FINAL DRAINAGE REPORT ADDENDUM NO. 2 BENT GRASS RESIDENTIAL FILING NO. 1 FOR BENT GRASS EAST COMMERCIAL FILING NO. 3

Prepared for: LAND FIRST INC. 1378 PROMONTORY BLUFF VIEW COLORADO SPRINGS, CO 80921 Contact: Ron Waldthausen

Prepared by: CLASSIC CONSULTING 619 N. CASCADE AVE., SUITE 200 COLORADO SPRINGS, CO 80903 (719) 785-0790

PCD Filing No.: SP-20-010

Job no. 2177.64

619 N. Cascade Ave, Suite 200 | Colorado Springs, CO 80903 | (719) 785-0790

FINAL DRAINAGE REPORT ADDENDUM NO. 2 BENT GRASS RESIDENTIAL FILING NO. 1 FOR BENT GRASS EAST COMMERCIAL FILING NO. 3

DRAINAGE REPORT STATEMENT

ENGINEER'S STATEMENT:

The attached drainage plan and report were prepared under my direction and supervision and are correct to the best of my knowledge and belief. Said drainage report has been prepared according to the criteria established by the County for drainage reports and said report is in conformity with the applicable master plan of the drainage basin. I accept responsibility for any liability caused by any negligent acts, errors, or omissions on my part in preparing this report.

Marc A. Whorton, Colorado P.E. #37155

Date

OWNER'S/DEVELOPER'S STATEMENT:

I, the owner/developer, have read and will comply with all of the requirements specified in this drainage report and plan.

Business Name: Land First Inc.
Title:
Address: 1378 Promontory Bluff View
Colorado Springs, CO 80921

EL PASO COUNTY:

Filed in accordance with the requirements of the Drainage Criteria Manual, Volumes 1 and 2, El Paso County Engineering Criteria Manual and Land Development Code as amended.

Jennifer Irvine, P.E. County Engineer, / ECM Administrator Date

Conditions:

FINAL DRAINAGE REPORT ADDENDUM NO. 2 BENT GRASS RESIDENTIAL FILING NO. 1 FOR BENT GRASS EAST COMMERCIAL FILING NO. 3

TABLE OF CONTENTS:

PURPOSE	Page	1
GENERAL DESCRIPTION	Page	1
EXISTING/DEVELOPED DRAINAGE CONDITIONS	Page	1
HYDROLOGIC CALCULATIONS	Page	4
FLOODPLAIN STATEMENT	Page	4
DRAINAGE/BRIDGE FEES	Page	4
SUMMARY	Page	5
REFERENCES	Page	6

APPENDICES

VICINITY MAP SOILS MAP (S.C.S. SURVEY) F.E.M.A. MAP CALCULATIONS REFERENCE MATERIAL DRAINAGE MAP

FINAL DRAINAGE REPORT ADDENDUM NO. 2 BENT GRASS RESIDENTIAL FILING NO. 1 FOR BENT GRASS EAST COMMERCIAL FILING NO. 3

PURPOSE

This portion of the Bent Grass East Commercial development was previously platted as Tract B within Bent Grass East Commercial Filing No. 2B. However, it was previously analyzed from a drainage standpoint and included in the Bent Grass Residential Filing No. 1 Final Drainage Report and latest Addendum filed in 2015. The previous drainage basins K, L and M1 encompass the proposed development and re-plat of Tract B. The purpose of this report is to confirm that the existing adjacent pond indeed accounted for this development and to better define the exact routing of the proposed storm sewer into the pond and associated concrete forebay design.

— square footage

GENERAL DESCRIPTION

Tract B, Bent Grass East Commercial Filing No. 2B contains a total acreage of 219,877 SF (5.05 AC.), located in the county of El Paso within Section 1, Township 13 South, Range 65 West of the Sixth Principal Meridian, El Paso County, Colorado. The site is bounded on the north by Bent Grass Meadows Dr., on the east by Meridian Park Dr., on the west Bent Grass Residentiall Filing No. 1 and to the south by the existing detention pond within Tract A of the Bent Grass East Commercial development.

The average soil condition reflects Hydrologic Group "A" (Columbine gravelly sandy loam), as determined by the "Soil Survey of El Paso County Area," prepared by the Soil Conservation Service. (See Appendix) For the purposes of the hydrologic calculations within this report, the soil type A was utilized.

EXISTING/DEVELOPED DRAINAGE CONDITIONS

The entire proposed development area was previously overlot graded along with the adjacent developments. The revegetation consists of native grasses with slopes of 2%-4%. The entire property sheet flows in a southerly direction directly into the existing detention pond 2 just south of the property.

private road

The proposed development plans to construct a private drive in order to provide vehicular access to the 6 lots. This private drive will connect to both Bent Grass Meadows Dr. to the north and Meridian Park Dr. to the east. High points are planned at each of these two connection points with a low point near the middle of the property. (See Developed Drainage Map in Appendix)

Design Point 1 (Q₅ = 4 cfs and Q₁₀₀ = 8 cfs) represents developed flows from Basin A (lots 2 and 3 and north half of the private drive). These flows will be routed towards Design Point 1 where a 5' Type R Sump Inlet will completely collect both the 5 and 100 yr. developed flows.

Design Point 2 (Q₅ = 1 cfs and Q₁₀₀ = 3 cfs) represents developed flows from Basin B (portion of lots 4 and 5 and south half of the private drive). These flows will be routed towards Design Point 2 where a 5' Type R Sump Inlet will completely collect both the 5 and 100 yr. developed flows. Per the drainage map, it appears that the majority of the runoff from basin C will sheet flow into the pond as opposed to being routed to the 24" RCP. Is the intent for the 24" RCP besign Point 3 (Q₅ = 7 cfs revise accordingly.

and 6) and a portion of off-site Basin K (existing residential developed nows non Basin C (lots 4) and 6) and a portion of off-site Basin K (existing residential development to the west). These flows will be routed towards Design Point 3 where a 24" RCP storm stub will collect both the 5 and 100 yr. developed flows. These flows remain consistent with Basins L ($Q_5 = 18$ cfs and $Q_{100} = 35$ cfs) and K ($Q_5 = 2$ cfs and $Q_{100} = 4$ cfs) from the previous report. (See Appendix)

Design Point 4 (Q₅ = **11 cfs and Q**₁₀₀ = **22 cfs)** represents the total developed flows that will enter the existing pond at this location (Basins A, B, C and a portion of Basin K). A concrete forebay is proposed within the existing pond at this location with the following criteria: (See Appendix)

Per UD-BMP Spreadsheet – Concrete Forebay sizing
0.003 Ac-ft. or 131 SF min. Forebay with 12" high walls OR 88 SF min. with 18" high walls
4.5" wide notch at end of forebay

Basin E $(Q_5 = 0.3 \text{ cfs} \text{ and } Q_{100} = 1.0 \text{ cfs})$ represents developed flows from Basin E(landscape/setback area within lots 1, 2 and 3) that will continue to sheet flow in anortheasterly direction into Bent Grass Meadows DrPlease state whether the outfall
of this flow is consistent with the
previously approved report.Basin D $(Q_5 = 3 \text{ cfs and } Q_{100} = 6 \text{ cfs})$ represents developed flows from Basin D (lots 1 and a
portion of 5 and a portion of the private drive). These flows will continue to sheet flow directly

into Meridian Park Dr. These flows remain consistent with Basin M1 ($Q_5 = 6$ cfs and $Q_{100} = 11$ cfs) from the previous report. (See Appendix)

private road

LOODPLAIN STATEMENT

Please indicate how these flows are conveyed to the existing pond.

No portion of this site is located within a FEMA floodplain as determined by the Flood Insurance Rate Map (F.I.R.M.) Map Number 08041C0553G, with effective date of December, 7 2018. (See Appendix)

Show the "Four-Step Process" for selecting structural BMPs (ECM Section I.7.2 BMP Selection). Not that Step 4 is n/a to this site.

DRAINAGE AND BRIDGE FEES

This site lies entirely within the Falcon Drainage Basin boundaries.

The fees are calculated using the following impervious acreage method approved by El Paso County. Bent Grass East Commercial Filing No. 3 has a total area of 5.048 acres with a commercial land use designation.

The percent imperviousness for this subdivision is calculated as follows:

Fees for Commercial Land Use

(Per El Paso County Percent Impervious Chart: 95%)

5.048 Ac. x 95% = 4.796 Impervious Ac.

Per the provided drainage map this basin does not drain to the existing southerly pond. Per ECM appendix I, 100% of the development site must be captured. ECM I.7.1.C.1 allows for 20% not to exceed 1 acre of the applicable development site area to not be captured. If your intent is to use this allowance please state it in the report or provide another exclusion allowed per the criteria for not provided water quality for this basin.

Page 3

The following calculations are based on the 2020 Falcon drainage/bridge fees:

ESTIMATED FEES:		
Bridge Fees		
\$ 4,232.00 x 4.796 Impervious Ac.	=	<u>\$ 20,296.67</u>
Drainage Fees		
\$ 30,807.00 x 4.796 Impervious Ac.	=	<u>\$ 147,750.37</u>

Per the ECM 3.10.4.a, this development requests a reduction of drainage fees based on the onsite detention pond 2 that was constructed as a part of the Bent Grass East Commercial Filing 2 development. The following facilities within the Falcon Drainage Basin seem to meet the criteria for this reduction: Please identify in your report how each of the criteria listed in ECM Appendix L section

3.10.4a is met.

