MEMORANDUM

DATE: \quad March 11, 2021

TO:	Kari Parsons, PCD-Project Manager
FROM:	Jeff Rice, PCD-Engineering $719-520-7877$
SUBJECT:	PUDSP-21-002 - Skyline at Lorson Ranch (with EGP) First Submittal

Transportation / Traffic Impact Study

1. The developer shall participate in a fair and equitable manner in the design and construction of intersection improvements at the intersections of Fontaine Boulevard and Old Glory Drive. Address how the intersection improvements will be designed and provided for (set up escrow account?) and when they will be needed relative to The Hills at Lorson Ranch Filing No. 1 and Skyline at Lorson Ranch developments. LSC Response: A paragraph has been added to the updated TIS report to address this comment.
2. Should escrow be provided for the Fontaine Blvd. / Carriage Meadows Dr. intersection from this development?
LSC Response: No. A paragraph has been added to the updated TIS report to address this comment.
3. Note: The TIS generally complies with Appendix B of the ECM. Additional items specified by the ECM but not addressed in this TIS, including updated analyses of Fontaine Blvd. and Lorson Blvd. to Marksheffel Road, and the respective intersections may be addressed in the TIS for the project called "The Ridge at Lorson Ranch" (EA-21045).

LSC Response: Comment noted.
4. Note: The collector and arterial road improvements required by The Hills at Lorson Ranch (SF-21-010) need to be collateralized or completed prior to recording of a plat within the Skyline at Lorson Ranch PUDSP area. LSC Response: Comment noted.
5. See TIS redlines for additional comments. (Also see comments on SF-21-010).

LSC Response: See attached responses to TIS redline comments.

Skyline at Lorson Ranch (LSC \#204250)
 January 21, 2021

Traffic Impact Analysis Engineering Review

Traffic Engineer's Statement

03/11/2021 2:04:37 PM
dsdrice
JeffRice@elpasoco.com
(719) 520-7877

EPC Planning \& Community
Development Department

1
This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

LSC Responses to TIS Redline Comments

RECENT AREA TRAFFIC STUDIES

Appendix Table 1 includes a list of other recent traffic studies conducted by LSC within the Lorson Ranch development and in the vicinity.

This site was previously included in The Hills at Lorson Ranch Full Traffic Impact and Access Analysis (TIA) by LSC Transportation Consultants, Inc. dated October 27, 2020 as traffic analysis zone 45. That TIA assumed this zone would be developed with 76 single-family homes.

LAND USE AND ACCESS

Land Use

Skyline at Lorson Ranch is planned to include 85 lots for single-family homes. This is nine more single-family homes than was assumed in the Hills at Lorson Ranch TIA. Figure 2 shows the proposed site plan.

Street Connections

Fontaine Boulevard and Lorson Boulevard are planned to be extended east to a new north-south collector (Walleye Drive) between as part of The Hills at Lorson Ranch. A new east-west collector (Grayling Drive) is planned to be constructed between Lamprey Drive and the future Walleye Drive as part of The Hills at Lorson Ranch. An additional section of Grayling Drive between Walleye Drive and the north boundary of Lorson Ranch is planned as part of the currently-proposed Skyline at Lorson Ranch. Two full-movement access points are proposed to Grayling Drive. Figure 2 shows the proposed access spacing.

Pedestrian and Bicycle Route Analysis

Grand Mountain K-8 School is located southwest of the site. The subdivision streets will include sidewalks and connecting streets within Lorson Ranch also have sidewalks. Trail corridors are planned along the powerline easement, the East Fork of Jimmy Camp Creek, and along Jimmy Camp Creek. Also, Marksheffel Road and Fontaine Boulevard have paved shoulders to accommodate cyclists. Lorson Boulevard has been constructed with wider travel lanes (and a striped left-turn median) to allow for shared lane use with experienced cyclists (the adjacent sidewalk will accommodate children and families, as well as cyclists less experienced at cycling in traffic).

Sight Distance Analysis

Figure 3 shows sight-distance analysis at the proposed public street intersections (note: this north street connection would become an "intersection" in the future if/when Grayling Drive is extended north (with future development to the north). Based on a design speed of 40 miles per

Page: 5
Number: $1 \quad$ Author: dsdrice \quad Subject: Highlight \quad Date: 3/11/2021 3:22:33 PM -06'00'
hour (mph) and the criteria contained in Table 2-21 of the ECM, the required intersection sight distance at the access points is 445 feet. The required stopping sight distance from ECM Table 217 is 305 feet. Figure 3 shows the areas between the sight distance lines and the curb line that will need to be kept free of other obstructions (such as rear privacy fencing, landscaping, and backyard/patio amenities) that would restrict the drivers' line of sight. Landscaping should be low - about 18 inches or lower in height - to the east of the passenger vehicle lines of sight shown. Please refer to ECM Sections 2.3.6.G.1 and 2. Note: If the initial intersection traffic control (with construction of this intersection) is all-way, stop-sign control (AWSC) and the AWSC remains in-place in perpetuity, the required sight distance lines of sight would be outside the lot lines.

STREET AND TRAFFIC CONDITIONS

Area Streets

The key area streets are shown in Figure 1 and are described below. Copies of the 2016 El Paso County Major Transportation Corridors Plan (MTCP) 2040 Roadway Plan and 2016 MTCP 2060 Corridor Preservation Plan, with the site location identified on them, have been attached to this report.

The Hills 2

- Fontaine Boulevard is designated as a four-lane Urban Principal Arterial east of Marksheffel Road and has been constructed as such from Marksheffel Read east to Old Glory Drive/Stingray Lane. Fontaine Boulevard has recently been constructed east of Old Glory Drive/Stingray Lane adjacent to the Lorson Ranch East development as an interim Urban Non-Residential Collector Street within 100 feet of right-of-way. As part d3 thas development, Fontaine Boulevard will be extended east from its gurrent terminus adjacent to the site with the same interim cross section and right-of-way. The posted speed limit on Fontaine Boulevard is 35 mph just east of (and a short,distance west of) Marksheffel Road. The speed limit increases to 45 mph just east of the bridge over Jimmy Camp Creek and then decreases back to 35 mph just east of Old Glory (east)/Stingray.
- Lorson Boulevard currently extends east from Marksheffel Road to Lamprey Drive. Lorson Boulevard is classified as an Urban Non-Residential Collector Street (modified for a 44-foot street width, rather than the standard 52 -foot street width) with an 80 -foot-wide right-of-way between Marksheffel Road and Stingray Lane and as an Urban Residential Collector Street (modified for a 44-foot street width, rather than the standard 52-foot street width) with a 64 to 72 -foot-wide right-of-way between Stingray Lane and Lamprey Drive. As part of this Gevelopment, Lorson Boulevard will be constructed east of Lamprey Drive adjacent to the site as a standard Urban Residential Collector with a 60-foot-wide right-ofway.
- Lamprey Drive is an Urban Residential Collector which currently extends north from Lorson Boulevard to Shavers Drive just north of Fontaine Boulevard. Lamprey Drive is planned to be constructed east to the future Walleye Drive as part of the Hills at Lorson Ranch. The

Page: 6

E, Number: 1	Author: dsdrice	Subjec	Date: 3/11/2021 3:23:53 P
Address the sharp curve/knuckle			
S Author: jchodsdon Subject: Sticky Note			Date: 6/29/2021 4:39:01 PM

LSC Response: Addressed in the updated TIS report as requested.
馬, Number: $2 \quad$ Author: dsdrice \quad Subject: Callout Date: 3/11/2021 3:25:25 PM -06'00'

The Hills
5 Author: jchodsdon Subject: Sticky Note Date: 6/29/2021 4:39:51 PM
LSC Response: This change has been made in the updated TIS report as requested.
T N Number: $3 \quad$ Author: dsdrice \quad Date: $3 / 11 / 20213: 24: 22$ PM -06'00'

ROADWAY IMPROVEMENT FEE

This project will be required to participate in the El Paso County Road Improvement Fee Program. The Hills at Lorson Ranch will join the ten-mil PID. The current ten-mil PID building permit fee portion associated with this option is $\$ 1,221$ per single-family dwelling unit. Based on 86 lots, the total building permit fee would be $\$ 103,785$. Note: This is based on the current rate, which is subject to change. El Paso County updates this rate periodically.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

- The site is projected to generate about 802 new vehicle trips on the average weekday, with about half entering and half exiting the site. During the morning peak hour, about 16 vehicles would enter and 47 vehicles would exit the site. During the afternoon peak hour, about 53 vehicles would enter and 31 vehicles would exit the site.

