FINAL DRAINAGE REPORT FOR HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1 EL PASO COUNTY, COLORADO

Prepared For:

SR Land, LLC 20 Boulder Crescent, Suite 200 **Colorado Springs, CO 80903** (719) 491-3024

> October 2022 Project No. 25188.00

Prepared By: JR Engineering, LLC 5475 Tech Center Drive, Suite 235 Colorado Springs, CO 80919 719-593-2593

> **PCD Filing No.:** SF22-13

J-R ENGINEERING

DRAINAGE REPORT FOR HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by El Paso County for drainage reports and said report is in conformity with the master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Mike Bramlett, Colorado P.E. 32314 For and On Behalf of JR Engineering, LLC

DEVELOPER'S STATEMENT:

I, the developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name:

SR Land, LLC

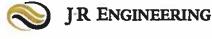
By:

Title: Address:

20 Boulder Cresce 200

Colorado Springs, CO 80903

El Paso County:


Filed in accordance with the requirements of the El Paso County Land Development Code, Drainage Criteria Manual, Volumes 1 and 2 and Engineering Criteria Manual, as amended.

APPROVED Engineering Department 12/06/2022 12:18:12 PM dsdnijkamp EPC Plannig & Community Development Department

Date

Joshua Palmer, P.E. County Engineer/ ECM Administrator

Conditions:

Table of Contents

Table of Contents	3
Purpose	4
General Site Description	4
General Location	4
Description of Property	4
Floodplain statement	5
Existing Drainage Conditions	5
Major Basin Descriptions	5
Existing Sub-basin Drainage	5
Proposed Drainage Conditions	
Drainage Design Criteria	10
Development Criteria Reference	10
Hydrologic Criteria	10
Hydraulic Criteria	11
Drainage Facility Design	12
General Concept	12
Four Step Process to Minimize Adverse Impacts of Urbanization	13
Water Quality	14
Erosion Control Plan	14
Operation & Maintenance	14
Drainage and Bridge Fees	15
Construction Cost Opinion	15
Summary	
References	18

APPENDIX

- Appendix A Vicinity Map, Soil Descriptions, FEMA Floodplain Map
- Appendix B Hydrologic Calculations
- Appendix C Hydraulic Calculations
- Appendix D Reference-Material
- Appendix E Drainage Maps

PURPOSE

This document is intended to serve as the Final Drainage Report of Homestead North at Sterling Ranch Filing No. 1. The purpose of this document is to identify on-site and off-site drainage patterns, storm sewer, culvert and inlet locations, areas tributary to the site, and to safely route developed storm water to adequate outfall facilities that satisfies the requirements set forth by the El Paso County Drainage Criteria Manual and any conditions set forth by the approved master drainage development plans. The proposed use is permissible use within the residential zoning criteria.

GENERAL SITE DESCRIPTION

GENERAL LOCATION

Homestead North at Sterling Ranch Filing 1, Vollmer Road and the undeveloped land to the north (hereby referred to as the "site") is a proposed development with a total area of approximately 224.3 acres.

A portion of the SW 1/4 of the SW 1/4 of section 27, the SE 1/4 of section 28, section 33 and the W 1/2 of section 34, all in Township 12 South, Range 65 west of the 6th Principal Meridian County Of El Paso, State Of Colorado. The site is located immediately east of Vollmer Road. The site is bounded by Briargate Parkway to the south, unplatted vacant future residential parcels to the north, and Sand Creek borders the site to the east. The parcels are planned to be platted after approval of the Preliminary Plan. Refer to the vicinity map in Appendix A for additional information.

DESCRIPTION OF PROPERTY

The site is currently being designed to accommodate approximately 73 single-family residential lots. The site is comprised of variable sloping grasslands that generally slope(s) downward to the east at 3 to 7% towards the Sand Creek tributary basin.

Soil characteristics are comprised of Type B hydrologic Soil groups. Refer to the soil survey map in Appendix A for additional information.

Sand Creek is within the eastern portion of the site. Currently, JR Engineering, LLC. is performing studies and plans to address Sand Creek stabilization per Sand Creek Channel Design Report JR Engineering, October 2021-Draft; corresponds to PCD project No CD-20-004.

There are no known irrigation facilities located on the project site.

DRAINAGE REPORT FOR HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

FLOODPLAIN STATEMENT

Based on the FEMA Firm Maps Number 08041C0533G and 08041C0535G revised December 7, 2018, the vast majority of the development is located within Zone X, or areas area outside the Special Flood Hazard Area (SFHA) and higher than the elevation of the 0.2-percent-annual-chance (or 500-year) flood. The eastern property boundary will be platted to the center of Sand Creek, placing a portion of the site within Zone AE. The area of disturbance for site grading is located outside of the delineated floodway within Zone X. The FEMA map containing the site has been presented in Appendix A. It is anticipated that the plat for Homestead North Filing No. 1, will be recorded prior to a LOMR for the channel improvements. The floodplain elevations will not adversely impact the site after the LOMR is submitted and are anticipated to meet a no rise condition.

EXISTING DRAINAGE CONDITIONS

MAJOR BASIN DESCRIPTIONS

The site lies within the Sand Creek Drainage Basin based on the "Sand Creek Drainage Basin Planning Study" (DBPS) completed by Kiowa Engineering Corporation in January 1993, revised March 1996. The Sand Creek Drainage Basin covers approximately 54 square miles and is divided into major sub-basins. The site is within the respective sub-basin is shown in Appendix E.

The Sand Creek DBPS assumed the Homestead North at Sterling Ranch property to have a "large lot residential" use for the majority of the site. However, the proposed Sterling Ranch master plan is a mix of; school, multi-family, single-family, and commercial land uses, resulting in higher runoff. The site generally drains from north to south consisting of rolling hills. Currently, the site is used as pasture land for cattle. Sand Creek is located in the east portion of the site running north to south. This reach of drainage conveyance is not currently improved. There are a few stock ponds within the creek channel used for cattle watering. Currently, JR engineering is performing studies and plans to address Sand Creek stabilization adjacent to the site.

EXISTING SUB-BASIN DRAINAGE

The existing/ predeveloped site consists of 3 onsite basins (H1, H2, and H3) and offsite basins E1 - E6.2. This historic basins outfall to Sand Creek at 2 outfalls as shown in the Historic Drainage Map in Appendix E. A sub-division to the north of the site is being developed called "Retreat at Timberidge". Runoff from this sub-division will be detained and will not impact storm-water runoff on the Sterling Ranch Homestead site.

Basin E-1 (Q5 = 1.1 cfs, Q100 = 5.2 cfs) is 4.5 acres of undeveloped land adjacent to the northwest portion of Vollmer Road. Runoff from this basin drains to a 24" CMP pipe and outfalls on the eastern side of Vollmer Road, flows through basin H1, and outfalls into Sand Creek.

DRAINAGE REPORT FOR

HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

Basin E-2 (Q5 = 28.1 cfs, Q100 = 192.9 cfs) is 180.3 acres of undeveloped land adjacent to the northwest portion of Vollmer Road. Runoff from this basin drains to a 24 "CMP pipe and outfalls on the eastern side of Vollmer Road, flowing through basin H3 to DP 3h, and outfalls into Sand Creek.

Basin E-3 (Q5 = 2.2 cfs, Q100 = 13.7 cfs) is 12.39 acres of undeveloped land adjacent to the western portion of Vollmer Road. Runoff from this basin drains offsite into a roadside swale adjacent to Vollmer Road, flowing through basin H3 to DP3h.

Basin E-4 (Q5 = 9.9 cfs, Q100 = 72.7 cfs) is 70.9 acres of undeveloped land to the south of Retreat at Timber Ridge and on the eastern side of sand creek. Runoff from this basin drains to design point 40.

Basin E-5 (Q5 = 3.4 cfs, Q100 = 24.9 cfs) is 18.8 acres of undeveloped land adjacent to the eastern portion of Sand Creek. Runoff from this basin sheet flow to the south and ultimately drains to Sand Creek in confluence with flow from basin E-4 at dp 50 to Sand Creek.

Basin E-6.1 (Q5 = 17.7 cfs, Q100 = 130.0 cfs) is 124.9 acres of undeveloped land that drains to the south directly into sand creek at design point 6.10.

Basin E-6.2 (Q5 = 7.5, Q100 = 55.4 cfs) is 49.61 acres of undeveloped land that drains to a low point directly adjacent to basin E-6.1 at design point 6.20. Runoff from this basin then drains to Sand Creek south of design point 6.10 in confluence with runoff from E-6.1.

Basin H1 (Q5 = 8.9 cfs, Q100 = 61.1 cfs) is 45.2 acres of undeveloped land covered in native prairie grass at DP 1h.

Basin H2 (Q5 = 3.5 cfs, Q100 = 26.0 cfs) is 16.1 acres of undeveloped land covered in native prairie grass. This basin drains directly into Sand Creek. The basin is to the south east of Vollmer road. This basin drains directly into Sand Creek at DP 2h.

Basin H3 (Q5 = 5.9 cfs, Q100 = 40.8 cfs) is 28.4 acres of undeveloped land covered in native prairie grass. This basin drains directly into Sand Creek at DP 3h. The basin is to the south east of Vollmer Road and North of Briargate Parkway.

PROPOSED DRAINAGE CONDITIONS

Basin C1 2.82 acres and 69% percent impervious, is comprised of single-family lots, and the northwestern side of the local residential roads Texas Jack Drive and Harvey Logan Drive. Runoff $(Q_5=5.4 \text{ cfs}, Q_{100}=11.4 \text{ cfs})$ from basin C1 drains to design point 1C at Wheatland Drive.

Basin C2.1 0.20 acres and 91% percent impervious, is comprised of single-family lots, and the southeastern side of the residential road Texas Jack Drive. Runoff ($Q_5=0.8$ cfs, $Q_{100}=1.6$ cfs) from basin C2.1 drains to design point 2.1C a 5' on grade type R inlet.

Basin C2.2 4.69 acres and 73% percent impervious, is comprised of local roads, single-family lots, and the northwestern side of the residential road Wheatland Drive. Runoff ($Q_5=9.9$ cfs, $Q_{100}=20.3$ cfs) from basin C2.2 drains to design point 2.2C in confluence with bypass runoff from basin C2.3. The runoff ultimately drains to design point 4C a 15' type R and 5' type R sump inlets. The total runoff from basins C1, C2.1, C2.2, C2.3 and C4.1 is collected within the sump inlet.

Basin C2.3 0.83 acres and 67% percent impervious, is comprised of local roads Wheatland Drive and Harvey Logan Drive, single-family lots, and the northwestern side of the residential road Wheatland Drive. Runoff ($Q_5=1.9$ cfs, $Q_{100}=3.9$ cfs) from basin C2.3 drains to design point 2.3C in confluence with runoff from basin C1 at an on grade 15' Type R inlet.

Basin C3.1 0.35 acres and 73% percent impervious, is comprised of single-family lots, and the southeastern side of the residential road Wheatland Drive. Runoff ($Q_5=1.2$ cfs, $Q_{100}=2.4$ cfs) from basin C3.1 drains to design point 3.1C.

Basin C3.2 1.66 acres and 62.9% percent impervious, is comprised of local roads, single-family lots, and the southeastern side of the residential road Wheatland Drive and Tom Ketchum Drive. Runoff ($Q_5=3.5$ cfs, $Q_{100}=7.2$ cfs) from basin C3.2 drains to design point 3.2C.

Basin C4.1 6.34 acres and 65% percent impervious, is comprised of single-family lots, and the local residential road Texas Jack Drive and Nat Love Drive. Runoff ($Q_5=12.1$ cfs, $Q_{100}=25.9$ cfs) from basin C4.1 drains to design point 4C a 15' type R and 5' type R sump inlets. The total runoff from basins C1, C2.1, C2.2, C2.3 and C4.1 is collected within the sump inlet.

Basin C4.2 3.59acres and 57% percent impervious, is comprised of a local road Texas Jack Drive, a right in right out with access to Vollmer Road and single-family lots. Runoff ($Q_5=5.9$ cfs, $Q_{100}=13.1$ cfs) from basin C4.2 drains to design point 4.2C a 15' type R on grade inlet.

Basin C5 0.16 acres and 81% percent impervious, is comprised of the southeastern side of a residential road Wheatland Drive. Runoff ($Q_5=0.6$ cfs, $Q_{100}=1.0$ cfs) from basin C5 drains to design

DRAINAGE REPORT FOR

HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

point 5C, a 15' type R sump inlet. Basin C5 collects runoff from basin C3.2 and C5. The runoff from basin C ultimately outfalls into pond C. In the event the inlet clogs at Basin C5 the runoff will overflow to pond C. A berm has been graded to ensure that the overflow path will go into pond C.

Basin C6 2.59 acres and 20% percent impervious, is comprised of pond C and some single-family residential area. Runoff ($Q_5=2.5$ cfs, $Q_{100}=8.8$ cfs) generated in Basin B11 sheet flows into Pond C where it is treated for water-quality and is detained up until the 100 year-event. The MHFD Detention sheet for pond C is shown in Appendix C of this report.

Pond C has a tributary area of 224.4 acres and is 10.3 % impervious. Pond C has been graded in to fit the design volume, as shown in Appendix C of this report. This pond will be built in filing 1 of Homestead North at Sterling Ranch. The Pond C overflow emergency spillway will overflow into Sand Creek. The WQCV, 5 year and 100 year volumes, releases rates and stages for pond C are shown in Table 2.3 below. These results correspond to the Routed Hydrograph results, as shown in Appendix C of this report.

	TABLE 2.3 Pond C							
	Stage –ft	Volume (Acres)	Release Rate (cfs)					
WQCV	3.32	1.288	0.7					
5 Year	6.22	4.310	20.6					
100 Year	9.94	9.263	173.9					

The following basins are tributary to the adjacent portion of Vollmer Road being designed by JR Engineering. Runoff will be detained within pond C and the runoff will then be released into Sand Creek adjacent to the crossing of Briargate road and Sand Creek.

Basin D1 has a tributary area of 1.77 acres and is 40.1% impervious. Basin D1 consists of the northwest portion of Vollmer road (Rural Cross Section). Runoff from basin D1 ($Q_5=2.4$ cfs, $Q_{100}=6.0$ cfs) drains to an adjacent roadside swale and drains into a type C inlet at design point 1D runoff is then piped at design point 1.1D in confluence with upstream runoff from the inlet collect at design point 10. From here on the runoff is piped with upstream runoff from basin OS1 into the Vollmer storm sewer system.

Basin D2 has a tributary area of 1.44 acres and is 56.4% impervious. Basin D2 consists of the northeast portion of Vollmer road (Rural Cross Section). Runoff from basin D2 ($Q_5=2.8$ cfs, $Q_{100}=6.6$ cfs) drains to an adjacent roadside swale and drains into a type C inlet at design point 2D. From here

HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

on the runoff is piped with upstream runoff from basin OS1and basin D1 into the Vollmer storm sewer system.

Basin D3 has a tributary area of 0.18 acres and is 68% impervious. Basin D3 ($Q_5=0.6$ cfs, $Q_{100}=1.2$ cfs) consists of the northeast portion of Vollmer road Vollmer road with curb and gutter. Runoff on from this basin drains to an on grade 5' type R inlet at DP 3D.

Basin D4 has a tributary area of 0.19 acres and is 57% impervious. Basin D4 ($Q_5=0.5$ cfs, $Q_{100}=1.1$ cfs) consists of the northwest portion of Vollmer road Vollmer road with curb and gutter. Runoff on from this basin drains to an on grade 5' type R inlet at D P4D. 0.3 cfs is by-passed down to DP 6D. Runoff is piped from basin(s) D3 and D4 to the Vollmer storm within the street's R.O.W.

Basin D5 has a tributary area of 0.91 Acres and is 77% impervious. Basin D5 ($Q_5=3.1$ cfs, $Q_{100}=6.1$ cfs) consists of the northeast portion of Vollmer road with curb and gutter. Runoff from this basin drains to an on grade type R 10' inlet at the intersection of Vollmer and a right in right out at DP 5D, 0.7 cfs is by-passed downstream to design point 7D in the 100 year event.

Basin D6 has a tributary area of 0.83 Acres and is 69% impervious. Basin D6 ($Q_5=2.5$ cfs, $Q_{100}=5.2$ cfs) consists of the northwestern portion of Vollmer road and the runoff drains into a 10' on grade type R inlet at DP 6D. 0.4 cfs is by-passed to the downstream design point D8 in the 100 yr event.

Basin D7 has a tributary area of 0.75 Acres and is 79 % impervious. Basin D7 ($Q_5=2.8$ cfs, $Q_{100}=5.3$ cfs) consists of the northeast portion of Vollmer road. Runoff from this basin drains to an on grade type R 10' inlet at the intersection of Vollmer and Briargate at DP 7D. All of the runoff received by this inlet is captured within the 100 year event.

Basin D8 has a tributary area of 0.72 Acres and is 69% impervious. Basin D8 ($Q_5=2.4$ cfs, $Q_{100}=4.6$ cfs) consists of the northwestern portion of Vollmer road and the runoff drains into a 15' on grade type R inlet at DP 8D. 0.7 cfs is by-passed downstream and will drain into a roadside swale in continuity will the current condition.

Basin OS1 has a tributary area of 2.85 Acres and is 2.0% impervious. The runoff from basin OS1 ($Q_5=0.8$ cfs, $Q_{100}=6.0$ cfs) drains into a depression adjacent to on the northwest portion of Vollmer road. The runoff from basin OS1 is captured in a type C inlet at DP 10, from there on runoff is piped within Vollmer road and outfalls into sand Creek.

Basin OS2 has a tributary area of 179.61 Acres and is 2.0 % impervious. The runoff from the basin $(Q_5=27.1 \text{ cfs}, Q_{100}=190.9 \text{ cfs})$ drains into a local depression at DP 20 near the northwest portion of Vollmer road. The runoff from the basin is piped within Vollmer Road and outfalls into pond C where it is detained, treated for water quality and then the runoff is discharged directly into Sand Creek.

Basin OS3 has a tributary area of 11.98 Acres is 2.0 % impervious. The runoff from this basin $(Q_5=2.2 \text{ cfs}, Q_{100}=12.6 \text{ cfs})$ sheet flows towards Vollmer road and is captured within an existing ditch along the west side of Vollmer Road and corresponds to design point 30. The existing roadside ditch will channel flow south along Vollmer Road to existing Type D inlets south of Briargate Parkway designed with the Homestead at Sterling Ranch Filing No.1 Final Drainage Report, see the associated drainage map in Appendix D. In the future, this side of Vollmer is expected to have a paved walk and a portion of runoff will drain directly onto Vollmer Road to the inlet at design point 8D and be piped to Pond C. As a conservative measure, runoff from this basin was also accounted for in the design of the proposed 15' type r inlet at design point 8D, associated storm pipe as well as Pond C in the event future basin development conveys runoff towards Homestead North Filing 1 and Pond C. In the interim condition, flow will continue to accumulate in the roadside ditch and flow south until the west side of Vollmer Rd is developed.

DRAINAGE DESIGN CRITERIA

DEVELOPMENT CRITERIA REFERENCE

Storm drainage analysis and design criteria for this project were taken from the "*City of Colorado Springs/El Paso County Drainage Criteria Manual*" Volumes 1 and 2 (EPCDCM), dated October 12, 1994, the "*Urban Storm Drainage Criteria Manual*" Volumes 1 to 3 (USDCM) and Chapter 6 and Section 3.2.1 of Chapter 13 of the "*Colorado Springs Drainage Criteria Manual*" (CSDCM), dated May 2014, as adopted by El Paso County.

HYDROLOGIC CRITERIA

All hydrologic data was obtained from the "*El Paso Drainage Criteria Manual*" Volumes 1 and 2, and the "*Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual*" Volumes 1, 2, and 3. Onsite drainage improvements were designed based on the 5 year (minor) storm event and the 100-year (major) storm event. Runoff was calculated using the Rational Method, and rainfall intensities for the 5-year and the 100-year storm return frequencies were obtained from Table 6-2 of the CSDCM. One hour point rainfall data for the storm events is identified in the chart below. Runoff coefficients were determined based on proposed land use and from data in Table 6-6 from the CSDCM. Time of concentrations were developed using equations from CSDCM. All runoff calculations and applicable charts and graphs are included in the Appendices.

Table 3 -	1-hr	Point	Rainfall	Data
-----------	------	-------	----------	------

Storm	Rainfall (in.)
5-year	1.50

DRAINAGE REPORT FOR HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

100-year 2.52

HYDRAULIC CRITERIA

The Rational Method and USDCM's SF-2 and SF-3 forms were used to determine the runoff from the minor and major storms on the site, and the UDFCD MHFD-Detention v4.03 spreadsheet was utilized for evaluating proposed detention and water quality pond. Sump and on-grade inlets were sized using UDFCD UD-Inlet v2.07. Manning's equation was used to size the proposed pipes in this report and StormCAD will be used to model the proposed storm sewer system and to analyze the proposed HGL calculations for Construction Drawings. Manhole and pipe losses for the model were obtained from the <u>Modeling Hydraulic and Energy Gradients in Storm Sewers: A Comparison of Computation Methods</u>, by AMEC Earth & Environmental, Inc. The manhole loss coefficients used in the model can be seen in Table 2 and apply for storm pipe 42" or smaller. StormCAD results along with street and inlet capacities are presented in Appendix C. The standard head loss stormCAD head loss coefficients were entered in for storm greater than 42" as shown in table 3 below.

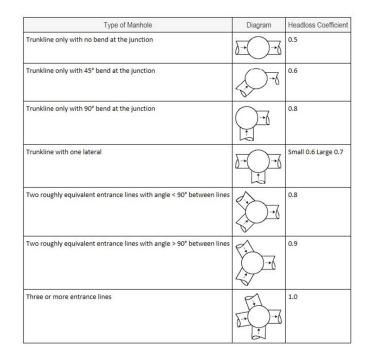

StormCAD Conversion Table								
	Bend	K an affiniant Community						
ú	Angle	K coefficient Conversion						
SO	0	0.05						
٩L	22.5	0.1						
Bend Loss	45	0.4	(
•	60	0.64						
	90	1.32						
	1 Latera	al K coefficient Conversion						
	Bend	Non						
	Angle	Surcharged	Surcharged					
SS	45	0.27	0.47					
Ľ	60	0.52	0.9					
al	90	1.02	1.77					
-ateral Loss	2 Latera	Is K coefficient Co	onversion					
_	45	0.96						
	60	1.16						
	90	1.52	2					

Table 2 - StormCAD Standard Method Conversions

Table 3

DRAINAGE REPORT FOR HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

DRAINAGE FACILITY DESIGN

GENERAL CONCEPT

The proposed stormwater conveyance system was designed to convey the developed Sterling Ranch Homestead North Filing No. 1 runoff to the proposed full spectrum water quality and detention pond C via storm sewer. Pond C will also be utilized to detain and treat large portions of offsite area tributary to Vollmer road. Runoff from the majority of offsite area will sheet flow into an interim overflow structure at DP 2o at an interim mh with a grate overflow and into a 48 inch RCP pipe. These flows will continue to design point 8D where the rest of the offsite flow is being collected after running through design point 30. From there, it all flows to pond C through a 60 inch RCP pipe. Runoff from Vollmer is captured within type D inlets and swales at DP 1D and DP 2D for the northern portion of improvements, as shown in the Drainage Map in Appendix E. For the southern portion of Vollmer, ending at Briargate, runoff will be captured in a series of on-grade type r inlets. Runoff in the filing one subdivision will be captured in on-grade type r inlets and flow through 18 inch RCP pipes. Directly north of the pond C the runoff will be captured within two sump inlets at DP 4C and DP 5C; an overflow path has been provided, if the sump inlets clog to pond C. Runoff from Filing One and the offsite runoff, Vollmer improvements are dissipated in two separate forebays. For additional information on design points, runoff, routing of flow, refer to the Drainage Map in Appendix E of this report and the proposed calculations in Appendix B of this report. The proposed pond was designed to release at less than the predeveloped rate to minimize adverse impacts downstream. Treated water will outfall directly into the Sand Creek Drainageway, where it will eventually outfall into Fountain Creek. The pond will be owned and maintained by Sterling Ranch Metro District. A proposed drainage map is presented in Appendix E showing locations of the pond and channel outfall locations.

FOUR STEP PROCESS TO MINIMIZE ADVERSE IMPACTS OF URBANIZATION

In accordance with the El Paso County Drainage Criteria Manual Volume 2, this site has implemented the four step process to minimize adverse impacts of urbanization. The four step process includes reducing runoff volumes, treating the water quality capture volume (WQCV), stabilizing drainage ways, and implementing long-term source controls.

Step 1 – Reducing Runoff Volumes: The Homestead North at Sterling Ranch development project consists single -family homes with open spaces and lawn areas interspersed within the development which, helps disconnect impervious areas and reduce runoff volumes. Roof drains from the structures will discharge to lawn areas, where feasible, to allow for infiltration and runoff volume reduction.

Step 2 – Stabilize Drainageways: The site lies within the Sand Creek Drainage Basin. Basin and bridge fees will be due at time of platting. These funds will be used for the channel stabilization being designed by JR Engineering adjacent to the site and on future projects within the basin to stabilize drainageways. The Soils and Geology study on the site showed a potentially unstable region directly adjacent to the western bank of Sand Creek on the northeast corner of the site. At the time of final design, specifications from a Geotechnical Engineer will be implemented to ensure that the developed site is safe. Homestead North lots will discharge into Full Spectrum Detention Ponds, and outflows will be less than or equal to historic flows. Existing flows from the northwest of Vollmer road and runoff from the Vollmer Road improvements will be piped under Vollmer Road and then along the north side of Briargate Parkway and will be detained and treated for water quality directly on-site. The subdivision improvement agreement (SIA) for Sterling Ranch Filing 1 states that "bank stabilization of the Sand Creek channel shall be required prior to any replats of other final plats adjacent to the channel. The design and installation of said improvements shall be accomplished and guaranteed through the normal subdivision review and collateralization process." Additionally, "Other drainage improvements in Tract D and future tracts containing the Sand Creek Channel, such as drop structures, check structures and similar stabilization or protection improvements, will be designed and constructed by the District with the final construction drawings to be approved by the County no later than the final platting of the 700th single family lot within the boundaries of the approved Sterling Ranch Sketch Plan and the completion of all said improvements no later than the 800th single family lot with the boundaries of the approved Sterling Ranch Sketch Plan."

Step 3 – Treat the WQCV: Water Quality treatment for this site is provided full spectrum water quality detention ponds: Pond C. The runoff from this site will be collected within inlets and conveyed to the proposed ponds via storm sewer. Upon entrance to the ponds, flows will be captured in a forebay designed to promote settlement of suspended solids. A trickle channel is also incorporated into the ponds to minimize the amount of standing water. The outlet structure has been designed to detain the water quality capture volume (WQCV) for 40 hours, and the extended urban runoff volume (EURV) for 72 hours. All flows released from the ponds will be reduced to less than

historic rates.

Step 4 – Consider Need for Industrial and Commercial BMPs: There are no commercial or industrial components to this development; therefore no BMPs of this nature are required. BMPs will be utilized to minimize off-site contaminants and to protect the downstream receiving waters. The site is a residential subdivision (ie: not a high-risk site per Figure I-1 in ECM Appendix I), therefore specialized BMPs do not need to be considered. Site specific temporary source control BMPs that will be implemented include, but are not limited to, silt fencing placed around downstream areas of disturbance, construction vehicle tracking pads at the entrances, designated concrete truck washout basin, designated vehicle fueling areas, covered storage areas, spill containment and control, etc. The permanent erosion control BMPs include asphalt drives and parking, storm inlets and storm pipe, three full spectrum water quality and detention ponds, and permanent vegetation.

WATER QUALITY

The site is split into Basins C, D and the offsite basin(s) tributary to Vollmer Road. The tributary areas for the site is serviced by an extended full spectrum water quality / detention pond (i.e) Pond C. The pond has been designed per Section 13.3.2.1 of Resolution 15-042 of the El Paso County Drainage Criteria Manual. For additional information on pond storage and outlet characteristics see the MHFD sheets within Appendix C. Water quality for Sterling Ranch Road and Briargate Parkway is being provided for in the proposed interim detention ponds FSD14A and FSD16 shown in the Sterling Ranch Road and Briargate Parkway GEC plans and the associated drainage letter; PCD CDR221.

EROSION CONTROL PLAN

The El Paso County Drainage Criteria Manual specifies an Erosion Control Plan and associated cost estimate must be submitted with each Final Drainage Report. The Erosion Control Plan for Sterling Ranch Homestead North Filing No. 1 has been submitted with this report.

OPERATION & MAINTENANCE

In order to ensure the function and effectiveness of the stormwater infrastructure, maintenance activities such as inspection, routine maintenance, restorative maintenance, rehabilitation and repair, are required. The property owner shall be responsible for the inspection, maintenance, rehabilitation and repair of stormwater and erosion control facilities located on the property unless another party accepts such responsibility in writing and responsibility is properly assigned through legal documentation. Access is provided from onsite facilities and easements for proposed infrastructure located offsite. We respectfully request that the Operation & Maintenance Manual be submitted in conjunction with the construction documents. Maintenance is provided for pond C at two locations with 12-foot access roads. The maintenance is provided off Wheatland Drive for two the two forebays and outlet structure. The maintenance drive for the Sand Creek improvements is provided

DRAINAGE REPORT FOR HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

October 2022

off Wheatland drive, and a turnaround is provided directly adjacent to the Sand Creek and Briargate Bridge crossing.

DRAINAGE AND BRIDGE FEES

The site lies within the Sand Creek Drainage Basin. The drainage and bridge fee is presented within the table below; refer to the Drainage and Bridge Fees for Homestead North Filing 1 calculation sheet presented in Appendix B for additional information.

2022 DRAINAGE AND BRIDGE FEES – HOMESTEAD NORTH FILING 1								
Impervious	Impervious Drainage Fee Bridge Fee HN F1 HN F1							
Acres (ac)	(Per Imp. Acre)	(Per Imp. Acre)Drainage FeeBridge Fee						
24.81	\$21,814	\$8,923	\$541,225	\$221,388				

CONSTRUCTION COST OPINION

JR Engineering, LLC cannot and does not guarantee the construction cost will not vary from these opinions of probable cost. These opinions represent our best judgement as design professionals familiar with the construction industry and this development in particular. The cost estimate for the storm sewer infrastructure has also been provided in the Financial Assurance Estimate.

Swapping of DBPS improvements for proposed improvements is being proposed for this project. A map demonstrating the DBPS improvements costs are being swapped is found in Appendix D.

DRAINAGE REPORT FOR

HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

October 2022

	Homestead North Filing No. 1 (Public No	n-Reimbursable)		
tem	Description	Quantity	Unit	

	nomesteda North mig No. 1 (1 abite North	cimbar subic)			
Item	Description	Quantity	Unit	Unit Price	Cost
1	18" RCP	835	L.F.	\$ 67	\$ 55,945.00
2	24" RCP	1372	L.F.	\$ 81	\$ 111,132.00
3	30" RCP	88	L.F.	\$ 100	\$ 8,800.00
4	36" RCP	651	L.F.	\$ 124	\$ 80,724.00
5	20' CDOT Type R Inlet < 10 ft deep	2	Ea.	\$ 12,075	\$ 24,150.00
6	15' CDOT Type R Inlet< 10 ft deep	3	Ea.	\$ 11,005	\$ 33,015.00
7	15' CDOT Type R Inlet < 5 ft deep	1	Ea.	\$ 10,265	\$ 10,265.00
8	10' CDOT Type R Inlet < 10 ft deep	2	Ea.	\$ 8,136	\$ 16,272.00
9	5' CDOT Type R Inlet < 10 ft deep	4	Ea.	\$ 7,440	\$ 29,760.00
10	Grated Inlet Type D	3	Ea.	\$ 5,392	\$ 16,176.00
11	Storm Sewer MH, slab base	8	Ea.	\$ 6,619	\$ 52,952.00
				Sub-Total	\$ 439,191.00

Homestead North Filing No. 1 (Public - Reimbursable - Agreed to at Drainage Board meeting of 6/3/21)

Item	Description	Quantity	Unit	U	nit Price	Cost	Rein	mbursable Cost
1	42" RCP	41	L.F.	\$	166	\$ 6,806.00	\$	6,806.00
2	48" RCP	260	L.F.	\$	202	\$ 52,520.00	\$	52,520.00
3	60" RCP	1402	L.F.	\$	298	\$ 417,796.00	\$	417,796.00
4	Grated Inlet Type D	1	Ea.	\$	5,392	\$ 5,392.00	\$	5,392.00
5	48" FES	1	Ea.	\$	750	\$ 750.00	\$	750.00
6	Storm Sewer MH, box base	5	Ea.	\$	12,034	\$ 60,170.00	\$	60,170.00
7	*Detention Pond C (50% reimb)	1	Ea.	\$	150,000	\$ 150,000.00	\$	75,000.00
				S	ub-Total	\$ 686,628.00	\$	611,628.00
			Gra	and	Total	\$ 1,125,819.00	\$	611,628.00

Homestead North Filing No. 1 (Bridge - Reimbursable- Agreed to at Drainage Board meeting of 6/3/21)

Item	Description	Quantity	Unit	Unit Price	Cost	Reimbursable Cost
1	58S Bridge (see FAE CDR 2113)	1	Ea.	\$ 1,546,677	\$ 1,546,677.00	\$ 1,546,677.00
			-	Sub-Total	\$ 1,546,677.00	\$ 1,546,677.00

Per LDC section 8.5.5.C.3.b(ii) Fee Reductions, Credits or Reimbursement for Facilities, this development requests that no cash drainage or bridge fees are due at platting as the value of reimbursable DBPS improvements for the Sand Creek Tributary segment 169, 186 and the Briargate Bridge shown in the below table exceed the drainage and bridge fee estimate shown above.