Per Bent Grass East Commercial Filing No. 2 Final Dra	ainage Report – Dated A	Aug. 2014
Construction of Detention Pond 2 (Full Spectrum on-	site Facility) =	\$75,000
50% credit was taken against drainage fees owed	= \$3	37,500 – 26,860,65
Credit remaining within the Falcon Basin	= \$:	10,639.35
TOTAL DRAINAGE FEES (after reduction): Drainage Fees \$ 147,750.37 - 10,639.35 =	<u>\$ 137,111.02</u>	Please identify in the report how this value was obtained. Provide excerpt of a previous report where this was calculated.

Page 4

SUMMARY

The proposed grading plan, drainage patterns and quantities remain consistent with the previously approved final drainage report for Bent Grass Residential Filing No. 1 and associated addendum. The proposed development will not adversely impact surrounding properties.

PREPARED BY:

Classic Consulting Engineers & Surveyors, LLC

Marc A. Whorton, P.E. Project Manager

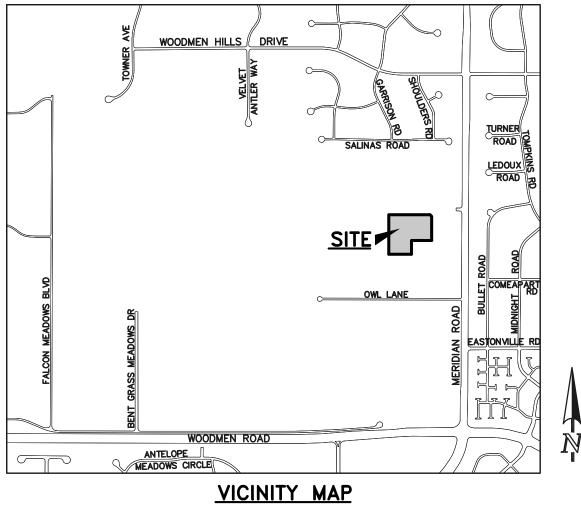
mw/217764/Reports/217764FDR Addendum.doc

REFERENCES

 \square

- 1. City of Colorado Springs/County of El Paso Drainage Criteria Manual as revised in November 1991 and October 1994 with County adopted Chapter 6 and Section 3.2.1 of Chapter 13 of the City of Colorado Springs/El Paso County Drainage Criteria Manual as revised in May 2014.
- 2. "Urban Storm Drainage Criteria Manual Volume 1, 2 & 3" Urban Drainage and Flood Control District, dated January 2016.
- 3. "Falcon Drainage Basin Planning Study Update," by Matrix Design Group, dated August 2013.
- "Preliminary Drainage Report for Bent Grass East Commercial Phase 1 and Final Drainage Report for Bent Grass East Commercial Filing No. 1 – Lot 1", by Classic Consulting, dated May 2013
- 5. "Final Drainage Report for Bent Grass East Commercial Filing No. 2", by Classic Consulting, dated May 2014.
- 6. "Final Drainage Report for Bent Grass Residential Filing No. 1", by Classic Consulting, Sept. 2014.

Please include the 2015 addendum indicated at the beginning of your report.


Page 6

APPENDIX

VICINITY MAP

N.T.S.

SOILS MAP (S.C.S. SURVEY)

USDA Natural Resources

Conservation Service

11/4/2020 Page 1 of 3

MAPI	EGEND	MAP INFORMATION
Area of Interest (AOI) Area of Interest (AOI) Soils Soil Map Unit Polygons Soil Map Unit Lines Soil Map Unit Points Special Point Features Blowout	 Spoil Area Stony Spot Very Stony Spot Vet Spot Other Special Line Features 	The soil surveys that comprise your AOI were mapped at 1:24,000. Warning: Soil Map may not be valid at this scale. Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.
Borrow Pit	Streams and Canals Transportation	Please rely on the bar scale on each map sheet for map measurements.
Clay Spot	RailsInterstate Highways	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)
Gravel Pit	US Routes	Maps from the Web Soil Survey are based on the Web Mercato projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the
🚳 Landfill 🗎 Lava Flow	Local Roads	Albers equal-area conic projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.
▲ Marsh or swamp	Aerial Photography	This product is generated from the USDA-NRCS certified data a of the version date(s) listed below.
Miscellaneous Water		Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020
 Perennial Water Rock Outcrop 		Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.
Saline Spot		Date(s) aerial images were photographed: Sep 11, 2018—Oct 20, 2018
Sandy Spot		The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor
SinkholeSlide or Slip		shifting of map unit boundaries may be evident.
Sodic Spot		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
19	Columbine gravelly sandy loam, 0 to 3 percent slopes		100.0%		
Totals for Area of Interest		22.5	100.0%		

El Paso County Area, Colorado

19—Columbine gravelly sandy loam, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 367p Elevation: 6,500 to 7,300 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 46 to 50 degrees F Frost-free period: 125 to 145 days Farmland classification: Not prime farmland

Map Unit Composition

Columbine and similar soils: 97 percent Minor components: 3 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Columbine

Setting

Landform: Fans, flood plains, fan terraces Down-slope shape: Linear Across-slope shape: Linear Parent material: Alluvium

Typical profile

A - 0 to 14 inches: gravelly sandy loam *C - 14 to 60 inches:* very gravelly loamy sand

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (5.95 to 19.98 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Available water capacity: Very low (about 2.5 inches)

Interpretive groups

Land capability classification (irrigated): 4e Land capability classification (nonirrigated): 6e Hydrologic Soil Group: A Ecological site: R049XB215CO - Gravelly Foothill Hydric soil rating: No

Minor Components

Pleasant

Percent of map unit: 1 percent

USDA

Landform: Depressions Hydric soil rating: Yes

Other soils

Percent of map unit: 1 percent Hydric soil rating: No

Fluvaquentic haplaquolls Percent of map unit: 1 percent Landform: Swales Hydric soil rating: Yes

Data Source Information

Soil Survey Area: El Paso County Area, Colorado Survey Area Data: Version 18, Jun 5, 2020

F.E.M.A MAP

NOTES TO USERS

This map is for use in administrating the National Flood Insurance Program. It does not necessarily identify all areas subject to flooding, particularly from local drainage sources of small size. The community map repository should be consulted for possible updated or additional flood hazard information.

To obtain more detailed information in areas where Base Flood Elevations (BFEs) and/or floodways have been determined users are encouraged to consult the Flood Probles and Floodway Data and/or Summary of Softwater Elevations tables contained which the Flood Insurance Study (FIS) report that accompanies this FIRM. Users should be aware that BFEs shown on the FIRM represent rounded whele-dod relevations. These BFEs are intended for flood insurance ration purposes only and should not be used as the softe source of flood elevation information. Accordingly, flood elevation at the FIRM report should be utileded in conjunction with the FIRM for purposes of construction and/or floodplaim management.

Cosstal Base Flood Elevations shown on this map apply only landward of 0 C Noth American Vertical Datum of 1386 (NAVSB) Users of this FIRM should be aware that coasts' flood elevators are also provided in the Summary of Stilwater Elevations table in the Flood Insurance Study report for this synchrodiction. Elevations shown in the Summary of Stilwater Elevations table should be used for construction and/or floodplain meanagement purposes when they are higher than the elevations shown on this FIRM.

Boundaries of the floodways were computed at cross sections and interpolated between cross sections. The floodways were based on hydraulic considerations with regard to requirements of the National Flood Insurance Program. Floodway within and other portinent floodway data are provided in the Flood Insurance Study report for this jurisdiction

Certain areas not in Special Flood Hazard Areas may be protected by flood control structures. Refer to section 2.4 "Flood Protection Measures" of the Flood Insurance Study report for information on flood control structures for this jurisdiction.

The projection used in the preparation of this map was Universal Transverse Nercafor (UTM) zone 15. The horizontal datum was NADB3, GRSB0 spherod Offerences in datum, spherod, projection or UTM zones zones used in the production of FIRMs for adjacent jurisdictions may result in slight positional differences in map heatures across jurisdiction boundaries. These differences do not effect the accuracy of this FIRM.

Flood elevations on this map are referenced to the North American Vertical Datum of 1988 (NAVD88). These flood elevations must be compared is structure and ground elevations referenced to the same vertical datum. For information regarding conversion between the National Geodetic Vertical Datum of 1929 and the North American Vertical Datum of 1989, visit the National Geodetic Survey vebste at http://www.ngs.nosa.gow or contact the National Geodetic Survey at the following address

NGS Information Services NOA4, NINGS12 National Geodetic Survey SSMC-3 #9202 1315 East-West Highway Silver Spring, MD 20910-3282

To obtain current elevation, description, and/or location information for bench marks shown on this map please contact the information Services Branch of the National Geodetic Survey at (301) 713-3242 or visit its website at http://www.rgs.noae.gov/.