Intersection Sight Distance

- Please refer to the Sight Distance section of this report for areas of that site that need to allow for the required intersection sight distance lines of sight.

See redlined exhibit

Projected Levels of Service \& Intersection Traffic Control Recommendations

- The intersection of Fontaine/Lamprey was recently constructed as a modern one-lane roundabout. All movements at this intersection are projected to operate at LOS D or better during the peak hours, based on the projected short-term and 2040 total traffic volumes.
- The south full-movement site access point to Grayling Drive is projected to operate at a satisfactory level of service as a two-way, stop-sign-controlled intersection.

Street Classifications

- All of the streets within Skyline at Lorson Ranch should be classified as Urban Local. See Figure 10 for the recommended classifications of the adjacent roadways.

Page: 10

\equiv Number: 1	Author: dsdrice	Subject: Text Box	Date: 3/11/2021 4:03:52 PM -06'00'
See redlined exhibit			
Number: 2	Author: dsdrice	Subject: Cloud+	Date: 3/11/2021 4:03:15 PM -06'00'
delete?			

SAuthor: jchodsdon Subject: Sticky Note Date: 6/29/2021 4:41:34 PM
LSC Response: Deleted in the updated TIS.

Grayling Drive Striping

- Grayling Drive potentially be striped with a single dual yellow centerline stripe instead of a center painted two-way left-turn "median" South of Lamprey drive as the through and left-turning volumes are projected to be relatively low. No striping is needed on Grayling Drive north of Lamprey Drive.

> See comment letter regarding offsite improvements.

We trust this traffic impact analysis will assist you in gaining approval of the proposed Skyline at Lorson Ranch residential development. Please contact me if you have any questions or need further assistance.

Sincerely,

LSC TRANSPORTATION CONSULTANTS, INC.

By
Kirstin D. Ferrin, P.E.
Senior Transportation Engineer
JCH:KDF:jas

Enclosures: Table 1

Figures 1-10
Appendix Tables 1-3
Level of Service Reports
MTCP Maps

Page: 11

$$
\equiv \text { Number: } 1 \quad \text { Author: dsdrice } \quad \text { Subject: Text Box } \quad \text { Date: 3/11/2021 4:04:24 PM -06'00' }
$$

See comment letter regarding offsite improvements.

Page: 17
End $\frac{\text { Number: } 1 \quad \text { Author: dsdrice } \quad \text { Subject: Callout } \quad \text { Date: } 3 / 11 / 2021 \text { 3:21:14 PM -06'00' }}{\text { will reduced speed limit/curve signage be used here? }}$

5 Author: jchodsdon Subject: Sticky Note Date: 6/29/2021 4:48:30 PM
LSC Response: No, as the centerline radius meets ECM criteria for an Urban Local knuckle - thus the design speed is the same. The sight distance is addressed in the updated TIS report.
巨 \backslash Number: $2 \quad$ Author: dsdrice \quad Subject: Callout Date: 3/11/2021 3:20:00 PM -06'00'
label sight lines from these intersections
S Author: jchodsdon Subject: Sticky Note Date: 6/29/2021 4:46:10 PM
LSC Response: Added and addressed in the updated TIS report as requested. Also, sight distance easements have been added to the plan.

Number: $3 \quad$ Author: dsdrice Subject: Callout Date: 3/11/2021 3:19:22 PM -06'00'
use the current development plan
5 Author: jchodsdon Subject: Sticky Note Date: 6/29/2021 4:48:02 PM
LSC Response: Updated as requested.

Appendix Table 1 Area Trafffic Impact Studies by Lsc Skyline at Lorson Ranch				
Study	Date			
Lorson Ranch Sketch Plan Amendment 2 Traffic Impact and Access Analysis	December 17, 2018			
Carriage Meadows South at Lorson Ranch Filing No. 1 Updated Traffic Impact Analysis	August 14, 2017			
Carriage Meadows North at Lorson Ranch Filing No. 1 Updated Traffic Impact Analysis	January 29, 2017			
Lorson Ranch East Updated Traffic Impact and Access Analysis	November 9, 2017			
Lorson Ranch East Filing No. 1 Transportation Memorandum	May 2, 2018			
Lorson Ranch East Filing No. 2 Transportation Memorandum	September 24, 2018			
Lorson Ranch East Filing No. 3 Transportation Memorandum	January 22, 2019			
Lorson Ranch East Filing No. 4 Transportation Memorandum	March 12, 2019			
Lorson Ranch PK-8 School Traffic Impact and Access Analysis	October 4, 2018			
Creekside at Lorson Ranch Filing No. 1 Traffic Impact and Access Analysis	October 28, 2018			
Creekside at Lorson Ranch Filing No. 1 Transportation Memorandum	April 26, 2019			
Carriage Meadows Townhomes Traffic Impact Analysis	February 25, 2020			
Fontaine/Old Glory Intersection Analysis	February 27, 2020			
Ponderosa at Lorson Ranch Filing No. 3 Transportation Memoradum	September 2, 2020			
The Glen at Widefield Filing No. 10 Transportation Memorandum	September 24, 2020			
The Glen at Widefield Filing No. 11 Transportation Memorandum	September 24, 2020			
Creekside South at Lorson Ranch Updated Transportation Memorandum	May 5, 2020			
The Hills at Lorson Ranch Full Traffic Impact Analysis	October 26, 2020			
Source: LSC Transportation Consultants, Inc. (December 2020)				

Page: 26

Enumber: 1	Author: dsdrice	Subject: Callout
add The Hills Memorandum (TBD)	D/11/2021 3:45:34 PM -06'00'	

[^0]LSC Response: Added as requested.

Map 14: $\mathbf{2 0 4 0}$ Roadway Plan (Classification and Lanes)

Page: 55

\equiv Number: $1 \quad$ Author: Kirstin \quad Subject: Callout \quad Date: 12/2/2020 5:04:34 PM -06'00'

Site

Map 17: 2060 Corridor Preservation

Page: 56

Number: 1	Author: Kirstin	Subject: Callout	Date: $12 / 2 / 2020$ 5:05:13 PM -06'00'
Site			

Skyline at Lorson Ranch Traffic Impact Analysis

(LSC \#204250)
June 29, 2021

Traffic Engineer's Statement

This traffic report and supporting information were prepared under my responsible charge and they comport with the standard of care. So far as is consistent with the standard of care, said report was prepared in general conformance with the criteria established by the County for traffic reports.

Developer's Statement

I, the Developer, have read and will comply with all commitments made on my behalf within this report.