DRAINAGE REPORT FOR HOMESTEAD NORTH AT STERLING RANCH FILING NO. 1

Sterling Ranch Deferred Drainage Fees Analysis Reimbursable Costs associated with DBPS Segment 159 and 164, Segment 169 and 186

Reimbursable Estimate Segment 159 and 164 from SR F2 FDR (SF-2015)	\$1,918,065.00
Reimbursable Estimate Segment 169 and 186 from HN F1 FDR (SF-2213)	<u>\$611,628.00</u>
Subtotal Reimb. Costs associated with DBPS Segments 159-164, 169-186	\$2,529,693.00
Earlier Plats Deferred Drainage Fees (Branding Iron F1 & Homestead F1)	\$219,540.55
SR F2 (SF-2015) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$400,855.70
SR F3 (SF-2132) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$214,430.47
HN F1 (SF-2213) Drainage Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$541,225.00
Subtotal Deferred Drainage Fees	\$1,376,051.72
Unused Reimb. Costs associated with DBPS Segments 159-164, 169-186	\$1,153,641.28

Sterling Ranch Deferred Bridge Fees Analysis

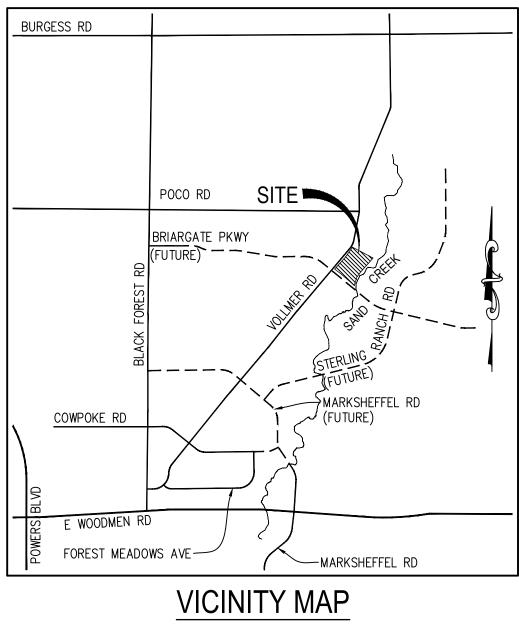
Reimbursable Costs associated with DBPS Bridge at Briargate Parkway and Sterling Ranch Rd.

Financial Assurance Estimate Briargate Parkway Bridge from CDR 2113	\$1,546,676.98
Financial Assurance Estimate Sterling Ranch Road Bridge from CDR 226	\$990,016.80
Subtotal Reimb. Costs associated with BGP and SR Rd. Bridges	\$2,536,693.78
SR F3 (SF-2132) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$87,709.60
HN F1 (SF-2213) Bridge Fees Deferred per LDC section 8.5.5.C.3.b(ii)	\$221,388.00
Subtotal Deferred Bridge Fees	\$309,097.60
Unused Reimb. Costs associated with Briargate Parkway and SR Road Bridges	\$2,227,596.18

SUMMARY

The proposed Homestead North at Sterling Ranch Filing No. 1 drainage improvements were designed to meet or exceed the El Paso County Drainage Criteria. The proposed development's pond was designed to release less than 90% of the predeveloped runoff study associated with the subject site. The proposed development will not adversely affect the offsite drainageways or surrounding development. This report is in conformance and meets the latest El Paso County Storm Drainage Criteria requirements.

REFERENCES


- 1. "El Paso County and City of Colorado Springs Drainage Criteria Manual, Vol I & II".
- 2. <u>El Paso County ECM</u>, 2019
- 3. El Paso County DCM Vol. 1 Update, 2015
- 4. <u>Urban Storm Drainage Criteria Manual</u> (Volumes 1, 2, and 3), Urban Drainage and Flood Control District, June 2001.
- 5. <u>Upper Sand Creek Detention Evaluation Study</u>, Wilson and Company'
- 6. <u>Final Drainage Report For Retreat at Timberridge Filing No. 1</u>, Classic Consulting Engineers & Surveyors
- 7. Sand Creek Channel Design Report JR Engineering, October 2021-Draft

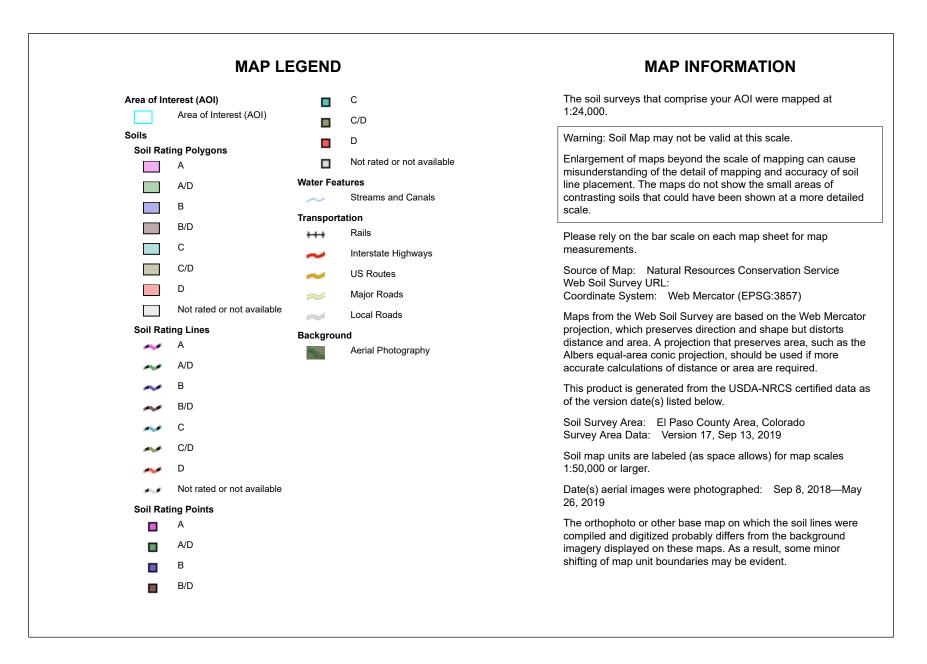
Appendix A

Vicinity Map, Soil Descriptions, FEMA Floodplain Map

N.T.S.

VICINITY MAP HOMESTEAD NORTH FIL. 1 JOB NO. 25188.00 08/24/21 SHEET 1 OF 1

Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com


Hydrologic Soil Group-El Paso County Area, Colorado

National Cooperative Soil Survey

Conservation Service

Page 1 of 4

Hydrologic Soil Group

Map unit symbol	Map unit name	Rating	Acres in AOI	Percent of AOI
71	Pring coarse sandy loam, 3 to 8 percent slopes	В	90.2	100.0%
Totals for Area of Intere	st		90.2	100.0%

Description

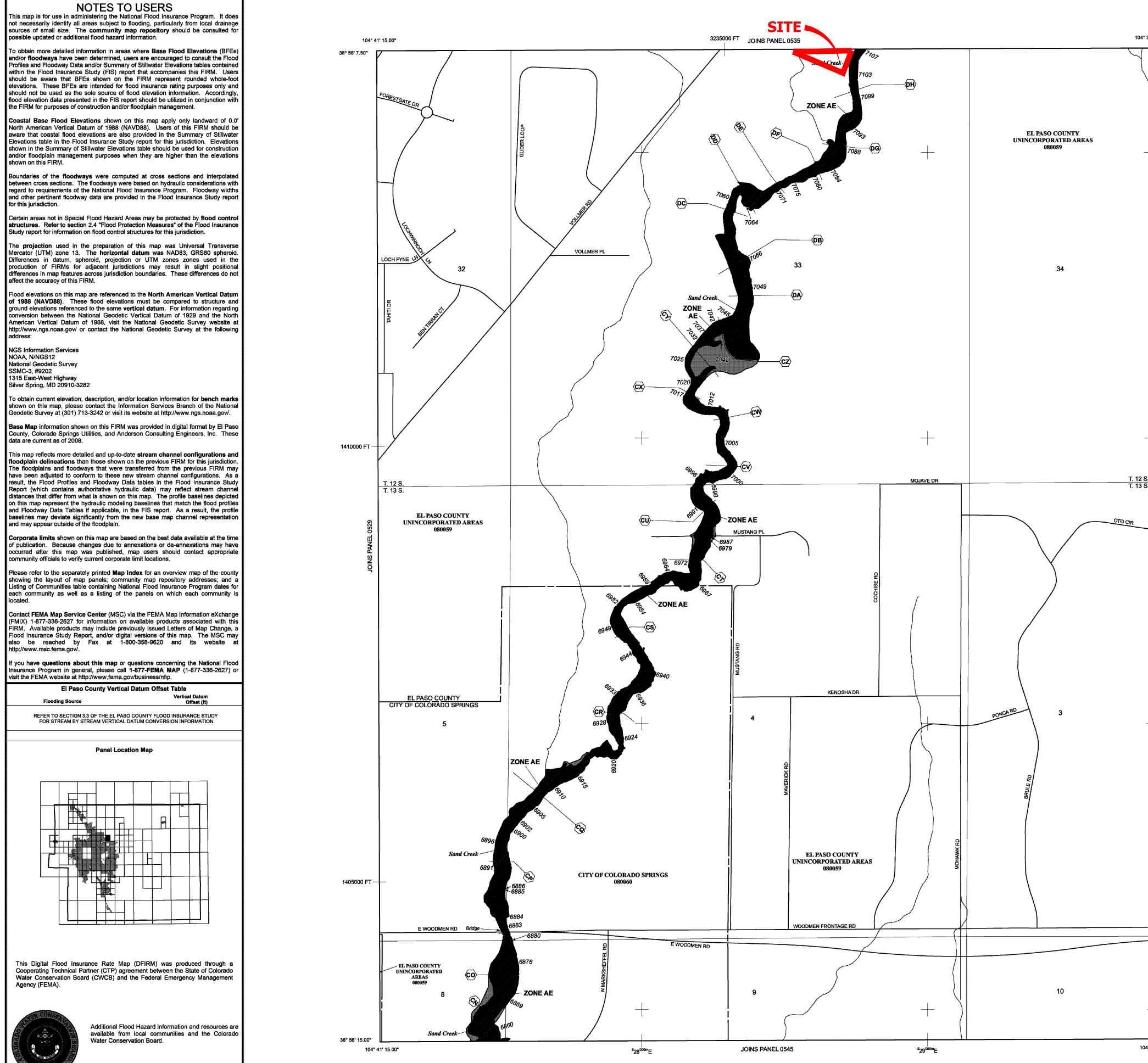
Hydrologic soil groups are based on estimates of runoff potential. Soils are assigned to one of four groups according to the rate of water infiltration when the soils are not protected by vegetation, are thoroughly wet, and receive precipitation from long-duration storms.

The soils in the United States are assigned to four groups (A, B, C, and D) and three dual classes (A/D, B/D, and C/D). The groups are defined as follows:

Group A. Soils having a high infiltration rate (low runoff potential) when thoroughly wet. These consist mainly of deep, well drained to excessively drained sands or gravelly sands. These soils have a high rate of water transmission.

Group B. Soils having a moderate infiltration rate when thoroughly wet. These consist chiefly of moderately deep or deep, moderately well drained or well drained soils that have moderately fine texture to moderately coarse texture. These soils have a moderate rate of water transmission.

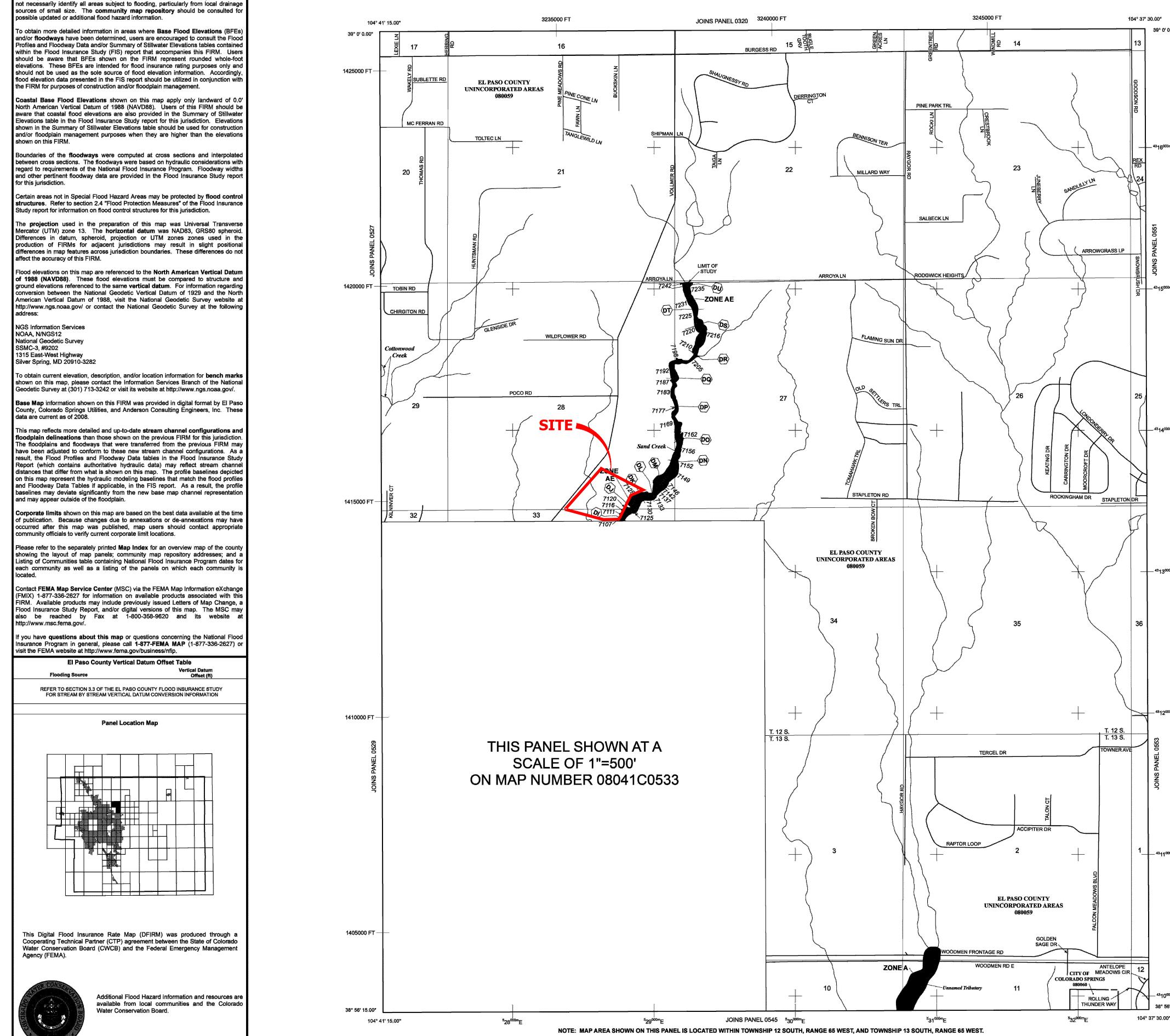
Group C. Soils having a slow infiltration rate when thoroughly wet. These consist chiefly of soils having a layer that impedes the downward movement of water or soils of moderately fine texture or fine texture. These soils have a slow rate of water transmission.


Group D. Soils having a very slow infiltration rate (high runoff potential) when thoroughly wet. These consist chiefly of clays that have a high shrink-swell potential, soils that have a high water table, soils that have a claypan or clay layer at or near the surface, and soils that are shallow over nearly impervious material. These soils have a very slow rate of water transmission.

If a soil is assigned to a dual hydrologic group (A/D, B/D, or C/D), the first letter is for drained areas and the second is for undrained areas. Only the soils that in their natural condition are in group D are assigned to dual classes.

Rating Options

Aggregation Method: Dominant Condition


Component Percent Cutoff: None Specified Tie-break Rule: Higher

NOTE: MAP AREA SHOWN ON THIS PANEL IS LOCATED WITHIN TOWNSHIP 12 SOUTH, RANGE 65 WEST, AND TOWNSHIP 13 SOUTH, RANGE 65 WEST.

			LEGEND
			D HAZARD AREAS (SFHAS) SUBJECT TO Y THE 1% ANNUAL CHANCE FLOOD
39' 22.50"			-year flood), also known as the base flood, is the flood ualed or exceeded in any given year. The Special Flood
38° 58' 7.50"	Hazard Area Special Flood	is the area subject Hazard include Zone	to flooding by the 1% annual chance flood. Areas of s A, AE, AH, AO, AR, A99, V, and VE. The Base Flood
	ZONE A	No Base Flood Elev	ation of the 1% annual chance flood. ations determined.
	ZONE AE ZONE AH		to 3 feet (usually areas of ponding); Base Flood
	ZONE AO		o 3 feet (usually sheet flow on sloping terrain); average
	ZONE AR	determined.	. For areas of alluvial fan flooding, velocities also rd Area Formerly protected from the 1% annual chance
		flood by a flood co AR indicates that	ntrol system that was subsequently decertified. Zone the former flood control system is being restored to
4313000mN	ZONE A99	Area to be protect	rom the 1% annual chance or greater flood. ed from 1% annual chance flood by a Federal flood
	ZONE V	determined.	under construction; no Base Flood Elevations
	ZONE VE	Elevations determin	
		Elevations determin	
		is the channel of a	stream plus any adjacent floodplain areas that must be
		encroachment so tha creases in flood heigi	it the 1% annual chance flood can be carried without its.
		OTHER FLOOD	AREAS
	ZONE X	average depths of	Jal chance flood; areas of 1% annual chance flood with less than 1 foot or with drainage areas less than 1 eas protected by levees from 1% annual chance flood.
		OTHER AREAS	
	ZONE X	Areas determined to	o be outside the 0.2% annual chance floodplain.
	ZONE D	Areas in which floor	hazards are undetermined, but possible.
		COASTAL BARR	IER RESOURCES SYSTEM (CBRS) AREAS
			OTECTED AREAS (OPAs)
	CBRS areas a		r located within or adjacent to Special Flood Hazard Areas. Iain boundary
	<u> </u>	— — Floody	vay boundary
) Boundary and OPA boundary
			ary dividing Special Flood Hazard Areas of different Base Elevations, flood depths or flood velocities.
	~~ 513	Base F	lood Elevation line and value; elevation in feet*
	(EL 987	elevati	lood Elevation value where uniform within zone; on in feet*
⁴³ 12 ^{000m} N			n Vertical Datum of 1988 (NAVD 88) section line
	<u>.</u>		ct line
5.	97° 07' 30	.00" Geogra	aphic coordinates referenced to the North American
5.	32° 22' 30 ⁴² 75 ^{000m}		i of 1983 (NAD 83) neter Universal Transverse Mercator grid ticks,
		zone 1	3
232	6000000	system	oot grid ticks: Colorado State Plane coordinate n, central zone (FIPSZONE 0502), rt Conformal Conic Projection
JOINS PANEL 0535	DX5510) Bench X this Fi	mark (see explanation in Notes to Users section of RM panel)
AS PA	M1_3		
10r			MAP REPOSITORIES
			Map Repositories list on Map Index CTIVE DATE OF COUNTYWIDE
		FLC	DOD INSURANCE RATE MAP MARCH 17, 1997
		3ER 7, 2018 - to upda	ATE(S) OF REVISION(S) TO THIS PANEL ate corporate limits, to change Base Flood Elevations and update map format, to add roads and road names, and to
	- Frank		reviously issued Letters of Map Revision.
			y prior to countywide mapping, refer to the Community ood Insurance Study report for this jurisdiction.
			s available in this community, contact your insurance surance Program at 1-800-638-6620.
		ļ	MAP SCALE 1" = 500'
		250 0 日日日	500 1000 FEET
⁴³ 11 ^{000m} N	1	50 0	METERS 150 300
	(
			PANEL 0533G
		NA A	FIRM
		6	FLOOD INSURANCE RATE MAP
			EL PASO COUNTY,
			COLORADO AND INCORPORATED AREAS
		<u> </u>	PANEL 533 OF 1300
		NAN	(SEE MAP INDEX FOR FIRM PANEL LAYOUT) <u>CONTAINS:</u>
			COMMUNITY NUMBER PANEL SUFFIX
		B	COLORADO SPRINGS, OITY OF 080080 0533 G EL PASO COUNTY 080059 0533 G
			Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the object community.
⁴³ 10 ^{000m} N			
		NA/	08041C0533G
38° 56' 15.00" 4° 39' 22,50"			MAP REVISED
		R	DECEMBER 7, 2018
			Federal Emergency Management Agency

NOTES TO USERS This map is for use in administering the National Flood Insurance Program. It does

	LEGEND SPECIAL FLOOD HAZARD AREAS (SFHAS) SUBJECT TO
0' 0.00"	INUNDATION BY THE 1% ANNUAL CHANCE FLOOD The 1% annual chance flood (100-year flood), also known as the base flood, is the flood that has a 1% chance of being equaled or exceeded in any given year. The Special Flood Hazard Area is the area subject to flooding by the 1% annual chance flood. Areas of
	Special Flood Hazard include Zones A, AE, AH, AQ, AR, A99, V, and VE. The Base Flood Elevation is the water-surface elevation of the 1% annual chance flood. ZONE A No Base Flood Elevations determined.
	ZONE AE Base Flood Elevations determined. ZONE AH Flood depths of 1 to 3 feet (usually areas of ponding); Base Flood Elevations determined.
	ZONE AO Flood depths of 1 to 3 feet (usually sheet flow on sloping terrain); average depths determined. For areas of alluvial fan flooding, velocities also determined.
	ZONE AR Special Flood Hazard Area Formerly protected from the 1% annual chance flood by a flood control system that was subsequently decertified. Zone AR indicates that the former flood control system is being restored to provide protection from the 1% annual chance or greater flood.
	ZONE A99 Area to be protected from 1% annual chance flood by a Federal flood protection system under construction; no Base Flood Elevations determined.
900mN	ZONE V Coastal flood zone with velocity hazard (wave action); no Base Flood Elevations determined. ZONE VE Coastal flood zone with velocity hazard (wave action); Base Flood
	Elevations determined. FLOODWAY AREAS IN ZONE AE
	The floodway is the channel of a stream plus any adjacent floodplain areas that must be kept free of encroachment so that the 1% annual chance flood can be carried without substantial increases in flood heights.
	OTHER FLOOD AREAS ZONE X Areas of 0.2% annual chance flood; areas of 1% annual chance flood with
	average depths of less than 1 foot or with drainage areas less than 1 square mile; and areas protected by levees from 1% annual chance flood.
	OTHER AREAS ZONE X Areas determined to be outside the 0.2% annual chance floodplain. ZONE D Areas builtible flood becaute an outforwarded but consider
5000mN	ZONE D Areas in which flood hazards are undetermined, but possible. COASTAL BARRIER RESOURCES SYSTEM (CBRS) AREAS
	OTHERWISE PROTECTED AREAS (OPAs)
	CBRS areas and QPAs are normally located within or adjacent to Special Flood Hazard Areas.
	Image: Moodway boundary Image: Moodway boundary Image: Moodway boundary Zone D Boundary Image: Moodway boundary CBRS and OPA boundary
	Boundary dividing Special Flood Hazard Areas of different Base Flood Elevations, flood depths or flood velocities.
	(EL 987) Base Flood Elevation line and value; elevation in feet* (EL 987) Base Flood Elevation value where uniform within zone; elevation in feet*
	* Referenced to the North American Vertical Datum of 1988 (NAVD 88) A Cross section line
7 ₀₀₀₀₀ N	(23)(23) Transect line
	97° 07" 30.00" Geographic coordinates referenced to the North American 32° 22' 30.00" Datum of 1983 (NAD 83) 4275 ^{000m} N 1000-meter Universal Transverse Mercator grid ticks,
	zone 13 6000000 FT 5000-foot grid ticks: Colorado State Plane coordinate
	DX5510 X Bench mark (see explanation in Notes to Users section of this ETRM paged)
	M1.5 River Mile
	MAP REPOSITORIES Refer to Map Repositories list on Map Index
3 ^{000m} N	EFFECTIVE DATE OF COUNTYWIDE FLOOD INSURANCE RATE MAP MARCH 17, 1997
	EFFECTIVE DATE(S) OF REVISION(S) TO THIS PANEL DECEMBER 7, 2018 - to update corporate limits, to change Base Flood Elevations and Special Flood Hazard Areas, to update map format, to add roads and road names, and to incorporate previously issued Letters of Map Revision.
	For community map revision history prior to countywide mapping, refer to the Community Map History Table located in the Flood Insurance Study report for this jurisdiction.
	To determine if flood insurance is available in this community, contact your insurance agent or call the National Flood Insurance Program at 1-800-638-6620.
	MAP SCALE 1" = 1000'
	500 0 1000 2000
2 ^{000m} N	METERS 300 0 300 600
	PANEL 0535G
	FIRM
	FLOOD INSURANCE RATE MAP
	EL PASO COUNTY,
	COLORADO AND INCORPORATED AREAS
	PANEL 535 OF 1300
1 ^{000m} N	(SEE MAP INDEX FOR FIRM PANEL LAYOUT)
	COMMUNITY NUMBER PANEL SUFFIX COLORADO SPRINGS, CITY OF 080080 0535 G EL PASO COUNTY 080059 0535 G
	Notice to User: The Map Number shown below should be used when placing map orders: the Community Number shown above should be used on insurance applications for the subject community.
ló ^{ooo} mN	MAP NUMBER 08041C0535G
. 56' 15.00" .00"	MAP REVISED
	DECEMBER 7, 2018 Federal Emergency Management Agency

Appendix B Hydrologic Calculations

COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location: Existing Conditions Homestead Fil. 1

El Paso County

Project Name: Homestead North

Project No.: 25188.00 Calculated By: ARJ

led By: ARJ

Checked By: Date: 6/13/21

	Total	Street	s/Paved	(100% In	npervious)	Reside	ntial (45	%-65% Ir	mpervious)	L	awns (2º	% Imperv	ious)		s Total nted C	Basins Total Weighted %
Basin ID	Area (ac)	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C_5	C ₁₀₀	Area (ac)	Weighted % Imp.	Val C ₅	ues C ₁₀₀	Imp.
E-1	4.50	0.90	0.96	0.31	6.8%	0.45	0.59	0.00	0.0%	0.08	0.35	4.19	1.9%	0.14	0.39	8.7%
E-2	180.30	0.90	0.96	1.46	0.8%	0.45	0.59	0.00	0.0%	0.08	0.35	178.84	2.0%	0.09	0.35	2.8%
E-3	12.39	0.90	0.96	0.31	2.5%	0.45	0.59	0.00	0.0%	0.08	0.35	12.08	2.0%	0.10	0.37	4.4%
E-4	70.90	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.08	0.35	70.90	2.0%	0.08	0.35	2.0%
E-5	18.80	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.08	0.35	18.80	2.0%	0.08	0.35	2.0%
E6.1	124.90	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.08	0.35	124.90	2.0%	0.08	0.35	2.0%
E6.2	49.61	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.08	0.35	49.61	2.0%	0.08	0.35	2.0%
H1	45.20	0.90	0.96	0.38	0.8%	0.45	0.59	0.00	0.0%	0.08	0.35	44.82	2.0%	0.09	0.36	2.8%
H2	16.10	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.08	0.35	16.10	2.0%	0.08	0.35	2.0%
H3	28.40	0.90	0.96	0.22	0.8%	0.45	0.59	0.00	0.0%	0.08	0.35	28.18	2.0%	0.09	0.35	2.7%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Existing Conditions Homestead Fil. 1

Location: El Paso County

Project Name: Homestead North Project No.: 25188.00 Calculated By: ARJ Checked By: 6/13/21

		SUB-I	BASIN			INITI	AL/OVERI	LAND			TRAVEL TI	ME			tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	IRBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	K	VEL.	t _t	COMP. t _c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
E-1	4.50	В	9%	0.14	0.39	600	1.0%	42.6	3006	4.1%	7.0	3.2	15.7	58.3	3606.0	48.7	48.7
E-2	180.30	В	3%	0.09	0.35	300	1.0%	31.7	3007	1.7%	7.0	3.2	15.7	47.4	3307.0	66.1	47.4
E-3	12.39	В	4%	0.10	0.37	300	1.0%	31.3	3008	1.8%	7.0	3.2	15.7	46.9	3308.0	64.3	46.9
E-4	70.90	В	2%	0.08	0.35	500	1.0%	41.2	2300	3.1%	7.0	4.2	9.1	50.3	2800.0	49.0	49.0
E-5	18.80	В	2%	0.08	0.35	300	1.0%	31.9	930	1.5%	7.0	5.2	3.0	34.9	1230.0	39.3	34.9
E6.1	124.90	В	2%	0.08	0.35	500	1.0%	41.2	2584	1.9%	7.0	6.2	6.9	48.1	3084.0	59.4	48.1
E6.2	49.61	В	2%	0.08	0.35	370	1.0%	35.4	3783	2.5%	7.0	7.2	8.8	44.2	4153.2	68.6	44.2
H1	45.20	В	3%	0.09	0.36	150	2.0%	17.8	1074	2.3%	7.0	1.1	16.9	34.7	1224.0	38.1	34.7
H2	16.10	В	2%	0.08	0.35	150	2.0%	17.9	425	2.0%	7.0	1.0	7.2	25.1	575.0	31.1	25.1
H3	28.40	В	3%	0.09	0.35	150	1.4%	20.3	645	1.9%	7.0	1.0	11.1	31.3	795.0	33.8	31.3

NOTES:

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$ Table 6-2. NRCS Conveyance factors, K $t_c = t_i + t_t$ Equation 6-2 Equation 6-3 Type of Land Surface Conveyance Factor, K Where: Heavy meadow 2.5 Where: Tillage/field te = computed time of concentration (minutes) 5 ti = overland (initial) flow time (minutes) Short pasture and lawns 7 n = 0 verticate (initial) how the (initial) $C_5 = \text{runoff coefficient for 5-year frequency (from Table 6-4)}$ $L_i = \text{length of overland flow (ft)}$ $S_o = \text{average slope along the overland flow path (ft/ft)}.$ ti = overland (initial) flow time (minutes) Nearly bare ground 10 t_t = channelized flow time (minutes). Grassed waterway 15 Paved areas and shallow paved swales 20 $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$ $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$ Equation 6-4 Equation 6-5 Where: Where: $t_t =$ channelized flow time (travel time, min) t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_t = waterway length (ft) $t_c = \text{minimum time of concentration for first } C$ $L_t = \text{length of channelized flow path (ft)}$ i = imperviousness (expressed as a decimal) $S_t = \text{slope of the channelized flow path (ft/ft)}.$ $S_o =$ waterway slope (ft/ft) $V_t =$ travel time velocity (ft/sec) = K $\sqrt{S_o}$ K = NRCS conveyance factor (see Table 6-2).

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Existing Conditions Homestead Fil. 1 Location: El Paso County Design Storm: 5-Year

Project Name: Homestead North Project No.: 25188.00 Calculated By: ARJ Checked By: Date: 6/13/21

			DIRECT RUNOFF						-	TOTAL	RUNOFI	F	STRE	et/sv	/ALE		PI	PE		TRAV	'EL TIN	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t_c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	10	E-1	4.50	0.14	48.7	0.61	1.76	1.1															Design to successful 11 and E1
	1h	H1	45.20	0.09	34.7	3.92	2.26	8.9	48.7	4.53	1.76	8.0											Drains to swale H1 and E1
	2h	H2	16.10	0.08	25.1	1.29	2.75	3.5	48.7	5.82	1.76	10.2											Accepts runoff from H1, H2 and E-1
	20	E-2	180.30	0.09	47.4	15.62	1.80	28.1															
	3h	H3	28.40	0.09	31.3	2.45	2.42	5.9	47.4	18.07	1.80	32.5											Total Runoff; E-2 and H3
	30	E-3	12.39	0.10	46.9	1.24	1.81	2.2															Runoff: E-3 Runoff in Vollmer rd side swale
	40	E-4	70.90	0.08	49.0	5.67	1.75	9.9															
	50	E-5	18.80	0.08	34.9	1.50	2.26	3.4	49.0	7.17	1.75	12.5											Total Runoff; E-4 and E-5
		E6.2	49.61	0.08																			To low point Total Runoff E-6, E-4, E-5
	6.10	E6.1	124.90	0.08	48.1	9.99	1.77	17.7	49.0	21.13	1.75	36.9											Runoff makes it's way into sand creek

Notes:

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Homestead North

Date: 6/13/21

Project No.: 25188.00 Calculated By: ARJ Checked By:

Subdivision:	Existing Conditions Homestead Fil. 1
Location:	El Paso County

Design Storm: 100-Year

	DIRECT RUNOFF																						
				DIR	ECT RI	JNOFF				TOTAL	RUNC	DFF	STRE	et/sw	/ALE		PI	PE		TRAV	'EL TIN	ЛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	10	E-1	4.50	0.39	48.7	1.76	2.94	5.2															
	1h	H1	45.20	0.36	34.7	16.05	3.80	61.0	48.7	17.81	2.94	52.4											Drains to swale H1 and E1
	2h	H2	16.10	0.35	25.1	5.64	4.61	26.0	48.7	23.45	2.94	69.0											Accepts runoff from H1, H2 and E-1
-																							
	20	E-2	180.30	0.35	47.4	64.00	3.01	192.9															
	3h	H3	28.40	0.35	31.3	10.07	4.05	40.8	47.4	74.07	3.01	223.2											Total Runoff; E-2 and H3
	30	E-3	12.39	0.37	46.9	4.52	3.04	13.7															Runoff: E-3 Runoff in Vollmer rd side swale
	40	E-4	70.90	0.35	49.0	24.82	2.93	72.7															
	50	E-5	18.80	0.35	34.9	6.58	3.78	24.9	49.0	31.40	2.93	92.0											Total Runoff; E-4 and E-5
	6.20	E6.2	49.61	0.35	44.2	17.36	3.19	55.4															To low point
	6.10	E6.1	124.90	0.35	48.1	43.72	2.97	130.0	49.0	92.48	2.93	270.9											Total Runoff E-6, E-4, E-5 Runoff makes it's way into sand creek

Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value.