Base Map information shown on this FIRM was provided in digital format by El Paso County, Colorado Springs Utildia, City of Fountain, Bureau of Land Management National Oceanic and Altrospheric Administration, Unide States Geological Survey and Anderson Consulting Engineers Inc. These data are current as of 2006

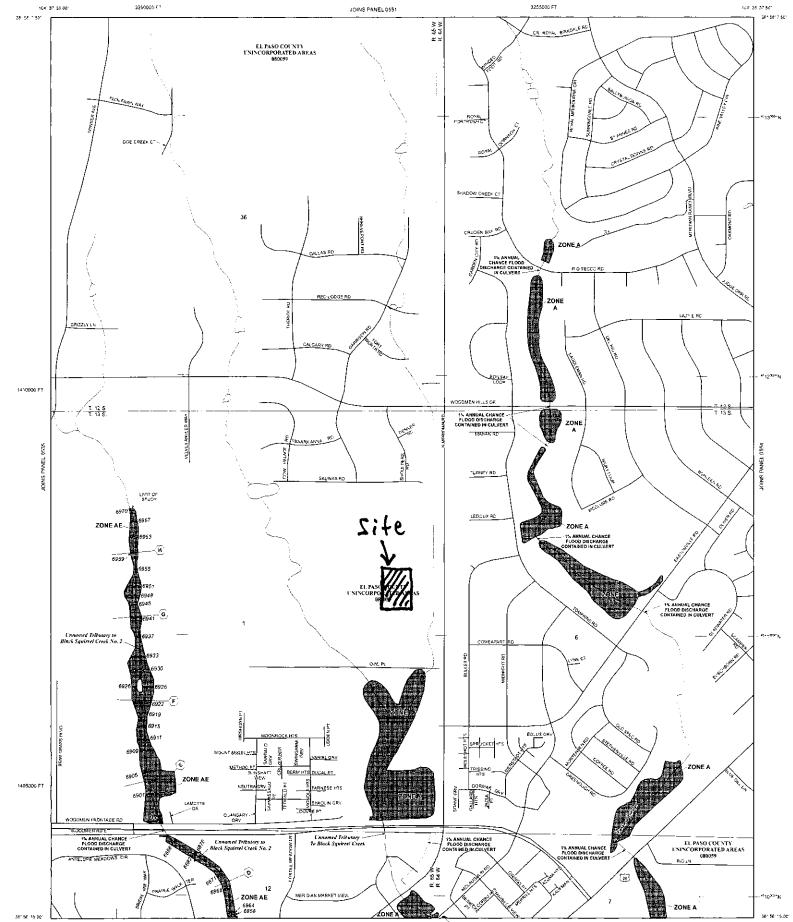
The map refects more detailed and up-to-date stream channel configurations and floodplain delineations than those shown on the previous FIRM for this jurisdiction. The floodplane and floodways that were transferred from the previous FIRM may have been adjusted to conform to these new stream channel configurations. As a result, the Flood Profiles are Floodway Data tables in the Flood Insurance Study. Report (which contains authoritative hydraulic data) may reflect stream channel delances that differ from what is shown on this map. The portied baselines depicted on this map represent the hydraulic data) map. The stored baselines depicted on this map represent the hydraulic during baselines that match the flood profiles and Floodway Data Table all explicable: in the Floreport. As a result, the profile baselines may devald significantly from the new base map channel topresentation and may appeer outside of the doorplain.

Corporate limits shown on this map are based on the best data available at the time of publication. Because changes due to annexations or de-annexations may have occurred after this map was published, map users should contact appropriate community officials to verify current corporate limit locations

Please refer to ins separately punked **Map Index** for an overview map of the county showing like hayout of map panets; community map repository addresses, and a Lusing of Communities table containing National Flood Insurance Program dates for each community as well as a listing of the panets on which each community is located.

Contact FEMA Mep Service Center (MSC) via the FEMA Map Information eXchange (FMX) 1-877-336-2627 for information on available products associated with this FIRM Available products may include previously issued Letters of Map Change, a Flood Insurance Study Report, and/or digital versions of this map. The MSC may also be reached by Fav at 1-800-358-9620 and its website at http://www.msc.tema.gov/

If you have questions about this map or questions concerning the National Flood Insurance Program in general, please call 1-877-FBM AMAP (1-877-336-2627) or visit the FEMA website at http://www.fema.gov/business/infp EI Paso County Vertical Datum Offset Table



This Digital Flood Insurance Rate Map (DFIRM) was produced through a Cooperating Technical Partner (CTP) agreement between the State of Colorado Water Conservation Board (CWCB) and the Federal Emergency Management Agency (FEMA).

> Additional Flood Hazard information and resources an available from local communities and the Colorad Water Conservation Board

104:37 30 00

33⁰⁰⁶ E

JOINS PANEL 0561 13400-E ZONE A

*35⁵⁰⁰E 104135137.601

	SPECIA: FLOO	LEGEND DI HAZARD AREAS (SFHAS) SUBJECT TO BY THE 1% ANNUAL CHANCE FLOOD
The 19 ₇ and that has a 19 Hazard Area Special Floor		Final Provide Control of the Control of Control of the Control of Control o
Elevation is t ZONE A	ne water-surface ele. No £ase ≒ooc Ele:	
ZONE AE	Base Ficul E-evalua	ná délemines.
ZONE AO	Elevations determine	I to 5 feet (vs.letty areas of ponding), Base Flood red
LOAC HO	depths betermine: determined	o 3 feet (usually sheet how on sloping terrain); average b. For arear of atuvial fait flooding, vescoties also
ZONE AR	Special Food Haza Food by a Food of AR monates that provide protection	nc Ama Parmerly protected from the 1% annual charace annual system that was subsequently decentified. Zone the former food control system is being respond to here the 1% annual charace or greater food.
ZONE A99		tec from the annual chance flood by a federal flood I under construction no Base Flood Devations
ZONE V	determinep Coesta flood gore	i wir veloce, hazard (wave action); no Base Ford
ZONE VE		
		e wet velocity hazard (wave action): Base food red.
The front set		EAS IN ZONE AE
vept free of wostantia' in	encreastment so the creases in Rooc heigh	stream plus any acjacem Roodplain areas that must be at the 1% annual chance Rood can be carried without Ns.
	OTHER FLOOD	AREAS
ZONE X	Areas of 0.2% and average depths of square role: and ar	ue, chance flood, areas of 1% annual chance flood with less than 1 floot or with disknage areas less than 1 less protected by leveek from 1% and ual chance flood
	OTHER AREAS	
ZONE X	Areas determined a	t be outside the 0.2% annual chance ficodplain.
ZONE D	Areas in which foo	d nazards are undetermined out possible.
<i>[]]</i>]	COASTAL BARR	IER RESOURCES SYSTEM (CBRS) AREAS
1	OTHERWISE PR	ROTECTED AREAS (OPAs)
CBRS areas a		located within or adjacent to Special Flood Hazard Areas.
		Kara boundary vev boundary
		D Boundary
*******		and OPA boundary
	Bound Float	arv dividing Special Rood Hazard Areas of different Base Elevations, flood depths or flood velocities
513 IEL 983		lood Elevation line and value: elevation in feet" lood Elevation value where uniform within zone,
	rie vau	on in feet"
A.		r Venka' Datum of 1986 (NAVD S8) sector: 106
_	_	
23		
97'07'30 32'27'30	00" Geogra 00" Datum	aphic spoldinates referenced to the North American of 1963 (NAD 83)
475386-	N 1000-r 2016 1	teter Universa: Transverse Mercator grid ticks. 3
6200660	FT 5000-1	oot grid Sees: Cooxeeho State Plane coordinate
		iot gró Soos: Cooredo State Piane coordinate - central zone (FLPSZONE 05021. rt Cotformal Corte Projection
DX5510) Bencri У tru: FD	mark (see explanation in Notes to Users section of RM panel)
N11 5		
•		MAP REPOS TORIES
		Map Repositories I st on Map Index
	FLC	CTIVE DATE OF COUNTYVIDE DOD INSURANCE RATE VAP MARCH 17, 1997
DECEME Special Fi	EFFECTIVE D/ SER 7, ZD18 to upda pot Hazaro Arees, to interportet or	CEED OF REVISIONIS; TO THIS PANE: te calporate limits to change Base Flood Elevations and uppate max format its add roads and read names, and to enough at base of May Revision.
For communit	s map revision histor	y prontic country, de mapeine, refer to the Community
		y prior to countrywide manging refer to the Community and Insurance Staty report for this junsdiction .
To determine agent or calls	If flood insurance is the National Flood Ins	 available in the continuncty, contact your insurance unance Program at 1-800-638-6620.
	,	
	250 0 	500 1000 FEET
	~	
ſ	VED	PANEL 0553G
п		
		FIRM
	640 1	
	GR	FLOOD INSURANCE RATE MAP
1	$\square \bigcirc \square$	EL PASO COUNTY,
		COLORADO
	டை	AND INCORPORATED AREAS
:	25	PANEL 553 OF 1300
	Ň	(SEE MAP INDEX FOR FIRM PANEL LAYOUT
		CONTAINS
	Lég	COMMUNITY NUMBER PANEL SUFFI & REDITER AND COMPANY 2000 0
	36	
	_ <u>ろ</u>	Notice This may easi required on 05:15:2020 Microsoft This errors on
	الناطر	Notes That may assessed or 0515/2020 12 mark & actrocker The ensity Tradents king new ensity for San the Notes to Last Laber two accompanies this contextual of defails
	Q	
	9	
	i The second	Notes to user - The Map Humber shown pelve shows bo used enter placing map orders, the Community Kumber shown above show to used on insurance approaches for the subject ormuth
	j j	
ľ		MAP NUMBER 08041C0553G
li li	NO	
ļ		MAP REVISED
[]		DECEMBER 7, 2018
	15a	
Į		Federal Emergency Management Agency

CALCULATIONS

Calculations for the proposed storm sewers are required with final drainage reports. At the preliminary plan stage only a preliminary drainage report without hydraulic calculations is submitted for review and approval but this is a final drainage report.

Typically hydraulic calculations are reviewed in conjunction with the construction drawings which would not be submitted for approval until the final plat application. I will discuss with my manager and let you know if any changes are needed.