Skyline at Lorson Ranch Traffic Impact Analysis

Prepared for:
The Landhuis Company
212 North Wahsatch Avenue, Suite 301
Colorado Springs, CO 80903

Contact: Mr. Jeff Mark, President

JUNE 29, 2021

LSC Transportation Consultants
Prepared by: Kirstin D. Ferrin, P.E.
Reviewed by: Jeffrey C. Hodsdon, P.E.
CONTENTS
REPORT CONTENTS 1
RECENT AREA TRAFFIC STUDIES 2
LAND USE AND ACCESS 2
Land Use. 2
Street Connections 2
Pedestrian and Bicycle Route Analysis 2
Sight Distance Analysis 2
STREET AND TRAFFIC CONDITIONS 3
Area Streets 3
TRIP GENERATION 4
TRIP DISTRIBUTION AND ASSIGNMENT 4
BACKGROUND TRAFFIC 5
Short Term 5
2040 5
BUILDOUT TOTAL TRAFFIC 5
PROJECTED LEVELS OF SERVICE 6
Fontaine/Lamprey 6
Site Access Points 7
ROADWAY CLASSIFICATIONS 7
ROADWAY IMPROVEMENT FEE 7
CONCLUSIONS AND RECOMMENDATIONS 7
Trip Generation 7
Intersection Sight Distance 7
Projected Levels of Service \& Intersection Traffic Control Recommendations 7
Street Classifications 8
Grayling Drive Striping 8
Fontaine Boulevard/Carriage Meadows Drive 8
Fontaine/Old Glory Intersection 8
Enclosures: 9

Table 1
Figures 1-10
Appendix Tables 1-3
Level of Service Reports
MTCP Maps

LSC TRANSPORTATION CONSULTANTS, INC.

2504 East Pikes Peak Avenue, Suite 304
Colorado Springs, CO 80909
(719) 633-2868

FAX (719) 633-5430
E-mail: Isc@Isctrans.com
Website: http://www.Isctrans.com

June 29, 2021

Mr. Jeff Mark
President
The Landhuis Company
212 North Wahsatch Avenue, Suite 301
Colorado Springs, CO 80903

RE: Skyline at Lorson Ranch
 El Paso County, CO
 Traffic Impact Analysis
 LSC \#204250

Dear Mr. Mark,

In response to your request, LSC Transportation Consultants, Inc. has prepared this traffic impact analysis for the proposed Skyline at Lorson Ranch residential development. As shown in Figure 1, the site is located within the Lorson Ranch development in El Paso County, Colorado.

REPORT CONTENTS

This report has been prepared to address the project's traffic impact at the proposed access points and adjacent intersections.

This report contains the following:

- The existing street and traffic conditions in the site's vicinity including the street widths, lane geometries, and traffic controls;
- The projected future background traffic volumes, which include estimates of traffic from other area development projects;
- The estimated average weekday and peak-hour trip generation;
- The estimated directional distribution of site-generated trips and the projected site-generated traffic volumes;
- Estimates of the resulting total traffic volumes on the adjacent streets and intersections; and
- The projected levels of service at the site access points and key area intersections;

RECENT AREA TRAFFIC STUDIES

Appendix Table 1 includes a list of other recent traffic studies conducted by LSC within the Lorson Ranch development and in the vicinity.

This site was previously included in The Hills at Lorson Ranch Full Traffic Impact and Access Analysis (TIA) by LSC Transportation Consultants, Inc. dated October 27, 2020 as traffic analysis zone 45. That TIA assumed this zone would be developed with 76 single-family homes.

LAND USE AND ACCESS

Land Use

Skyline at Lorson Ranch is planned to include 85 lots for single-family homes. This is nine more single-family homes than was assumed in the Hills at Lorson Ranch TIA. Figure 2 shows the proposed site plan.

Street Connections

Fontaine Boulevard and Lorson Boulevard are planned to be extended east to a new north-south collector (Walleye Drive) between as part of The Hills at Lorson Ranch. A new east-west collector (Grayling Drive) is planned to be constructed between Lamprey Drive and the future Walleye Drive as part of The Hills at Lorson Ranch. An additional section of Grayling Drive between Walleye Drive and the north boundary of Lorson Ranch is planned as part of the currently-proposed Skyline at Lorson Ranch. Two full-movement access points are proposed to Grayling Drive. Figure 2 shows the proposed access spacing.

Pedestrian and Bicycle Route Analysis

Grand Mountain K-8 School is located southwest of the site. The subdivision streets will include sidewalks and connecting streets within Lorson Ranch also have sidewalks. Trail corridors are planned along the powerline easement, the East Fork of Jimmy Camp Creek, and along Jimmy Camp Creek. Also, Marksheffel Road and Fontaine Boulevard have paved shoulders to accommodate cyclists. Lorson Boulevard has been constructed with wider travel lanes (and a striped left-turn median) to allow for shared lane use with experienced cyclists (the adjacent sidewalk will accommodate children and families, as well as cyclists less experienced at cycling in traffic).

Sight Distance Analysis

Figure 3 shows sight-distance analysis at the proposed public street intersections (note: this north street connection would become an "intersection" in the future if/when Grayling Drive is extended north (with future development to the north). Based on a design speed of 40 miles per
hour (mph) and the criteria contained in Table 2-21 of the ECM, the required intersection sight distance at the access points is 445 feet. The required stopping sight distance from ECM Table 2-17 is 305 feet.

Figure 3 shows the areas between the sight distance lines and the curb line that will need to be kept free of other obstructions (such as rear privacy fencing, landscaping, and backyard/patio amenities) that would restrict the drivers' line of sight. Landscaping should be low - about 18 inches or lower in height - to the east of the passenger vehicle lines of sight shown. Please refer to ECM Sections 2.3.6.G.1 and 2.

The proposed initial, short-term and long-term traffic control at Grayling/Lamprey is all-way, stop-sign control (AWSC). Provided the AWSC remains in-place in perpetuity, the required sight distance lines of sight for 445' of entering sight distance, which would otherwise apply for a TWSC intersection, would not be required for an AWSCintersection.

Regarding the Urban Local knuckle in the northeast comer of the site, please refer to the site development plan and plat for sight distance easements across lot 67 (on the inside of the curve). Although the angle between the two street legs intersecting at this knuckle is less than 90 degrees, the centerline radius through this curve/knuckle is 52 feet-the same as the standard Urban Local knuckle. Also, please refer to Figure 3. Assuming a design speed of 15 mph around the curve of this knuckle, the required stopping sight distance is 80 feet along the centerline of the roadway.

STREET AND TRAFFIC CONDITIONS
 STRET AND TRAFFIC CONDITIONS

AWSC does not appear to be warranted at this location. Address in detail.

Area Streets

The key area streets are shown in Figure 1 and are described below. Copies of the 2016 El Paso County Major Transportation Corridors Plan (MTCP) 2040 Roadway Plan and 2016 MTCP 2060 Corridor Preservation Plan, with the site location identified on them, have been attached to this report.

