977.69	6,970.51	6,970.41	14.20	0.050	Standard	6,971.63	6,971.61
D8	MODIFIED CDOT TYPE DPOND D OUTLET STRUCTURE(SEE GEC PLAN)	6,969.69	(N/A)	6,964.99	0.20	0.000	Standard	6,965.16	6,965.16
E1	CDOT-TYPE R INLET (15') - (PUB)	6,962.81	(N/A)	6,957.65	3.60	0.000	Standard	6,958.32	6,958.32
E2	CDOT-TYPE R INLET (15') - (PUB)	6,963.03	(N/A)	6,958.38	3.30	0.000	Standard	6,959.01	6,959.01
E3	5' %%C SDMH - (PUB)	6,962.47	6,957.40	6,956.91	6.90	1.520	Standard	6,958.26	6,957.78
E3A	5' %%C SDMH - (PUB)	6,960.42	6,955.36	6,955.27	6.90	0.100	Standard	6,956.17	6,956.14
E3B	5' %%C SDMH - (PUB)	6,959.71	6,954.75	6,954.55	6.90	0.100	Standard	6,955.45	6,955.42
E3C	5' %%C SDMH - (PUB)	6,959.59	6,954.32	6,953.82	6.90	1.320	Standard	6,955.44	6,955.37
E4	CDOT-TYPE R INLET (15') - (PUB)	6,959.26	(N/A)	6,954.51	4.30	0.000	Standard	6,955.24	6,955.24
E5	CDOT-TYPE R INLET (15') - (PUB)	6,959.26	(N/A)	6,954.62	6.60	0.000	Standard	6,955.53	6,955.53
E6	6' %%C SDMH - (PUB)	6,958.92	6,953.32	6,953.22	17.80	1.570	Standard	6,955.39	6,954.57
E6A	5' %%C SDMH - (PUB)	6,958.00	6,952.53	6,952.43	17.80	0.100	Standard	6,953.83	6,953.78
E7	CDOT-TYPE R INLET (10')	6,957.60	(N/A)	6,951.72	3.50	0.000	Standard	6,953.40	6,953.40
E8	MH-ECCENTRIC (6' %%C)	6,957.24	6,951.67	6,951.17	21.30	1.520	Standard	6,953.40	6,952.59
E9	CDOT-TYPE R INLET (15')	6,957.59	6,951.02	6,950.92	1.70	0.050	Standard	6,951.32	6,951.31
E11	MODIFIED CDOT TYPE DPOND E OUTLET STRUCTURE(SEE GEC PLAN)	6,951.93	(N/A)	6,945.69	0.40	0.050	Standard	6,945.93	6,945.92
S-54	MH-ECCENTRIC (5' %%C)	6,986.15	6,976.60	6,976.31	1.32	0.000	Standard	6,976.70	6,976.70
S-55	MH-ECCENTRIC (5' %%C)	6,984.27	6,975.42	6,975.31	1.32	0.100	Standard	6,975.72	6,975.71
S-56	MH-ECCENTRIC (5' %%C)	6,981.04	6,974.70	6,974.60	1.32	0.400	Standard	6,975.05	6,974.99
S-57	MH-ECCENTRIC (5' %%C)	6,979.22	6,973.91	6,973.81	1.32	0.400	Standard	6,974.26	6,974.20
S-58	MH-ECCENTRIC (5' %%C)	6,978.52	6,973.24	6,973.14	1.32	0.400	Standard	6,973.59	6,973.54
S-59	MH-ECCENTRIC (5' %%C)	6,977.64	6,972.43	6,972.33	1.32	0.400	Standard	6,972.78	6,972.72
S-67 (2)	MH-ECCENTRIC (5' %%C)	6,957.45	6,952.01	6,951.92	17.80	0.100	Standard	6,953.32	6,953.27
S-67 (3)	MH-ECCENTRIC (5' %%C)	6,973.84	6,968.49	6,968.29	14.20	0.400	Standard	6,969.67	6,969.49

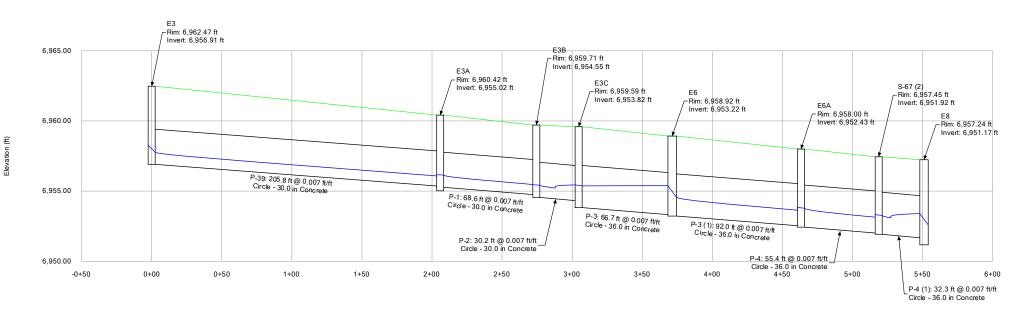
FlexTable: Outfall Table

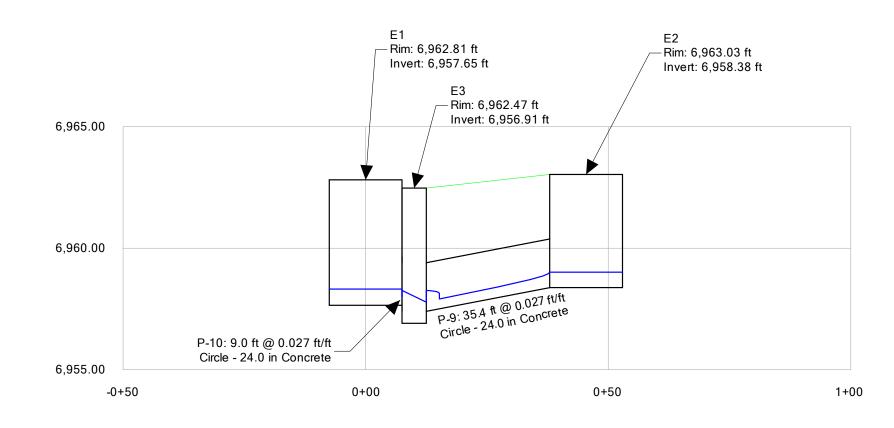

Active Scenario: 5-YR Event

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
0-D2	6,966.22	6,964.01	Free Outfall		6,964.15	0.20
0-E2	6,947.22	6,945.01	Free Outfall		6,945.21	0.40
0-D1	6,973.84	6,968.01	User Defined Tailwater	6,969.15	6,968.99	14.20
O-E1	6,957.59	6,950.26	User Defined Tailwater	6,951.26	6,951.26	1.70

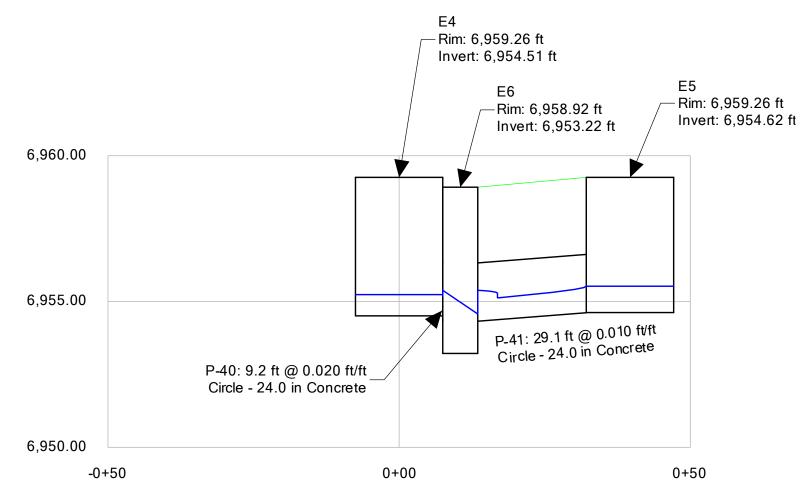

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - D3 to D5 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event


Grandview Reserve Filing No. 1 Profile Report Engineering Profile - D1 to D2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event

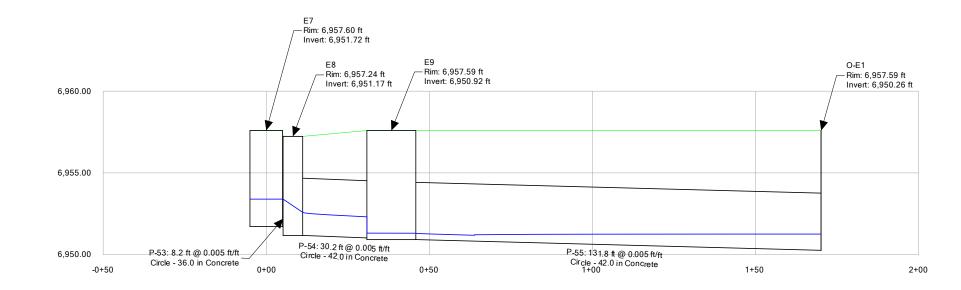

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - D4 to O-D1 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event

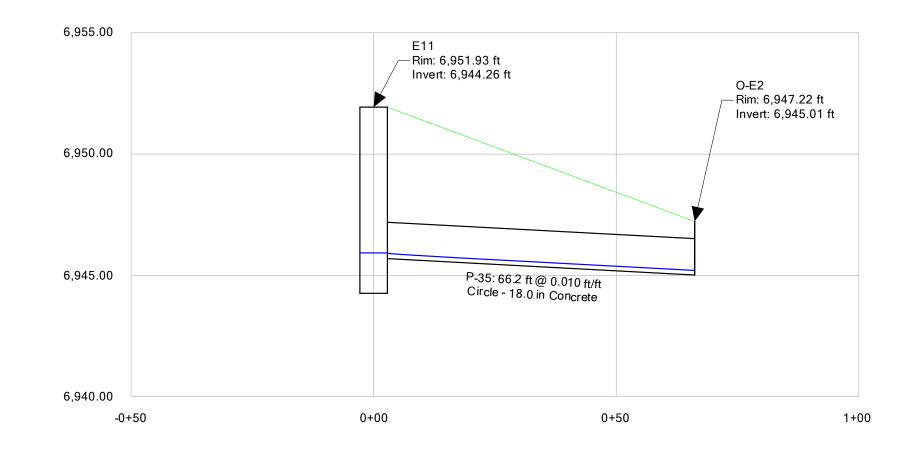

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - D7 to O-D2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - E3 to E8 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event



Grandview Reserve Filing No. 1 Profile Report Engineering Profile - E1 to E2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event


Station (ft)



Station (ft)

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - E7 to O-E1 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - E10 to O-E2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 5-YR Event

Station (ft)