Job Name:	BENT GRASS EAST COMMERCIAL FILING NO. 3
JOB NUMBER:	2177.64
DATE:	11/04/20
CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ BASIN RUNOFF COEFFICIENT SUMMARY

IMPERVIOUS AREA / STREETS				LANDSCAPE/UNDEVELOPED AREAS				WEIGHTED			WEIGHTED CA			
TOTAL AREA (AC)	AREA (AC)	C(2)	C(5)	C(100)	AREA (AC)	C(2)	C(5)	C(100)	C(2)	C(5)	C(100)	CA(2)	CA(5)	CA(100)
1.4	1.10	0.89	0.90	0.96	0.30	0.02	0.08	0.35	0.70	0.72	0.83	0.99	1.01	1.16
0.4	0.30	0.89	0.90	0.96	0.10	0.02	0.08	0.35	0.67	0.70	0.81	0.27	0.28	0.32
2.0	1.60	0.89	0.90	0.96	0.40	0.02	0.08	0.35	0.72	0.74	0.84	1.43	1.47	1.68
0.9	0.75	0.89	0.90	0.96	0.15	0.02	0.08	0.35	0.75	0.76	0.86	0.67	0.69	0.77
0.3	0.05	0.89	0.90	0.96	0.25	0.02	0.08	0.35	0.17	0.22	0.45	0.05	0.07	0.14
1.0	0.35	0.89	0.90	0.96	0.65	0.02	0.08	0.35	0.32	0.37	0.56	0.32	0.37	0.56
	AREA (AC) 1.4 0.4 2.0 0.9 0.3	TOTAL AREA (AC) AREA (AC) AREA (AC) 1.4 1.10 0.4 0.30 2.0 1.60 0.9 0.75 0.3 0.05	TOTAL AREA (AC) AREA (AC) C(2) 1.4 1.10 0.89 0.4 0.30 0.89 2.0 1.60 0.89 0.9 0.75 0.89 0.3 0.05 0.89	TOTAL AREA (AC) AREA (AC) C(2) C(5) 1.4 1.10 0.89 0.90 0.4 0.30 0.89 0.90 2.0 1.60 0.89 0.90 0.9 0.75 0.89 0.90 0.3 0.05 0.89 0.90	TOTAL AREA (AC) AREA (AC) C(2) C(5) C(100) 1.4 1.10 0.89 0.90 0.96 0.4 0.30 0.89 0.90 0.96 2.0 1.60 0.89 0.90 0.96 0.9 0.75 0.89 0.90 0.96 0.3 0.05 0.89 0.90 0.96	TOTAL AREA (AC) AREA (AC) C(2) C(5) C(100) AREA (AC) 1.4 1.10 0.89 0.90 0.96 0.30 0.4 0.30 0.89 0.90 0.96 0.10 2.0 1.60 0.89 0.90 0.96 0.40 0.9 0.75 0.89 0.90 0.96 0.15 0.3 0.05 0.89 0.90 0.96 0.25	TOTAL AREA (AC) AREA (AC) C(2) C(5) C(100) AREA (AC) C(2) 1.4 1.10 0.89 0.90 0.96 0.30 0.02 0.4 0.30 0.89 0.90 0.96 0.10 0.02 2.0 1.60 0.89 0.90 0.96 0.40 0.02 0.9 0.75 0.89 0.90 0.96 0.15 0.02 0.3 0.05 0.89 0.90 0.96 0.15 0.02	TOTAL AREA (AC) AREA (AC) C(2) C(5) C(100) AREA (AC) C(2) C(5) 1.4 1.10 0.89 0.90 0.96 0.30 0.02 0.08 0.4 0.30 0.89 0.90 0.96 0.10 0.02 0.08 2.0 1.60 0.89 0.90 0.96 0.40 0.02 0.08 0.9 0.75 0.89 0.90 0.96 0.15 0.02 0.08 0.3 0.05 0.89 0.90 0.96 0.25 0.02 0.08	TOTAL AREA (AC) AREA (AC) C(2) C(5) C(100) AREA (AC) C(2) C(5) C(100) 1.4 1.10 0.89 0.90 0.96 0.30 0.02 0.08 0.35 0.4 0.30 0.89 0.90 0.96 0.10 0.02 0.08 0.35 2.0 1.60 0.89 0.90 0.96 0.10 0.02 0.08 0.35 0.9 0.75 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.3 0.05 0.89 0.90 0.96 0.15 0.02 0.08 0.35	TOTAL AREA (AC) C(2) C(2) C(5) C(100) AREA (AC) C(2) C(5) C(100) C(2) 1.4 1.10 0.89 0.90 0.96 0.30 0.02 0.08 0.35 0.70 0.4 0.30 0.89 0.90 0.96 0.10 0.02 0.08 0.35 0.67 2.0 1.60 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.72 0.9 0.75 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.75 0.3 0.05 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.75	TOTAL AREA (AC) C(2) C(5) C(100) AREA (AC) C(2) C(5) C(100) C(2) C(5) 1.4 1.10 0.89 0.90 0.96 0.30 0.02 0.08 0.35 0.70 0.72 0.4 0.30 0.89 0.90 0.96 0.10 0.02 0.08 0.35 0.67 0.70 2.0 1.60 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.72 0.74 0.9 0.75 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.75 0.76 0.3 0.05 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.75 0.76	TOTAL AREA (AC) C(2) C(5) C(100) AREA (AC) C(2) C(5) C(100) C(2) C(5) C(100) 1.4 1.10 0.89 0.90 0.96 0.30 0.02 0.08 0.35 0.70 0.72 0.83 0.4 0.30 0.89 0.90 0.96 0.10 0.02 0.08 0.35 0.67 0.70 0.81 2.0 1.60 0.89 0.90 0.96 0.10 0.02 0.08 0.35 0.72 0.74 0.84 0.9 0.75 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.75 0.76 0.86 0.3 0.05 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.17 0.22 0.45	TOTAL AREA (AC) C(2) C(5) C(100) AREA (AC) C(2) C(5) C(100) C(2) C(5) C(100) CA(2) 1.4 1.10 0.89 0.90 0.96 0.30 0.02 0.08 0.35 0.70 0.72 0.83 0.99 0.4 0.30 0.89 0.90 0.96 0.10 0.02 0.08 0.35 0.67 0.70 0.81 0.27 2.0 1.60 0.89 0.90 0.96 0.10 0.02 0.08 0.35 0.72 0.74 0.84 1.43 0.9 0.75 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.75 0.76 0.86 0.67 0.3 0.05 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.17 0.22 0.45 0.05	TOTAL AREA (AC) C(2) C(5) C(100) AREA (AC) C(2) C(5) C(100) C(2) C(5) C(100) CA(2) CA(5) 1.4 1.10 0.89 0.90 0.96 0.30 0.02 0.08 0.35 0.70 0.72 0.83 0.99 1.01 0.4 0.30 0.89 0.90 0.96 0.10 0.02 0.08 0.35 0.67 0.70 0.81 0.27 0.28 2.0 1.60 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.75 0.74 0.84 1.43 1.47 0.9 0.75 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.75 0.76 0.86 0.67 0.69 0.3 0.05 0.89 0.90 0.96 0.15 0.02 0.08 0.35 0.17 0.22 0.45 0.05 0.07

JOB NAME: JOB NUMBER: DATE: CALC'D BY:

BENT GRASS EAST COMMERCIAL FILING NO. 3

2177.64 11/04/20 MAW

$$t_i = \frac{0.395(1.1 - C_5)\sqrt{L}}{S^{0.33}}$$

$$V = C_v S_w^{0.5}$$
 Tc=L/V

Type of Land Surface	C,
Heavy meadow	2.5
Tillage/field L . 10	5
$\frac{1}{\text{Riprap (not buried)}^*} t_c = \frac{1}{180} + 10 - \frac{1}{180} + 10 - \frac{1}{180} + 10 - \frac{1}{180} + 10 - \frac{1}{180} + \frac{1}{$	6.5
Short pasture and lawns	7
Nearly bare ground	10
Grassed waterway	15
Paved areas and shallow paved swales	20

Table 6-7. Conveyance Coefficient, C_v

For buried riprap, select C_v value based on type of vegetative cover.

