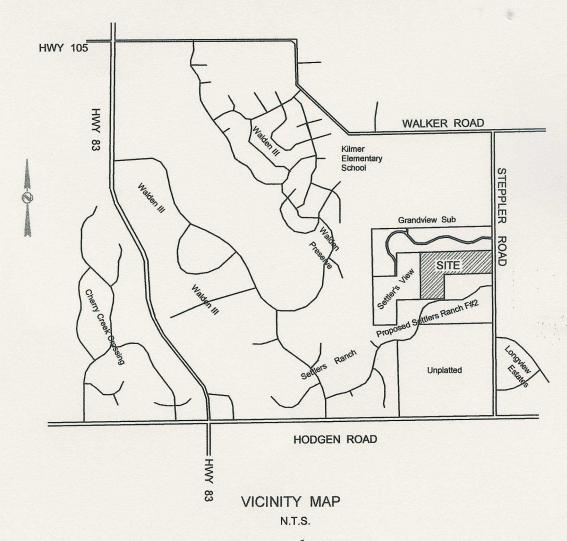


WILDFIRE HAZARD ASSESSMENT
AND MITIGATION REPORT
for the proposed
ABERT RANCH SUBDIVISION
El Paso County, Colorado.

Prepared for: Mr Eric Leffler, Trustee

BF Ranch Trust 2015

4510 Ford Drive


Colorado Springs, Colorado 80908

Prepared by: Jerome W. Hannigan and Associates, Inc

19360 Spring Valley Road Monument, Colorado 80132

WILDFIRE HAZARD ASSESSMENT AND MITIGATION REPORT for the proposed ABERT RANCH SUBDIVISION El Paso County, Colorado.

Abert Ranch Subdivision (no relation to Abert Estates along Shoup Road) is a proposed 10 lot subdivision of 2.5 to 6.3 acre lots located in Section 23, and 24, T11S, R66W of the 6th P.M., El Paso County. More generally, the property lies in the northern part of the County, east of Highway 83, south of Walker Road and adjoining the west side of Steppler Road. The County small area plan that applies to this parcel is the Black Forest Preservation Plan. The property is 40.40 acres in area. The property is a portion of the original Hodgin Ranch and has long been used (and remains) as grazing for cattle. The parcel schedule number is 61000-00-464.

HAZARD ASSESSMENT

The El Paso County Wildfire Hazard Map (December 2007) has two hazard classifications: Low Hazard - Non Forested, (no vegetation, grass and brush) and High Hazard - Forested, (deciduous and conifer/evergreen). These hazards are based on the Colorado Vegetation Classification Project. The property in question is generally shown as having a Low Hazard.

The earlier Wildfire Hazard Area Map (WHAM) developed by the Colorado State Forest Service in 1974 indicates the property to have a Low Hazard for Trees and Grass.

WHAM mapping is somewhat dated (though still relevant) and has essentially been superseded by the 2012 Colorado Wildfire Risk Assessment (CO-WRAP) which can be found online at www.coloradowildfirerisk.com. This site discusses, analyzes and maps the several significant factors relative to wildfire behavior. It is user friendly and can be accessed by anyone at anytime. Using the mapping function for Fire Occurrence we discover the likelihood of a wildfire starting based on historical ignition patterns is low; rating a 1 out of 7 (highest). Looking to the Vegetation Map we find the general vegetation types are shown as grasslands, shrublands, oak shrubland and a very small section in the northwest shown as ponderosa pine forest. One of the characteristics of wildfire that is significant when analyzing it's impact to structures is Fire Intensity. The Fire Intensity Map indicates a Moderate fire intensity for the property. Overall, the mapped wildfire hazard is low.

A field inspection of the property on March 30, 2017, reveals that it is used for grazing and is mostly grass covered. The northwesterly 10 acres is the only portion treed with Ponderosa Pines (Lots 5 & 6). This area has one band of trees that are rather thick. All are young. Throughout the rest of the mentioned 10 acres the trees are scattered and further apart. Despite the listing of shrubland, almost none currently exists. Those portions of the property (perhaps 15%) that are treed constitute a higher hazard than the remaining (about 85%) pasture because of that tree cover. New home construction on the lots in the treed northwest area will afford an opportunity to clear around the home and mitigate remaining trees which will significantly reduce that hazard even though a structure will have been added.

Although the hazard on this parcel is low, wildfire can occur and the opportunity for ignition remains. The Black Forest Wildfire that occurred June 11, 2013 to June 20, 2013 consumed 14,280 acres (over 22 square miles), destroying 486 homes and taking two lives. It burned primarily in the pine forest to the south and east and, at it's closest, came within approximately a mile and a half of this property.

WILDFIRE BEHAVIOR

There are three primary components that affect wildfire behavior. The first is fuel, the second is topography and the third is the local weather during a wildfire event.