All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

COMPOSITE % IMPERVIOUS & COMPOSITE RUNOFF COEFFICIENT CALCULATIONS

Subdivision: Location:

Homestead North Fil. 1 El Paso County

Project Name: <u>Homestead North-Filing 1</u> Project No.: <u>25188.00</u>

Calculated By: ARJ

Checked By:

Date: 6/15/22

	Total	Stree	ts/Pave	d (100% Imj	pervious)	Reside	ntial (45	%-65% Ir	mpervious)	L	awns (29	% Imperv	rious)	5	nted C	Basins Total Weighted %
Basin ID	Area (ac)	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	C ₅	C ₁₀₀	Area (ac)	Weighted % Imp.	Val C ₅	ues C ₁₀₀	Imp.
C1	2.82	0.90	0.96	0.49	17.2%	0.45	0.59	2.25	51.7%	80.0	0.35	0.09	0.1%	0.52	0.65	69.0%
C2.1	0.20	0.90	0.96	0.18	90.5%	0.45	0.59	0.00	0.0%	0.08	0.35	0.02	0.2%	0.82	0.90	90.7%
C2.2	4.69	0.90	0.96	1.26	26.9%	0.45	0.59	3.33	46.1%	0.08	0.35	0.10	0.0%	0.56	0.68	73.0%
C2.3	0.83	0.90	0.96	0.28	34.1%	0.45	0.59	0.41	32.4%	0.08	0.35	0.13	0.3%	0.54	0.68	66.9%
C3.1	0.35	0.90	0.96	0.25	72.8%	0.45	0.59	0.00	0.0%	0.08	0.35	0.09	0.5%	0.68	0.79	73.3%
C3.2	1.66	0.90	0.96	0.42	25.1%	0.45	0.59	0.96	37.7%	0.08	0.35	0.28	0.3%	0.50	0.64	63.2%
C4.1	6.34	0.90	0.96	1.04	16.4%	0.45	0.59	4.76	48.8%	0.08	0.35	0.55	0.2%	0.49	0.63	65.5%
C4.2	3.59	0.90	0.96	0.59	16.4%	0.45	0.59	2.20	39.8%	0.08	0.35	0.65	0.4%	0.44	0.58	56.6%
C5	0.16	0.90	0.96	0.13	80.9%	0.45	0.59	0.00	0.0%	0.08	0.35	0.03	0.4%	0.74	0.84	81.3%
C6	2.59	0.90	0.96	0.27	10.6%	0.45	0.59	0.32	8.1%	0.08	0.35	1.89	1.5%	0.21	0.43	20.2%
36" Pipe w/ Forebay	23.23															61.3%
D1	1.77	0.90	0.96	0.69	38.8%	0.45	0.59	0.00	0.0%	0.08	0.35	1.14	1.3%	0.40	0.60	40.1%
D2	1.44	0.90	0.96	0.79	54.9%	0.45	0.59	0.00	0.0%	0.08	0.35	1.02	1.4%	0.55	0.78	56.4%
D3	0.18	0.90	0.96	0.12	67.0%	0.45	0.59	0.00	0.0%	0.08	0.35	0.06	0.7%	0.63	0.76	67.6%
D4	0.19	0.90	0.96	0.11	56.6%	0.45	0.59	0.00	0.0%	0.08	0.35	0.08	0.9%	0.54	0.70	57.5%
D5	0.91	0.90	0.96	0.70	76.5%	0.45	0.59	0.00	0.0%	80.0	0.35	0.21	0.5%	0.71	0.82	77.0%
D6	0.83	0.90	0.96	0.57	68.4%	0.45	0.59	0.00	0.0%	80.0	0.35	0.26	0.6%	0.64	0.77	69.0%
D7	0.75	0.90	0.96	0.59	78.5%	0.45	0.59	0.00	0.0%	0.08	0.35	0.14	0.4%	0.72	0.82	78.9%
D8	0.72	0.90	0.96	0.49	68.8%	0.45	0.59	0.00	0.0%	0.08	0.35	0.17	0.5%	0.64	0.74	69.3%
OffSite Basins																
OS1	2.84	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.08	0.35	2.85	2.0%	0.08	0.35	2.0%
OS2	179.61	0.90	0.96	0.91	0.5%	0.45	0.59	0.00	0.0%	0.08	0.35	178.71	2.0%	0.08	0.35	2.5%
OS3	11.98	0.90	0.96	0.00	0.0%	0.45	0.59	0.00	0.0%	0.08	0.35	11.99	2.0%	0.08	0.35	2.0%
60" Pipe w/ Forebay	201.22															4.4%
Pond C	224.4															10.3%

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Homestead North Fil. 1

Location: El Paso County

Project Name: Homestead North-Filing 1

Project No.: 25188.00

Calculated By: ARJ Checked By:

Date: 6/15/22

		SUB-	BASIN			INITIA	AL/OVER	LAND							tc CHECK		
		DA	ATA				(T _i)				(T _t)			(U	RBANIZED BA	SINS)	FINAL
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	К	VEL.	t _t	COMP. t c	TOTAL	Urbanized t_c	t _c
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)
C1	2.82	В	69%	0.52	0.65	130	2.0%	9.6	690	2.6%	20.0	3.2	3.6	13.1	820.0	18.1	13.1
C2.1	0.20	В	91%	0.82	0.90	7.5	2.0%	1.1	300	1.0%	20.0	2.0	2.5	3.6	307.5	12.9	5.0
C2.2	4.69	В	73%	0.56	0.68	150	2.0%	9.5	630	2.5%	20.0	3.2	3.3	12.8	780.0	17.0	12.8
C2.3	0.83	В	67%	0.54	0.68	100	2.0%	8.0	462	3.3%	20.0	3.6	2.1	10.1	562.0	16.9	10.1
C3.1	0.35	В	73%	0.68	0.79	9.5	2.0%	1.9	460	2.6%	20.0	3.2	2.4	4.2	469.5	16.0	5.0
C3.2	1.66	В	63%	0.49	0.60	50	2.0%	6.2	365	1.1%	20.0	2.1	2.9	9.1	415.0	18.6	9.1
C4.1	6.34	В	65%	0.49	0.63	150	2.0%	10.7	366	4.8%	21.0	4.6	1.3	12.0	516.0	16.4	12.0
C4.2	3.59	В	57%	0.44	0.58	150	2.0%	11.6	367	4.6%	22.0	4.7	1.3	12.9	517.0	18.1	12.9
C5	0.16	В	81%	0.74	0.84	9.5	2.0%	1.6	368	0.3%	23.0	1.3	4.9	6.4	377.5	17.7	6.4
C6	2.59	В	20%	0.21	0.43	15	2.0%	5.0	160	0.5%	20.0	1.4	1.9	6.8	175.0	25.8	6.8
D1	1.77	В	40%	0.40	0.60	30	1.0%	6.9	1365	2.5%	15.0	2.4	9.6	16.5	1395.0	29.0	16.5
D2	1.44	В	56%	0.55	0.78	30	1.0%	5.4	1365	2.5%	15.0	2.4	9.6	15.0	1395.0	24.9	15.0
D3	0.18	В	68%	0.63	0.76	30	1.0%	4.7	150	1.7%	20.0	3.2	0.8	5.4	180.0	15.5	5.4
D4	0.19	В	57%	0.54	0.70	30	1.0%	5.5	150	1.7%	20.0	3.2	0.8	6.3	180.0	17.4	6.3
D5	0.91	В	77%	0.71	0.82	15	2.0%	2.2	740	3.4%	20.0	3.2	3.9	6.0	755.0	16.3	6.0
D6	0.83	В	69%	0.64	0.77	15	2.0%	2.6	740	3.4%	20.0	3.2	3.9	6.4	755.0	17.8	6.4
D7	0.75	В	79%	0.72	0.82	15	2.0%	2.1	550	2.0%	20.0	4.2	2.2	4.3	565.0	15.8	5.0
D8	0.72	В	69%	0.64	0.74	15	2.0%	2.6	550	2.0%	20.0	5.2	1.8	4.3	565.0	17.7	5.0
OS1	2.84	В	2%	0.08	0.35	50	1.0%	13.0	280	3.9%	7.0	3.2	1.5	14.5	330.0	28.2	14.5
OS2	179.61	В	2%	0.08	0.35	300	1.0%	31.8	3007	1.7%	7.0	3.2	15.7	47.4	3307.0	66.7	47.4
OS3	11.98	В	2%	0.08	0.35	300	1.0%	31.9	3008	1.8%	7.0	3.2	15.7	47.6	3308.0	65.9	47.6

NOTES:

 $t_c = t_i + t_t$

Where:

 t_c = computed time of concentration (minutes)

 t_i = overland (initial) flow time (minutes)

 t_i = overland (initial) flow time (minutes) C_5 = runoff coefficient for 5-year frequency (from Table 6-4) L_2 = length of overland flow (ft)

 $t_i = \frac{0.395(1.1 - C_5)\sqrt{L_i}}{S_o^{0.33}}$

Equation 6-3	Table 0-2. NRCS Con	veyance factors, K
Equation 0-5	Type of Land Surface	Conveyance Factor, K
	Heavy meadow	2.5
	Tillage/field	5
	Short pasture and lawns	7
	Nearly bare ground	10

Equation 6-2

Where:

...

STANDARD FORM SF-2 TIME OF CONCENTRATION

Subdivision: Homestead North Fil. 1

Location: El Paso County

Project Name: Homestead North-Filing 1

Project No.: 25188.00

Calculated By: ARJ Checked By:

Date: 6/15/22

		SUB-	BASIN			INIT	AL/OVERLAND TRAVEL TIME tc CHECK																	
		DA	ATA				(T _i)				(T _t)			(L	(URBANIZED BASINS)									
BASIN	D.A.	Hydrologic	Impervious	C ₅	C ₁₀₀	L	S _o	t i	L _t	S _t	К	VEL.	t _t	COMP. t c	TOTAL	Urbanized t_c	t _c							
ID	(ac)	Soils Group	(%)			(ft)	(%)	(min)	(ft)	(%)		(ft/s)	(min)	(min)	LENGTH (ft)	(min)	(min)							
$t_t = cha$	annelized flo	w time (minutes).					$S_o = averag$	e slope along t	the overland flo	w path (ft/ft).				Grassed waterv	vay	15								
													Paved ar	eas and shallow	paved swales	20								

 $t_t = \frac{L_t}{60K\sqrt{S_o}} = \frac{L_t}{60V_t}$

Where:

Equation 6-4 $t_c = (26 - 17i) + \frac{L_t}{60(14i + 9)\sqrt{S_t}}$

Where:

Equation 6-5

 $\begin{array}{l} t_t = \mathrm{channelized \ flow \ time \ (travel \ time, \ min)} \\ L_t = \mathrm{waterway \ length \ (ft)} \\ S_0 = \mathrm{waterway \ slope \ (ft) \ fl)} \\ V_t = \mathrm{travel \ time \ velocity \ (fsec) = K \ \ \ \ S_0} \\ K = \mathrm{NRCS \ conveyance \ factor \ (see \ Table \ 6-2).} \end{array}$

 t_c = minimum time of concentration for first design point when less than t_c from Equation 6-1. L_i = length of channelized flow path (ft) i = imperviousness (expressed as a decimal) S_i = slope of the channelized flow path (ft/ft).

Use a minimum t_c value of 5 minutes for urbanized areas and a minimum t_c value of 10 minutes for areas that are not considered urban. Use minimum values even when calculations result in a lesser time of concentration.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Location	rision: Homestead North Fil. 1 Pro- ation: El Paso County Calcul															Cal	rroject Name: Homestead North-Filing 1 Project No.: 25188.00 :alculated By: ARJ Checked By:								
Bosignotorm																		Date: 6/15/22							
				DIRE	CT RUN	NOFF				TOTAL	RUNOF	F	STRE	et/sw	/ALE		PI	PE	1	TRAV	EL TIN	ΛE			
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS		
	1c	C1	2.82	0.52	13.1	1.46	3.72	5.4																	
	2.3c	C2.3	0.83	0.54	10.1	0.45	4.11	1.9	13.1	1.91	3.72	7.1	0.1	0.03	1.6					185	2.5	1.2	On-Grade Type R Inlet, Street runoff from basin C1 and basin C2.3		
	2.3i								13.1	1.88	3.72	7.0											Captured runoff from on-grade inlet from basin C1 and basin C2.3		
	2.1C	C2.1	0.20	0.82	5.0	0.16	5.17	0.8					0.0	0	2.83					630	3.4	3.1	On-Grade Type R Inlet		
	2.1i								5.0	0.16	5.17	0.8											Captured runoff from on-grade type R -Inlet DP 2.1C		
	2.2C	C2.2	4.69	0.56	12.8	2.64	3.76	9.9	13.1	2.64	3.72	9.8											Runoff from basins 1c, 2.3c, 2.1c and 2.2c		
	4.2c	C4.2	3.59	0.44	12.9	1.57	3.74	5.9					0.00	0	2.84					1010	3.4	5.0	On-Grade Type R Inlet, by pass to 4.2c		
	4.2i								12.9	1.57	3.74	5.9											Captured runoff from on-grade type R -Inlet DP 4.2C		
	4C	C4.1	6.34	0.49	12.0	3.13	3.85	12.1	17.9	5.77	3.25	18.8											Sump Inlet		
	3.1								12.9	1.26	3.74	4.7				4.7							Tributary to basins C2.1 and C4.2 Piped in 18" conduit		
	3.1c	C3.1	0.35	0.68	5.0	0.24	5.17	1.2					0.00	0	2.84					200	3.4	1.0	On-Grade Type R inlet, By pass flow to DP 3.2c		
	3.1i								5.0	0.24	5.17	1.2											Captured runoff from on-grade type R -Inlet DP 3.1C		
	3.2								13.1	2.12	3.72	7.9				7.9							Tributary to basins C1 C3.1, C2.3 Piped in 18" conduit		
	3.3								26.1	3.38	2.69	9.1				9.1							Tributary to basins C1 C3.1, C2.3 and C2.1 and C4.2 piped in xx" conduit		
	3.4								26.1	9.65	2.69	26.0				26.0							Runoff at manhole 3.4		
	3.2c	C3.2	1.66	0.49	9.1	0.82	4.27	3.5	9.1	0.82	4.27	3.5											Recives by-pass flow from DP 3.1c		
	5C	C5	0.16	0.74	6.4	0.12	4.79	0.6	9.1	0.94	4.27	4.0											Sump Inlet		
	3.5									11.41	2.69												Runoff into Forebay		
	6C	C6	2.59	0.21	6.8	0.54	4.70	2.5																	
	o1	OS1	2.84	0.08	14.5	0.23	3.57	0.8															offsite basin to type D inlet		
	1d	D1	1.77	0.40	16.5	0.71	3.38	2.4															Tributary basin D1 NW portion of Vollmer in Swale		

X:\2510000.all\2518800\Excel\Drainage\Homestead North Filing 1\2518800_Proposed Conditions (Filing 1).xlsm

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

	Project Name: Homestead North-Filing Project No.: 25188.00 Calculated By: Checked By: Date: 6/15/22													g1
T	TOTAL RUNOFF STREET/SWALE PIPE TRAVEL TIME										TRAV	'EL TIN	ЛE	
tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Ostreet/swale (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
16.5	0.94	3.38	3.2											Tributary basin D1 and OS1 NW portion of Vollmer in Swale
														Tributary basin D2 SE portion of Vollmer in Swale
16.5	1.73	3.38	5.8											
														Tributary basins; 3d

Subdivision: Homestead North Fil. 1 Location: El Paso County Design Storm: 5-Year

				DIRE	CT RUN	NOFF				TOTAL	RUNOF	F	STRE	ET/SW	'ALE		PI	PE		TRA	VEL TI	ME	
STREET	Design Point	Basin ID	Area (Ac)	Runoff Coeff.	t _c (min)	C*A (Ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1.1d								16.5	0.94	3.38	3.2											Tributary basin D1 and OS1 NW portion of Vollmer in Swale
	2d	D2	1.44	0.55	15.0	0.79	3.52	2.8															Tributary basin D2 SE portion of Vollmer in Swale
	1.2d								16.5	1.73	3.38	5.8											
	3d	D3	0 18	0.63	54	0 11	5.04	0.6															Tributary basins; 3d Runoff capture on on grade inlet
																							Tributary basins; D4
	4d	D4	0.19	0.54	6.3	0.10	4.83	0.5					0.00	0	2.25					750	3.0	4.2	Runoff captured on on-grade inlet Piped runoff from basin D4
	4.1d								6.3	0.10	4.83	0.5											Tributary basin; D4 and D3
	1.3d								6.3	0.21	4.83	1.0											Runoff captured on on grade inlet
	1.4d								16.5	1.94	3.38	6.6											Tributary basins: D1-D4 and OS1 Runoff piped
	20	OS2	179.61	0.08	17 A	15 11	1 70	27.1															
				0.64					10.4	0.53	1.05	2.1	0.00		0					555		0.7	Tributary basins; D6 Runoff captured on on-grade inlet by passed to DP 8
	6d	D6	0.83	0.64	6.4	0.53	4.80	2.5					0.00	0	3					555	5 3.5	2.1	6D and OS2
	6.1d								47.4	15.64	1.79	28.1											Runoff piped Tributary Basin 5D
	5d	D5	0.91	0.71	6.0	0.64	4.89	3.1					0.00	0	3					555	5 3.5	2.7	Runofff captured and by-passed to DP 7
	1.5d								47.4	16.28	1.79	29.2											Tributary basins: 5D-6D and OS2 Runoff piped
	1.6d								47 A	18.22	1.79	32.7											Tributary basins: 1D-6D and OS1 and OS2 Runoff piped
		0.00	44.65	0.00	47.4	0.07	4.70	4 -		.0.22	1.77	52.7											Indian Ribon
	30	OS3					1.79					0											Tributary basins: OS3 and D8
	8d	D8	0.72	0.64	5.0	0.46	5.17	2.4		1.42			0.00	0	2.2								Runoff captured on on grade inlet, by flow goes down stream
	2.1d							-		1.42													Runoff piped in inlet
	7d	D7	0.75	0.72	5.0	0.54	5.17	2.8	7.7	0.54	4.53	2.4											Runoff captured on ongrade inlet Tributary basins: D7,D8 and OS1
	2.2d								47.6	1.96	1.79	3.5											Runoff piped
	1.7d								47.6	20.18	1.79	36.1											Tributary basins: 1D-4D and OS1, OS2 and OS3 Runoff piped to Sand Creek
	5								47.6	31.31	1.79	56.0											Total runoff into pond
Notes:										• •	1									-			· · · · · · · · · · · · · · · · · · ·

L Notes:

Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Subdivision: Location: Design Storm:	El Pas	o Count	lorth Fil. Y	1												Pi Calci	roject ulatec ieckec	ame: <u> </u> t No.: 2 d By: <u>7</u> d By: Date: <u>0</u>	25188 ARJ	3.00	Norti	h-Filin	ig 1
				DIRE	ECT RU	NOFF				TOTAL	RUNOF	F	STRE	ET/SW	/ALE		PIF	PE		TRAV	EL TIN	ЛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	1c	C1	2.82	0.65	13.1	1.82	6.25	11.4															
	2.3c	C2.3	0.83	0.68	10.1	0.56	6.91	3.9	13.1	2.38	6.25	14.9	3.4	0.54	1.6					185	2.5	1.2	On-Grade Type R Inlet, Street runoff from basin C1 and basin C2.3
	2.3i								13.1	1.84	6.25	11.5											Captured runoff from on-grade inlet from basin C1 and basin C2.3
	2.1C	C2.1	0.20	0.90	5.0	0.18	8.68	1.6					0.1	0.01	2.83					630	3.4	3.1	On-Grade Type R Inlet for basin C2.1
	2.1i								5.0	0.17	8.68	1.5											Captured runoff from on-grade type R -Inlet DP 2.1C
	2.2C	C2.2	4.69	0.68	12.8	3.21	6.32	20.3	13.1	3.22	6.25	20.1											Runoff from basins 1c, 2.3c, 2.1c and 2.2c
	4.2c	C4.2	3.59	0.58	12.9	2.09	6.28	13.1					2.60	0.41	2.84					1010	3.4	5.0	On-Grade Type R Inlet, by pass to 4c
	4.2i								12.9	1.68	6.28	10.5											Captured runoff from on-grade type R -Inlet DP 4.2C
	4C	C4.1	6.34	0.63	12.0	4.00	6.47	25.9			5.46	41.8											Sump Inlet runoff piped to DP 3.4 Tributary to basins C2.1 and C4.2 Piped in 18" conduit
	3.1 3.1c	C3.1	0.35	0.79	5.0	0.28	8.68	2.4	12.9	1.84	6.28	11.6	0.50	0.06	2.84	11.6				200	3.4	1.0	On-Grade Type R inlet, By pass flow to DP 3.2c
	3.1i								5.0	0.22	8.68	1.9											Captured runoff from on-grade type R -Inlet DP 3.1C
	3.2								13.1	2.06	6.25	12.9				12.9							Tributary to basins C1 C3.1, C2.3 Piped in 18" conduit
	3.3								26.1	3.90	4.52	17.6				17.6							Tributary to basins C1 C3.1, C2.3 and C2.1 and C4.2 piped in xx ^{ee} conduit
	3.4									12.14	4.52	54.9				54.9							Runoff at manhole 3.4
	3.2c	C3.2	1.66	0.60	9.1	1.00	7.18	7.2	9.1	1.06	7.18	7.6											Recives by-pass flow from DP 3.1c
	5C	C5	0.16	0.84	6.4	0.13	8.04	1.0	9.1	1.19	7.18	8.5											Sump Inlet runoff piped to DP 3.5
	3.5								26.1	14.39	4.52	65.0											Runoff into Forebay
	6C	C6	2.59	0.43	6.8	1.11	7.89	8.8															Runoff from pond

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

Project Name: Homestead North-Filing 1

Runoff piped

Tributary basins: 1D-4D and OS1, OS2 and OS3 Runoff piped to Sand Creek Total runoff into pond

Subdivision: Location:	El Pas	o Coun	North Fil. hty	1												Cal	culate	t No.: d By:	2518 ARJ	8.00			
Design Storm:	100-Y	ear	1													С	hecke	d By: Date:		/22			
	1			DID		NIGEE				TOTAL	DUNO		OTOF								(F) T)		
				DIR	ECT RL	INOFF				IOTAL	RUNO	-F	STRE	ET/SW.	ALE		PI	PE		TRAV	EL III	ME	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	O _{street/swale} (cfs)	C*A (ac)	Slope (%)	O _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS
	o1	OS1	2.84	0.35	14.5	1.00	6.00	6.0															offsite basin to type D inlet
	1d	D1	1.77	0.60	16.5	1.06	5.67	6.0															Tributary basin D1 NW portion of Vollmer in Swale
	1.1d								16.5	2.06	5.67	11.7											Tributary basin D1 and OS1 NW portion of Vollmer in Swale - piped in 24" RCP
	2d	D2	1.44	0.78	15.0	1.12	5.91	6.6															Tributary basin D2 SE portion of Vollmer in Swale
	1.2d								16.5	3.18	5.67	18.0											
	3d	D3	0.18	0.76	5.4	0.14	8.47	1.2															Tributary basins; 3d Runoff capture on on grade inlet
	4d	D4	0.19	0.70	6.3	0.13	8.11	1.1					0.00	0	2.25					750	3.0	4.2	Tributary basins; D4 Runoff captured on on-grade inlet
	4.1d								6.3	0.13	8.11	1.1											Piped runoff from basin D4
	1.3d								6.3	0.27	8.11	2.2											Tributary basin; D4 and D3 Runoff captured on on grade inlet
	1.4d								16.5	3.45	5.67	19.6											Tributary basins: D1-D4 and OS1 Runoff piped
	20	OS2	179.61	0.35	47.4	63.42	3.01	190.9															Tellecture leader D/
	6d	D6	0.83	0.77	6.4	0.64	8.05	5.2	10.6	0.64	6.79	4.3	0.20	0.02	3					555	3.5	i 2.7	Tributary basins; D6 Runoff captured on on-grade inlet by passed to DP 8 6D and 052
	6.1d								47.4	64.04	3.01	192.5											Runoff piped Tributary Basin 5D
	5d	D5	0.91	0.82	6.0	0.74	8.20	6.1					0.70	0.09	3					555	3.5	5 2.7	Runofff captured and by-passed to DP 7 Tributary basins: 5D-6D and OS2
	1.5d								47.4	64.80	3.01	195.0											Runoff piped Tributary basins: 1D-6D and OS1 Tributary basins: 1D-6D and OS1 and OS2
	1.6d								47.4	68.25	3.01	205.4											Runoff piped
	30	OS3	11.98	0.35	47.6	4.20	3.00	12.6															Tributary basins: OS3 and D8
	8d	D8	0.72	0.74	5.0	0.53	8.68	4.6	47.6	4.75	3.00	14.3	0.80	0.09	2.2								Runoff captured on on grade inlet, by flow goes down stream
	2.1d								47.6	4.66	3.00	13.2											Runoff piped in inlet
	7d	D7	0.75	0.82	5.0	0.61	8.68	5.3	7.7	0.70	7.60	5.3										<u> </u>	Runoff captured on ongrade inlet Tributary basins: D7,D8 and OS1

16.0

221.0

264.1

47.6

47.6 73.59

47.6 87.97

5.34

3.00

3.00

3.00

2.2d

1.7d

5

STANDARD FORM SF-3 STORM DRAINAGE SYSTEM DESIGN (RATIONAL METHOD PROCEDURE)

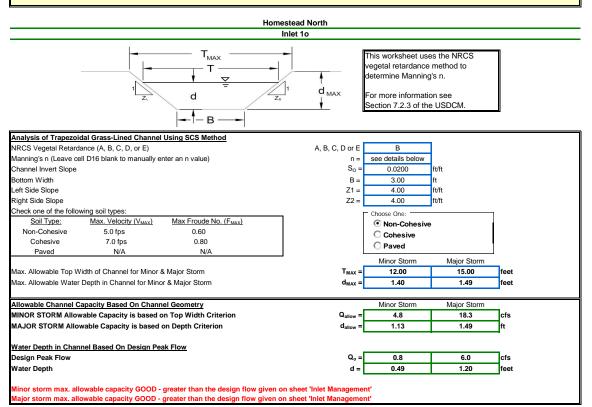
Subdivision: Location: Design Storm:	El Pas	o Count	lorth Fil. ty	. 1												Pro F Calo C	hecke	ame: t No.: d By: d By: Date:			North	n-Filing	1
				DIRE	ECT RU	NOFF				TOTAL	RUNOF	F	STRE	et/sw	/ALE		PI	PE		TRAVI	EL TIN	ΛE	
Description	Design Point	Basin ID	Area (ac)	Runoff Coeff.	t _c (min)	C*A (ac)	l (in/hr)	Q (cfs)	tc (min)	C*A (ac)	l (in/hr)	Q (cfs)	Q _{street/swale} (cfs)	C*A (ac)	Slope (%)	Q _{pipe} (cfs)	C*A (ac)	Slope (%)	Pipe Size (inches)	Length (ft)	Velocity (fps)	t _t (min)	REMARKS

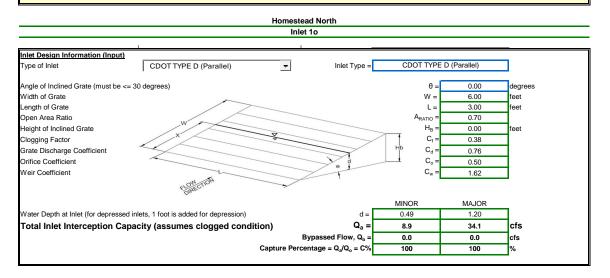
Notes:

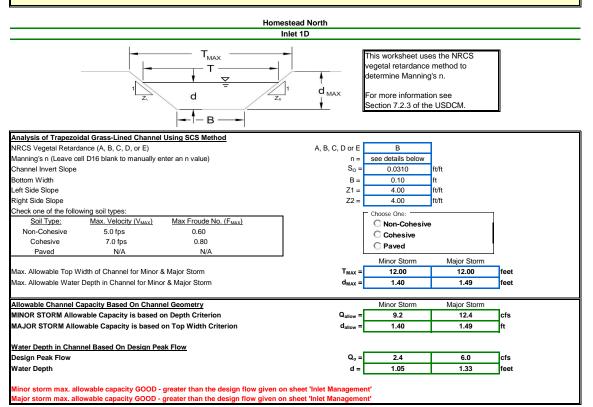
Street and Pipe C*A values are determined by Q/i using the catchment's intensity value. All pipes are private and RCP unless otherwise noted. Pipe size shown in table column.

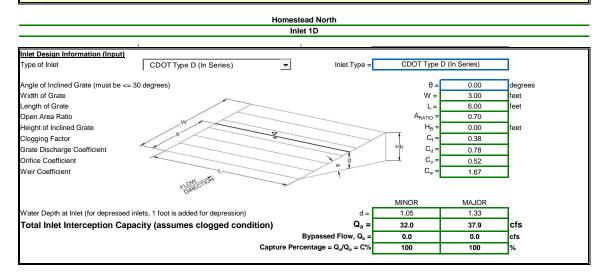
BRIDGE FEE - CALCULATIONS

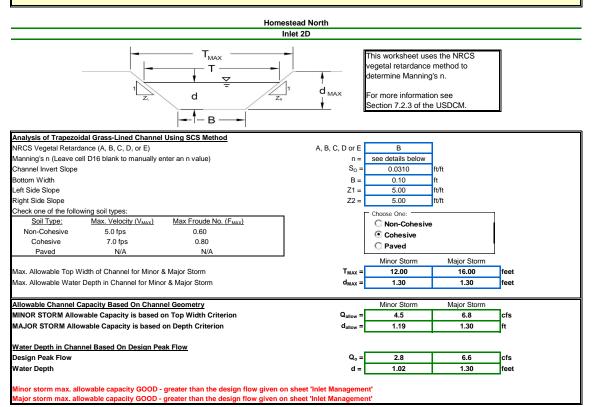
Subdivision: Location: Homestead North Fil. 1 El Paso County

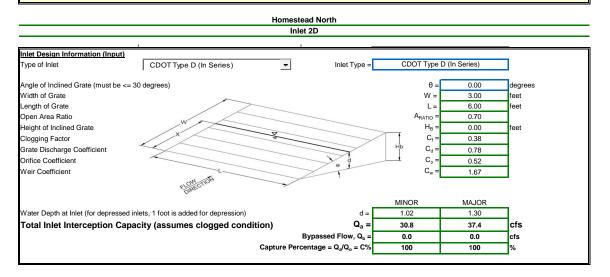

Project Name:	Homestead North-Filing 1
Project No.:	25188.00
Calculated By:	ARJ
Checked By:	
Date:	6/15/22

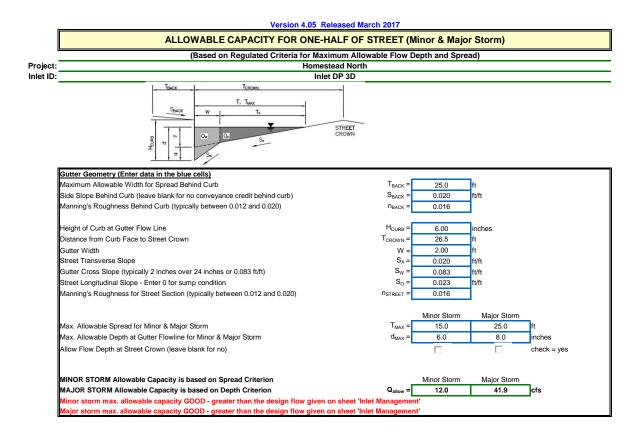

		2022 DRAINA	GE AND BRIDGE	FEES - HOM	ESTEAD NORTH	FILING 1
Total Area	Percent	Impervious	Drainage Fee	Bridge Fee	HN F1	HN F1
i otal Area	Impervious	Acres (ac)	(Per Imp. Acre)	(Per Imp. Acre)	Drainage Fee	Bridge Fee
43.3	57.3%	24.81	\$21,814	\$8,923	\$541,225	\$221,388

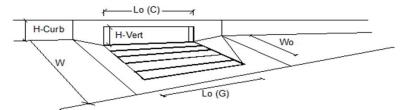

	Total Platted	Streets/Paved (100% Impervious)	Residential	65% Impervious)	Lawns (2% Impervi		Basins
Basin ID	Area (ac)	Area (ac)	Weighted % Imp.	Area (ac)	Weighted % Imp.	Area (ac)	Weighted %	Total Weighted
Homestead Filing 1*	43.32	15.28	35.3%	14.24	21.4%	13.80	0.6%	57.3%