FINAL DRAINAGE REPORT ~ BASIN RUNOFF SUMMARY

	WEIGHTED			OVERLAND				STREET / CHANNEL FLOW			Tc	INTENSITY			TOTAL FLOWS				
BASIN	TOTAL AREA (AC)	CA(2)	CA(5)	CA(100)	C(5)	Length <i>(ft)</i>	Height <i>(ft)</i>	Tc (min)	Length <i>(ft)</i>	Slope <i>(%)</i>	Velocity (fps)	Tc (min)	TOTAL (min)	l(2) <i>(in/hr)</i>	l(5) (in/hr)	l(100) (in/hr)	Q(2) (cfs)	Q(5) (cfs)	Q(100) (cfs)
А	1.4	0.99	1.01	1.16	0.08	30	2	5.4	250	2.0%	1.0	4.2	9.6	3.34	4.19	7.03	3	4	8
В	0.4	0.27	0.28	0.32	0.08	10	0.2	4.6	100	1.5%	0.9	1.9	6.6	3.79	4.76	7.99	1	1	3
С	2.0	1.43	1.47	1.68	0.08	30	1.5	5.9	400	2.0%	1.0	6.7	12.7	3.01	3.77	6.34	4	6	11
D	0.9	0.67	0.69	0.77	0.08	10	0.2	4.6	200	2.0%	1.4	2.4	7.0	3.72	4.67	7.83	2	3	6
Е	0.3	0.05	0.07	0.14	0.08	25	0.5	7.3					7.3	3.67	4.60	7.72	0.2	0.3	1.0
К	1.0	0.32	0.37	0.56	0.08	65	3	9.0					9.0	3.43	4.29	7.21	1	2	4

JOB NAME:	BENT GRASS EAST COMMERCIAL FILING NO. 3
JOB NAME.	DENT GRASS EAST COMMERCIAL FILING NO. 5
JOB NUMBER:	2177.64
DATE:	11/04/20
CALCULATED BY:	MAW

FINAL DRAINAGE REPORT ~ SURFACE ROUTING SUMMARY											
					Inten	sity	Flow				
Design Point(s)	Contributing Basins	Equivalent CA(5)	Equivalent CA(100)	Maximum Tc	l(5)	l(100)	Q(5)	Q(100)			
1	A	1.01	1.16	9.6	4.19	7.03	4	8			

0.32

2.07

3.55

6.6

12.7

12.8

4.76

3.77

3.76

7.99

6.34

6.32

0.28

1.73

3.02

Classic Consulting 217764 CALCS-MSTR-WQCV 2017.xlsx

2

3

4

В

C, 70% K

A, B, C, 70% K

Outfall /

Inlet Size

5' Type R

Sump Inlet 5' Type R

Sump Inlet

24" RCP Stub

Concrete Forebay

3

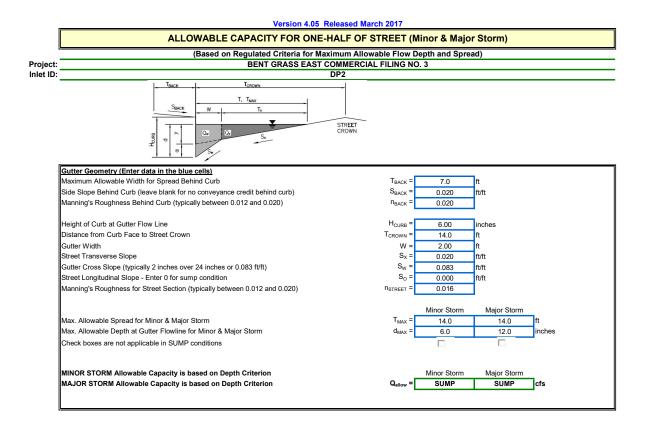
13

22

1

7

11



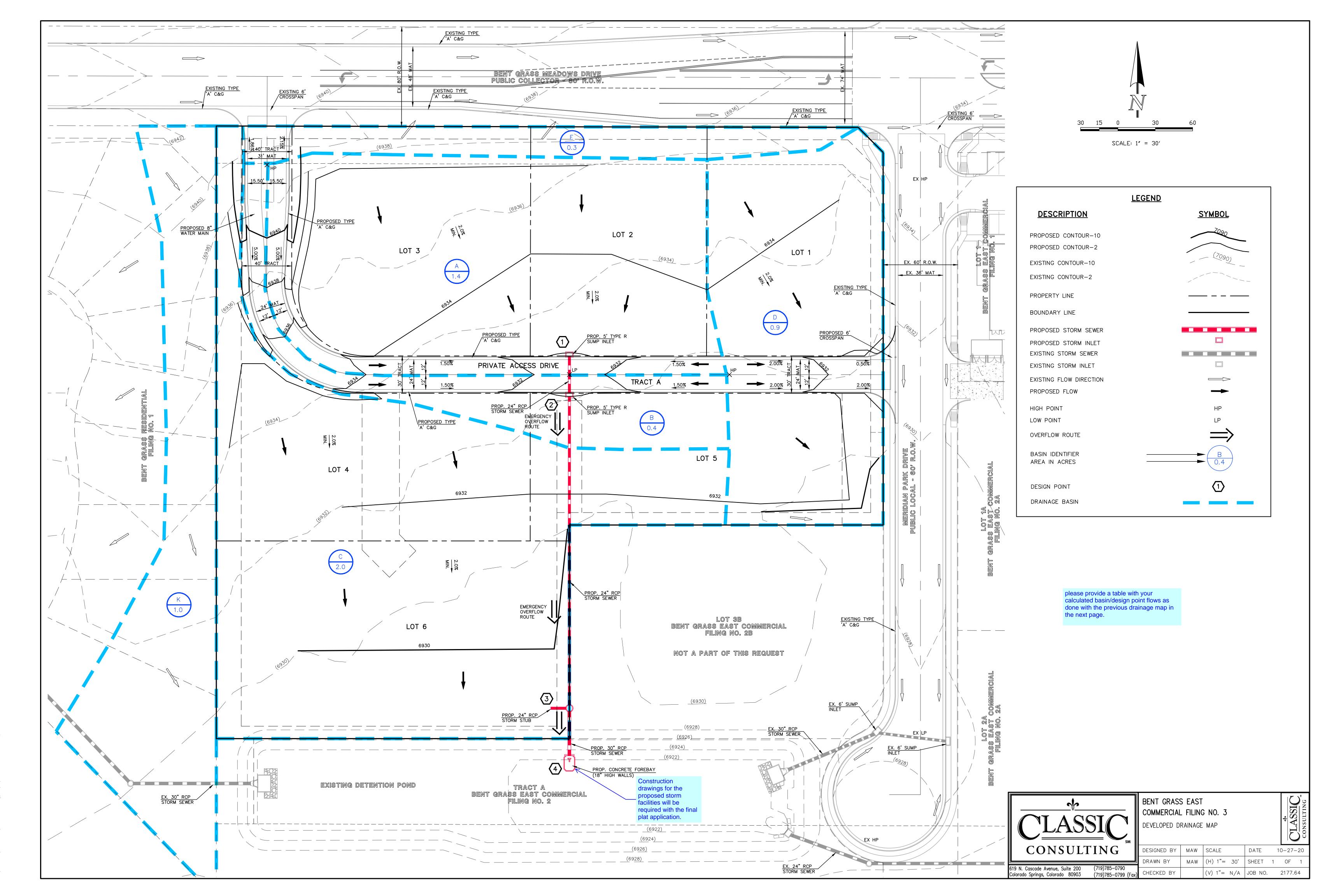
INLET IN A SUMP OR SAG LOCATION

Version 4.05 Released March 2017

Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		7
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	1
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	7
Curb Opening Information	_	MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	C _f (C) =	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	1
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67]
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00]
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A	
	_	MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	4.0	8.0	cfs