- Fontaine Boulevard is designated as a four-lane Urban Principal Arterial east of Marksheffel Road and has been constructed as such from Marksheffel Road east to Old Glory Drive/Stingray Lane. Fontaine Boulevard has recently been constructed east of Old Glory Drive/Stingray Lane adjacent to the Lorson Ranch East development as an interim Urban Non-Residential Collector Street within 100 feet of right-of-way. As part of The Hills development, Fontaine Boulevard will be extended east from its current terminus adjacent to the site with the same interim cross section and right-of-way. The posted speed limit on Fontaine Boulevard is 35 mph just east of (and a short distance west of) Marksheffel Road. The speed limit increases to 45 mph just east of the bridge over Jimmy Camp Creek and then decreases back to 35 mph just east of Old Glory (east)/Stingray.
- Lorson Boulevard currently extends east from Marksheffel Road to Lamprey Drive. Lorson Boulevard is classified as an Urban Non-Residential Collector Street (modified for a 44-foot street width, rather than the standard 52 -foot street width) with an 80 -foot-wide right-of-way between Marksheffel Road and Stingray Lane and as an Urban Residential Collector Street (modified for a 44-foot street width, rather than the standard 52-foot street width) with a 64- to 72-foot-wide right-of-way between Stingray Lane and Lamprey Drive. As part of The Hills development, Lorson Boulevard will be constructed east of Lamprey Drive adjacent to the site as a standard Urban Residential Collector with a 60-foot-wide right-ofway.
- Lamprey Drive is an Urban Residential Collector which currently extends north from Lorson Boulevard to Shavers Drive just north of Fontaine Boulevard. Lamprey Drive is planned to be constructed east to the future Walleye Drive as part of the Hills at Lorson Ranch. The intersection of Lamprey/Fontaine was constructed as an interim one-lane modern roundabout. This roundabout is expandable to two lanes should it be needed in the longrange (beyond 2040) future.
- Grayling Drive is a planned Urban Residential Collector which will extend north from Lorson Boulevard to the north boundary of the Lorson Ranch development.

TRIP GENERATION

The site-generated vehicle trips were estimated using the nationally published trip-generation rates from Trip Generation, 10th Edition, 2017 by the Institute of Transportation Engineers (ITE). Table 1 shows the average weekday and peak-hour trip-generation estimates. Table 2 also shows a comparison of the trip-generation estimate for this same area, assumed in the Lorson Ranch Sketch Plan Amendment 2 Traffic Impact Analysis by LSC dated December 17, 2019 and The Hills at Lorson Ranch Full Traffic Impact Analysis by LSC dated October 27, 2020.

The site is projected to generate about 802 new vehicle trips on the average weekday, with about half entering and half exiting the site. During the morning peak hour, which generally occurs for one hour between 6:30 and 8:30 a.m., about 16 vehicles would enter and 47 vehicles would exit the site. During the afternoon peak hour, which generally occurs for one hour between 4:15 and 6:15 p.m., about 53 vehicles would enter and 31 vehicles would exit the site.

TRIP DISTRIBUTION AND ASSIGNMENT

The directional distribution of the site-generated traffic volumes on the street and roadway system serving the site is one of the most important factors in determining the site's traffic impacts. Figure 4 shows the external trip-distribution estimates (external to Lorson Ranch). The directional distribution estimates have been based on the location of the site with respect to the regional residential employment, commercial, and activity centers; the land use proposed; the access/roadway connections assumed; the roadway network; and the most recent traffic counts
conducted at the intersection of Marksheffel/Fontaine. The number of external vehicle trips were based on the internal trip estimates shown in Appendix Table 2.

Figure 5 shows the site-generated traffic volume estimates, respectively. These volumes were determined by first assigning the internal vehicle trips to the street network, based on the location of the existing Grand Mountain School located northeast of the intersection of Fontaine Boulevard and Lamprey Drive and the future retail sites located near the intersection of Fontaine Boulevard and Carriage Meadows Drive.

The external vehicle trips were then assigned to the street network by applying the trip-distribution percentages (from Figure 4) to the external trip-generation estimates. The internal and external site-generated traffic volumes were then summed to determine the total site-generated traffic volumes.

BACKGROUND TRAFFIC

Background traffic is the traffic estimated to be on the roadways without the Hills at Lorson Ranch traffic.

Short Term

The short-term (Year 2025) background traffic volumes are shown in Figure 6. The short-term background traffic includes traffic projected to be generated by buildout of the approved Lorson Ranch subdivisions including Lorson Ranch East, Ponderosa at Lorson Ranch Filing 3, Creekside at Lorson Ranch, and The Hills at Lorson Ranch, but assumes zero traffic generated by Skyline at Lorson Ranch.

2040

Figure 7 shows the projected 2040 background traffic volumes. The 2040 background traffic volumes are based on estimates of traffic projected to be generated at buildout of the Lorson Ranch Sketch Plan (excluding the traffic projected to be generated by Skyline at Lorson Ranch. Appendix Tables 2 and 3 show the trip-generation estimates for all existing and future land uses assumed to be built out by 2040 in the Lorson Ranch development. The 2040 background volumes also assume full buildout of the street network within Lorson Ranch, but assume Meridian Road has not been extended south to Fontaine Boulevard.

BUILDOUT TOTAL TRAFFIC

Figure 8 shows the short-term total traffic volumes. These volumes are the sum of the short-term background traffic volumes (from Figure 6) plus the site-generated traffic volumes (from Figure 5).

Figure 9 shows the 2040 total traffic volumes. These volumes are the sum of the 2040 background traffic volumes (from Figure 7) plus the site-generated traffic volumes (from Figure 5).

PROJECTED LEVELS OF SERVICE

Level of service (LOS) is a quantitative measure of the level of congestion or delay at an intersection. Level of service is indicated on a scale from "A" to "F." LOS A represents control delay of less than 10 seconds for unsignalized and signalized intersections. LOS F represents control delay of more than 50 seconds for unsignalized intersections and more than 80 seconds for signalized intersections. Table 2 shows the level of service delay ranges.

Table 2: Intersection Levels of Service Delay Ranges

Level of Service	Signalized Intersections Average Control Delay (seconds per vehicle)	Unsignalized Intersections Average Control Delay (seconds per vehicle) ${ }^{(1)}$
	10.0 sec or less	10.0 sec or less
B	$10.1-20.0 \mathrm{sec}$	$10.1-15.0 \mathrm{sec}$
C	$20.1-35.0 \mathrm{sec}$	$15.1-25.0 \mathrm{sec}$
D	$35.1-55.0 \mathrm{sec}$	$25.1-35.0 \mathrm{sec}$
E	$55.1-80.0 \mathrm{sec}$	$35.1-50.0 \mathrm{sec}$
F	80.1 sec or more	50.1 sec or more

(1) For unsignalized intersections if V / C ratio is greater than 1.0 the level of service is LOS F, regardless of the projected average control delay per vehicle.

The intersection of Lamprey/Fontaine and the access points to Grayling Drive have been analyzed to determine the projected levels of service for the short-term and 2040 background and total traffic volumes, based on the unsignalized method of analysis procedures outlined in the Highway Capacity Manual, $6^{\text {th }}$ Edition by the Transportation Research Board. The level of service reports are attached. The results of the analysis are shown in Figures 6 through 9.

Fontaine/Lamprey

The intersection of Fontaine/Lamprey was recently constructed as a modern one-lane roundabout. All movements at this intersection are projected to operate at LOS D or better during the peak hours, based on the projected short-term and 2040 total traffic volumes.

Site Access Point

The south full-movement site access point to Grayling Drive is projected to operate at LOS A for all movements during the peak hours for all movements as an all-way, stop-sign-controlled intersection, based on the projected short-term and 2040 total traffic volumes.

ROADWAY CLASSIFICATIONS

Figure 10 shows the recommended street classifications for the Lorson Ranch streets.

ROADWAY IMPROVEMENT FEE

This project will be required to participate in the El Paso County Road Improvement Fee Program. The Hills at Lorson Ranch will join the ten-mil PID. The current ten-mil PID building permit fee portion associated with this option is $\$ 1,221$ per single-family dwelling unit. Based on 86 lots, the total building permit fee would be $\$ 103,785$. Note: This is based on the current rate, which is subject to change. El Paso County updates this rate periodically.