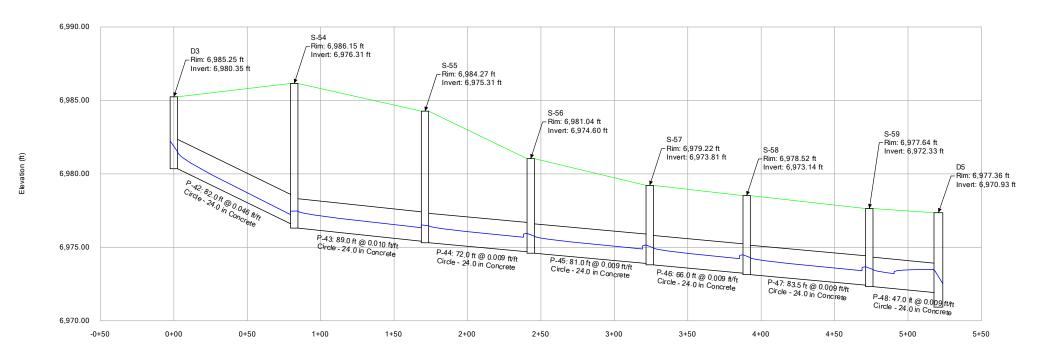
FlexTable: Conduit Table

Active Scenario: 100-YR Event

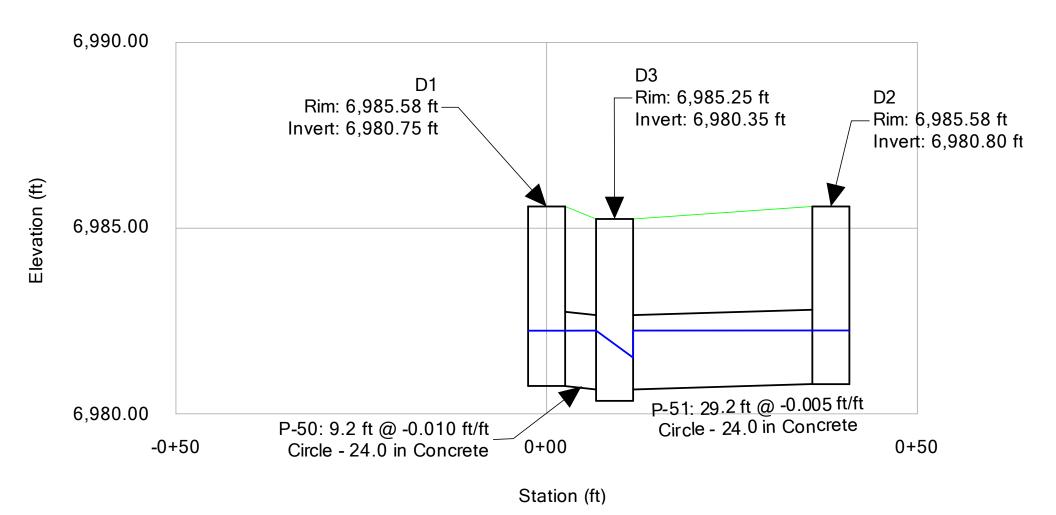
	<u> </u>	<u></u>		- .									
Label	Start Node	Stop Node	Invert (Chart)	Invert	Length	Slope	Diamet	Mannin	Material	Flow	Velocity	Hydraulic	Hydraulic
	Node	node	(Start) (ft)	(Stop) (ft)	(User Defined)	(Calculat ed)	er (in)	g's n		(cfs)	(ft/s)	Grade Line (In)	Grade Line
			(11)	(11)	(ft)	(ft/ft)	(11)					(ft)	(Out)
					(14)	(10,10)						(10)	(ft)
P-1	E3A	E3B	6,955.27	6,954.75	68.6	0.007	30.0	0.012	Concrete	17.10	7.61	6,956.93	6,956.98
P-2	E3B	E3C	6,954.55	6,954.32	30.2	0.007	30.0	0.012	Concrete	17.10	7.61	6,956.96	6,956.92
P-3	E3C	E6	6,953.82	6,953.32	66.7	0.007	36.0	0.012	Concrete	17.10	7.54	6,956.80	6,956.77
P-3 (1)	E6	E6A	6,953.22	6,952.53	92.0	0.007	36.0	0.012	Concrete	40.40	9.41	6,955.29	6,955.21
P-4	E6A	S-67 (2)	6,952.43	6,952.01	55.4	0.007	36.0	0.012	Concrete	40.40	9.41	6,955.15	6,955.04
P-4 (1)	S-67 (2)	E8	6,951.92	6,951.67	32.3	0.007	36.0	0.012	Concrete	40.40	5.72	6,954.99	6,954.89
P-9	E2	E3	6,958.38	6,957.40	35.4	0.027	24.0	0.012	Concrete	7.80	9.98	6,959.37	6,959.17
P-10	E1	E3	6,957.65	6,957.40	9.0	0.027	24.0	0.012	Concrete	9.30	10.49	6,959.12	6,959.17
P-35	E11	0-E2	6,945.69	6,945.01	66.2	0.010	18.0	0.012	Concrete	14.90	8.43	6,947.60	6,946.42
P-36	D8	0-D2	6,964.99	6,964.01	98.7	0.010	18.0	0.012	Concrete	8.00	6.95	6,966.09	6,964.94
P-39	E3	E3A	6,956.91	6,955.36	205.8	0.007	30.0	0.012	Concrete	17.10	7.61	6,958.31	6,956.97
P-40	E4	E6	6,954.51	6,954.32	9.2	0.020	24.0	0.012	Concrete	11.70	3.72	6,956.79	6,956.77
P-41	E5	E6	6,954.62	6,954.32	29.1	0.010	24.0	0.012	Concrete	11.60	3.69	6,956.83	6,956.77
P-42	D3	S-54	6,980.35	6,976.60	82.0	0.046	24.0	0.012	Concrete	10.50	13.03	6,981.51	6,977.22
P-43	S-54	S-55	6,976.31	6,975.42	89.0	0.010	24.0	0.012	Concrete	10.50	7.50	6,977.47	6,976.34
P-44	S-55	S-56	6,975.31	6,974.70	72.0	0.009	24.0	0.012	Concrete	10.50	7.08	6,976.48	6,975.95
P-45	S-56	S-57	6,974.60	6,973.91	81.0	0.009	24.0	0.012	Concrete	10.50	7.08	6,975.76	6,975.16
P-46	S-57	S-58	6,973.81	6,973.24	66.0	0.009	24.0	0.012	Concrete	10.50	7.08	6,974.97	6,974.49
P-47	S-58	S-59	6,973.14	6,972.43	83.5	0.009	24.0	0.012	Concrete	10.50	7.08	6,974.30	6,973.68
P-48	S-59	D5	6,972.33	6,971.92	47.0	0.009	24.0	0.012	Concrete	10.50	7.08	6,973.49	6,973.50
P-49	D5	D6	6,970.93	6,970.51	27.7	0.015	36.0	0.012	Concrete	24.60	10.72	6,972.53	6,971.76
P-50	D3	D1	6,980.66	6,980.75	9.2	-0.010	24.0	0.012	Concrete	5.30	6.23	6,982.24	6,982.24
P-51	D3	D2	6,980.66	6,980.80	29.2	-0.005	24.0	0.012	Concrete	5.30	4.85	6,982.25	6,982.24
P-52	D6	S-67 (3)	6,970.41	6,968.49	127.8	0.015	36.0	0.012	Concrete	25.80	10.86	6,972.05	6,970.30
P-53	E7	E8	6,951.72	6,951.67	8.2	0.005	36.0	0.012	Concrete	11.00	1.56	6,954.89	6,954.89
P-54	E8	E9	6,951.17	6,951.02	30.2	0.005	42.0	0.012	Concrete	51.40	8.58	6,953.42	6,953.46
P-55	E9	0-E1	6,950.92	6,950.26	131.8	0.005	42.0	0.012	Concrete	62.40	8.92	6,953.40	6,952.65
P-56	D4	D5	6,972.06	6,971.92	13.2	0.010	24.0	0.012	Concrete	14.10	8.21	6,973.41	6,973.50
P-57 (1)	S-67 (3)	0-D1	6,968.29	6,968.01	27.8	0.010	36.0	0.012	Concrete	25.80	9.37	6,970.09	6,970.23

FlexTable: Manhole Table

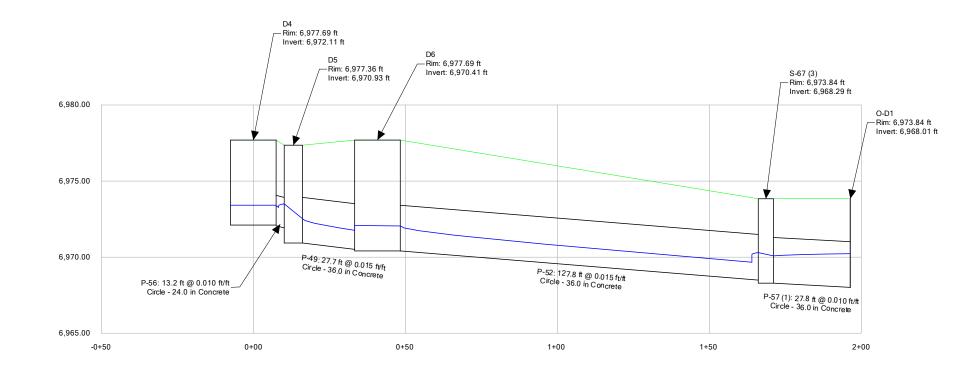
Active Scenario: 100-YR Event

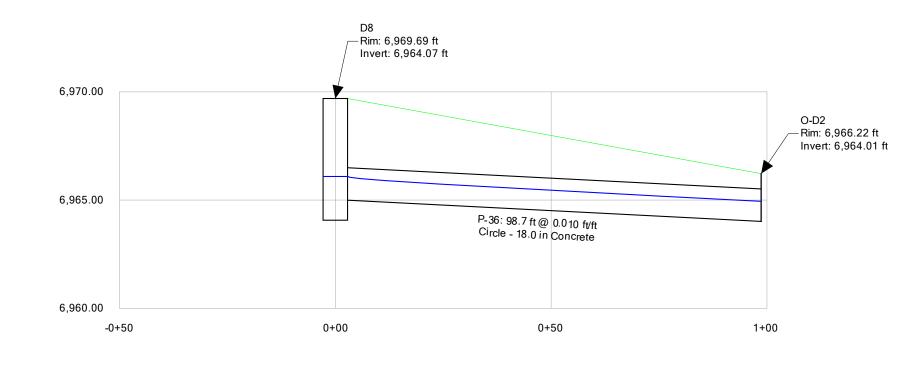

Label	Notes	Elevation	Elevation	Elevation	Flow (Total	Headloss	Headloss	Hydraulic	Hydraulic
		(Ground)	(Invert in 1)	(Invert Out)	Out)	Coefficient	Method	Grade Line	Grade Line
		(ft)	(ft)	(ft)	(cfs)	(Standard)		(In)	(Out)
								(ft)	(ft)
D1	CDOT-TYPE R INLET (5')	6,985.58	(N/A)	6,980.75	5.30	0.000	Standard	6,982.24	6,982.24
D2	CDOT-TYPE R INLET (5')	6,985.58	(N/A)	6,980.80	5.30	0.000	Standard	6,982.25	6,982.25
D3	MH-ECCENTRIC (5' %%C)	6,985.25	6,980.66	6,980.35	10.50	1.520	Standard	6,982.24	6,981.51
D4	CDOT-TYPE R INLET (15') - (PUB)	6,977.69	(N/A)	6,972.06	14.10	0.000	Standard	6,973.41	6,973.41
D5	MH-ECCENTRIC (6' %%C)	6,977.36	6,971.92	6,970.93	24.60	1.520	Standard	6,973.50	6,972.53
D6	CDOT-TYPE R INLET (15') - (PUB)	6,977.69	6,970.51	6,970.41	25.80	0.050	Standard	6,972.08	6,972.05
D8	MODIFIED CDOT TYPE DPOND D OUTLET STRUCTURE(SEE GEC PLAN)	6,969.69	(N/A)	6,964.99	8.00	0.000	Standard	6,966.09	6,966.09
E1	CDOT-TYPE R INLET (15') - (PUB)	6,962.81	(N/A)	6,957.65	9.30	0.000	Standard	6,959.12	6,959.12
E2	CDOT-TYPE R INLET (15') - (PUB)	6,963.03	(N/A)	6,958.38	7.80	0.000	Standard	6,959.37	6,959.37
E3	5' %%C SDMH - (PUB)	6,962.47	6,957.40	6,956.91	17.10	1.520	Standard	6,959.17	6,958.31
E3A	5' %%C SDMH - (PUB)	6,960.42	6,955.36	6,955.27	17.10	0.100	Standard	6,956.97	6,956.93
E3B	5' %%C SDMH - (PUB)	6,959.71	6,954.75	6,954.55	17.10	0.100	Standard	6,956.98	6,956.96
E3C	5' %%C SDMH - (PUB)	6,959.59	6,954.32	6,953.82	17.10	1.320	Standard	6,956.92	6,956.80
E4	CDOT-TYPE R INLET (15') - (PUB)	6,959.26	(N/A)	6,954.51	11.70	0.000	Standard	6,956.79	6,956.79
E5	CDOT-TYPE R INLET (15') - (PUB)	6,959.26	(N/A)	6,954.62	11.60	0.000	Standard	6,956.83	6,956.83
E6	6' %%C SDMH - (PUB)	6,958.92	6,953.32	6,953.22	40.40	1.570	Standard	6,956.77	6,955.29
E6A	5' %%C SDMH - (PUB)	6,958.00	6,952.53	6,952.43	40.40	0.100	Standard	6,955.21	6,955.15
E7	CDOT-TYPE R INLET (10')	6,957.60	(N/A)	6,951.72	11.00	0.000	Standard	6,954.89	6,954.89
E8	MH-ECCENTRIC (6' %%C)	6,957.24	6,951.67	6,951.17	51.40	1.520	Standard	6,954.89	6,953.42
E9	CDOT-TYPE R INLET (15')	6,957.59	6,951.02	6,950.92	62.40	0.050	Standard	6,953.46	6,953.40
E11	MODIFIED CDOT TYPE DPOND E OUTLET STRUCTURE(SEE GEC PLAN)	6,951.93	(N/A)	6,945.69	14.90	0.050	Standard	6,947.66	6,947.60
S-54	MH-ECCENTRIC (5' %%C)	6,986.15	6,976.60	6,976.31	10.50	0.000	Standard	6,977.47	6,977.47
S-55	MH-ECCENTRIC (5' %%C)	6,984.27	6,975.42	6,975.31	10.50	0.100	Standard	6,976.52	6,976.48
S-56	MH-ECCENTRIC (5' %%C)	6,981.04	6,974.70	6,974.60	10.50	0.400	Standard	6,975.95	6,975.76
S-57	MH-ECCENTRIC (5' %%C)	6,979.22	6,973.91	6,973.81	10.50	0.400	Standard	6,975.16	6,974.97
S-58	MH-ECCENTRIC (5' %%C)	6,978.52	6,973.24	6,973.14	10.50	0.400	Standard	6,974.49	6,974.30
S-59	MH-ECCENTRIC (5' %%C)	6,977.64	6,972.43	6,972.33	10.50	0.400	Standard	6,973.68	6,973.49
S-67 (2)	MH-ECCENTRIC (5' %%C)	6,957.45	6,952.01	6,951.92	40.40	0.100	Standard	6,955.04	6,954.99
S-67 (3)	MH-ECCENTRIC (5' %%C)	6,973.84	6,968.49	6,968.29	25.80	0.400	Standard	6,970.30	6,970.09

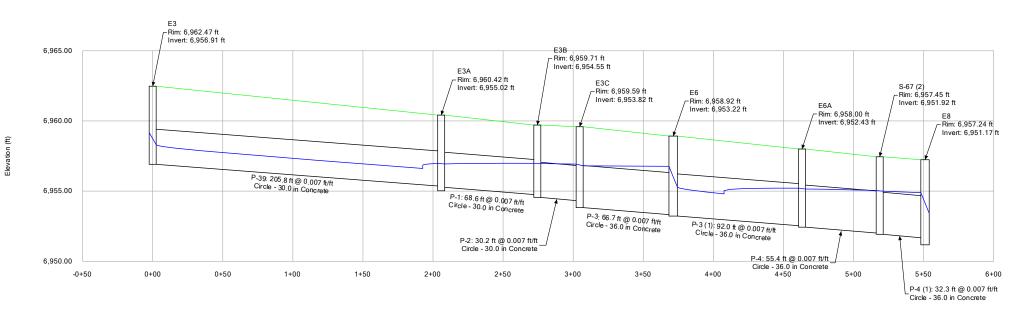
FlexTable: Outfall Table

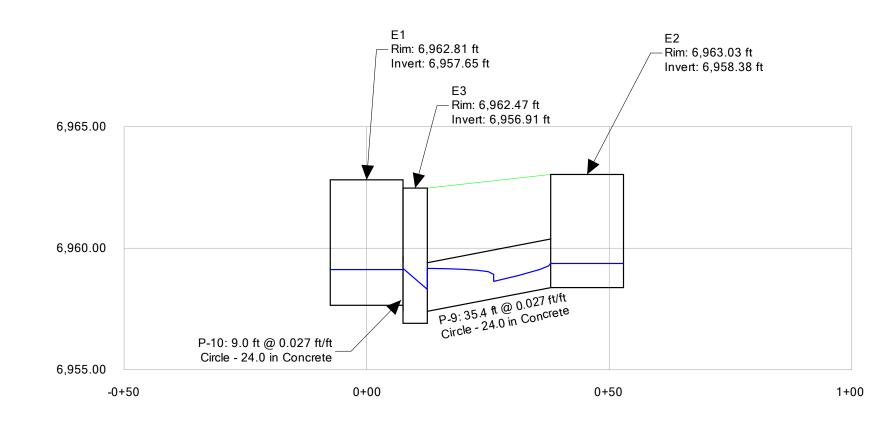

Active Scenario: 100-YR Event

Label	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Boundary Condition Type	Elevation (User Defined Tailwater) (ft)	Hydraulic Grade (ft)	Flow (Total Out) (cfs)
O-D2	6,966.22	6,964.01	Free Outfall		6,964.94	8.00
0-E2	6,947.22	6,945.01	Free Outfall		6,946.42	14.90
O-D1	6,973.84	6,968.01	User Defined Tailwater	6,970.23	6,970.23	25.80
O-E1	6,957.59	6,950.26	User Defined Tailwater	6,952.57	6,952.65	62.40