INLET IN A SUMP OR SAG LOCATION

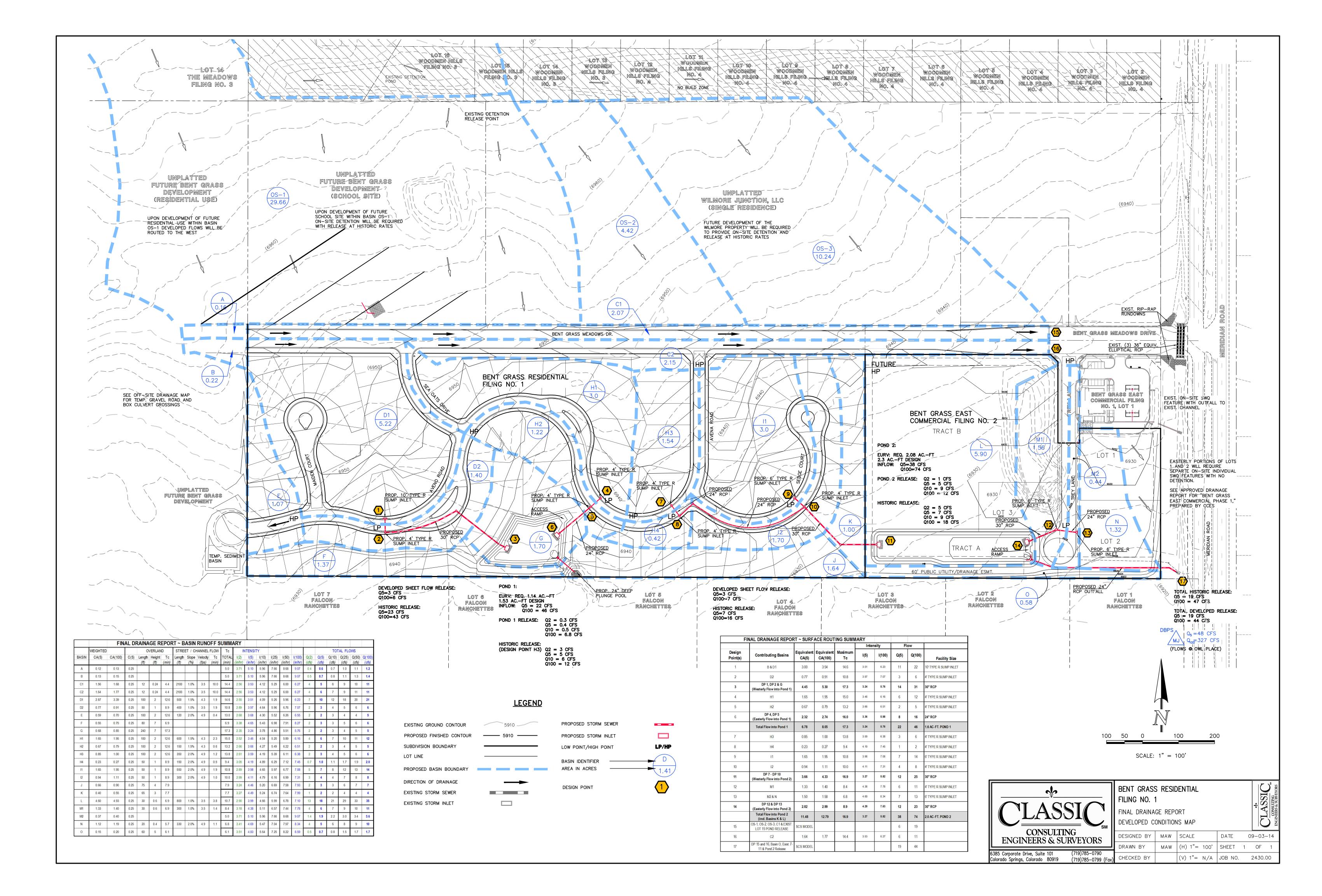
Version 4.05 Released March 2017



Design Information (Input)		MINOR	MAJOR	
Type of Inlet	Type =	CDOT Type R Curb Opening		
Local Depression (additional to continuous gutter depression 'a' from above)	a _{local} =	3.00	3.00	inches
Number of Unit Inlets (Grate or Curb Opening)	No =	1	1	
Water Depth at Flowline (outside of local depression)	Ponding Depth =	6.0	12.0	inches
Grate Information		MINOR	MAJOR	Override Depths
Length of a Unit Grate	L _o (G) =	N/A	N/A	feet
Width of a Unit Grate	W _o =	N/A	N/A	feet
Area Opening Ratio for a Grate (typical values 0.15-0.90)	A _{ratio} =	N/A	N/A	
Clogging Factor for a Single Grate (typical value 0.50 - 0.70)	C _f (G) =	N/A	N/A	
Grate Weir Coefficient (typical value 2.15 - 3.60)	C _w (G) =	N/A	N/A	
Grate Orifice Coefficient (typical value 0.60 - 0.80)	C _o (G) =	N/A	N/A	
Curb Opening Information		MINOR	MAJOR	-
Length of a Unit Curb Opening	L _o (C) =	5.00	5.00	feet
Height of Vertical Curb Opening in Inches	H _{vert} =	6.00	6.00	inches
Height of Curb Orifice Throat in Inches	H _{throat} =	6.00	6.00	inches
Angle of Throat (see USDCM Figure ST-5)	Theta =	63.40	63.40	degrees
Side Width for Depression Pan (typically the gutter width of 2 feet)	W _p =	2.00	2.00	feet
Clogging Factor for a Single Curb Opening (typical value 0.10)	$C_{f}(C) =$	0.10	0.10	
Curb Opening Weir Coefficient (typical value 2.3-3.7)	C _w (C) =	3.60	3.60	
Curb Opening Orifice Coefficient (typical value 0.60 - 0.70)	C _o (C) =	0.67	0.67	
Low Head Performance Reduction (Calculated)		MINOR	MAJOR	
Depth for Grate Midwidth	d _{Grate} =	N/A	N/A	ft
Depth for Curb Opening Weir Equation	d _{Curb} =	0.33	0.83	ft
Combination Inlet Performance Reduction Factor for Long Inlets	RF _{Combination} =	0.77	1.00	
Curb Opening Performance Reduction Factor for Long Inlets	RF _{Curb} =	1.00	1.00	
Grated Inlet Performance Reduction Factor for Long Inlets	RF _{Grate} =	N/A	N/A]
		MINOR	MAJOR	_
Total Inlet Interception Capacity (assumes clogged condition)	Q _a =	5.4	12.3	cfs
Inlet Capacity IS GOOD for Minor and Major Storms(>Q PEAK)	Q PEAK REQUIRED =	1.0	3.0	cfs