CONCLUSIONS AND RECOMMENDATIONS

Trip Generation

- The site is projected to generate about 802 new vehicle trips on the average weekday, with about half entering and half exiting the site. During the morning peak hour, about 16 vehicles would enter and 47 vehicles would exit the site. During the afternoon peak hour, about 53 vehicles would enter and 31 vehicles would exit the site.

Intersection Sight Distance

- Please refer to the Sight Distance section of this report for areas of that site that need to allow for the required intersection sight distance lines of sight.

Projected Levels of Service \& Intersection Traffic Control Recommendations

- The intersection of Fontaine/Lamprey was recently constructed as a modern one-lane roundabout. All movements at this intersection are projected to operate at LOS D or better during the peak hours, based on the projected short-term and 2040 total traffic volumes.
- The intersection of Lamprey/Grayling Drive is proposed for all-way, stop-sign control (AWSC) in the short, immediate, and long term. The AWSC would mitigate the sight-distance lines of sight across the inside of the curve on Grayling from the site access/southwest-bound approach.

- The south full-movement site access point to Grayling Drive is projected to operate at a satisfactory level of service as a two-way, stop-sign-controlled intersection.

Street Classifications

- All of the streets within Skyline at Lorson Ranch should be classified as Urban Local. See Figure 10 for the recommended classifications of the adjacent roadways.

Grayling Drive Striping

- Grayling Drive potentially be striped with a single dual yellow centerline stripe instead of a center painted two-way left-turn "median" South of Lamprey drive as the through and left-turning volumes are projected to be relatively low. No striping is needed on Grayling Drive north of Lamprey Drive.

Fontaine Boulevard/Carriage Meadows Drive

- Signal escrow for the future signal at the Fontaine Boulevard/Carriage Meadows Drive intersection should not be required of this project. The escrow table for that intersection included developments adding traffic to the northbound and southbound (side-street) approaches, which this development would not. The escrow table was recently included in the Carriage Meadows Townhomes report and that table showed the contributing developments.

Fontaine/Old Glory Intersection

- The County has indicated that "the developer shall participate in a fair and equitable manner in the design and construction of intersection improvements at the intersections of Fontaine Boulevard and Old Glory Drive. Address how the intersection improvements will be designed and provided for (set up escrow account?) and when they will be needed relative to The Hills at Lorson Ranch Filing No. 1 and Skyline at Lorson Ranch developments."
- The plans for striping and signing improvements have been prepared and resubmitted with The Hills plat. The timing has been addressed in The Hills transportation memo.
- A signal-escrow table for a future signal was prepared as part of the Ponderosa Filing No. 3 report. This project is not listed in the escrow table as this project will not add side-street approach traffic at this intersection. That table showed the contributing developments.

We trust this traffic impact analysis will assist you in gaining approval of the proposed Skyline at Lorson Ranch residential development. Please contact me if you have any questions or need further assistance.

Sincerely,

LSC TRANSPORTATION CONSULTANTS, INC.
By: Kirstin D. Ferrin, P.E.
Senior Transportation Engineer
JCH:KDF:jas
Enclosures: Table 1
Figures 1-10
Appendix Tables 1-3
Level of Service Reports
MTCP Maps

Tables

Table 1 Trip Generation Estimate Skyline at Lorson Ranch													
Traffic Analysis Zone	Land Use Code	Land Use Description	Trip Generation Units	Trip Generation Rates ${ }^{(1)}$					Total Trips Generated				
				Average Weekday Traffic	Morning Peak Hour In Out		Afternoon Peak Hour		Average Weekday Traffic	Morning Peak Hour		Afternoon Peak Hour	
							In	Out		In	Out	In	Out
Trip Generation Estimate Based on the Currently Proposed Plan													
45	210	Single-Family Detached Housing	$85 \mathrm{DU}^{(2)}$	9.44	0.19	0.56	0.62	0.37	802	16	47	53	31
Trip Generation Estimate for the Same Area From the The Hills at Lorson Ranch Full Traffic Impact Analysis by LSC October 26, 2020													
45	210	Single-Family Detached Housing	76 DU	9.44	0.19	0.56	0.62	0.37	717	14	42	47	28
					Chang	Trip	eratio	stimat	85	2	5	6	3
Trip Generation Estimate for the Same Area From the Lorson Ranch Sketch Plan Amendment 2 Traffic Impact Analysis by LSC December 17, 2018													
45	220	Multifamily Housing	123 DU	7.32	0.11	0.35	0.35	0.21	900	13	44	43	25
Change in Trip Generation Estimate									-98	3	4	10	6
Notes: (1) Source: "Trip Generation, 10th Edition, 2017" by the Institute of Transportation Engineers (ITE) (2) DU = dwelling unit													
Source: LSC	spoortatio	Consultants, Inc.											Dec-20

Figures

Appendix Tables

Appendix Table 1 Area Trafffic Impact Studies by LSC Skyline at Lorson Ranch	
Study	Date
Lorson Ranch Sketch Plan Amendment 2 Traffic Impact and Access Analysis	December 17, 2018
Carriage Meadows South at Lorson Ranch Filing No. 1 Updated Traffic Impact Analysis	August 14, 2017
Carriage Meadows North at Lorson Ranch Filing No. 1 Updated Traffic Impact Analysis	January 29, 2017
Lorson Ranch East Updated Traffic Impact and Access Analysis	November 9, 2017
Lorson Ranch East Filing No. 1 Transportation Memorandum	May 2, 2018
Lorson Ranch East Filing No. 2 Transportation Memorandum	September 24, 2018
Lorson Ranch East Filing No. 3 Transportation Memorandum	January 22, 2019
Lorson Ranch East Filing No. 4 Transportation Memorandum	March 12, 2019
Lorson Ranch PK-8 School Traffic Impact and Access Analysis	October 4, 2018
Creekside at Lorson Ranch Filing No. 1 Traffic Impact and Access Analysis	October 28, 2018
Creekside at Lorson Ranch Filing No. 1 Transportation Memorandum	April 26, 2019
Carriage Meadows Townhomes Traffic Impact Analysis	February 25, 2020
Fontaine/Old Glory Intersection Analysis	February 27, 2020
Ponderosa at Lorson Ranch Filing No. 3 Transportation Memoradum	September 2, 2020
The Glen at Widefield Filing No. 10 Transportation Memorandum	September 24, 2020
The Glen at Widefield Filing No. 11 Transportation Memorandum	September 24, 2020
Creekside South at Lorson Ranch Updated Transportation Memorandum	May 5, 2020
The Hills at Lorson Ranch Full Traffic Impact Analysis	October 26, 2020
The Hills at Lorson Ranch Final Plat Transportation Memorandum	April 19, 2021
Source: LSC Transportation Consultants, Inc. (June 2021)	

	\rangle	\rightarrow		7	-	4	4	\uparrow	p	\checkmark	\dagger	\checkmark
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	61	410	33	31	285	4	96	0	98	0	0	186
Future Volume (vph)	61	410	33	31	285	4	96	0	98	0	0	186
Confl. Peds. (\#/hr)												
Confl. Bikes (\#hr)												
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	72	482	39	36	335	5	113	0	115	0	0	219
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	593	0	0	376	0	0	228	0	0	219	0
Intersection Summary												

Intersection				
Intersection Delay, s/veh	7.3			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	593	376	228	219
Demand Flow Rate, veh/h	605	384	232	223
Vehicles Circulating, veh/h	37	188	565	494
Vehicles Exiting, veh/h	680	609	77	78
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	7.3	6.5	8.2	7.3
Approach LOS	A	A	A	A