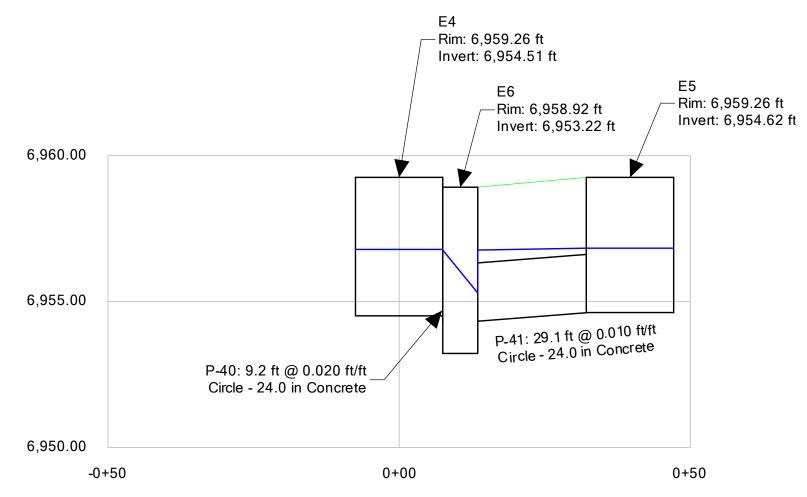

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - D3 to D5 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event


Grandview Reserve Filing No. 1 Profile Report Engineering Profile - D1 to D2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

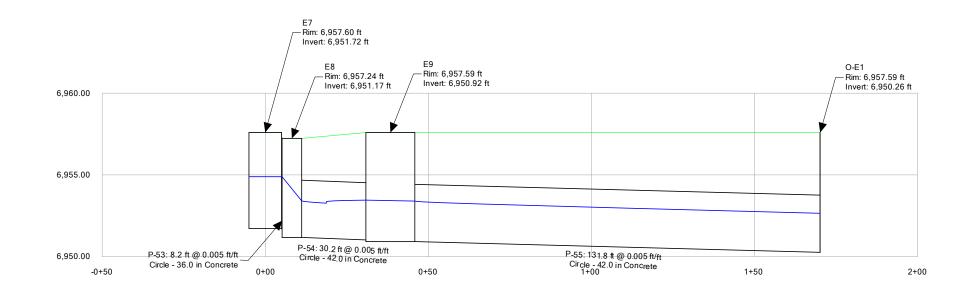

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - D4 to O-D1 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

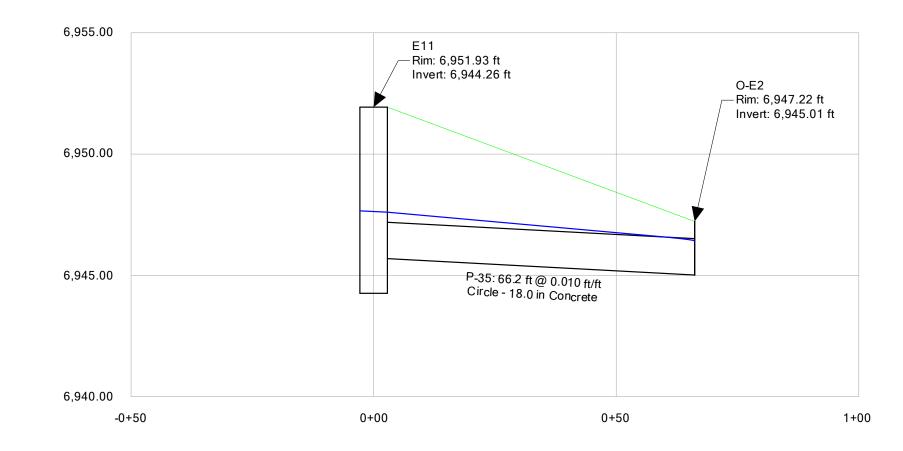

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - D7 to O-D2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - E3 to E8 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event



Grandview Reserve Filing No. 1 Profile Report Engineering Profile - E1 to E2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event


Station (ft)



Station (ft)

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - E7 to O-E1 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Grandview Reserve Filing No. 1 Profile Report Engineering Profile - E10 to O-E2 (HRG02_FDR Storm Analysis.stsw) Active Scenario: 100-YR Event

Station (ft)

APPENDIX E Water Quality Computations

	DETENTI Grandview Reserv CO, Falcon (El Pasi		Project Name: Project No.: Calculated By:	TJE
			Checked By:	
			Date:	6/21/24
P	ond 'D'			
	Basin	Area	% Imp	
	D-1	2.73	46.6	
	D-2	0.57	65.0	
	D-3	4.33	59.8	
	D-4	3.65	57.8	
	D-5	1.59	22.6	
	Total	12.87	52.1	
F	ond 'E'			
	Basin	Area	% Imp]
	E-1	4.47	42.4	
	E-2	1.94	65.0	
	E-3a	2.90	65.0	
	E-3b	2.12	65.0	
	E-4a	7.45	48.7	
	E-4b	1.00	65.0	
	E-5	1.43	13.1	
	Total	21.31	51.1]

FOREBAY TRIBUTARY AREAS

Subdivision:Grandview Reserve Filing No. 1Location:CO, Falcon (El Paso County)

Project Name:	Grandview Reserve Filing No. 1
Project No.:	HRG02.20
Calculated By:	TJE
Checked By:	BAS
Date:	6/21/24

Forebay D-1		
Basin	Area	% Imp
D-1	2.73	46.6
D-2	0.57	65.0
D-3	4.33	59.8
D-4	3.65	57.8
Total	11.28	56.2

Forebay E-1

Basin	Area	% Imp
E-1	4.47	42.4
E-2	1.94	65.0
E-3a	2.90	65.0
E-3b	2.12	65.0
E-4a	7.45	48.7
E-4b	1.00	65.0
Total	19.88	53.8

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022) Project: <u>Grandview Reserve Filing No. 1 - Final Drainage Report</u>

		Reserve Fil	ing No. 1 - Fi	nal Drainago	e Report									
Basin ID:	Pona D													
	2 ONE 1													
		1												
+		100-YE	AR				1-							
	1 AND 2	ORIFIC	E		Depth Increment =		ft Optional				Optional			
POOL Example Zone	Configuratio	on (Retenti	on Pond)		Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
Materoland Information				6965.85	Description Top of Micropool	(ft)	Stage (ft) 0.00	(ft) 	(ft) 	(ft ²)	Area (ft ²) 90	(acre) 0.002	(ft 3)	(ac-ft)
Watershed Information Selected BMP Type =	EDB	1			Trickel Channel Inv		0.50				90	0.002	45	0.001
		-		0900.35										
Watershed Area =	12.87	acres			6967		1.15				532	0.012	247	0.006
Watershed Length =	900	ft			6968		2.15				8,902	0.204	4,964	0.114
Watershed Length to Centroid = Watershed Slope =	450 0.020	ft ft/ft			6969 6970		3.15 4.15				21,787 25,444	0.500	20,308 43,924	0.466
Watershed Imperviousness =	52.10%	percent			6970		5.15				23,444	0.653	70,859	1.627
Percentage Hydrologic Soil Group A =	100.0%	percent		6971.50			5.65				29,894	0.686	85,439	1.961
Percentage Hydrologic Soll Group B =	0.0%	percent		0571.50	6972		6.15				31,395	0.721	100,761	2.313
Percentage Hydrologic Soil Groups C/D =	0.0%	percent		6973.00	Top of Pond		7.15				34,492	0.792	133,705	3.069
Target WQCV Drain Time =	40.0	hours		037 5100	Top of Long		7.125				51,152	0.752	155,705	5.005
Location for 1-hr Rainfall Depths =														
After providing required inputs above inc		rainfall												
depths, click 'Run CUHP' to generate rund	off hydrograph	is using												
the embedded Colorado Urban Hydro	graph Procedu	ure.	Optional Use	r Overrides										
Water Quality Capture Volume (WQCV) =	0.227	acre-feet		acre-feet										
Excess Urban Runoff Volume (EURV) =	0.782	acre-feet		acre-feet										
2-yr Runoff Volume (P1 = 0.93 in.) =	0.430	acre-feet	0.93	inches										
5-yr Runoff Volume (P1 = 1.21 in.) =	0.575	acre-feet	1.21	inches										
10-yr Runoff Volume (P1 = 1.46 in.) =	0.724	acre-feet	1.46	inches										
25-yr Runoff Volume (P1 = 1.84 in.) =	0.987	acre-feet	1.84	inches										
50-yr Runoff Volume (P1 = 2.16 in.) =	1.266	acre-feet	2.16	inches										
100-yr Runoff Volume (P1 = 2.49 in.) =	1.596	acre-feet	2.49	inches										
500-yr Runoff Volume (P1 = 3.37 in.) =	2.464	acre-feet	3.37	inches										
Approximate 2-yr Detention Volume =	0.395	acre-feet												
Approximate 5-yr Detention Volume =	0.534	acre-feet												
Approximate 10-yr Detention Volume =	0.673	acre-feet												
Approximate 25-yr Detention Volume =	0.906	acre-feet												
Approximate 50-yr Detention Volume =	1.053	acre-feet												
Approximate 100-yr Detention Volume =	1.215	acre-feet												
Define Zones and Basin Geometry		-												
Zone 1 Volume (WQCV) =	0.227	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.555	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) =	0.433	acre-feet												
Total Detention Basin Volume =	1.215	acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³												
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth (H _{total}) =	user	ft												
Depth of Trickle Channel (H _{TC}) =	user	ft												
Slope of Trickle Channel $(S_{TC}) =$	user	ft/ft H:V												
Slopes of Main Basin Sides (S _{main}) =	user	n:v												
Basin Length-to-Width Ratio $(R_{L/W}) =$	user													
	user	ft ²												
Initial Surcharge Area $(A_{1SV}) =$ Surcharge Volume Length $(L_{1SV}) =$	user	ft												
Surcharge Volume Width $(W_{ISV}) =$	user	ft												
Depth of Basin Floor $(W_{ISV}) =$	user	ft												
Length of Basin Floor (L _{FLOOR}) =	user	ft												
Width of Basin Floor (W _{FLOOR}) =	user	ft												
Area of Basin Floor (A _{FLOOR}) =	user	ft ²												
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³												
Depth of Main Basin (H _{MAIN}) =	user	ft												
Length of Main Basin (L _{MAIN}) =	user	ft												
Width of Main Basin (W _{MAIN}) =	user	ft												
Area of Main Basin (A _{MAIN}) =	user	ft ²												
Volume of Main Basin (V _{MAIN}) =	user	ft ³												
Calculated Total Basin Volume (V _{total}) =	user	acre-feet												
							-							
							-							
							-							
							-							