Marca A Woodrag, P.E. Owners 3.07. Metrix 2018) Sheet 1 of 3 Designer: Classic Consumption Classic Consumption Classic Consumption Project: Beard Charles Ead Commercial Flips to 3 Classic Consumption Classic Consumption 1 Same Shadow Value L = 000 No 2 Company: Classic Consumption Classic Consumption 3 Same Shadow Value L = 000 No 1 Same Shadow Value L = 000 No 2 Company: Classic Consumption No 3 Same Shadow Value Classic Consumption No 4 Company: Classic Consumption No 7 Same Shadow Value Classic Consumption No 8 Fill Water Advance Classic Consumption No 9 Company: No Classic Consumption No 9 Fill Water Advance Classic Consumption No 9 Company: No Classic Consumption No 9 Fill Water Advance Classic Consumption No 9 Fill Water Advance Classic Consumption No 9 Fill Water Advance Classic Consumption No 9 Fill Wate	Design Procedure Form: Extended Detention Basin (EDB)					
Company: Clease Consulting Date: Wombel 4.203 Project: East Posta East Commercial Plang No.3 Location: East Posta Projects Forkburg Commercial Development 1. Decis Discogn Valuers A Liffsche hoperbourses Gin Diplany Area, I, 0.1 Decis Discogn Valuers I 0000 0.2 Decis Discogn Valuers A konstole A konsige 0.2 Decis Discogn Valuers A konstole A konsige 0.3 Decis Valuers A konstole A konsige 0.4 Decis Discogn Valuers A konsige 0.5 Decis Discogn Valuers Vestore A konsige 0.5 Decis Discogn Valuers Vestore A konsige 0.5 Decis Discogn Valuers Vestore A konsige 0.5 Decis Discogn Valuers (VOCO) Selection 4 konsige Vestore A konsige 0.5 Decis Discogn Valuers (VOCO) Selection 4 konsige Vestore A konsige 0.5 Decis Discogn Valuers (VOCO) Selection 4 konsige Vestore A konsige 0.5 Decis Discogn Valuers (VOCO) Selection 4 konsige Vestore A konsige 0.5 Decis Discogn Valuers (VOCO) Selection 4 konsige Vestore A konsige 0.5 Decis Discogn Valuers (VOCO) Selection 4 konsige Vestore A konsige 0.6 To 100 A konsige Valuers (VOCO) Selecion 4 konsige Vestore konsige <						
Date: Networks 4.200 Program Exert Crass Exert Commercial Diversity for Commercial Development 1. Seem Storge Volume I. L 00.0. N. All Effective Inprovidences: Main (= L/100) I 00.0. N. C. Combining Waterbook Ones: Main (= L/100) I 00.0. N. C. Combining Waterbook Ones: Main (= L/100) I 00.0. N. C. Combining Waterbook Ones: Main (= L/100) I 00.0. N. C. Deard Concept I 00.0. N. Deard Concept Conconset I 00.0. N.	Designer:					
Project Bet desce Set demonschafting Na.3 Loadion: Edit Prod. Proposed Foreby (No.1) 1. Bash Bisnage Volume I 000 1. Bash Bisnage Volume I 000 1. Distribution for the production set of the foreby (Prog. 1, 100) I 000 1. Bash Bisnage Volume I 000 1. Bash Bisnage Volume I 000 1. Bash Bisnage Volume (VCOC) Average and Producting State I 000 1. Bash Bisnage Volume (VCOC) Average and Producting State I 000 1. Bash Bisnage Volume (VCOC) Average and Producting State of the forebrand state of the producting State of						
Lotation: Let Prod - Proposed Forchary for Commercial Development 1. Heats Storage Volume A) Effective Imperiodances RMB ($p = L/100$) L 0. Controlling Wateries Area L 0000 % 0. Controlling Wateries Area L 0000 % 0. Controlling Wateries Area L 0000 % 0. Decigo Notary SMM Area 0.000 % 0. Decigo Notary SMM Decigo Notary SMM Decigo Notary SMM 0. Decigo Notary COUVE Respondence SMM (NUCCY) Decigo Notary SMM Decigo Notary SMM 0. Decigo Notary COUVE Respondence SMM (NUCCY) Respondence SMM Decigo Notary SMM Decigo Notary SMM 0. Decigo Notary COUVE Respondence SMM Decigo Notary SMM Decigo Notary SMM Decigo Notary SMM 0. Decigo Notary COUVE Respondence SMM (NUCCY) Respondence SMM Decigo Notary SMM Decigo Notary SMM Decigo Notary SMM 10. Decigo Notary COUVE Respondence SMM (NUCCY) Decigo Notary COUVE Respondence SMM (NUCCY) Decigo Notary SMM Decigo						
1. Basin Strange Volume A) Endow Impariousness of Thickey Ans. I. B) Thickey Assis Transvourses Ratio (I = L, 100) C) Combuling Waterback Assis of the Denser Region Depth of Average D) For Weenscher Control of the Denser Region Depth of Average D) For Weenscher Control of the Denser Region Depth of Average D) For Weenscher Control of the Denser Region Depth of Average D) For Weenscher Control of the Denser Region Depth of Average D) For Weenscher Control of the Denser Region Depth of Average D) For Weenscher Control of the Denser Region Depth of Average D) For Weenscher Control of the Denser Region Depth of Average Wier Control (WOCO) Basis of Average Wier Control (WOCO) Control (WOCO) Design Volume (Work Control (WOCO) Control (WOCO) Design Volume (Work Control (WOCO) Content (WOCO) Design Volume	•					
A) Effective imperviousness Rate () = (, 100) Impervised in the pervise sector () B) Totative Area is impervised seated () = (, 100) Impervised in the pervise sector () C) Totative Area is impervised seated () = (, 100) Impervised () = (, 100) D) Tot Water Board E-Outling () Education () Impervised () = (, 100) D) Totative Area is impervised seated () = (, 100) Impervised () = (, 100) D) Totative Area is impervised seated () = (, 100) Impervised () = (, 100) D) Totative Area is impervised seated () = (, 100) Impervised () = (, 100) D) Totative Area is impervised and () = (, 100) Impervised () = (, 100) Mater Calabity Copy is the found control) Impervised () = (, 100) D) For Water Calabity Copy is Volume (VCCV) Design Volume () Vacione () = (, 100) Impervised () = (, 100) Mater Calabity Copy is Volume (VCCV) Design Volume () () = (, 100) Impervised () = (, 100) D) For Water Calabity Copy is Volume () () = (, 100) Impervised () = (, 100) D) For Water Calabity Copy is Volume () () = (, 100) Impervised () = (, 100) D) Water Calabity Copy is Volume () () = (, 100) Impervised () = (, 100) D) Water Calabity Copy is Volume () () = (, 100) Impervised () = (, 100) D) Water Calabity Copy is Volume () () = (, 100) Impervised () = (, 100)	Location:	Exist. Pond - Proposed Porebay for Commercial Development				
 b) Titkdary Are's Inpervisues Biol (= (, 100) c) Contributing Waterbed Ares i) For Waterbed Nations globins ii) Control Waterbed Ares ii) For Waterbed Nations globins iii) Design Values (MOCV) Based on 40-hour Play in the Control () ii) Design Values (MOCV) Based on 40-hour Play in the Control () ii) Design Values (MOCV) Based on 40-hour Play in the Control () ii) Design Values (MOCV) Based on 40-hour Play in the Control () iii) Design Values (MOCV) Based on 40-hour Play in the Control () iii) Design Values (MOCV) Based on 40-hour Play in the Control () iii) Design Values (MOCV) Based on 40-hour Play in the Control () iii) Description (Control Values (MOCV) Design Values () iii) Proceedings of Waterback Control () iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	1. Basin Storage V	/olume				
C) Contributing Waterheid Ares Ares = 4.500 sc D) Provider heider Galaxie of the Darver Region, Dupth of Average Ares = 4.500 sc D) Brain Channell Water Quality Optice Values (VICO) C) Contributing Waterheid Ares Ares = 4.500 sc D) Design Channell Water Quality Optice Values (VICO) (C) Design Values (VICO) Dassed on 40hour Dasiti Three (Vices) = 11 (VICO) (VIC) = 11 (VIC) (VICO) Dassign Values (Vices) = 11 (VICO) (VIC) (VICO) Dassign Values (Vices) = 410 (VICO) (VICO) Dassign Values (Vices) = 410 (VICO) (VICO) Dassign Values (Vices) = 410 (VICO) (VICO) Dassign Values (VICO) (VICO) Dassign Values (VICO) (VICO	A) Effective Imp	erviousness of Tributary Area, I _a	I _a = 90.0 %			
b) For Waterheids Oddiek of the Denver Region, Depth of Average Rundf Postand States Rundf Rundf Postand Rundf Po	B) Tributary Are	a's Imperviousness Ratio (i = $I_a/100$)	i =			
Rudf Pieddeng Stom Image: Stom Stope () Design Volume (WOCV) Based on 40-hour Draft Time (Vacance 10.0° (US) 11° + - 119° + - 0.0° 1/1° + 2-kes) Vacance (UK) () Design Volume (WOCV) Based on 40-hour Draft Time (Vacance 10.0° (US) 11° + - 119° + - 0.0° 1/1° + 2-kes) Vacance 10.0° (US) () For Waterheds Oxbased on 40-hour Draft Time (Vacance 10.0° (US) 11° + - 119° + - 0.0° 1/1° + 2-kes) Vacance 10° (UK) () For Waterheds Oxbased on 40-hour Draft Time (Vacance 10.0° (US) 11° + - 119° + - 0.0° 1/1° + 2-kes) Vacance 10° (UK) () For Waterheds Oxbased on 40-hour Draft Time (Vacance 10.0° (US) 11° + 100° 1/1° + 2-kes) Vacance 10° (UK) () Hour Shiphologic Stal Groupe of Thibitary Waterhed (Vacance 10° (UK) 11° (UK) 11° + 100° 178 10° (UK) Vacance 10° (UK) () Noces Huttar Kuber Counsiting of Waterhed (Vacance 10° (UK) 11° (UK) 11° (UK) 11° (UK) 11° (UK) EURV testor 10° 10° 10° 10° 10° 10° 10° 10° 10° 10°	C) Contributing	Watershed Area	Area = ac			
Beight Cluck winn isol designing for float control) () Weth Quality Clupture Wunne (WQO) () Beight Cluck winn isol designing for float control) P: Design Clump (WQC) Beight Outline (WQC) Design Volume (Vaccount = 0.147 an -1 (Vacc			d _e = 0.42 in			
P. Design Volume (WOCV) Based on 40-hour Drain Time (Vectors = (10 * (13 * 1^2 - 1.9 * 1^2 + 278 * 1) / 12 * Ava)) Vectors = (10 * (13 * 1^2 - 1.9 * 1^2 + 278 * 1) / 12 * Ava)) P. Dr Waterbeds Dulladie of the Derver Region. Weter Could's Capture Volume (WOCV) Design Volume (Vector case = (60 * Vectors Volume) (WOCV) Design Volume (Vector case = (60 * Vectors Volume) (WOCV) Design Volume (Vector case = (60 * Vectors Volume) (WOCV) Design Volume (Vector case = (60 * Vectors Volume) (WOCV) Design Volume (Vector case = (60 * Vectors Volume) (WOCV) Design Volume (Vector case = (60 * Vectors Volume) (Vector Volume) (Vectors Vectors Vectors Volume) (Vector Volume) (Vectors Vectors Vectors Volume) (Vector Volume) (Vectors Vectors V			Water Quality Capture Volume (WQCV)			
(Vestion = (1.6 ° (0.01 * 1^{-}) * 1.1 ° (* - 0.7 * 1) / 12 * Area)(a) For Watersheds Aulside of the Demons Region. Water Double (VCOV) Design Volume (Water Double * Vestion Vestion * Call * Vestion * Call * Vestion * Call * Ca						