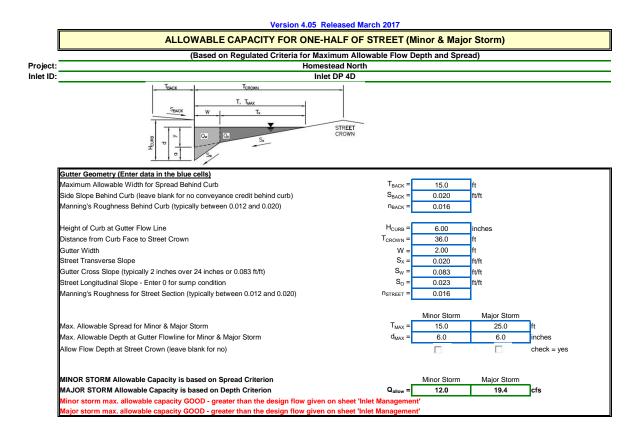

Appendix C Hydraulic Calculations

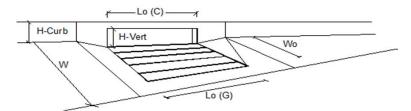


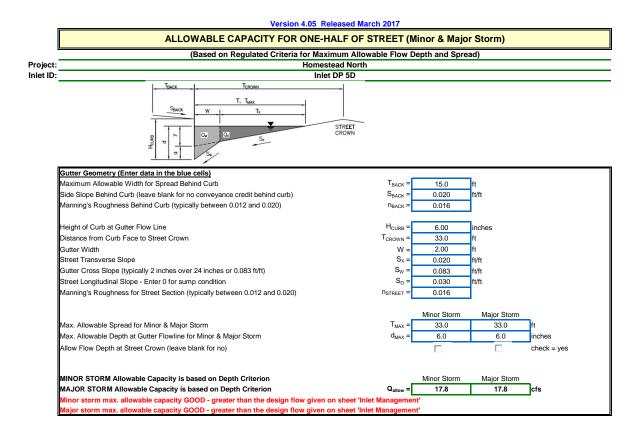


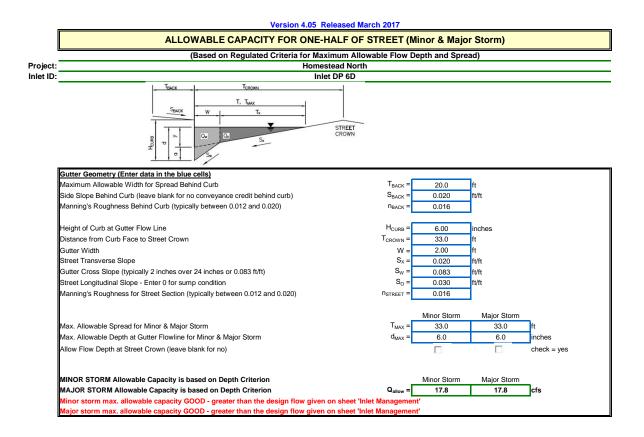


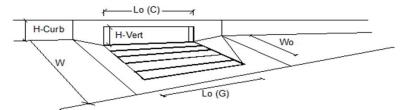


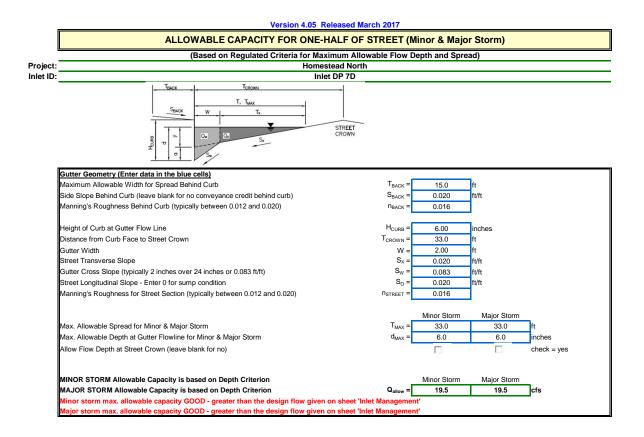


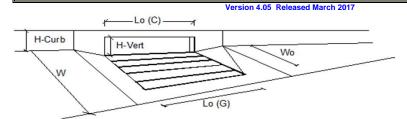


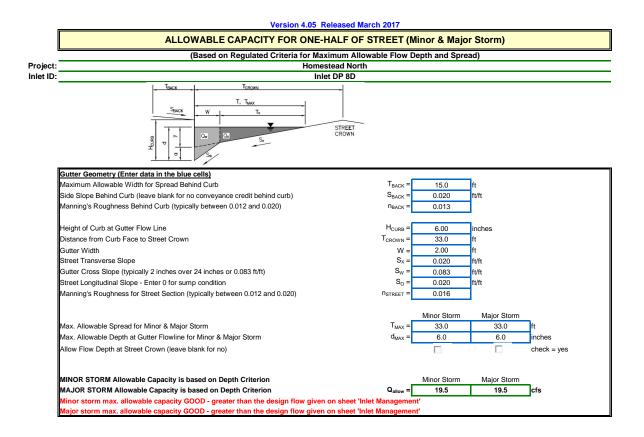

Design Information (Input)	1	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.6	1.2	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	99	%



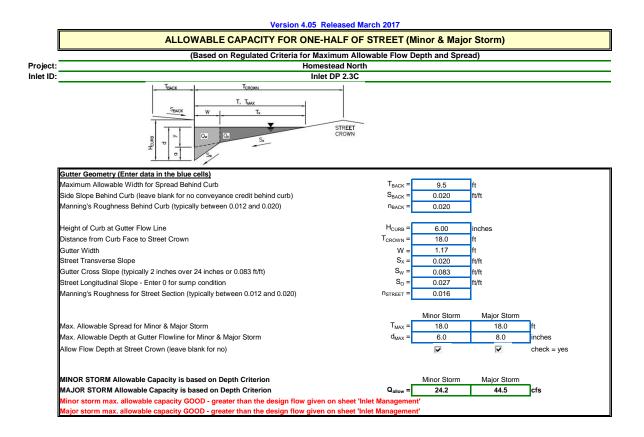

Design Information (Input) CDOT Type R Curb Opening Type of Inlet	Type =		MAJOR R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'	_	MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	0.5	1.1	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.0	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	100	%

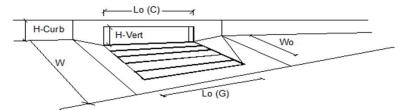

	OUS GRAD	DE		
Version 4.05 Released M	arch 2017			
H-Curb H-Curb W U Lo (G)				
CDOT Type R Curb Opening	_	MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	3.1	5.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.7	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	88	%

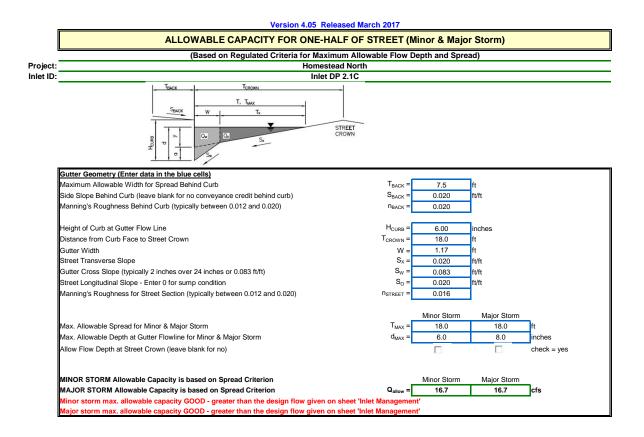


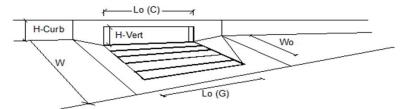


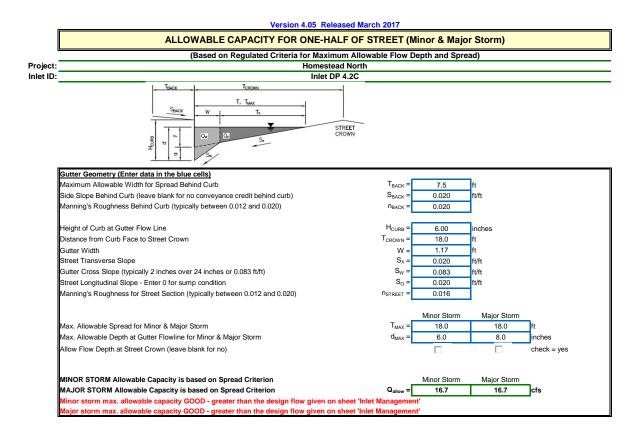
Design Information (Input)	ī	MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.5	4.4	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.2	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	96	%

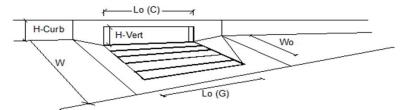

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	10.00	10.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	_
Total Inlet Interception Capacity	Q =	1.8	3.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	99	%

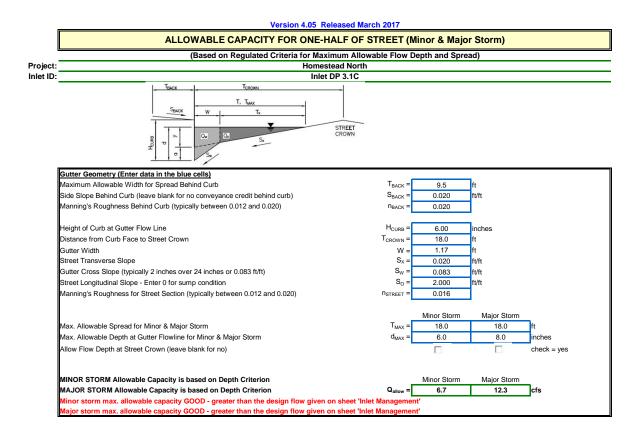


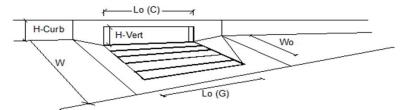

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type F	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a')	a _{LOCAL} =	3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening)	No =	1	1	
Length of a Single Unit Inlet (Grate or Curb Opening)	L _o =	15.00	15.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width)	W _o =	N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5)	C _f -G =	N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	
Total Inlet Interception Capacity	Q =	2.5	11.6	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet)	Q _b =	0.0	2.8	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%

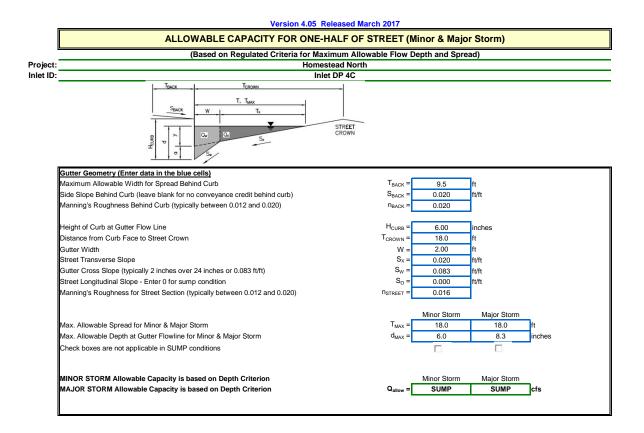


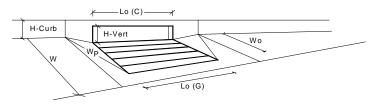

Design Information (Input)			MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	- Ty	/pe =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a') aLOCAL =		3.0	3.0	inches	
Total Number of Units in the Inlet (Grate or Curb Opening) No =			3	3	
Length of a Single Unit Inlet (Grate or Curb Opening) $L_0 =$		5.00	5.00	ft	
Width of a Unit Grate (cannot be greater than W, Gutter Width) $W_0 =$		N/A	N/A	ft	
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cr-G =		N/A	N/A	1	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	С	_f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity			MINOR	MAJOR	
Total Inlet Interception Capacity Q =		7.0	11.5	cfs	
Total Inlet Carry-Over Flow (flow bypassing inlet) Q _b =		0.1	3.4	cfs	
Capture Percentage = Q _a /Q _o =	(C% =	99	77	%



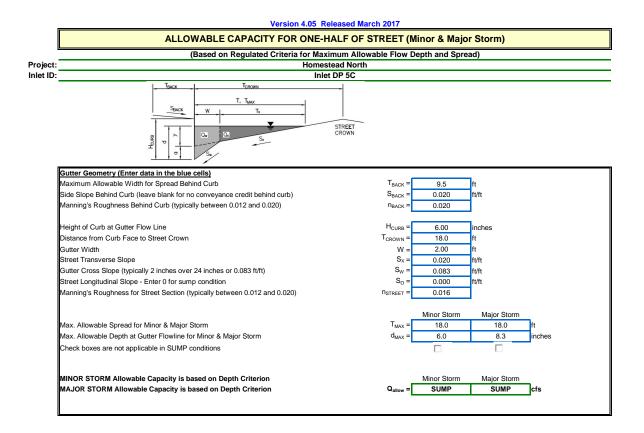

Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Туре	= CDOT Type	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a') aLOCAL =		= 3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening) No =			1	
Length of a Single Unit Inlet (Grate or Curb Opening) $L_0 =$		= 5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width) $W_0 =$		= N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cr-G =		= N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C	= 0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity'		MINOR	MAJOR	_
Total Inlet Interception Capacity Q =		= 0.8	1.5	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Q _b =		= 0.0	0.1	cfs
Capture Percentage = Q _a /Q _o =	C%	= 100	91	%




Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Type =	CDOT Type R	Curb Opening	
Local Depression (additional to continuous gutter depression 'a') aLOCAL =		3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening) No =			3	
Length of a Single Unit Inlet (Grate or Curb Opening) $L_0 =$		5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width) $W_o =$		N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cr-G =		N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C =	0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity Q =		5.9	10.7	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Q _b =		0.0	2.6	cfs
Capture Percentage = Q _a /Q _o =	C% =	100	81	%

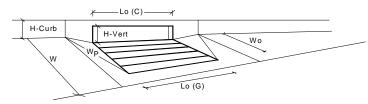


Design Information (Input)		MINOR	MAJOR	
Type of Inlet CDOT Type R Curb Opening	Туре	= CDOT Type	R Curb Opening	
Local Depression (additional to continuous gutter depression 'a') aLOCAL =		= 3.0	3.0	inches
Total Number of Units in the Inlet (Grate or Curb Opening) No =			1	
Length of a Single Unit Inlet (Grate or Curb Opening) $L_0 =$		= 5.00	5.00	ft
Width of a Unit Grate (cannot be greater than W, Gutter Width) $W_0 =$		= N/A	N/A	ft
Clogging Factor for a Single Unit Grate (typical min. value = 0.5) Cr-G =		= N/A	N/A	
Clogging Factor for a Single Unit Curb Opening (typical min. value = 0.1)	C _f -C	= 0.10	0.10	
Street Hydraulics: OK - Q < Allowable Street Capacity		MINOR	MAJOR	
Total Inlet Interception Capacity Q =		= 1.2	1.9	cfs
Total Inlet Carry-Over Flow (flow bypassing inlet) Q _b =		= 0.0	0.5	cfs
Capture Percentage = Q _a /Q _o =	C%	= 98	81	%



INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

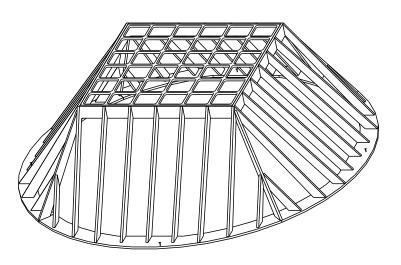


Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R	Curb Opening	7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	4	4	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.1	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	$C_{f}(G) =$	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.34	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.58	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.79	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	19.0	52.7	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	18.9	42.0	cfs

INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017




Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type F	Curb Opening	
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	3	3	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	5.8	5.8	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	$C_w(C) =$	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.32	0.32	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.55	0.55	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	0.78	0.78	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	12.5	12.5	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.0	8.5	cfs

Subdivision:	Homestead North - Proposed Conditions
Location:	El Paso County
Project Name:	Homestead North
Project Number:	25188.00
Calculated By:	MAB
Checked By:	
Date:	1/12/2022

Design Point - 20 (6 ft. Dia Manho	ole w/ Trash Rack)	
Design flow 190.9 cfs		
Orifice Flow Calculation		
Q = C*A* square root (2gH)		
C = 0.6	A = 28.274 sq ft	g = 32.2

Head (ft)	CA	(2GH)	Sqrt (2GH)	Capacity
1	16.9644	64.40	8.025	136.1
2	16.9644	128.80	11.349	192.5
3	16.9644	193.20	13.900	235.8
4	16.9644	257.60	16.050	272.3
5	16.9644	322.00	17.944	304.4
6	16.9644	386.40	19.657	333.5

MADE IN THE U.S.A.

AVAILABLE MATERIALS: MILD STEEL (NO FINISH) - WGT: 496.7 lbs. MILD STEEL (GALVANIZED) - WGT: 496.7 lbs. STAINLESS STEEL - WGT: 496.7 lbs. ALUMINUM - WGT: 167.8 lbs.

CUSTOM SIZES AVAILABLE

AVAILABLE UPON REQUEST WITH: ACCESS PORT ANTI-VORTEX PLATE

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

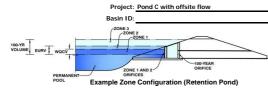
Optional User Override

1.19

1.50

1.75

2.00


2.25 2.52

4.00

re-feet acre-feet

acre-feet acre-feet

t/ft H:V

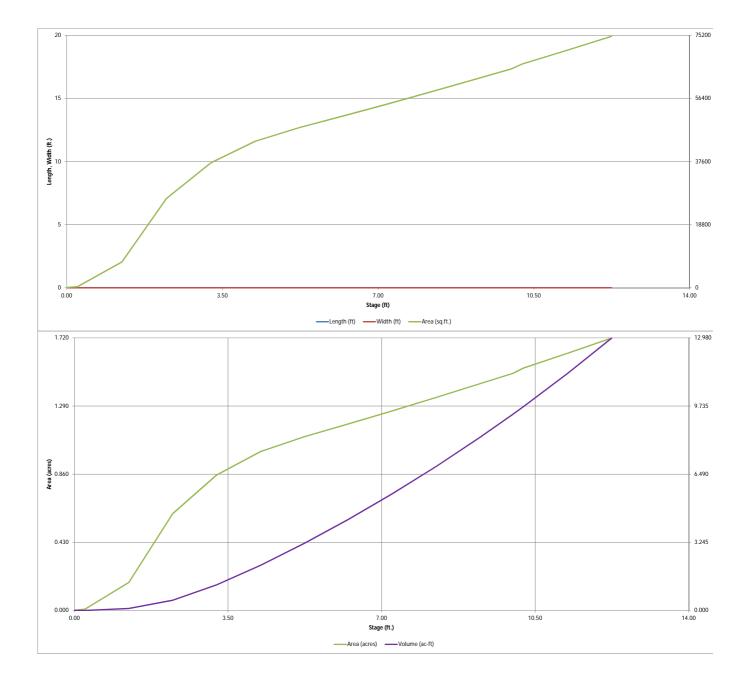
Watershed Information

Selected BMP Type =	EDB	
Watershed Area =	224.4	acres
Watershed Length =	5,645	ft
Watershed Length to Centroid =	3,387	ft
Watershed Slope =	0.034	ft/ft
Watershed Imperviousness =	10.30%	percent
Percentage Hydrologic Soil Group A =	0.0%	percent
Percentage Hydrologic Soil Group B =	100.0%	percent
Percentage Hydrologic Soil Groups C/D =	0.0%	percent
Target WQCV Drain Time =	40.0	hours
Location for 1-hr Rainfall Depths =	User Input	

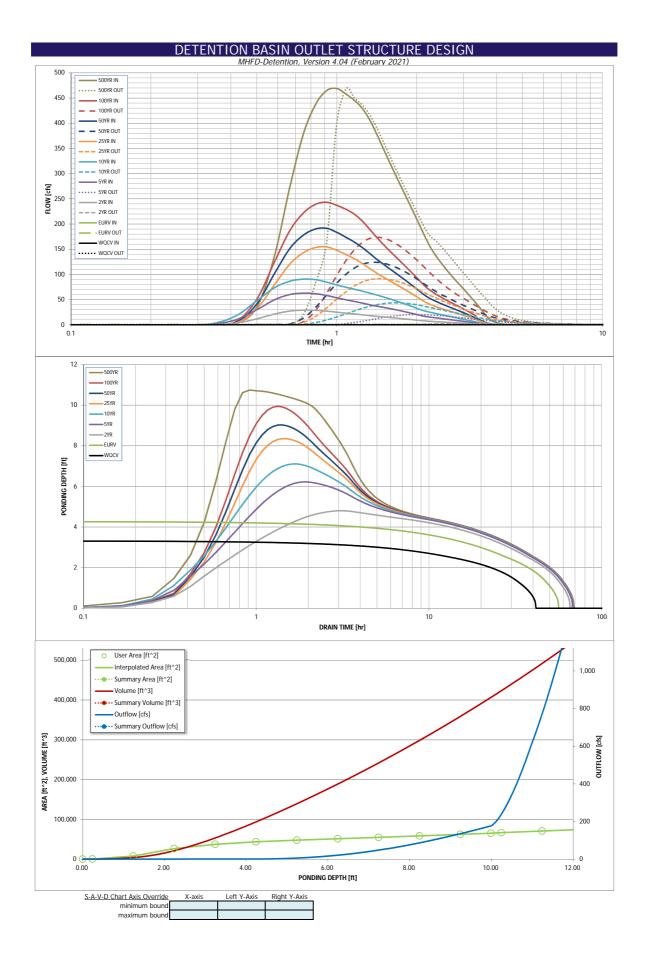
After providing required inputs above including 1-hour rainfall depths, click 'Run CUHP' to generate runoff hydrographs using the embedded Colorado Urban Hydrograph Procedure.

the embedded oblorddo orban njaro	graphinocoda	
Water Quality Capture Volume (WQCV) =	1.285	acre-feet
Excess Urban Runoff Volume (EURV) =	2.178	acre-feet
2-yr Runoff Volume (P1 = 1.19 in.) =	3.053	acre-feet
5-yr Runoff Volume (P1 = 1.5 in.) =	6.692	acre-feet
10-yr Runoff Volume (P1 = 1.75 in.) =	10.317	acre-feet
25-yr Runoff Volume (P1 = 2 in.) =	16.756	acre-feet
50-yr Runoff Volume (P1 = 2.25 in.) =	21.159	acre-feet
100-yr Runoff Volume (P1 = 2.52 in.) =	27.486	acre-feet
500-yr Runoff Volume (P1 = 4 in.) =	55.496	acre-feet
Approximate 2-yr Detention Volume =	1.394	acre-feet
Approximate 5-yr Detention Volume =	2.182	acre-feet
Approximate 10-yr Detention Volume =	4.471	acre-feet
Approximate 25-yr Detention Volume =	6.214	acre-feet
Approximate 50-yr Detention Volume =	6.506	acre-feet
Approximate 100-yr Detention Volume =	8.395	acre-feet

Define Zones and Basin Geometry


Zone 1 Volume (WQCV) =	1.285
Zone 2 Volume (EURV - Zone 1) =	0.893
Zone 3 Volume (100-year - Zones 1 & 2) =	6.218
Total Detention Basin Volume =	8.395
Initial Surcharge Volume (ISV) =	user
Initial Surcharge Depth (ISD) =	user
Total Available Detention Depth (H_{total}) =	user
Depth of Trickle Channel (H_{TC}) =	user
Slope of Trickle Channel (S_{TC}) =	user
Slopes of Main Basin Sides (S _{main}) =	user
Basin Length-to-Width Ratio $(R_{L/W})$ =	user

Initial Surcharge Area (A _{ISV}) =	user
Surcharge Volume Length $(L_{ISV}) =$	user
Surcharge Volume Width $(W_{ISV}) =$	user
Depth of Basin Floor (H_{FLOOR}) =	user
Length of Basin Floor (L_{FLOOR}) =	user
Width of Basin Floor (W_{FLOOR}) =	user
Area of Basin Floor (A_{FLOOR}) =	user
Volume of Basin Floor (V_{FLOOR}) =	user
Depth of Main Basin (H _{MAIN}) =	user
Length of Main Basin $(L_{MAIN}) =$	user
Width of Main Basin (W_{MAIN}) =	user
Area of Main Basin (A _{MAIN}) =	user
Volume of Main Basin (V_{MAIN}) =	user
Calculated Total Basin Volume (V _{total}) =	user


	Depth Increment =	1.00	ft							
			Optional				Optional			
	Stage - Storage	Stage	Override	Length	Width	Area	Override	Area	Volume	Volume
	Description	(ft)	Stage (ft)	(ft)	(ft)	(ft 2)	Area (ft ²)	(acre)	(ft 3)	(ac-ft)
	Top of Micropool		0.00				90	0.002		
	7107		0.24				331	0.008	51	0.001
	7108		1.24				7,689	0.177	4,061	0.093
	7109		2.24				26,604	0.611	21,207	0.487
	7110		3.24				37,234	0.855	53,126	1.220
	7111		4.24				43,658	1.002	93,573	2.148
	7112		5.24				47,762	1.096	139,282	3.197
	7113		6.24				51,250	1.177	188,788	4.334
	7114		7.24				54,827	1.259	241,827	5.552
	7115		8.24				58,544	1.344	298,513	6.853
	7116		9.24				62,316	1.431	358,943	8.240
	7116.75* Spillway		9.99				65,152	1.496	406,744	9.338
			10.24				11.140	1.530	423,218	0.71/
	7117						66,643			9.716
	7118		11.24				70,696	1.623	491,888	11.292
r Overrides	7119		12.24				74,859	1.719	564,665	12.963
	,,		12.24				74,037	1.717	304,003	12.705
acre-feet										
acre-feet										
inches										
inches										
inches										
inches										
inches									1	
-										
inches										
inches										
									1	
										_
									1	
								L		
										_
							1		1	
									1	
									<u> </u>	
									1	
						-				
									<u> </u>	
					-				<u> </u>	
									1	
				-	-					
									1	
									1	
									1	
									1	
								1	1	
								-		
									l	
								l		
								ļ		
								l		
								ļ		
									l	
								ļ		
								ļ		
								1	1	1

DETENTION BASIN STAGE-STORAGE TABLE BUILDER

MHFD-Detention, Version 4.04 (February 2021)