	DE		BASIN OUT			SIGN			
Project:	Grandview Reserv	M e Filing No. 1 - Fina		ersion 4.06 (July 2	2022)				
Basin ID:			al Dialitage Report						
				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	2.58	0.227	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)		0.555	Rectangular Orifice			
PERMANENT ORIFICES	Configuration (Re	tention Pond)	Zone 3 (100-year)		0.433	Weir&Pipe (Restrict)			
	•		\	Total (all zones)	1.215	J			
User Input: Orifice at Underdrain Outlet (typicall Underdrain Orifice Invert Depth =	y used to drain WQ N/A		<u>MP)</u> the filtration media	surface)	Under	Irain Orifice Area =	Calculated Parame N/A	ters for Underdrain ft ²	<u>1</u>
Underdrain Orifice Diameter =	N/A	inches		Surrace,		Orifice Centroid =	-	feet	
							· · · ·		
User Input: Orifice Plate with one or more orific	· · · · · · · · · · · · · · · · · · ·		-				Calculated Parame		
Centroid of Lowest Orifice =	0.00 2.58		bottom at Stage =	,	-	ce Area per Row =		ft ² feet	
Depth at top of Zone using Orifice Plate = Orifice Plate: Orifice Vertical Spacing =	2.58 N/A	inches	bottom at Stage =	- 0 π)		ptical Half-Width = ical Slot Centroid =		feet	
Orifice Plate: Orifice Area per Row =	0.785	sq. inches (diamete	er = 1 inch)			lliptical Slot Area =		ft ²	
			-			r	· ·	1	
User Input: Stage and Total Area of Each Orific		-		Dow 4 (antional)	Daw E (antional)	Dow ((aptional)	Daw 7 (antional)	Dow 0 (antional)	1
Stage of Orifice Centroid (ft)	Row 1 (required) 0.00	Row 2 (optional) 1.00	Row 3 (optional) 2.25	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Orifice Area (sq. inches)	0.785	0.785	0.785						
· · · · ·									-
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									-
Orifice Area (sq. inches)									
User Input: Vertical Orifice (Circular or Rectang	ular <u>)</u>						Calculated Parame	ters for Vertical Ori	ifice
	Zone 2 Rectangula	Not Selected					Zone 2 Rectangula	Not Selected]
Invert of Vertical Orifice =	2.75	N/A	•	bottom at Stage =		tical Orifice Area =	0.04	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	3.76	N/A	•	bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	0.09	N/A	feet
Vertical Orifice Height = Vertical Orifice Width =	2.25 2.75	N/A	inches inches						
	2 5	I	literies						
User Input: Overflow Weir (Dropbox with Flat o			tangular/Trapezoid	al Weir and No Out	let Pipe)_			ters for Overflow V	Veir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected]
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 3.83	Not Selected N/A	ft (relative to basin t	al Weir and No Out	t) Height of Grate		Zone 3 Weir 3.83	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length =	Zone 3 Weir	Not Selected		oottom at Stage = 0 f	t) Height of Grate Overflow W	/eir Slope Length =	Zone 3 Weir 3.83 6.00	Not Selected N/A N/A]
Overflow Weir Front Edge Height, Ho =	Zone 3 Weir 3.83 3.00	Not Selected N/A N/A	ft (relative to basin b	oottom at Stage = 0 f Gr	t) Height of Grate	/eir Slope Length = 0-yr Orifice Area =	Zone 3 Weir 3.83	Not Selected N/A	feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate	Not Selected N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W rate Open Area / 10	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 3.83 6.00 22.40	Not Selected N/A N/A N/A	feet feet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides =	Zone 3 Weir 3.83 3.00 0.00 6.00	Not Selected N/A N/A N/A N/A	ft (relative to basin t feet H:V	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 3.83 6.00 22.40 14.24	Not Selected N/A N/A N/A N/A	feet feet ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50%	Not Selected N/A N/A N/A N/A N/A N/A	ft (relative to basin t feet H:V feet %	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R	ft (relative to basin t feet H:V feet %	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris =	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/	Not Selected N/A N/A N/A N/A N/A Flow Restriction P	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50%	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice)	oottom at Stage = 0 f Gr Ov	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Ope	/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris =	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12	Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% e (Circular Orifice, R Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected	ft (relative to basin t feet H:V feet % ectangular Orifice)	bottom at Stage = 0 f Gr Ov C	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	Yeir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = Iculated Parameters	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected	feet feet ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c (Circular Orifice, R Zone 3 Restrictor 0.87	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba	oottom at Stage = 0 f Gr Ov C asin bottom at Stage	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O	<pre>/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = t Orifice Centroid =</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 0.64	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A	feet feet ft ² ft ² ft ²
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A	ft (relative to basin t feet H:V feet <u>ectangular Orifice)</u> ft (distance below ba inches	oottom at Stage = 0 f Gr Ov C asin bottom at Stage	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) O Outled	<pre>/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = t Orifice Centroid =</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A	feet feet ft ² ft ² late ft ² fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal)	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches	oottom at Stage = 0 f Gr O\ c asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open <u>Ca</u> = 0 ft) O Outlet ral Angle of Restric	<pre>/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe =</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A N/A	feet feet ft ² ft ² late ft ² fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A	ft (relative to basin t feet H:V feet <u>ectangular Orifice)</u> ft (distance below ba inches	oottom at Stage = 0 f Gr O\ c asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Ca ca = 0 ft) O Outlet ral Angle of Restric Spillway D	<pre>/eir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = <u>lculated Parameter</u> utlet Orifice Area = t Orifice Centroid =</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A	feet feet ft ² ft ² late ft ² fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches	oottom at Stage = 0 f Gr O\ c asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Overflow Grate Ope (22) = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at T	<pre>/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth=</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A ters for Spillway feet	feet feet ft ² ft ² late ft ² fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A t (relative to basin feet	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches	oottom at Stage = 0 f Gr O\ C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Car car = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1	<pre>/eir Slope Length = /0-yr Orifice Area = /Area w/o Debris = n Area w/ Debris = //leulated Parameter: //leulated Parameter: //le</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79	Not Selected N/A N/A N/A N/A N/A Elow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet	feet feet ft ² ft ² late ft ² fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% Cicrcular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V	ft (relative to basin t feet H:V feet % <u>ectangular Orifice)</u> ft (distance below ba inches inches	oottom at Stage = 0 f Gr O\ C asin bottom at Stage Half-Cent	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Car car = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1	<pre>/eir Slope Length = /0-yr Orifice Area = /Area w/o Debris = n Area w/ Debris = /// Debris = /// Length /// Debris = /// Length /// Debris = // Length /// Length</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A ters for Spillway feet feet acres	feet feet ft ² ft ² late ft ² fteet
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17	Not Selected N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage =	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent : 0 ft)	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Car Dverflow Grate Open Stage at T Basin Area at T Basin Volume at T	<pre>/eir Slope Length = /0-yr Orifice Area = /Area w/o Debris = n Area w/ Debris = /// Debris = /// Length /// Debris = /// Length /// Debris = // Length /// Length</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07	Not Selected N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	feet feet ft ² ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Results Design Storm Return Period =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over WQCV	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>IP hydrographs and</u> 2 Year	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>1 runoff volumes by</u> 5 Year	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca Ca = 0 ft) O Uutlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T detering new value 10 Year	<pre>/eir Slope Length = /0-yr Orifice Area = /Area w/o Debris = // Area w/ Debris = /</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 drographs table (CCC 50 Year	Not Selected N/A N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A ters for Spillway feet feet feet acres acre-ft	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = One-Hour Rainfall Depth (in) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over WQCV N/A	Not Selected N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet ride the default CU/t EURV N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>1P hydrographs and</u> 2 Year 0.93	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.21	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Noerflow Grate Open Dverflow Grate Open Car = 0 ft) O Outlet ral Angle of Restrict Spillway D Stage at T Basin Area at T Basin Volume at T ventering new valu 10 Year 1.46	<pre>teir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor Plate on Pipe = cop of Freeboard = cop of Freeboard</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 drographs table (Ccc 50 Year 2.16	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² ft ² feet radians 500 Year 3.37
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Results Design Storm Return Period =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over N/A 0.227 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or R Not Selected N/A N/A trictor Plate, or R N/A trictor Plate, or R trictor Plate, or R N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>1P hydrographs and</u> <u>2 Year</u> 0.93 0.430 0.430	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.21</u> 0.575 0.575	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Car = 0 ft) O Uutlet ral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T dentering new value 10 Year 1.46 0.724 0.724	<pre>feir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = ilculated Parameter utilet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = 1.84 0.987 0.987</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 drographs table (CCC 50 Year 2.16 1.266 1.266	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians 500 Year 3.37 2.464 2.464
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c (Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over WQCV N/A 0.227 N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet ride the default CU/ EURV N/A 0.782 N/A N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>IP hydrographs and</u> <u>2 Year 0.93</u> 0.430	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.21 0.575	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Nverflow Grate Open Dverflow Grate Open Car = 0 ft) O Uutlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T detering new value 1.46 0.724	<pre>feir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = ilculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = tor Inflow Hyn 25 Year 1.84 0.987</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 Corgraphs table (CC 50 Year 2.16 1.266	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over N/A 0.227 N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A trictor Plate, or R Not Selected N/A N/A trictor Plate, or R N/A trictor Plate, or R trictor Plate, or R N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches bottom at Stage = bottom at Stage = <u>4P hydrographs and 2 Year</u> 0.93 0.430	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.21</u> 0.575 0.575	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Car = 0 ft) O Uutlet ral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T dentering new value 10 Year 1.46 0.724 0.724	<pre>feir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = ilculated Parameter utilet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = 1.84 0.987 0.987</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 drographs table (CCC 50 Year 2.16 1.266 1.266	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians 500 Year 3.37 2.464 2.464
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arcs) = Peak Inflow Q (cfs) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% Cicrcular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over WQCV N/A 0.227 N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A K/A N/A N/A N/A N/A t (relative to basin feet H:V feet feet H:V feet N/A 0.782 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches bottom at Stage = bottom at Stage = <u>4P hydrographs and 2 Year</u> 0.93 0.430 0.430 0.00 7.0	bottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.21 0.575 0.1 0.01 9.2	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Car = 0 ft) O Uutlet ral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T Basin Volume at T 0.724 0.724 0.724 0.2	<pre>feir Slope Length = lo-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = liculated Parameters utilet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = 1.84 0.987 1.1 0.08 17.0</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 Calculated Parame 0.33 0.79 3.07 Calculated Parame 0.33 0.79 3.07 Calculated Parame 0.33 0.79 3.07 Calculated Parame 0.33 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.266 1.266 1.266 0.35 22.7	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians 500 Year 3.37 2.464 1.8.7 1.46 46.0
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Net-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph NeakUts OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Row, q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over WQCV N/A 0.227 N/A N/A N/A N/A N/A 0.1	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/I EURV N/A 0.782 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches bottom at Stage = 1P hydrographs and 2 Year 0.93 0.430 0.430 0.0 7.0 0.2	asin bottom at Stage = 0 f Gr OV C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.21 0.575 0.575 0.575 0.1 9.2 0.3	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Noverflow Grate Open Dverflow Grate Open Dverflow Grate Open Care = 0 ft) O Outlet ral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T 1.46 0.724 0.724 0.2 0.2 0.01 11.6 0.3	<pre>/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameter: utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.84 0.987 1.1 0.087 1.1 0.08 1.7.0 1.4</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 Corgraphs table (CCC 50 Year 2.16 1.266 1.266 1.266 4.5 22.7 4.5	Not Selected N/A N/A N/A N/A N/A N/A N/A Elow Restriction P Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft blumns W through 100 Year 2.49 1.596 1.596 1.596 8.6 0.67 29.8 6.8	feet feet ft ² ft ² ft ² feet radians 500 Year 3.37 2.464 2.464 2.464 18.7 1.46 4.0 7.5
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/arcs) = Peak Inflow Q (cfs) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over WQCV N/A 0.227 N/A N/A N/A N/A Plate	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A O.782 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = <u>AP hydrographs and 2 Year</u> 0.93 0.430 0.430 0.430 0.00 7.0 0.2 N/A Vertical Orifice 1	oottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 0.575 0.575 0.575 0.1 = 0.01 9.2 0.3 2.4 Vertical Orifice 1	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Ca = 0 ft) O Uutlet ral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at 0 ventering new value 10 Year 1.46 0.724 0.724 0.2 0.01 11.6 Vertical Orifice 1	<pre>feir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = to rifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = 1.84 0.987 0.987 1.1 0.08 17.0 1.4 1.3 Overflow Weir 1</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 drographs table (CCC 50 Year 2.16 1.266 1.266 1.266 4.5 0.35 22.7 4.5 1.0 Overflow Weir 1	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians AF). 500 Year 3.37 2.464 2.464 1.8.7 1.46 46.0 7.5 0.4 Outlet Plate 1
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Grate Slope = Horiz. Length of Weir Sides = Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Max Velocity through Grate 1 (fps) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over N/A 0.227 N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R N/A N/A ft (relative to basin feet H:V feet ride the default CU/I EURV N/A 0.782 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches bottom at Stage = // hydrographs and 2 Year 0.93 0.430 0.430 0.430 0.0 7.0 0.2 N/A Vertical Orifice 1 N/A	oottom at Stage = 0 f Gr Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.21 0.575 0.575 0.575 0.1 	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Dverflow Grate Open Dverflow Grate Open Dverflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at T Basin Area at T Basin Area at T Basin Volume at T Basin Volume at T Basin Volume at T Contenting new value 10 Year 1.46 0.724 0.724 0.724 0.2 0.01 11.6 0.3 1.6 Vertical Orifice 1 N/A	<pre>feir Slope Length = lo-yr Orifice Area = Area w/o Debris = n Area w/ Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = Cop of Freeboard =</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 drographs table (CCC 50 Year 2.16 1.266 1.266 4.5 0.35 22.7 4.5 1.0 Overflow Weir 1 0.3	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Net-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over WQCV N/A 0.227 N/A N/A N/A Plate N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet EURV N/A O.782 N/A	ft (relative to basin t feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = 1/P hydrographs and 2 Year 0.93 0.430 0.430 0.430 0.430 0.430 0.00 7.0 0.2 N/A Vertical Orifice 1 N/A	asin bottom at Stage = 0 f Gr Ov asin bottom at Stage Half-Cent = 0 ft) 1 runoff volumes by 5 Year 1.21 0.575 0.575 0.575 0.1 9.2 0.3 2.4 Vertical Orifice 1 N/A	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Noverflow Grate Open Dverflow Grate Open Ca = 0 ft) O Outled ral Angle of Restrict Spillway D Stage at T Basin Volume at T Basin Volume at T Basin Volume at T <i>ventering new valu</i> 10 Year 1.46 0.724 0.22 0.2 0.2 0.3 1.6 0.3 1.6 Vertical Orifice 1 N/A N/A	<pre>/eir Slope Length = 0-yr Orifice Area = Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = cop of Freeboard =</pre>	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 50 Year 2.16 1.267 1.27 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A Flow Restriction P Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acres acre-ft blumns W through 1.596 1.596 1.596 1.596 1.596 1.596 6.8 0.67 29.8 6.8 0.8 Outlet Plate 1 0.4 N/A	feet feet ft ² ft ² feet radians 500 Year 3.37 2.464 2.464 2.464 2.464 2.464 2.464 0.4 0.4 0.4 0.5 0.4 0.5 N/A
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 99% of Inflow Volume (hours) = Time to Drain 99% of Inflow Volume (hours) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c (Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over N/A N/A N/A N/A N/A N/A N/A N/A	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A testrictor Plate, or R N/A N/A ft (relative to basin feet H:V feet EURV N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basin inches inches bottom at Stage = // <i>P hydrographs and</i> 2 Year 0.93 0.430 0.430 0.430 0.00 7.0 0.2 N/A Vertical Orifice 1 N/A Vertical Orifice 1 N/A 59 62	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent = 0 ft) = 0 ft) = 0 ft) = 0.575 = 0.575 = 0.575 = 0.1 = 0.01 = 9.2 = 0.3 = 0.1 = 0.1 = 9.2 = 0.3 = 0.1 = 0.1 = 9.2 = 0.3 = 0.1 = 0.575 =	 t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Overflow Grate Open Dverflow Grate Open Overflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at T Basin Area at T Basin Volume at T Carlow Grate Open Carlow Gra	reir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = an Area w/	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 drographs table (CCC 50 Year 2.16 1.266 1.266 1.266 4.5 0.35 22.7 4.5 1.0 Overflow Weir 1 0.3 N/A 73 79	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft ² ft ² feet radians <i>AF).</i> 500 Year a.a37 2.464 2.464 1.8.7 1.46 46.0 7.5 0.4 0.4 0.5 N/A 0.5 N/A 67 78
Overflow Weir Front Edge Height, Ho = Overflow Weir Front Edge Length = Overflow Weir Grate Slope = Horiz. Length of Weir Sides = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Restrictor Plate Height Nolume (acreft) = Inflow Hydrograph Results One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acreft) = Inflow Hydrograph Volume (acreft) = CHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Spillow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 1 (fps) = Time to Drain 97% of Inflow Volume (hours) =	Zone 3 Weir 3.83 3.00 0.00 6.00 Close Mesh Grate 50% c(Circular Orifice, R Zone 3 Restrictor 0.87 18.00 7.00 Trapezoidal) 5.65 50.00 4.00 1.17 The user can over: N/A 0.227 N/A N/A N/A N/A Plate N/A 40	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/I EURV N/A 0.782 N/A	ft (relative to basin to feet H:V feet % ectangular Orifice) ft (distance below basinches inches bottom at Stage = bottom at Stage = 0.93 0.430 0.93 0.430 0.00 7.0 0.2 N/A Vertical Orifice 1 N/A V/A 59	oottom at Stage = 0 f Gr Ov c asin bottom at Stage Half-Cent = 0 ft) 1.21 0.575 0.575 0.575 0.575 0.1 0.01 9.2 0.3 2.4 Vertical Orifice 1 N/A 65	t) Height of Grate Overflow W ate Open Area / 10 verflow Grate Open Neerflow Grate Open Dverflow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Carlow Grate Open Stage at 1 Basin Area at 1 Basin Volume at 1 Basin Volume at 1 Basin Volume at 1 Carlow Grate Open Carlow Grate Open Stage at 1 Basin Volume at 1 Carlow Grate Open Carlow Gra	reir Slope Length = 10-yr Orifice Area = Area w/o Debris = n Area w/ Debris = alculated Parameters alculated Parameters alcula	Zone 3 Weir 3.83 6.00 22.40 14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 0.64 0.34 1.35 Calculated Parame 0.33 7.15 0.79 3.07 Calculated Parame 0.33 7.15 0.79 3.07 Covera 2.16 1.266 1.266 4.5 0.35 22.7 4.5 1.0 Overflow Weir 1 0.3 N/A 73	Not Selected N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet feet ft² ft² fcet fcet feet fc2 feet feet fc2 feet feet feet radians

