FINAL DRAINAGE REPORT

FOR
TIMBERLINE STORAGE YARD EL PASO COUNTY, COLORADO

DECEMBER 2017

Prepared for:
Timberline Landscaping, Inc.
20625 Andalusian View
Pueblo, CO 81008
(719)-638-1000

Prepared by:

20 Boulder Crescent, Suite 110
Colorado Springs, CO 80903
(719) 955-5485

Project \#43-095
PCD Project No. PPR-17-018

FINAL DRAINAGE REPORT
 FOR
 TIMBERLINE STORAGE YARD

DRAINAGE PLAN STATEMENTS

ENGINEERS STATEMENT

The attached drainage plan and report was prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors or omission on my part in preparing this report.

Virgil A. Sanchez, P.E. \#37160
For and on Behalf of M\&S Civil Consultants, Inc

DEVELOPER'S STATEMENT

I, the developer have read and will comply with all the requirements specified in this drainage report and plan.

BY:

TITLE:

DATE: \qquad

ADDRESS: Timberline Landscaping, Inc.
20625 Andalusian View
Pueblo, CO 81008

EL PASO COUNTY'S STATEMENT

Filed in accordance with the requirements of El Paso County Land Development Code, Drainage Criteria Manual Volumes 1 and 2, and the Engineering Manual, as amended.

BY:

> Jennifer Irvine, P.E.
> County Engineer

Approved
DATE:
By:Jennifer Irvine, County Engineer Date:02/13/2018

El Pass County Department of Public Works

CONDITIONS:

This final drainage report contains a section for "FUTURE DRAINAGE CHARACTERISTICS (For Information Purposes Only)". Please note that this portion of the report was not reviewed and future development of the site will require appropriate studies in accordance with the requirements of the APC LDC, ELM, LCM 1 \& 2.

FINAL DRAINAGE REPORT TIMBERLINE STORAGE YARD

TABLE OF CONTENTS

PURPOSEGENERAL LOCATION AND DESCRIPTION4
SOILS 5
HYDROLOGIC CALCULATIONS 5
HYDRAULIC CALCULATIONS 5
FLOODPLAIN STATEMENT 5
DRAINAGE CRITERIA 5
FOUR STEP PROCESS 5
EXISTING DRAINAGE CONDITIONS 6
PROPOSED DRAINAGE CONDITIONS 7
WATER QUALITY PROVISIONS AND MAINTENANCE 9
FUTURE DRAINAGE CONDITIONS 10
OFFSITE DOWNSTREAM CHANNEL ANALYSIS 12
EROSION CONTROL 13
CONSTRUCTION COST OPINION 13
SUMMARY 13
REFERENCES 14

APPENDIX

Vicinity Map
Soils Map
FIRM Panel
Hydrologic Calculations
Hydraulic Calculations / EDB \& WQCV Calculations
HEC-RAS Calculations
Grading Erosion Control Plan
Existing/Proposed/Future Drainage Map

FINAL DRAINAGE REPORT FOR
 TIMBERLINE STORAGE YARD

PURPOSE

This document is intended to serve as the Final Drainage Report for the Timberline Storage Yard. The purpose of this document is to identify and analyze the on and offsite drainage patterns and to ensure that post development runoff is routed through the site safely and in a manner that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual. The development plan for the site will consist of a gravel storage yard with an office/warehouse building, asphalt, curb, lighting, an extended detention basin and water quality facility and landscaping. The parcel is zoned " M " and the proposed use is permissible within the Industrial zoning criteria.

GENERAL LOCATION AND DESCRIPTION

Timberline Storage Yard is located in the southeast quarter of the southwest quarter of Section 28, Township 13 South, Range 65 West of the 6th P.M. in El Paso County, Colorado. The parcel is bound to the north, south, and east by other vacant parcels of land. Adjacent to the southwest corner of the site, is an existing development that consists of a light industrial/storage and a maintenance yard. As shown on the enclosed FIRM panel, a channel known as the East Fork of Sand Creek Sub-tributary flows from east to west along the northern boundary of the site. Due to the presence of an existing railroad embankment, the sub-tributary does not influence the subject site. The site is located with the greater Sand Creek Drainage Basin and is tributary to the Sand Creek Channel via the East Fork Sand Creek Sub-Tributary. A vicinity map showing the location of the proposed development has been provided in the appendix of this report.

The proposed "development" will construct improvements on approximately 11.82 acres of the 37.95 acre parcel. The site is currently zoned " M " which is associated with industrial development. In the existing condition, both the parcel and offsite contributing watershed lands are sparsely vegetated, with ground cover consisting primarily of native grasses ranging in density from fair to good. Slopes across the development typically range between 2% to 7% while offsite slopes located to the east of the nearly 38 acres are as steep as 10:1. Offsite flows reaching development are mainly from small fringe areas located along the north and western boundaries. A ridgeline which bisects the parcel, north to south functions to direct runoff to the southern boundary where it has historically collected.

The proposed development will consist of a gravel storage yard with an office/warehouse building, gravel and asphalt parking areas, lighting, landscaping, and an access road. Runoff entering the subject site from offsite areas, as well as flows produced within the development will be collected by proposed storm sewer improvements and routed to a proposed full spectrum detention (FSD) pond located at the southeast corner of the development. The existing drainage swale along the south boundary line will protect right of way improvements from historic runoff. The area directly north of the planned development, which consists of approximately 5.29 acres, is anticipated to be developed in the near future and thus drainage infrastructure planning has been made to accommodate this development should
it occur. Addition detailed discussion regarding these improvements is discussed in subsequent sections of this report.

SOILS

Soils for this project are delineated by the map in the appendix as Blakeland loamy sand (8) and Blendon Sandy Loam (10) is characterized as Hydrologic Soil Types "A" \& "B". Soils in the study area are shown as mapped by Soil Conservation Service in the "Soils Survey of El Paso County Area".

HYDROLOGIC CALCULATIONS

Hydrologic calculations were performed using the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual and where applicable the Urban Storm Drainage Criteria Manual. The Rational Method was used to estimate stormwater runoff anticipated from design storms with 5-year and 100-year recurrence intervals.

HYDRAULIC CALCULATIONS

Hydraulic calculations were estimated using the Manning's Formula and the methods described in the El Paso County and City of Colorado Springs Storm Drainage Design Criteria manual. The relevant data sheets are included in the appendix of this report.

FLOODPLAIN STATEMENT

According to the Federal Emergency Management Agency (FEMA) Flood Insurance Rate Map (FIRM) Panel No. 08041C0543 F, effective date March 17, 1997 no portion of this site is located within the 100year floodplain.

DRAINAGE CRITERIA

This drainage analysis has been prepared in accordance with the current El Paso County Drainage Criteria Manual and where applicable the City of Colorado Springs DCM Volume 1 dated May 2014 effective January 2015. Hydrologic calculations were performed to determine runoff quantities for the 5 -year and 100 -year frequency storms for developed conditions using the Rational Method as required for basins having areas less than 130 acres (in accordance with Chapter 6 of the City of Colorado Springs DCM Volume 1). Full spectrum detention facilities have been designed in accordance with Section 3.2.1. of Chapter 13 of the City of Colorado Springs DCM Volume 1, dated May 2014, effective January 31, 2015.

FOUR STEP PROCESS

Step 1 Employ Runoff Reduction Practices. - Approx. 0.90 acres of the proposed developed 11.48 Acres of ground within the project is being set aside for a Full Spectrum Detention (FSD) Pond. Whenever possible runoff produced within developable area containing impervious surfaces will be routed through landscaped areas or earthen swales to minimize direct connection of impervious surfaces.

Step 3 Stabilize drainage ways -The Timberline Storage Yard site proposes a Full Spectrum Detention (FSD) pond to control developed runoff that is discharging to the historic drainage way that crosses the vacant parcel located to the south of the subject site. The FSD outlet structure has been designed to drain the water quality event storm in 40 hours, while reducing the 100 year peak discharge to approximately 90% of the predevelopment conditions. The development of this site is not anticipated to have negative effects on downstream drainage ways.

Step 3 Provide water quality capture volume. - A Full Spectrum Detention Basin is proposed to reduce peak discharge rates and provide water quality treatment. The WQCV will be released over a 40 hour period while larger event storms will be released in periods of times between $64-80$ hours.

Step4 Consider Need for Industrial and Commercial BMP's - This submittal provides a final grading and erosion control plans with BMPs in place. The proposed project will use silt fence, a vehicle tracking control pad, concrete washout area, mulching and reseeding to mitigate the potential for erosion across the site.

EXISTING DRAINAGE CONDITIONS

The Timberline Storage Yard site consists of 37.95 acres and is situated west of the East Fork Reach of the Sand Creek Watershed. There are no existing structures within the planned Timberline Storage Yard site or parent parcel. An existing conditions hydrologic analysis was performed to determine existing flow quantities entering and exiting the subject site so a comparison to post development discharge rates could be made. As shown on the Existing Drainage Map, located in the appendix of this report, the existing site terrain within the parcel generally slopes from north to south at grades that vary between 2% and 7%. An area east of the proposed site contributes to the overall drainage reaching the discharge point located to the south of the subject site.

Basin EX-1 consists of native grass covered un-platted hillside located to the east of the parcel property boundary. Runoff produced by the 22.9 acre area of land has been calculated to be 7.6 cfs in the 5 -year storm event and 51.0 cfs in the 100 -year storm event. Runoff from this basin is conveyed as sheet flow to the west towards Basin EX-2.

Basin EX-2 consists of grass covered un-platted lands to the east of a ridgeline that bisects the nearly 38 acre parent parcel. Runoff produced by the 23.6 acre area has been calculated to reach peak flow rates of 4.5 cfs in the 5 -year storm event and 30.4 cfs in the 100 -year storm event. Runoff from Basin EX-2 combines with runoff produced within Basin EX-1 at Design Point 1 located at the southeast corner of the proposed development boundary. The total calculated surface runoff at DP1 is 11.5 cfs in the 5 -year storm event and 77.3 cfs in the 100 -year storm event.

Basin EX-3 consists of native grass covered un-platted lands located within and adjacent to the western half of the parent parcel. Runoff produced by the 24.7 acre area of land has been calculated to be 4.6 cfs in the 5 -year storm event and 30.8 cfs in the 100 -year storm event. Runoff from Basin EX-3 combines with runoff from DP 1 at Design Point 2, at a small channelized drainage way located adjacent to the southern boundary of the planned development. The total calculated surface runoff at DP2 is 13.6 cfs in the 5 -year
storm event and 91.6 cfs in the 100 -year storm event. Runoff reaching this point continues south through the adjacent un-platted offsite parcel.

PROPOSED DRAINAGE CHARACTERISTICS

General Proposed Conditions Drainage Discussion

The parent parcel housing the proposed development is approximately 37.95 acres in size and is currently zoned "M" for industrial. As previously discussed, of the total 37.95 acres parcel, approximately 11.48 acres are currently being developed to the planned Timberline Storage Yard, which is to consist of a large gravel storage yard, an office/warehouse building, with asphalt and gravel parking areas, lighting, landscaping, and access entryways.

Runoff produced north of the proposed site development area will mimic the historic drainage patterns by sheet flowing to the north development boundary line (see attached proposed drainage map in the appendix) where it will combine with runoff generated onsite within the gravel storage yard and from the north half of the warehouse building (see attached proposed drainage map in the appendix). Proposed earthen swales a proposed rip rap lined rundown will conveyed the collected runoff to a proposed 0.9 acre Full Spectrum Detention pond located along the southern boundary of the site.

As in the historic condition, runoff produced by offsite areas located to both the north and the west of the proposed site will sheet flow on to the proposed development and combine with developed runoff from the proposed west parking lot areas in a proposed curb and gutter section. The combined runoff will be routed to the south and will be released to the Capital Drive curb and gutter. The developed area is less than 1 acre and will not require on-site detention.