		TENTION				CLON			
		MH	BASIN OUT			SIGN			
Project: Basin ID:	Pond C with offsit	e flow							
ZONE 3				Estimated	Estimated				
				Stage (ft)	Volume (ac-ft)	Outlet Type	_		
			Zone 1 (WQCV)	3.32	1.285	Orifice Plate			
ZONE 1 AND 2	100-YEAR ORIFICE		Zone 2 (EURV)	4.27	0.893	Orifice Plate			
PERMANENT ORIFICES POOL Example Zone	Configuration (Re	tention Pond)	Zone 3 (100-year)	9.35	6.218	Weir&Pipe (Restrict)			
ser Input: Orifice at Underdrain Outlet (typically		•	AD)	Total (all zones)	8.395]	Calculated Paramo	ters for Underdrain	
Underdrain Orifice Invert Depth =	N/A		the filtration media	surface)	Underg	drain Orifice Area =	N/A	ft ²	
Underdrain Orifice Diameter =	N/A	inches			Underdrair	n Orifice Centroid =	N/A	feet	
ser Input: Orifice Plate with one or more orifice	or Elliptical Slot)	Noir (typically used	to drain WOCV and	Vor EUDV in a sodir			Calculated Parame	tora for Diata	
Invert of Lowest Orifice =	0.00		bottom at Stage =			ice Area per Row =	3.257E-02	ft ²	
Depth at top of Zone using Orifice Plate =	4.27	-	n bottom at Stage =			iptical Half-Width =	N/A	feet	
Orifice Plate: Orifice Vertical Spacing =	N/A	inches				ical Slot Centroid =	N/A	feet	
Orifice Plate: Orifice Area per Row =	4.69	sq. inches (use rec	tangular openings)		E	Iliptical Slot Area =	N/A	ft ²	
ser Input: Stage and Total Area of Each Orifice	Row (numbered fr	om lowest to highe	st)						
	Row 1 (required)	Row 2 (optional)	Row 3 (optional)	Row 4 (optional)	Row 5 (optional)	Row 6 (optional)	Row 7 (optional)	Row 8 (optional)]
Stage of Orifice Centroid (ft)	0.00	1.25	2.50						
Orifice Area (sq. inches)	4.69	4.69	4.69						J
ſ	Row 9 (optional)	Row 10 (optional)	Row 11 (optional)	Row 12 (optional)	Row 13 (optional)	Row 14 (optional)	Row 15 (optional)	Row 16 (optional)	
Stage of Orifice Centroid (ft)									
Orifice Area (sq. inches)									1
er Input: Vertical Orifice (Circular or Rectangu	<u>ılar)</u>						Calculated Parame	ters for Vertical Ori	fice
	Not Selected	Not Selected					Not Selected	Not Selected	- 2
Invert of Vertical Orifice = Depth at top of Zone using Vertical Orifice =	N/A N/A	N/A N/A		bottom at Stage = bottom at Stage =		rtical Orifice Area = I Orifice Centroid =	N/A N/A	N/A N/A	ft ² feet
Vertical Orifice Diameter =	N/A	N/A	inches	bottom at Stage -	on) venica		N/A	10/74	reet
ser Input: Overflow Weir (Dropbox with Flat or	Sloped Grate and Zone 3 Weir	Outlet Pipe OR Rec Not Selected	tangular/Trapezoida	al Weir (and No Out	let Pipe)_		Calculated Parame Zone 3 Weir	ters for Overflow W Not Selected	<u>/eir</u>
Overflow Weir Front Edge Height, Ho =	4.36	N/A		oottom at Stage = 0 f		e Upper Edge, H _t =	7.47	N/A	feet
Overflow Weir Front Edge Length = Overflow Weir Grate Slope =	7.00 4.00	N/A N/A	feet H:V	G	overriow w ate Open Area / 10	/eir Slope Length =)0-vr Orifice Area =	12.80 5.64	N/A N/A	feet
Horiz. Length of Weir Sides =	12.42	N/A	feet		verflow Grate Open		70.89	N/A	ft ²
Overflow Grate Type =		N/A		(Overflow Grate Ope	n Area w/ Debris =	17.72	N/A	ft ²
Debris Clogging % =	75%	N/A	%						
ser Input: Outlet Pipe w/ Flow Restriction Plate	(Circular Orifice, R	estrictor Plate, or R	ectangular Orifice)		6		s for Outlet Pine w/		
	Zone 3 Restrictor	Not Selected			<u>La</u>	alculated Parameter		Flow Restriction Pl	ate
Depth to Invert of Outlet Pipe =	6.29	0.00					Zone 3 Restrictor	Flow Restriction Pl Not Selected	ate
Outlet Pipe Diameter =	40.00		ft (distance below ba	asin bottom at Stage	= 0 ft) O	utlet Orifice Area =	Zone 3 Restrictor 12.57		ft ²
	48.00 48.00		inches	0	= 0 ft) O Outle	utlet Orifice Area = t Orifice Centroid =	Zone 3 Restrictor 12.57 2.00		ft ² feet
Restrictor Plate Height Above Pipe Invert =	48.00 48.00			0	= 0 ft) O Outle	utlet Orifice Area =	Zone 3 Restrictor 12.57		ft ²
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or	48.00 Trapezoidal)		inches inches	Half-Cen	= 0 ft) O Outle tral Angle of Restric	utlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe =	Zone 3 Restrictor 12.57 2.00 3.14 Calculated Parame	Not Selected	ft ² feet
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage=	48.00 <u>Trapezoidal)</u> 9.99	ft (relative to basir	inches	Half-Cen	= 0 ft) O Outle tral Angle of Restric Spillway D	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth=	Zone 3 Restrictor 12.57 2.00 3.14 <u>Calculated Parame</u> 0.74	Not Selected	ft ² feet
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or	48.00 Trapezoidal)		inches inches	Half-Cen	= 0 ft) O Outle tral Angle of Restric Spillway D Stage at	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Pesign Flow Depth= Top of Freeboard =	Zone 3 Restrictor 12.57 2.00 3.14 <u>Calculated Parame</u> 0.74 11.73	Not Selected	ft ² feet
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length =	48.00 Trapezoidal) 9.99 123.00	ft (relative to basir feet	inches inches	Half-Cen	= 0 ft) O Outle tral Angle of Restric Spillway D Stage at Basin Area at	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth=	Zone 3 Restrictor 12.57 2.00 3.14 <u>Calculated Parame</u> 0.74	Not Selected ters for Spillway feet feet	ft ² feet
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes =	48.00 Trapezoidal) 9.99 123.00 4.00	ft (relative to basir feet H:V	inches inches	Half-Cen	= 0 ft) O Outle tral Angle of Restric Spillway D Stage at Basin Area at	utlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard =	Zone 3 Restrictor 12.57 2.00 3.14 <u>Calculated Parame</u> 0.74 11.73 1.67	Not Selected	ft ² feet
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = outed Hydrograph Results	48.00 <u>Trapezoidal</u>) 9.99 123.00 4.00 1.00 The user can over	ft (relative to basir feet H:V feet ide the default CUI	inches inches bottom at Stage = <u>IP hydrographs and</u>	• 0 ft)	= 0 ft) O Outle Iral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at entering new value	utlet Orifice Area = t Orifice Centroid = ctor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 3 Restrictor 12.57 2.00 3.14 <u>Calculated Parame</u> 0.74 11.73 1.67 12.10 rographs table (Col	Not Selected	ft ² feet radians
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface =	48.00 <u>Trapezoidal)</u> 9.99 123.00 4.00 1.00	ft (relative to basir feet H:V feet	inches inches 1 bottom at Stage =	Half-Cen	= 0 ft) O Outle Iral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard =	Zone 3 Restrictor 12.57 2.00 3.14 <u>Calculated Parame</u> 0.74 11.73 1.67 12.10	Not Selected	ft ² feet radians
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) =	48.00 <u>Trapezoidal)</u> 9.99 123.00 4.00 1.00 <u>The user can oven</u> <u>WOCV</u> N/A 1.285	ft (relative to basir feet H:V feet ide the default CUI EURV N/A 2.178	inches inches n bottom at Stage = 1P hydrographs and 2 Year 1.19 3.053	Function of the second	= 0 ft) O Outle Iral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at <u>entering new value</u> 10 Year 1.75 10.317	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Cop of Freeboard = Top of Freeboard = Top of Freeboard = top of Freeboard = top of Freeboard = <u>top of Freeboard =</u> <u>25 Year</u> <u>2.00</u> 16.756	Zone 3 Restrictor 12.57 2.00 3.14 Calculated Parame 0.74 11.73 1.67 12.10 rographs table (Col 50 Year 2.25 21.159	Not Selected ters for Spillway feet feet acres acre-ft 100 Year 2.52 27.486	ft ² feet radians 500 Yeaa 4.00 55.496
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) =	48.00 <u>Trapezoidal)</u> 9.99 123.00 4.00 1.00 The user can over WOCV N/A	ft (relative to basir feet H:V feet ide the default CUH EURV N/A	inches inches h bottom at Stage = <i>IP hydrographs and</i> 2 Year 1.19	Half-Cen 0 ft) 1 runoff volumes by 5 Year 1.50	= 0 ft) O Outle tral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at <u>entering new value</u> 10 Year 1.75	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = tesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = tes in the Inflow Hyd 25 Year 2.00	Zone 3 Restrictor 12.57 2.00 3.14 Calculated Parame 0.74 11.73 1.67 12.10 rographs table (Col 50 Year 2.25	Not Selected ters for Spillway feet feet acres acre-ft 100 Year 2.52	ft ² feet radians 500 Yeaa 4.00 55.496
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) =	48.00 <u>Trapezoidal)</u> 9.99 123.00 4.00 1.00 <u>The user can oven</u> <u>WOCV</u> N/A 1.285 N/A N/A N/A	ft (relative to basir feet H:V feet ide the default CUI EURV N/A 2.178 N/A N/A N/A	inches inches h bottom at Stage = 1P hydrographs and 2 Year 1.19 3.053 3.053 17.6	Half-Cen 0 ft) 1 runoff volumes by 5 Year 1.50 6.692 6.692 49.5	= 0 ft) O Outle Iral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at <u>entering new value</u> <u>10 Year</u> <u>1.75</u> <u>10.317</u> <u>10.317</u> <u>77.1</u>	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = esign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hyd 25 Year 2.00 16.756 16.756 142.3	Zone 3 Restrictor 12.57 2.00 3.14 Calculated Parame 0.74 11.73 1.67 12.10 rographs table (Col 50 Year 2.25 21.159 21.159 179.0	Not Selected ters for Spillway feet feet acres acre-ft umns W through Al 100 Year 2.52 27.486 27.486 229.9	ft ² feet radians 500 Yea 4.00 55.496 55.496 455.8
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Redevelopment Peak Q (cfs) = OPTIONAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) =	48.00 <u>Trapezoidal</u>) 9.99 123.00 4.00 1.00 <u>The user can overn</u> WOCV N/A 1.285 N/A N/A N/A N/A	ft (relative to basin feet H:V feet ide the default CUI EURV N/A 2.178 N/A N/A	inches inches bottom at Stage = <i>IP hydrographs and</i> 2 Year 1.19 3.053 3.053	Half-Cen 0 ft) 1 <i>runoff volumes by</i> 5 Year 1.50 6.692 6.692	= 0 ft) O Outle rral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 10.317 10.317	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = s in the Inflow Hyd 25 Year 2.00 16.756 16.756	Zone 3 Restrictor 12.57 2.00 3.14 <u>Calculated Parame</u> 0.74 11.73 1.67 1.67 1.2.10 rographs table (Col 50 Year 2.25 21.159 21.159	Not Selected ters for Spillway feet feet acres acres acres through Al 100 Year 2.52 27.486 27.486	ft ² feet radians 500 Yea 4.00 55.496 55.496
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak 0 (cfs) = Predevelopment Unit Peak O (cfs) = Predevelopment Unit Peak Inflow Q (cfs) = Peak Inflow Q (cfs) = Peak Unflow Q (cfs)	48.00 <u>Trapezoidal</u>) 9.99 123.00 4.00 1.00 <u>The user can oven</u> WOCV N/A 1.285 N/A N/A N/A N/A N/A 0.7	ft (relative to basir feet H:V feet Ide the default CUI EURV N/A 2.178 N/A N/A N/A N/A N/A N/A 0.8	inches inches bottom at Stage = <i>IP hydrographs and</i> <u>2 Year</u> <u>1.19</u> <u>3.053</u> <u>3.053</u> <u>17.6</u> <u>0.08</u> <u>29.2</u> <u>2.3</u>	Half-Cen 0 ft) 7 <u>runoff volumes by</u> 5 <u>Year</u> 1.50 6.692 6.692 49.5 	= 0 ft) O Outle tral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 10.317 10.317 10.317 0.34 90.7 43.8	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = lop of Freeboard = Top of Freeboard = Top of Freeboard = 25 Year 2.00 16.756 16.756 142.3 0.63 154.7 91.6	Zone 3 Restrictor 12.57 2.00 3.14 Calculated Parame 0.74 11.73 1.67 12.10 rographs table (Col 50 Year 2.25 21.159 21.159 21.159 1.159 1.159 1.159 1.24.0	Not Selected	ft ² feet radians 500 Yea 4.00 55.4% 55.4% 455.8 - 2.03 468.5
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length Freeboard above Max Water Surface = Duted Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Render Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = ProtoNAL Override Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Row, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nufflow Q (cfs) = Ratio Peak Outflow C Predevelopment C =	48.00 Trapezoidal) 9.99 123.00 4.00 1.00 The user can over WOCV N/A 1.285 N/A N/A N/A N/A N/A N/A	ft (relative to basin feet H:V feet URV N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Inches Inches In bottom at Stage = 10 hydrographs and 2 Year 1.19 3.053 3.053 1.7.6 0.08 29.2 2.3 N/A	Half-Cen 0 ft) 1 runoff volumes by 5 Year 1.50 6.692 49.5 0.22 63.0 20.6 0.4	= 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Volume at Entering new value 10 Year 1.75 10.317 10.317 10.317 77.1 0.34 90.7 43.8 0.6	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Top of Freeboard = Top of Freeboard = Top of Freeboard = 10 of	Zone 3 Restrictor 12.57 2.00 3.14 <u>Calculated Parame</u> 0.74 11.73 1.67 12.10 rographs table (Col 50 Year 2.25 21.159 21.159 1.79.0 0.80 191.5 124.0 0.7	Not Selected ters for Spillway feet acres acre-ft 100 Year 2.52 2.7.486 27.486 229.9 1.02 243.3 173.9 0.8	ft ² feet radians 500 Yea 4.00 55.496 455.8 2.03 468.9 468.5 1.0
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = outed Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Redevelopment Peak 0 (cfs) = Predevelopment Unit Peak O (cfs) = Predevelopment Unit Peak O (cfs) = Predevelopment Unit Peak O (cfs) = Predevelopment Unit Peak Inflow 0 (cfs) = Peak Inflow 0 (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	48.00 <u>Trapezoidal)</u> 9.99 123.00 4.00 1.00 <u>The user can oven</u> <u>WOCV</u> N/A 1.285 N/A N/A N/A N/A N/A O.7 N/A Plate N/A	ft (relative to basir feet H:V feet EURV N/A 2.178 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	inches inches bottom at Stage = <u>P hydrographs and</u> <u>2 Year</u> <u>1.19</u> <u>3.053</u> <u>3.053</u> <u>3.053</u> <u>17.6</u> <u>-</u> <u>0.08</u> <u>29.2</u> <u>2.3</u> <u>N/A</u> <u>Overflow Weir 1</u> <u>0.02</u>	Half-Cen 0 ft) 7 <u>runoff volumes by</u> 5 <u>Year</u> 1.50 6.692 6.692 6.692 6.92 6.30 0.22 6.30 20.6 0.4 0.22 6.30 20.6 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.3	= 0 ft) O Outle tral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 10.317 10.317 777.1 0.34 90.7 43.8 0.6 Overflow Weir 1 0.6	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = lesign Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = es in the Inflow Hyd 25 Year 2.00 16.756 16.756 16.756 16.756 154.7 91.6 0.63 0.63 0.63 154.7 91.6 0.6 0verflow Weir 1 1.3	Zone 3 Restrictor 12:57 2.00 3.14 Calculated Parame 0.74 11.73 1.67 12:10 rographs table (Col 50 Year 2.25 21.159 21.159 21.159 21.159 1.79.0 0.80 191.5 124.0 0.7 Overflow Weir 1 1.7	Not Selected ters for Spillway feet feet acres acre-ft 100 Year 2.52 27.486 229.9 1.02 243.3 173.9 0.8 Overflow Weir 1 2.4	ft ² feet radians 500 Yea 4.00 55.496 55.496 55.496 468.5 1.0 Spillway 3.1
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP RenderVolume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = Predevelopment Unit Peak O (cfs) = Predevelopment Unit Peak O (cfs) = Predevelopment Unit Peak N (cfs) = Ratio Peak Outflow O (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) =	48.00 Trapezoidal) 9.99 123.00 4.00 1.00 The user can oven WOCV N/A 1.285 N/A N/A N/A N/A N/A N/A Plate N/A N/A N/A	ft (relative to basir feet H:V feet EURV N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Inches Inches Inches In bottom at Stage = IP hydrographs and 2 Year 1.19 3.053 3.053 1.7.6 0.08 29.2 2.3 N/A Overflow Weir 1 0.02 N/A	Half-Cen 1 runoff volumes by 5 Year 1.50 6.692 49.5 0.22 63.0 20.6 0.4 Overflow Weir 1 0.3 N/A	= 0 ft) O Outle tral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at 10 Year 1.75 10.317 10.317 10.317 0.34 90.7 43.8 0.6 Overflow Weir 1 0.6 N/A	utlet Orifice Area = t Orifice Centroid = tor Plate on Pipe = Top of Freeboard = Top of Freeboard = Top of Freeboard = Top of Freeboard = 2.00 16.756 16.756 16.756 142.3 0.63 154.7 91.6 0.6 Overflow Weir 1 1.3 N/A	Zone 3 Restrictor 12.57 2.00 3.14 Calculated Parame 0.74 11.73 1.67 12.10 rographs table (Col 50 Year 2.25 21.159 1.79.0 0.80 191.5 124.0 0.7 Overflow Weir 1 1.7 N/A	Not Selected	ft ² feet radians 500 Yea 4.00 55.496 55.496 455.8 468.9 468.5 1.0 Spillway 3.1 N/A
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length Spillway End Slopes = Freeboard above Max Water Surface = touted Hydrograph Results Design Storm Return Period = One-Hour Rainfall Depth (in) = CUHP Runoff Volume (acre-ft) = CUHP Predevelopment Peak Q (cfs) = Predevelopment Unit Peak Flow, q (cfs/acre) = Peak Inflow Q (cfs) = Peak Nuffw Q (cfs) = Peak Nuffw Q (cfs) = Ratio Peak Outflow to Predevelopment Q = Structure Controlling Flow = Max Velocity through Grate 1 (fps) =	48.00 <u>Trapezoidal)</u> 9.99 123.00 4.00 1.00 <i>The user can overn</i> WOCV N/A 1.285 N/A N/A N/A N/A N/A N/A N/A N/A	ft (relative to basir feet H:V feet ide the default CUI EURV N/A 2.178 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	inches inches bottom at Stage = Phydrographs and 2 Year 1.19 3.053 3.053 3.053 17.6 0.08 29.2 2.3 N/A Overflow Weir 1 0.02 N/A 58 62	Half-Cen 0 ft) 7 <u>runoff volumes by</u> 5 <u>Year</u> 1.50 6.692 6.692 6.692 6.92 6.30 0.22 6.30 20.6 0.4 0.22 6.30 20.6 0.4 0.2 0.4 0.2 0.4 0.2 0.4 0.3	= 0 ft) O Outle tral Angle of Restric Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 10.317 10.317 777.1 0.34 90.7 43.8 0.6 Overflow Weir 1 0.6	utlet Orifice Area = t Orifice Centroid = :tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = cs in the Inflow Hyd 25 Year 2.00 16.756 16.756 142.3 0.63 154.7 91.6 0.6 0.6 0.0verflow Weir 1 1.3 N/A 45 57	Zone 3 Restrictor 12.57 2.00 3.14 Calculated Parame 0.74 11.73 1.67 12.10 rographs table (Col 50 Year 2.25 21.159 21.159 179.0 0.80 191.5 124.0 0.7 Overflow Weir 1 1.7 N/A 41 55	Not Selected ters for Spillway feet feet acres acre-ft 100 Year 2.52 27.486 229.9 1.02 243.3 173.9 0.8 Overflow Weir 1 2.4 N/A 37 53	ft ² feet radians 500 Yeaa 4.00 55.496 55.496 55.496 468.5 1.0 \$pillway 3.1 N/A 2.1 N/A 24
Restrictor Plate Height Above Pipe Invert = ser Input: Emergency Spillway (Rectangular or Spillway Invert Stage= Spillway Crest Length = Spillway Crest Length = Spillway End Slopes = Freeboard above Max Water Surface = Outed Hydrograph Results Design Storm Return Period = One-Hour Rainfail Depth (in) = CUHP Runoff Volume (acre-ft) = Inflow Hydrograph Volume (acre-ft) = CUHP Predevelopment Peak O (cfs) = OPTIONAL Override Predevelopment Peak O (cfs) = Peak Inflow Q (cfs) = Peak Outflow Q (cfs) = Peak Outflow O (cfs) = Ratio Peak Outflow Concernent Peak O (cfs) = Structure Controlling Flow = Max Velocity through Grate 1 (fps) = Max Velocity through Grate 2 (fps) = Time to Drain 97% of Inflow Volume (nours)	48.00 <u>Trapezoidal)</u> 9.99 123.00 4.00 1.00 The user can over WOCV N/A 1.285 N/A N/A N/A N/A N/A N/A Plate N/A 38	ft (relative to basin feet H:V feet EURV N/A 2.178 N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A	Inches In	Half-Cen F 0 ft) F 0 ft) F 1.50 6.692 6.692 6.692 49.5 0.22 63.0 20.6 0.4 Overflow Weir 1 0.3 N/A 55	= 0 ft) O Outle rral Angle of Restrict Spillway D Stage at Basin Area at Basin Volume at entering new value 10 Year 1.75 10.317 10.317 77.1 0.34 90.7 43.8 0.6 Overflow Weir 1 0.6 N/A 51	utlet Orifice Area = t Orifice Centroid = :tor Plate on Pipe = Design Flow Depth= Top of Freeboard = Top of Freeboard = Top of Freeboard = Cop of Freeboard = 2.00 16.756 16.756 142.3 0.63 154.7 91.6 0.63 0.63 0.63 154.7 91.6 0.6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Zone 3 Restrictor 12.57 2.00 3.14 Calculated Parame 0.74 11.73 1.67 12.10 10 10 10 10 10 10 10 10 10	Not Selected	(r) feet radians 500 Yeaa 4.00 55.496 455.496 455.496 455.496 455.496 455.496 468.5 1.0 Spillway 3.1 N/A 21

DETENTION BASIN OUTLET STRUCTURE DESIGN Outflow Hydrograph Workbook Filename:

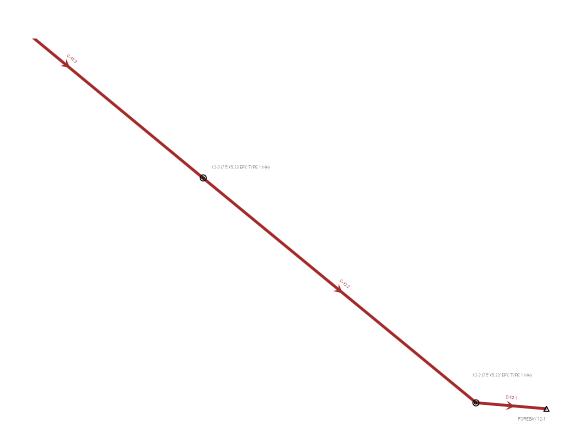
	The user can o	verride the calcu	lated inflow hyd	rographs from t	his workbook wi	th inflow hydrog	raphs developed	d in a separate pr	parate program.		
]	SOURCE	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	CUHP	
Time Interval	TIME	WQCV [cfs]	EURV [cfs]	2 Year [cfs]	5 Year [cfs]	10 Year [cfs]	25 Year [cfs]	50 Year [cfs]	100 Year [cfs]	500 Year [cfs]	
5.00 min	0:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0:05:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	0:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.00	0.08	
	0:15:00	0.00	0.00	0.09	0.15	0.19	0.13	0.17	0.16	0.44	
-	0:20:00	0.00	0.00	0.46	1.05	1.76	0.51	0.62	0.65	3.37	
-	0:25:00	0.00	0.00	3.52 11.93	9.98 30.05	17.68 47.70	3.45 31.84	4.47 41.27	6.28 50.76	34.89 137.05	
	0:35:00	0.00	0.00	21.52	49.77	73.77	79.91	101.82	125.07	274.25	
	0:40:00	0.00	0.00	27.38	60.21	86.66	120.90	151.68	187.31	379.63	
	0:45:00	0.00	0.00	29.25	62.97	90.71	143.35	178.22	222.24	437.70	
	0:50:00	0.00	0.00	28.91	61.90	89.68	153.59	190.31	239.32	464.89	
	0:55:00	0.00	0.00	27.31 25.18	58.30 53.76	84.82 79.19	154.66 148.03	191.55 183.65	243.32 237.19	468.91 457.91	
-	1:05:00	0.00	0.00	23.18	49.83	74.64	139.46	173.83	229.28	437.91	
-	1:10:00	0.00	0.00	21.67	46.46	70.65	130.93	164.06	219.52	429.04	
	1:15:00	0.00	0.00	20.00	43.13	66.78	121.63	153.18	205.57	405.88	
	1:20:00	0.00	0.00	18.33	39.85	62.91	111.73	141.29	189.14	377.64	
ŀ	1:25:00	0.00	0.00	16.88	37.05	59.17	102.48	129.95	173.20	348.86	
	1:30:00	0.00	0.00	15.71 14.62	34.69 32.42	55.38 51.52	94.64 87.44	120.19 111.12	159.27 146.60	322.01 296.95	
-	1:40:00	0.00	0.00	13.57	32.42	47.70	87.44	102.62	135.04	273.66	
	1:45:00	0.00	0.00	12.54	27.73	43.94	74.26	94.48	124.17	251.60	
	1:50:00	0.00	0.00	11.51	25.31	40.26	68.03	86.63	113.67	230.46	
	1:55:00	0.00	0.00	10.47	22.89	36.63	61.90	78.92	103.46	209.97	
	2:00:00	0.00	0.00	9.42	20.49	32.97	55.88	71.36	93.52	190.07	
-	2:05:00 2:10:00	0.00	0.00	8.40 7.56	18.24 16.54	29.54 26.96	49.93 44.50	63.87 57.06	83.80 74.97	170.98 154.28	
	2:15:00	0.00	0.00	6.99	15.33	24.95	44.50	52.07	68.29	141.01	
-	2:20:00	0.00	0.00	6.50	14.25	23.11	37.30	47.93	62.76	129.63	
	2:25:00	0.00	0.00	6.05	13.24	21.40	34.51	44.31	57.85	119.36	
	2:30:00	0.00	0.00	5.61	12.27	19.77	31.95	40.98	53.39	109.95	
-	2:35:00	0.00	0.00	5.19	11.33	18.20	29.60	37.92	49.28	101.24	
-	2:40:00 2:45:00	0.00	0.00	4.78	10.42 9.53	16.69 15.23	27.34 25.17	34.98 32.17	45.42 41.82	93.08 85.46	
-	2:50:00	0.00	0.00	3.99	9.55	13.23	23.07	29.47	38.40	78.25	
	2:55:00	0.00	0.00	3.60	7.80	12.48	20.99	26.81	35.02	71.23	
	3:00:00	0.00	0.00	3.22	6.96	11.18	18.93	24.20	31.66	64.33	
-	3:05:00	0.00	0.00	2.84	6.13	9.88	16.88	21.59	28.30	57.45	
	3:10:00 3:15:00	0.00	0.00	2.46	5.30	8.60	14.84	19.00 16.41	24.94 21.60	50.60	
·	3:20:00	0.00	0.00	2.09	4.48	7.32	12.80 10.77	13.83	18.25	43.76 36.94	
-	3:25:00	0.00	0.00	1.34	2.86	4.79	8.74	11.25	14.92	30.15	
	3:30:00	0.00	0.00	0.98	2.05	3.54	6.71	8.69	11.59	23.40	
	3:35:00	0.00	0.00	0.62	1.28	2.37	4.71	6.15	8.30	16.93	
	3:40:00	0.00	0.00	0.35	0.78	1.68	2.85	3.83	5.32	11.65	
	3:45:00 3:50:00	0.00	0.00	0.24	0.58	1.32	1.82	2.56	3.56	8.30 6.00	
-	3:55:00	0.00	0.00	0.19	0.45	0.84	0.80	1.78	1.61	4.27	
	4:00:00	0.00	0.00	0.12	0.29	0.67	0.52	0.84	1.04	2.97	
	4:05:00	0.00	0.00	0.10	0.23	0.52	0.36	0.60	0.63	2.00	
ŀ	4:10:00 4:15:00	0.00	0.00	0.08	0.18 0.13	0.39	0.24 0.16	0.41 0.28	0.35	1.29 0.83	
ł	4:15:00	0.00	0.00	0.05	0.13	0.28	0.18	0.28	0.20	0.60	
ļ	4:25:00	0.00	0.00	0.04	0.07	0.14	0.08	0.15	0.12	0.44	
ŀ	4:30:00 4:35:00	0.00	0.00	0.03	0.05	0.11 0.08	0.06	0.12 0.09	0.09	0.35	
ŀ	4:40:00	0.00	0.00	0.02	0.02	0.06	0.03	0.06	0.05	0.20	
ļ	4:45:00	0.00	0.00	0.01	0.01	0.04	0.02	0.05	0.04	0.14	
ł	4:50:00 4:55:00	0.00	0.00	0.01	0.01	0.02	0.02	0.03	0.03	0.09	
ļ	5:00:00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.03	
ļ	5:05:00 5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	
ŀ	5:10:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
	5:20:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ŀ	5:25:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ŀ	5:30:00 5:35:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ļ	5:40:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
ŀ	5:45:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
•	5:50:00 5:55:00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	
				0.00	0.00	0.00	0.00	0.00	0.00	0.00	

DETENTION BASIN OUTLET STRUCTURE DESIGN

MHFD-Detention, Version 4.04 (February 2021)

Summary Stage-Area-Volume-Discharge Relationships The user can create a summary S-A-V-D by entering the desired stage increments and the remainder of the table will populate automatically. The user should graphically compare the summary S-A-V-D table to the full S-A-V-D table in the chart to confirm it captures all key transition points.

Stage - Storage Description	Stage [ft]	Area [ft ²]	Area [acres]	Volume [ft ³]	Volume [ac-ft]	Total Outflow [cfs]	
							For best results, include the
							stages of all grade slope
							stages of all grade slope changes (e.g. ISV and Floor from the S-A-V table on
							from the S-A-V table on Sheet 'Basin'.
							Sheet Dashi .
							Also include the inverts of a
							outlets (e.g. vertical orifice.
							overflow grate, and spillway where applicable).
							where applicable).
							_
							-
							4
							4
							-
							-
							_
							_
							_
							_
							-
		-					-
							-
	<u> </u>						-
							-
							-
							-
							-
	1						-
							-
							1
							1
							_
							-
							-
							-
							_
		-					-
							1
]
]
							4
							-
							-
							1
	1		1	1	1	1	1

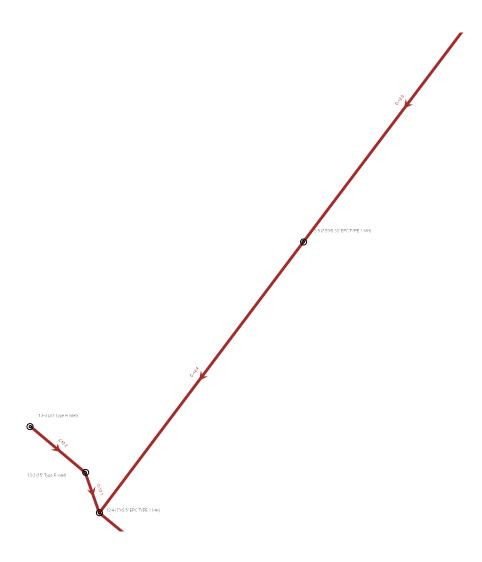


 2518800StormCAD (Sterling Ranch - Homestead
 Bentley Systems, Inc. Haestad Methods Solution

 North).stsw
 Center

 11/29/2021
 27 Siemon Company Drive Suite 200 W

 Watertown, CT 06795 USA +1-203-755-1666

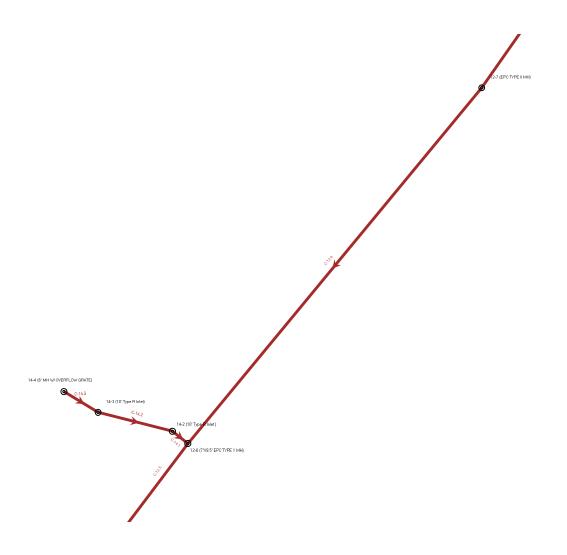


 2518800StormCAD (Sterling Ranch - Homestead
 Bentley Systems, Inc. Haestad Methods Solution

 North).stsw
 Center

 11/29/2021
 27 Siemon Company Drive Suite 200 W

 Watertown, CT 06795 USA +1-203-755-1666



 2518800StormCAD (Sterling Ranch - Homestead
 Bentley Systems, Inc. Haestad Methods Solution

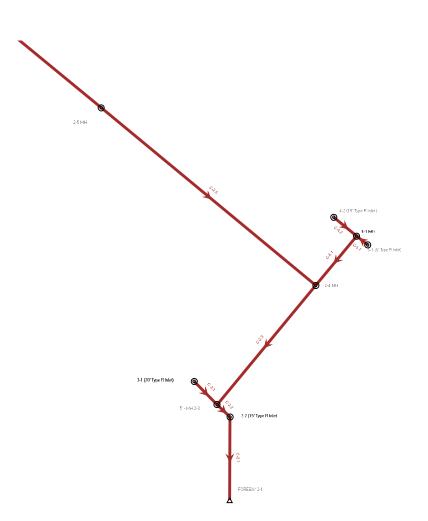
 North).stsw
 Center

 11/29/2021
 27 Siemon Company Drive Suite 200 W

 Watertown, CT 06795 USA +1-203-755-1666

2518800StormCAD (Sterling Ranch - Homestead Bentley Systems, Inc. Haestad Methods Solution North).stsw Center 6/15/2022 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

2518800StormCAD (Sterling Ranch - Homestead Bentley Systems, Inc. Haestad Methods Solution Center 11/29/2021 27 Siemon Company Drive Suite 200 W Watertown, CT 06795 USA +1-203-755-1666

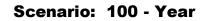


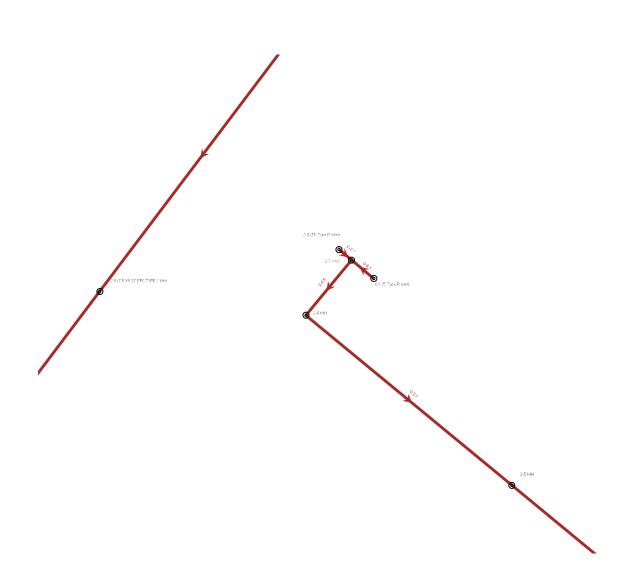
 2518800StormCAD (Sterling Ranch - Homestead
 Bentley Systems, Inc. Haestad Methods Solution

 North).stsw
 Center

 11/29/2021
 27 Siemon Company Drive Suite 200 W

 Watertown, CT 06795 USA +1-203-755-1666




 2518800StormCAD (Sterling Ranch - Homestead
 Bentley Systems, Inc. Haestad Methods Solution

 North).stsw
 Center

 11/30/2021
 27 Siemon Company Drive Suite 200 W

 Watertown, CT 06795 USA +1-203-755-1666

 2518800StormCAD (Sterling Ranch - Homestead
 Bentley Systems, Inc. Haestad Methods Solution

 North).stsw
 Center

 11/29/2021
 27 Siemon Company Drive Suite 200 W

 Watertown, CT 06795 USA +1-203-755-1666

			r			r		·		
			Length		Class	law and	Law and		Hydraulic	Hydraulic
Label	Flow	Diameter	(User	Manning's	Slope (Calculated)	Invert (Stort)	Invert	Velocity	Grade	Grade
Laber	(cfs)	(in)	Defined)	n	```	(Start)	(Stop)	(ft/s)	Line (In)	Line
	, ,		(ft)		(ft/ft)	(ft)	(ft)		(ft) ´	(Out) (ft)
C-1.1	20.60	48.0	173.3	0.013	0.015	7,101.47	7,098.92	9.31	7,102.81	7,099.85
C-2.1	30.70	36.0	87.9	0.013	0.044	7,112.83	7,108.95	15.88	7,114.63	7,112.98
C-2.2	26.20	36.0	7.8	0.013	0.019	7,116.61	7,116.46	11.29	7,118.26	7,117.86
C-2.3	9.20	24.0	152.1	0.013	0.019	7,120.76	7,117.81	8.70	7,121.84	7,119.28
C-2.4	4.80	18.0	272.8	0.013	0.022	7,127.26	7,121.26	7.76	7,128.10	7,122.51
C-2.5	4.80	18.0	261.8	0.013	0.025	7,133.90	7,127.36	8.13	7,134.74	7,127.91
C-2.6	4.80	18.0	70.1	0.013	0.026	7,135.85	7,134.00	8.29	7,136.69	7,135.20
C-2.7	5.90	18.0	6.9	0.013	0.089	7,136.57	7,135.95	13.64	7,137.51	7,137.21
C-3.1	18.90	24.0	30.8	0.013	0.012	7,118.19	7,117.81	8.79	7,119.75	7,119.16
C-4.1	7.90	18.0	62.7	0.013	0.025	7,122.82	7,121.26	9.27	7,123.91	7,122.51
C-4.2	7.00	18.0	27.5	0.013	0.029	7,123.71	7,122.92	9.46	7,124.73	7,124.69
C-5.1	1.20	18.0	7.6	0.013	0.076	7,123.50	7,122.92	8.08	7,124.69	7,124.69
C-6.1	0.80	18.0	26.9	0.013	0.018	7,136.44	7,135.95	4.33	7,137.21	7,137.21
C-12.1	35.80	60.0	78.1	0.013	0.010	7,109.50	7,108.72	9.30	7,112.97	7,112.98
C-12.10	3.20	24.0	81.6	0.013	0.010	7,170.03	7,169.21	5.10	7,170.65	7,169.72
C-12.11	0.80	24.0	185.9	0.013	0.009	7,171.83	7,170.13	3.28	7,172.14	7,170.95
C-12.2	35.80	60.0	340.1	0.013	0.014	7,119.72	7,115.00	10.45	7,121.39	7,116.15
C-12.3	35.80	60.0	341.3	0.013	0.014	7,124.74	7,119.81	10.60	7,126.41	7,121.69
C-12.4	32.60	60.0	327.8	0.013	0.014	7,129.67	7,125.03	10.24	7,131.26	7,126.95
C-12.5	32.60	60.0	333.5	0.013	0.011	7,133.57	7,129.87	9.39	7,135.16	7,131.54
C-12.6	6.40	24.0	359.1	0.013	0.045	7,152.56	7,136.57	10.58	7,153.46	7,137.06
C-12.7	6.40	24.0	251.3	0.013	0.019	7,158.22	7,153.56	7.74	7,159.12	7,154.18
C-12.8	6.40	24.0	117.3	0.013	0.010	7,159.59	7,158.42	6.19	7,160.49	7,159.15
C-12.9	5.70	24.0	161.0	0.013	0.047	7,168.21	7,160.59	10.46	7,169.05	7,161.05
C-13.1	3.20	24.0	37.3	0.013	0.010	7,128.12	7,127.74	5.13	7,128.75	7,128.25
C-14.1	29.20	48.0	38.4	0.013	0.010	7,134.96	7,134.57	9.02	7,136.56	7,135.88
C-14.2	28.10	48.0	74.9	0.013	0.020	7,136.66	7,135.16	11.36	7,138.23	7,136.86
C-14.3	27.10	48.0	44.5	0.013	0.025	7,137.97	7,136.86	12.16	7,139.51	7,137.90
C-15.1	1.10	18.0	9.5	0.013	0.030	7,167.60	7,167.32	5.65	7,167.99	7,167.59
C-15.2	0.50	18.0	68.9	0.013	0.020	7,169.18	7,167.80	3.90	7,169.44	7,167.99
C13.2	2.50	24.0	67.5	0.013	0.020	7,130.00	7,128.65	6.05	7,130.55	7,129.03
CO-1	0.00	-	67.5	0.013	0.006	7,085.12	7,084.72	0.00	7,085.12	7,084.72
CO-3	0.00	-	60.2	0.013	0.005	7,084.72	7,084.41	0.00	7,084.72	7,084.41