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976
Entry Flow, veh/h	605	384	232	223
Cap Entry Lane, veh/h	1329	1139	775	834
Entry HV Adj Factor	0.981	0.980	0.983	0.982
Flow Entry, veh/h	593	376	228	219
Cap Entry, veh/h	1303	1116	762	819
VIC Ratio	0.455	0.337	0.299	0.267
Control Delay, s/veh	7.3	6.5	8.2	7.3
LOS	A	A	A	A
95th \%tile Queue, veh	2	2	1	1

3: Lamprey Dr \& Fontaine Blvd

	4		\%	\dagger			4	\uparrow		*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	221	167	96	14	152	1	53	0	5	0	0	128
Future Volume (vph)	221	167	96	14	152	1	53	0	5	0	0	128
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	260	196	113	16	179	1	62	0	6	0	0	151
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	569	0	0	196	0	0	68	0	0	151	0
Intersection Summary												

Intersection				
Intersection Delay, s/veh	6.2			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	569	196	68	151
Demand Flow Rate, veh/h	580	200	69	154
Vehicles Circulating, veh/h	16	328	465	262
Vehicles Exiting, veh/h	400	206	131	266
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	6.8	5.7	5.0	4.8
Approach LOS	A	A	A	A

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR		LTR	LTR
RT Channelized	1.000	1.000	1.000	1.000
Lane Util	2.609	2.609	2.609	
Follow-Up Headway, s	2.609	4.976	4.976	4.976
Critical Headway, s	4.976	200	69	154
Entry Flow, veh/h	580	988	859	1056
Cap Entry Lane, veh/h	1358	0.982	0.986	151
Entry HV Adj Factor	0.981	196	68	151
Flow Entry, veh/h	569	970	846	1036
Cap Entry, veh/h	1332	0.203	0.080	0.146
V/C Ratio	0.427	A	5.0	4.8
Control Delay, s/veh	6.8	1	A	A
LOS	A	0	1	

	4	\rightarrow	\geqslant	7	\leftarrow	4	4	\uparrow	1	*	\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	64	527	47	59	655	9	140	0	101	0	0	196
Future Volume (vph)	64	527	47	59	655	9	140	0	101	0	0	196
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	70	573	51	64	712	10	152	0	110	0	0	213
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	694	0	0	786	0	0	262	0	0	213	0
Intersection Summary												

Intersection				
Intersection Delay, s/veh	12.3			
Intersection LOS	B		WB	SB
Approach	EB	1	1	1
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	786	262	213
Adj Approach Flow, veh/h	694	801	267	217
Demand Flow Rate, veh/h	707	226	655	946
Vehicles Circulating, veh/h	65	696	117	81
Vehicles Exiting, veh/h	1098	0	0	0
Ped Vol Crossing Leg, \#/h	0	1.000	1.000	1000
Ped Cap Adj	1.00	15.5	B	13.9
Approach Delay, slveh	9.0	C	B	
Approach LOS	A			

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR		LTR
RT Channelized			1.000	1.000
Lane Util	1.000	1.000	2.609	4.609
Follow-Up Headway, s	2.609	2.609	4.976	217
Critical Headway, s	4.976	4.976	267	526
Entry Flow, veh/h	707	801	707	0.982
Cap Entry Lane, veh/h	1291	1096	0.981	213
Entry HV Adj Factor	0.981	0.981	262	516
Flow Entry, veh/h	694	786	694	0.413
Cap Entry, veh/h	1267	1075	0.377	13.9
V/C Ratio	0.547	15.5	10.2	B
Control Delay, s/veh	9.0	C	B	2
LOS	A	7	2	

	4		\%	\dagger			4	\uparrow		*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	234	619	154	26	416	4	86	0	5	0	0	136
Future Volume (vph)	234	619	154	26	416	4	86	0	5	0	0	136
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Trafic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	254	673	167	28	452	4	93	0	5	0	0	148
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	1094	0	0	484	0	0	98	0	0	148	0
Intersection Summary												

Intersection				
Intersection Delay, s/veh	15.0			
Intersection LOS	C			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	1094	484	98	148
Demand Flow Rate, veh/h	1115	494	100	151
Vehicles Circulating, veh/h	29	354	945	585
Vehicles Exiting, veh/h	707	691	199	263
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	18.7	10.4	9.6	7.0
Approach LOS	C	B	A	A

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	
RT Channelized			1.000	1.000
Lane Util	1.000	1.000	2.609	4.609
Follow-Up Headway, s	2.609	2.609	4.976	1.976
Critical Headway, s	4.976	4.976	100	151
Entry Flow, veh/h	1115	494	526	760
Cap Entry Lane, veh/h	1340	962	0.980	0.980
Entry HV Adj Factor	0.981	0.980	98	148
Flow Entry, veh/h	1094	484	516	745
Cap Entry, veh/h	1314	942	0.190	7.0
V/C Ratio	0.832	0.514	9.6	A
Control Delay, s/veh	18.7	10.4	1	1
LOS	C	B	A	
95th \%tile Queue, veh	11	3		

	4	\rightarrow	\geqslant	7	\longleftrightarrow	4	4	\uparrow	1	*	\dagger	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	75	410	33	31	285	6	96	0	98	0	0	229
Future Volume (vph)	75	410	33	31	285	6	96	0	98	0	0	229
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	88	482	39	36	335	7	113	0	115	0	0	269
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	609	0	0	378	0	0	228	0	0	269	0
Intersection Summary												

Intersection				
Intersection Delay, s/veh	7.6			
Intersection LOS	A		WB	
Approach	EB	1	NB	
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	
Adj Approach Flow, veh/h	609	228	269	
Demand Flow Rate, veh/h	622	386	274	
Vehicles Circulating, veh/h	37	205	582	494
Vehicles Exiting, veh/h	731	609	77	97
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.00	1.000	1.000	1.000
Approach Delay, slveh	7.5	6.7	8.4	8.2
Approach LOS	A	A	A	A

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR		
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	4.609
Critical Headway, s	4.976	4.976	4.976	274
Entry Flow, veh/h	622	386	232	834
Cap Entry Lane, veh/h	1329	1120	762	0.982
Entry HV Adj Factor	0.980	0.980	2.983	269
Flow Entry, veh/h	609	378	228	819
Cap Entry, veh/h	1302	1097	749	0.329
V/C Ratio	0.468	0.345	0.304	8.2
Control Delay, s/veh	7.5	6.7	8.4	A
LOS	A	2	1	1

Intersection	
Intersection Delay, s/veh	7
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\&			\uparrow	
Traffic Vol, veh/h	7	9	8	2	24	0	15	1	0	0	2	19
Future Vol, veh/h	7	9	8	2	24	0	15	1	0	0	2	19
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	11	9	2	28	0	18	1	0	0	2	22
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB				SB	
Opposing Approach	WB			EB			SB				NB	
Opposing Lanes	1			1			1				1	
Conflicting Approach Left	SB			NB			EB				WB	
Conflicting Lanes Left	1			1			1				1	
Conflicting Approach Right	NB			SB			WB				EB	
Conflicting Lanes Right	1			1			1				1	
HCM Control Delay	7			7.2			7.4				6.6	
HCM LOS	A			A			A				A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	94%	29%	8%	0%
Vol Thru, \%	6%	38%	92%	10%
Vol Right, \%	0%	33%	0%	90%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	16	24	26	21
LT Vol	15	7	2	0
Through Vol	1	9	24	2
RT Vol	0	8	0	19
Lane Flow Rate	19	28	31	25
Geometry Grp	1	1	1	1
Degree of Util (X)	0.022	0.031	0.034	0.024
Departure Headway (Hd)	4.242	3.891	4.047	3.507
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	843	921	886	1018
Service Time	2.269	1.911	2.066	1.536
HCM Lane V/C Ratio	0.023	0.03	0.035	0.025
HCM Control Delay	7.4	7	7.2	6.6
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.1	0.1	0.1	0.1