Runoff generated from a portion of the parking lot, access roadway, and landscaped area (south of buildings) will combined with flows produced by the proposed south half of the building/warehouse and parking lots on the east half of the site. The combined runoff will be collected by a proposed concrete rundown/access path and conveyed to the proposed FSD pond. The runoff reaching the pond will be detained and discharged via a staged outlet box and proposed RCP storm system to the historic drainage way located south of the site. A proposed concrete pad will be dispersing flows as to not impact the historic drainage way located to the south of the site. Proposed discharge from the site, post construction, is less than historic and therefore its construction is not anticipated to negatively affect downstream facilities or properties.

Proposed Conditions Detailed Drainage Discussion

Basin OS-1, 8.9 acres, $(\mathrm{Q} 5=2.5 \mathrm{cfs}, \mathrm{Q} 100=16.6 \mathrm{cfs})$, consists of undeveloped un-platted lands located within the parcel that is planned to be developed in the future with industrial intentions along with a small portion of the existing railroad embankment adjacent to the northern boundary of the parcel.. Basin OS-1 uses a historic runoff coefficient for the proposed condition when the Timberline Storage Yard is developed. A higher industrial imperviousness value was taken into consideration while studying the future conditions of the parcel (refer to future conditions detailed drainage summary). Flows generated within the basin are directed south to Basin A.

Basin OS-2, 1.0 acres, (Q5=0.3cfs, Q100=2.2cfs), consists of undeveloped un-platted offsite lands located along the west boundary of the proposed development. Runoff from Basin OS-2 is tributary to Basin A.

Basin A, 8.3 acres, (Q5=9.4cfs, $\mathrm{Q} 100=25.1 \mathrm{cfs}$), consists primarily of a proposed gravel storage yard as well as the north half of the proposed office/warehouse building, concrete aprons, and asphalt parking areas. Runoff produced within Basin A combines with runoff from Basins OS-1 and OS-2 at Design Point 1 (Q5=8.1cfs, Q100=29.6cfs). Runoff reaching DP-1 will be directed to a proposed Full Spectrum Detention Pond at Design Point 4 via a 3'bw 2:1 SS trapezoidal 25% rundown lined with grouted D50=12" riprap (24 " deep). A pair of $4: 1 \mathrm{SS}, 1$ ' min. deep v-shaped earthen swales graded at 0.8% are recommended to be constructed along the northern exterior of the pond embankment to intercept runoff that might otherwise erode the pond side slopes.

Basin OS-3, 0.2 acres, (Q5=0.1cfs, Q100 $=0.5 \mathrm{cfs}$), consists of undeveloped un-platted offsite lands located along the west boundary of the proposed development. It should be noted that based upon site visitation runoff from Basin OS-3 appears to be tributary to Basin B, despite the illustration of the FIMS contours shown on the provided maps and thus have been included in the calculated of runoff anticipated to reach Design Point 2.

Basin OS-4, 0.1 acres, $(\mathrm{Q} 5=0.3 \mathrm{cfs}, \mathrm{Q} 100=0.7 \mathrm{cfs})$, consists of a small basin located near the southwest corner of the site. The basin includes a small portion of offsite undeveloped ground as well as a portion of the proposed access road. Runoff generated by this basin are directed westward via the proposed curb and gutter to the combine with flows from Basin B.

Basin B, 0.9 acres, $(\mathrm{Q} 5=2.2 \mathrm{cfs}, \mathrm{Q} 100=4.4 \mathrm{cfs})$, consists of a portion of the concrete aprons, and gravel and asphalted surfaces for the purpose of parking and driving located along the western side of the planned development. Runoff from Basin OS-3 and Basin OS-4 combines with runoff generated in Basin B and is directed to via proposed curb and gutter to the Capital Drive curb and gutter at Design Point 2 (Q5=2.4cfs, $\mathrm{Q} 100=5.4 \mathrm{cfs}$). The developed area is less than 1 acre and will not require on-site detention.

Basin C, 0.9 acres, $(\mathrm{Q} 5=3.2 \mathrm{cfs}, \mathrm{Q} 100=6.1 \mathrm{cfs})$, consists of the south half of the proposed building, the east paved parking lot, landscaping, driveways as well as a portion of the proposed paved asphalt access roadway that runs east to west along the proposed development. Runoff produced within Basin \mathbf{C} is direct via proposed curb and gutter to a low point located at Design Point 3 (Q5=3.2cfs, Q100=6.1cfs). Runoff reaching DP-3 will be directed to a proposed Full Spectrum Detention Pond via a proposed 12' wide concrete rundown/access path to Design Point 4.

Basin D, 0.9 acres, $(\mathrm{Q} 5=0.8 \mathrm{cfs}, \mathrm{Q} 100=3.1 \mathrm{cfs})$, consists of a portion of land dedicated to a proposed Full Spectrum Detention (FSD) pond. Runoff from Design Points $\mathbf{1} \& \mathbf{3}$ contribute to the proposed FSD pond at Design Point 4 at a combined peak flow rate of Q5 $=9.8 \mathrm{cfs}, \mathrm{Q} 100=33.7 \mathrm{cfs}$. The proposed full spectrum detention FSD Pond 1 was sized utilizing the UDFCD UD-Detention Worksheet, Vol 3.07. Based upon the contributing watershed size, characteristics and planned imperviousness the pond required a minimum of 1.876 acre feet of storage in the 100 -year event and was limited to 8.3 cfs of discharge via a 24 " RCP storm pipe. A proposed concrete pad will be dispersing flows as to not impact the historic drainage way located to the south of the site. Proposed discharge from the site, post construction, is less than historic and therefore its construction is not anticipated to negatively affect downstream facilities or properties. Consideration has been given for future site conditions, see future site discussion within this report. The
crest of the spillway is set above the 100 -year water surface at 6539.05 which allows for positive drainage to the future curb line. The proposed embankment has been set at 6541.0 . Should the pond outlet or box become clogged storm water shall overtop the emergency spillway and outfall to the historic channel. Let it be noted the FSD, rundowns to the FSD and outlet structure have been sized to detain the additional runoff and imperious area in the future condition. In the future condition, the orifice plate and restrictor plate will have to be re-designed per the additional runoff.

Basin OS-5, 22.9 acres, (Q5=7.6cfs, Q100=50.9cfs), consists of an offsite hillside located directly east of the parent parcel along with a small portion of the existing railroad embankment adjacent to the northern boundary of the parcel. This watershed area was studied in order to quantify offsite flows that are currently directed across the east boundary of the parent parcel and combine with flows from by Basin OS-6.

Basin OS-6, 26.1 acres, (Q5=4.9cfs, Q100=33.2cfs), consists of the eastern half of the parent parcel along with a small portion of offsite area located to the east of the property boundary as well as a portion of the existing railroad embankment adjacent to the northern boundary of the parcel. Runoff from Basin OS-5 combines with runoff from Basin OS-6 and continues southwesterly overland to Design Point 5 (Q5=11.3cfs, Q100 $=76.2 \mathrm{cfs}$).

Basin OS-7, 0.68 acres, $(\mathrm{Q} 5=0.2 \mathrm{cfs}, \mathrm{Q} 100=1.4 \mathrm{cfs})$, consists of a small offsite area located between the permanent site improvements and the historic drainage channel. The combined runoff from this primarily undeveloped area, the proposed FSD detention pond outlet pipe and DP5 combines at Design Point 6 for a 5 and 100 -year peak flow rates of 12.4 cfs and 85.8 cfs . This calculated developed discharge is less than the existing runoff estimated to reaching this location of 13.6 and 91.6 cfs in the 5 year and 100 year events respectively. These flows will follow historic drainage patterns and a portion the historic flow has been reduced by FSD Pond 1. Therefore the runoff is not anticipated to negatively affect downstream facilities.

WATER QUALITY PROVISIONS AND MAINTENANCE

The proposed full spectrum detention (FSD) pond functions to provide detention and water quality for the proposed development as well as all runoff tributary to it. This includes runoff produced onsite, north of the development and parcel, as well as offsite flows adjacent to the west boundary of the parcel. This full spectrum detention pond will function to treat approximately 20.0 acres by providing 0.216 acre-feet of storage for the water quality event 0.516 acre feet of storage at the EURV event storm and 1.88 acre-feet of storage in the 100 -year event. The proposed full spectrum detention basin will be private and shall be maintained by the property owner. Access shall be granted to the owner and El Paso County for access and maintenance of the private WQCV facility. A private maintenance agreement document shall accompany this report submittal.

The sizing for the full spectrum detention facility has been determined using the guidelines set forth in the Urban Drainage and Flood Control District Criteria Manual. Refer to the UDFCD UD-Detention Excel Workbook located within the appendix of this report for calculations.

FUTURE DRAINAGE CHARACTERISTICS (For Information Purposes Only)

Additional future condition drainage analysis has been conducted to ensure that the infrastructure proposed with the proposed development functions with future onsite and offsite development and functions to provide a conceptual plan for infrastructure improvements. The analysis will aid the developer in understanding what lands may need to be reserved for future drainage improvements and those potential impacts relate to the developable footprint. A Future Drainage Map for Timberline Storage Yard is provided in the appendix of this report.

The development assumptions included in this future condition analysis include:

- Revised Basin OS1 will be developed assuming industrial use and drainage shall be tributary to the FSD Pond 1.
- Revised Basin OS6 will be developed assuming industrial use and drainage shall be tributary to a Future FSD Pond 2.
- Revised Basin OS5 will be developed assuming industrial use and drainage shall be tributary to a Future FSD Pond 3.
- Lands located to the west of the Timberline Storage Yard boundary (portion of Basins OS1), Basin OS2, OS3, OS4 shall be assumed to remain undeveloped for the purposed of calculating runoff. Should the parcel develop, runoff shall be retained onsite or limited to discharge to Timberline Storage Yard at historic runoff rates.

Future Conditions Detailed Drainage Discussion (For Information Purposes Only)

Basin OS-1, 8.9 acres, (Q5=17.8cfs, Q100=38.6cfs), consists of 3.2 acres of undeveloped un-platted lands located outside the parent parcel as well as 5.7 acres of planned industrial development. Flows generated within the basin are directed south to Basin A.

Basin OS-2, 1.0 acres, (Q5=0.3cfs, Q100=2.2cfs), consists of undeveloped un-platted offsite lands located along the west boundary of the proposed development. Runoff from Basin OS-2 is tributary to Basin A.

Basin A, 8.3 acres, (Q5=9.4cfs, $\mathrm{Q} 100=25.1 \mathrm{cfs}$), consists primarily of an existing gravel storage yard as well as portions of an existing office/warehouse building, concrete aprons, and asphalt parking areas. Runoff produced within Basin A combines with runoff from Basins OS-1 and OS-2 at Design Point 1 (Q5=19.6cfs, Q100=47.1cfs). Runoff reaching DP-1 will be directed to an existing Full Spectrum Detention Pond via an existing 3'bw 2:1 SS trapezoidal 25% rundown lined with grouted D50=12" riprap (24 " deep). A pair of existing $4: 1 \mathrm{SS}, 1^{\prime} \mathrm{min}$. deep v-shaped earthen swales graded at 0.8% are constructed along the northern exterior of the pond embankment to intercept runoff that might otherwise erode the pond side slopes.

Basin OS-3, 0.2 acres, (Q5=0.1cfs, Q100=0.5cfs), consists of undeveloped un-platted offsite lands located along the west boundary of the proposed development. It should be noted that based upon site visitation runoff from Basin OS-3 appears to be tributary to Basin B, despite the illustration of the FIMS contours shown on the provided maps and thus have been included in the calculated of runoff anticipated o reach Design Point 2.

Basin OS-4, 0.1 acres, $(\mathrm{Q} 5=0.3 \mathrm{cfs}, \mathrm{Q} 100=0.7 \mathrm{cfs})$, consists of a small basin located near the southwest corner of the site. The basin includes a small portion of offsite undeveloped ground as well as a portion of the proposed access road. Runoff generated by this basin are directed westward via the proposed curb and gutter to the combine with flows from Basin B.