Fuels:

Fuels on site include the Ponderosa Pines in the northwest area mentioned. These are young trees and those not removed during home or outbuilding construction will be mitigated. If lower limbs are removed so as to prevent a ground fire with potential flame lengths of 2 to 3 feet from entering the canopy, any fire should pass through with little damage to the trees in this part of the forest.

In the more open northern treed area trees are scattered and little forest litter exists other than grasses. Tree spacing is such that canopies are separate from one another. Ground fire here will have flame lengths of less than 2 feet. The chance of canopy involvement is low. A severe ground fire may torch an individual (smaller) tree but the fire will then return to the ground. All but the smallest of saplings will likely survive fire passage.

Throughout the balance of the property, grasses are the only fuel available and grazing keeps them short. Grasses are an easily ignited fuel and, being light, they burn readily and rapidly. If ungrazed and unmowed, these grasses can grow 12 or 18 inches in height and support flame lengths of over 4 feet. Wildfire in grasslands can move faster than most people can run and can move even more quickly when conditions are windy.

Topography:

Assuming wind is not a factor, wildfire will advance faster up a slope than it will downslope or on level ground. This occurs primarily because the fire preheats and dries the fuel in front of itself when ascending a slope. The steeper the slope the more dramatic the effect. Generally slopes of greater than 25% are considered a significant hazard depending on fuel availability.

Slopes in the proposed subdivision are generally mild, typically in the 5% to 7% range. This slope is not likely to significantly influence wildfire behavior.

Weather:

It is a fact that the recent really large wildfires in Colorado have all had a weather component that drives them such that efforts to contain the blaze are severely hampered or even ineffectual. Wind and moisture are the two weather phenomena that always affect wildfire behavior. Lack of moisture, either as rain or snow, allows vegetation to dry out and become much more susceptible to ignition. The lighter the fuel, the quicker the lack of moisture renders it more hazardous. Grasses become dry in just days. Brush or small trees can become hazardous in weeks and significant stands of pines can become dangerously dry in not much more than a month. The effect is cumulative; that is, a prolonged drought (not uncommon here) lowers the moisture content of all the vegetation at the same time raising the chance of uncontrollable wildfire. Conversely, rain or snow during a wildfire will suppress it and may even extinguish it.

Strong wind will drive wildfire before it. It will increase the speed at which the fire travels. Wind will also loft embers or fire brands high into the air where the directional winds will transport them, still glowing, well beyond the limits of the fire. This is called spotting and it can start new fires up to a mile or more away. Additionally, extreme fire behavior will create it's own winds. These winds sometimes appear within the fire as small tornados. Tornados made of fire.

Another word about weather that is pertinent is the fact that there is only one fire season here along the front range. It lasts 12 months a year. Wildfires start, grow and damage property in every month of the year here. While it is true that we cannot do anything about the weather, we can be mindful of it's effects and potential impact on fire behavior all year long.

Which brings us to the subject of Mitigation. Since we know wildfires will occur but we cannot know when or how intense they may become, we must be proactive in creating an environment through which wildfire can pass with minimal impact to our structures and the land.

WILDFIRE MITIGATION

We cannot control the weather during a wildfire and we cannot alter the basic topography of the property during one either. That leaves two approaches that we can address before a wildfire happens. The first is to alter the fuels available to a wildfire and the second is to use fire resistant construction methods when we construct homes and outbuildings within the area.

Fuel Mitigation

It stands to reason that the less fuel available, the lower the impact any fire will have. Trees, brush and grasses can be reduced in number and trimmed such that fire will have a more difficult time moving from tree to tree or from the ground into the tree canopy. Canopy fires are especially difficult to control and typically lead to spotting which advances the fire rapidly and spreads firebrands into new areas that may be behind the efforts of firefighters who are battling the existing fire front. They can also impact structures directly, piling up against foundation walls like leaves in autumn or snow in winter. They also settle into valleys on roof tops, concentrating heat and fire there.

The mitigation of fuels is simply the managing of the continuity of fuel both horizontally and vertically within the landscape. Around homes and other structures, we identify a circular area within which we mitigate more intensely close to the structure and less intensely further out. This is called Defensible Space and it serves to reduce the fire hazard and to provide firefighters room to more safely fight a fire. Typically within 30 feet of a structure fuels are heavily reduced or even eliminated (think xeriscape landscape treatments adjacent to the house). Trees within this zone are few and far between. Ground cover is kept to 6 inches in height or less and pine needles or slash and debris are removed. This is Zone 1. In the next 50 to 100 feet fuel continuity is maintained at a lower density with at least 10 feet between tree limbs. Shrubs (especially scrub oak) in this zone are removed from under trees to prevent fire from "laddering up" into the canopy. Clumps of shrubs should be isolated and kept twice their mature height from other vegetation. Grasses are kept mowed. This is Zone 2. Finally Zone 3 is the area outside that 100 foot Zone 2 line. Here the forest is managed to maintain the health of the vegetation that is present. In this area of Colorado that often means some thinning. Trees in all zones are pruned 6 feet up from the forest floor to lessen the chance of fire reaching the crown. Mowing in Zone 3 is not necessary but collection and disposal of slash is a benefit. Colorado State Forest Service Quick Guide Fire 2012-1 (Formerly CSU Extension Fact Sheet 6.302) Protecting Your Home from Wildfire: Creating Wildfire Defensible Zones provides further discussion on defensible space and how to create and maintain it.