Intersection						
Int Delay, s/veh	6.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MF		\mathbf{F}			\uparrow
Traffic Vol, veh/h	21	0	0	7	0	0
Future Vol, veh/h	21	0	0	7	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	25	0	0	8	0	0

	4		\%	\dagger			4	\uparrow		*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	273	167	96	14	152	2	53	0	5	0	0	159
Future Volume (vph)	273	167	96	14	152	2	53	0	5	0	0	159
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Trafic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	321	196	113	16	179	2	62	0	6	0	0	187
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	630	0	0	197	0	0	68	0	0	187	0
Intersection Summary												

Intersection				
Intersection Delay, s/veh	6.7			
Intersection LOS	A			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	630	197	68	187
Demand Flow Rate, veh/h	642	201	69	191
Vehicles Circulating, veh/h	16	390	527	262
Vehicles Exiting, veh/h	437	206	131	329
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	7.5	6.1	5.4	5.2
Approach LOS	A	A	A	A

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	LTR
RT Channelized				
Lane Util	1.000	1.000	1.000	1.000
Follow-Up Headway, s	2.609	2.609	2.609	2.609
Critical Headway, s	4.976	4.976	4.976	4.976
Entry Flow, veh/h	642	201	69	191
Cap Entry Lane, veh/h	1358	927	806	1056
Entry HV Adj Factor	0.981	0.982	0.986	0.979
Flow Entry, veh/h	630	197	68	187
Cap Entry, veh/h	1332	910	794	1034
VIC Ratio	0.473	0.217	0.086	0.181
Control Delay, s/veh	7.5	6.1	5.4	5.2
LOS	A	A	A	A
95th \%tile Queue, veh	3	1	0	1

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 7.2 |
| Intersection LOS | A |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\&			\&			\&			\&	
Traffic Vol, veh/h	24	29	18	0	17	0	10	1	0	0	0	14
Future Vol, veh/h	24	29	18	0	17	0	10	1	0	0	0	14
Peak Hour Factor	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85	0.85
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mumt Flow	28	34	21	0	20	0	12	1	0	0	0	16
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB				SB	
Opposing Approach	WB				EB		SB				NB	
Opposing Lanes	1				1		1				1	
Conflicting Approach Left	SB				NB		EB				WB	
Conflicting Lanes Left	1				1		1				1	
Conflicting Approach Right	NB				SB		WB				EB	
Conflicting Lanes Right	1				1		1				1	
HCM Control Delay	7.3				7.2		7.4				6.6	
HCM LOS	A				A		A				A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	91%	34%	0%	0%
Vol Thru, \%	9%	41%	100%	0%
Vol Right, \%	0%	25%	0%	100%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	11	71	17	14
LT Vol	10	24	0	0
Through Vol	1	29	17	0
RT Vol	0	18	0	14
Lane Flow Rate	13	84	20	16
Geometry Grp	1	1	1	1
Degree of Util (X)	0.015	0.091	0.022	0.016
Departure Headway (Hd)	4.309	3.917	4.049	3.523
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	828	917	884	1010
Service Time	2.35	1.929	2.072	1.566
HCM Lane V/C Ratio	0.016	0.092	0.023	0.016
HCM Control Delay	7.4	7.3	7.2	6.6
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0	0.3	0.1	0

Intersection						
Int Delay, s/veh	3.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	14	0	0	24	0	0
Future Vol, veh/h	14	0	0	24	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, $\#$	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	85	85	85	85	85	85
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	16	0	0	28	0	0

Major/Minor M	Minor1		Major1		Major2	
Conflicting Flow All	15	14	0	0	28	0
Stage 1	14	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1004	1066	-	-	1585	-
Stage 1	1009	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	1004	1066	-	-	1585	-
Mov Cap-2 Maneuver	920	-	-	-	-	-
Stage 1	1009	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	920	1585	-
HCM Lane V/C Ratio		-	-	0.018	-	-
HCM Control Delay (s)		-	-	9	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

	4	\rightarrow		7	4			\uparrow		,	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	78	527	47	59	655	11	140	0	101	0	0	239
Future Volume (vph)	78	527	47	59	655	11	140	0	101	0	0	239
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Traffic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	85	573	51	64	712	12	152	0	110	0	0	260
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	709	0	0	788	0	0	262	0	0	260	0
Intersection Summary												

Intersection				
Intersection Delay, s/veh	13.1			
Intersection LOS	B			
Approach	EB	WB	NB	SB
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	1	1	1
Adj Approach Flow, veh/h	709	788	262	260
Demand Flow Rate, veh/h	723	803	267	265
Vehicles Circulating, veh/h	65	242	671	946
Vehicles Exiting, veh/h	1146	696	117	99
Ped Vol Crossing Leg, \#/h	0	0	0	0
Ped Cap Adj	1.000	1.000	1.000	1.000
Approach Delay, s/veh	9.2	16.3	10.4	16.4
Approach LOS	A	C	B	C

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	
RT Channelized			1.000	1.000
Lane Util	1.000	1.000	2.609	4.609
Follow-Up Headway, s	2.609	2.609	4.976	265
Critical Headway, s	4.976	4.976	267	526
Entry Flow, veh/h	723	803	696	0.981
Cap Entry Lane, veh/h	1291	1078	0.981	260
Entry HV Adj Factor	0.980	0.981	262	516
Flow Entry, veh/h	709	788	683	0.504
Cap Entry, veh/h	1266	1058	0.384	16.4
V/C Ratio	0.560	0.745	10.4	C
Control Delay, s/veh	9.2	16.3	B	3
LOS	C	7	2	

Intersection	
Intersection Delay, s/veh	7.1
Intersection LOS	A

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			${ }_{\text {¢ }}$			¢			${ }_{4}$	
Traffic Vol, veh/h	7	9	16	2	24	0	24	1	0	0	2	19
Future Vol, veh/h	7	9	16	2	24	0	24	1	0	0	2	19
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	8	10	17	2	26	0	26	1		0	2	21
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB			WB			NB				SB	
Opposing Approach	WB			EB			SB				NB	
Opposing Lanes	1			1			1				1	
Conflicting Approach Left	SB			NB			EB				WB	
Conflicting Lanes Left	1			1			1				1	
Conflicting Approach Right	NB			SB			WB				EB	
Conflicting Lanes Right	1			1			1				1	
HCM Control Delay	7			7.2			7.4				6.6	
HCM LOS	A			A			A				A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	96%	22%	8%	0%
Vol Thru, \%	4%	28%	92%	10%
Vol Right, \%	0%	50%	0%	90%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	25	32	26	21
LT Vol	1	7	2	0
Through Vol	0	9	24	2
RT Vol	27	35	0	19
Lane Flow Rate	1	1	28	23
Geometry Grp	0.032	0.037	0.032	0.022
Degree of Util (X)	4.253	3.785	4.062	3.52
Departure Headway (Hd)	Yes	Yes	Yes	Yes
Convergence, Y/N	842	945	881	1014
Cap	2.28	1.81	2.086	1.552
Service Time	0.032	0.037	0.032	0.023
HCM Lane V/C Ratio	7.4	7	7.2	6.6
HCM Control Delay	A	A	A	A
HCM Lane LOS	0.1	0.1	0.1	0.1