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.06 (July 2022) Project: <u>Grandview Reserve Filing No. 1 - Final Drainage Report</u>

Project: Basin ID:	Grandview I	Reserve Fili	ng No. 1 - Fiı		e Report		.,,							
ZONE 3	2													
		T												
VOLUMET EURY Wacy		100-YEA	R				1.							
	1 AND 2	ORIFICE			Depth Increment =		ft Optional				Optional			
POOL Example Zone	Configuratio	on (Retentio	on Pond)		Stage - Storage Description	Stage (ft)	Override Stage (ft)	Length (ft)	Width (ft)	Area (ft ²)	Override Area (ft ²)	Area (acre)	Volume (ft ³)	Volume (ac-ft)
Watershed Information		-		6947.25	Top of Micropool		0.00				102	0.002		
Selected BMP Type =	EDB	_		6947.75	Trickle Channel Inv		0.50				102	0.002	51	0.001
Watershed Area = Watershed Length =	21.31	acres ft			6948 6949		0.75				87 2,819	0.002	75 1,528	0.002
Watershed Length to Centroid =	500	ft			6950		2.75				14,292	0.328	10,083	0.231
Watershed Slope =	0.030	ft/ft			6951		3.75				27,045	0.621	30,751	0.706
Watershed Imperviousness = Percentage Hydrologic Soil Group A =	51.10% 100.0%	percent percent			6952 6953		4.75 5.75				31,693 35,219	0.728	60,120 93,576	1.380 2.148
Percentage Hydrologic Soll Group B =	0.0%	percent		6953.5	Spillway Invert		6.25				36,987	0.849	111,628	2.148
Percentage Hydrologic Soil Groups C/D =	0.0%	percent			6954		6.75				38,781	0.890	130,570	2.997
Target WQCV Drain Time = Location for 1-hr Rainfall Depths =	40.0	hours		6955	Top of Pond		7.75				42,466	0.975	171,193	3.930
After providing required inputs above in		rainfall												
depths, click 'Run CUHP' to generate run	off hydrograph	s using												
the embedded Colorado Urban Hydro	0.372	-	Optional Use	r Overrides acre-feet										
Water Quality Capture Volume (WQCV) = Excess Urban Runoff Volume (EURV) =	1.263	acre-feet acre-feet	-	acre-feet										
2-yr Runoff Volume (P1 = 0.93 in.) =	0.692	acre-feet	0.93	inches										
5-yr Runoff Volume (P1 = 1.21 in.) =	0.926	acre-feet	1.21	inches										
10-yr Runoff Volume (P1 = 1.46 in.) = 25-yr Runoff Volume (P1 = 1.84 in.) =	1.167	acre-feet acre-feet	1.46	inches inches										
25-yr Runoff Volume (P1 = 1.84 in.) = 50-yr Runoff Volume (P1 = 2.16 in.) =	2.056	acre-feet	2.16	inches										
100-yr Runoff Volume (P1 = 2.49 in.) =	2.602	acre-feet	2.49	inches										
500-yr Runoff Volume (P1 = 3.37 in.) =	4.037	acre-feet	3.37	inches										
Approximate 2-yr Detention Volume = Approximate 5-yr Detention Volume =	0.638	acre-feet acre-feet												
Approximate 5-yr Detention Volume = Approximate 10-yr Detention Volume =	1.088	acre-feet												
Approximate 25-yr Detention Volume =	1.466	acre-feet												
Approximate 50-yr Detention Volume =	1.705	acre-feet												
Approximate 100-yr Detention Volume =	1.973	acre-feet												
Define Zones and Basin Geometry														
Zone 1 Volume (WQCV) =	0.372	acre-feet												
Zone 2 Volume (EURV - Zone 1) =	0.892	acre-feet												
Zone 3 Volume (100-year - Zones 1 & 2) = Total Detention Basin Volume =	0.709	acre-feet acre-feet												
Initial Surcharge Volume (ISV) =	user	ft ³												
Initial Surcharge Depth (ISD) =	user	ft												
Total Available Detention Depth (H _{total}) =	user	ft												
Depth of Trickle Channel $(H_{TC}) =$ Slope of Trickle Channel $(S_{TC}) =$	user	ft ft/ft												
Slopes of Main Basin Sides (S _{main}) =	user	H:V												
Basin Length-to-Width Ratio (R _{L/W}) =	user													
		1												
Initial Surcharge Area $(A_{ISV}) =$ Surcharge Volume Length $(L_{ISV}) =$	user	ft ² ft												
Surcharge Volume Width $(W_{ISV}) =$	user	ft												
Depth of Basin Floor $(H_{FLOOR}) =$	user	ft												
Length of Basin Floor $(L_{FLOOR}) =$	user	ft												
Width of Basin Floor (W _{FLOOR}) = Area of Basin Floor (A _{FLOOR}) =	user	ft ft ²												
Volume of Basin Floor (V _{FLOOR}) =	user	ft ³												
Depth of Main Basin (H _{MAIN}) =	user	ft												
Length of Main Basin (L _{MAIN}) =	user	ft ft												
Width of Main Basin (W _{MAIN}) = Area of Main Basin (A _{MAIN}) =	user	ft ²												
Volume of Main Basin (V _{MAIN}) =	user	ft ³												
Calculated Total Basin Volume (V_{total}) =	user	acre-feet												
							-					-		