Basin B, 0.9 acres, $(\mathrm{Q} 5=2.2 \mathrm{cfs}, \mathrm{Q} 100=4.4 \mathrm{cfs})$, consists of a portion of the concrete aprons, and gravel and asphalted surfaces for the purpose of parking and driving located along the western side of the planned development. Runoff from Basin OS-3 and Basin OS-4 combines with runoff generated in Basin B and is directed to via proposed curb and gutter to the Capital Drive curb and gutter at Design Point 2 (Q5=2.4cfs, Q100 $=5.4 \mathrm{cfs}$). The developed area is less than 1 acre and will not require on-site detention.

Basin C, 0.9 acres, $(\mathrm{Q} 5=3.2 \mathrm{cfs}, \mathrm{Q} 100=6.1 \mathrm{cfs})$, consists of the south half of the proposed building, the east paved parking lot, landscaping, driveways as well as a portion of the proposed paved asphalt access roadway that runs east to west along the proposed development. Runoff produced within Basin \mathbf{C} is direct via proposed curb and gutter to a low point located at Design Point 3 ($\mathrm{Q} 5=3.2 \mathrm{cfs}, \mathrm{Q} 100=6.1 \mathrm{cfs}$). Runoff reaching DP-3 will be directed to a proposed Full Spectrum Detention Pond via a proposed 12' wide concrete rundown/access path to Design Point 4.

Basin D, 0.90 acres, (Q5=0.8cfs, Q100=3.1cfs), consists of a portion of land dedicated to an existing Full Spectrum Detention (FSD) pond that has been sized to detain the additional runoff and imperious area associated with the development of Basin OS1. Runoff from Design Points $\mathbf{1} \& 3$ contribute to the FSD pond at Design Point 4 at peak flow rates of $\mathrm{Q} 5=21.7 \mathrm{cfs}, \mathrm{Q} 100=52.1 \mathrm{cfs}$.

Based upon the contributing watershed size, characteristics and anticipated imperviousness the existing FSD pond has been sized previously to provide a minimum of 1.90 acre-feet of storage in the 100 -year event and limit discharge to approximately 21.8 cfs via an existing 24 " RCP. The existing concrete pad will be dispersing flows as to not impact the historic drainage way located to the south of the site. Proposed discharge from the site, post construction, is less than historic and therefore its construction is not anticipated to negatively affect downstream facilities or properties. The existing crest of the spillway is set at the 100 -year water surface at 6539.05 which allows for positive drainage to the future curb line. The existing embankment is set at 6541.0 . Should the pond outlet or box become clogged storm water shall overtop the emergency spillway and outfall to the historic channel. Let it be noted the FSD, rundowns to the FSD and outlet structure have been sized to detain the additional runoff and imperious area in the future condition. In the future condition, the orifice plate and restrictor plate will have to be re-designed and installed per the additional runoff.

It is assumed in the future condition that the 26.6 acre offsite Basin OS-5, (Q5=78.4cfs, Q100=148.8cfs), will be developed for industrial use. Runoff generated by Basin OS-5 would be conveyed to a future Full Spectrum Detention Pond (Future offsite FSD Pond 2) located offsite, in this case at Design Point 5 (Q5=78.4cfs, Q100=148.8cfs). Based upon the anticipated future development and existing site conditions the future FSD pond will need to provide approximately 4.1 acre-feet of storage. Per the UD Detention Worksheet, the future facility could be allowed to discharge up to 25.4 cfs to downstream facilities in the 100 -year event. Conceptually a future 24 " storm sewer system (Pipe 2) could be extended into the site to collect and convey drainage to the down-gradient to the west. Additional details regarding the
infrastructure, proposed land use and drainage conveyance systems will need to be amended with subsequent drainage reports once a development is further defined.

In the future condition, Basin OS-6, 22.8 acres (Q5 $=59.6 \mathrm{cfs}, \mathrm{Q} 100=114.0 \mathrm{cfs}$), would likely be developed for industrial use. Runoff generated by Basin OS-6 could be conveyed to a future Full Spectrum Detention Pond (Future FSD Pond 3) located at the southwest corner of the basin at Design Point 6 (Q5=59.6cfs, $\mathrm{Q} 100=114.0 \mathrm{cfs}$). Based upon the anticipated future development and existing site conditions the future FSD pond will need to provide approximately 3.3 acre-feet of storage. Per the UD Detention Worksheet, the future facility would be allowed to discharge approximately 37.0 cfs to downstream facilities. Conceptually a future 30 " storm sewer system (Pipe 3) could be extended into the site to collect and convey drainage to the down-gradient to the west. Additional details regarding the infrastructure, proposed land use and drainage conveyance systems will be amended with subsequent drainage reports.

As depicted on the Future Drainage Map a future 42" pipe (Pipe 4) could be constructed to convey the combined drainage discharge from both ponds ($\mathrm{Q} 5=3.6 \mathrm{cfs}, \mathrm{Q} 100=62.4 \mathrm{cfs}$) to the historic channel located south of the Timber Storage Yard.

Basin OS-7, 0.68 acres, (Q5 $=0.2 \mathrm{cfs}, \mathrm{Q} 100=1.4 \mathrm{cfs}$), consists of a small offsite area located between the permanent site improvements and the historic drainage channel. The combined runoff from this primarily undeveloped area, Pipe 1 and Pipe 4 would combine at Design Point 7 for a 5 and 100-year peak flow rates of 5.4 cfs and 85.6 cfs . This calculated developed discharge is less than the existing runoff estimated to reach this location of 13.6 and 91.6 cfs in the 5 year and 100 year events respectively.

OFFSITE DOWNSTREAM CHANNEL ANALYSIS

El Paso County Engineering has requested an analysis of the offsite downstream channel. The existing channel runs north to south on unplatted land owned by Weatherford Artificial (Sch. No. 5300000190). The analysis of the existing channel will be begin at the outfall of the proposed Timberline Storage to the north and will end at the two existing $48^{\prime \prime}$ culverts at the southwest end of the property. Runoff will ultimately be routed to the East Fork Sand Creek Subtributary. Runoff tributary to the existing channel has been accounted for, as proposed developed flow from the proposed Timberline Storage site (37.95 acres), offsite developed flow from the BLH NO. 2 LLC property (22.9 acres), existing undeveloped flow from the offsite BLH NO. 2 LLC property (7.7 acres) and existing undeveloped flow from the offsite Weatherford Artificial property (30.2 acres).

Analysis of the existing channel and results provided by the Hydrologic Engineering Center River Analysis System (HEC-RAS) program. Per the results provided (see Appendix), scour (see shear values) and velocities are below the maximum values as stated in the City of Colorado Springs Drainage Criteria Manual Vol. 1 (DCM1). Hence erosion of the existing channel is minimal. Let it be noted that with the development of Timberline Storage, the runoff values have been reduced in part to the release rate by the EDB pond. Proposed discharge from the site, post construction, is less than historic and therefore its construction is not anticipated to negatively affect downstream facilities or properties.

EROSION CONTROL

It is the policy of the El Paso County that we submit a grading and erosion control plan with the drainage report. Proposed silt fence, vehicle traffic control, and concrete washout area are proposed as erosion control measures. The costs for these measures have been provided on the Grading and Erosion Control plan.

CONSTRUCTION COST OPINION

Private Drainage Facilities (NON-Reimbursable):

Item	Description	Quantity		Unit Cost		Cost
1.	24" RCP	65	LF	\$50	/LF	\$3,250.00
2.	24 " RCP FES	1	EA	\$900	/EA	\$900.00
3.	12'x58'x6"ConcRundown	13	CY	\$250	/CY	\$3,250.00
4.	55 'x 45 'x4"ConcPad	31	CY	\$250	/CY	\$7,750.00
5.	7 'x50'x2' 'H'GroutRiprap	26	CY	\$150	/CY	\$3,900.00
6.	Full Spectrum Det Pond	1	EA	\$20,000	/EA	\$20,000.00
7.	Modified Type D Outlet'	1	EA	\$10,500	/EA	\$10,500.00
						\$49,550.00

M \& S Civil Consultants, Inc. (M \& S) cannot and does not guarantee the construction cost will not vary from these opinions of probable costs. These opinions represent our best judgment as design professionals familiar with the construction industry and this development in particular. The above and below is only an estimate of the facility cost and drainage basin fee amounts in 2017.

SUMMARY

The proposed drainage facilities recommended within this report will adequately convey, detain and route runoff from the planned development to the historic drainage way at peak flow rates which are below historic. Future drainage facilities recommended within this report should be reanalyzed with subsequent site specific drainage report and construction documents. Care should be taken at all times to plan for and accommodate safe overland emergency flow routes for all contributing runoff.

REFERENCES

1.) "El Paso County and City of Colorado Springs Drainage Criteria Manuals".
2.) "Urban Storm Drainage Criteria Manual"
3.) SCS Soils Map for El Paso County.
4.) Flood Insurance Rate Map (FIRM), Federal Emergency Management Agency, Effective date March 17, 1997.

APPENDIX

VICINITY MAP

VICINITY MAP

N.T.S.

FIRM PANEL

TIMBERLINE STORAGE EXISTING DRAINAGE CALCULATIONS
 (Area Runoff Coefficient Summary)

			STREETS / DEVELOPED			OVERLAND / DEVELOPED			OVERLAND / UNDEVELOPED			WEIGHTED	
BASIN	$\begin{gathered} \hline \text { TOTAL } \\ \text { AREA } \\ (S F) \\ \hline \end{gathered}$	TOTAL AREA (Acres)	AREA (Acres)	C_{5}	C_{100}	AREA (Acres)	C_{5}	C_{100}	AREA (Acres)	C_{5}	C_{100}	C_{5}	C_{100}
EX-1	998724.7	22.93	0.00	0.81	0.88	0.00	0.30	0.50	22.93	0.09	0.36	0.09	0.36
EX-2	1029448.0	23.63	0.00	0.81	0.88	0.00	0.30	0.50	23.63	0.09	0.36	0.09	0.36
EX-3	1074435.8	24.67	0.00	0.81	0.88	0.00	0.30	0.50	24.67	0.09	0.36	0.09	0.36

Calculated by: DLM
Date: 5/17/2017
Checked by: VAS

TIMBERLINE STORAGE EXISTING DRAINAGE CALCULATIONS
 (Area Drainage Summary)

From Area Runoff Coefficient Summary				OVERLAND				STREET / CHANNEL FLOW				Time of Travel (T_{t})	INTENSITY *		TOTAL FLOWS	
BASIN	AREA total	C_{5}	C_{100}	C5	Length	Height	T_{C}	Length	Slope	Velocity	$\mathrm{T}_{\text {t }}$	total	I_{5}	I_{100}	Q5	Q 100
	(Acres)	n nch Talle 5.1			(fi)	(fi)	$($ min)	(fi)	(\%)	(fps)	$($ min)	(min)	(in/hr)	(in/hr)	(c.f.s.)	(c.f.s.)
EX-1	22.93	0.09	0.36	0.09	100	4.0	11.5	325	8.0\%	2.8	1.9	13.5	3.7	6.2	7.6	51.0
EX-2	23.63	0.09	0.36	0.09	100	4.0	11.5	1820	1.3\%	1.1	26.4	38.0	2.1	3.6	4.5	30.4
EX-3	24.67	0.09	0.36	0.09	90	2.0	13.3	1911	1.5\%	1.2	26.3	39.6	2.1	3.5	4.6	30.8

TIMBERLINE STORAGE EXISTING DRAINAGE CALCULATIONS
 (Basin Routing Summary)