Intersection						
Int Delay, s/veh	6.5					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	MT		1			\uparrow
Traffic Vol, veh/h	21	0	0	7	0	0
Future Vol, veh/h	21	0	0	7	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage, \#	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	23	0	0	8	0	0

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	5	4	0	0	8	0
Stage 1	4	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1017	1080	-	-	1612	-
Stage 1	1019	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	1017	1080	-	-	1612	-
Mov Cap-2 Maneuver	930	-	-	-	-	-
Stage 1	1019	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	930	1612	-
HCM Lane V/C Ratio		-	-	0.025	-	-
HCM Control Delay (s)		-	-	9	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

	4		\%	7			4	\uparrow		*	\downarrow	\downarrow
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	286	619	154	26	416	5	86	0	5	0	0	167
Future Volume (vph)	286	619	154	26	416	5	86	0	5	0	0	167
Confl. Peds. (\#/hr)												
Confl. Bikes (\#/hr)												
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Growth Factor	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%	100\%
Heavy Vehicles (\%)	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%	2\%
Bus Blockages (\#/hr)	0	0	0	0	0	0	0	0	0	0	0	0
Parking (\#/hr)												
Mid-Block Trafic (\%)		0\%			0\%			0\%			0\%	
Adj. Flow (vph)	311	673	167	28	452	5	93	0	5	0	0	182
Shared Lane Traffic (\%)												
Lane Group Flow (vph)	0	1151	0	0	485	0	0	98	0	0	182	0
Intersection Summary												

Intersection				
Intersection Delay, s/veh	17.6			
Intersection LOS	C		WB	SB
Approach	EB	1	1	1
Entry Lanes	1	1	1	1
Conflicting Circle Lanes	1	485	98	182
Adj Approach Flow, veh/h	1151	495	100	186
Demand Flow Rate, veh/h	1173	412	1003	385
Vehicles Circulating, veh/h	29	691	199	322
Vehicles Exiting, veh/h	742	0	0	0
Ped Vol Crossing Leg, \#/h	0	1.000	1.000	7.6
Ped Cap Adj	1.000	11.5	B	
Approach Delay, s/veh	22.3	B	B	A
Approach LOS	C			

Lane	Left	Left	Left	Left
Designated Moves	LTR	LTR	LTR	LTR
Assumed Moves	LTR	LTR	LTR	
RT Channelized			1.000	1.000
Lane Util	1.000	1.000	2.609	4.609
Follow-Up Headway, s	2.609	2.609	4.976	1.976
Critical Headway, s	4.976	4.976	100	760
Entry Flow, veh/h	1173	495	496	0.978
Cap Entry Lane, veh/h	1340	906	0.980	182
Entry HV Adj Factor	0.981	0.980	98	743
Flow Entry, veh/h	1151	485	0.245	
Cap Entry, veh/h	1314	888	786	7.6
V/C Ratio	0.876	0.546	0.202	A
Control Delay, s/veh	22.3	11.5	10.3	1
LOS	C	3	1	
95th \%tile Queue, veh	13	3	1	

| Intersection | |
| :--- | ---: | :--- |
| Intersection Delay, s/veh | 7.2 |
| Intersection LOS | A |

Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		\$			\$			\$			*	
Traffic Vol, veh/h	24	29	33	0	17	0	17	1	0	0	0	14
Future Vol, veh/h	24	29	33	0	17	0	17	1	0	0	0	14
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92	0.92
Heavy Vehicles, \%	2	2	2	2	2	2	2	2	2	2	2	2
Mvmt Flow	26	32	36	0	18	0	18	1	0	0	0	15
Number of Lanes	0	1	0	0	1	0	0	1	0	0	1	0
Approach	EB				WB		NB				SB	
Opposing Approach	WB				EB		SB				NB	
Opposing Lanes	1				1		1				1	
Conflicting Approach Left	SB				NB		EB				WB	
Conflicting Lanes Left	1				1		1				1	
Conflicting Approach Right	NB				SB		WB				EB	
Conflicting Lanes Right	1				1		1				1	
HCM Control Delay	7.3				7.2		7.5				6.6	
HCM LOS	A				A		A				A	

Lane	NBLn1	EBLn1	WBLn1	SBLn1
Vol Left, \%	94%	28%	0%	0%
Vol Thru, \%	6%	34%	100%	0%
Vol Right, \%	0%	38%	0%	100%
Sign Control	Stop	Stop	Stop	Stop
Traffic Vol by Lane	18	86	17	14
LT Vol	17	24	0	0
Through Vol	1	29	17	0
RT Vol	0	33	0	14
Lane Flow Rate	20	93	18	15
Geometry Grp	1	1	1	1
Degree of Util (X)	0.024	0.1	0.021	0.015
Departure Headway (Hd)	4.329	3.834	4.065	3.541
Convergence, Y/N	Yes	Yes	Yes	Yes
Cap	824	936	879	1003
Service Time	2.372	1.853	2.095	1.59
HCM Lane V/C Ratio	0.024	0.099	0.02	0.015
HCM Control Delay	7.5	7.3	7.2	6.6
HCM Lane LOS	A	A	A	A
HCM 95th-tile Q	0.1	0.3	0.1	0

Intersection						
Int Delay, s/veh	3.2					
Movement	WBL	WBR	NBT	NBR	SBL	SBT
Lane Configurations	Mr		\uparrow			\uparrow
Traffic Vol, veh/h	14	0	0	24	0	0
Future Vol, veh/h	14	0	0	24	0	0
Conflicting Peds, \#/hr	0	0	0	0	0	0
Sign Control	Stop	Stop	Free	Free	Free	Free
RT Channelized	-	None	-	None	-	None
Storage Length	0	-	-	-	-	-
Veh in Median Storage,	0	-	0	-	-	0
Grade, \%	0	-	0	-	-	0
Peak Hour Factor	92	92	92	92	92	92
Heavy Vehicles, \%	2	2	2	2	2	2
Mvmt Flow	15	0	0	26	0	0

Major/Minor	Minor1		Major1		Major2	
Conflicting Flow All	14	13	0	0	26	0
Stage 1	13	-	-	-	-	-
Stage 2	1	-	-	-	-	-
Critical Hdwy	6.42	6.22	-	-	4.12	-
Critical Hdwy Stg 1	5.42	-	-	-	-	-
Critical Hdwy Stg 2	5.42	-	-	-	-	-
Follow-up Hdwy	3.518	3.318	-	-	2.218	-
Pot Cap-1 Maneuver	1005	1067	-	-	1588	-
Stage 1	1010	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Platoon blocked, \%			-	-		-
Mov Cap-1 Maneuver	1005	1067	-	-	1588	-
Mov Cap-2 Maneuver	921	-	-	-	-	-
Stage 1	1010	-	-	-	-	-
Stage 2	1022	-	-	-	-	-
Approach	WB		NB		SB	
HCM Control Delay, s	9		0		0	
HCM LOS	A					
Minor Lane/Major Mvmt		NBT	NBRWBLn1		SBL	SBT
Capacity (veh/h)		-	-	921	1588	-
HCM Lane V/C Ratio		-	-	0.017	-	-
HCM Control Delay (s)		-	-	9	0	-
HCM Lane LOS		-	-	A	A	-
HCM 95th \%tile Q(veh)		-	-	0.1	0	-

MTCP Maps

Map 14: 2040 Roadway Plan (Classification and Lanes)

[^0]: Author: jchodsdon Subject: Sticky Note Date: 6/29/2021 4:45:23 PM