	DE	TENTION	BASIN OUT	FLET STRU	CTURE DE	SIGN			
				ersion 4.06 (July J	2022)				
Project: Basin ID:		e Filing No. 1 - Fina	al Drainage Report	:					
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type			
			Zone 1 (WQCV)	3.12	0.372	Orifice Plate			
	100-YEAR ORIFICE		Zone 2 (EURV)	4.59	0.892	Rectangular Orifice			
PERMANENT ORIFICES			Zone 3 (100-year)	5.54	0.709	Weir&Pipe (Restrict)			
POOL Example Zone	Configuration (Re	tention Pond)		Total (all zones)	1.973				
User Input: Orifice at Underdrain Outlet (typicall	<u>y used to drain WQ</u>	CV in a Filtration Bl	1P)			-		ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A	ft (distance below	the filtration media	surface)		Irain Orifice Area =		ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrain	Orifice Centroid =	N/A	feet	
User Input: Orifice Plate with one or more orific	es or Elliptical Slot	Weir (typically used	to drain WOCV and	d/or FLIRV in a sedi	imentation BMP)		Calculated Parame	tors for Plate	
Centroid of Lowest Orifice =	0.00	ft (relative to basin	-			ce Area per Row =		ft ²	
Depth at top of Zone using Orifice Plate =	3.12	ft (relative to basin	bottom at Stage =	= 0 ft)	Elli	ptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	0.994	sq. inches (diamete	er = 1-1/8 inches)		E	lliptical Slot Area =	N/A	ft ²	
User Input: Stage and Total Area of Each Orific	e Row (numbered f	rom lowest to high	act)						
oser input. Stage and rotal Area of Each onne	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)	
Stage of Orifice Centroid (ft)	0.00	1.00	2.00						
Orifice Area (sq. inches)	0.994	0.994	0.994						
	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft) Orifice Area (sq. inches)									
Office Area (sq. incres)									
User Input: Vertical Orifice (Circular or Rectange	<u>ular)</u>						Calculated Parame	ters for Vertical Ori	ice
	Zone 2 Rectangula	Not Selected					Zone 2 Rectangula	Not Selected	
Invert of Vertical Orifice =	3.125	N/A	•	h bottom at Stage =	,	tical Orifice Area =	0.05	N/A	ft ²
Depth at top of Zone using Vertical Orifice =	4.59	N/A N/A	•	n bottom at Stage =	= 0 ft) Vertica	Orifice Centroid =	0.08	N/A	feet
Vertical Orifice Height = Vertical Orifice Width =	3.25		inches inches						
	5125	1							
User Input: Overflow Weir (Dropbox with Flat o	r Sloped Grate and	Outlet Pipe OR Rec	tangular/Trapezoid	lal Weir and No Out	let Pipe)		Calculated Parame	ters for Overflow W	eir
	Zone 3 Weir	Not Selected					Zone 3 Weir	Not Selected	
Overflow Weir Front Edge Height, Ho =	4.67	N/A		pottom at Stage = 0 f	, -	e Upper Edge, $H_t =$	4.67	N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	6.00 0.00	N/A N/A	feet H:V	G		/eir Slope Length =	3.00	N/A	
Horiz. Length of Weir Sides =	0.00	N/A						NI/A	feet
	3.00	N/A	feet		ate Open Area / 10 /erflow Grate Open	•	11.65 14.24	N/A N/A	
Overflow Grate Type =	3.00 Close Mesh Grate	N/A N/A		Ov	ate Open Area / 10 verflow Grate Open Overflow Grate Open	Area w/o Debris =	11.65 14.24 7.12	N/A N/A N/A	ft ² ft ²
-		-		Ov	verflow Grate Open	Area w/o Debris =	14.24	N/A	ft²
Overflow Grate Type = Debris Clogging % =	Close Mesh Grate 50%	N/A N/A	feet %	O\ C	verflow Grate Open Overflow Grate Open	Area w/o Debris = n Area w/ Debris =	14.24 7.12	N/A N/A	ft ² ft ²
Overflow Grate Type =	Close Mesh Grate 50%	N/A N/A estrictor Plate, or R	feet %	O\ C	verflow Grate Open Overflow Grate Open	Area w/o Debris =	14.24 7.12 s for Outlet Pipe w/	N/A N/A Flow Restriction Pla	ft ² ft ²
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor	N/A N/A estrictor Plate, or R Not Selected	feet % <u>ectangular Orifice)</u>	O. C	verflow Grate Open Overflow Grate Open <u>Ca</u>	Area w/o Debris = n Area w/ Debris = Iculated Parameters	14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A Flow Restriction Pli Not Selected	ft ² ft ² ate
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe =	Close Mesh Grate 50%	N/A N/A estrictor Plate, or R Not Selected N/A	feet % <u>ectangular Orifice)</u> ft (distance below ba	O\ C	verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or	Area w/o Debris = n Area w/ Debris =	14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 1.22	N/A N/A Flow Restriction Pl- Not Selected N/A	ft ² ft ²
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58	N/A N/A estrictor Plate, or R Not Selected	feet % <u>ectangular Orifice)</u>	O\ C	verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or	Area w/o Debris = n Area w/ Debris = n Area w/ Debris = nlculated Parameters utlet Orifice Area = t Orifice Centroid =	14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor	N/A N/A Flow Restriction Pli Not Selected	ft ² ft ² ate
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert =	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58 18.00 11.75	N/A N/A estrictor Plate, or R Not Selected N/A	feet % ectangular Orifice) ft (distance below ba inches	O\ C	verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Or Outlet	Area w/o Debris = n Area w/ Debris = n Area w/ Debris = nlculated Parameters utlet Orifice Area = t Orifice Centroid =	14.24 7.12 5 for Outlet Pipe w/ Zone 3 Restrictor 1.22 0.55 1.88	N/A N/A Flow Restriction Pl- Not Selected N/A N/A N/A	ft ² ft ² ate ft ² feet
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal)	N/A N/A estrictor Plate, or R Not Selected N/A N/A	feet % ectangular Orifice) ft (distance below ba inches inches	Ov C asin bottom at Stage Half-Cent	verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ov Outlet ral Angle of Restric	Area w/o Debris = n Area w/ Debris = <u>alculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe =	14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 1.22 0.55 1.88 Calculated Parame	N/A N/A Flow Restriction Pl- Not Selected N/A N/A N/A ters for Spillway	ft ² ft ² ate ft ² feet
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25	N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin	feet % ectangular Orifice) ft (distance below ba inches inches	Ov C asin bottom at Stage Half-Cent	verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ov Outlet ral Angle of Restric Spillway D	Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	14.24 7.12 s for Outlet Pipe w/ Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39	N/A N/A Not Selected N/A N/A N/A ters for Spillway feet	ft ² ft ² ate ft ² feet
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00	N/A N/A <u>Not Selected</u> N/A N/A ft (relative to basin feet	feet % ectangular Orifice) ft (distance below ba inches inches	Ov C asin bottom at Stage Half-Cent	verflow Grate Open Overflow Grate Open <u>Ca</u> = 0 ft) Ov Outlet ral Angle of Restric Spillway D Stage at T	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard =	14.24 7.12 <u>s for Outlet Pipe w/</u> Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75	N/A N/A Not Selected N/A N/A N/A ters for Spillway feet feet	ft ² ft ² ate ft ² feet
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25	N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin	feet % ectangular Orifice) ft (distance below ba inches inches	Ov C asin bottom at Stage Half-Cent	verflow Grate Open Overflow Grate Open (<u>Ca</u> = 0 ft) Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1	Area w/o Debris = n Area w/ Debris = <u>lculated Parameters</u> utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth=	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97	N/A N/A Not Selected N/A N/A N/A ters for Spillway feet	ft ² ft ² ate ft ² feet
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00	N/A N/A <u>Not Selected</u> N/A N/A ft (relative to basin feet H:V	feet % ectangular Orifice) ft (distance below ba inches inches	Ov C asin bottom at Stage Half-Cent	verflow Grate Open Overflow Grate Open (<u>Ca</u> = 0 ft) Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1	Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard =	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97	N/A N/A Not Selected N/A N/A N/A ters for Spillway feet feet acres	ft ² ft ² ate ft ² feet
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11	N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage =	Ov C asin bottom at Stage Half-Cent = 0 ft)	verflow Grate Open Overflow Grate Open (Ca = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93	N/A N/A Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	ft ² ft ² ft ² feet radians
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	Close Mesh Grate 50% (Circular Orifice, R Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11	N/A N/A estrictor Plate, or R Not Selected N/A N/A N/A ft (relative to basin feet H:V feet	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage =	Ov C asin bottom at Stage Half-Cent = 0 ft)	verflow Grate Open Overflow Grate Open (Ca = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T	Area w/o Debris = n Area w/ Debris = lculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard =	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93	N/A N/A Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft	ft ² ft ² ft ² feet radians
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 The user can over WQCV N/A	N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/I EURV N/A	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>1P hydrographs and</u> <u>2 Year</u> 0.93	Ov c asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u> 1.21	verflow Grate Open Overflow Grate Open Deflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T Centering new valu 10 Year 1.46	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = tor of Freeboard = tor of Freeboard = 100 of Freeboard = 1	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 drographs table (Ccc 50 Year 2.16	N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway feet acres acre-ft blumns W through A 100 Year 2.49	ft ² ft ² feet radians
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = <u>Routed Hydrograph Results</u> Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 <i>The user can over</i> WQCV N/A 0.372	N/A N/A estrictor Plate, or R Not Selected N/A N/A ft (relative to basin feet H:V feet H:V feet EURV N/A 1.263	feet % ectangular Orifice) ft (distance below bainches inches bottom at Stage = <u>IP hydrographs and</u> <u>2 Year</u> <u>0.93</u> 0.692	Ov c asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u> 1.21 0.926	verflow Grate Open Overflow Grate Open Deflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Volume at T Basin Volume at T <i>ventering new valu</i> 1.46 1.167	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = torifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = rop of Freeboard = 1.84 1.598	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 <i>drographs table (Co</i> 50 Year 2.16 2.056	N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway feet feet acres acre-ft Dumns W through A 100 Year 2.49 2.602	ft ² ft ² feet radians 500 Year <u>3.37</u> 4.037
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 The user can over WQCV N/A 0.372 N/A N/A	N/A N/A Not Selected N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/I feet EURV N/A 1.263 N/A N/A	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = <u>1P hydrographs and</u> <u>2 Year</u> 0.93	Ov c asin bottom at Stage Half-Cent = 0 ft) <u>5 Year</u> 1.21	verflow Grate Open Overflow Grate Open Deflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T Centering new valu 10 Year 1.46	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = tor of Freeboard = tor of Freeboard = 100 of Freeboard = 1	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 drographs table (Ccc 50 Year 2.16	N/A N/A N/A Not Selected N/A N/A N/A ters for Spillway feet acres acre-ft blumns W through A 100 Year 2.49	ft ² ft ² feet radians
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neter State Stat	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 <i>The user can over</i> WQCV N/A 0.372 N/A N/A N/A	N/A N/A estrictor Plate, or R N/A N/A ft (relative to basin feet H:V feet ride the default CU/ EURV N/A 1.263 N/A N/A N/A	feet % ectangular Orifice) ft (distance below bainches inches bottom at Stage = <u>4P hydrographs and 2 Year</u> 0.692 0.692 0.0	Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.21 0.926 0.926 0.2	verflow Grate Open Overflow Grate Open Deflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at 1 Basin Volume at 1 Basin Volume at 1 Destring new value 10 Year 1.46 1.167 1.167 0.4	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = to rolfice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = rop of Freeboard = tor Inflow Hyy 25 Year 1.598 1.598 2.0	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 drographs table (CC 50 Year 2.16 2.056 2.056 8.3	N/A N/A N/A Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2.49 2.602 2.602 16.0	ft ² ft ² feet radians 500 Year 3.37 4.037 4.037 34.8
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 The user can over WQCV N/A 0.372 N/A N/A	N/A N/A N/A Not Selected N/A N/A t (relative to basin feet H:V feet H:V feet EURV N/A 1.263 N/A N/A	feet % ectangular Orifice) ft (distance below bainches inches bottom at Stage = // hydrographs and 2 Year 0.93 0.692 0.692	Ov c asin bottom at Stage Half-Cent = 0 ft) <u>5 Year 1.21</u> 0.926 0.926	verflow Grate Open Overflow Grate Open Deverflow Grate Open Called State at 1 Basin Area at 1 Basin Volume at 1 Ventering new valu 10 Year 1.46 1.167	Area w/o Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = log of Freeboard = Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = log of Freeboard = 1.84 1.598 1.598	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 Calculated Parame 0.39 7.75 0.97 3.93 drographs table (CCC 50 Year 2.16 2.056 2.056	N/A N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft Dumns W through A 100 Year 2.49 2.602 2.602	ft ² ft ² feet radians 500 Year 3.37 4.037 4.037
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 The user can over WQCV N/A 0.372 N/A N/A N/A N/A N/A 0.1	N/A N/A N/A Not Selected N/A N/A ft (relative to basin feet H:V feet ride the default CU// EURV N/A 1.263 N/A N/A N/A N/A N/A N/A N/A O.4	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = // hydrographs and 2 Year 0.692 0.692 0.692 0.0 0.0 12.2 0.3	Ov C asin bottom at Stage Half-Cent = 0 ft) 5 Year 1.21 0.926 0.926 0.2 0.2 0.1 16.0 0.4	verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Contenting new value 10 Year 1.167 1.167 1.167 0.4 0.02 20.1 0.4	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tor Plate on Pipe = rop of Freeboard = rop of Freeboard = rop of Freeboard = rop of Freeboard = 1.598 1.598 1.598 2.0 0.09 29.6 2.3	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 drographs table (CCC 50 Year 2.16 2.056 2.056 8.3 0.39 40.0 7.0	N/A N/A N/A N/A N/A N/A N/A N/A ters for Spillway feet acres acre-ft 2.602 2.602 2.602 16.0 0.75 52.8 14.8	ft ² ft ² feet radians 500 Year 3.37 4.037 4.037 3.4.8 1.63 82.0 2.5.9
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Neter Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 <i>The user can over</i> WQCV N/A 0.372 N/A N/A N/A N/A N/A	N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet H:V feet H:V feet N/A 1.263 N/A N/A N/A N/A N/A N/A N/A N/A	feet % ectangular Orifice) ft (distance below bainches inches bottom at Stage = <u>4P hydrographs and 2 Year</u> 0.692 0.692 0.692 0.692 0.00 12.2 0.3 N/A	Ov Casin bottom at Stage Half-Cent = 0 ft)	verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) O Outlet ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Volume at 1 Ventering new value 1.46 1.167 1.46 1.167 0.4 0.02 20.1 0.4 1.2	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = rop of Freeboard = 1.598 1.598 2.0 0.09 2.3 1.1	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 <i>drographs table (CC</i> 50 Year 2.16 2.056 2.056 8.3 0.39 40.0 7.0 0.8	N/A N/A N/A Not Selected N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2.49 2.602 2.602 2.602 16.0 0.75 52.8 14.8 0.9	ft ² ft ² feet radians 500 Year 3.37 4.037 4.037 3.4.037 3.4.037 3.4.037 3.4.037 3.4.037 3.4.037 3.5.0 4.0.0 3.5.00 3.5.00 5.00
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 The user can over WQCV N/A 0.372 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A Not Selected N/A N/A N/A t (relative to basin feet H:V feet <i>ide the default CUI</i> feet <i>ide the default CUI</i> N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = 0.692 0.692 0.692 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Ov C asin bottom at Stage Half-Cent = 0 ft)	verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) Outled ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Area at 1 Basin Volume at 1 Canton Content Canton Co	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = cop of Freeboard = rop of Freeboard = rop of Freeboard = rop of Freeboard = rop of Freeboard = 1.598 1.598 1.598 2.0 0.09 29.6 2.3 1.1 Overflow Weir 1 0.1	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 drographs table (Cc 50 Year 2.16 2.056 2.056 8.3 0.39 40.0 7.0 0.8 0.29 40.0 7.0 0.8 0.97	N/A N/A N/A Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2.602 2.602 16.0 0.75 5.2.8 14.8 0.9 Outlet Plate 1 1.0	ft ² ft ² feet radians 500 Year 3.37 4.037 4.037 34.8 1.63 82.0 25.9 0.7 Spillway 1.1
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Net-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 <i>The user can over</i> WQCV N/A 0.372 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A estrictor Plate, or R N/A N/A N/A ft (relative to basin feet H:V feet ride the default CU/ EURV N/A 1.263 N/A 1.263 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = // hydrographs and 2 Year 0.93 0.692 0.692 0.692 0.692 0.692 0.0 0.0 12.2 0.3 N/A Vertical Orifice 1 N/A	Ov C asin bottom at Stage Half-Cent = 0 ft)	verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) Or Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Area at T Basin Area at T Basin Volume at T Vertering new valu 10 Year 1.46 1.167 1.167 1.167 0.4 0.02 20.1 0.4 1.2 Vertical Orifice 1 N/A N/A	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Fop of Freeboard = Fop of Freeboard = Fop of Freeboard = rop of Freeboard = 1.598 1.598 1.598 2.0 0.09 29.6 2.3 1.1 Overflow Weir 1 0.1 N/A	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 drographs table (CCC 50 Year 2.16 2.056 2.056 8.3 0.39 40.0 7.0 0.8 3 Werflow Weir 1 0.5 N/A	N/A N/A N/A Not Selected N/A N/A N/A N/A ters for Spillway feet acres acre-ft 2.602 2.602 2.602 16.0 0.75 52.8 14.8 0.9 Outlet Plate 1 1.0 N/A	ft ² ft ² feet radians 500 Year 3.37 4.037 4.037 4.037 34.8 1.63 82.0 25.9 0.7 Spillway 1.1 N/A
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Routed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 The user can over WQCV N/A 0.372 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A Not Selected N/A N/A N/A t (relative to basin feet H:V feet <i>ide the default CUI</i> feet <i>ide the default CUI</i> N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = 0.692 0.692 0.692 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	Ov C asin bottom at Stage Half-Cent = 0 ft)	verflow Grate Open Overflow Grate Open Overflow Grate Open Ca = 0 ft) Outled ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Area at 1 Basin Volume at 1 Canton Content Canton Co	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = cop of Freeboard = rop of Freeboard = rop of Freeboard = rop of Freeboard = rop of Freeboard = 1.598 1.598 1.598 2.0 0.09 29.6 2.3 1.1 Overflow Weir 1 0.1	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 drographs table (Cc 50 Year 2.16 2.056 2.056 8.3 0.39 40.0 7.0 0.8 0.29 40.0 7.0 0.8 0.97	N/A N/A N/A Not Selected N/A N/A N/A N/A N/A ters for Spillway feet feet acres acre-ft 2.602 2.602 16.0 0.75 5.2.8 14.8 0.9 Outlet Plate 1 1.0	ft ² ft ² feet radians 500 Year 3.37 4.037 4.037 34.8 1.63 82.0 25.9 0.7 Spillway 1.1
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Network above Max Water Surface = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Nesults CUHP Redevelopment Peak Q (cfs) = Predevelopment Veak Q (cfs) = Predevelopment Peak Q (cfs) = Peak Inflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (hours) = Maximum Ponding Depth (ft) =	Close Mesh Grate 50% Zone 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 The user can over WQCV N/A 0.372 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A Not Selected N/A N/A N/A t (relative to basin feet H:V feet <i>ride the default CUI</i> feet <i>ide the default CUI</i> N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage = ////////////////////////////////////	Ov Construction of the stage Half-Cent = 0 ft)	verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Outled ral Angle of Restric Spillway D Stage at 1 Basin Area at 1 Basin Area at 1 Basin Volume at 1 Basin Volume at 1 Centering new value 10 Year 1.167 1.167 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4	Area w/o Debris = n Area w/ Debris = liculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.598 1.598 1.598 2.0 0.09 29.6 2.3 1.1 Overflow Weir 1 0.1 N/A 73 79 4.82	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 drographs table (Ccc 50 Year 2.16 2.056 2.056 8.3 0.39 40.0 7.0 0.8 0.39 40.0 7.0 0.8 0.39 40.0 7.0 0.5 N/A 71 78 5.03	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft ² ft ² feet radians 500 Year 3.37 4.037 34.8 1.63 82.0 25.9 0.7 Spillway 1.1 N/A 64 75 6.38
Overflow Grate Type = Debris Clogging % = User Input: Outlet Pipe w/ Flow Restriction Plate Depth to Invert of Outlet Pipe = Outlet Pipe Diameter = Restrictor Plate Height Above Pipe Invert = User Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Reuted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Runoff Volume (acre-ft) = CUHP Dredevelopment Peak Q (cfs) = Predevelopment Deak Q (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Ratio Peak Outflow to Predevelopment Q (cfs) = Ratio Peak Outflow Tedevelopment Q (cfs) = CHTONAL Override Predevelopment Deak Q (cfs) = Deak Outflow Q (cfs) = Peak Outflow Q (cfs) = Ratio Peak Outflow Tedevelopment Q (cfs) = Time to Drain 97% of Inflow Volume (hours) = Time to Drain 97% of Inflow Volume (hours) =	Close Mesh Grate 50% 20ne 3 Restrictor 1.58 18.00 11.75 Trapezoidal) 6.25 70.00 4.00 1.11 The user can over WQCV N/A 0.372 N/A N/A N/A N/A N/A N/A N/A N/A	N/A N/A N/A estrictor Plate, or R N/A N/A N/A fet H:V feet H:V feet EURV N/A 1.263 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	feet % ectangular Orifice) ft (distance below ba inches inches bottom at Stage =	Ov c asin bottom at Stage Half-Cent = 0 ft)	verflow Grate Open Overflow Grate Open Overflow Grate Open Overflow Grate Open Outlet ral Angle of Restric Spillway D Stage at T Basin Area at T Basin Area at T Basin Volume at T <i>ventering new valu</i> 10 Year 1.46 1.167 0.4 0.2 20.1 0.4 0.2 Vertical Orifice 1 N/A N/A N/A N/A 72	Area w/o Debris = n Area w/ Debris = ilculated Parameters utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 1.598 2.0 0.09 29.6 2.3 1.1 Overflow Weir 1 0.1 N/A 73 79	14.24 7.12 Zone 3 Restrictor 1.22 0.55 1.88 <u>Calculated Parame</u> 0.39 7.75 0.97 3.93 <i>Calculated Parame</i> 0.39 7.75 0.97 3.93 <i>Calculated Parame</i> 0.39 7.75 0.97 3.93 <i>Calculated Parame</i> 0.39 7.75 0.97 3.93 <i>Calculated Parame</i> 0.39 7.75 0.97 3.93 <i>Calculated Parame</i> 0.39 7.05 8.3 0.39 40.0 7.0 0.8 0verflow Weir 1 0.5 N/A 71 78	N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	ft ² ft ² feet radians 500 Year 3.37 4.037 34.8 1.63 82.0 25.9 0.7 Spillway 1.1 N/A 64 75

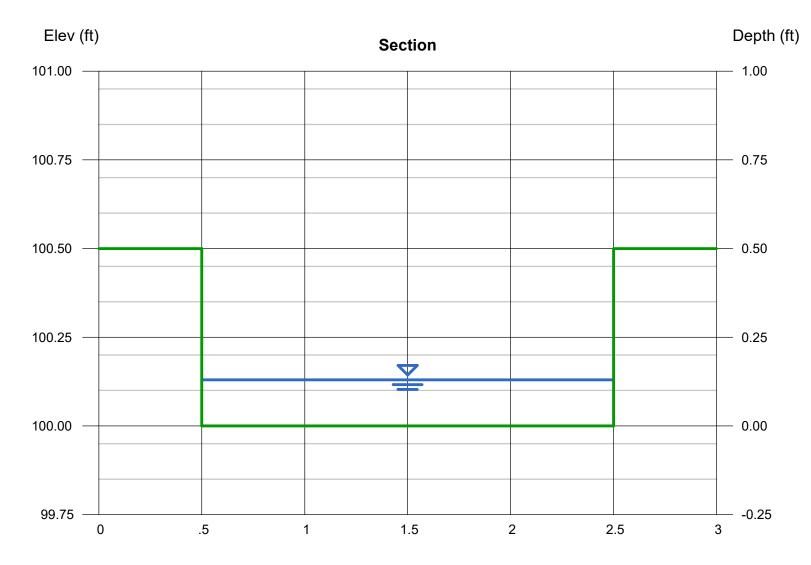
FOREBAY SIZING CALCULATIONS

Subdivision:Grandview Reserve Filing No. 1Location:CO, Falcon (El Paso County)

Project Name:	Grandview Reserve Filing No. 1
Droject No.	

i i oject i io	111002.20
Calculated By:	TJE
Checked By:	BAS
Date:	6/21/24

	Forebay D-1	Forebay E-1	
Impervious % (I)	56.2%	53.80%	Total impervious area of contributing upstream basins
WQCV Drain Time Coeff (a)	1	1	a = 1 for 40 Hr WQCV Drain Time
Tributary Area (Ac)	11.28	19.88	
Forebay Depth (Ft)	1.50	1.50	(see Table EDB-4 of the USDCM Volume 3 for depth requirement)
% of WQCV for Forebay Volume	3.0%	3.0%	(see Table EDB-4 of the USDCM Volume 3 for requirement)
100-year Discharge (Q)	25.80	62.40	100-Year Flow entering Forebay (un- detained)
WQCV Depth (in)	0.22	0.22	WQCV Depth = a(0.91*l ³ - 1.19*l ² + 0.78*l)
WQCV Volume (Ac-Ft)	0.21	0.36	
Forebay Volume (Cu. Ft.)	275	470	
Forebay Discharge (Q)	0.52	1.25	(Release 2% of 100-year discharge via notch or berm/pipe configuration)
Forebay Notch Height (in)	15.00	15.00	(3" depression @ top of forebay assumed per COS DCM Volume 1, 13-30)
Forebay Deisgn Results	•		
Minimum Forebay Area (Sq. Ft.)	183	313	
Forebay Notch width (in)	3	3	From Q=C _w *W*H ^{1.5} assuming C _w =3.33 for sharp-crested weir - If notch width < 3 ", use 3 " minimum.