TIMBERLINE STORAGE

PROPOSED DRAINAGE CALCULATIONS

 (Area Runoff Coefficient Summary)| | | | ROOFS 0.73-0.81
 COMMERCIAL AREAS 0.81-0.88 LANDSCAPED AREAS 0.16-0.41 ASPHALT DRIVES 0.90-0.96 | | | LANDSCAPED AREAS 0.16-0.41 GRAVEL STORAGE YARD 0.30-0.50 | | | ASPHALT DRIVES/WALKS 0.9-0.96 GREENBELTS/AGRI. 0.09-0.36 | | | WEIGHTED | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN | $\begin{gathered} \hline \text { TOTAL } \\ \text { AREA } \\ (S F) \\ \hline \end{gathered}$ | TOTAL AREA (Acres) | AREA
 (Acres) | C_{5} | C_{100} | AREA
 (Acres) | C_{5} | C_{100} | AREA
 (Acres) | C_{5} | C_{100} | C_{5} | C_{100} |
| A | 360030.8 | 8.27 | 0.39 | 0.73 | 0.81 | 7.78 | 0.30 | 0.50 | 0.10 | 0.90 | 0.96 | 0.33 | 0.52 |
| B | 40937.7 | 0.94 | 0.01 | 0.16 | 0.41 | 0.45 | 0.30 | 0.50 | 0.48 | 0.90 | 0.96 | 0.60 | 0.73 |
| C | 39252.5 | 0.90 | 0.31 | 0.73 | 0.81 | 0.19 | 0.16 | 0.41 | 0.41 | 0.90 | 0.96 | 0.69 | 0.79 |
| D | 39174.5 | 0.90 | 0.00 | 0.73 | 0.81 | 0.88 | 0.16 | 0.41 | 0.02 | 0.90 | 0.96 | 0.18 | 0.42 |
| E | 35557.2 | 0.82 | 0.00 | 0.73 | 0.81 | 0.77 | 0.16 | 0.41 | 0.05 | 0.90 | 0.96 | 0.20 | 0.44 |
| OS1 | 388914.7 | 8.93 | 0.00 | 0.81 | 0.88 | 0.00 | 0.30 | 0.50 | 8.93 | 0.09 | 0.36 | 0.09 | 0.36 |
| OS2 | 44967.9 | 1.03 | 0.00 | 0.81 | 0.88 | 0.00 | 0.30 | 0.50 | 1.03 | 0.09 | 0.36 | 0.09 | 0.36 |
| OS3 | 8997.0 | 0.21 | 0.00 | 0.81 | 0.88 | 0.00 | 0.30 | 0.50 | 0.21 | 0.09 | 0.36 | 0.09 | 0.36 |
| OS4 | 5768.8 | 0.13 | 0.05 | 0.90 | 0.96 | 0.00 | 0.30 | 0.50 | 0.09 | 0.09 | 0.36 | 0.38 | 0.57 |
| OS5 | 998724.7 | 22.93 | 0.00 | 0.81 | 0.88 | 0.00 | 0.30 | 0.50 | 22.93 | 0.09 | 0.36 | 0.09 | 0.36 |
| OS6 | 1135543.9 | 26.07 | 0.00 | 0.81 | 0.88 | 0.00 | 0.30 | 0.50 | 26.07 | 0.09 | 0.36 | 0.09 | 0.36 |
| OS7 | 29413.3 | 0.68 | 0.00 | 0.81 | 0.88 | 0.00 | 0.30 | 0.50 | 0.68 | 0.09 | 0.36 | 0.09 | 0.36 |

Calculated by: DLM
Date: $\frac{6 / 9 / 2017}{\text { VAS }}$
Checked by: VAS

TIMBERLINE STORAGE

PROPOSED DRAINAGE CALCULATIONS

(Area Drainage Summary)

From Area Runoff Coefficient Summary				overland				STREET / CHANNEL FLOW				Time of Travel (T_{t})		INTENSITY *		TOTAL FLOWS	
BASIN	AREA TOTAL (Acres)	C_{5}	C_{100}	C5	$\begin{aligned} & \text { Length } \\ & (f f) \end{aligned}$	Height (ft)	$\begin{gathered} \mathbf{T}_{\mathrm{C}} \\ (\min) \end{gathered}$	Length (ft)	Slope (\%)	Velocity (fps)	$\begin{gathered} \mathrm{T}_{\mathrm{t}} \\ (\min) \\ \hline \end{gathered}$	total (min)	CHECK (min)	$\begin{gathered} \mathbf{I}_{5} \\ (i n / h r) \end{gathered}$	$\begin{gathered} \mathrm{I}_{100} \\ (i n / h r) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{5} \\ \text { (c.f.f. }) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{100} \\ (\text { c.f.f. }) \end{gathered}$
A	8.27	0.33	0.52	0.33	100	2.0	11.1	890	1.2\%	1.1	13.5	24.6	15.5	3.5	5.8	9.4	25.1
B	0.94	0.60	0.73	0.60	95	0.7	9.6	337	0.5\%	1.1	5.3	14.9	12.4	3.8	6.4	2.2	4.4
C	0.90	0.69	0.79	0.69	50	1.0	4.2	187	1.9\%	2.7	1.1	5.3	11.3	5.1	8.5	3.2	6.1
D	0.90	0.18	0.42	0.18	47	6.0	4.9	119	0.5\%	1.4	1.4	6.3	10.9	4.8	8.1	0.8	3.1
E	0.82	0.20	0.44	0.20	33	6.0	3.6	145	1.9\%	2.8	0.9	4.4	11.0	5.2	8.7	0.9	3.1
OS1	8.93	0.09	0.36	0.09	90	2.0	13.3	575	1.9\%	1.4	6.9	20.2	13.7	3.1	5.2	2.5	16.6
OS2	1.03	0.09	0.36	0.09	100	2	14.5					14.5	10.6	3.6	6.0	0.3	2.2
OS3	0.21	0.09	0.36	0.09	50	1	10.3					10.3	10.3	4.1	6.9	0.1	0.5
OS4	0.13	0.38	0.57	0.38	25	0.5	5.2					5.2	10.1	5.1	8.6	0.3	0.7
OS5	22.93	0.09	0.36	0.09	100	4	11.5	355	8.6\%	2.9	2.0	13.6	12.5	3.7	6.2	7.6	50.9
OS6	26.07	0.09	0.36	0.09	100	4	11.5	1890	1.4\%	1.2	26.9	38.5	21.1	2.1	3.5	4.9	33.2
OS7	0.68	0.09	0.36	0.09	100	2	14.5	300	2.0\%	2.8	1.8	16.3	12.2	3.4	5.7	0.2	1.4

* Intensity equations assume a minimum travel time of 5 minutes.

TIMBERLINE STORAGE

PROPOSED DRAINAGE CALCULATIONS

(Basin Routing Summary)

TIMBERLINE STORAGE
 PROPOSED DRAINAGE CALCULATIONS

(Storm Sewer Routing Summary)

TIMBERLINE STORAGE

 FUTURE DRAINAGE CALCULATIONS (Area Runoff Coefficient Summary)| | | | ROOFS 0.73-0.81
 COMMERCIAL AREAS 0.81-0.88
 LANDSCAPED AREAS 0.16-0.41
 ASPHALT DRIVES 0.90-0.96 | | | LANDSCAPED AREAS 0.16-0.41 GRAVEL STORAGE YARD 0.30-0.50 | | | ASPHALT DRIVES/WALKS 0.9-0.96 GREENBELTS/AGRI. 0.09-0.36 | | | WEIGHTED | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN | $\begin{gathered} \hline \text { TOTAL } \\ \text { AREA } \\ (S F) \end{gathered}$ | TOTAL
 AREA
 (Acres) | AREA
 (Acres) | C_{5} | C_{100} | AREA
 (Acres) | C_{5} | C_{100} | AREA
 (Acres) | C_{5} | C_{100} | C_{5} | C_{100} |
| A | 360030.8 | 8.27 | 0.39 | 0.73 | 0.81 | 7.78 | 0.30 | 0.50 | 0.10 | 0.90 | 0.96 | 0.33 | 0.52 |
| B | 40937.7 | 0.94 | 0.01 | 0.16 | 0.41 | 0.45 | 0.30 | 0.50 | 0.48 | 0.90 | 0.96 | 0.60 | 0.73 |
| C | 39252.5 | 0.90 | 0.31 | 0.73 | 0.81 | 0.19 | 0.16 | 0.41 | 0.41 | 0.90 | 0.96 | 0.69 | 0.79 |
| D | 39174.5 | 0.90 | 0.00 | 0.73 | 0.81 | 0.88 | 0.16 | 0.41 | 0.02 | 0.90 | 0.96 | 0.18 | 0.42 |
| E | 35557.2 | 0.82 | 0.00 | 0.73 | 0.81 | 0.77 | 0.16 | 0.41 | 0.05 | 0.90 | 0.96 | 0.20 | 0.44 |
| OS1 | 388914.7 | 8.93 | 5.80 | 0.73 | 0.81 | 0.00 | 0.30 | 0.50 | 3.12 | 0.09 | 0.36 | 0.51 | 0.65 |
| OS2 | 44967.9 | 1.03 | 0.00 | 0.73 | 0.81 | 0.00 | 0.30 | 0.50 | 1.03 | 0.09 | 0.36 | 0.09 | 0.36 |
| OS3 | 8997.0 | 0.21 | 0.00 | 0.73 | 0.81 | 0.00 | 0.30 | 0.50 | 0.21 | 0.09 | 0.36 | 0.09 | 0.36 |
| OS4 | 5768.8 | 0.13 | 0.05 | 0.90 | 0.96 | 0.00 | 0.30 | 0.50 | 0.09 | 0.09 | 0.36 | 0.38 | 0.57 |
| OS5 | 1157755 | 26.58 | 0.00 | 0.81 | 0.88 | 25.10 | 0.73 | 0.81 | 1.48 | 0.09 | 0.36 | 0.69 | 0.79 |
| OS6 | 992116.3 | 22.78 | 0.00 | 0.81 | 0.88 | 21.06 | 0.73 | 0.81 | 1.72 | 0.09 | 0.36 | 0.68 | 0.78 |
| OS7 | 29413.3 | 0.68 | 0.00 | 0.81 | 0.88 | 0.00 | 0.30 | 0.50 | 0.68 | 0.09 | 0.36 | 0.09 | 0.36 |

Calculated by: DLM
Date: 6/9/2017
Checked by: VAS

TIMBERLINE STORAGE

FUTURE DRAINAGE CALCULATIONS

 (Area Drainage Summary)| From Area Runoff Coefficient Summary | | | | overland | | | | STREET / CHANNEL FLOW | | | | Time of Travel (T_{t}) | | INTENSITY * | | TOTAL FLOWS | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| BASIN | AREA TOTAL (Acres) | C_{5} | C_{100} | C5 | $\begin{aligned} & \text { Length } \\ & (f f) \end{aligned}$ | Height
 (ft) | $\begin{gathered} \mathbf{T}_{\mathrm{C}} \\ (\min) \end{gathered}$ | Length
 (ft) | Slope
 (\%) | Velocity
 (fps) | $\begin{gathered} \mathrm{T}_{\mathrm{t}} \\ (\min) \\ \hline \end{gathered}$ | total
 (min) | CHECK
 (min) | $\begin{gathered} \mathbf{I}_{5} \\ (i n / h r) \end{gathered}$ | $\begin{gathered} \mathrm{I}_{100} \\ (i n / h r) \end{gathered}$ | $\begin{gathered} \mathrm{Q}_{5} \\ \text { (c.f.f. }) \end{gathered}$ | $\begin{gathered} \mathrm{Q}_{100} \\ (\text { c.f.f. }) \end{gathered}$ |
| A | 8.27 | 0.33 | 0.52 | 0.33 | 100 | 2.0 | 11.1 | 890 | 1.2\% | 1.1 | 13.5 | 24.6 | 15.5 | 3.5 | 5.8 | 9.4 | 25.1 |
| B | 0.94 | 0.60 | 0.73 | 0.60 | 95 | 0.7 | 9.7 | 337 | 0.5\% | 1.1 | 5.3 | 15.0 | 12.4 | 3.8 | 6.4 | 2.2 | 4.4 |
| C | 0.90 | 0.69 | 0.79 | 0.69 | 50 | 1.0 | 4.2 | 187 | 1.9\% | 2.8 | 1.1 | 5.3 | 11.3 | 5.1 | 8.5 | 3.2 | 6.1 |
| D | 0.90 | 0.18 | 0.42 | 0.18 | 47 | 6.0 | 4.9 | 119 | 0.5\% | 1.4 | 1.4 | 6.3 | 10.9 | 4.8 | 8.1 | 0.8 | 3.1 |
| E | 0.82 | 0.20 | 0.44 | 0.20 | 33 | 6.0 | 3.6 | 145 | 1.9\% | 2.8 | 0.9 | 4.4 | 11.0 | 5.2 | 8.7 | 0.9 | 3.1 |
| OS1 | 8.93 | 0.51 | 0.65 | 0.51 | 90 | 2.0 | 7.8 | 575 | 1.9\% | 2.8 | 3.5 | 11.3 | 13.7 | 3.9 | 6.6 | 17.8 | 38.6 |
| OS2 | 1.03 | 0.09 | 0.36 | 0.09 | 100 | 2 | 14.5 | | | | | 14.5 | 10.6 | 3.6 | 6.0 | 0.3 | 2.2 |
| OS3 | 0.21 | 0.09 | 0.36 | 0.09 | 50 | 1 | 10.3 | | | | | 10.3 | 10.3 | 4.1 | 6.9 | 0.1 | 0.5 |
| OS4 | 0.13 | 0.38 | 0.57 | 0.38 | 25 | 0.5 | 5.2 | | | | | 5.2 | 10.1 | 5.1 | 8.6 | 0.3 | 0.7 |
| OS5 | 26.58 | 0.69 | 0.79 | 0.69 | 100 | 3 | 5.1 | 570 | 5.3\% | 2.3 | 4.1 | 9.2 | 13.7 | 4.2 | 7.1 | 78.4 | 148.8 |
| OS6 | 22.78 | 0.68 | 0.78 | 0.68 | 100 | 3 | 5.3 | 1321 | 2.6\% | 3.2 | 6.9 | 12.1 | 17.9 | 3.8 | 6.4 | 59.6 | 114.0 |
| OS7 | 0.68 | 0.09 | 0.36 | 0.09 | 100 | 2 | 14.5 | 300 | 2.0\% | 2.8 | 1.8 | 16.3 | 12.2 | 3.4 | 5.7 | 0.2 | 1.4 |

* Intensity equations assume a minimum travel time of 5 minutes.