Scenario: 5 - Year Current Time Step: 0.000 h FlexTable: Manhole Table

Label	Flow (Known) (cfs)	Elevation (Ground) (ft)	Elevation (Invert) (ft)	Flow (Total Out) (cfs)	Hydraulic Grade Line (In) (ft)	Hydraulic Grade Line (Out) (ft)	Energy Grade Line (In) (ft)	Energy Grade Line (Out) (ft)	Headloss Coefficient (Standard)
2-2 (15' Type R Inlet)	30.70	7,124.33	7,112.83	30.70	7,115.02	7,114.63	7,116.04	7,115.38	0.520
2-4 MH	9.20	7,126.50	7,120.77	9.20	7,122.51	7,121.84	7,122.90	7,122.28	1.520
2-5 MH	4.80	7,133.20	7,127.27	4.80	7,128.12	7,128.10	7,129.15	7,128.45	0.050
2-6 MH	4.80	7,139.45	7,133.71	4.80	7,135.20	7,134.74	7,135.35	7,135.09	1.320
2-7 MH	4.80	7,140.85	7,135.85	4.80	7,137.21	7,136.69	7,137.43	7,137.04	1.520
2-8 (15' Type R Inlet)	5.90	7,141.17	7,136.57	5.90	7,137.53	7,137.51	7,137.93	7,137.91	0.050
3-1 (15' Type R Inlet)	18.90	7,124.33	7,118.19	18.90	7,119.79	7,119.75	7,120.59	7,120.55	0.050
4-1 MH	7.90	7,127.76	7,122.81	7.90	7,124.69	7,123.91	7,124.70	7,124.42	1.520
4-2 (15' Type R Inlet)	7.00	7,128.01	7,123.71	7.00	7,124.76	7,124.73	7,125.22	7,125.19	0.050
5' - MH 2-3	26.20	7,124.02	7,116.61	26.20	7,119.28	7,118.26	7,120.37	7,118.93	1.520
5-1 (5' Type R Inlet)	1.20	7,128.02	7,123.51	1.20	7,124.69	7,124.69	7,124.70	7,124.70	0.050
6-1 (5' Type R Inlet)	0.80	7,141.19	7,136.45	0.80	7,137.21	7,137.21	7,137.22	7,137.22	0.050
12-10 (Type D Inlet)	5.70	7,175.38	7,168.21	5.70	7,169.47	7,169.05	7,169.88	7,169.37	1.320
12-11 (Type D Inlet)	3.20	7,175.68	7,170.03	3.20	7,170.95	7,170.65	7,170.96	7,170.88	1.320
12-12 (Type D Inlet)	0.80	7,175.00	7,171.83	0.80	7,172.14	7,172.14	7,172.25	7,172.24	0.050
12-2 (7.5'X5.33' EPC TYPE 1 MH)	35.80	7,123.42	7,109.50	35.80	7,113.02	7,112.97	7,114.72	7,113.06	0.600
12-3 (7.5'X5.33 EPC TYPE 1 MH)	35.80	7,130.74	7,119.72	35.80	7,121.69	7,121.39	7,122.13	7,122.00	0.500
12-4 (7'X9.5' EPC TYPE 1 MH)	35.80	7,135.21	7,124.74	35.80	7,126.95	7,126.41	7,127.29	7,127.01	0.900
12-5 (7.5'X5.33' EPC TYPE 1 MH)	32.60	7,141.42	7,129.67	32.60	7,131.54	7,131.26	7,132.04	7,131.83	0.500
12-6 (7'X9.5' EPC TYPE 1 MH)	32.60	7,149.67	7,133.57	32.60	7,136.02	7,135.16	7,137.06	7,135.73	1.500
12-7 (EPC TYPE II MH)	6.40	7,160.24	7,152.56	6.40	7,153.63	7,153.46	7,154.56	7,153.80	0.500
12-8 (EPC TYPE II MH)	6.40	7,170.08	7,158.22	6.40	7,159.29	7,159.12	7,159.88	7,159.46	0.500
12-9 (EPC TYPE II MH)	6.40	7,173.91	7,159.59	6.40	7,160.79	7,160.49	7,162.49	7,160.83	0.900
13-2 (15' Type R Inlet)	3.20	7,137.16	7,128.12	3.20	7,128.88	7,128.75	7,129.45	7,128.97	0.600
13-3 (15' Type R Inlet)	2.50	7,137.17	7,130.00	2.50	7,130.65	7,130.55	7,130.85	7,130.75	0.500
14-2 (10' Type R Inlet)	29.20	7,151.40	7,134.96	29.20	7,136.86	7,136.56	7,137.33	7,137.16	0.500
14-3 (10' Type R Inlet)	28.10	7,150.61	7,136.66	28.10	7,138.26	7,138.23	7,139.94	7,138.82	0.050
14-4 (6' MH W/ OVERFLOW GRATE)	27.10	7,145.00	7,137.97	27.10	7,139.51	7,139.51	7,140.08	7,140.08	0.000
15-2 (5' Type R Inlet)	1.10	7,173.68	7,167.60	1.10	7,168.06	7,167.99	7,168.30	7,168.13	0.500
15-3 (5' Type R Inlet)	0.50	7,173.73	7,169.18	0.50	7,169.49	7,169.44	7,169.58	7,169.53	0.500
MH-4	0.00	7,089.37	7,085.12	0.00	7,085.12	7,085.12	7,085.12	7,085.12	0.500
MH-5	0.00	7,088.98	7,084.72	0.00	7,084.72	7,084.72	7,084.72	7,084.72	-
Outlet Structure 1-2	20.60	7,111.12	7,100.49	20.60	7,103.05	7,102.81	7,103.54	7,103.29	0.500

Scenario: 100 - Year Current Time Step: 0.000 h FlexTable: Conduit Table

			Length		Clana	las cont	los cont		Hydraulic	Hydraulic
Label	Flow	Diameter	(User	Manning's	Slope	Invert	Invert	Velocity	Grade	Grade
Label	(cfs)	(in)	Defined)	n	(Calculated)	(Start)	(Stop)	(ft/s)	Line (In)	Line
	. ,		(ft)		(ft/ft)	(ft)	(ft)	. ,	(ft)	(Out) (ft)
C-1.1	170.10	48.0	173.3	0.013	0.015	7,101.47	7,098.92	15.80	7,105.20	7,102.19
C-2.1	65.00	36.0	87.9	0.013	0.044	7,112.83	7,108.95	9.20	7,117.55	7,116.72
C-2.2	55.30	36.0	7.8	0.013	0.019	7,116.61	7,116.46	13.70	7,119.02	7,118.59
C-2.3	17.80	24.0	152.1	0.013	0.019	7,120.76	7,117.81	10.34	7,122.28	7,120.97
C-2.4	11.70	18.0	272.8	0.013	0.022	7,127.26	7,121.26	9.67	7,128.56	7,123.42
C-2.5	11.70	18.0	261.8	0.013	0.025	7,133.90	7,127.36	10.18	7,135.20	7,128.29
C-2.6	11.70	18.0	70.1	0.013	0.026	7,135.85	7,134.00	10.40	7,137.15	7,136.26
C-2.7	10.70	18.0	6.9	0.013	0.089	7,136.57	7,135.95	6.05	7,138.44	7,138.37
C-3.1	18.10	24.0	30.8	0.013	0.012	7,118.19	7,117.81	5.76	7,121.17	7,120.97
C-4.1	12.90	18.0	62.7	0.013	0.025	7,122.82	7,121.26	7.30	7,124.37	7,123.42
C-4.2	11.50	18.0	27.5	0.013	0.029	7,123.71	7,122.92	6.51	7,125.96	7,125.63
C-5.1	1.90	18.0	7.6	0.013	0.076	7,123.50	7,122.92	1.08	7,125.63	7,125.63
C-6.1	1.50	18.0	26.9	0.013	0.018	7,136.44	7,135.95	0.85	7,138.38	7,138.37
C-12.1	220.30	60.0	78.1	0.013	0.010	7,109.50	7,108.72	11.22	7,117.28	7,116.72
C-12.10	11.60	24.0	81.6	0.013	0.010	7,170.03	7,169.21	7.26	7,171.25	7,170.71
C-12.11	6.00	24.0	185.9	0.013	0.009	7,171.83	7,170.13	5.89	7,172.70	7,171.93
C-12.2	220.30	60.0	340.1	0.013	0.014	7,119.72	7,115.00	17.00	7,123.94	7,118.19
C-12.3	220.30	60.0	341.3	0.013	0.014	7,124.74	7,119.81	17.27	7,128.95	7,125.15
C-12.4	205.30	60.0	327.8	0.013	0.014	7,129.67	7,125.03	16.87	7,133.75	7,131.13
C-12.5	205.30	60.0	333.5	0.013	0.011	7,133.57	7,129.87	15.33	7,137.66	7,134.87
C-12.6	19.20	24.0	359.1	0.013	0.045	7,152.56	7,136.57	14.37	7,154.14	7,140.99
C-12.7	19.20	24.0	251.3	0.013	0.019	7,158.22	7,153.56	10.34	7,159.80	7,154.70
C-12.8	19.20	24.0	117.3	0.013	0.010	7,159.59	7,158.42	8.07	7,161.17	7,160.20
C-12.9	17.70	24.0	161.0	0.013	0.047	7,168.21	7,160.59	14.38	7,169.73	7,161.42
C-13.1	15.50	24.0	37.3	0.013	0.010	7,128.12	7,127.74	4.93	7,131.31	7,131.13
C-14.1	195.00	48.0	38.4	0.013	0.010	7,134.96	7,134.57	15.52	7,141.69	7,140.99
C-14.2	192.50	48.0	74.9	0.013	0.020	7,136.66	7,135.16	15.32	7,144.91	7,143.56
C-14.3	190.90	48.0	44.5	0.013	0.025	7,137.97	7,136.86	15.19	7,145.88	7,145.09
C-15.1	2.20	18.0	9.5	0.013	0.030	7,167.60	7,167.32	6.92	7,168.16	7,167.72
C-15.2	1.10	18.0	68.9	0.013	0.020	7,169.18	7,167.80	4.92	7,169.57	7,168.26
C13.2	14.30	24.0	67.5	0.013	0.020	7,130.00	7,128.65	9.90	7,131.74	7,131.53
CO-1	8.40	-	67.5	0.013	0.006	7,085.12	7,084.72	1.69	7,089.01	7,088.98
CO-3	16.80	-	60.2	0.013	0.005	7,084.72	7,084.41	3.38	7,089.04	7,088.94

·			r			r			
	Flow	Elevation		Flow	Hydraulic	Hydraulic	Energy	Energy	Headloss
Label	(Known)	(Ground)	Elevation	(Total	Grade	Grade	Grade	Grade	Coefficient
Labei	(cfs)	(Glound) (ft)	(Invert) (ft)	Out)	Line (In)	Line (Out)	Line (In)	Line (Out)	(Standard)
	(013)	(11)		(cfs)	(ft)	(ft)	(ft)	(ft)	(Stanuaru)
2-2 (15' Type R Inlet)	65.00	7,124.33	7,112.83	65.00	7,118.24	7,117.55	7,119.88	7,118.87	0.520
2-4 MH	17.80	7,126.50	7,120.77	17.80	7,123.42	7,122.28	7,124.25	7,123.03	1.520
2-5 MH	11.70	7,133.20	7,127.27	11.70	7,128.60	7,128.56	7,130.21	7,129.36	0.050
2-6 MH	11.70	7,139.45	7,133.71	11.70	7,136.26	7,135.20	7,136.94	7,136.00	1.320
2-7 MH	11.70	7,140.85	7,135.85	11.70	7,138.37	7,137.15	7,138.94	7,137.95	1.520
2-8 (15' Type R Inlet)	10.70	7,141.17	7,136.57	10.70	7,138.47	7,138.44	7,139.04	7,139.01	0.050
3-1 (15' Type R Inlet)	18.10	7,124.33	7,118.19	18.10	7,121.19	7,121.17	7,121.71	7,121.68	0.050
4-1 MH	12.90	7,127.76	7,122.81	12.90	7,125.63	7,124.37	7,125.64	7,125.19	1.520
4-2 (15' Type R Inlet)	11.50	7,128.01	7,123.71	11.50	7,125.99	7,125.96	7,126.65	7,126.61	0.050
5' - MH 2-3	55.30	7,124.02	7,116.61	55.30	7,120.97	7,119.02	7,121.48	7,120.30	1.520
5-1 (5' Type R Inlet)	1.90	7,128.02	7,123.51	1.90	7,125.63	7,125.63	7,125.65	7,125.65	0.050
6-1 (5' Type R Inlet)	1.50	7,141.19	7,136.45	1.50	7,138.38	7,138.38	7,138.39	7,138.39	0.050
12-10 (Type D Inlet)	17.70	7,175.38	7,168.21	17.70	7,170.71	7,169.73	7,171.04	7,170.47	1.320
12-11 (Type D Inlet)	11.60	7,175.68	7,170.03	11.60	7,171.93	7,171.25	7,172.00	7,171.77	1.320
12-12 (Type D Inlet)	6.00	7,175.00	7,171.83	6.00	7,172.71	7,172.70	7,173.04	7,173.03	0.050
12-2 (7.5'X5.33' EPC TYPE 1 MH)	220.30	7,123.42	7,109.50	220.30	7,118.45	7,117.28	7,122.78	7,119.23	0.600
12-3 (7.5'X5.33 EPC TYPE 1 MH)	220.30	7,130.74	7,119.72	220.30	7,125.15	7,123.94	7,127.10	7,126.36	0.500
12-4 (7'X9.5' EPC TYPE 1 MH)	220.30	7,135.21	7,124.74	220.30	7,131.13	7,128.95	7,132.83	7,131.37	0.900
12-5 (7.5'X5.33' EPC TYPE 1 MH)	205.30	7,141.42	7,129.67	205.30	7,134.87	7,133.75	7,136.56	7,135.98	0.500
12-6 (7'X9.5' EPC TYPE 1 MH)	205.30	7,149.67	7,133.57	205.30	7,140.99	7,137.66	7,144.73	7,139.88	1.500
12-7 (EPC TYPE II MH)	19.20 19.20	7,160.24	7,152.56	19.20 19.20	7,154.54	7,154.14	7,156.20	7,154.95	0.500 0.500
12-8 (EPC TYPE II MH)		7,170.08 7,173.91	7,158.22		7,160.20	7,159.80	7,160.86	7,160.61	
12-9 (EPC TYPE II MH)	19.20	7,173.91	7,159.59	19.20	7,161.90	7,161.17 7,131.31	7,165.11 7,131.85	7,161.98 7,131.68	0.900 0.600
13-2 (15' Type R Inlet) 13-3 (15' Type R Inlet)	15.50 14.30	7,137.16	7,128.12 7.130.00	15.50 14.30	7,131.53 7.131.93	7,131.74	7,131.65	7,131.00	0.500
14-2 (10' Type R Inlet)	195.00	7,157.17	7,130.00	195.00	7,131.93	7,131.74	7,132.31	7,132.12	0.500
14-2 (10 Type R Inlet)	195.00	7,151.40	7,134.96	195.00	7,145.09	7,141.09	7,147.21	7,145.44	0.500
14-3 (10 Type R fillet) 14-4 (6' MH W/ OVERFLOW GRATE)	192.50	7,145.00	7,137.97	192.50	7,145.09	7,144.91	7,148.59	7,148.59	0.000
15-2 (5' Type R Inlet)	2.20	7,145.00	7,137.97	2.20	7,145.00	7,145.00	7,146.39	7,148.39	0.500
15-3 (5' Type R Inlet)	1.10	7,173.66	7,167.60	1.10	7,160.26	7,168.16	7,160.35	7,168.37	0.500
MH-4	8.40	7.089.37	7.085.12	8.40	7,109.04	7,089.01	7.089.08	7.089.05	0.500
MH-4 MH-5	16.80	7,088.98	7,085.12	16.80	7,089.03	7,088.98	7,089.08	7,089.05	0.000
Outlet Structure 1-2	170.10	7,000.90	7,084.72	170.10	7,000.90	7,000.90	7,109.73	7,108.22	- 0.500
	170.10	7,111.12	1,100.49	170.10	1,100.71	1,105.20	1,109.73	1,100.22	0.000

Design Procedure Form: Extended Detention Basin (EDB)					
UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3				
Designer: ARJ					
Company: JR ENGINEERING Date: June 15, 2022					
Project: STERLING RANCH HOMESTEAD FIL. 1- 60" FOREBAY					
Location: EL PASO COUNTY					
1. Basin Storage Volume					
A) Effective Imperviousness of Tributary Area, ${\rm I_a}$	l _a = <u>4.4</u> %				
B) Tributary Area's Imperviousness Ratio (i = $I_a/100$)	i = 0.044				
C) Contributing Watershed Area	Area = 201.220 ac				
D) For Watersheds Outside of the Denver Region, Depth of Average	d ₆ = 0.43 in				
Runoff Producing Storm	Choose One				
 E) Design Concept (Select EURV when also designing for flood control) 	Water Quality Capture Volume (WQCV)				
	O Excess Urban Runoff Volume (EURV)				
F) Design Volume (WQCV) Based on 40-hour Drain Time (V _{DESISD} = (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft				
G) For Watersheds Outside of the Denver Region,	V _{DESIGN OTHER} =ac-ft				
Water Quality Capture Volume (WQCV) Design Volume					
$(V_{WQCV OTHER} = (d_6^*(V_{DESIGN}/0.43))$					
 H) User Input of Water Quality Capture Volume (WQCV) Design Volume (Only if a different WQCV Design Volume is desired) 	V _{DESIGN USER} = 0.457 ac-ft				
I) NRCS Hydrologic Soil Groups of Tributary Watershed					
i) Percentage of Watershed consisting of Type A Soils	HSG A = %				
 ii) Percentage of Watershed consisting of Type B Soils iii) Percentage of Watershed consisting of Type C/D Soils 	HSG _B = % HSG _{CD} = %				
J) Excess Urban Runoff Volume (EURV) Design Volume					
For HSG A: EURV _A = 1.68 * $i^{1.28}$ For HSG B: EURV _B = 1.36 * $i^{1.08}$	EURV _{DESIGN} = ac-f t				
For HSG C/D: EURV _{C/D} = $1.20 * i^{1.08}$					
K) User Input of Excess Urban Runoff Volume (EURV) Design Volume	EURV _{design user} =ac-f t				
(Only if a different EURV Design Volume is desired)					
2. Basin Shape: Length to Width Ratio	L : W = 2.0 : 1				
(A basin length to width ratio of at least 2:1 will improve TSS reduction.)					
3. Basin Side Slopes					
A) Basin Maximum Side Slopes	Z = 4.00 ft / ft				
(Horizontal distance per unit vertical, 4:1 or flatter preferred)	2 - 4.00 10/10				
4. Inlet					
 A) Describe means of providing energy dissipation at concentrated inflow locations; 					
5. Forebay					
A) Minimum Forebay Volume	V _{FMIN} = 0.014 ac-ft				
(V _{FMIN} = <u>3%</u> of the WQCV)					
B) Actual Forebay Volume	V _F = 0.019 ac-ft				
C) Forebay Depth					
$(D_F = 18$ inch maximum)	$D_{\rm F} = 18.0$ in				
D) Forebay Discharge					
i) Undetained 100-year Peak Discharge	$Q_{100} = 173.80$ cfs				
ii) Forebay Discharge Design Flow $(Q_F = 0.02 * Q_{100})$	Q _F = 3.48 cfs				
E) Forebay Discharge Design	Choose One				
	Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch				
	Wall with Kect. Notch Wall with V-Notch Weir				
F) Discharge Pipe Size (minimum 8-inches)					
G) Rectangular Notch Width	Calculated $W_N = 10.4$ in				

	Design Procedure Form:	Extended Detention Basin (EDB)
L	UD-BMP	(Version 3.07, March 2018) Sheet 1 of 3
Designer:	ARJ	
Company: Date:	JR ENGINEERING September 9, 2022	
Project:	STERLING RANCH HOMESTEAD FIL. 1 - 36" Forebay	
Location:	EL PASO COUNTY	
1. Basin Storage	Volume	
A) Effective Im	perviousness of Tributary Area, I _a	I _a = 61.8 %
B) Tributary Are	ea's Imperviousness Ratio (i = $I_a/100$)	i = 0.618
C) Contributing	g Watershed Area	Area = 23.230 ac
	heds Outside of the Denver Region, Depth of Average	d ₆ = 0.43 in
Runoff Proc	ducing Storm	Choose One
E) Design Cor	ncept RV when also designing for flood control)	Water Quality Capture Volume (WQCV)
		O Excess Urban Runoff Volume (EURV)
	ume (WQCV) Based on 40-hour Drain Time (1.0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft
G) For Waters	sheds Outside of the Denver Region,	V _{DESIGN OTHER} = 0.469 ac-ft
Water Qua	lity Capture Volume (WQCV) Design Volume $r_{r} = (d_6^*(V_{DESIGN}/0.43))$	
	of Water Quality Capture Volume (WQCV) Design Volume ifferent WQCV Design Volume is desired)	V _{DESIGN USER}
I) NRCS Hydro	ologic Soil Groups of Tributary Watershed	
i) Percenta	age of Watershed consisting of Type A Soils tage of Watershed consisting of Type B Soils	$HSG_{A} = \frac{\%}{HSG_{B}} $ %
	itage of Watershed consisting of Type B Solis	$HSG_{CD} = \frac{1}{3}$
	an Runoff Volume (EURV) Design Volume	
For HSG A For HSG E	A: EURV _A = 1.68 * i ^{1.28} B: EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = ac-f t
	C/D: EURV _{C/D} = 1.20 * i ^{1.08}	
	of Excess Urban Runoff Volume (EURV) Design Volume ifferent EURV Design Volume is desired)	EURV _{DESIGN USER} ac-f t
(only if a di		
	Length to Width Ratio to width ratio of at least 2:1 will improve TSS reduction.)	L : W =: 1
3. Basin Side Slo	pes	
A) Basin Maxi	mum Side Slopes	Z = 4.00 ft / ft
,	distance per unit vertical, 4:1 or flatter preferred)	
4. Inlet		
 A) Describe m inflow locat 	eans of providing energy dissipation at concentrated ions:	
5. Forebay		
A) Minimum Fo		V _{FMIN} = ac-ft
	$_{\rm N} = 3\%$ of the WQCV)	
B) Actual Fore	ibay Volume	$V_F = 0.019$ ac-ft
C) Forebay De (D _F	pth ⊧ = 18 inch maximum)	D _F = 18.0 in
D) Forebay Dis		
	-	0
	ned 100-year Peak Discharge	$Q_{100} = 65.00$ cfs
ii) Forebay (Q _F = 0.0	$^{\prime}$ Discharge Design Flow $_{22}$ * $Q_{100})$	$Q_F = 1.30$ cfs
E) Forebay Dis	scharge Design	Choose One
		O Berm With Pipe Flow too small for berm w/ pipe
		Wall with Rect. Notch Wall with V-Notch Weir
F) Discharge P	ipe Size (minimum 8-inches)	Calculated D _P =in
G) Rectangular	r Notch Width	Calculated W _N = 6.2 in

PIPE OUTFALL RIPRAP SIZING CALCULATIONS

Subdivision: Homestead North Fil. 1 Location: El Paso County

	Homestead North-Filing 1
ulated By: 7	ARJ
necked By:	
Date: 6	6/15/22

	STORM DRAIN SYSTEM			
	Pond C Outfall	DESIGN POINT	DESIGN POINT	Notes
Q ₁₀₀ (cfs):	173.8			Flows are the greater of proposed vs. future
Conduit	Pipe			
D_c , Pipe Diameter (in):	48			
W, Box Width (ft):	N/A			
H, Box Height (ft):	N/A			
Y _t , Tailwater Depth (ft):	1.00			If unknown, use Y_t/D_c (or H)=0.4
Y_t/Dc or Y_t/H	0.25			
Q/D ^{2.5} or Q/(WH ^{3/2})	5.43			
Supercritical?	No			
Y _n , Normal Depth (ft) [Supercritical]:	1.00			
D_a , H_a (in) [Supercritical]:	N/A			$D_a = (D_c + Y_n)/2$
Riprap d_{50} (in) [Supercritical]:	N/A			
Riprap <i>d</i> 50 (in) [Subcritical]:	31.65			
Required Riprap Size:	VH			Fig. 9-38 or Fig. 9-36
<i>d</i> ₅₀ (in):	18			
Expansion Factor, $1/(2 \tan \theta)$:	6.00			Read from Fig. 9-35 or 9-36
θ :	0.08			
Erosive Soils?	No			
Area of Flow, A_t (ft ²):	24.83			$A_t = Q/V$
Length of Protection, L_p (ft):	125.0			L=(1/(2 tan θ))(At/Yt - D)
Min Length (ft)	12.0			Min L=3D or 3H
Max Length (ft)	40.0			Max L=10D or 10H
Min Bottom Width, T (ft):	24.8			$T=2^{*}(L_{p}^{*}tan\theta)+W$
Design Length (ft)	40.0			
Design Width (ft)	24.8			
Riprap Depth (in)	36			Depth=2(d ₅₀)
Type II Bedding Depth (in)*	8			*Not used if Soil Riprap
Cutoff Wall	Yes			
Cutoff Wall Depth (ft)	44.0			Depth of Riprap and Base
Cutoff Wall Width (ft)	8.3			

Note: No Type II Base to be used if Soil Riprap is specified within the plans

* For use when the flow in the culvert is supercritical (and less than full).

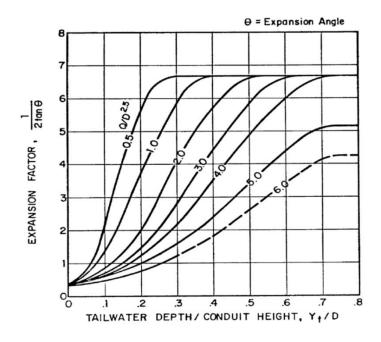


Figure 9-35. Expansion factor for circular conduits

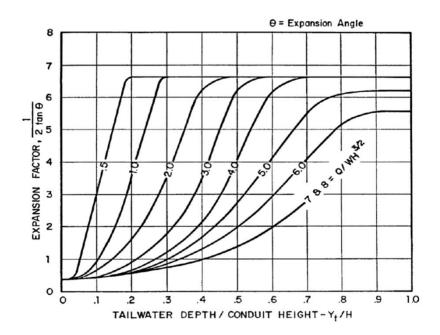
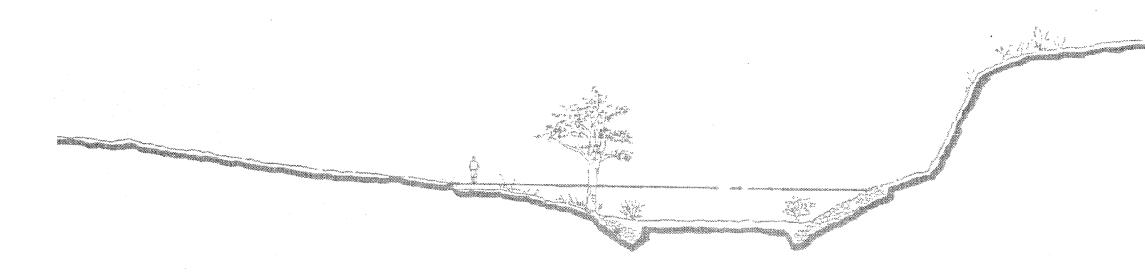


Figure 9-36. Expansion factor for rectangular conduits


Appendix D Reference Material

SAND CREEK DRAINAGE BASIN PLANNING STUDY

PRELIMINARY DESIGN REPORT

CITY OF COLORADO SPRINGS, EL PASO COUNTY, COLORADO

PREPARED FOR:

City of Colorado Springs Department of Comprehensive Planning, Development and Finance Engineering Division 30 S. Nevada Colorado Springs, Colorado 80903

PREPARED BY:

Kiowa Engineering Corporation 1011 North Weber Colorado Springs, CO 80903

STUDY AREA DESCRIPTION II.

The Sand Creek drainage basin is a left-bank tributary to the Fountain Creek lying in the west-central portions of El Paso County. Sand Creek's drainage area at Fountain Creek is approximately 54 square miles of which approximately 18.8 square miles are inside the City of Colorado Springs corporate limits. The basin is divided into five major sub-basins, the Sand Creek mainstem, the East Fork Sand Creek, the Central Tributary to East Fork, the West Fork, and the East Fork Subtributary. Figure II-1 shows the location of the Sand Creek basin.

Basin Description

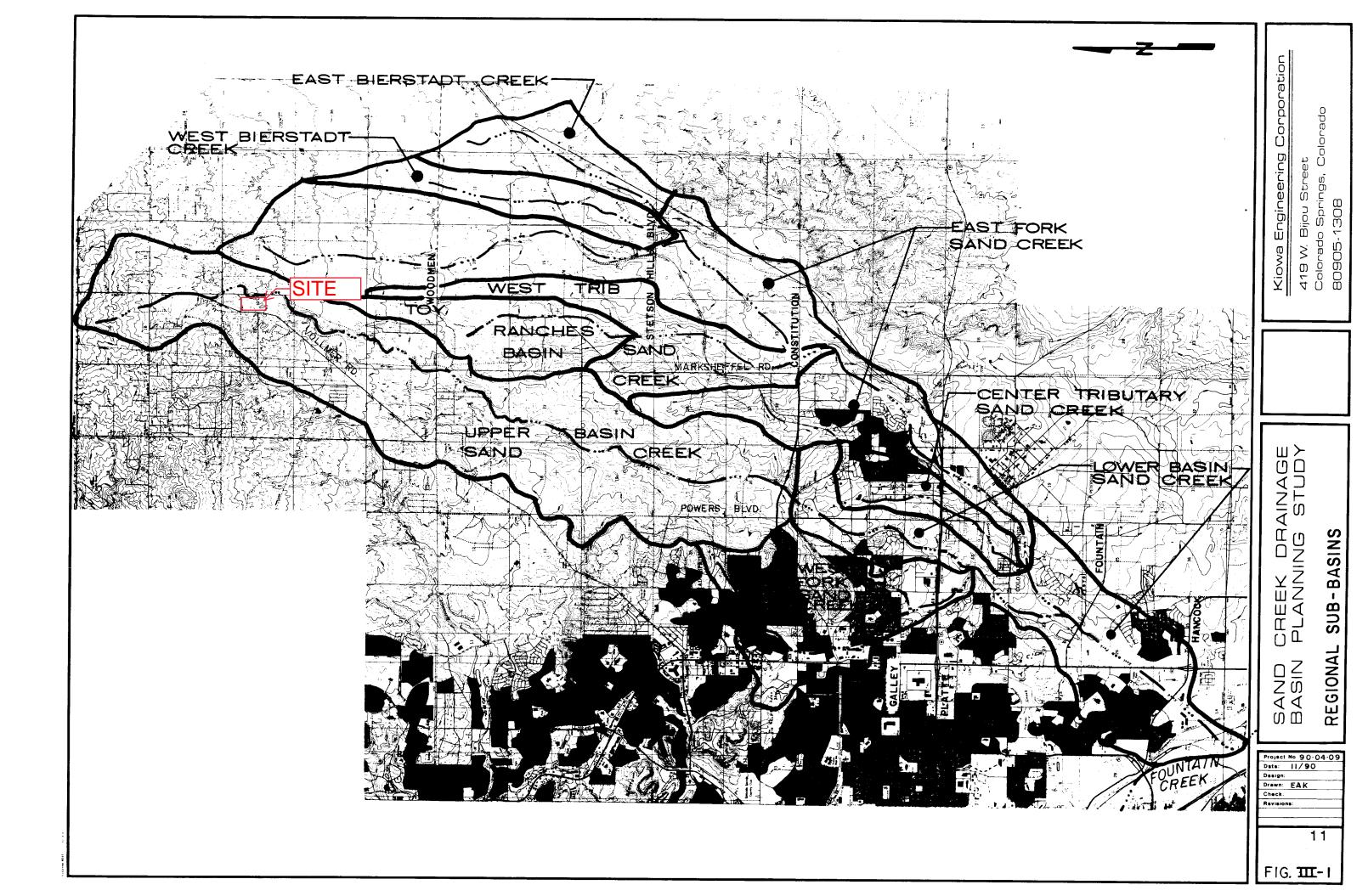
The Sand Creek basin covers a total of 54 square miles in unincorporated El Paso County and Colorado Springs, Colorado. Of this total, approximately 28 square miles is encompassed by the Sand Creek basin, and 26 square miles for the East Fork Sand Creek basin. The basin trends in generally a south to southwesterly direction, entering the Fountain Creek approximately two miles upstream of the Academy Boulevard bridge over Fountain Creek. Two main tributaries drain the basin, those being the mainstem of Sand Creek and East Fork Sand Creek. Development presence in most evident along the mainstream. At this time, approximately 25 percent of the basin is developed. This alternative evaluation focuses upon the Sand Creek basin only.

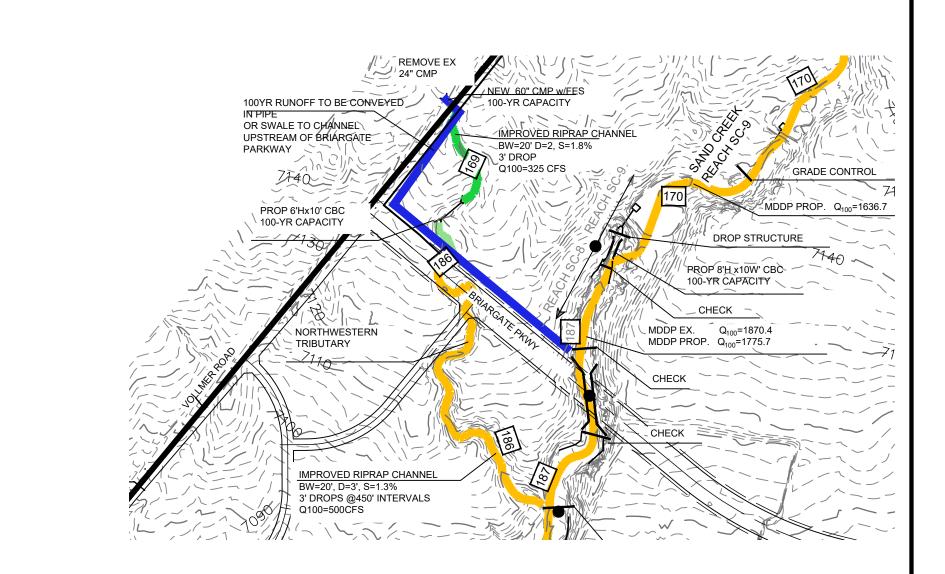
The maximum basin elevation is approximately 7,620 feet above mean sea level, and falls to approximately 5,790 feet at the confluence with Fountain Creek. The headwaters of the basin originate in the conifer covered areas of The Black Forest. The middle eastern portions of the basin are typified by rolling range land with fair to good vegetative cover associated with semi-arid climates.

Climate

This area of El Paso County can be described, in general as high plains, with total precipitation amounts typical of a semi-arid region. Winters are generally cold and dry. Precipitation ranges from 14 to 16 inches per year, with the majority of this precipitation occurring in spring and summer in the form of rainfall. Thunderstorms are common during the summer months, and are typified by quick-moving low pressure cells which draw moisture from the Gulf of Mexico into the region. Average temperatures range from about 30°F in the winter to 75° in the summer. The relative humidity ranges from about 25 percent in the summer to 45 percent in the winter.