Channel Report

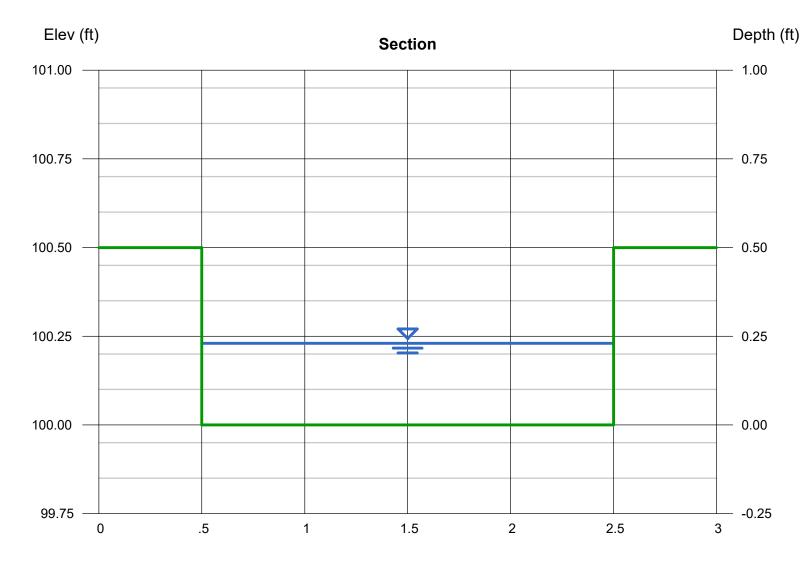
Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Mar 15 2024

Pond D Trickle Channel

Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.13
Total Depth (ft)	= 0.50	Q (cfs)	= 0.520
		Area (sqft)	= 0.26
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.00
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.26
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.13
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.19
Compute by:	Known Q		
Known Q (cfs)	= 0.52		

Reach (ft)


Channel Report

Hydraflow Express Extension for Autodesk® Civil 3D® by Autodesk, Inc.

Friday, Mar 15 2024

Pond E Trickle Channel

Rectangular		Highlighted	
Bottom Width (ft)	= 2.00	Depth (ft)	= 0.23
Total Depth (ft)	= 0.50	Q (cfs)	= 1.260
		Area (sqft)	= 0.46
Invert Elev (ft)	= 100.00	Velocity (ft/s)	= 2.74
Slope (%)	= 0.50	Wetted Perim (ft)	= 2.46
N-Value	= 0.012	Crit Depth, Yc (ft)	= 0.24
		Top Width (ft)	= 2.00
Calculations		EGL (ft)	= 0.35
Compute by:	Known Q		
Known Q (cfs)	= 1.26		

Reach (ft)

Micropool/ISV SIZING CALCULATIONS

Project Name: Grandview Reserve Filing No. 1

Project No.:	HRG02.20

-		
Calculated	By:	TJE

u	a	ie	u	U	y	•	_
				_			

Checked By: BAS

Date: 6/21/24

	Pond D	Pond E	
WQCV Volume (Ac-Ft)	0.227	0.372	From MHFD-Detention Spreadsheet
Provided ISV Depth (in)	6.00	6.00	4" Min. per USDCM, Volume 3
Provided Micropool/ISV Area (Sq. Ft.)	90.00	102.00	
Provided ISV Volume (Cu. Ft.)	45.00	51.00	
Micropool/ISV Deisgn Results			·
Minimum Micropool Area (Sq. Ft.)	59	97	Assuming ISV above - Min. 10 ft ² per USDCM, Volume 3
Required ISV Volume (Cu. Ft.)	30	49	0.3% of WQCV, per USDCM, Volume 3
Is Required Micropool Area Met?	YES	YES	
Is Required ISV Volume Met?	YES	YES	

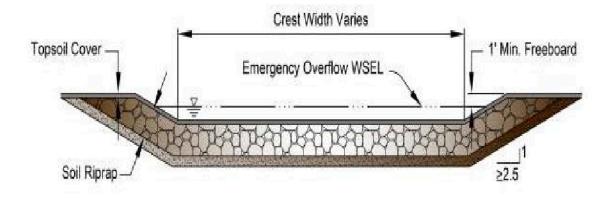
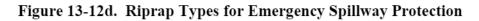
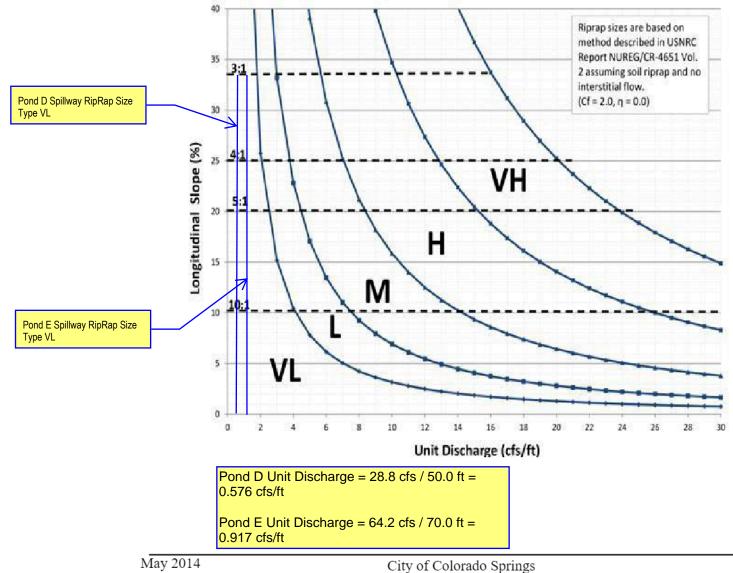
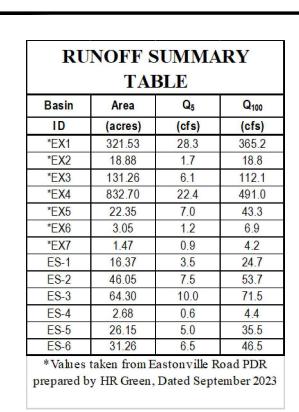
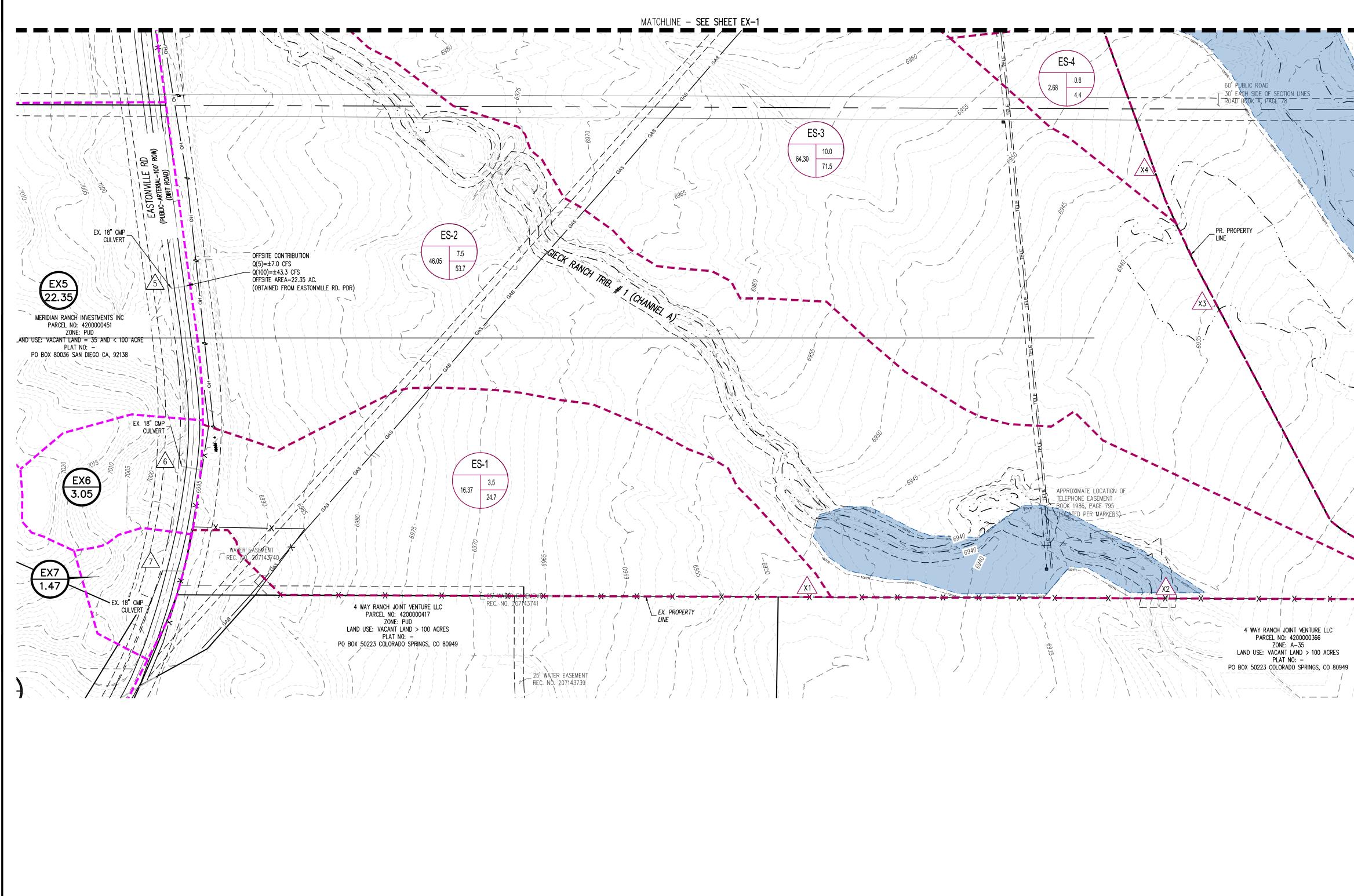




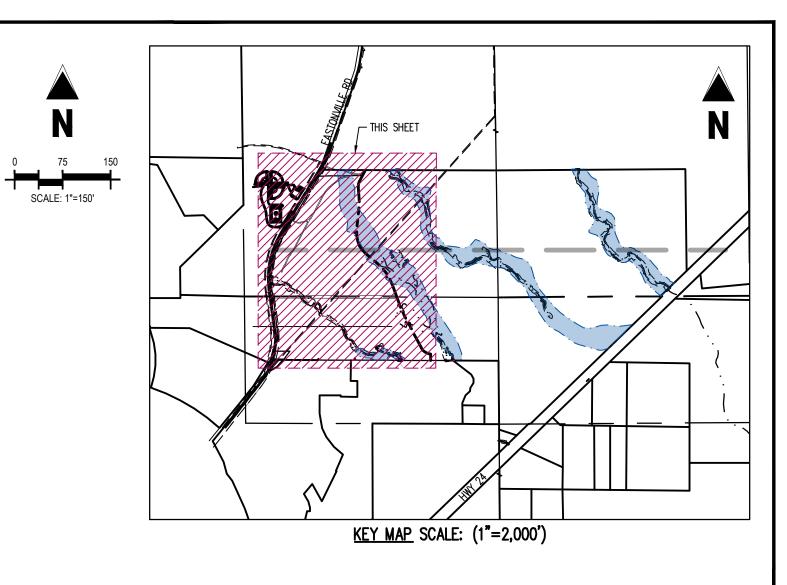
Figure 13-12c. Emergency Spillway Protection



Drainage Criteria Manual, Volume 1

APPENDIX F

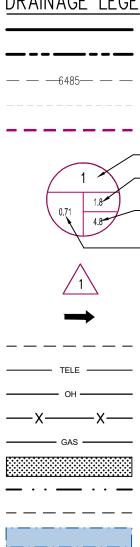

Drainage Maps


	DESI	IGN PO	DINT		
S	UMM	ARY 1	TABLE		
D)esign	Q ₅	Q100		
	Point	(cfs)	(cfs)		
	X1	4.7	31.6		
	X2	36.9	588.0		
	X3	10.0	71.5		
	X4	0.6	4.4		
	X 5	<mark>5.0</mark>	35.5		
	X 6	40.9	523.8		
	X7	56.5	635.2		
*	1	28.3	365.2		
*	2	1.7	18.8		
*	3	6.1	112.1		
*	4	22.4	491.0		
*	5	7.0	43.3		
*	6	1.2	6.9		
* 7 0.9 4.2					
* Values taken from Eastonville Road PDR prepared by HR Green, Dated September 2023					

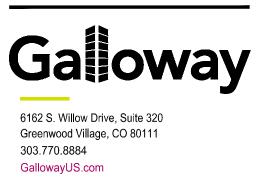
_____ NOTE:

1. FOR EXISTING WESTERN OFFSITE SUB-BASIN ANALYSIS AS WELL AS PROPOSED EASTONVILLE ROAD SUB-BASIN ANALYSIS, SEE "EASTONVILLE ROAD FINAL DRAINAGE REPORT", BY HR GREEN, SEPTEMBER 2022.