FUTURE DRAINAGE CALCULATIONS

(Basin Routing Summary)

TIMBERLINE STORAGE

FUTURE DRAINAGE CALCULATIONS
(Storm Sewer Routing Summary)

									Pipe Size
PIPE RUN	Contributing Pipes/Design Points	Equivalent CA_{5}	Equivalent CA ${ }_{100}$	$\begin{gathered} \text { Maximum } \\ \boldsymbol{T}_{C} \end{gathered}$	I_{5}	I_{100}	Q_{5}	Q_{100}	
1	EX POND 1 OUTLET (DP4)	UD-DETENTIO	W WORKSHEET				0.6	21.8	24" RCP
2	FUT OFFSITE POND 2 OUTLET (DP5)						1.6	25.4	24" RCP
3	FUTURE POND 3 OUTLET (DP6)						2.0	37.0	30" RCP
4	PIPE 5+PIPE 6						3.6	62.4	42" RCP
DP - Design Point PR - Pipe Run		ates. FB- Flow By fi INT- Intercepted	Flow Design Point	Point		ulated D hecked	017		

Storm Sewer Protile

:

emes wols

Noid

| |
| :---: |荡

옫	黑	
$\stackrel{\circ}{\square} \stackrel{\text { ¢ }}{\square}$	¢	\%

STORM 1 PROFILE - FUTURE CONDITION

50
Reach (ft)
40

Page 1

TIMBERLINE STORAGE (PROPOSED CONDITIONS)

(Weighted Percent Imperviousness of Proposed WQ Sand Filter Basin Contributing Basins Area (Acres) \boldsymbol{C}_{5} Impervious \% (I)										
(Acres)*(I)					$	$	A	8.27	0.33	43
:---:	:---:	:---:	:---:							
C	0.90	0.69	75							
D	0.90	0.18	25							
OS1	8.93	0.09	2							
OS2	1.03	0.09	2							
Totals	$\mathbf{2 0 . 0 3}$									
ImperviouSness of WQ SFB	$\mathbf{2 3 . 2}$									

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project: Timberline Storage
Basin ID: Full Spectrum Detention Pond 1 (Proposed)

Required Volume Calculation

Required Volume Calculation		acres	6533.81		
Selected BMP Type $=$	EDB			34.2	
Watershed Area =	20.03			6535.0	
Watershed Length $=$	1,880	ft		6536.00	
Watershed Slope	0.015	ft/ft		6537.00	
Watershed Imperviousness $=$	26.90\%	percent		6538.00	
Percentage Hydrologic Soil Group A $=$	0.0\%	percent		6539.	
Percentage Hydrologic Soil Group B = Percentage Hydrologic Soil Groups C/D $=$	100.0\%	percent		6540.00	
	0.0\%	percent		6541.00	
Desired WQCV Drain Time $=$	40.0	hours			
Location for 1-hr Rainfall Depths = User Input					
Water Quality Capture Volume (WQCV) $=$	0.236	acre-feet			
Excess Urban Runoff Volume (EURV) $=$	0.548	acre-feet	Optional User Override		
2-yr Runoff Volume (P1 = 1.19 in .) =	0.416	acre-feet	1.19	inches	
5 -yr Runoff Volume (P1 = 1.5 in .) $=$	0.597	acre-feet	1.50	inches	
10 -yr Runoff Volume ($\mathrm{P} 1=1.75 \mathrm{in}$.) $=$	0.939	acre-feet	1.75	inches	
$25-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2 \mathrm{in}$.) $=$	1.640		2.00	inches	
$50-\mathrm{yr}$ Runoff Volume ($\mathrm{P} 1=2.25 \mathrm{in}$.) $=$	2.097	acre-feet	2.25		
$100-$ yr Runoff Volume (P1 $=2.52 \mathrm{in}$.) $=$	2.694	acre-feet acre-feet	2.52	inches	
$500-y r$ Runoff Volume ($\mathrm{P} 1=0 \mathrm{in}$.) $=$	0.000				
Approximate 2-yr Detention Volume $=$	0.388	acre-feet			
Approximate 5-yr Detention Volume $=$	0.560	acre-f			
Approximate 10-yr Detention Volume $=$	0.837	cre-fe			
Approximate 25-yr Detention Volume $=$	0.987	acre-feet			
Approximate 50-yr Detention Volume $=$	1.041	acre-feet			
Approximate $100-\mathrm{yr}$ Detention Volume $=$	1.245				

Stage-Storage Calculation
Zone 1 Volume (WQCV) $=0.236$ acre-feet
Zone 2 Volume (EURV - Zon 1) $=0.312$ Zoe 2 Vace-fe

Zone 3 Volume (100 -year - Zones $1 \& 2$) $=$	0.697
Total Detention Basin Volume $=$	1.245
Initial Surcharge Volume (ISV) =	user
Initial Surcharge Depth (ISD) =	user
Total Available Detention Depth ($\mathrm{H}_{\text {total }}$) $=$	user
Depth of Trickle Channel ($\mathrm{H}_{\text {TC }}$) $=$	user
Slope of Trickle Channel ($\mathrm{S}_{\text {TC }}$) $=$	user
Slopes of Main Basin Sides ($\mathrm{S}_{\text {main }}$) $=$	user

$\begin{aligned} & \text { Depth Increment = } \\ & \hline \text { Stage - Storage } \\ & \text { Description } \end{aligned}$	ft								
	Stage (ft)	$\begin{aligned} & \text { Optional } \\ & \text { Override } \\ & \text { Stage (ft) } \end{aligned}$	Length (ft)	Width (ft)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{ft}^{\wedge} 2\right) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Optional } \\ \text { Override } \\ \text { Area }\left(\mathrm{ft}^{\wedge} 2\right) \\ \hline \end{array}$	$\begin{gathered} \text { Area } \\ \text { (acre) } \end{gathered}$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{ft}^{\wedge} 3\right) \end{gathered}$	Volume $(\mathrm{ac}-\mathrm{ft})$
Top of Micropool	-	0.00	--	--	--	0	0.000		
	--	0.41	--	--	-	65	0.001	13	0.000
	--	1.00	--	--	-	1,705	0.039	519	0.012
	--	2.00	--	--	--	18,958	0.435	10,678	0.245
	--	3.00	--	--	-	21,298	0.489	30,995	0.712
	--	4.00	--	--	--	23,732	0.545	53,510	1.228
	--	5.00	--	--	-	26,339	0.605	78,545	1.803
	--	6.00	--	--	-	29,593	0.679	106,511	2.445
	--	7.00	--	--	-	32,791	0.753	137,703	3.161
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				

Detention Basin Outlet Structure Design

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected
Vertical Orifice Area $=$	N/A	N/A
Vertical Orifice Centroid $=$	N/A	N/A

Stormwater Detention and Infiltration Design Data Sheet

Stormwater Facility Name: Pond 1

Facility Location \& Jurisdiction: Timberline Storage Yard, El Paso County / El Paso County

User Input: Watershed Characteristics		
Watershed Slope =	0.015	$\mathrm{ft} / \mathrm{ft}$
Watershed Length $=$	1833	ft
Watershed Area =	20.03	acres
Watershed Imperviousness $=$	26.9\%	percent
Percentage Hydrologic Soil Group A =	0.0\%	percent
Percentage Hydrologic Soil Group B =	100.0\%	ercent
Percentage Hydrologic Soil Groups C/D =	0.0\%	percent

Location for 1-hr Rainfall Depths (use dropdown):
User Input

WQCV Treatment Method $=$ Extended Detention

After completing and printing this worksheet to a pdf, go to: https://maperture.digitaldataservices.com/gvh/?viewer=cswdif create a new stormwater facility, and attach the pdf of this worksheet to that record.

User Defined Stage [ft]	User Defined Area [ft^2]	User Defined Stage [ft]	User Defined Discharge [cfs]
0.00	0	0.00	0.00
0.41	65	0.41	0.03
1.00	1,705	1.00	0.05
2.00	18,958	2.00	0.10
3.00	21,298	3.00	0.25
4.00	23,732	4.00	3.20
5.00	26,339	5.00	8.70
6.00	29,593	6.00	15.60
7.00	32,791	7.00	21.30

Routed Hydrograph Results						
Design Storm Return Period $=$ One-Hour Rainfall Depth =	WQCV	2 Year	5 Year	10 Year	50 Year	100 Year
	0.50	1.19	1.50	1.75	2.25	2.52
Calculated Runoff Volume =	0.236	0.429	0.833	1.211	2.307	2.855
OPTIONAL Override Runoff Volume =						
Inflow Hydrograph Volume =	0.235	0.429	0.832	1.211	2.306	2.855
Time to Drain 97\% of Inflow Volume =	36.5	54.2	72.0	72.0	68.0	65.6
Time to Drain 99\% of Inflow Volume =	37.9	56.4	75.9	77.2	76.5	75.7
Maximum Ponding Depth $=$	1.93	2.35	3.11	3.62	4.84	5.35
Maximum Ponded Area =	0.40	0.45	0.49	0.52	0.59	0.63
Maximum Volume Stored $=$	0.216	0.400	0.762	1.021	1.701	2.019

Stormwater Detention and Infiltration Design Data Sheet

TIMBERLINE STORAGE (FUTURE CONDITIONS)

(Weighted Percent Imperviousness of Future FSD Pond 1)				
$\begin{gathered} \text { Contributing } \\ \text { Basins } \end{gathered}$	$\begin{gathered} \text { Area } \\ \text { (Acres) } \end{gathered}$	C_{5}	Impervious \% (I)	(Acres)*(I)
A	8.27	0.33	43	355.40
C	0.90	0.69	75	67.58
D	0.90	0.18	14	12.59
OS1	8.93	0.51	72	642.83
OS2	1.03	0.09	2	2.06
Totals	20.03			1080.48
$\begin{gathered} \text { Tmperviousness } \\ \text { of WQSFB } \end{gathered}$	54.0			

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project: Timberline Storage

Basin ID: Full Spectrum Detention Pond 1 (rework Future)