It is unusual to see a mature natural evergreen forest today in much of Colorado because past fire suppression efforts have allowed vegetative growth that is several times more dense than nature would permit. A mature natural forest has a park like appearance with trees of all ages, sizes and species, each having room to grow. Sunlight reaches almost all of the forest floor for at least some time during the day.

In light of the fact that this property is mostly grasses and not forested, we can expect homeowners will plant trees and shrubs. There can be a distinct advantage to this as species and type of vegetation can be placed where they will do the most good and still comply with the principals of Defensible Space. See CSFS / CSU Cooperative Extension pamphlet #6.306 Grass Seed Mixes to Reduce Wildfire Hazard and #6.305, FireWise Plant Materials, both by F.C. Dennis.

Fire Restive Structure Construction

Wildfire is capricious. It is certainly possible to lose a structure that is constructed of all fire resistant materials. It is also much less likely than the loss of one constructed of light flammable materials like wood siding or roofing. Structures are ignited by the direct impingement of flames as a fire passes the structure and they are ignited by firebrands that are blown up against the walls or onto roof valleys or eves. As we already know, structures will be preheated and dried by the approaching fire. Soffit and foundation vents must be screened to prevent embers from entering. Fire resistive roofing is absolutely necessary because of those firebrands. Windows are particularly vulnerable. Glass will fracture in about 10 minutes in the presence of the level of heat that wildfires generate. And that heat will get to the structure before the fire does. Glass that falls out or is blown in creates a direct path for firebrands to enter the home. Decks are particularly vulnerable to wildfire as they are often constructed (and decked) with light wood framing, open to fire below. Too, they are often placed above an approaching slope to enhance the view. The area under a deck should be rock or other non combustible material and a fire resistive soffit material should cover the bottom side while a non combustible surface should be used instead of light wood decking on top.

New construction, as will occur in this subdivision, can be planned to utilize materials that are fire resistive at little additional cost. Materials that are dangerously combustible can simply be avoided. There are several publications available that address materials and construction in the Wildland-Urban Interface. FireWise Construction: Site Design & Building Materials by Tim Foley and David Bueche, December 2012, based on the 2009 International Wildland-Urban Interface Code is published by the Colorado State Forest Service. The Federal Emergency Management Agency (FEMA) published P-737, Home Builder's Guide to Construction in Wildfire Zones in September 2008 as part of their Technical Fact Sheet Series. It addresses both existing structures and new construction and provides guidance for methods and techniques to employ for each.

Finally, effective and no longer prohibitively expensive automatic sprinkler systems are available and easily incorporated in new construction.

Like Defensible Space, the materials used in the construction of any structure are important but it is the execution of an overall plan of Defensible Space and fire resistive construction that will provide the best chance to reduce structural vulnerability to wildfire.

Tri Lakes Monument Fire Protection District

The subject property lies within and is served by the Tri Lakes Monument Fire Protection District. The District is a career fire department providing fire, rescue and emergency medical services along with public education and covers an area of approximately 68 square miles at an average elevation of 7100 feet in the northern part of the County. The District serves about 24,000 residents through three stations in addition to separate District facilities. Personnel include about 50 firefighters, EMT's and Paramedics. At least 13 are on call 24 hours a day.

Station #1 is located at 18650 Highway 105, just west of the D & RG RR overpass in Monument. Equipment here includes a ladder truck, an ambulance and a brush truck with 5 personnel.

Station #2 is located at 18460 Roller Coaster Road, just south of Highway 105. This station houses an engine, an ambulance and a brush truck with 4 personnel. This is the closest station to the site. The road distance from this station to the subject site is 4.5 miles.

Station #3 is located at 1855 Woodmoor Drive, just north of Highway 105. Equipment available at this station includes an engine, a brush truck and the Battalion Chief's truck. Personnel number 4.

In addition to water available on the responding engines and brush trucks, there is a fire cistern located on Lot 5 in Grandview Subdivision. This cistern holds water strictly for fire fighting. It is less than one half mile north of the property on Silver Nell Drive.

Included with this Report is the full detailed Colorado Wildfire Risk Assessment Report created using the COWRAP Program.

Note: All Colorado State Forest Service publications are available on their website, www.csfs.colostate.edu