Soils and Geology

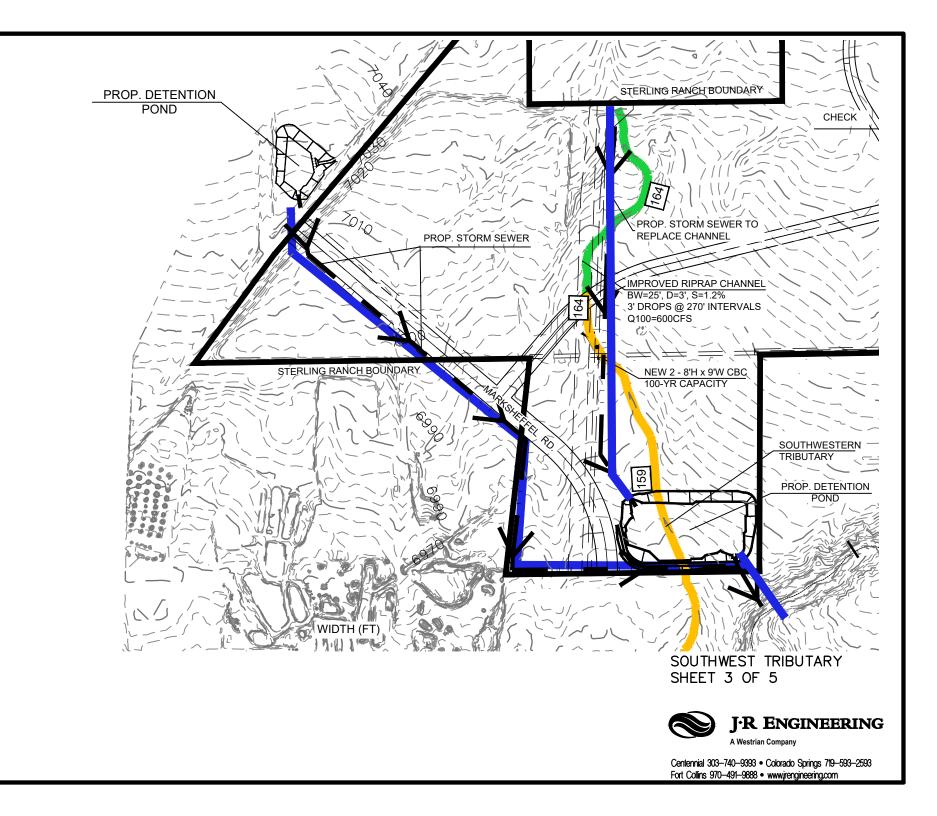

Soils within the Sand Creek basin vary between soil types A through D, as identified by the U.S. Department of Agriculture, Soil Conservation Service. The predominant soil groupings are in the Truckton and Bresser soil associations. The soils consist of deep, well drained soils that formed in alluvium and residium, derived from sedimentary rock. The soils have high to moderate infiltration rates, and are extremely susceptible to wind and water erosion where poor vegetation cover exists. In undeveloped areas, the predominance of Type A and B soils give this basin a lower runoff per unit area as compared to basins with soils dominated by Types C and D. Presented on Figure II-2 is the Hydrologic Soil distribution map for the Sand Creek basin.


Property Ownership and Impervious Land Densities

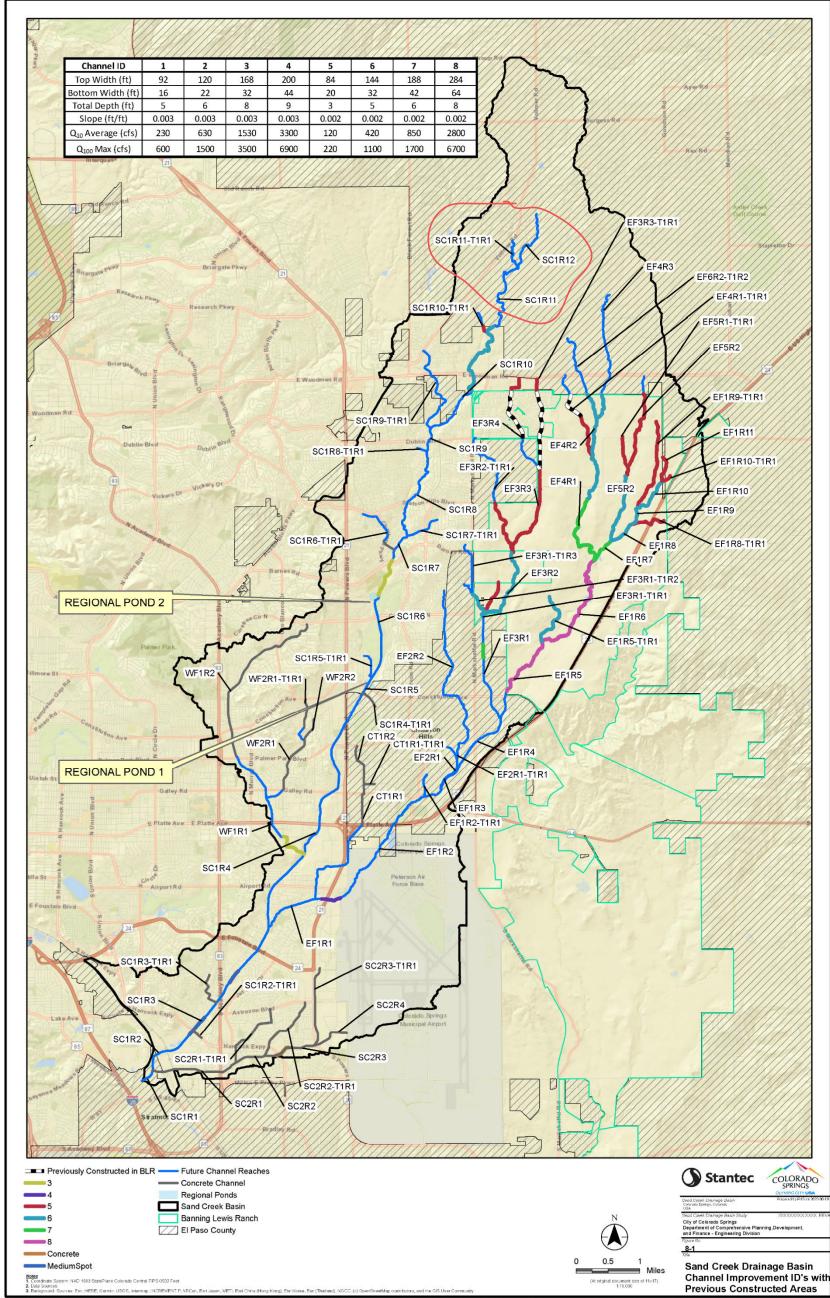
Property ownership along the major drainageway within the Sand Creek basin vary from public to private. Along the developed reaches, drainage right-of-ways and greenbelts have been dedicated during the development of the adjacent residential and commercial land. Where development has not occurred, the drainageways remain under private ownership with no delineated drainage right-of-way or easements. There are several public parks which abut the mainstem of Sand Creek. Roadway and utility easements abutting or crossing the major drainageways occur most frequently in the developed portions of the basin.

Land use information for the existing and future conditions were reviewed as part of the planning effort. This information is used in the hydrologic analysis to predict runoff rates and volumes for the purposes of facility evaluation. The identification of land uses abutting the drainageways is also useful in the identification of feasible plans for stabilization and aesthetic treatment of the creek. Presented on Figure II-3 is the proposed land use map used in the evaluation of impervious land densities discussed in the hydrologic section of this report. Figure II-3 is not intended to reflect the future zoning or land use policies of the City or the County.

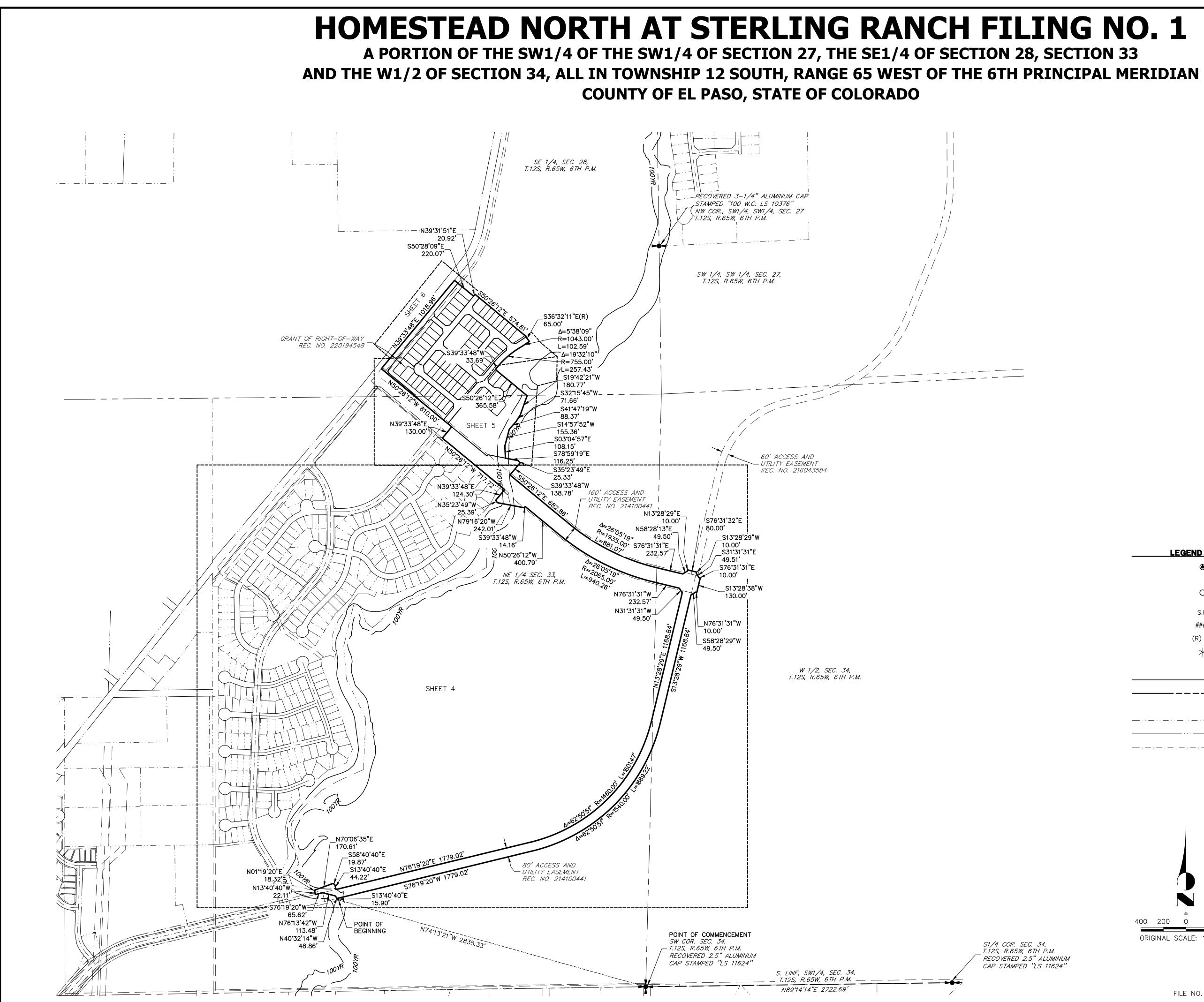
The land use information within the Banning-Lewis Ranch property was obtained from Aries Properties during the time the draft East Fork Sand Creek Drainage Basin Planning Study was being prepared. The land use information was again reviewed with the City of Colorado Springs Department of Planning and was found to be appropriate for use in the estimation of hydrology for the East Fork Basin. The location of future arterial streets and roadways within



NORTHWESTERN TRIBUTARY SHEET 1 OF 5



Centennial 303-740-9393 • Colorado Springs 719-593-2593 Fort Collins 970-491-9888 • www.jrengineering.com


SAND CREEK – SAND CREEK DRAINAGE BASIN PLANNING STUDY

Fee Development *For Information Only

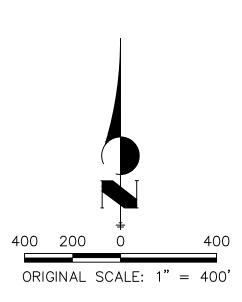
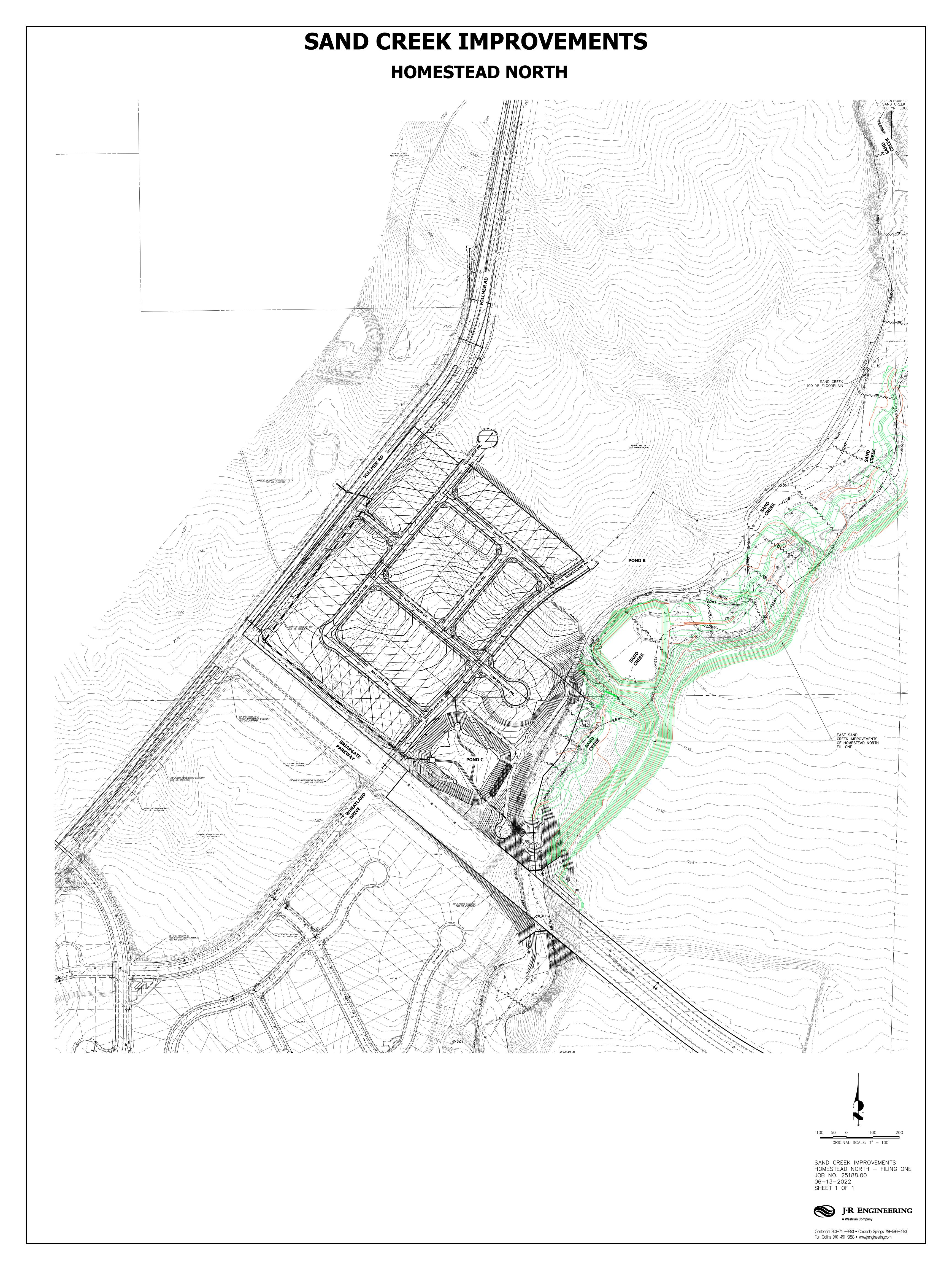
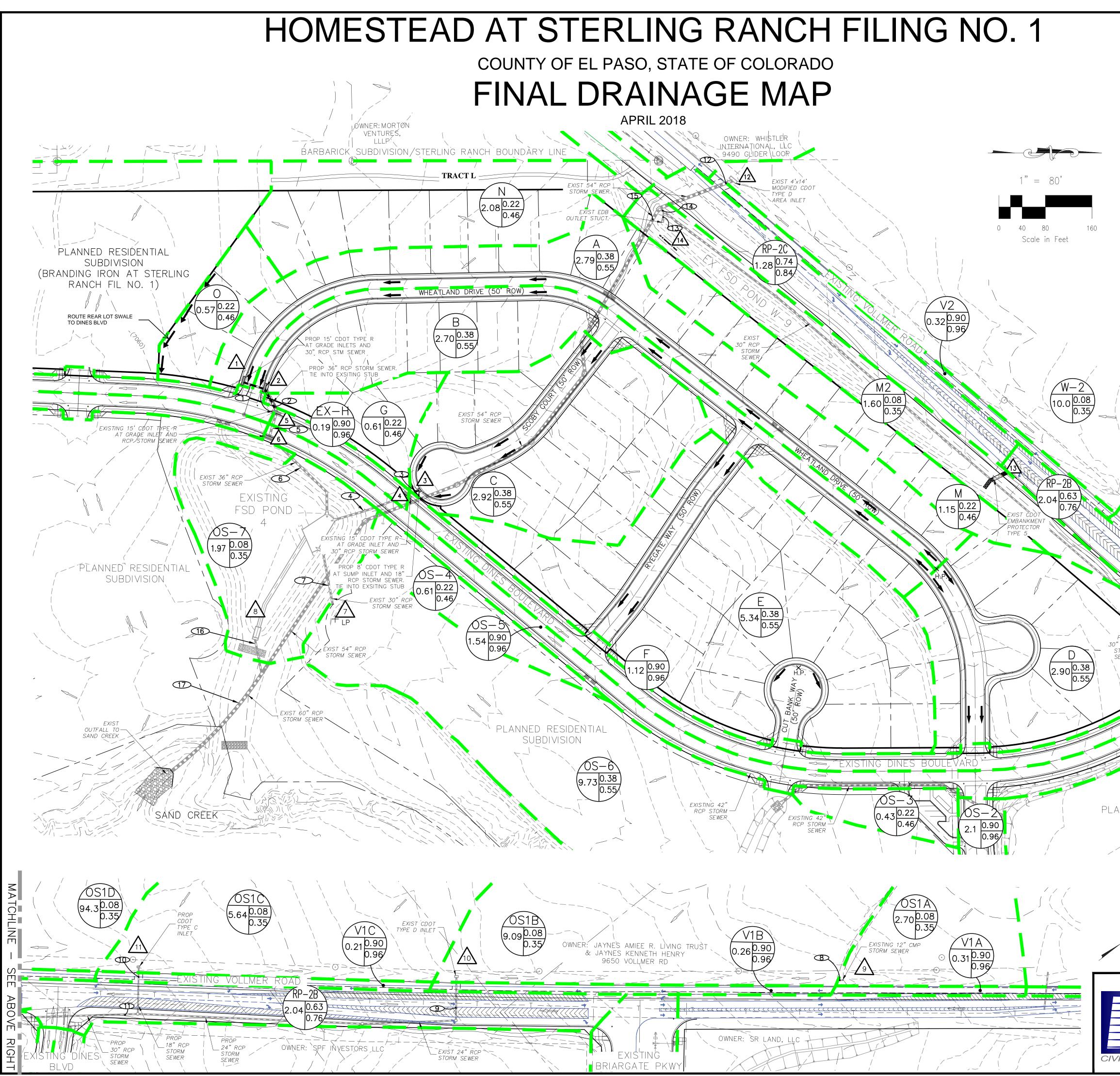

Disclaimer: This document has been prepared based on information provided by others as cited in the Notes section. Stantec has not verified the accuracy and/or completeness of this information and shall not be responsible for any errors or omissions which may be incorporated herein as a result. Stantec assumes no responsibility

Figure 8-1. Sand Creek Drainage Basin Chanel Improvement IDs with Previous Constructed Areas

LEGEND	
۲	RECOVERED 1–1/4" YELLOW PLASTIC CAP STAMPED "LS 10376" AT GRADE
0	SET 18" #5 REBAR W/ 1–1/2" ALUMINUM CAP STAMPED "JR ENG LS 38252" AT GRADE
S.F.	SQUARE FEET
####	ADDRESS
(R) RB	RADIAL BEARING
*	NOT A PART OF THIS SUBDIVISION
	PROPOSED SUBDIVISION BOUNDARY
	- PROPOSED LOT LINE
	- PROPOSED RIGHT-OF-WAY LINE
	PROPOSED CENTERLINE
	- EXISTING PROPERTY LINE
	- EXISTING RIGHT-OF-WAY LINE
	- EXISTING CENTERLINE

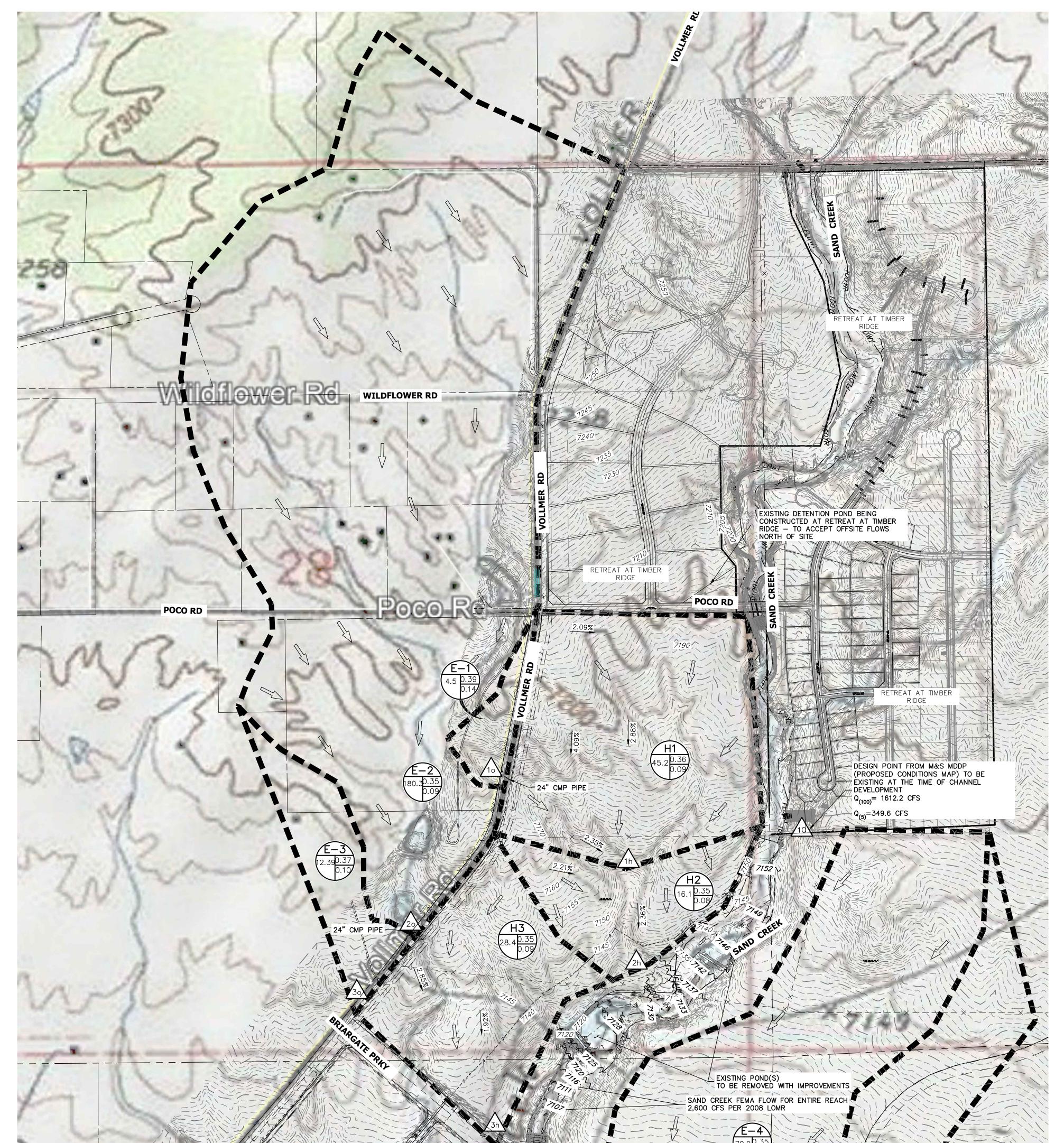

JOB NO. 25188.00 AUGUST 23, 2022 SHEET 3 OF 6

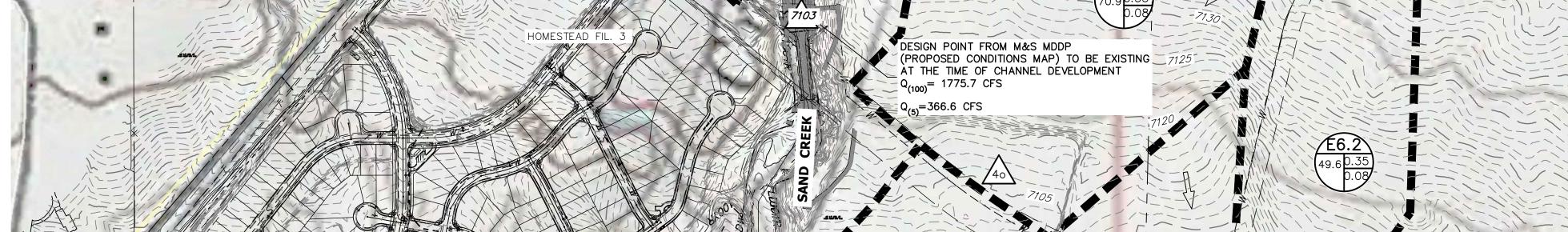


J·R ENGINEERING A Westrian Company

FILE NO. SF-2213

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970-491-9888 • www.jrengineering.com



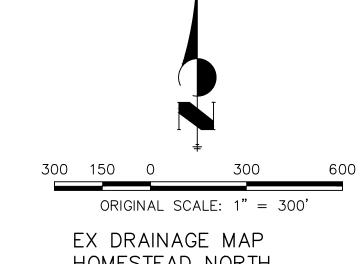

				BASIN		RY	
	<u>LEGE</u>	<u>ND</u>		BASIN	AREA (ACRES)	Q ₅ Q ₁₀₀	
BASIN	I DESIGNATION 🔨			052	2.10	8.9 15.9	
		Z _ C5		0\$3 0\$4	0.43	0.4 1.3 0.5 1.9	
		25 .25		0\$5	1.54	5.6 10.0	
	ACRES	.35 		0S6 0S7	9.73	12.530.40.75.3	
		PIPE RUN REFERENCE		A	2.79	3.6 8.7	
		LABEL		B C	2.70	3.68.64.210.1	
	\int_{6}	SURFACE DESIGN POINT		D	2.90	4.3 10.4	
4				E F	5.34	8.219.94.37.7	
		BASIN BOUNDARY		G	0.61	0.5 1.9	
_	- (6920)— —	EXISTING CONTOUR		EX-H M	0.19	0.9 1.6 1.0 3.6	
				M2	1.60	0.4 3.2	
	6920 ——	PROP CONTOUR		N O	2.08 0.57	1.65.70.51.8	
60		FILING NO. 4 BOUNDARY		W-2	10.00	2.7 19.7	
		EXISTING STORM SEWER PIPE		OS1 HISTORIC SUB-BASIN OS1		18.9136.80.75.3	
		EXISTING STORM SEWER PIPE		SUB-BASIN OS1	+ +	2.4 17.8	
5		CROSSPAN		SUB-BASIN OS1 SUB-BASIN OS1	+ +	1.511.116.3119.5	
		INLET		V1A V1B	0.31	1.42.61.22.2	
		EXISTING FLOW DIRECTION ARROW		V1C	0.28	1.2 2.2 1.0 1.7	
	—	FLOW DIRECTION		V1D V2	0.13	0.6 1.1 1.5 2.7	
		FLARED END SECTION		RP-2B	2.04	4.9 9.9	
	₩ H.P.			RP-2C	1.28	4.3 8.2	
,	×	HIGH POINT]
/	L.P. X	LOW POINT	DESIGN	DESIGN PO	INT SUMM		
À Í			POINT Q ₅	Q ₁₀₀ BA	SIN		RUCTURE
				8.7 A 8.6 E			-GRADE INLET -GRADE INLET
			3 4.2	10.1 (<u>,</u>	8' 5	SUMP INLET
				36.7 D, 19.7 G, EX-H, F	E, F _OWBY DP4		-GRADE INLET T-GRADE INLET
				26.7 OS2, OS3, 30.5 OS			T-GRADE INLET
OWNER.				05.3 OS7, PR4,			DS POND 4
E SAL		× /		7.0 OS1A,			CMP CULVERT 7' CDOT TYPE D
A NES	```\	× ′		26.3 OS1B, V 12.3 OS1C,			INLET .9' CDOT TYPE C
SO TENES				33.7 OS1D, V1D			INLET MOD CDOT TYPE
CALL CALL	AY KILIN		13 2.8	5.6 RP-	-2B	EX CDO	D INLET T EMBANKMENT CTOR TYPE 5
	POENPL P		14 8.9	21.2 M, M2, RF	2C, DP13		D POND W-9
	, ,	V1D		ST	ORM SEWE	R SUMM	ARY
		0.130.90	/				
		0.96 OS1D		PIPE RUN	Q ₅ Q ₁₀₀ P	IPE SIZE	CONTRIBUTING PIPES/DP'S
		94.30.08		1	3.6 8.7	30" RCP	DP1
		0.35		2 3		36" RCP 18" RCP	DP2, PR1 DP3
						30" RCP 36" RCP	DP4, PR3 DP5, PR2
PROP 30" RCP			Å.			36" RCP	DP6, PR5
STORM			NO UN			24" RCP 12" CMP	DP7 DP9
				9	4.8 26.3	24" RCP	DP10
						18" RCP 30" RCP	DP11 PR5, PR6
			1			54" RCP	DP12 OUTFLOW EDB
		18" RCP STORM				18" RCP 30" RCP	POND W-9 PR7, PR9
		PROP 18" RCP STORM SEWER I 'PROP J		15	23.8 164.1	54" RCP	PR8, PR10
		PROP / 24" RCP				30" RCP 60" RCP	OUTFLOW EDB POND 4 PR11, PR12
	/ /	24" RCP			_~.0 _200.0		· ····, · ···/∠
	/		ED POND 4 FS	SD RE			-9 FSD
	/		BASIN DATA			SIN DA	
			SURFACE EL = 7050 E=0.046 AC-FT		WATER SUR VOLUME=0.		
PLANNED COMME	RCIAL /	EURV WAT	ER SURFACE EL = 70 JME=1.510 AC-FT)58.46 EUR		URFACE EI	_ = 7087.99
		100-YR W	ATER SURFACE EL=70 CREST EL=7060.0	059.98 100-		SURFACE	EL=7088.84
		TOP OF EN	MBANKMENT EL=7063	.0 TOP	OF EMBAN - YR VOLUM	KMENT EL:	=7090.5
	,	100-YR IN	DLUME = 2.915 AC - FT FLOW = 105.3 CFS	100-	-YR INFLOW	/ = 21.2 (CFS
		100-YR R	$ELEASE = 36.8 \ CFS$	100-	-YR RELEAS	SE = 8.7	CFS
,	, 1)	00'					FOR LOCATING
		= 80'					& MARKING GAS,
							ELECTRIC, WATER &
						Y COY	/ TELEPHONE LINES
	0 40	80 160					LITY INFORMATION ORE YOU DIG
۶	Sc	ale in Feet)-922-1987
		20 BOULDER CRESCENT, SUITE 110	HOMESTEAD	AI JIEKL	ING KA		IL INU, I
		COLORADO SPRINGS, CO 80903 PHONE: 719.955.5485		FINAL DRAI	NAGE	MAP	
			PROJECT NO. 09-005				
			DESIGNED BY: CMN	HORIZONTAL:	DAIE: 4/	/12/2018	
CIVIL CONSULTA	ANITS INC		DRAWN BY: CMN	1 1"=80"	SHEET	1 OF 1	FDM01
GIVIL CONSULTA	JIVI J, IIVC	<i>*</i> -	CHECKED BY: VAS	N/A		·	