Depth Increment $=$	ft								
Stage - Storage Description	Stage (ft)	$\begin{aligned} & \text { Optional } \\ & \text { Override } \\ & \text { Stage (ft) } \end{aligned}$	Length (ft)	Width (ft)	$\begin{aligned} & \text { Area } \\ & \left(\mathrm{ft}^{\wedge} 2\right) \\ & \hline \end{aligned}$	$\begin{array}{\|c\|} \hline \text { Optional } \\ \text { Override } \\ \text { Area (ft }(\mathrm{t}) \mathrm{e} \\ \hline \end{array}$	$\begin{gathered} \text { Area } \\ (\text { acre }) \end{gathered}$	Volume (ft^3)	Volume (ac-ft)
Top of Micropool	-	0.00	-	--	--	0	0.000		
	-	0.41	-	--	-	65	0.001	13	0.000
	-	1.00	--	--	--	1,705	0.039	519	0.012
	--	2.00	--	--	--	18,958	0.435	10,678	0.245
	--	3.00	--	--	--	21,298	0.489	30,995	0.712
	--	4.00	--	--	--	23,732	0.545	53,510	1.228
	--	5.00	--	--	--	26,339	0.605	78,545	1.803
	--	6.00	--	--	--	29,593	0.679	106,511	2.445
	--	7.00	--	--	--	32,791	0.753	137,703	3.161
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	-		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	-		--	--	-				
	--		--	--	--				

Detention Basin Outlet Structure Design

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.30	2.59					
Orifice Area (sq. inches)	1.80	1.80	5.75					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice	
	Not Selected
Vertical Orifice Area $=$	Not Selected
N/A	N / A
ft^{2}	
Vertical Orifice Centroid	$=$N/A feet

TIMBERLINE STORAGE (FUTURE CONDITIONS)

(Weighted Percent Imperviousness of Future FSD Pond 2)								
Contributing Basins	Area (Acres)	C $_{5}$	Impervious \% (I)		\quad (Acres)*(I)	OS-6	22.78	0.68
:---:	:---:	:---:						
87	1981.50							
Totals	22.78							

TIMBERLINE STORAGE (FUTURE CONDITIONS)

(Weighted Percent Imperviousness of Future Offsite FSD Pond 3)				
Contributing Basins	$\begin{gathered} \text { Area } \\ \text { (Acres) } \end{gathered}$	C_{5}	Impervious \% (I)	(Acres)*(I)
Column1	Column2	Column3	Column4	Column5
OS-5	26.58	0.69	87	2312.32
Totals	26.58	0.00		2312.32
Imperviousness of WQ Pond 2	87.0			

\qquad DATE: $6 / 7 / 2017$
\% Soll Tyees for Pond Cales
Future Pond ($\bar{B} D$ - Pond 3)

$$
\begin{aligned}
& \text { HSG } A=0.37 \text { iteres } \\
& \text { HSGB }=22.41 \text { Meras } \\
& \text { Topor Area }=28.78 \\
& \% \text { HsGA }=0.37 / 22.78=0.016=1.6 \% \\
& \% \text { HSGB }=1.00 \%-1.6 \%=98.4 . \%
\end{aligned}
$$

Future offsite Pond (FSO-Pond 2)

$$
\begin{aligned}
& \text { HSGA }=21.0 \text { Bcal } \\
& \text { HSG } B=5.58 \text { Acres } \\
& \text { Tothe Area }=26.58 \\
& \% \text { HSGA }=21.0126 .58=0.79=79.0 \% \\
& \% \text { HSGB }=100-72.0=21 \%
\end{aligned}
$$

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project: Timberline Storage
Basin ID: Full Spectrum Detention Pond 2 (Future)

Depth Increment $=$	ft								
Stage - Storage Description	$\begin{gathered} \begin{array}{c} \text { tage } \\ (\text { (t) } \end{array} \end{gathered}$	$\begin{aligned} & \text { Optional } \\ & \text { Override } \\ & \text { Stage (ft) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Length } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Width } \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Area } \\ \left(t^{2}+2\right) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Optional } \\ \text { Override } \\ \text { Area (ft^2) } \end{array}$	$\begin{gathered} \text { Anea } \\ \text { (acre) } \end{gathered}$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{ft}^{\wedge} 3\right) \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & (\mathrm{ac}-\mathrm{ft}) \end{aligned}$
Top of Micropool	--	0.00	--	--	--	0	0.000		
	--	0.33	-	--	-	112	0.003	17	0.000
	--	0.50	--	--	--	462	0.011	63	0.001
	--	1.50	--	--	--	19,038	0.437	9,628	0.221
	-	2.50	--	--	--	26,335	0.605	32,503	0.746
	--	3.50	--	--	--	29,086	0.668	60,214	1.382
	--	4.50	--	--	--	31,938	0.733	90,726	2.083
	-	5.50	--	--	-	34,891	0.801	124,140	2.850
	--	6.50	--	--	--	37,939	0.871	160,555	3.686
	--	7.50	--	--	--	41,102	0.944	200,076	4.593
	-	8.50	--	--	-	44,366	1.019	242,810	5.574
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	-		--	--	-				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

UD-Detention, Version 3.07 (February 2017)								
Project: Timberline Storage Yard								
Basin ID: Future Offsite FSD Pond 2								
		Zone 1 (WQCV) Zone 2 (EURV) !one 3 (100-year)	Stage (ft)	Zone Volume (ac-ft)	Outlet Type			
		2.65	0.835	Orifice Plate				
		5.69	2.167	Orifice Plate				
		7.15	1.258	Weir\&Pipe (Restrict)				
			4.260	Total				
User Input: Orifice at Underdrain Outlet (typically used to drain WQCV in a Filtration BMP)				Calculated Parameters for Underdrain				
$\begin{array}{r} \text { Underdrain Orifice Invert Depth }= \\ \text { Underdrain Orifice Diameter }= \end{array}$	N/A		ft (distance below the filtration media surface)		$\begin{aligned} \text { Underdrain Orifice Area } & = \\ \text { Underdrain Orifice Centroid } & = \end{aligned}$		N/A	ft^{2}
	N/A		inches				N/A	feet
User Input: Orifice Plate with one or more orifices or Elliptical Slot Weir (typically used to drain WQCV and/or EURV in a sedimentation BMP) Calculater						rame	$\begin{aligned} & \mathrm{r}_{\mathrm{rlt}} \mathrm{ftate}^{2} \\ & f_{\text {feet }} \\ & f_{\text {feet }} \\ & \mathrm{ftt}^{2} \end{aligned}$	
$\begin{aligned} \text { Invert of Lowest Orifice } & = \\ \text { Depth at top of Zone using Orifice Plate } & = \\ \text { Orifice Plate: Orifice Vertical Spacing } & = \\ \text { Orifice Plate: Orifice Area per Row } & = \end{aligned}$	0.00		ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) ft (relative to basin bottom at Stage $=0 \mathrm{ft}$) inches inches		$\begin{aligned} \text { WQ Orifice Area per Row } & = \\ \text { Elliptical Half-Width } & = \\ \text { Elliptical Slot Centroid } & = \end{aligned}$			N/A
	5.69						N/A	
	10.90			N/A				
	N/A				Elliptical Slot Area $=$	N/A		

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.90	3.79					
Orifice Area (sq. inches)	4.80	8.00	18.00					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected
Vertical Orifice Area $=$	N/A	N/A
Vertical Orifice Centroid $=$	N/A	N/A

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

Project: Timberline Storage
Basin ID: Full Spectrum Detention Pond 3 (Future)

Depth Increment $=$	ft								
Stage - Storage Description	$\begin{gathered} \begin{array}{c} \text { tage } \\ (\text { (t) } \end{array} \end{gathered}$	$\begin{aligned} & \text { Optional } \\ & \text { Override } \\ & \text { Stage (ft) } \\ & \hline \end{aligned}$	$\begin{gathered} \text { Length } \\ (\mathrm{ft}) \end{gathered}$	$\begin{gathered} \text { Width } \\ (\mathrm{ft}) \\ \hline \end{gathered}$	$\begin{gathered} \text { Area } \\ \left(t^{2}+2\right) \end{gathered}$	$\begin{array}{\|c\|} \hline \text { Optional } \\ \text { Override } \\ \text { Area (ft^2) } \end{array}$	$\begin{gathered} \text { Anea } \\ \text { (acre) } \end{gathered}$	$\begin{gathered} \text { Volume } \\ \left(\mathrm{ft}^{\wedge} 3\right) \end{gathered}$	$\begin{aligned} & \text { Volume } \\ & (\mathrm{ac}-\mathrm{ft}) \end{aligned}$
Top of Micropool	--	0.00	--	--	--	0	0.000		
	--	0.33	-	--	-	112	0.003	17	0.000
	--	0.50	--	--	--	462	0.011	63	0.001
	--	1.50	--	--	--	19,038	0.437	9,628	0.221
	-	2.50	--	--	--	26,335	0.605	32,503	0.746
	--	3.50	--	--	--	29,086	0.668	60,214	1.382
	--	4.50	--	--	--	31,938	0.733	90,726	2.083
	-	5.50	--	--	-	34,891	0.801	124,140	2.850
	--	6.50	--	--	--	37,939	0.871	160,555	3.686
	--	7.50	--	--	--	41,102	0.944	200,076	4.593
	-	8.50	--	--	-	44,366	1.019	242,810	5.574
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	-		--	--	-				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				
	--		--	--	--				
	--		--	--	--				
	--		--	--	-				

Detention Basin Outlet Structure Design

UD-Detention, Version 3.07 (February 2017)

User Input: Stage and Total Area of Each Orifice Row (numbered from lowest to highest)

	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)
Stage of Orifice Centroid (ft)	0.00	1.56	3.13					
Orifice Area (sq. inches)	4.18	4.18	4.18					

	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)
Stage of Orifice Centroid (ft)								
Orifice Area (sq. inches)								

User Input: Vertical Orifice (Circular or Rectangular)			ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
	Not Selected	Not Selected	
Invert of Vertical Orifice $=$	N/A	N/A	
Depth at top of Zone using Vertical Orifice $=$	N/A	N/A	ft (relative to basin bottom at Stage $=0 \mathrm{ft}$)
Vertical Orifice Diameter $=$	N/A	N/A	inches

Calculated Parameters for Vertical Orifice		
	Not Selected	Not Selected
Vertical Orifice Area $=$	N/A	N/A
Vertical Orifice Centroid $=$	N/A	N/A

Surctince VoL 0.3% of waeV

$$
\text { MICROPOA } 12589 F T>10 \text { SQFT. }
$$

\qquad
Inttial SurahanceE
Proposed WQCV $=0.216$ Ac-ft $x 0.003=0.000648 \times 43560=28.23$ 影
FUTLRE WQCV $=0.338$ ACFFf $\times 0.003=0.00104 \times 43560=44.17 \mathrm{ft}^{3}$ MICROPOOL ACTUAL LZ It $\omega \times 1045 \mathrm{LL} \times 0.42$ SEDEEP $=52.1 \mathrm{ft}^{3}>44.1784^{3}$ OK min forebay Vounme 3% or WQCV

$$
\begin{aligned}
& \text { Proposed wack }=0.216 \text { AC-FT } \times 0.03=0.00648 \times 43560^{2}=282 \mathrm{Ft} \\
& \text { DP: } 3 \text { =6.1cfs } D P: 4=33 \text { zefs } \\
& 6.1 / 33.7=0.18 \cong 18 \% \\
& 282 \mathrm{st}^{3} \times 0.18=50.76 \mathrm{ft}^{3} \cong 51 \mathrm{ft}^{2} \mathrm{DP} 3 \\
& 282 \mathrm{ft}^{3}-51 \mathrm{ft}^{3}=231 \mathrm{ft}{ }^{3} \mathrm{DP} 1
\end{aligned}
$$

Future WQCV $=0.338 \mathrm{AC}-8 t \times 0.03=0.0101 \times 43560=4428 \mathrm{st}^{5}$

$$
\begin{aligned}
& \text { DP } 3=6.1 \mathrm{df} \quad \text { DP4 }=52.1 \text { Efs } \\
& 6.1 / 52.1=0.12 \cong 12 \% \\
& 4428+3 \times 0.12=53.04 \mathrm{Ct}^{3} \text { DP3 } \\
& 4428 t^{3}-538 t^{3}=389 \mathrm{ft}^{3} \quad D P 1
\end{aligned}
$$