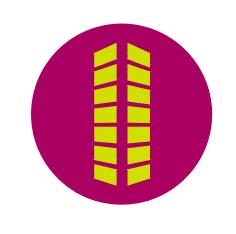
GRANDVIEW RESERVE HISTORIC DRAINAGE MAP (THIS DRAINAGE MAP IS FROM THE APPROVED PDR, "GRANDVIEW RESERVE FILING NO.1 ", APPROVED ON 03/06/2024)



DRAINAGE LEGEND

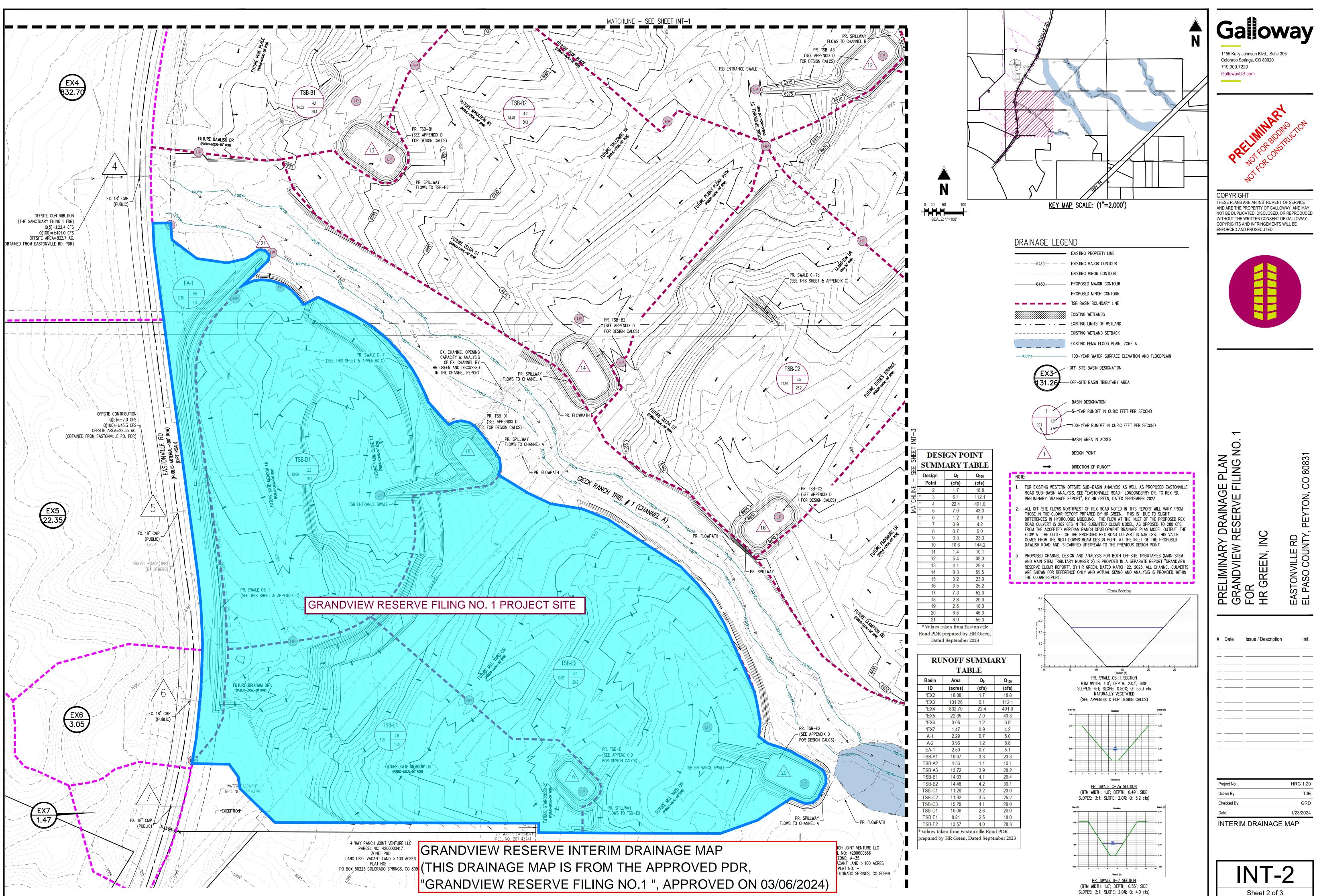

馬

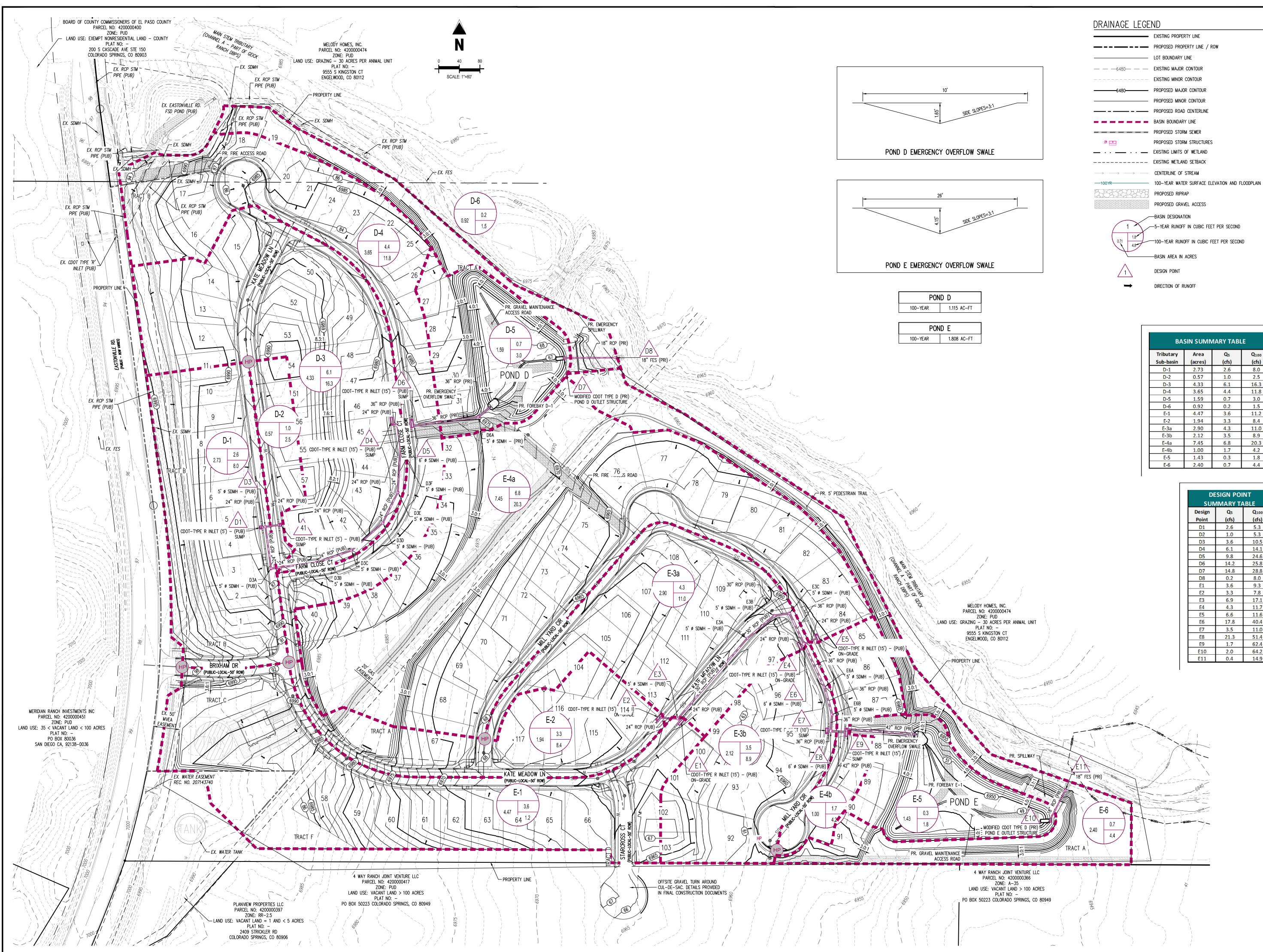
Q


 $(\downarrow + - - - \downarrow)$

_	EXISTING PROPERTY LINE
_	PROPOSED PROPERTY LINE
_	EXISTING MAJOR CONTOUR
	EXISTING MINOR CONTOUR
-	BASIN BOUNDARY LINE
_	-BASIN DESIGNATION
, 	-5-YEAR RUNOFF IN CUBIC FEET PER SECOND
	-100-YEAR RUNOFF IN CUBIC FEET PER SECOND
	—BASIN AREA IN ACRES
	DESIGN POINT
	DIRECTION OF RUNOFF
_	EXISTING BOUNDARY EASEMENT
	EXISTING TELEPHONE LINE
	EXISTING POWER LINE
	EXISTING FENCE
	EXISTING GAS LINE
	EXISTING WETLANDS
—	EXISTING LIMITS OF WETLAND
_	EXISTING WETLAND SETBACK
	EXISTING FEMA FLOOD PLAIN, ZONE A

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.




PRELIMINARY DRAINAGE PLAN GRANDVIEW RESERVE FOR HR GREEN, INC	EASTONVILLE RD EL PASO COUNTY, PEYTON, CO 80831
# Date Issue / Description	

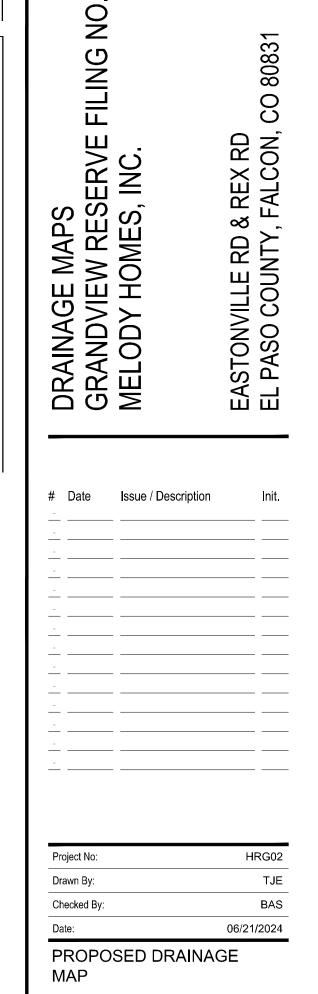
Date:	1/23/2024			
Checked By:	GRD			
Drawn By:	TJE			
Project No:	HRG 1.20			

EXISTING DRAINAGE MAP

BASIN SUMMARY TABLE						
Tributary Sub-basin	Area (acres)	Q₅ (cfs)	Q ₁₀₀ (cfs)			
D-1	2.73	2.6	8.0			
D-2	0.57	1.0	2.5			
D-3	4.33	6.1	16.3			
D-4	3.65	4.4	11.8			
D-5	1.59	0.7	3.0			
D-6	0.92	0.2	1.5			
E-1	4.47	3.6	11.2			
E-2	1.94	3.3	8.4			
E-3a	2.90	4.3	11.0			
E-3b	2.12	3.5	8.9			
E-4a	7.45	6.8	20.3			
E-4b	1.00	1.7	4.2			
E-5	1.43	0.3	1.8			
E-6	2.40	0.7	4.4			

DE	SIGN PO	NT			
SUMMARY TABLE					
Design	Q ₅	Q100			
Point	(cfs)	(cfs)			
D1	2.6	5.3			
D2	1.0	5.3			
D3	3.6	10.5			
D4	6.1	14.1			
D5	9.8	24.6			
D6	14.2	25.8			
D7	14.8	28.8			
D8	0.2	8.0			
E1	3.6	9.3			
E2	3.3	7.8			
E3	6.9	17.1			
E4	4.3	11.7			
E5	6.6	11.6			
E6	17.8	40.4			
E7	3.5	11.0			
E8	21.3	51.4			
E9	1.7	62.4			
E10	2.0	64.2			
E11	0.4	14.9			

COPYRIGHT THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY

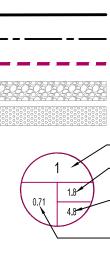

Galloway

1155 Kelly Johnson Blvd., Suite 305 Colorado Springs, CO 80920

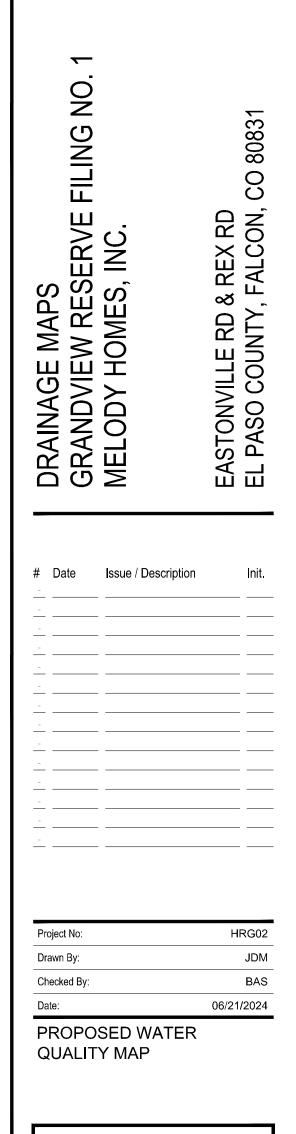
719.900.7220

GallowayUS.com

NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.



 $\overline{}$



DISTURBED AREA EXCLUDED APPLICABLE WQ EXCLUDED FROM WQ EXCLUSIONS FROM WQ PER ECM (APP I.7.1.B.#) PER ECM APP 1.7.1.C.1 (AC) _ _ ---— 0.13 APP I.7.1.B.8 0.28 -----1.00 APP I.7.1.B.7 0.1 0.38

DISTURBED AREA EXCLUDED FROM WQ PER ECM APP I.7.1.B.# 0.13 DISTURBED AREA EXCLUDED FROM WQ PER ECM APP I.7.1.C.1 0.38 UDE UP TO 20%, NOT TO EXCEED 1 ACRE, WHEN NOT PRACTICABLE TO CAPTURE

OPYRIGHT	
IFOF DI ANIO ADE	•

THESE PLANS ARE AN INSTRUMENT OF SERVICE AND ARE THE PROPERTY OF GALLOWAY, AND MAY NOT BE DUPLICATED, DISCLOSED, OR REPRODUCED WITHOUT THE WRITTEN CONSENT OF GALLOWAY. COPYRIGHTS AND INFRINGEMENTS WILL BE ENFORCED AND PROSECUTED.