Water Cuality Capture Volume (WCCV) Design Volume Vertice Vater Gamma Science H) User Input of Water Quality Capture Volume (VCCV) Design Volume Vertice Vater Gamma Science (h) NRCS Hydrodyc Sol Groups of Toblary Watershed HSG $a = 0$ % 1) Procentage of Watershed consisting of Type A Solis HSG $a = 0$ % 1) Description of Watershed Consisting of Type A Solis HSG $a = 0$ % 1) Everse Librar Ruroff Volume (EURV) Design Volume EURVectors = 0.455 ac-f1 For HSG CD: EURVectors = 120 *1 ⁽²⁾ EURVectors = 0.455 ac-f1 For HSG CD: EURVectors = 120 *1 ⁽²⁾ EURVectors = 0.455 ac-f1 (b) Besin Mutor EURV Design Volume (EURV) Design Volume EURVectors = 0.455 ac-f1 (c) User Input of Excess Urban Ruroff Volume (EURV) Design Volume EURVectors = 0.455 ac-f1 (b) User Input of Excess Urban Ruroff Volume (EURV) Design Volume EURVectors = 0.455 ac-f1 (c) User Input of Excess Urban Ruroff Volume (EURV) Design Volume EURVectors = 0.455 ac-f1 (low if afferent EURV Design Volume is desired) L : W = 2.0 : 1 3. Basin Stade Stopes Z = 4.00 ft / ft (h) Describe mass of providing energy dissipation at concentrated infor incations Vectors = 0.003 ac-ft (Varant = 28 of the WACV) Vectors = 0.003 ac-ft Vectors = 0.003 ac-ft () Foreba	F) Design Volur (V _{DESIGN} = (1	me (WQCV) Based on 40-hour Drain Time .0 * (0.91 * i ³ - 1.19 * i ² + 0.78 * i) / 12 * Area)	V _{DESIGN} =ac-ft			
(Chi if a different WQCV Design VQLIMe is dealerd)HGG =0i) NRCS Hydrologic Soli Groups of Tributary Watershed i) Percentage of Watershed consisting of Type B Solis ii) Percentage of Watershed consisting of Type B CD SolisHGG =0i) Percentage of Watershed consisting of Type B Solis iii) Percentage of Watershed consisting of Type CD SolisHGG =0j) Eccess Lhian Runoff Volume (EURV) Design Volume Por HSG OD: EURVA = 108 °1 ¹⁰⁰ Por HSG OD: EURVA = 108 °1 ¹⁰⁰ Por HSG OD: EURVA = 108 °1 ¹⁰⁰ Por HSG OD: EURVA = 108 °1 ¹⁰⁰ EURV _{DEEON} =0.455 ac-ftk) User Input of Excoss Usan Runoff Volume is desired)EURV _{DEEON} =0.455 ac-ft02. Basin Shape: Leigh to Width Ratio (hotzontal distance per unit vertical, 4:1 or flatter preferred)L : W =2.0 : 13. Basin Side Slopes A) Basin Maximum Side Slopes (hotzontal distance per unit vertical, 4:1 or flatter preferred)Z =4.00 : ft / ft4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations:Vinam =0.003 : ac-ftj) Describe Torebay Volume (C) Forebay Deph (D, =1.80 : inch maximum)D _F =18.0 : inj) Forebay Discharge (i) Undetained 100-year Peak Discharge (i) Forebay Discharge Design FlowOur =22.00 : of si) Forebay Discharge Design FlowQ _{ing} =22.00 : of si) Forebay Discharge Design FlowQ _{ing} =22.00 : of s	Water Qualit	ty Capture Volume (WQCV) Design Volume	V _{DESIGN OTHER} = 0.147 ac-ft			
i) Percentage of Watershed consisting of Type A SolisHSG $a = 100$ i) Percentage of Watershed consisting of Type B SolisHSG $a = 100$ ii) Percentage of Watershed consisting of Type CD SolisHSG $a = 100$ ii) Percentage of Watershed consisting of Type CD SolisEURV _{cestort} = 0.455ii) Decess Urban Runoff Volume (EURV) Design Volume For HSG D: EURV _{cestort} = 1.20 °1. ²⁰ EURV _{cestort} = 0.455iii) Tor SG B: EURV _c = 1.3 e ^{+1/20} For HSG D: EURV _{cestort} = 1.20 °1. ²⁰ EURV _{cestort} = 0.455iiii) A different EURV Design Volume is desiredEURV _{cestort} = 0.455iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii			V _{DESIGN USER} =ac-ft			
For HSG A: EURVa = 168 $\cdot 1^{128}$ For HSG CD: EURVa = 138 $\cdot 1^{108}$ EURV _{DESION} = 0.455 ac-ftK) User Input of Excess Urban Runoff Volume (EURV) Design Volume (Only if a different EURV Design Volume is desired)EURV _{DESION USER} = 0.455 ac-ft2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.)L : W = 2.0 : 13. Basin Side Stopes (Horizontal distance per unit vertical, 4:1 or flater preferred)Z = 4.00 ft / ft4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations:Vriame = 0.003 ac-ft5. Forebay A) Minimum Forebay Volume (Vriam = -256 of the WQCV) B) Actual Forebay Volume (D = -136 inch maximum)Vriame = 0.003 ac-ft0. Forebay Discharge i) Undetained 100-year Peak DischargeQ _{re} = 0.44 ds	i) Percenta ii) Percenta	ge of Watershed consisting of Type A Soils age of Watershed consisting of Type B Soils	HSG _B = 100 %			
(Only if a different EURV Design Volume is desired) 2. Basin Shape: Length to Width Ratio (A basin length to width ratio of at least 2:1 will improve TSS reduction.) L : W =20	For HSG A: For HSG B:	EURV _A = 1.68 * i ^{1.28} EURV _B = 1.36 * i ^{1.08}	EURV _{DESIGN} = 0.455 ac-f t			
(A basin length to width ratio of at least 2:1 will improve TSS reduction.) Improve TSS reduction.) 3. Basin Side Slopes $Z = 4.00$ ft / ft (Horizontal distance per unit vertical, 4:1 or flatter preferred) $Z = 4.00$ ft / ft 4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: Improve TSS reduction.) 5. Forebay V_man = 0.003 ac-ft (V_man = 2% of the WQCV) V _{F = 0.003 ac-ft} B) Actual Forebay Volume V _{F = 0.003 ac-ft} (C) Forebay Depth D _F = 18.0 in (D _F = 19 inch maximum) D _F = 22.00 cfs (I) Undetained 100-year Peak Discharge Q _{r = 0.44} cfs			EURV _{DESIGN USER} =ac-f t			
A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) $Z = 4.00$ ft / ft 4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: $Z = -4.00$ ft / ft 5. Forebay A) Minimum Forebay Volume (V _{FMN} = -2% of the WQCV) $V_{FMN} = -0.003$ ac-ft B) Actual Forebay Volume $V_F = -0.003$ ac-ft C) Forebay Depth (D _F = -18 inch maximum) $D_F = -18.0$ in D) Forebay Discharge $Q_{100} = -22.00$ cfs i) Undetained 100-year Peak Discharge $Q_{100} = -22.00$ cfs ii) Forebay Discharge Design Flow $Q_F = -0.44$ cfs			L : W =: 1			
A) Basin Maximum Side Slopes (Horizontal distance per unit vertical, 4:1 or flatter preferred) $Z = 4.00$ ft / ft 4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: $Z = -4.00$ ft / ft 5. Forebay A) Minimum Forebay Volume (V _{FMN} = -2% of the WQCV) $V_{FMN} = -0.003$ ac-ft B) Actual Forebay Volume $V_F = -0.003$ ac-ft C) Forebay Depth (D _F = -18 inch maximum) $D_F = -18.0$ in D) Forebay Discharge $Q_{100} = -22.00$ cfs i) Undetained 100-year Peak Discharge $Q_{100} = -22.00$ cfs ii) Forebay Discharge Design Flow $Q_F = -0.44$ cfs	3. Basin Side Slop	es				
(Horizontal distance per unit vertical, 4:1 or flatter preferred) 4. Inlet A) Describe means of providing energy dissipation at concentrated inflow locations: 5. Forebay A) Minimum Forebay Volume $(V_{FMN} = \underline{2\%}_{0} \text{ of the WQCV})$ B) Actual Forebay Volume $(D_{F} = \underline{18}_{0} \text{ inch maximum})$ D) Forebay Discharge i) Undetained 100-year Peak Discharge ii) Forebay Discharge Design Flow						
A) Describe means of providing energy dissipation at concentrated inflow locations: A) Describe means of providing energy dissipation at concentrated inflow locations: A) Minimum Forebay Volume			Z = 4.00 ft / ft			
inflow locations: Image: constrained on the second se	4. Inlet					
5. Forebay A) Minimum Forebay Volume $V_{FMIN} = 0.003$ ac-ft $(V_{FMIN} = 2\%)$ of the WQCV) $V_F = 0.003$ ac-ft B) Actual Forebay Volume $V_F = 0.003$ ac-ft C) Forebay Depth $V_F = 18$ inch maximum) D) Forebay Discharge $D_F = 18.0$ in i) Undetained 100-year Peak Discharge $Q_{100} = 22.00$ cfs ii) Forebay Discharge Design Flow $Q_F = 0.44$ cfs	A) Describe me	eans of providing energy dissipation at concentrated				
A) Minimum Forebay Volume $V_{FMIN} = 0.003$ ac-ft (V _{FMIN} = 2% of the WQCV) $V_F = 0.003$ ac-ft B) Actual Forebay Volume $V_F = 0.003$ ac-ft C) Forebay Depth ($D_F = 18$ inch maximum) $D_F = 18.0$ in D) Forebay Discharge $U_{100} = 22.00$ cfs i) Undetained 100-year Peak Discharge $Q_{F} = 0.44$ cfs	inflow locatio	ons:				
A) Minimum Forebay Volume $V_{FMIN} = 0.003$ ac-ft (V _{FMIN} = 2% of the WQCV) $V_F = 0.003$ ac-ft B) Actual Forebay Volume $V_F = 0.003$ ac-ft C) Forebay Depth ($D_F = 18$ inch maximum) $D_F = 18.0$ in D) Forebay Discharge $U_{100} = 22.00$ cfs i) Undetained 100-year Peak Discharge $Q_{F} = 0.44$ cfs						
$(V_{FMIN} = \underline{2\%}_{0} \text{ of the WQCV})$ $V_F = 0.003$ ac-ftB) Actual Forebay Volume $V_F = 0.003$ ac-ftC) Forebay Depth $(D_F = \underline{18}_{10} \text{ inch maximum})$ $D_F = \underline{18.0}_{10} \text{ in}$ D) Forebay Discharge $Q_{100} = \underline{22.00}_{100} \text{ cfs}$ i) Undetained 100-year Peak Discharge $Q_{F} = 0.44$ cfs		rebay Volume	V _{FMIN} = 0.003 ac-ft			
C) Forebay Depth $D_F = 18$ inch maximum) $D_F = 18.0$ in D) Forebay Discharge in i) Undetained 100-year Peak Discharge $Q_{100} = 22.00$ cfs ii) Forebay Discharge Design Flow $Q_F = 0.44$ cfs	(V _{FMIN} :	= <u>2%</u> of the WQCV)				
$(D_F = 18 \text{ inch maximum})$ $D_F = 18.0 \text{ in}$ D) Forebay Discharge $Q_{100} = 22.00 \text{ cfs}$ i) Undetained 100-year Peak Discharge $Q_{100} = 22.00 \text{ cfs}$ ii) Forebay Discharge Design Flow $Q_F = 0.44 \text{ cfs}$,		v _F = 0.003 ac-it			
i) Undetained 100-year Peak Discharge $Q_{100} = 22.00$ cfs ii) Forebay Discharge Design Flow $Q_F = 0.44$ cfs	, , ,		D _F = 18.0 in			
ii) Forebay Discharge Design Flow $Q_F = 0.44$ cfs	D) Forebay Disc	sharge				
	i) Undetaine	ad 100-year Peak Discharge	Q ₁₀₀ = 22.00 cfs			
$(Q_{F} = 0.02 * Q_{100})$			Q _F = cfs			
E) Earabay Dispharea Dasign						
Choose One Berm With Pipe Wall with Rect. Notch Wall with V-Notch Weir	_,. 00004 <u>D</u> 100	·····g·g·	O Berm With Pipe Flow too small for berm w/ pipe Wall with Rect. Notch 			
F) Discharge Pipe Size (minimum 8-inches) Calculated D _P = in	F) Discharge Pi	pe Size (minimum 8-inches)	Calculated D _P =in			
G) Rectangular Notch Width Calculated W _N = 4.5 in	G) Rectangular	Notch Width	Calculated $W_N = 4.5$ in			

DEVELOPED DRAINAGE MAP



PREVIOUS DRAINAGE MAP

(BENT GRASS RESIDENTIAL FILING NO. 1)