FOREBAYACTURL DPI $=277 \mathrm{saft} 1.42 \mathrm{ft}=393 \mathrm{ft}^{3}>399 \mathrm{ft}^{3} \mathrm{Ok}$
Foceray Atruat $P 83=101 \mathrm{sat} \times 0.67 \mathrm{st}^{\circ}=08 \mathrm{ft}^{3} \geq 53.04 \mathrm{ft}^{3} \mathrm{Ot}$
FocerAy Deprt DPI $=2$ St \& $D P 3=0,67$ it $<30^{\prime \prime}$ Ok
FEDEBAY RELEASE ANO COHFTGURATIZN RELEASE 2% OFMNDETARNEO 100yR PEAK Drseltarce
100YR PFAKDFSCHARGE $Q_{N 0 O}=23.7 \mathrm{css} \times 0.02=0.47 \mathrm{Cfs}$
$0.47 \mathrm{cts} \times 12 \%=0.06 \mathrm{cts}$ DP 3
$0.47 \mathrm{cfs}-0.056 \mathrm{cfs}=0.41 \mathrm{cfs}$ DPI

$$
\begin{aligned}
& Q=C L H^{3 / 2} \quad C=3.1 \\
& D P 1=Q-3.1\left(0.083^{\prime}\right)\left(1.42^{1}\right)^{3 / 2}=0.44 \mathrm{cts} \cong 0.41 \mathrm{cts} \text { ok } \\
& D P_{3}=Q=3.1\left(0.042^{4}\right)(0.67)^{3 / 2}=0.07 \mathrm{cts} \cong 0.06 \mathrm{css} 0 \mathrm{OK}
\end{aligned}
$$

\qquad
DATE: \qquad

Size LF channer
Pear
Totan trickel four occurs in Funee Wint os-1
Revelopment (Hows to NE ChanNer inkRENSE from)
29.1 CFs to 46.3 cFE
SW Forebay $=6.1 \times 0.02=0.122 \mathrm{cFs}$
NE Foerbay (Future) 47.1 \& $0.02-0.942 \mathrm{cFs}$
Pear Combined (2% of Contribuma looyr)

$$
\begin{array}{ll}
=\quad 0.122 \\
+\quad 0.942
\end{array}
$$

Solued in $\quad 1.064$ CFS

$$
Q_{\text {capority }}=3.14 \text { CFS }>1.064 \text { CFs or }
$$

3'w Riprap Rumpown at Ne Corner of Pond

Copyright 2000 Dr. King Fang, Department of Civil Engineering, Lamar University.

$$
D P 1 Q_{100}=47.1 \text { cts (Future) }
$$

Riprap Rundown Pond I

Copyright 2000 Dr. King Fang, Department of Civil Engineering, Lamar University.

Concrete Access Road Rundown into Pond 1

4' Triangular LF Channel-SW Forebay

Project Description

Friction Method	Manning Formula
Solve For	Normal Depth

Input Data		
Roughness Coefficient	0.013	
Channel Slope	0.00500	$\mathrm{ft} / \mathrm{ft}$
Left Side Slope	4.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Right Side Slope	4.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Discharge	0.26	ft / s

Results

Normal Depth	0.20	ft
Flow Area	0.15	ft^{2}
Wetted Perimeter	1.62	ft
Hydraulic Radius	0.10	ft
Top Width	1.57	ft
Critical Depth	0.19	ft
Critical Slope	0.00560	$\mathrm{ft} / \mathrm{ft}$
Velocity	1.69	ft / s
Velocity Head	0.04	ft
Specific Energy	0.24	ft
Froude Number	0.95	

Flow Type Subcritical

GVF Input Data

| Downstream Depth | 0.00 ft |
| :--- | ---: | :--- |
| Length | 0.00 ft |
| Number Of Steps | 0 |

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft / s
Upstream Velocity	Infinity	ft / s
Normal Depth	0.20	ft
Critical Depth	0.19	ft
Channel Slope	0.00500	$\mathrm{ft} / \mathrm{ft}$
Critical Slope	0.00560	$\mathrm{ft} / \mathrm{ft}$

Bentley Systems, Inc. Haestad Methods SolBantleyEhtorMaster V8i (SELECTseries 1) [08.11.01.03]

4' Triangular LF Channel-NW Forebay

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00500	$\mathrm{ft} / \mathrm{ft}$
Left Side Slope		4.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Right Side Slope		4.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Discharge		0.58	$\mathrm{ft} 3 / \mathrm{s}$
Results			
Normal Depth		0.27	ft
Flow Area		0.28	ft^{2}
Wetted Perimeter		2.19	ft
Hydraulic Radius		0.13	ft
Top Width		2.12	ft
Critical Depth		0.26	ft
Critical Slope		0.00503	$\mathrm{ft} / \mathrm{tt}$
Velocity		2.06	ft / s
Velocity Head		0.07	ft
Specific Energy		0.33	ft
Froude Number		1.00	
Flow Type	Subcritical		

GVF Input Data

| Downstream Depth | 0.00 ft |
| :--- | ---: | :--- |
| Length | 0.00 ft |
| Number Of Steps | 0 |

GVF Output Data

Upstream Depth	0.00	ft
Profile Description	0.00	ft
Profile Headloss	Infinity	ft / s
Downstream Velocity	Infinity	ft / s
Upstream Velocity	0.27	ft
Normal Depth	0.26	ft
Critical Depth	0.00500	$\mathrm{ft} / \mathrm{ft}$
Channel Slope	0.00503	$\mathrm{ft} / \mathrm{ft}$

Bentley Systems, Inc. Haestad Methods SolBantleyEhtorMaster V8i (SELECTseries 1) [08.11.01.03]

4' Triangular LF Channel-Combined

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00500	$\mathrm{ft} / \mathrm{ft}$
Left Side Slope		4.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Right Side Slope		4.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Discharge		0.84	$\mathrm{ft} 3 / \mathrm{s}$
Results			
Normal Depth		0.30	ft
Flow Area		0.37	ft^{2}
Wetted Perimeter		2.51	ft
Hydraulic Radius		0.15	ft
Top Width		2.44	ft
Critical Depth		0.31	ft
Critical Slope		0.00479	$\mathrm{ft} / \mathrm{tt}$
Velocity		2.26	ft / s
Velocity Head		0.08	ft
Specific Energy		0.38	ft
Froude Number		1.02	
Flow Type	Supercritical		

GVF Input Data

| Downstream Depth | 0.00 ft |
| :--- | ---: | :--- |
| Length | 0.00 ft |
| Number Of Steps | 0 |

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft / s
Upstream Velocity	Infinity	ft / s
Normal Depth	0.30	ft
Critical Depth	0.31	ft
Channel Slope	0.00500	$\mathrm{ft} / \mathrm{ft}$
Critical Slope	0.00479	$\mathrm{ft} / \mathrm{ft}$

4' Triangular LF Channel-Combined Future

Project Description

Friction Method	Manning Formula		
Solve For	Normal Depth		
Input Data			
Roughness Coefficient		0.013	
Channel Slope		0.00500	$\mathrm{ft} / \mathrm{ft}$
Left Side Slope		4.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Right Side Slope		4.00	$\mathrm{ft} / \mathrm{ft}(\mathrm{H}: \mathrm{V})$
Discharge		1.18	$\mathrm{ft}^{3} / \mathrm{s}$
Results			
Normal Depth		0.35	ft
Flow Area		0.48	ft^{2}
Wetted Perimeter		2.86	ft
Hydraulic Radius		0.17	$f t$
Top Width		2.77	ft
Critical Depth		0.35	$f t$
Critical Slope		0.00458	$\mathrm{ft} / \mathrm{ft}$
Velocity		2.46	ft / s
Velocity Head		0.09	$f t$
Specific Energy		0.44	$f t$
Froude Number		1.04	
Flow Type	Supercritical		

GVF Input Data

| Downstream Depth | 0.00 ft |
| :--- | ---: | :--- |
| Length | 0.00 ft |
| Number Of Steps | 0 |

GVF Output Data

Upstream Depth	0.00	ft
Profile Description		
Profile Headloss	0.00	ft
Downstream Velocity	Infinity	ft / s
Upstream Velocity	Infinity	ft / s
Normal Depth	0.35	ft
Critical Depth	0.35	ft
Channel Slope	0.00500	$\mathrm{ft} / \mathrm{ft}$
Critical Slope	0.00458	$\mathrm{ft} / \mathrm{ft}$

Bentley Systems, Inc. Haestad Methods SolidinterehderMaster V8i (SELECTseries 1) [08.11.01.03]

Copyright 2000 Dr. King Fang, Department of Civil Engineering, Lamar University.

$$
\begin{aligned}
& \text { DP } 4 \quad Q_{100}=52.1 \text { ats (Furies) } \\
& \text { SPILLWAY RUNDOWN POND } ~
\end{aligned}
$$

Material and Performance Specification Sheet

SC150 Erosion Control Blanket

The extended-term double net erosion control blanket shall be a machine-produced mat of 70% agricultural straw and 30% coconut fiber with a functional longevity of up to 24 months. (NOTE: functional longevity may vary depending upon climatic conditions, soil, geographical location, and elevation). The blanket shall be of consistent thickness with the straw and coconut evenly disitributed over the entire area of the mat. The blanket shall be covered on the top side with a heavyweight photodegradable polypropylene netting having ultraviolet additives to delay breakdown and an approximate $0.63 \times 0.63(1.59 \times 1.59 \mathrm{~cm})$ mesh, and on the bottom side with a lightweight photodegradable polypropylene netting with an approximate 0.50×0.50 in $(1.27 \times 1.27 \mathrm{~cm})$ mesh. The blanket shall be sewn together on 1.50 inch $(3.81 \mathrm{~cm})$ centers with degradable thread.
The SC150 shall meet requirements established by the Erosion Control Technology Council (ECTC) Specification and the US Department of Transportation, Federal Highway Administration's (FHWA) Standard Specifications for Construction of Roads and Bridges on Federal Highway Projects, FP-03 Section 713.17 as a type 3.B Extended-term Erosion Control Blanket.
The SC150 is also available with the DOT System ${ }^{\text {TMM }}$, which consists of installation staple patterns clearly marked on the erosion control blanket with environmentally safe paint. The blanket shall be manufactured with a colored thread stitched along both outer edges (approximately $2-5$ inches [5 12.5 cm] from the edge) as an overiap guide for adjacent mats.