Appendix E Drainage Maps

EXISTING DRAINAGE MAP HOMESTEAD NORTH

SEE SHEET 2

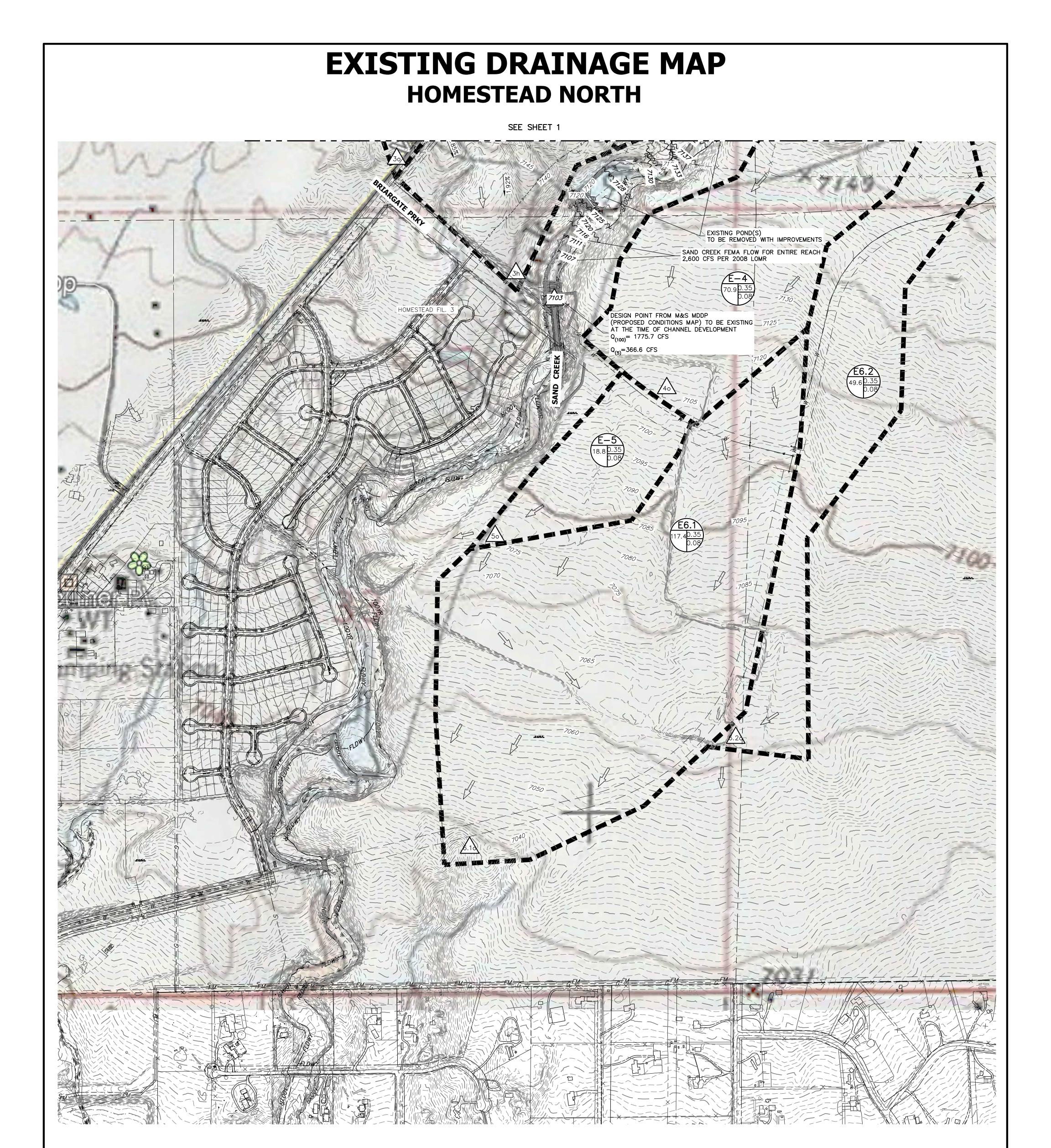
BASIN SUMMARY TABLE


Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C ₅	C ₁₀₀	(min)	(cfs)	(cfs)
E-1	4.50	9%	0.14	0.39	48.7	1.1	5.2
E-2	180.30	3%	0.09	0.35	47.4	28.1	192.9
E-3	12.39	4%	0.10	0.37	46.9	2.2	13.7
E-4	70.90	2%	0.08	0.35	49.0	9.9	72.7
E-5	18.80	2%	0.08	0.35	34.9	3.4	24.9
E6.1	117.40	2%	0.08	0.35	48.1	16.6	122.2
E6.2	49.61	2%	0.08	0.35	44.2	7.5	55.4
H1	45.20	3%	0.09	0.36	34.7	8.9	61.0
H2	16.10	2%	0.08	0.35	25.1	3.5	26.0
H3	28.40	3%	0.09	0.35	31.3	5.9	40.8

DESIGN POINT Q5 Q100 DP Total Total 1h 8.0 52.4 69.0 2h 10.2 223.2 3h 32.5 1.1 5.2 10 192.9 28.1 20 2.2 13.7 30 72.7 4o 9.9 12.5 92.0 50 7.5 55.4 6.20 6.1o 35.9 263.2

LEGEND	
BASIN ID A: BASIN LABEL B: AREA C: C –100 YR D: C–5 YR	
DESIGN POINT	<u>/</u> #
EXISTING FLOW DIRECTION	
BASIN DRAINAGE AREA	
EXISTING STORM SEWER	
EXISTING PROPERTY LINE ROW EXISTING FL EXISTING SIDEWALK EXISTING	
DRAINAGE ACCESS & MAINTEI EASEMENT	NANCE

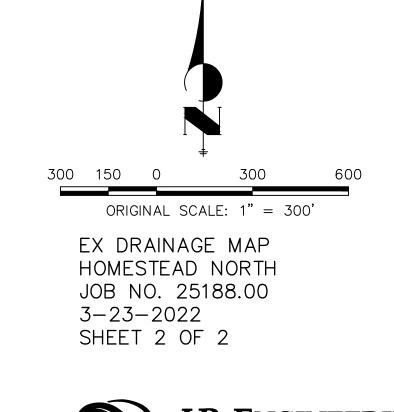
EXISTING



HOMESTEAD NORTH JOB NO. 25188.00 1-4-2022 SHEET 1 OF 2

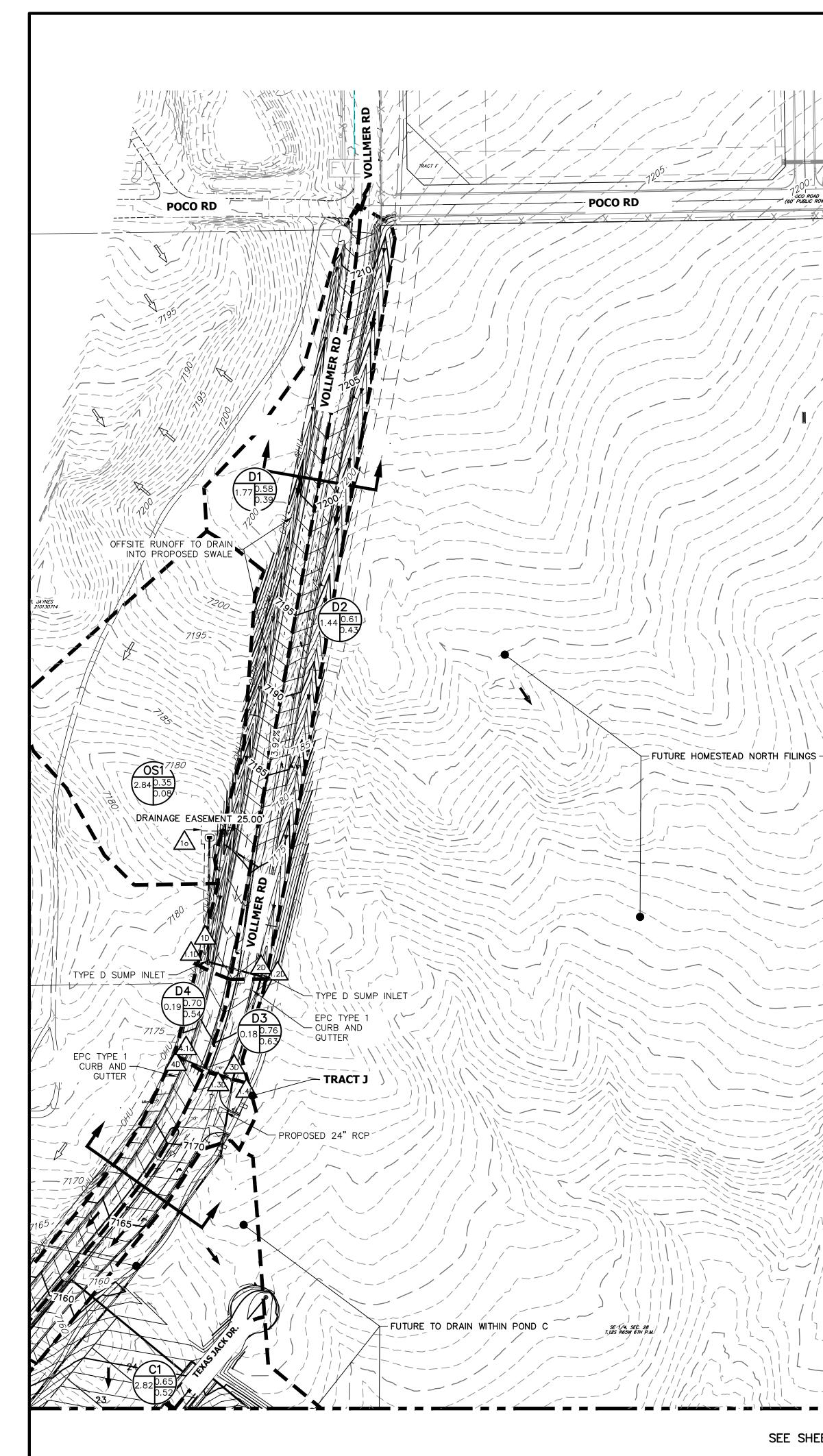
Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

BASIN SUMMARY TABLE

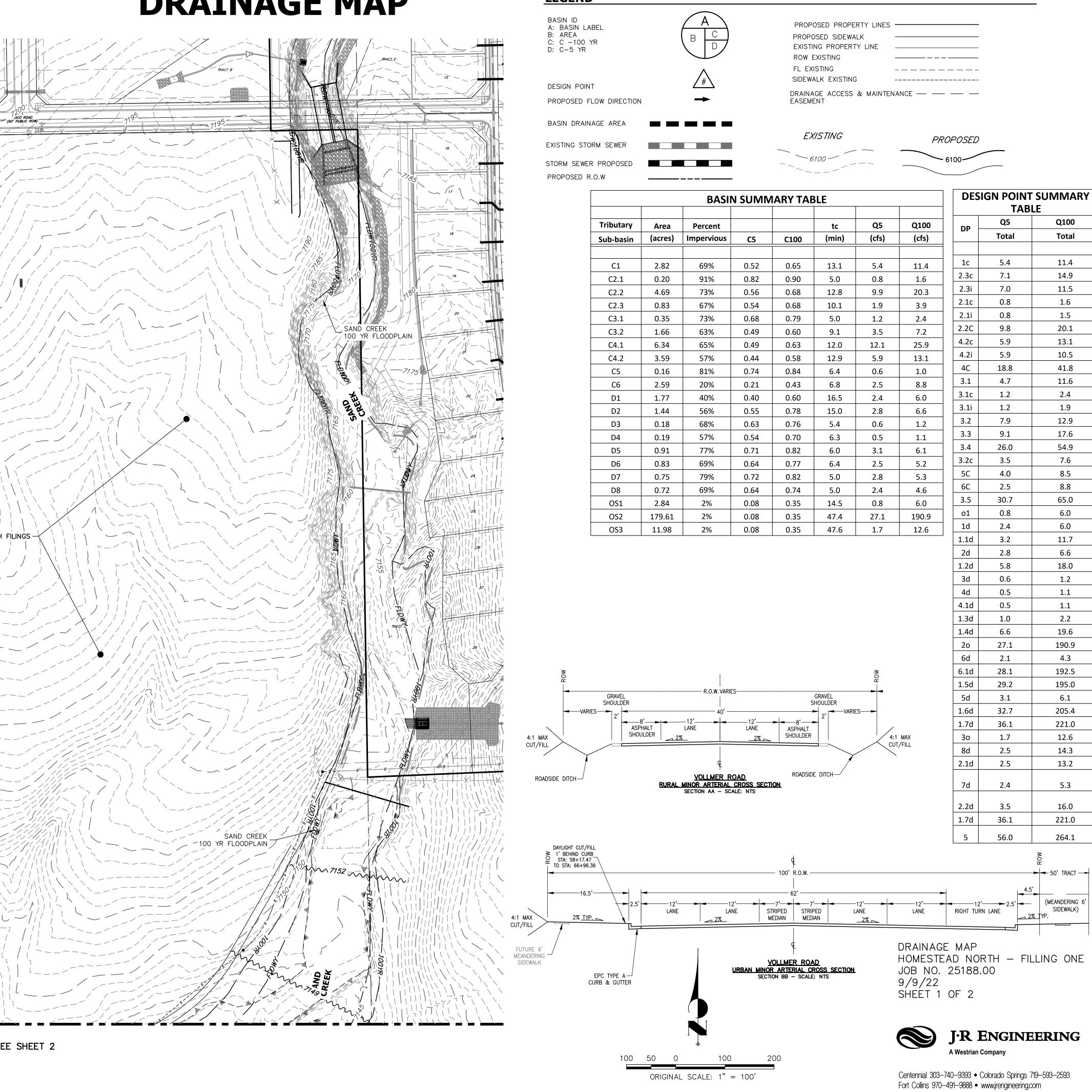

Tributary	Area	Percent			t _c	Q₅	Q ₁₀₀
Sub-basin	(acres)	Impervious	C 5	C ₁₀₀	(min)	(cfs)	(cfs)
E-1	4.50	9%	0.14	0.39	48.7	1.1	5.2
E-2	180.30	3%	0.09	0.35	47.4	28.1	192.9
E-3	12.39	4%	0.10	0.37	46.9	2.2	13.7
E-4	70.90	2%	0.08	0.35	49.0	9.9	72.7
E-5	18.80	2%	0.08	0.35	34.9	3.4	24.9
E6.1	117.40	2%	0.08	0.35	48.1	16.6	122.2
E6.2	49.61	2%	0.08	0.35	44.2	7.5	55.4
H1	45.20	3%	0.09	0.36	34.7	8.9	61.0
H2	16.10	2%	0.08	0.35	25.1	3.5	26.0
H3	28.40	3%	0.09	0.35	31.3	5.9	40.8

DES	IGN PO	INT
	Q5	Q100
DP	Total	Total
1h	8.0	52.4
2h	10.2	69.0
3h	32.5	223.2
1o	1.1	5.2
20	28.1	192.9
30	2.2	13.7
4o	9.9	72.7
50	12.5	92.0
6.2o	7.5	55.4
6.1o	35.9	263.2

BASIN ID A: BASIN LABEL B: AREA C: C -100 YR D: C-5 YR	
DESIGN POINT	<u>/</u> #
EXISTING FLOW DIRECTION	
BASIN DRAINAGE AREA	
EXISTING STORM SEWER	
EXISTING PROPERTY LINE ROW EXISTING FL EXISTING SIDEWALK EXISTING	
DRAINAGE ACCESS & MAINTENANCE EASEMENT	
EXISTING	


LEGEND

- 6100 -

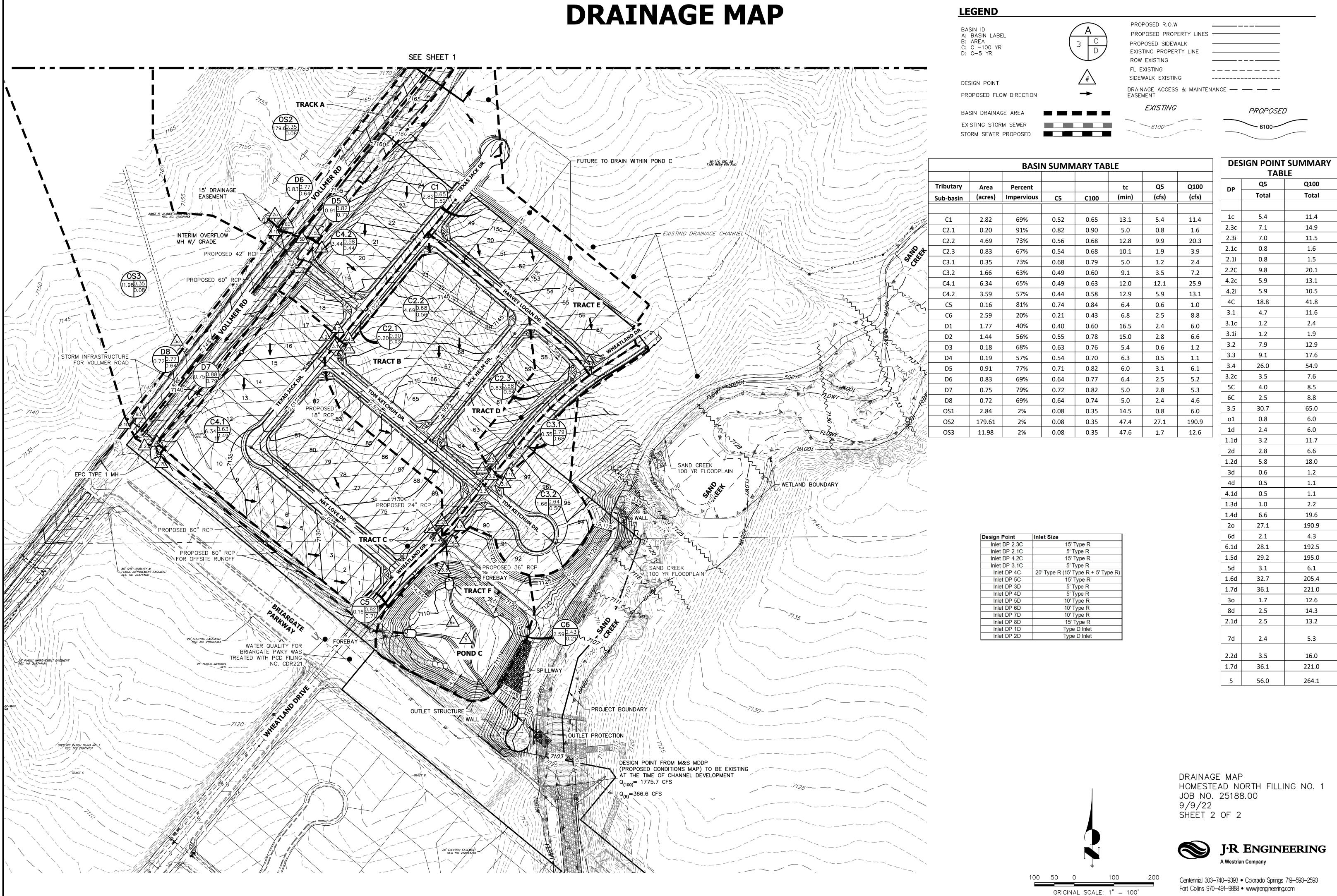


Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com

DRAINAGE MAP

LEGEND

SEE SHEET 2

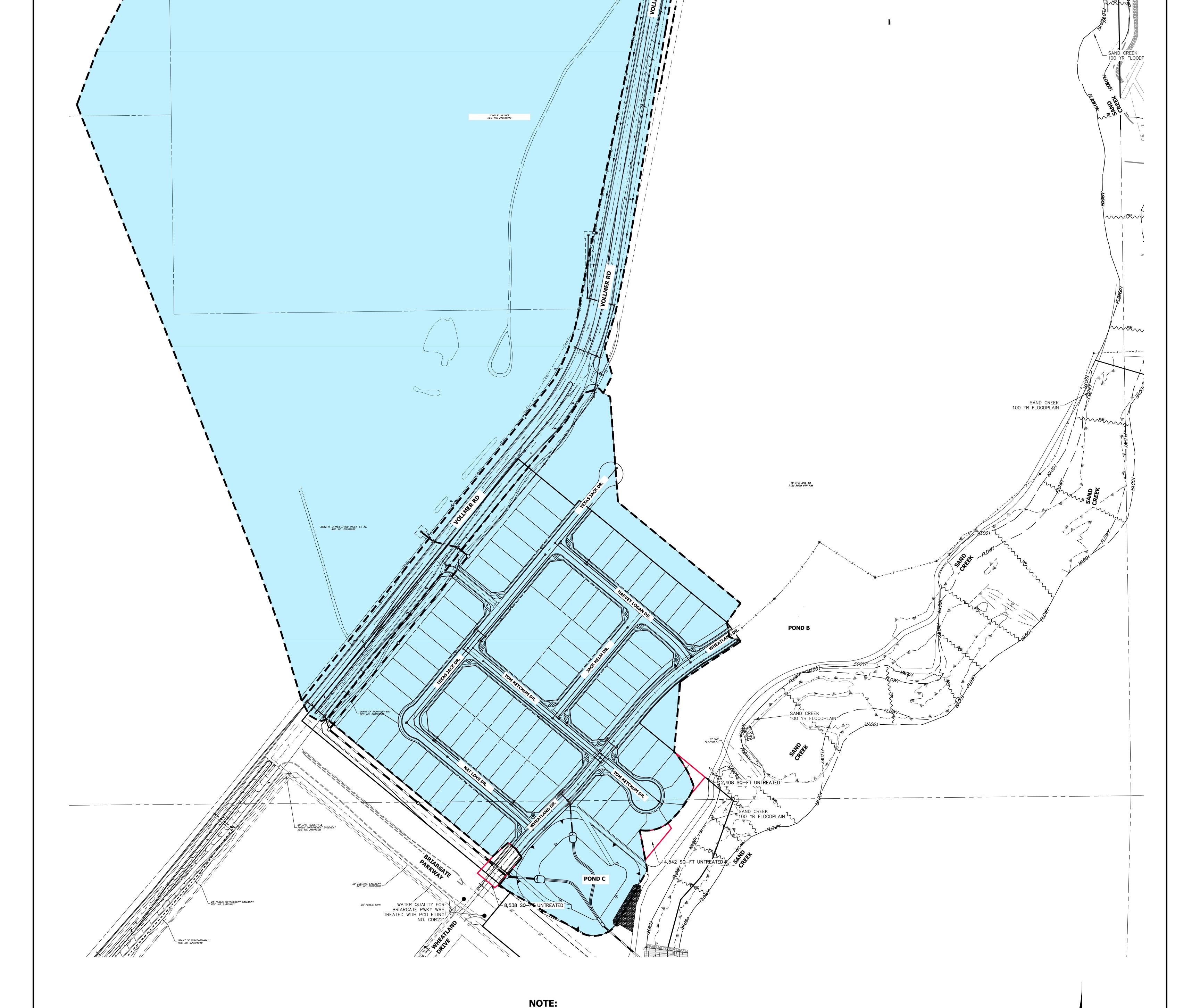

BASIN SUIVIVIARY TABLE								
Tributary	Area	Percent			tc	Q5	Q100	
Sub-basin	(acres)	Impervious	C5	C100	(min)	(cfs)	(cfs)	
C1	2.82	69%	0.52	0.65	13.1	5.4	11.4	
C2.1	0.20	91%	0.82	0.90	5.0	0.8	1.6	
C2.2	4.69	73%	0.56	0.68	12.8	9.9	20.3	
C2.3	0.83	67%	0.54	0.68	10.1	1.9	3.9	
C3.1	0.35	73%	0.68	0.79	5.0	1.2	2.4	
C3.2	1.66	63%	0.49	0.60	9.1	3.5	7.2	
C4.1	6.34	65%	0.49	0.63	12.0	12.1	25.9	
C4.2	3.59	57%	0.44	0.58	12.9	5.9	13.1	
C5	0.16	81%	0.74	0.84	6.4	0.6	1.0	
C6	2.59	20%	0.21	0.43	6.8	2.5	8.8	
D1	1.77	40%	0.40	0.60	16.5	2.4	6.0	
D2	1.44	56%	0.55	0.78	15.0	2.8	6.6	
D3	0.18	68%	0.63	0.76	5.4	0.6	1.2	
D4	0.19	57%	0.54	0.70	6.3	0.5	1.1	
D5	0.91	77%	0.71	0.82	6.0	3.1	6.1	
D6	0.83	69%	0.64	0.77	6.4	2.5	5.2	
D7	0.75	79%	0.72	0.82	5.0	2.8	5.3	
D8	0.72	69%	0.64	0.74	5.0	2.4	4.6	
OS1	2.84	2%	0.08	0.35	14.5	0.8	6.0	
OS2	179.61	2%	0.08	0.35	47.4	27.1	190.9	
OS3	11.98	2%	0.08	0.35	47.6	1.7	12.6	

DP -	Q5	Q100	
Dr	Total	Total	
1c	5.4	11.4	
2.3c	7.1	14.9	
2.3i	7.0	11.5	
2.1c	0.8	1.6	
2.1i	0.8	1.5	
2.2C	9.8	20.1	
4.2c	5.9	13.1	
4.2i	5.9	10.5	
4C	18.8	41.8	
3.1	4.7	11.6	
3.1c	1.2	2.4	
3.1i	1.2	1.9	
3.2	7.9	12.9	
3.3	9.1	17.6	
3.4	26.0	54.9	
3.2c	3.5	7.6	
5C	4.0	8.5	
6C	2.5	8.8	
3.5	30.7	65.0	
o1	0.8	6.0	
1d	2.4	6.0	
1.1d	3.2	11.7	
2d	2.8	6.6	
1.2d	5.8	18.0	
3d	0.6	1.2	
4d	0.5	1.1	
4.1d	0.5	1.1	
1.3d	1.0	2.2	
1.4d	6.6	19.6	
20	27.1	190.9	
6d	2.1	4.3	
6.1d	28.1	192.5	
1.5d	29.2	195.0	
5d	3.1	6.1	
1.6d	32.7	205.4	
1.7d	36.1	221.0	
30	1.7	12.6	
8d	2.5	14.3	
2.1d	2.5	13.2	
7d	2.4	5.3	
2.2d	3.5	16.0	
1.7d	36.1	221.0	
5	56.0	264.1	
I		•	

🗕 50' TRACT —

(MEANDERING 6'

SIDEWALK)



A 110 0	Democrat			•	OF	Q100			
						-			
(acres)	Impervious	C5	C100	(min)	(cfs)	(cfs)			
2.82	69%	0.52	0.65	13.1	5.4	11.4			
0.20	91%	0.82	0.90	5.0	0.8	1.6			
4.69	73%	0.56	0.68	12.8	9.9	20.3			
0.83	67%	0.54	0.68	10.1	1.9	3.9			
0.35	73%	0.68	0.79	5.0	1.2	2.4			
1.66	63%	0.49	0.60	9.1	3.5	7.2			
6.34	65%	0.49	0.63	12.0	12.1	25.9			
3.59	57%	0.44	0.58	12.9	5.9	13.1			
0.16	81%	0.74	0.84	6.4	0.6	1.0			
2.59	20%	0.21	0.43	6.8	2.5	8.8			
1.77	40%	0.40	0.60	16.5	2.4	6.0			
1.44	56%	0.55	0.78	15.0	2.8	6.6			
0.18	68%	0.63	0.76	5.4	0.6	1.2			
0.19	57%	0.54	0.70	6.3	0.5	1.1			
0.91	77%	0.71	0.82	6.0	3.1	6.1			
0.83	69%	0.64	0.77	6.4	2.5	5.2			
0.75	79%	0.72	0.82	5.0	2.8	5.3			
0.72	69%	0.64	0.74	5.0	2.4	4.6			
2.84	2%	0.08	0.35	14.5	0.8	6.0			
179.61	2%	0.08	0.35	47.4	27.1	190.9			
11.98	2%	0.08	0.35	47.6	1.7	12.6			
	0.20 4.69 0.83 0.35 1.66 6.34 3.59 0.16 2.59 1.77 1.44 0.18 0.19 0.91 0.91 0.83 0.75 0.72 2.84 179.61	AreaPercent(acres)Impervious2.8269%0.2091%4.6973%0.8367%0.3573%1.6663%6.3465%3.5957%0.1681%2.5920%1.7740%1.4456%0.1868%0.1957%0.9177%0.8369%0.7579%0.7269%2.842%179.612%	Area Percent (acres) Impervious C5 2.82 69% 0.52 0.20 91% 0.82 4.69 73% 0.56 0.83 67% 0.54 0.35 73% 0.68 1.66 63% 0.49 6.34 65% 0.49 3.59 57% 0.44 0.16 81% 0.74 2.59 20% 0.21 1.77 40% 0.40 1.44 56% 0.55 0.18 68% 0.63 0.19 57% 0.54 0.19 57% 0.40 1.43 56% 0.55 0.18 68% 0.63 0.19 57% 0.54 0.91 77% 0.71 0.83 69% 0.64 0.75 79% 0.72 0.72 69% 0.64 2.84	Area Percent C5 C100 (acres) Impervious C5 C100 2.82 69% 0.52 0.65 0.20 91% 0.82 0.90 4.69 73% 0.56 0.68 0.83 67% 0.54 0.68 0.35 73% 0.68 0.79 1.66 63% 0.49 0.60 6.34 65% 0.49 0.63 3.59 57% 0.44 0.58 0.16 81% 0.74 0.84 2.59 20% 0.21 0.43 1.77 40% 0.40 0.60 1.44 56% 0.55 0.78 0.18 68% 0.63 0.76 0.19 57% 0.54 0.70 0.91 77% 0.71 0.82 0.83 69% 0.64 0.77 0.75 79% 0.72 0.82 <td< td=""><td>Area Percent Impervious C5 C100 (min) (acres) Impervious C5 C100 (min) 2.82 69% 0.52 0.65 13.1 0.20 91% 0.82 0.90 5.0 4.69 73% 0.56 0.68 12.8 0.83 67% 0.54 0.68 10.1 0.35 73% 0.68 0.79 5.0 1.66 63% 0.49 0.60 9.1 6.34 65% 0.49 0.63 12.9 0.16 81% 0.74 0.84 6.4 2.59 20% 0.21 0.43 6.8 1.77 40% 0.40 0.60 16.5 1.44 56% 0.55 0.78 15.0 0.18 68% 0.63 0.76 5.4 0.19 57% 0.54 0.70 6.3 0.91 77% 0.71 0.82<</td><td>Area Percent Impervious C5 C100 (min) (cfs) (acres) Impervious C5 C100 (min) (cfs) 2.82 69% 0.52 0.65 13.1 5.4 0.20 91% 0.82 0.90 5.0 0.8 4.69 73% 0.56 0.68 12.8 9.9 0.83 67% 0.54 0.68 10.1 1.9 0.35 73% 0.68 0.79 5.0 1.2 1.66 63% 0.49 0.60 9.1 3.5 6.34 65% 0.49 0.63 12.0 12.1 3.59 57% 0.44 0.58 12.9 5.9 0.16 81% 0.74 0.84 6.4 0.6 2.59 20% 0.21 0.43 6.8 2.5 1.77 40% 0.40 0.60 16.5 2.4 1.44 56% 0.5</td></td<>	Area Percent Impervious C5 C100 (min) (acres) Impervious C5 C100 (min) 2.82 69% 0.52 0.65 13.1 0.20 91% 0.82 0.90 5.0 4.69 73% 0.56 0.68 12.8 0.83 67% 0.54 0.68 10.1 0.35 73% 0.68 0.79 5.0 1.66 63% 0.49 0.60 9.1 6.34 65% 0.49 0.63 12.9 0.16 81% 0.74 0.84 6.4 2.59 20% 0.21 0.43 6.8 1.77 40% 0.40 0.60 16.5 1.44 56% 0.55 0.78 15.0 0.18 68% 0.63 0.76 5.4 0.19 57% 0.54 0.70 6.3 0.91 77% 0.71 0.82<	Area Percent Impervious C5 C100 (min) (cfs) (acres) Impervious C5 C100 (min) (cfs) 2.82 69% 0.52 0.65 13.1 5.4 0.20 91% 0.82 0.90 5.0 0.8 4.69 73% 0.56 0.68 12.8 9.9 0.83 67% 0.54 0.68 10.1 1.9 0.35 73% 0.68 0.79 5.0 1.2 1.66 63% 0.49 0.60 9.1 3.5 6.34 65% 0.49 0.63 12.0 12.1 3.59 57% 0.44 0.58 12.9 5.9 0.16 81% 0.74 0.84 6.4 0.6 2.59 20% 0.21 0.43 6.8 2.5 1.77 40% 0.40 0.60 16.5 2.4 1.44 56% 0.5			

	TAE	T SUMMARY BLE	
DP Q5		Q100	
	Total	Total	
1c	5.4	11.4	
2.3c	7.1	14.9	
2.3i	7.0	11.5	
2.1c	0.8	1.6	
2.1i	0.8	1.5	
2.2C	9.8	20.1	
4.2c	5.9	13.1	
4.2i	5.9	10.5	
4C	18.8	41.8	
3.1	4.7	11.6	
3.1c	1.2	2.4	
3.1i	1.2	1.9	
3.2	7.9	12.9	
3.3	9.1	17.6	
3.4	26.0	54.9	
3.2c	3.5	7.6	
5.20 5C	4.0	8.5	
6C	2.5	8.8	
3.5	30.7	65.0	
01	0.8	6.0	
1d	2.4	6.0	
1.1d	3.2	11.7	
2d	2.8	6.6	
1.2d	5.8	18.0	
3d	0.6	1.2	
4d	0.5	1.1	
4.1d	0.5	1.1	
1.3d	1.0	2.2	
1.4d	6.6	19.6	
20	27.1	190.9	
6d	2.1	4.3	
6.1d	28.1	192.5	
1.5d	29.2	195.0	
5d	3.1	6.1	
1.6d	32.7	205.4	
1.7d	36.1	221.0	
30	1.7	12.6	
8d	2.5	14.3	
2.1d	2.5	13.2	
7d	2.4	5.3	
2.2d	3.5	16.0	
1.7d	36.1	221.0	
5	56.0	264.1	

Design Point	Inlet Size
Inlet DP 2.3C	15' Type R
Inlet DP 2.1C	5' Type R
Inlet DP 4.2C	15' Type R
Inlet DP 3.1C	5' Type R
Inlet DP 4C	20' Type R (15' Type R + 5' Type R)
Inlet DP 5C	15' Type R
Inlet DP 3D	5' Type R
Inlet DP 4D	5' Type R
Inlet DP 5D	10' Type R
Inlet DP 6D	10' Type R
Inlet DP 7D	10' Type R
Inlet DP 8D	15' Type R
Inlet DP 1D	Type D Inlet
Inlet DP 2D	Type D Inlet

WATER QUALITY CAPTURE PLAN HOMESTEAD NORTH

A SEPARATE PLAN FOR STERLING RANCH ROAD AND BRIARGATE PKWY WILL BE PROVIDED IN A THE SEPARATE FDR REQUIRED FOR CONSTRUCTION OF THESE ROADWAYS. A TOTAL OF 15,488 SQ-FT ON SITE IS LEFT UNTREATED. POND C TREATS THE IMPROVEMENTS TO VOLLMER ROAD AND THE OFFSITE TRIBUTARY AREA

POND C 224.4 ACRES, 10.3% IMPERVIOUS

IOO 50 0 100 200 IOO 50 0 100 200 ORIGINAL SCALE: 1" = 100' WQ - POND C HOMESTEAD NORTH - FILING ONE JOB NO. 25188.00 9/9/22 SHEET 1 OF 1

Centennial 303–740–9393 • Colorado Springs 719–593–2593 Fort Collins 970–491–9888 • www.jrengineering.com