Matrix		
	70% Straw Fiber	30% Coconut Fiber
Nettings	Top - Heavyweight photodegradabie with UV additives	$0.35 \mathrm{lbs} / \mathrm{yd}^{2}\left(0.19 \mathrm{lb} / 1000 \mathrm{~kg} / \mathrm{m}^{2}\right)$
	Bottom - Lightweight Photodegradable	$\left.1.5 \mathrm{~kg} / \mathrm{m}^{2}\right)$
Thread	Degradable	

SC150 is available in the following standard roll sizes:

Width	$6.67 \mathrm{ft}(2.03 \mathrm{~m})$	$16 \mathrm{ft}(4.87 \mathrm{~m})$
Length	$108 \mathrm{ft}(32.92 \mathrm{~m})$	$108 \mathrm{ft}(32.92 \mathrm{~m})$
Weight $\pm 10 \%$	$44 \mathrm{lbs}(19.95 \mathrm{~kg})$	$105.6 \mathrm{lbs}(47.9 \mathrm{~kg})$
Area	$80.0 \mathrm{yd}^{2}\left(66.9 \mathrm{~m}^{2}\right)$	$192 \mathrm{yd}^{2}\left(165.5 \mathrm{~m}^{2}\right)$

Index Value Properties:

Property	Test Method	Typical
Thickness	ASTM D6525	0.39 in (9.91 mm)
Resiliency	ECTC Guidelines	75\%
Water Absorbency	ASTM D1117	285\%
Mass/Unit Area	ASTM 6475	11.44 oz/yd ${ }^{2}\left(388 \mathrm{~g} / \mathrm{m}^{2}\right)$
Swell	ECTC Guidelines	30\%
Smolder Resistance	ECTC Guidelines	Yes
Stiffness	ASTM D1388	1.11 oz-in
Light Penetration	ECTC Guidelines	8.7\%
Tensile Strength -MD	ASTM D6818	$146.6 \mathrm{lbs} / \mathrm{f}$ ($2.17 \mathrm{kN} / \mathrm{m}$)
Elongation - MD	ASTM D6818	26.9\%
Tensile Strength - TD	ASTM D6818	$147.6 \mathrm{lbs} / \mathrm{ft} \mathrm{(2.19} \mathrm{kN/m)}$
Elongation - TD	ASTM D6818	25.2\%

Bench Scale Testing* (NTPEP):

Test Method	Parameters	Resulis
ECTC Method 2 Rainfall	50 mm (2 in)/ hr for 30 min	$\mathrm{SLR}^{* *}=5.47$
	100 mm (4 in)/hr for 30 min	$\mathrm{SLR}^{* *}=5.67$
	$150 \mathrm{~mm}(6 \mathrm{in}) / \mathrm{hr}$ for 30 min	SLR** $=5.88$
ECTC Method 3 Shear Resistance	Shear at 0.50 inch soil loss	$2.72 \mathrm{lbs} / \mathrm{ft}^{2}$
ECTC Method 4 Germination	Top Soil, Fescue, 21 day incubation	538\% improvement of biomass
*Bench Scale lests should nol be used for design purposes		

Performance Design Values:

Maximum Permissible Shear Stress		
Unvegetated Shear Stress	$2.00 \mathrm{lbs} / \mathrm{ft}^{2}(96 \mathrm{~Pa})$	
Unvegetated Velocity	$8.00 \mathrm{ft/s}(2.44 \mathrm{~m} / \mathrm{s})$	

Slope Design Data: C Factors			
	Slope Gradients (S)		
Slope Length (L)	$\leq 3: 1$	$3: 1-2: 1$	$\geq 2: 1$
$\leq 20 \mathrm{ft}(6 \mathrm{~m})$	0.001	0.048	0.100
$20-50 \mathrm{ft}$	0.051	0.079	0.145
$\geq 50 \mathrm{ft}(15.2 \mathrm{~m})$	0.10	0.110	0.190

Roughness Coefficients- Unveg.	
Flow Depth	Manning's n
$\leq 0.50 \mathrm{ft}(0.15 \mathrm{~m})$	0.050
$0.50-2.0 \mathrm{ft}$	$0.050-0.018$
$\geq 2.0 \mathrm{ft}(0.60 \mathrm{~m})$	0.018

Product Participant of:

\qquad
\qquad
Size STruma future Pound

FRom UDFCD $12-33$ STORAGE

$$
\begin{aligned}
& Q_{100}=52.1 \mathrm{cts} \quad C=3.0 \\
& \begin{array}{l}
Q 100=52.1 c t s \quad C=3.0 \\
E \text { ON } 12-20 \quad Q=C\left(H^{1.5} \quad Q=3.0(45)(0.5)^{10}=47.72 \approx 48 \mathrm{ds}\right.
\end{array} \\
& \text { EON } 12-21 \quad Q=1 / 5 C z H^{2.5} \quad Q=z / 5 \text { (in) }(10)(0.5)^{2.5}=2.12 \text { dy } 3 / 2 \text { chs } \\
& Q_{T}=48 \mathrm{cfs}^{f}+2(2.1) \mathrm{cfs}=52.2 \mathrm{e}^{\mathrm{fa}}>52.1 \mathrm{cts} \text { OK }
\end{aligned}
$$

HEC-RAS HEC-RAS 5.0.3 September 2016

U.S. Army Corps of Engineers

Hydrologic Engineering Center 609 Second Street
Davis, California


```
PROJECT DATA
Project Title: existingswale
Project File : existingswale.prj
Run Date and Time: 12/4/2017 3:05:07 PM
Project in English units
```

PLAN DATA
Plan Title: swale analysis
Plan File : 0:\43095A\Tim Emick \Documents \Reports \Drainage \HEC-RAS \backslash existingswale.p01
Geometry Title: existingswale
Geometry File : 0:\43095A\Tim Emick \Documents \backslash Reports \backslash Drainage $\backslash H E C-R A S \backslash e x i s t i n g s w a l e . g 01$
Flow Title : ex flow w timberline
Flow File : o: \43095A\Tim Emick\Documents \Reports \Drainage\HEC-RAS \backslash existingswale.f01
Plan Summary Information:
Number of: Cross Sections $=7$ Multiple Openings $=0$
Culverts $=0$ Inline Structures $=0$

Bridges $=0$ Lateral Structures $=0$
Computational Information
Water surface calculation tolerance $=0.01$
Critical depth calculation tolerance $=0.01$
Maximum number of iterations $=20$
Maximum difference tolerance $=0.3$
Flow tolerance factor $=0.001$
Computation Options
Critical depth computed only where necessary
Conveyance Calculation Method: At breaks in n values only
Friction Slope Method: Average Conveyance
Computational Flow Regime: Mixed Flow

FLOW DATA
Flow Title: ex flow w timberline
Flow File : 0:\43095A\Tim Emick \Documents \Reports \Drainage \HEC-RAS \backslash existingswale.f01
Flow Data (cfs)

River	Reach	RS	5 YR	$100 Y R$
existing swale	existing swale	1074.48	5.2	84.2
existing swale	existing swale	620.87	11.6	126.9
existing swale	existing swale	400	12.1	130.6
existing swale	existing swale	175.88	13.5	139.7

Boundary Conditions

River	Reach	Profile	Upstream	Downstream
existing swale existing swale 5 YR	Normal $\mathrm{S}=0.022$	Normal $\mathrm{S}=0.02$		

GEOMETRY DATA
Geometry Title: existingswale
Geometry File : o:\43095A\Tim Emick\Documents \Reports\Drainage\HEC-RAS \existingswale.g01


```
RIVER: existing swale
REACH: existing swale RS: 400
INPUT
Description:
```



```
        0 6522.564.610001 6522.47 22.67 6522.23 33.53 6521.75 52.72 6521.63
        llllllllllllll}606521.57 64.2 6521.54 82.04 6521.4492.49001 6521.58 141.05 6521.75
    142.01 6521.75 142.24 6521.82 
\begin{tabular}{ccrclr} 
Manning's & n Values & \multicolumn{5}{l}{\begin{tabular}{l} 
num \(=\) \\
Sta
\end{tabular}} & n Val & Sta & n Val & Sta & n Val \\
0 & .035 & 0 & .03 & 145 & .035
\end{tabular}
Bank Sta: Left Right Lengths: Left Channel Right Coeff Contr. Expan.
CROSS SECTION
```



```
RIVER: existing swale
REACH: existing swale RS: 28.36
INPUT
Description:
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Station & Elevation & Data & num= & 15 & & & & & \\
\hline Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev & Sta & Elev \\
\hline 0 & 6521.5232 & . 07001 & 6521.08 & 36.97 & 6521.01 & 45.59 & 6520.75 & 61.39 & 6520.37 \\
\hline 86.45 & 6519.71 & 95.58 & 6519.39 & 102.08 & 6519.42 & 106.63 & 6519 & 119.68 & 6518.2 \\
\hline 24.7 & 8.04 & 125 & 6518.02 & 136.36 & 6518.56 & 140.39 & 6518.81 & 149.97 & 6518.72 \\
\hline
\end{tabular}
\begin{tabular}{ccrcrr} 
Manning's & n Values & & \multicolumn{1}{l}{ num \(=\)} & 3 & \\
Sta & n Val & Sta & n Val & Sta & n Val \\
0 & .035 & 0 & .03 & 149.97 & .035
\end{tabular}
Bank Sta: Left Right Coeff Contr. Expan.
```

SUMMARY OF MANNING'S N VALUES
River:existing swale

Reach	River Sta.	n 1	n 2	n 3
existing swale	1074.48	.035	.03	.035
existing swale	902.81	.035	.03	.035
existing swale	789.03	.035	.03	.035
existing swale	620.87	.035	.03	.035
existing swale	400	.035	.03	.035
existing swale	175.88	.035	.03	.035
existing swale	28.36	.035	.03	.035

SUMMARY OF REACH LENGTHS

```
River: existing swale
```

Reach River Sta. Left Channel Right

				existingswale.rep
existing swale	1074.48	171.67	171.67	171.67
existing swale	902.81	113.78	113.78	113.78
existing swale	789.03	168.16	168.16	168.16
existing swale	620.87	220.87	220.87	220.87
existing swale	400	224.12	224.12	224.12
existing swale	175.88	147.52	147.52	147.52
existing swale	28.36			

SUMMARY OF CONTRACTION AND EXPANSION COEFFICIENTS River: existing swale

Reach	River Sta.	Contr.	Expan.
existing swale	1074.48	.1	.3
existing swale	902.81	.1	.3
existing swale	789.03	.1	.3
existing swale	620.87	.1	.3
existing swale	400	.1	.3
existing swale	175.88	.1	.3
existing swale	28.36	.1	.3

HEC-RAS Plan: exsw River: existing swale Reach: existing swale

Reach	River Sta	Profile	Q Total	Min Ch El	W.S. Elev	Max Chl Dpth	Crit W.S.	E.G. Elev	E.G. Slope	Vel Chnl	Flow Area	Top Width	Shear Chan	Froude \# Chl
			(cfs)	(ft)	(ft)	(ft)	(ft)	(ft)	(ft/ft)	(ft/s)	(sq ft)	(ft)	(lb/sq ft)	
existing swale	1074.48	5YR	5.20	6526.23	6526.87	0.64	6526.67	6526.90	0.003696	1.46	3.57	10.45	0.08	0.44
existing swale	1074.48	100YR	84.20	6526.23	6528.01	1.78	6527.69	6528.23	0.005784	3.82	22.03	21.10	0.37	0.66
existing swale	902.81	5YR	5.20	6525.27	6525.69	0.42	6525.66	6525.76	0.015218	2.15	2.42	11.55	0.20	0.83
existing swale	902.81	100YR	84.20	6525.27	6526.36	1.09	6526.36	6526.65	0.017093	4.28	19.66	36.48	0.57	1.03
existing swale	789.03	5YR	5.20	6524.30	6524.59	0.29		6524.62	0.006992	1.38	3.77	19.65	0.08	0.55
existing swale	789.03	100YR	84.20	6524.30	6525.43	1.13	6525.14	6525.53	0.004633	2.60	32.35	47.61	0.20	0.56
existing swale	620.87	5YR	11.60	6523.13	6523.72	0.59	6523.57	6523.75	0.004583	1.48	7.86	26.87	0.08	0.48
existing swale	620.87	100YR	126.90	6523.13	6524.45	1.32	6524.27	6524.56	0.006887	2.66	47.79	91.93	0.22	0.65
existing swale	400	5YR	12.10	6521.44	6521.67	0.23	6521.67	6521.71	0.025559	1.70	7.12	71.62	0.16	0.95
existing swale	400	100YR	130.60	6521.44	6521.97	0.53	6521.97	6522.15	0.019209	3.35	38.96	114.13	0.41	1.01
existing swale	175.88	5YR	13.50	6519.49	6519.80	0.31	6519.72	6519.81	0.004447	0.93	14.50	96.91	0.04	0.42
existing swale	175.88	100YR	139.70	6519.49	6520.31	0.82	6520.04	6520.35	0.002691	1.67	83.55	159.13	0.09	0.41
existing swale	28.36	5YR	13.50	6518.02	6518.48	0.46	6518.47	6518.60	0.019987	2.77	4.87	19.54	0.31	0.98
existing swale	28.36	100YR	139.70	6518.02	6519.19	1.17	6519.19	6519.53	0.015570	4.65	30.01	45.39	0.64	1.01

OFF-SITE SWALE HEC-RAS WORK MAP

$4+00.00$
$\frac{8}{+}$

$0+28.36$
81

GRADING AND EROSION CONTROL PLAN

GRADING AND EROSION CONTROL NOTES:

 Ind

 cink faxio

M.
为

oweer TIMBERLINE STORAGE YARD
Ex wn cont
mop man cowt

PROPOSED/EXISTING DRAINAGE MAP

